Real-time audio spectrum analyser research, design, development and implementation using the 32 bit ARMR Cortex-M4 microcontroller
- Authors: Just, Stefan Antonio
- Date: 2017
- Subjects: Spectrum analyzers , Sound -- Recording and reproducing -- Digital techniques , Real-time data processing
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/50536 , vital:25997
- Description: This thesis describes the design and testing of a low-cost hand-held real-time audio analyser (RTAA). This includes the design of an embedded system, the development of the firmware executed by the embedded system, and the implementation of a real-time signal processing algorithms. One of the objectives of this project was to design an alternative low-cost audio analyser to the current commercially available solutions. The device was tested with the audio standard test signal (pink noise) and was compared to the expected at-spectrum response corresponding to a balanced audio system. The design makes use of an 32-bit Reduced Instruction Set Computer (RISC) processor core (ARM Cortex-M4), namely the STM32F4 family of microcontrollers. Due to the pin compatibility of the microcontroller (designed and manufactured by STMicroelectronics), the new development board can also be upgraded with the newly released Cortex-M7 microcontroller, namely the STM32F7 family of microcontrollers. Moreover, the low-cost hardware design features 256kB Random Access Memory (RAM); on-board Micro-Electro-Mechanical System (MEMS) microphone; on-chip 12-bit Analogue-to-Digital (A/D) and Digital-to-Analogue (D/A) Converters; 3.2" Thin-Film-Transistor Liquid-Crystal Display (TFT-LCD) with a resistive touch screen sensor and SD-Card Socket. Furthermore, two additional expansion modules were designed and can extend the functionality of the designed real-time audio analyser. Firstly, an audio/video module featuring a professional 24-bit 192kHz sampling rate audio CODEC; balanced audio microphone input; unbalanced line output; three MEMS microphone inputs; headphone output; and a Video Graphics Array (VGA) controller allowing the display of the analysed audio spectrum on either a projector or monitor. The second expansion module features two external memories: 1MB Static Random Access Memory (SRAM) and 16MB Synchronous Dynamic Random Access Memory (SDRAM). While the two additional expansion modules were not completely utilised by the firmware presented in this thesis, upgrades of the real-time audio analyser firmware in future revisions will provide a higher performing and more accurate analysis of the audio spectrum. The full research and design process for the real-time audio analyser is discussed and both Problems and pitfalls with the final implemented design are highlighted and possible resolutions were investigated. The development costs (excluding labour) are given in the form of a bill of materials (BOM) with the total costs averaging around R1000. Moreover, the additional VGA controller could further decrease the overall costs with the removal of the TFT-LCD screen from the audio analyser and provided the external display was not included in the BOM.
- Full Text:
- Date Issued: 2017
- Authors: Just, Stefan Antonio
- Date: 2017
- Subjects: Spectrum analyzers , Sound -- Recording and reproducing -- Digital techniques , Real-time data processing
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/50536 , vital:25997
- Description: This thesis describes the design and testing of a low-cost hand-held real-time audio analyser (RTAA). This includes the design of an embedded system, the development of the firmware executed by the embedded system, and the implementation of a real-time signal processing algorithms. One of the objectives of this project was to design an alternative low-cost audio analyser to the current commercially available solutions. The device was tested with the audio standard test signal (pink noise) and was compared to the expected at-spectrum response corresponding to a balanced audio system. The design makes use of an 32-bit Reduced Instruction Set Computer (RISC) processor core (ARM Cortex-M4), namely the STM32F4 family of microcontrollers. Due to the pin compatibility of the microcontroller (designed and manufactured by STMicroelectronics), the new development board can also be upgraded with the newly released Cortex-M7 microcontroller, namely the STM32F7 family of microcontrollers. Moreover, the low-cost hardware design features 256kB Random Access Memory (RAM); on-board Micro-Electro-Mechanical System (MEMS) microphone; on-chip 12-bit Analogue-to-Digital (A/D) and Digital-to-Analogue (D/A) Converters; 3.2" Thin-Film-Transistor Liquid-Crystal Display (TFT-LCD) with a resistive touch screen sensor and SD-Card Socket. Furthermore, two additional expansion modules were designed and can extend the functionality of the designed real-time audio analyser. Firstly, an audio/video module featuring a professional 24-bit 192kHz sampling rate audio CODEC; balanced audio microphone input; unbalanced line output; three MEMS microphone inputs; headphone output; and a Video Graphics Array (VGA) controller allowing the display of the analysed audio spectrum on either a projector or monitor. The second expansion module features two external memories: 1MB Static Random Access Memory (SRAM) and 16MB Synchronous Dynamic Random Access Memory (SDRAM). While the two additional expansion modules were not completely utilised by the firmware presented in this thesis, upgrades of the real-time audio analyser firmware in future revisions will provide a higher performing and more accurate analysis of the audio spectrum. The full research and design process for the real-time audio analyser is discussed and both Problems and pitfalls with the final implemented design are highlighted and possible resolutions were investigated. The development costs (excluding labour) are given in the form of a bill of materials (BOM) with the total costs averaging around R1000. Moreover, the additional VGA controller could further decrease the overall costs with the removal of the TFT-LCD screen from the audio analyser and provided the external display was not included in the BOM.
- Full Text:
- Date Issued: 2017
Thermoluminescence of synthetic quartz annealed beyond its second phase inversion temperature
- Authors: Mthwesi, Zuko
- Date: 2017
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/46077 , vital:25577
- Description: Thermoluminescence of synthetic quartz annealed at 1000 ºC for 10 minutes has been studied. The aim was to study mechanisms of thermoluminescence in annealed synthetic quartz and to discuss the results in terms of the physics of point defects. The sample was irradiated with a beta dose of 10 Gy of beta radiation and then heated at a linear heating rate of 1 ºC.s-1 up to 500 ºC. The thermoluminescence (TL) glow curve consists of three glow peaks. Peak I at 74 0C (main peak) with high intensity as compared to the other two peaks. Peak II at 144 ºC is more intense than peak III at 180 ºC. This study was on the main peak (MP) at 74 ºC and peak III at 180 ºC. Kinetic analysis was carried out to determine the trap depth E, frequency factor s and the order of kinetics b of both peaks using the initial rise, peak shape, variable heating rate, glow curve deconvolution and isothermal TL methods. The values of kinetic parameters obtained were around 0.7 to 1.0 eV for trap depth and in the interval of 108 to 1015 s-¹ for frequency factor for both peaks. The effect of heating rate from 0.5 to 5 ºC.s-¹ on the TL peak intensity and peak temperature was observed. Also the effect of thermal quenching was observed at high heating rates. Since the TL glow curve has overlapping TL peaks, the Tm-Tstop method from 54 ºC up to 64 ºC and E -Tstop methods were introduced where a first order single peak was observed. Phototransfered thermoluminescence (PTTL) was investigated and characterized by three peaks. First PTTL peak I at 72 ºC, peak II at 134 ºC and peak III at 176 ºC. Analysis was carried out on peaks I and III for the effect of dose dependence from 20-200 Gy. Thermal fading was observed on PTTL peaks I and III, after storage time of 30 minutes.
- Full Text:
- Date Issued: 2017
- Authors: Mthwesi, Zuko
- Date: 2017
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/46077 , vital:25577
- Description: Thermoluminescence of synthetic quartz annealed at 1000 ºC for 10 minutes has been studied. The aim was to study mechanisms of thermoluminescence in annealed synthetic quartz and to discuss the results in terms of the physics of point defects. The sample was irradiated with a beta dose of 10 Gy of beta radiation and then heated at a linear heating rate of 1 ºC.s-1 up to 500 ºC. The thermoluminescence (TL) glow curve consists of three glow peaks. Peak I at 74 0C (main peak) with high intensity as compared to the other two peaks. Peak II at 144 ºC is more intense than peak III at 180 ºC. This study was on the main peak (MP) at 74 ºC and peak III at 180 ºC. Kinetic analysis was carried out to determine the trap depth E, frequency factor s and the order of kinetics b of both peaks using the initial rise, peak shape, variable heating rate, glow curve deconvolution and isothermal TL methods. The values of kinetic parameters obtained were around 0.7 to 1.0 eV for trap depth and in the interval of 108 to 1015 s-¹ for frequency factor for both peaks. The effect of heating rate from 0.5 to 5 ºC.s-¹ on the TL peak intensity and peak temperature was observed. Also the effect of thermal quenching was observed at high heating rates. Since the TL glow curve has overlapping TL peaks, the Tm-Tstop method from 54 ºC up to 64 ºC and E -Tstop methods were introduced where a first order single peak was observed. Phototransfered thermoluminescence (PTTL) was investigated and characterized by three peaks. First PTTL peak I at 72 ºC, peak II at 134 ºC and peak III at 176 ºC. Analysis was carried out on peaks I and III for the effect of dose dependence from 20-200 Gy. Thermal fading was observed on PTTL peaks I and III, after storage time of 30 minutes.
