Comparative analysis of YOLOV5 and YOLOV8 for automated fish detection and classification in underwater environments
- Authors: Kuhlane, Luxolo
- Date: 2024-10-11
- Subjects: Artificial intelligence , Deep learning (Machine learning) , Machine learning , Neural networks (Computer science) , You Only Look Once , YOLOv5 , YOLOv8
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/464333 , vital:76502
- Description: The application of traditional manual techniques for fish detection and classification faces significant challenges, primarily stemming from their labour-intensive nature and limited scalability. Automating these kinds of processes through computer vision practices and machine learning techniques has emerged as a potential solution in recent years. With the development of and increase in ease of access to new technology in recent years, the use of a deep learning object detector known as YOLO (You Only Look Once) in the detection and classification of fish has steadily become notably popular. This thesis thus explores suitable YOLO architectures for detecting and classifying fish. The YOLOv5 and YOLOv8 models were evaluated explicitly for detecting and classifying fish in underwater environments. The selection of these models was based on a literature review highlighting their success in similar applications but remains largely understudied in underwater environments. Therefore, the effectiveness of these models was evaluated through comprehensive experimentation on collected and publicly available underwater fish datasets. In collaboration with the South African Institute of Biodiversity (SAIAB), five datasets were collected and manually annotated for labels for supervised machine learning. Moreover, two publicly available datasets were sourced for comparison to the literature. Furthermore, after determining that the smallest YOLO architectures are better suited to these imbalanced datasets, hyperparameter tuning tailored the models to the characteristics of the various underwater environments used in the research. The popular DeepFish dataset was evaluated to establish a baseline and feasibility of these models in the understudied domain. The results demonstrated high detection accuracy for both YOLOv5 and YOLOv8. However, YOLOv8 outperformed YOLOv5, achieving 97.43% accuracy compared to 94.53%. After experiments on seven datasets, trends revealed YOLOv8’s enhanced generalisation accuracy due to architectural improvements, particularly in detecting smaller fish. Overall, YOLOv8 demonstrated that it is the better fish detection and classification model on diverse data. , Thesis (MSc) -- Faculty of Science, Computer Science, 2024
- Full Text:
- Date Issued: 2024-10-11
- Authors: Kuhlane, Luxolo
- Date: 2024-10-11
- Subjects: Artificial intelligence , Deep learning (Machine learning) , Machine learning , Neural networks (Computer science) , You Only Look Once , YOLOv5 , YOLOv8
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/464333 , vital:76502
- Description: The application of traditional manual techniques for fish detection and classification faces significant challenges, primarily stemming from their labour-intensive nature and limited scalability. Automating these kinds of processes through computer vision practices and machine learning techniques has emerged as a potential solution in recent years. With the development of and increase in ease of access to new technology in recent years, the use of a deep learning object detector known as YOLO (You Only Look Once) in the detection and classification of fish has steadily become notably popular. This thesis thus explores suitable YOLO architectures for detecting and classifying fish. The YOLOv5 and YOLOv8 models were evaluated explicitly for detecting and classifying fish in underwater environments. The selection of these models was based on a literature review highlighting their success in similar applications but remains largely understudied in underwater environments. Therefore, the effectiveness of these models was evaluated through comprehensive experimentation on collected and publicly available underwater fish datasets. In collaboration with the South African Institute of Biodiversity (SAIAB), five datasets were collected and manually annotated for labels for supervised machine learning. Moreover, two publicly available datasets were sourced for comparison to the literature. Furthermore, after determining that the smallest YOLO architectures are better suited to these imbalanced datasets, hyperparameter tuning tailored the models to the characteristics of the various underwater environments used in the research. The popular DeepFish dataset was evaluated to establish a baseline and feasibility of these models in the understudied domain. The results demonstrated high detection accuracy for both YOLOv5 and YOLOv8. However, YOLOv8 outperformed YOLOv5, achieving 97.43% accuracy compared to 94.53%. After experiments on seven datasets, trends revealed YOLOv8’s enhanced generalisation accuracy due to architectural improvements, particularly in detecting smaller fish. Overall, YOLOv8 demonstrated that it is the better fish detection and classification model on diverse data. , Thesis (MSc) -- Faculty of Science, Computer Science, 2024
- Full Text:
- Date Issued: 2024-10-11
