The effect of shaped nanoparticles on the photophysicochemical behaviour of metallophthalocyanines
- Authors: D'Souza, Sarah
- Date: 2016
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/529 , vital:19967
- Description: The synthesis, spectroscopic characterization and photophysicochemical analysis of novel and known metallophthalocyanines are reported in this thesis. The novel lowsymmetry compounds were extensively studied. Selected phthalocyanines were conjugated to a variety of nanoparticles consisting of silver (AgNPs), gold (AuNPs) and zinc oxide (ZnO NPs) in order to improve their photophysical and photochemical behaviour. As with the phthalocyanines, the nanoparticles and phthalocyaninenanoparticle conjugates were thoroughly investigated. Research on the effect of the solvent used, as well as the influence of nanoparticle composition and shape on the properties of the phthalocyanines, were performed. The findings showed that there was a general increase in triplet quantum yields of the phthalocyanines in the presence of the nanoparticles. It was also noted that the use of different solvents directly affected the photophysicochemical properties. In the case of the nanoparticle conjugates, photophysical and photochemical changes were observed. Of significance were the gold nanostars, which decreased the degree of phthalocyanine aggregation in water, resulting in increased fluorescence lifetimes. The studies also revealed that the effect of the nanoparticle shape on the phthalocyanine properties was highly dependent on the nanoparticle material. The photodynamic antimicrobial activity of selected phthalocyanine-zinc oxide nanoparticle conjugates was investigated against Staphylococcus aureus (S. aureus) in solution. The phthalocyanines alone exhibited remarkable growth inhibition, however the presence of the nanoparticles in the conjugates increased the photoinactivation of S. aureus.
- Full Text:
- Date Issued: 2016
- Authors: D'Souza, Sarah
- Date: 2016
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/529 , vital:19967
- Description: The synthesis, spectroscopic characterization and photophysicochemical analysis of novel and known metallophthalocyanines are reported in this thesis. The novel lowsymmetry compounds were extensively studied. Selected phthalocyanines were conjugated to a variety of nanoparticles consisting of silver (AgNPs), gold (AuNPs) and zinc oxide (ZnO NPs) in order to improve their photophysical and photochemical behaviour. As with the phthalocyanines, the nanoparticles and phthalocyaninenanoparticle conjugates were thoroughly investigated. Research on the effect of the solvent used, as well as the influence of nanoparticle composition and shape on the properties of the phthalocyanines, were performed. The findings showed that there was a general increase in triplet quantum yields of the phthalocyanines in the presence of the nanoparticles. It was also noted that the use of different solvents directly affected the photophysicochemical properties. In the case of the nanoparticle conjugates, photophysical and photochemical changes were observed. Of significance were the gold nanostars, which decreased the degree of phthalocyanine aggregation in water, resulting in increased fluorescence lifetimes. The studies also revealed that the effect of the nanoparticle shape on the phthalocyanine properties was highly dependent on the nanoparticle material. The photodynamic antimicrobial activity of selected phthalocyanine-zinc oxide nanoparticle conjugates was investigated against Staphylococcus aureus (S. aureus) in solution. The phthalocyanines alone exhibited remarkable growth inhibition, however the presence of the nanoparticles in the conjugates increased the photoinactivation of S. aureus.