- Full Text:
- Date Issued: 2017
Beta decay of 100/400 Zr produced in neutron-induced fission of natural uranium
- Authors: Kamoto, Thokozani
- Date: 2016
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/3024 , vital:20353
- Description: Fission fragments, produced by neutron bombardment of natural uranium at the Physics Department, Jyväskylä, Finland, are studied in this work. The data had been sorted into 25 Y — y coincidence matrices which were then analysed. In this work we aimed to identify the fission products using Y-Y coincidence analysis and then study the beta-decay of some of the fission products. Sixteen fission products ranging from A = 94 to A = 136 were identified. Out of these fission products beta decay of the A = 100 (100/40 Zr – 100/41 Nb – 100/42 Mo) chain was studied in greater detail. We have also studied the variation of the relative intensities as a function of time of the 159-, 528-, 600-, 768-, 928- and 1502-keV Y-rav lines in 100/42 Mo and the profiles of the relative intensities have been modelled with the variation of the activity of 100/41 Nb against time. Configuration assignments of 100 Zr and 100/42 Mo are discussed.
- Full Text:
- Date Issued: 2016
- Authors: Kamoto, Thokozani
- Date: 2016
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/3024 , vital:20353
- Description: Fission fragments, produced by neutron bombardment of natural uranium at the Physics Department, Jyväskylä, Finland, are studied in this work. The data had been sorted into 25 Y — y coincidence matrices which were then analysed. In this work we aimed to identify the fission products using Y-Y coincidence analysis and then study the beta-decay of some of the fission products. Sixteen fission products ranging from A = 94 to A = 136 were identified. Out of these fission products beta decay of the A = 100 (100/40 Zr – 100/41 Nb – 100/42 Mo) chain was studied in greater detail. We have also studied the variation of the relative intensities as a function of time of the 159-, 528-, 600-, 768-, 928- and 1502-keV Y-rav lines in 100/42 Mo and the profiles of the relative intensities have been modelled with the variation of the activity of 100/41 Nb against time. Configuration assignments of 100 Zr and 100/42 Mo are discussed.
- Full Text:
- Date Issued: 2016
Calibration and wide field imaging with PAPER: a catalogue of compact sources
- Authors: Philip, Liju
- Date: 2016
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/2397 , vital:20285
- Description: Observations of the redshifted 21 cm HI line promise to be a formidable tool for cosmology, allowing the investigation of the end of the so-called dark ages, when the first galaxies formed, and the subsequent Epoch of Reionization when the intergalactic medium transitioned from neutral to ionized. Such observations are plagued by foreground emission which is a few orders of magnitude brighter than the 21 cm line. In this thesis I analyzed data from the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) in order to improve the characterization of the extragalactic foreground component. I derived a catalogue of unresolved radio sources down to a 5 Jy flux density limit at 150 MHz and derived their spectral index distribution using literature data at 408 MHz. I implemented advanced techniques to calibrate radio interferometric data that led to a few percent accuracy on the flux density scale of the derived catalogue. This work, therefore, represents a further step towards creating an accurate, global sky model that is crucial to improve calibration of Epoch of Reionization observations.
- Full Text:
- Date Issued: 2016
- Authors: Philip, Liju
- Date: 2016
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/2397 , vital:20285
- Description: Observations of the redshifted 21 cm HI line promise to be a formidable tool for cosmology, allowing the investigation of the end of the so-called dark ages, when the first galaxies formed, and the subsequent Epoch of Reionization when the intergalactic medium transitioned from neutral to ionized. Such observations are plagued by foreground emission which is a few orders of magnitude brighter than the 21 cm line. In this thesis I analyzed data from the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) in order to improve the characterization of the extragalactic foreground component. I derived a catalogue of unresolved radio sources down to a 5 Jy flux density limit at 150 MHz and derived their spectral index distribution using literature data at 408 MHz. I implemented advanced techniques to calibrate radio interferometric data that led to a few percent accuracy on the flux density scale of the derived catalogue. This work, therefore, represents a further step towards creating an accurate, global sky model that is crucial to improve calibration of Epoch of Reionization observations.
- Full Text:
- Date Issued: 2016
Classical and quantum picture of the interior of two-dimensional black holes
- Authors: Shawa, Mark
- Date: 2016
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/3629 , vital:20531
- Description: A quantum-mechanical description of black holes would represent the final step in our understanding of the nature of space-time. However, any progress towards that end is usually foiled by persistent space-time singularities that exist at the center of black holes. From the four-dimensional point of view, black holes seem to resist quantization. Under highly symmetric conditions, all higher-dimensional black holes are two-dimensional. Unlike their higher-dimensional counterparts, two dimensional black holes may not resist quantization. A non-trivial description of gravity in two dimensions is not possible using Einstein’s theory of gravity alone. However, we may still arrive at a consistent description of gravity by introducing a scalar field known as the dilaton. In this thesis, we study both the classical and quantum aspects of the interior of two-dimensional black holes using a generalized dilaton-gravity theory. Classically, we will find that the interior of most two-dimensional black holes is not much different from that of four-dimensional black holes. But by introducing quantized matter into the theory, the fluctuations in space-time will give a different picture of the structure of interior of black holes. Using a low-energy effective field theory, we will show that it is indeed possible to identify quantum modes in the interior of black holes and perform quantum-mechanical calculations near the singularity.
- Full Text:
- Date Issued: 2016
- Authors: Shawa, Mark
- Date: 2016
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/3629 , vital:20531
- Description: A quantum-mechanical description of black holes would represent the final step in our understanding of the nature of space-time. However, any progress towards that end is usually foiled by persistent space-time singularities that exist at the center of black holes. From the four-dimensional point of view, black holes seem to resist quantization. Under highly symmetric conditions, all higher-dimensional black holes are two-dimensional. Unlike their higher-dimensional counterparts, two dimensional black holes may not resist quantization. A non-trivial description of gravity in two dimensions is not possible using Einstein’s theory of gravity alone. However, we may still arrive at a consistent description of gravity by introducing a scalar field known as the dilaton. In this thesis, we study both the classical and quantum aspects of the interior of two-dimensional black holes using a generalized dilaton-gravity theory. Classically, we will find that the interior of most two-dimensional black holes is not much different from that of four-dimensional black holes. But by introducing quantized matter into the theory, the fluctuations in space-time will give a different picture of the structure of interior of black holes. Using a low-energy effective field theory, we will show that it is indeed possible to identify quantum modes in the interior of black holes and perform quantum-mechanical calculations near the singularity.
- Full Text:
- Date Issued: 2016
Single station TEC modelling during storm conditions
- Authors: Uwamahoro, Jean Claude
- Date: 2016
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/3812 , vital:20545
- Description: It has been shown in ionospheric research that modelling total electron content (TEC) during storm conditions is a big challenge. In this study, mathematical equations were developed to estimate TEC over Sutherland (32.38oS, 20.81oE), during storm conditions, using the Empirical Orthogonal Function (EOF) analysis, combined with regression analysis. TEC was derived from GPS observations and a geomagnetic storm was defined for Dst ≤ -50 nT. The inputs for the model were chosen based on the factors that influence TEC variation, such as diurnal, seasonal, solar and geomagnetic activity variation, and these were represented by hour of the day, day number of the year, F10.7 and A index respectively. The EOF model was developed using GPS TEC data from 1999 to 2013 and tested on different storms. For the model validation (interpolation), three storms were chosen in 2000 (solar maximum period) and three others in 2006 (solar minimum period), while for extrapolation six storms including three in 2014 and three in 2015 were chosen. Before building the model, TEC values for the selected 2000 and 2006 storms were removed from the dataset used to construct the model in order to make the model validation independent on data. A comparison of the observed and modelled TEC showed that the EOF model works well for storms with non-significant ionospheric TEC response and storms that occurred during periods of low solar activity. High correlation coefficients between the observed and modelled TEC were obtained showing that the model covers most of the information contained in the observed TEC. Furthermore, it has been shown that the EOF model developed for a specific station may be used to estimate TEC over other locations within a latitudinal and longitudinal coverage of 8.7o and 10.6o respectively. This is an important result as it reduces the data dimensionality problem for computational purposes. It may therefore not be necessary for regional storm-time TEC modelling to compute TEC data for all the closest GPS receiver stations since most of the needed information can be extracted from measurements at one location.
