Economic evaluation of chemical and biological control of four aquatic weeds in South Africa
- Maluleke, Mary, Fraser, Gavin C G, Hill, Martin P
- Authors: Maluleke, Mary , Fraser, Gavin C G , Hill, Martin P
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/453170 , vital:75228 , xlink:href="https://doi.org/10.1080/09583157.2021.1900783"
- Description: Invasive alien plants (IAPs) pose a threat to biodiversity and the economy of the countries they invade. In South Africa, the Department of Environment, Forestry and Fisheries, Natural Resources Management Programmes, previously The Working for Water Programme (WfW) is tasked with controlling IAPs in a way that protects the environment, as well as producing maximum return to society through poverty alleviation. Biological control is one of the management tools used to control IAPs in South Africa. Four aquatic weeds, Pista stratiotes, Salvinia molesta, Azolla filiculoides and Myriophyllum aquaticum, are under complete biological control in South Africa. However, in the absence of biological agents, the WfW programme would have used herbicides to control these weeds. This paper presents a retrospective analysis of the relative herbicide cost-saving associated with the use of biological control instead of chemical control. The study used cost benefit analysis (CBA) framework with an 8% discount rate. The estimated cost of the biological control on all four aquatic weeds was about R7.8 million, while the estimated cost of chemical control to achieve the same level of control varied between R150 million and R1 billion, depending on the method of application and number of follow up operations. Benefit to cost ratios varied between 90:1 and 631:1, again depending on method of application and number of follow up sprays. The results remained robust under a 5% and 10% sensitivity test and show that biological control is the most cost-effective management option for aquatic weeds in South Africa.
- Full Text:
- Date Issued: 2021
- Authors: Maluleke, Mary , Fraser, Gavin C G , Hill, Martin P
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/453170 , vital:75228 , xlink:href="https://doi.org/10.1080/09583157.2021.1900783"
- Description: Invasive alien plants (IAPs) pose a threat to biodiversity and the economy of the countries they invade. In South Africa, the Department of Environment, Forestry and Fisheries, Natural Resources Management Programmes, previously The Working for Water Programme (WfW) is tasked with controlling IAPs in a way that protects the environment, as well as producing maximum return to society through poverty alleviation. Biological control is one of the management tools used to control IAPs in South Africa. Four aquatic weeds, Pista stratiotes, Salvinia molesta, Azolla filiculoides and Myriophyllum aquaticum, are under complete biological control in South Africa. However, in the absence of biological agents, the WfW programme would have used herbicides to control these weeds. This paper presents a retrospective analysis of the relative herbicide cost-saving associated with the use of biological control instead of chemical control. The study used cost benefit analysis (CBA) framework with an 8% discount rate. The estimated cost of the biological control on all four aquatic weeds was about R7.8 million, while the estimated cost of chemical control to achieve the same level of control varied between R150 million and R1 billion, depending on the method of application and number of follow up operations. Benefit to cost ratios varied between 90:1 and 631:1, again depending on method of application and number of follow up sprays. The results remained robust under a 5% and 10% sensitivity test and show that biological control is the most cost-effective management option for aquatic weeds in South Africa.
- Full Text:
- Date Issued: 2021
The attitudes of riparian communities to the presence of water hyacinth in the Wouri River Basin, Douala, Cameroon
- Voukeng, Kenfack S N, Weyl, Philip S R, Hill, Martin P, Weyl, Philip, Chi, N
- Authors: Voukeng, Kenfack S N , Weyl, Philip S R , Hill, Martin P , Weyl, Philip , Chi, N
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423822 , vital:72096 , xlink:href="https://doi.org/10.2989/16085914.2018.1538868"
- Description: Since publication of the first record of Eichhornia crassipes in Cameroon in 1997, the weed has become highly invasive in the Wouri River Basin. Between June and September 2014, a socio-economic survey using participatory and qualitative methods was undertaken in the riparian villages of the Wouri River Basin to assess the perception of respondents to the presence of water hyacinth. The survey revealed that water hyacinth was a significant threat to activities along the river, which included fishing, sand extraction and river transportation. The presence of water hyacinth mats reduced catch rates of several common fish species, river transportation by 75%, and significantly reduced the income for sand extraction. Cameroon employs manual clearing of water hyacinth; however, respondents indicated they would consider other control methods, provided they do not have any negative impacts.
