An improved systems approach as a phytosanitary measure for Thaumatotibia leucotreta (Lepidoptera: Tortricidae) in export citrus fruit from South Africa
- Hattingh, Vaughan, Moore, Sean D, Kirkman, Wayne, Goddard, Mathew K, Thackeray, Sean R, Peyper, Mellissa, Sharp, Gary, Cronjé, Paul, Pringle, Ken
- Authors: Hattingh, Vaughan , Moore, Sean D , Kirkman, Wayne , Goddard, Mathew K , Thackeray, Sean R , Peyper, Mellissa , Sharp, Gary , Cronjé, Paul , Pringle, Ken
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423700 , vital:72086 , xlink:href="https://doi.org/10.1093/jee/toz336"
- Description: A systems approach was previously developed for mitigating phytosanitary risk of Thaumatotibia leucotreta (Meyrick) in citrus fruit exported from South Africa, as an alternative to a standalone cold disinfestation treatment. The present study first tested the original systems approach by applying it on a semicommercial scale in 10 Nova mandarin orchards. Fruit were inspected at points in the production, packing, and simulated shipping process, to assess performance of the systems approach. Additional data were obtained from 17 Valencia orange orchards and six packinghouses. In the second part of this study, the systems approach was accordingly revised and improved, consisting of three measures: 1) preharvest controls and measurements and postpicking sampling, inspection, and packinghouse procedures; 2) postpacking sampling and inspection; and 3) shipping conditions. The model quantifying the effectiveness of the systems approach was improved by correcting errors in the original version, updating parameter values and adding a component that provides for comparison with the risk mitigation provided by a standalone disinfestation treatment. Consequently, the maximum potential proportion of fruit that may be infested with live T. leucotreta after application of the improved systems approach is no greater than the proportion of fruit that may be infested after application of a Probit 9 efficacy postharvest disinfestation treatment to fruit with a 2% pretreatment infestation. The probability of a mating pair surviving is also determined. The model enables a priori determination of the required threshold levels for any of the three measures, based on quantification of the other two measures.
- Full Text:
- Date Issued: 2020
- Authors: Hattingh, Vaughan , Moore, Sean D , Kirkman, Wayne , Goddard, Mathew K , Thackeray, Sean R , Peyper, Mellissa , Sharp, Gary , Cronjé, Paul , Pringle, Ken
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423700 , vital:72086 , xlink:href="https://doi.org/10.1093/jee/toz336"
- Description: A systems approach was previously developed for mitigating phytosanitary risk of Thaumatotibia leucotreta (Meyrick) in citrus fruit exported from South Africa, as an alternative to a standalone cold disinfestation treatment. The present study first tested the original systems approach by applying it on a semicommercial scale in 10 Nova mandarin orchards. Fruit were inspected at points in the production, packing, and simulated shipping process, to assess performance of the systems approach. Additional data were obtained from 17 Valencia orange orchards and six packinghouses. In the second part of this study, the systems approach was accordingly revised and improved, consisting of three measures: 1) preharvest controls and measurements and postpicking sampling, inspection, and packinghouse procedures; 2) postpacking sampling and inspection; and 3) shipping conditions. The model quantifying the effectiveness of the systems approach was improved by correcting errors in the original version, updating parameter values and adding a component that provides for comparison with the risk mitigation provided by a standalone disinfestation treatment. Consequently, the maximum potential proportion of fruit that may be infested with live T. leucotreta after application of the improved systems approach is no greater than the proportion of fruit that may be infested after application of a Probit 9 efficacy postharvest disinfestation treatment to fruit with a 2% pretreatment infestation. The probability of a mating pair surviving is also determined. The model enables a priori determination of the required threshold levels for any of the three measures, based on quantification of the other two measures.
- Full Text:
- Date Issued: 2020
Development of a Postharvest Cold Treatment for Cryptophlebia peltastica (Lepidoptera: Tortricidae) for Export of Litchis From South Africa
- Moore, Sean D, Kirkman, Wayne, Peyper, Mellissa, Thackeray, Sean R, Marsberg, Tamryn, Albertyn, Sonnica, Hill, Martin P
- Authors: Moore, Sean D , Kirkman, Wayne , Peyper, Mellissa , Thackeray, Sean R , Marsberg, Tamryn , Albertyn, Sonnica , Hill, Martin P
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423729 , vital:72089 , xlink:href="https://doi.org/10.1093/jee/toy287"
- Description: The litchi moth, Cryptophlebia peltastica (Meyrick) (Lepidoptera: Tortricidae), is endemic to sub-Saharan Africa and certain Indian Ocean islands. It is an important pest of litchis and to a lesser extent macadamias. Litchis are exported to certain markets that consider C. peltastica as a phytosanitary pest. Consequently, an effective postharvest phytosanitary treatment is required. This study sought to develop a cold disinfestation treatment for this purpose. First, it was established that the fifth instar was the most cold-tolerant larval stage, as it was the only instar for which there was still some survival after 12 d at 1°C. It was then determined that cold treatment trials could be conducted in artificial diet, as there was no survival of fifth instar C. peltastica in litchis after only 9 d at 1°C, whereas it took 15 d at this temperature before no survival of fifth instar C. peltastica was recorded in artificial diet. Consequently, cold susceptibility of fifth instar C. peltastica and the most cold-tolerant larval stages (fourth and fifth instar) of false codling moth, Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae), were compared in artificial diet. There was no survival of C. peltastica after 13 d at 1°C, whereas this was only so for T. leucotreta after 16 d. Consequently, it can be concluded that any cold treatment that has been proven effective against T. leucotreta would be as effective against C. peltastica. Finally, it was confirmed that the cold susceptibility of T. leucotreta in artificial diet did not overestimate the effect of cold on T. leucotreta larvae in litchis.
- Full Text:
- Date Issued: 2018
- Authors: Moore, Sean D , Kirkman, Wayne , Peyper, Mellissa , Thackeray, Sean R , Marsberg, Tamryn , Albertyn, Sonnica , Hill, Martin P
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423729 , vital:72089 , xlink:href="https://doi.org/10.1093/jee/toy287"
- Description: The litchi moth, Cryptophlebia peltastica (Meyrick) (Lepidoptera: Tortricidae), is endemic to sub-Saharan Africa and certain Indian Ocean islands. It is an important pest of litchis and to a lesser extent macadamias. Litchis are exported to certain markets that consider C. peltastica as a phytosanitary pest. Consequently, an effective postharvest phytosanitary treatment is required. This study sought to develop a cold disinfestation treatment for this purpose. First, it was established that the fifth instar was the most cold-tolerant larval stage, as it was the only instar for which there was still some survival after 12 d at 1°C. It was then determined that cold treatment trials could be conducted in artificial diet, as there was no survival of fifth instar C. peltastica in litchis after only 9 d at 1°C, whereas it took 15 d at this temperature before no survival of fifth instar C. peltastica was recorded in artificial diet. Consequently, cold susceptibility of fifth instar C. peltastica and the most cold-tolerant larval stages (fourth and fifth instar) of false codling moth, Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae), were compared in artificial diet. There was no survival of C. peltastica after 13 d at 1°C, whereas this was only so for T. leucotreta after 16 d. Consequently, it can be concluded that any cold treatment that has been proven effective against T. leucotreta would be as effective against C. peltastica. Finally, it was confirmed that the cold susceptibility of T. leucotreta in artificial diet did not overestimate the effect of cold on T. leucotreta larvae in litchis.
- Full Text:
- Date Issued: 2018
- «
- ‹
- 1
- ›
- »