- Full Text:
- Date Issued: 2016
- Authors: Uwamahoro, Jean Claude
- Date: 2016
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/3812 , vital:20545
- Description: It has been shown in ionospheric research that modelling total electron content (TEC) during storm conditions is a big challenge. In this study, mathematical equations were developed to estimate TEC over Sutherland (32.38oS, 20.81oE), during storm conditions, using the Empirical Orthogonal Function (EOF) analysis, combined with regression analysis. TEC was derived from GPS observations and a geomagnetic storm was defined for Dst ≤ -50 nT. The inputs for the model were chosen based on the factors that influence TEC variation, such as diurnal, seasonal, solar and geomagnetic activity variation, and these were represented by hour of the day, day number of the year, F10.7 and A index respectively. The EOF model was developed using GPS TEC data from 1999 to 2013 and tested on different storms. For the model validation (interpolation), three storms were chosen in 2000 (solar maximum period) and three others in 2006 (solar minimum period), while for extrapolation six storms including three in 2014 and three in 2015 were chosen. Before building the model, TEC values for the selected 2000 and 2006 storms were removed from the dataset used to construct the model in order to make the model validation independent on data. A comparison of the observed and modelled TEC showed that the EOF model works well for storms with non-significant ionospheric TEC response and storms that occurred during periods of low solar activity. High correlation coefficients between the observed and modelled TEC were obtained showing that the model covers most of the information contained in the observed TEC. Furthermore, it has been shown that the EOF model developed for a specific station may be used to estimate TEC over other locations within a latitudinal and longitudinal coverage of 8.7o and 10.6o respectively. This is an important result as it reduces the data dimensionality problem for computational purposes. It may therefore not be necessary for regional storm-time TEC modelling to compute TEC data for all the closest GPS receiver stations since most of the needed information can be extracted from measurements at one location.
- Full Text:
- Date Issued: 2016
The EPR paradox: back from the future
- Authors: Bryan, Kate Louise Halse
- Date: 2016
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/2881 , vital:20338
- Description: The Einstein-Podolsky-Rosen (EPR) thought experiment produced a problem regarding the interpretation of quantum mechanics provided for entangled systems. Although the thought experiment was reformulated mathematically in Bell's Theorem, the conclusion regarding entanglement correlations is still debated today. In an attempt to provide an explanation of how entangled systems maintain their correlations, this thesis investigates the theory of post-state teleportation as a possible interpretation of how information moves between entangled systems without resorting to nonlocal action. Post-state teleportation describes a method of communicating to the past via a quantum information channel. The resulting picture of the EPR thought experiment relied on information propagating backward from a final boundary condition to ensure all correlations were maintained. Similarities were found between this resolution of the EPR paradox and the final state solution to the black hole information paradox and the closely related firewall problem. The latter refers to an apparent conflict between unitary evaporation of a black hole and the strong subadditivity condition. The use of observer complementarity allows this solution of the black hole problem to be shown to be the same as a seemingly different solution known as “ER=EPR", where ‘ER’ refers to an Einstein-Rosen bridge or wormhole.
- Full Text:
- Date Issued: 2016
- Authors: Bryan, Kate Louise Halse
- Date: 2016
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/2881 , vital:20338
- Description: The Einstein-Podolsky-Rosen (EPR) thought experiment produced a problem regarding the interpretation of quantum mechanics provided for entangled systems. Although the thought experiment was reformulated mathematically in Bell's Theorem, the conclusion regarding entanglement correlations is still debated today. In an attempt to provide an explanation of how entangled systems maintain their correlations, this thesis investigates the theory of post-state teleportation as a possible interpretation of how information moves between entangled systems without resorting to nonlocal action. Post-state teleportation describes a method of communicating to the past via a quantum information channel. The resulting picture of the EPR thought experiment relied on information propagating backward from a final boundary condition to ensure all correlations were maintained. Similarities were found between this resolution of the EPR paradox and the final state solution to the black hole information paradox and the closely related firewall problem. The latter refers to an apparent conflict between unitary evaporation of a black hole and the strong subadditivity condition. The use of observer complementarity allows this solution of the black hole problem to be shown to be the same as a seemingly different solution known as “ER=EPR", where ‘ER’ refers to an Einstein-Rosen bridge or wormhole.
- Full Text:
- Date Issued: 2016
Thermoluminescence of annealed synthetic quartz
- Atang, Elizabeth Fende Midiki
- Authors: Atang, Elizabeth Fende Midiki
- Date: 2016
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/420 , vital:19957
- Description: The kinetic and dosimetric features of the main thermoluminescent peak of synthetic quartz have been investigated in quartz ordinarily annealed at 500_C as well as quartz annealed at 500_C for 10 minutes. The main peak is found at 78 _C for the samples annealed at 500_C for 10 minutes irradiated to 10 Gy and heated at 1.0 _C/s. For the samples ordinarily annealed at 500_C the main peak is found at 106 _C after the sample has been irradiated to 30 Gy and heated at 5.0 _C/s. In these samples, the intensity of the main peak is enhanced with repetitive measurement whereas its maximum temperature is unaffected. The peak position of the main peak in the sample is independent of the irradiation dose and this, together with its fading characteristics, are consistent with first-order kinetics. For doses between 5 and 25 Gy, the dose response of the main peak of the annealed sample is superlinear. The half-life of the main TL peak of the annealed sample is about 1 h. The activation energy E of the main peak is around 0.90 eV. For a heating rate of 0.4 _C/s, its order of kinetics b derived from the whole curve method of analysis is 1.0. Following irradiation, preheating and illumination with 470 nm blue light, the main peak in the annealed sample is regenerated during heating. The resulting phototransferred peak occurs at the same temperature as the original peak and has similar kinetic and dosimetric features, with a half-life of about 1 h. For a preheat temperature of 200 _C, the intensity of the phototransferred peak in the sample increases with illumination time up to a maximum and decreases thereafter. At longer illumination times, no further decrease in the intensity of the phototransferred peak is observed. The traps associated with the 325 _C peak are the main source of the electrons responsible for the regenerated peak.
- Full Text:
- Date Issued: 2016
- Authors: Atang, Elizabeth Fende Midiki
- Date: 2016
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/420 , vital:19957
- Description: The kinetic and dosimetric features of the main thermoluminescent peak of synthetic quartz have been investigated in quartz ordinarily annealed at 500_C as well as quartz annealed at 500_C for 10 minutes. The main peak is found at 78 _C for the samples annealed at 500_C for 10 minutes irradiated to 10 Gy and heated at 1.0 _C/s. For the samples ordinarily annealed at 500_C the main peak is found at 106 _C after the sample has been irradiated to 30 Gy and heated at 5.0 _C/s. In these samples, the intensity of the main peak is enhanced with repetitive measurement whereas its maximum temperature is unaffected. The peak position of the main peak in the sample is independent of the irradiation dose and this, together with its fading characteristics, are consistent with first-order kinetics. For doses between 5 and 25 Gy, the dose response of the main peak of the annealed sample is superlinear. The half-life of the main TL peak of the annealed sample is about 1 h. The activation energy E of the main peak is around 0.90 eV. For a heating rate of 0.4 _C/s, its order of kinetics b derived from the whole curve method of analysis is 1.0. Following irradiation, preheating and illumination with 470 nm blue light, the main peak in the annealed sample is regenerated during heating. The resulting phototransferred peak occurs at the same temperature as the original peak and has similar kinetic and dosimetric features, with a half-life of about 1 h. For a preheat temperature of 200 _C, the intensity of the phototransferred peak in the sample increases with illumination time up to a maximum and decreases thereafter. At longer illumination times, no further decrease in the intensity of the phototransferred peak is observed. The traps associated with the 325 _C peak are the main source of the electrons responsible for the regenerated peak.
- Full Text:
- Date Issued: 2016
A light-emitting-diode pulsing system for measurement of time-resolved luminescence
- Authors: Uriri, Solomon Akpore
- Date: 2015
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:20976 , http://hdl.handle.net/10962/5788
- Description: A new light-emitting-diode based pulsing system for measurement of time-resolved luminescence has been developed. The light-emitting-diodes are pulsed at various pulse-widths by a 555-timer operated as a monostable multivibrator. The light-emitting-diodes are arranged in a dural holder connected in parallel in sets of four, each containing four diodes in series. The output pulse from the 555-timer is fed into an 2N7000 MOSFET to produce a pulse-current of 500 mA to drive the set of 16 light-emitting-diodes. This size of current is sufficient to drive the diodes with each driven at a pulse-current of 90 mA with a possible maximum of 110 mA per diode. A multichannel scaler is used to trigger the pulsing system and to record data at selectable dwell times. The system is capable of generating pulse-widths in the range of microseconds upwards.
