An Evaluation of Text Mining Techniques in Sampling of Network Ports from IBR Traffic
- Chindipha, Stones D, Irwin, Barry V W, Herbert, Alan
- Authors: Chindipha, Stones D , Irwin, Barry V W , Herbert, Alan
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/473740 , vital:77677 , xlink:href="https://www.researchgate.net/profile/Stones-Chindi-pha/publication/335910179_An_Evaluation_of_Text_Mining_Techniques_in_Sampling_of_Network_Ports_from_IBR_Traffic/links/5d833084458515cbd1985a38/An-Evaluation-of-Text-Mining-Techniques-in-Sampling-of-Network-Ports-from-IBR-Traffic.pdf"
- Description: Information retrieval (IR) has had techniques that have been used to gauge the extent to which certain keywords can be retrieved from a document. These techniques have been used to measure similarities in duplicated images, native language identification, optimize algorithms, among others. With this notion, this study proposes the use of four of the Information Retrieval Techniques (IRT/IR) to gauge the implications of sampling a/24 IPv4 ports into smaller subnet equivalents. Using IR, this paper shows how the ports found in a/24 IPv4 net-block relate to those found in the smaller subnet equivalents. Using Internet Background Radiation (IBR) data that was collected from Rhodes University, the study found compelling evidence of the viability of using such techniques in sampling datasets. Essentially, being able to identify the variation that comes with sampling the baseline dataset. It shows how the various samples are similar to the baseline dataset. The correlation observed in the scores proves how viable these techniques are to quantifying variations in the sampling of IBR data. In this way, one can identify which subnet equivalent best represents the unique ports found in the baseline dataset (IPv4 net-block dataset).
- Full Text:
- Date Issued: 2019
- Authors: Chindipha, Stones D , Irwin, Barry V W , Herbert, Alan
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/473740 , vital:77677 , xlink:href="https://www.researchgate.net/profile/Stones-Chindi-pha/publication/335910179_An_Evaluation_of_Text_Mining_Techniques_in_Sampling_of_Network_Ports_from_IBR_Traffic/links/5d833084458515cbd1985a38/An-Evaluation-of-Text-Mining-Techniques-in-Sampling-of-Network-Ports-from-IBR-Traffic.pdf"
- Description: Information retrieval (IR) has had techniques that have been used to gauge the extent to which certain keywords can be retrieved from a document. These techniques have been used to measure similarities in duplicated images, native language identification, optimize algorithms, among others. With this notion, this study proposes the use of four of the Information Retrieval Techniques (IRT/IR) to gauge the implications of sampling a/24 IPv4 ports into smaller subnet equivalents. Using IR, this paper shows how the ports found in a/24 IPv4 net-block relate to those found in the smaller subnet equivalents. Using Internet Background Radiation (IBR) data that was collected from Rhodes University, the study found compelling evidence of the viability of using such techniques in sampling datasets. Essentially, being able to identify the variation that comes with sampling the baseline dataset. It shows how the various samples are similar to the baseline dataset. The correlation observed in the scores proves how viable these techniques are to quantifying variations in the sampling of IBR data. In this way, one can identify which subnet equivalent best represents the unique ports found in the baseline dataset (IPv4 net-block dataset).
- Full Text:
- Date Issued: 2019
Effectiveness of Sampling a Small Sized Network Telescope in Internet Background Radiation Data Collection
- Chindipha, Stones D, Irwin, Barry V W, Herbert, Alan
- Authors: Chindipha, Stones D , Irwin, Barry V W , Herbert, Alan
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/473783 , vital:77681 , xlink:href="https://www.researchgate.net/profile/Barry-Irwin/publication/327624431_Effectiveness_of_Sampling_a_Small_Sized_Network_Telescope_in_Internet_Background_Radiation_Data_Collection/links/5b9a5067299bf14ad4d793a1/Effectiveness-of-Sampling-a-Small-Sized-Network-Telescope-in-Internet-Background-Radiation-Data-Collection.pdf"
- Description: What is known today as the modern Internet has long relied on the existence of, and use of, IPv4 addresses. However, due to the rapid growth of the Internet of Things (IoT), and limited address space within IPv4, acquiring large IPv4 subnetworks is becoming increasingly difficult. The exhaustion of the IPv4 address space has made it near impossible for organizations to gain access to large blocks of IP space. This is of great concern particularly in the security space which often relies on acquiring large network blocks for performing a technique called Internet Background Radiation (IBR) monitoring. This technique monitors IPv4 addresses which have no services running on them. In practice, no traffic should ever arrive at such an IPv4 address, and so is marked as an anomaly, and thus recorded and analyzed. This research aims to address the problem brought forth by IPv4 address space exhaustion in relation to IBR monitoring. This study’s intent is to identify the smallest subnet that best represents the attributes found in the/24 IPv4 address. This is done by determining how well a subset of the monitored original subnetwork represents the information gathered by the original subnetwork. Determining the best method of selecting a subset of IPv4 addresses from a subnetwork will enable IBR research to continue in the best way possible in an ever restricting research space.