- Full Text:
- Date Issued: 2019
- Authors: Voukeng, Kenfack S N , Weyl, Philip S R , Hill, Martin P , Weyl, Philip , Chi, N
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423822 , vital:72096 , xlink:href="https://doi.org/10.2989/16085914.2018.1538868"
- Description: Since publication of the first record of Eichhornia crassipes in Cameroon in 1997, the weed has become highly invasive in the Wouri River Basin. Between June and September 2014, a socio-economic survey using participatory and qualitative methods was undertaken in the riparian villages of the Wouri River Basin to assess the perception of respondents to the presence of water hyacinth. The survey revealed that water hyacinth was a significant threat to activities along the river, which included fishing, sand extraction and river transportation. The presence of water hyacinth mats reduced catch rates of several common fish species, river transportation by 75%, and significantly reduced the income for sand extraction. Cameroon employs manual clearing of water hyacinth; however, respondents indicated they would consider other control methods, provided they do not have any negative impacts.
- Full Text:
- Date Issued: 2019
Effect of water trophic level on the impact of the water hyacinth moth Niphograpta albiguttalis on Eichhornia crassipes
- Canavan, Kim N, Coetzee, Julie A, Hill, Martin P, Paterson, Iain D
- Authors: Canavan, Kim N , Coetzee, Julie A , Hill, Martin P , Paterson, Iain D
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423740 , vital:72090 , xlink:href="https://doi.org/10.2989/16085914.2014.893225"
- Description: Eutrophication contributes to the proliferation of alien invasive weed species such as water hyacinth Eichhornia crassipes. Although the South American moth Niphograpta albiguttalis was released in South Africa in 1990 as a biological control agent against water hyacinth, no post-release evaluations have yet been conducted here. The impact of N. albiguttalis on water hyacinth growth was quantified under low-, medium- and high-nutrient concentrations in a greenhouse experiment. Niphograpta albiguttalis was damaging to water hyacinth in all three nutrient treatments, but significant damage in most plant parameters was found only under high-nutrient treatments. However, E. crassipes plants grown in high-nutrient water were healthier, and presumably had higher fitness, than plants not exposed to herbivory at lower-nutrient levels. Niphograpta albiguttalis is likely to be most damaging to water hyacinth in eutrophic water systems, but the damage will not result in acceptable levels of control because of the plant's high productivity under these conditions. Niphograpta albiguttalis is a suitable agent for controlling water hyacinth infestations in eutrophic water systems, but should be used in combination with other biological control agents and included in an integrated management plan also involving herbicidal control and water quality management.
- Full Text:
- Date Issued: 2014
- Authors: Canavan, Kim N , Coetzee, Julie A , Hill, Martin P , Paterson, Iain D
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423740 , vital:72090 , xlink:href="https://doi.org/10.2989/16085914.2014.893225"
- Description: Eutrophication contributes to the proliferation of alien invasive weed species such as water hyacinth Eichhornia crassipes. Although the South American moth Niphograpta albiguttalis was released in South Africa in 1990 as a biological control agent against water hyacinth, no post-release evaluations have yet been conducted here. The impact of N. albiguttalis on water hyacinth growth was quantified under low-, medium- and high-nutrient concentrations in a greenhouse experiment. Niphograpta albiguttalis was damaging to water hyacinth in all three nutrient treatments, but significant damage in most plant parameters was found only under high-nutrient treatments. However, E. crassipes plants grown in high-nutrient water were healthier, and presumably had higher fitness, than plants not exposed to herbivory at lower-nutrient levels. Niphograpta albiguttalis is likely to be most damaging to water hyacinth in eutrophic water systems, but the damage will not result in acceptable levels of control because of the plant's high productivity under these conditions. Niphograpta albiguttalis is a suitable agent for controlling water hyacinth infestations in eutrophic water systems, but should be used in combination with other biological control agents and included in an integrated management plan also involving herbicidal control and water quality management.
- Full Text:
- Date Issued: 2014
- «
- ‹
- 1
- ›
- »