- Full Text:
- Date Issued: 2015
- Authors: Uriri, Solomon Akpore
- Date: 2015
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:20976 , http://hdl.handle.net/10962/5788
- Description: A new light-emitting-diode based pulsing system for measurement of time-resolved luminescence has been developed. The light-emitting-diodes are pulsed at various pulse-widths by a 555-timer operated as a monostable multivibrator. The light-emitting-diodes are arranged in a dural holder connected in parallel in sets of four, each containing four diodes in series. The output pulse from the 555-timer is fed into an 2N7000 MOSFET to produce a pulse-current of 500 mA to drive the set of 16 light-emitting-diodes. This size of current is sufficient to drive the diodes with each driven at a pulse-current of 90 mA with a possible maximum of 110 mA per diode. A multichannel scaler is used to trigger the pulsing system and to record data at selectable dwell times. The system is capable of generating pulse-widths in the range of microseconds upwards.
- Full Text:
- Date Issued: 2015
Assignment of spin and parity to states in the nucleus ¹⁹⁶T1
- Authors: Uwitonze, Pierre Celestin
- Date: 2015
- Subjects: Nuclear spin , Particles (Nuclear physics) -- Chirality
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5558 , http://hdl.handle.net/10962/d1017903
- Description: This work presents a study of high-spin states in the nucleus ¹⁹⁶Tl via γ-spectroscopy. ¹⁹⁶Tl was produced via the ¹⁹⁷Au(⁴He,5n) ¹⁹⁶Tl reaction at a beam energy of 63 MeV. The γ-γ coincidence measurements were performed using the AFRODITE γ-spectrometer array at iThemba LABS. The previous level scheme of ¹⁹⁶Tl has been extended up to an excitation of 4071 keV including 24 new γ-ray transitions. The spin and parity assignment to levels was made from the directional correlation of oriented nuclei (DCO) and linear polarization anisotropy ratios. An analysis of the B(M1)/B(E2) ratios was found to be consistent with the configuration of πh₉/₂♁vi₁₃/₂ for the ground state band. Although no chiral band was found in ¹⁹⁶TI and ¹⁹⁸TI.
- Full Text:
- Date Issued: 2015
- Authors: Uwitonze, Pierre Celestin
- Date: 2015
- Subjects: Nuclear spin , Particles (Nuclear physics) -- Chirality
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5558 , http://hdl.handle.net/10962/d1017903
- Description: This work presents a study of high-spin states in the nucleus ¹⁹⁶Tl via γ-spectroscopy. ¹⁹⁶Tl was produced via the ¹⁹⁷Au(⁴He,5n) ¹⁹⁶Tl reaction at a beam energy of 63 MeV. The γ-γ coincidence measurements were performed using the AFRODITE γ-spectrometer array at iThemba LABS. The previous level scheme of ¹⁹⁶Tl has been extended up to an excitation of 4071 keV including 24 new γ-ray transitions. The spin and parity assignment to levels was made from the directional correlation of oriented nuclei (DCO) and linear polarization anisotropy ratios. An analysis of the B(M1)/B(E2) ratios was found to be consistent with the configuration of πh₉/₂♁vi₁₃/₂ for the ground state band. Although no chiral band was found in ¹⁹⁶TI and ¹⁹⁸TI.
- Full Text:
- Date Issued: 2015
Link between ghost artefacts, source suppression and incomplete calibration sky models
- Authors: Nunhokee, Chuneeta Devi
- Date: 2015
- Subjects: Interferometry , Calibration
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5556 , http://hdl.handle.net/10962/d1017900
- Description: Calibration is a fundamental step towards producing radio interferometric images. However, naive calibration produces calibration artefacts, in the guise of spurious emission, buried in the thermal noise. This work investigates these calibration artefacts, henceforth referred to as “ghosts”. A 21 cm observation with the Westerbork Synthesis Radio Telescope yielded similar ghost sources, and it was anticipated that they were due to calibrating with incomplete sky models. An analytical ghost distribution of a two-source scenario is derived to substantiate this theory and to seek answers to the related bewildering features (regular ghost pattern, points spread function-like sidelobes, independent of model flux). The theoretically predicted ghost distribution qualitatively matches with the observational ones and shows high dependence on the array geometry. The theory draws the conclusion that both the ghost phenomenon and suppression of the unmodelled flux have the same root cause. In addition, the suppression of the unmodelled flux is studied as functions of unmodelled flux, differential gain solution interval and the number of sources subjected to direction-dependent gains. These studies summarise that the suppression rate is constant irrespective of the degree of incompleteness of the calibration sky model. In the presence of a direction-dependent effect, the suppression drastically increases; however, this increase can be compensated for by using longer solution intervals.
- Full Text:
- Date Issued: 2015
- Authors: Nunhokee, Chuneeta Devi
- Date: 2015
- Subjects: Interferometry , Calibration
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5556 , http://hdl.handle.net/10962/d1017900
- Description: Calibration is a fundamental step towards producing radio interferometric images. However, naive calibration produces calibration artefacts, in the guise of spurious emission, buried in the thermal noise. This work investigates these calibration artefacts, henceforth referred to as “ghosts”. A 21 cm observation with the Westerbork Synthesis Radio Telescope yielded similar ghost sources, and it was anticipated that they were due to calibrating with incomplete sky models. An analytical ghost distribution of a two-source scenario is derived to substantiate this theory and to seek answers to the related bewildering features (regular ghost pattern, points spread function-like sidelobes, independent of model flux). The theoretically predicted ghost distribution qualitatively matches with the observational ones and shows high dependence on the array geometry. The theory draws the conclusion that both the ghost phenomenon and suppression of the unmodelled flux have the same root cause. In addition, the suppression of the unmodelled flux is studied as functions of unmodelled flux, differential gain solution interval and the number of sources subjected to direction-dependent gains. These studies summarise that the suppression rate is constant irrespective of the degree of incompleteness of the calibration sky model. In the presence of a direction-dependent effect, the suppression drastically increases; however, this increase can be compensated for by using longer solution intervals.
- Full Text:
- Date Issued: 2015
Properties of traveling ionospheric disturbances (TIDs) over the Western Cape, South Africa
- Authors: Tyalimpi, Vumile Mike
- Date: 2015
- Subjects: Doppler radar , Geographic information systems , Traveling ionospheric disturbances -- south Africa , Ionospheric disturbances -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5557 , http://hdl.handle.net/10962/d1017901
- Description: Travelling Ionospheric Disturbances (TIDs) are said to be produced by atmospheric gravitational waves propagating through the neutral ionosphere. These are smaller in amplitude and period when compared to most ionospheric disturbances and hence more difficult to measure. Very little is known about the properties of the travelling ionospheric disturbances (TIDs) over the Southern Hemisphere regions since studies have been conducted mostly over the Northern Hemisphere regions. This study presents a framework, using a High Frequency (HF) Doppler radar to investigate the physical properties and the possible driving mechanisms of TIDs. This research focuses on studying the characteristics of the TIDs, such as period, velocity and temporal variations, using HF Doppler measurements taken in South Africa. By making use of a Wavelet Analysis technique, the TIDs’ characteristics were determined. A statistical summary on speed and direction of propagation of the observed TIDs was performed. The winter medium scale travelling ionospheric disturbances (MSTIDs) observed are generally faster than the summer MSTIDs. For all seasons, the MSTIDs had a preferred south-southwest direction of propagation. Most of the large scale travelling ionospheric disturbances (LSTIDs) were observed during the night and of these, the spring LSTIDs were fastest when compared to autumn and summer LSTIDs. The general direction of travel of the observed LSTIDs is south-southeast. Total Electron Content (TEC), derived from Global Positioning System (GPS) measurements, were used to validate some of the TID results obtained from the HF Doppler data. The Horizontal Wind Model (HWM07), magnetic K index, and solar terminators were used to determine the possible sources of the observed TIDs. Only 41% of the observed TIDs were successfully linked to their possible sources of excitation. The information gathered from this study will be valuable in future radio communications and will serve as means to improve the existing ionospheric models over the South African region.