- Full Text:
- Date Issued: 2016
The photophysical properties of low symmetry phthalocyanines in conjunction with quantum dots
- Authors: D'Souza, Sarah
- Date: 2011
- Subjects: Phthalocyanines , Photochemistry , Zinc , Quantum dots , Spectrum analysis , Nanoparticles
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4331 , http://hdl.handle.net/10962/d1004992 , Phthalocyanines , Photochemistry , Zinc , Quantum dots , Spectrum analysis , Nanoparticles
- Description: he synthesis, extensive spectroscopic characterization and photophysical studies of low symmetry zinc phthalocyanine have been conducted. Comparisons have been made taking into consideration the influence of the solvent properties as well as substituent type and position. Photosensitizing properties of the zinc phthalocyanine derivatives in the presence of thiol capped CdTe quantum dots (QDs) were compared. The QDs were used as energy transfer donors and to facilitate with energy transfer through Förster resonance energy transfer (FRET) from the QDs to the MPcs. The linkage of unsymmetrically substituted 4-monoaminophenoxy zinc phthalocyanine (ZnAPPc) to CdTe quantum dots capped with mercaptopropionic acid (MPA), L-cysteine (L-cys) or thioglycolic acid (TGA) has been achieved using the coupling agents ethyl-N3 dimethylaminopropyl)carbodiimide (EDC) and N-hydroxy succinimide (NHS), which facilitate formation of an amide bond to form the QD-ZnAPPc-linked complex. The formation of the amide bond was confirmed using UV-Vis, Raman and IR spectroscopies, as well as AFM (atomic force microscopy). Förster resonance energy transfer (FRET) resulted in stimulated emission of ZnAPPc in both the linked (QDZnAPPc-linked) and mixed (QD:ZnAPPc-mixed) conjugates for MPA only. The linked L-cys and TGA complexes (QD-ZnAPPc-linked) gave the largest FRET efficiencies hence showing the advantages of covalent linking. Fluorescence quantum yields of QDs were decreased in QD:ZnAPPc-mixed and QD:ZnAPPc-linked. High triplet state quantum yields were obtained for the linked QD-phthalocyanine derivatives (ZnAPPc)and monoaminozinc phthalocyanine (ZnAPc) compared to when ZnAPPc and ZnAPc were mixed with MPA QDs without a chemical bond.
- Full Text:
- Date Issued: 2011
- Authors: D'Souza, Sarah
- Date: 2011
- Subjects: Phthalocyanines , Photochemistry , Zinc , Quantum dots , Spectrum analysis , Nanoparticles
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4331 , http://hdl.handle.net/10962/d1004992 , Phthalocyanines , Photochemistry , Zinc , Quantum dots , Spectrum analysis , Nanoparticles
- Description: he synthesis, extensive spectroscopic characterization and photophysical studies of low symmetry zinc phthalocyanine have been conducted. Comparisons have been made taking into consideration the influence of the solvent properties as well as substituent type and position. Photosensitizing properties of the zinc phthalocyanine derivatives in the presence of thiol capped CdTe quantum dots (QDs) were compared. The QDs were used as energy transfer donors and to facilitate with energy transfer through Förster resonance energy transfer (FRET) from the QDs to the MPcs. The linkage of unsymmetrically substituted 4-monoaminophenoxy zinc phthalocyanine (ZnAPPc) to CdTe quantum dots capped with mercaptopropionic acid (MPA), L-cysteine (L-cys) or thioglycolic acid (TGA) has been achieved using the coupling agents ethyl-N3 dimethylaminopropyl)carbodiimide (EDC) and N-hydroxy succinimide (NHS), which facilitate formation of an amide bond to form the QD-ZnAPPc-linked complex. The formation of the amide bond was confirmed using UV-Vis, Raman and IR spectroscopies, as well as AFM (atomic force microscopy). Förster resonance energy transfer (FRET) resulted in stimulated emission of ZnAPPc in both the linked (QDZnAPPc-linked) and mixed (QD:ZnAPPc-mixed) conjugates for MPA only. The linked L-cys and TGA complexes (QD-ZnAPPc-linked) gave the largest FRET efficiencies hence showing the advantages of covalent linking. Fluorescence quantum yields of QDs were decreased in QD:ZnAPPc-mixed and QD:ZnAPPc-linked. High triplet state quantum yields were obtained for the linked QD-phthalocyanine derivatives (ZnAPPc)and monoaminozinc phthalocyanine (ZnAPc) compared to when ZnAPPc and ZnAPc were mixed with MPA QDs without a chemical bond.
- Full Text:
- Date Issued: 2011
- «
- ‹
- 1
- ›
- »