- Full Text:
- Date Issued: 2018
- Authors: Chindipha, Stones D , Irwin, Barry V W , Herbert, Alan
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/473783 , vital:77681 , xlink:href="https://www.researchgate.net/profile/Barry-Irwin/publication/327624431_Effectiveness_of_Sampling_a_Small_Sized_Network_Telescope_in_Internet_Background_Radiation_Data_Collection/links/5b9a5067299bf14ad4d793a1/Effectiveness-of-Sampling-a-Small-Sized-Network-Telescope-in-Internet-Background-Radiation-Data-Collection.pdf"
- Description: What is known today as the modern Internet has long relied on the existence of, and use of, IPv4 addresses. However, due to the rapid growth of the Internet of Things (IoT), and limited address space within IPv4, acquiring large IPv4 subnetworks is becoming increasingly difficult. The exhaustion of the IPv4 address space has made it near impossible for organizations to gain access to large blocks of IP space. This is of great concern particularly in the security space which often relies on acquiring large network blocks for performing a technique called Internet Background Radiation (IBR) monitoring. This technique monitors IPv4 addresses which have no services running on them. In practice, no traffic should ever arrive at such an IPv4 address, and so is marked as an anomaly, and thus recorded and analyzed. This research aims to address the problem brought forth by IPv4 address space exhaustion in relation to IBR monitoring. This study’s intent is to identify the smallest subnet that best represents the attributes found in the/24 IPv4 address. This is done by determining how well a subset of the monitored original subnetwork represents the information gathered by the original subnetwork. Determining the best method of selecting a subset of IPv4 addresses from a subnetwork will enable IBR research to continue in the best way possible in an ever restricting research space.
- Full Text:
- Date Issued: 2018
An analysis on the re-emergence of SQL Slammer worm using network telescope data
- Chindipha, Stones D, Irwin, Barry V W
- Authors: Chindipha, Stones D , Irwin, Barry V W
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/473718 , vital:77675 , xlink:href="https://www.researchgate.net/publication/327622806_An_Analysis_on_the_Re-emergence_of_SQL_Slammer_Worm_Using_Network_Telescope_Data"
- Description: The SQL Slammer worm is a self propagated computer virus that caused a denial of service on some Internet hosts and dramatically slowed down general Internet traffic. An observation of network traffic captured in the Rhodes University’s network telescopes shows that traffic observed in it shows an escalation in the number of packets captured by the telescopes between January 2014 and December 2016 when the expected traffic was meant to take a constant decline in UDP packets from port 1434. Using data captured over a period of 84 months, the analysis done in this study identified top ten /24 source IP addresses that Slammer worm repeatedly used for this attack together with their geolocation. It also shows the trend of UDP 1434 packets received by the two network telescopes from January 2009 to December 2015. In line with epidemic model, the paper has shown how this traffic fits in as SQL Slammer worm attack. Consistent number of packets observed in the two telescopes between 2014 and 2016 shows qualities of the Slammer worm attack. Basic time series and decomposition of additive time series graphs have been used to show trend and observed UDP packets over the time frame of study.
- Full Text:
- Date Issued: 2017
- Authors: Chindipha, Stones D , Irwin, Barry V W
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/473718 , vital:77675 , xlink:href="https://www.researchgate.net/publication/327622806_An_Analysis_on_the_Re-emergence_of_SQL_Slammer_Worm_Using_Network_Telescope_Data"
- Description: The SQL Slammer worm is a self propagated computer virus that caused a denial of service on some Internet hosts and dramatically slowed down general Internet traffic. An observation of network traffic captured in the Rhodes University’s network telescopes shows that traffic observed in it shows an escalation in the number of packets captured by the telescopes between January 2014 and December 2016 when the expected traffic was meant to take a constant decline in UDP packets from port 1434. Using data captured over a period of 84 months, the analysis done in this study identified top ten /24 source IP addresses that Slammer worm repeatedly used for this attack together with their geolocation. It also shows the trend of UDP 1434 packets received by the two network telescopes from January 2009 to December 2015. In line with epidemic model, the paper has shown how this traffic fits in as SQL Slammer worm attack. Consistent number of packets observed in the two telescopes between 2014 and 2016 shows qualities of the Slammer worm attack. Basic time series and decomposition of additive time series graphs have been used to show trend and observed UDP packets over the time frame of study.
- Full Text:
- Date Issued: 2017
- «
- ‹
- 1
- ›
- »