- Full Text:
- Date Issued: 2015
- Authors: Tyalimpi, Vumile Mike
- Date: 2015
- Subjects: Doppler radar , Geographic information systems , Traveling ionospheric disturbances -- south Africa , Ionospheric disturbances -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5557 , http://hdl.handle.net/10962/d1017901
- Description: Travelling Ionospheric Disturbances (TIDs) are said to be produced by atmospheric gravitational waves propagating through the neutral ionosphere. These are smaller in amplitude and period when compared to most ionospheric disturbances and hence more difficult to measure. Very little is known about the properties of the travelling ionospheric disturbances (TIDs) over the Southern Hemisphere regions since studies have been conducted mostly over the Northern Hemisphere regions. This study presents a framework, using a High Frequency (HF) Doppler radar to investigate the physical properties and the possible driving mechanisms of TIDs. This research focuses on studying the characteristics of the TIDs, such as period, velocity and temporal variations, using HF Doppler measurements taken in South Africa. By making use of a Wavelet Analysis technique, the TIDs’ characteristics were determined. A statistical summary on speed and direction of propagation of the observed TIDs was performed. The winter medium scale travelling ionospheric disturbances (MSTIDs) observed are generally faster than the summer MSTIDs. For all seasons, the MSTIDs had a preferred south-southwest direction of propagation. Most of the large scale travelling ionospheric disturbances (LSTIDs) were observed during the night and of these, the spring LSTIDs were fastest when compared to autumn and summer LSTIDs. The general direction of travel of the observed LSTIDs is south-southeast. Total Electron Content (TEC), derived from Global Positioning System (GPS) measurements, were used to validate some of the TID results obtained from the HF Doppler data. The Horizontal Wind Model (HWM07), magnetic K index, and solar terminators were used to determine the possible sources of the observed TIDs. Only 41% of the observed TIDs were successfully linked to their possible sources of excitation. The information gathered from this study will be valuable in future radio communications and will serve as means to improve the existing ionospheric models over the South African region.
- Full Text:
- Date Issued: 2015
PyMORESANE: A Pythonic and CUDA-accelerated implementation of the MORESANE deconvolution algorithm
- Authors: Kenyon, Jonathan
- Date: 2015
- Subjects: Radio astronomy , Imaging systems in astronomy , MOdel REconstruction by Synthesis-ANalysis Estimators (MORESANE)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5563 , http://hdl.handle.net/10962/d1020098
- Description: The inadequacies of the current generation of deconvolution algorithms are rapidly becoming apparent as new, more sensitive radio interferometers are constructed. In light of these inadequacies, there is renewed interest in the field of deconvolution. Many new algorithms are being developed using the mathematical framework of compressed sensing. One such technique, MORESANE, has recently been shown to be a powerful tool for the recovery of faint difuse emission from synthetic and simulated data. However, the original implementation is not well-suited to large problem sizes due to its computational complexity. Additionally, its use of proprietary software prevents it from being freely distributed and used. This has motivated the development of a freely available Python implementation, PyMORESANE. This thesis describes the implementation of PyMORESANE as well as its subsequent augmentation with MPU and GPGPU code. These additions accelerate the algorithm and thus make it competitive with its legacy counterparts. The acceleration of the algorithm is verified by means of benchmarking tests for varying image size and complexity. Additionally, PyMORESANE is shown to work not only on synthetic data, but on real observational data. This verification means that the MORESANE algorithm, and consequently the PyMORESANE implementation, can be added to the current arsenal of deconvolution tools.
- Full Text:
- Date Issued: 2015
- Authors: Kenyon, Jonathan
- Date: 2015
- Subjects: Radio astronomy , Imaging systems in astronomy , MOdel REconstruction by Synthesis-ANalysis Estimators (MORESANE)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5563 , http://hdl.handle.net/10962/d1020098
- Description: The inadequacies of the current generation of deconvolution algorithms are rapidly becoming apparent as new, more sensitive radio interferometers are constructed. In light of these inadequacies, there is renewed interest in the field of deconvolution. Many new algorithms are being developed using the mathematical framework of compressed sensing. One such technique, MORESANE, has recently been shown to be a powerful tool for the recovery of faint difuse emission from synthetic and simulated data. However, the original implementation is not well-suited to large problem sizes due to its computational complexity. Additionally, its use of proprietary software prevents it from being freely distributed and used. This has motivated the development of a freely available Python implementation, PyMORESANE. This thesis describes the implementation of PyMORESANE as well as its subsequent augmentation with MPU and GPGPU code. These additions accelerate the algorithm and thus make it competitive with its legacy counterparts. The acceleration of the algorithm is verified by means of benchmarking tests for varying image size and complexity. Additionally, PyMORESANE is shown to work not only on synthetic data, but on real observational data. This verification means that the MORESANE algorithm, and consequently the PyMORESANE implementation, can be added to the current arsenal of deconvolution tools.
- Full Text:
- Date Issued: 2015
Statistical analysis of the ionospheric response during storm conditions over South Africa using ionosonde and GPS data
- Matamba, Tshimangadzo Merline
- Authors: Matamba, Tshimangadzo Merline
- Date: 2015
- Subjects: Ionospheric storms -- South Africa -- Grahamstown , Ionospheric storms -- South Africa -- Madimbo , Magnetic storms -- South Africa -- Grahamstown , Magnetic storms -- South Africa -- Madimbo , Ionosondes , Global Positioning System
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5555 , http://hdl.handle.net/10962/d1017899
- Description: Ionospheric storms are an extreme form of space weather phenomena which affect space- and ground-based technological systems. Extreme solar activity may give rise to Coronal Mass Ejections (CME) and solar flares that may result in ionospheric storms. This thesis reports on a statistical analysis of the ionospheric response over the ionosonde stations Grahamstown (33.3◦S, 26.5◦E) and Madimbo (22.4◦S,30.9◦E), South Africa, during geomagnetic storm conditions which occurred during the period 1996 - 2011. Total Electron Content (TEC) derived from Global Positioning System (GPS) data by a dual Frequency receiver and an ionosonde at Grahamstown, was analysed for the storms that occurred during the period 2006 - 2011. A comprehensive analysis of the critical frequency of the F2 layer (foF2) and TEC was done. To identify the geomagnetically disturbed conditions the Disturbance storm time (Dst) index with a storm criteria of Dst ≤ −50 nT was used. The ionospheric disturbances were categorized into three responses, namely single disturbance, double disturbance and not significant (NS) ionospheric storms. Single disturbance ionospheric storms refer to positive (P) and negative (N) ionospheric storms observed separately, while double disturbance storms refer to negative and positive ionospheric storms observed during the same storm period. The statistics show the impact of geomagnetic storms on the ionosphere and indicate that negative ionospheric effects follow the solar cycle. In general, only a few ionospheric storms (0.11%) were observed during solar minimum. Positive ionospheric storms occurred most frequently (47.54%) during the declining phase of solar cycle 23. Seasonally, negative ionospheric storms occurred mostly during the summer (63.24%), while positive ionospheric storms occurred frequently during the winter (53.62%). An important finding is that only negative ionospheric storms were observed during great geomagnetic storm activity (Dst ≤ −350 nT). For periods when both ionosonde and GPS was available, the two data sets indicated similar ionospheric responses. Hence, GPS data can be used to effectively identify the ionospheric response in the absence of ionosonde data.
- Full Text:
- Date Issued: 2015
- Authors: Matamba, Tshimangadzo Merline
- Date: 2015
- Subjects: Ionospheric storms -- South Africa -- Grahamstown , Ionospheric storms -- South Africa -- Madimbo , Magnetic storms -- South Africa -- Grahamstown , Magnetic storms -- South Africa -- Madimbo , Ionosondes , Global Positioning System
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5555 , http://hdl.handle.net/10962/d1017899
- Description: Ionospheric storms are an extreme form of space weather phenomena which affect space- and ground-based technological systems. Extreme solar activity may give rise to Coronal Mass Ejections (CME) and solar flares that may result in ionospheric storms. This thesis reports on a statistical analysis of the ionospheric response over the ionosonde stations Grahamstown (33.3◦S, 26.5◦E) and Madimbo (22.4◦S,30.9◦E), South Africa, during geomagnetic storm conditions which occurred during the period 1996 - 2011. Total Electron Content (TEC) derived from Global Positioning System (GPS) data by a dual Frequency receiver and an ionosonde at Grahamstown, was analysed for the storms that occurred during the period 2006 - 2011. A comprehensive analysis of the critical frequency of the F2 layer (foF2) and TEC was done. To identify the geomagnetically disturbed conditions the Disturbance storm time (Dst) index with a storm criteria of Dst ≤ −50 nT was used. The ionospheric disturbances were categorized into three responses, namely single disturbance, double disturbance and not significant (NS) ionospheric storms. Single disturbance ionospheric storms refer to positive (P) and negative (N) ionospheric storms observed separately, while double disturbance storms refer to negative and positive ionospheric storms observed during the same storm period. The statistics show the impact of geomagnetic storms on the ionosphere and indicate that negative ionospheric effects follow the solar cycle. In general, only a few ionospheric storms (0.11%) were observed during solar minimum. Positive ionospheric storms occurred most frequently (47.54%) during the declining phase of solar cycle 23. Seasonally, negative ionospheric storms occurred mostly during the summer (63.24%), while positive ionospheric storms occurred frequently during the winter (53.62%). An important finding is that only negative ionospheric storms were observed during great geomagnetic storm activity (Dst ≤ −350 nT). For periods when both ionosonde and GPS was available, the two data sets indicated similar ionospheric responses. Hence, GPS data can be used to effectively identify the ionospheric response in the absence of ionosonde data.
- Full Text:
- Date Issued: 2015
Structure of the nucleus ¹¹⁴Sn using gamma-ray coincidence data
- Authors: Oates, Sean Benjamin
- Date: 2015
- Subjects: High spin physics , Nuclear structure , Nuclear shell theory , Neutron counters , Decay schemes (Radioactivity) , Coincidence circuits , Collective excitations , Anisotropy
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5562 , http://hdl.handle.net/10962/d1019870
- Full Text:
- Date Issued: 2015
- Authors: Oates, Sean Benjamin
- Date: 2015
- Subjects: High spin physics , Nuclear structure , Nuclear shell theory , Neutron counters , Decay schemes (Radioactivity) , Coincidence circuits , Collective excitations , Anisotropy
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5562 , http://hdl.handle.net/10962/d1019870
- Full Text:
- Date Issued: 2015
Development of an ionospheric map for Africa
- Authors: Ssessanga, Nicholas
- Date: 2014
- Subjects: Ionosondes Ionosphere Ionosphere -- Observations Ionosphere -- Research -- Africa Ionospheric electron density -- Africa Ionospheric critical frequencies
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5519 , http://hdl.handle.net/10962/d1011498
- Description: This thesis presents research pertaining to the development of an African Ionospheric Map (AIM). An ionospheric map is a computer program that is able to display spatial and temporal representations of ionospheric parameters such as, electron density and critical plasma frequencies, for every geographical location on the map. The purpose of this development was to make the most optimum use of all available data sources, namely ionosondes, satellites and models, and to implement error minimisation techniques in order to obtain the best result at any given location on the African continent. The focus was placed on the accurate estimation of three upper atmosphere parameters which are important for radio communications: critical frequency of the F2 layer (foF2), Total Electron Content (TEC) and the maximum usable frequency over a distance of 3000 km (M3000F2). The results show that AIM provided a more accurate estimation of the three parameters than the internationally recognised and recommended ionosphere model (IRI-2012) when used on its own. Therefore, the AIM is a more accurate solution than single independent data sources for applications requiring ionospheric mapping over the African continent.
- Full Text:
- Date Issued: 2014
- Authors: Ssessanga, Nicholas
- Date: 2014
- Subjects: Ionosondes Ionosphere Ionosphere -- Observations Ionosphere -- Research -- Africa Ionospheric electron density -- Africa Ionospheric critical frequencies
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5519 , http://hdl.handle.net/10962/d1011498
- Description: This thesis presents research pertaining to the development of an African Ionospheric Map (AIM). An ionospheric map is a computer program that is able to display spatial and temporal representations of ionospheric parameters such as, electron density and critical plasma frequencies, for every geographical location on the map. The purpose of this development was to make the most optimum use of all available data sources, namely ionosondes, satellites and models, and to implement error minimisation techniques in order to obtain the best result at any given location on the African continent. The focus was placed on the accurate estimation of three upper atmosphere parameters which are important for radio communications: critical frequency of the F2 layer (foF2), Total Electron Content (TEC) and the maximum usable frequency over a distance of 3000 km (M3000F2). The results show that AIM provided a more accurate estimation of the three parameters than the internationally recognised and recommended ionosphere model (IRI-2012) when used on its own. Therefore, the AIM is a more accurate solution than single independent data sources for applications requiring ionospheric mapping over the African continent.
- Full Text:
- Date Issued: 2014
Optimizing MIDAS III over South Africa
- Authors: Giday, Nigussie Mezgebe
- Date: 2014
- Subjects: Multi-Instrument Data Analysis System (MIDAS) , Global Positioning System , Ionosphere -- South Africa , Ionospheric electron density -- South Africa , Ionosondes -- South Africa , Tomography -- Scientific applications -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5517 , http://hdl.handle.net/10962/d1011277 , Multi-Instrument Data Analysis System (MIDAS) , Global Positioning System , Ionosphere -- South Africa , Ionospheric electron density -- South Africa , Ionosondes -- South Africa , Tomography -- Scientific applications -- South Africa
- Description: In this thesis an ionospheric tomographic algorithm called Multi-Instrument Data Anal- ysis System (MIDAS) is used to reconstruct electron density profiles using the Global Positioning System (GPS) data recorded from 53 GPS receivers over the South African region. MIDAS, developed by the Invert group at the University of Bath in the UK, is an inversion algorithm that produces a time dependent 3D image of the electron density of the ionosphere. GPS receivers record the time delay and phase advance of the trans- ionospheric GPS signals that traverse through the ionosphere from which the ionospheric parameter called Total Electron Content (TEC) can be computed. TEC, the line integral of the electron density along the satellite-receiver signal path, is ingested by ionospheric tomographic algorithms such as MIDAS to produce a time dependent 3D electron density profile. In order to validate electron density profiles from MIDAS, MIDAS derived NmF2 values were compared with ionosonde derived NmF2 values extracted from their respective 1D electron density profiles at 15 minute intervals for all four South African ionosonde stations (Grahamstown, Hermanus, Louisvale, and Madimbo). MIDAS 2D images of the electron density showed good diurnal and seasonal patterns; where a comparison of the 2D images at 12h00 UT for all the validation days exhibited maximum electron concentration during the autumn and summer and a minimum during the winter. A root mean square error (rmse) value as small as 0.88x 10¹¹[el=m³] was calculated for the Louisvale ionosonde station during the winter season and a maximum rmse value of 1.92x 10¹¹[el=m³] was ob- tained during the autumn season. The r² values were the least during the autumn and relatively large during summer and winter; similarly the rmse values were found to be a maximum during the autumn and a minimum during the winter indicating that MIDAS performs better during the winter than during the autumn and spring seasons. It is also observed that MIDAS performs better at Louisvale and Madimbo than at Grahamstown and Hermanus. In conclusion, the MIDAS reconstruction has showed good agreement with the ionosonde measurements; therefore, MIDAS can be considered a useful tool to study the ionosphere over the South African region.
- Full Text:
- Date Issued: 2014
- Authors: Giday, Nigussie Mezgebe
- Date: 2014
- Subjects: Multi-Instrument Data Analysis System (MIDAS) , Global Positioning System , Ionosphere -- South Africa , Ionospheric electron density -- South Africa , Ionosondes -- South Africa , Tomography -- Scientific applications -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5517 , http://hdl.handle.net/10962/d1011277 , Multi-Instrument Data Analysis System (MIDAS) , Global Positioning System , Ionosphere -- South Africa , Ionospheric electron density -- South Africa , Ionosondes -- South Africa , Tomography -- Scientific applications -- South Africa
- Description: In this thesis an ionospheric tomographic algorithm called Multi-Instrument Data Anal- ysis System (MIDAS) is used to reconstruct electron density profiles using the Global Positioning System (GPS) data recorded from 53 GPS receivers over the South African region. MIDAS, developed by the Invert group at the University of Bath in the UK, is an inversion algorithm that produces a time dependent 3D image of the electron density of the ionosphere. GPS receivers record the time delay and phase advance of the trans- ionospheric GPS signals that traverse through the ionosphere from which the ionospheric parameter called Total Electron Content (TEC) can be computed. TEC, the line integral of the electron density along the satellite-receiver signal path, is ingested by ionospheric tomographic algorithms such as MIDAS to produce a time dependent 3D electron density profile. In order to validate electron density profiles from MIDAS, MIDAS derived NmF2 values were compared with ionosonde derived NmF2 values extracted from their respective 1D electron density profiles at 15 minute intervals for all four South African ionosonde stations (Grahamstown, Hermanus, Louisvale, and Madimbo). MIDAS 2D images of the electron density showed good diurnal and seasonal patterns; where a comparison of the 2D images at 12h00 UT for all the validation days exhibited maximum electron concentration during the autumn and summer and a minimum during the winter. A root mean square error (rmse) value as small as 0.88x 10¹¹[el=m³] was calculated for the Louisvale ionosonde station during the winter season and a maximum rmse value of 1.92x 10¹¹[el=m³] was ob- tained during the autumn season. The r² values were the least during the autumn and relatively large during summer and winter; similarly the rmse values were found to be a maximum during the autumn and a minimum during the winter indicating that MIDAS performs better during the winter than during the autumn and spring seasons. It is also observed that MIDAS performs better at Louisvale and Madimbo than at Grahamstown and Hermanus. In conclusion, the MIDAS reconstruction has showed good agreement with the ionosonde measurements; therefore, MIDAS can be considered a useful tool to study the ionosphere over the South African region.
- Full Text:
- Date Issued: 2014
Thermoluminescence characteristics of synthetic quartz
- Authors: Niyonzima, Pontien
- Date: 2014
- Subjects: Thermoluminescence , Quartz , Emission spectroscopy
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5538 , http://hdl.handle.net/10962/d1013190
- Description: Quartz is one of the most abundant natural minerals in the crust of the earth. Due to its dosimetric luminescence properties, it is employed in retrospective dosimetry, archaeological and geological dating. The intensity and the structure of the TL glow curves of quartz are strongly dependent upon the origin, impurity content, formation condition and pre-irradiation heat treatment. The aim of this project is to study the mechanisms of thermoluminescence (TL), Phototranssferred thermoluminescence (PTTL) and radioluminescence (RL) in synthetic quartz and to discuss the results in terms of physical characteristics of point defects involved. Thermoluminescence measurements were made on a sample of synthetic quartz in its as-received state (unannealed) synthetic quartz annealed at 500˚C for 10 minutes. The unannealed sample shows six TL glow peaks located at 94, 116, 176, 212, 280 and 348˚C at a heating rate of 5˚Cs⁻¹. The annealed sample shows seven TL peaks at 115, 148, 214, 246, 300, 348 and 412˚C at a heating rate of 5˚Cs⁻¹. The intensity of peak I, at 94 and 115˚C for the unannealed and annealed samples respectively, increases with irradiation. Peak I has an activation energy of approximately 0.90 eV and a frequency factor of the order of 10¹¹ s⁻¹. The order of kinetics is between 0.9 and 1.2. The unannealed synthetic quartz shows phototransferred thermoluminescence (PTTL) at the position of peak I after removal of the first three peaks followed by illumination. The PTTL intensities show peak shaped behaviour when plotted against illumination time. The PTTL showed a quadratic increase with dose. The material exhibits fading of PTTL intensity with delay time. Radioluminescence was measured on synthetic quartz unannealed and annealed annealed at 500, 600, 700, 800, 900 and 1000˚C for 10 to 60 min. The emission spectra of synthetic quartz show seven emission bands. The effect of irradiation on the RL spectra is to increase the intensity of all emission bands for samples annealed at temperatures less than or equal to 700˚C. The effect of annealing time is to increase the RL amplitude for the samples annealed at temperatures greater than 700˚C. The annealing temperature increases the RL amplitude of all emission bands of the spectrum for all samples.
- Full Text:
- Date Issued: 2014
- Authors: Niyonzima, Pontien
- Date: 2014
- Subjects: Thermoluminescence , Quartz , Emission spectroscopy
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5538 , http://hdl.handle.net/10962/d1013190
- Description: Quartz is one of the most abundant natural minerals in the crust of the earth. Due to its dosimetric luminescence properties, it is employed in retrospective dosimetry, archaeological and geological dating. The intensity and the structure of the TL glow curves of quartz are strongly dependent upon the origin, impurity content, formation condition and pre-irradiation heat treatment. The aim of this project is to study the mechanisms of thermoluminescence (TL), Phototranssferred thermoluminescence (PTTL) and radioluminescence (RL) in synthetic quartz and to discuss the results in terms of physical characteristics of point defects involved. Thermoluminescence measurements were made on a sample of synthetic quartz in its as-received state (unannealed) synthetic quartz annealed at 500˚C for 10 minutes. The unannealed sample shows six TL glow peaks located at 94, 116, 176, 212, 280 and 348˚C at a heating rate of 5˚Cs⁻¹. The annealed sample shows seven TL peaks at 115, 148, 214, 246, 300, 348 and 412˚C at a heating rate of 5˚Cs⁻¹. The intensity of peak I, at 94 and 115˚C for the unannealed and annealed samples respectively, increases with irradiation. Peak I has an activation energy of approximately 0.90 eV and a frequency factor of the order of 10¹¹ s⁻¹. The order of kinetics is between 0.9 and 1.2. The unannealed synthetic quartz shows phototransferred thermoluminescence (PTTL) at the position of peak I after removal of the first three peaks followed by illumination. The PTTL intensities show peak shaped behaviour when plotted against illumination time. The PTTL showed a quadratic increase with dose. The material exhibits fading of PTTL intensity with delay time. Radioluminescence was measured on synthetic quartz unannealed and annealed annealed at 500, 600, 700, 800, 900 and 1000˚C for 10 to 60 min. The emission spectra of synthetic quartz show seven emission bands. The effect of irradiation on the RL spectra is to increase the intensity of all emission bands for samples annealed at temperatures less than or equal to 700˚C. The effect of annealing time is to increase the RL amplitude for the samples annealed at temperatures greater than 700˚C. The annealing temperature increases the RL amplitude of all emission bands of the spectrum for all samples.
- Full Text:
- Date Issued: 2014
Thermoluminescence of natural quartz
- Authors: Lontsi Sob, Aaron Joel
- Date: 2014
- Subjects: Thermoluminescence , Quartz , Thermoluminescence dosimetry
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5543 , http://hdl.handle.net/10962/d1013358
- Description: The kinetic and dosimetric features of the main thermoluminescence peak of quartz have been investigated in unannealed as well in quartz annealed at 500˚C for 10 minutes. The main peak is found at 92 and 86˚C respectively for aliquots of unannealed and annealed samples irradiated to 10 Gy and heated at 5.0˚C/s. For each sample, the intensity of the main peak is enhanced with repetitive measurement whereas its maximum temperature is unaffected. The peak position of the main peak in each sample is independent of the irradiation dose and this, together with its fading characteristics are consistent with first-order kinetics. For low doses, typically between 2 and 10 Gy, the dose response of the main peak in each sample is linear. In the intermediate dose range from 10 to 60 Gy, the growth of the main peak in each sample is sub-linear and for greater doses, in the range from 60 Gy to 151 Gy, it is linear again. The half-life of the main peak of the unannealed sample is about 1.3 h whereas that of the annealed sample is about 1.2 h. The main peak in each sample can be approximated to a first-order glow peak. As the heating rate increases, the intensity of the main peak in each sample decreases. This is evidence of thermal quenching. The main peak in each sample is the only peak regenerated by phototransfer. The resulting phototransferred peak occurs at the same temperature as the original peak and has similar kinetic and dosimetric features. For a preheat temperature of 120˚C, the intensity of the phototransferred peak in each sample increases with illumination time up to a maximum and decreases afterwards. At longer illumination times (such as 30 min up to 1 h), no further decrease in the intensity of the phototransferred peak is observed. The traps associated with the 325˚C peak are the main source of the electrons responsible for the regenerated peak. Radioluminescence emission spectra were also measured for quartz annealed at various temperatures. Emission bands in quartz are affected by annealing and irradiation. A strong enhancement of the 3.4 eV (~366 nm) emission band is observed in quartz annealed at 500˚C. A new emission band which grows with annealing up to 1000˚C is observed at 3.7 eV (~330 nm) for quartz annealed at 600˚C. An attempt has been made to correlate the changes in radioluminescence emission spectra due to annealing with the influence of annealing on luminescence lifetimes in quartz.
- Full Text:
- Date Issued: 2014
- Authors: Lontsi Sob, Aaron Joel
- Date: 2014
- Subjects: Thermoluminescence , Quartz , Thermoluminescence dosimetry
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5543 , http://hdl.handle.net/10962/d1013358
- Description: The kinetic and dosimetric features of the main thermoluminescence peak of quartz have been investigated in unannealed as well in quartz annealed at 500˚C for 10 minutes. The main peak is found at 92 and 86˚C respectively for aliquots of unannealed and annealed samples irradiated to 10 Gy and heated at 5.0˚C/s. For each sample, the intensity of the main peak is enhanced with repetitive measurement whereas its maximum temperature is unaffected. The peak position of the main peak in each sample is independent of the irradiation dose and this, together with its fading characteristics are consistent with first-order kinetics. For low doses, typically between 2 and 10 Gy, the dose response of the main peak in each sample is linear. In the intermediate dose range from 10 to 60 Gy, the growth of the main peak in each sample is sub-linear and for greater doses, in the range from 60 Gy to 151 Gy, it is linear again. The half-life of the main peak of the unannealed sample is about 1.3 h whereas that of the annealed sample is about 1.2 h. The main peak in each sample can be approximated to a first-order glow peak. As the heating rate increases, the intensity of the main peak in each sample decreases. This is evidence of thermal quenching. The main peak in each sample is the only peak regenerated by phototransfer. The resulting phototransferred peak occurs at the same temperature as the original peak and has similar kinetic and dosimetric features. For a preheat temperature of 120˚C, the intensity of the phototransferred peak in each sample increases with illumination time up to a maximum and decreases afterwards. At longer illumination times (such as 30 min up to 1 h), no further decrease in the intensity of the phototransferred peak is observed. The traps associated with the 325˚C peak are the main source of the electrons responsible for the regenerated peak. Radioluminescence emission spectra were also measured for quartz annealed at various temperatures. Emission bands in quartz are affected by annealing and irradiation. A strong enhancement of the 3.4 eV (~366 nm) emission band is observed in quartz annealed at 500˚C. A new emission band which grows with annealing up to 1000˚C is observed at 3.7 eV (~330 nm) for quartz annealed at 600˚C. An attempt has been made to correlate the changes in radioluminescence emission spectra due to annealing with the influence of annealing on luminescence lifetimes in quartz.
- Full Text:
- Date Issued: 2014
Thermoluminescence of secondary glow peaks in carbon-doped aluminium oxide
- Authors: Seneza, Cleophace
- Date: 2014
- Subjects: Thermoluminescence , Aluminum oxide , Thermoluminescence dosimetry
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5537 , http://hdl.handle.net/10962/d1013053
- Description: Carbon-doped aluminium oxide, α-Al₂O₃ : C, is a highly sensitive luminescence dosimeter. The high sensitivity of α-Al₂O₃ : C has been attributed to large concentrations of oxygen vacancies, F and F⁺ centres, induced in the material during its preparation. The material is prepared in a highly reducing atmosphere in the presence of carbon. In the luminescence process, electrons are trapped in F-centre defects as a result of irradiation of the material. Thermal or optical release of trapped electrons leads to emission of light, thermoluminescence (TL) or optically stimulated light (OSL) respectively. The thermoluminescence technique is used to study point defects involved in luminescence of α-Al₂O₃ : C. A glow curve of α-Al₂O₃ : C, generally, shows three peaks; the main dosimetric peak of high intensity (peak II) and two other peaks of lower intensity called secondary glow peaks (peaks I and III). The overall aim of our work was to study the TL mechanisms responsible for secondary glow peaks in α-Al₂O₃ : C. The dynamics of charge movement between centres during the TL process was studied. The phototransferred thermoluminescence (PTTL) from secondary glow peaks was also studied. The kinetic analysis of TL from secondary peaks has shown that the activation energy of peak I is 0.7 eV and that of peak III, 1.2 eV. The frequency factor, the frequency at which an electron attempts to escape a trap, was found near the range of the Debye vibration frequency. Values of the activation energy are consistent within a variety of methods used. The two peaks follow first order kinetics as confirmed by the TM-Tstop method. A linear dependence of TL from peak I on dose is observed at various doses from 0.5 to 2.5 Gy. The peak position for peak I was also independent on dose, further confirmation that peak I is of first order kinetics. Peak I suffers from thermal fading with storage with a half-life of about 120 s. The dependence of TL intensity for peak I increased as a function of heating rate from 0.2 to 6ºCs⁻¹. In contrast to the TL intensity for peak I, the intensity of TL for peak III decreases with an increase of heating rate from 0.2 to 6ºCs⁻¹. This is evidence of thermal quenching for peak III. Parameters W = 1.48 ± 0:10 eV and C = 4 x 10¹³ of thermal quenching were calculated from peak III intensities at different heating rates. Thermal cleaning of peak III and the glow curve deconvolution methods confirmed that the main peak is actually overlapped by a small peak (labeled peak IIA). The kinetic analysis of peak IIA showed that it is of first order kinetics and that its activation energy is 1:0 eV. In addition, the peak IIA is affected by thermal quenching. Another secondary peak appears at 422ºC (peak IV). However, the kinetic analysis of TL from peak IV was not studied because its intensity is not well defined. A heating rate of 0.4ºCs⁻¹ was used after a dose of 3 Gy in kinetic analysis of peaks IIA and III. The study of the PTTL showed that peaks I and II were regenerated under PTTL but peak III was not. Various effects of the PTTL for peaks I and II for different preheating temperatures in different samples were observed. The effect of annealing at 900ºC for 15 minutes between measurements following each illumination time was studied. The effect of dose on secondary peaks was also studied in this work. The kinetic analysis of the PTTL intensity for peak I showed that its activation energy is 0.7 eV, consistent with the activation energy of the normal TL for peak I. The PTTL intensity from peak I fades rapidly with storage compared with the thermal fading from peak I of the normal TL. The PTTL intensity for peak I decreases as a function of heating rate. This decrease was attributed to thermal quenching. Thermal quenching was not observed in the case of the normal TL intensity. The cause of this contrast requires further study.
- Full Text:
- Date Issued: 2014
- Authors: Seneza, Cleophace
- Date: 2014
- Subjects: Thermoluminescence , Aluminum oxide , Thermoluminescence dosimetry
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5537 , http://hdl.handle.net/10962/d1013053
- Description: Carbon-doped aluminium oxide, α-Al₂O₃ : C, is a highly sensitive luminescence dosimeter. The high sensitivity of α-Al₂O₃ : C has been attributed to large concentrations of oxygen vacancies, F and F⁺ centres, induced in the material during its preparation. The material is prepared in a highly reducing atmosphere in the presence of carbon. In the luminescence process, electrons are trapped in F-centre defects as a result of irradiation of the material. Thermal or optical release of trapped electrons leads to emission of light, thermoluminescence (TL) or optically stimulated light (OSL) respectively. The thermoluminescence technique is used to study point defects involved in luminescence of α-Al₂O₃ : C. A glow curve of α-Al₂O₃ : C, generally, shows three peaks; the main dosimetric peak of high intensity (peak II) and two other peaks of lower intensity called secondary glow peaks (peaks I and III). The overall aim of our work was to study the TL mechanisms responsible for secondary glow peaks in α-Al₂O₃ : C. The dynamics of charge movement between centres during the TL process was studied. The phototransferred thermoluminescence (PTTL) from secondary glow peaks was also studied. The kinetic analysis of TL from secondary peaks has shown that the activation energy of peak I is 0.7 eV and that of peak III, 1.2 eV. The frequency factor, the frequency at which an electron attempts to escape a trap, was found near the range of the Debye vibration frequency. Values of the activation energy are consistent within a variety of methods used. The two peaks follow first order kinetics as confirmed by the TM-Tstop method. A linear dependence of TL from peak I on dose is observed at various doses from 0.5 to 2.5 Gy. The peak position for peak I was also independent on dose, further confirmation that peak I is of first order kinetics. Peak I suffers from thermal fading with storage with a half-life of about 120 s. The dependence of TL intensity for peak I increased as a function of heating rate from 0.2 to 6ºCs⁻¹. In contrast to the TL intensity for peak I, the intensity of TL for peak III decreases with an increase of heating rate from 0.2 to 6ºCs⁻¹. This is evidence of thermal quenching for peak III. Parameters W = 1.48 ± 0:10 eV and C = 4 x 10¹³ of thermal quenching were calculated from peak III intensities at different heating rates. Thermal cleaning of peak III and the glow curve deconvolution methods confirmed that the main peak is actually overlapped by a small peak (labeled peak IIA). The kinetic analysis of peak IIA showed that it is of first order kinetics and that its activation energy is 1:0 eV. In addition, the peak IIA is affected by thermal quenching. Another secondary peak appears at 422ºC (peak IV). However, the kinetic analysis of TL from peak IV was not studied because its intensity is not well defined. A heating rate of 0.4ºCs⁻¹ was used after a dose of 3 Gy in kinetic analysis of peaks IIA and III. The study of the PTTL showed that peaks I and II were regenerated under PTTL but peak III was not. Various effects of the PTTL for peaks I and II for different preheating temperatures in different samples were observed. The effect of annealing at 900ºC for 15 minutes between measurements following each illumination time was studied. The effect of dose on secondary peaks was also studied in this work. The kinetic analysis of the PTTL intensity for peak I showed that its activation energy is 0.7 eV, consistent with the activation energy of the normal TL for peak I. The PTTL intensity from peak I fades rapidly with storage compared with the thermal fading from peak I of the normal TL. The PTTL intensity for peak I decreases as a function of heating rate. This decrease was attributed to thermal quenching. Thermal quenching was not observed in the case of the normal TL intensity. The cause of this contrast requires further study.
- Full Text:
- Date Issued: 2014