Predictability of Geomagnetically Induced Currents using neural networks
- Authors: Lotz, Stefanus Ignatius
- Date: 2009
- Subjects: Advanced Composition Explorer (Artificial satellite) , Geomagnetism , Electromagnetic induction , Neural networks (Computer science) , Artificial intelligence
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5483 , http://hdl.handle.net/10962/d1005269 , Advanced Composition Explorer (Artificial satellite) , Geomagnetism , Electromagnetic induction , Neural networks (Computer science) , Artificial intelligence
- Description: It is a well documented fact that Geomagnetically Induced Currents (GIC’s) poses a significant threat to ground-based electric conductor networks like oil pipelines, railways and powerline networks. A study is undertaken to determine the feasibility of using artificial neural network models to predict GIC occurrence in the Southern African power grid. The magnitude of an induced current at a specific location on the Earth’s surface is directly related to the temporal derivative of the geomagnetic field (specifically its horizontal components) at that point. Hence, the focus of the problem is on the prediction of the temporal variations in the horizontal geomagnetic field (@Bx/@t and @By/@t). Artificial neural networks are used to predict @Bx/@t and @By/@t measured at Hermanus, South Africa (34.27◦ S, 19.12◦ E) with a 30 minute prediction lead time. As input parameters to the neural networks, insitu solar wind measurements made by the Advanced Composition Explorer (ACE) satellite are used. The results presented here compare well with similar models developed at high-latitude locations (e.g. Sweden, Finland, Canada) where extensive GIC research has been undertaken. It is concluded that it would indeed be feasible to use a neural network model to predict GIC occurrence in the Southern African power grid, provided that GIC measurements, powerline configuration and network parameters are made available.
- Full Text:
- Date Issued: 2009
- Authors: Lotz, Stefanus Ignatius
- Date: 2009
- Subjects: Advanced Composition Explorer (Artificial satellite) , Geomagnetism , Electromagnetic induction , Neural networks (Computer science) , Artificial intelligence
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5483 , http://hdl.handle.net/10962/d1005269 , Advanced Composition Explorer (Artificial satellite) , Geomagnetism , Electromagnetic induction , Neural networks (Computer science) , Artificial intelligence
- Description: It is a well documented fact that Geomagnetically Induced Currents (GIC’s) poses a significant threat to ground-based electric conductor networks like oil pipelines, railways and powerline networks. A study is undertaken to determine the feasibility of using artificial neural network models to predict GIC occurrence in the Southern African power grid. The magnitude of an induced current at a specific location on the Earth’s surface is directly related to the temporal derivative of the geomagnetic field (specifically its horizontal components) at that point. Hence, the focus of the problem is on the prediction of the temporal variations in the horizontal geomagnetic field (@Bx/@t and @By/@t). Artificial neural networks are used to predict @Bx/@t and @By/@t measured at Hermanus, South Africa (34.27◦ S, 19.12◦ E) with a 30 minute prediction lead time. As input parameters to the neural networks, insitu solar wind measurements made by the Advanced Composition Explorer (ACE) satellite are used. The results presented here compare well with similar models developed at high-latitude locations (e.g. Sweden, Finland, Canada) where extensive GIC research has been undertaken. It is concluded that it would indeed be feasible to use a neural network model to predict GIC occurrence in the Southern African power grid, provided that GIC measurements, powerline configuration and network parameters are made available.
- Full Text:
- Date Issued: 2009
An analysis of neural networks and time series techniques for demand forecasting
- Authors: Winn, David
- Date: 2007
- Subjects: Time-series analysis , Neural networks (Computer science) , Artificial intelligence , Marketing -- Management , Marketing -- Data processing , Marketing -- Statistical methods , Consumer behaviour
- Language: English
- Type: Thesis , Masters , MCom
- Identifier: vital:5572 , http://hdl.handle.net/10962/d1004362 , Time-series analysis , Neural networks (Computer science) , Artificial intelligence , Marketing -- Management , Marketing -- Data processing , Marketing -- Statistical methods , Consumer behaviour
- Description: This research examines the plausibility of developing demand forecasting techniques which are consistently and accurately able to predict demand. Time Series Techniques and Artificial Neural Networks are both investigated. Deodorant sales in South Africa are specifically studied in this thesis. Marketing techniques which are used to influence consumer buyer behaviour are considered, and these factors are integrated into the forecasting models wherever possible. The results of this research suggest that Artificial Neural Networks can be developed which consistently outperform industry forecasting targets as well as Time Series forecasts, suggesting that producers could reduce costs by adopting this more effective method.
- Full Text:
- Date Issued: 2007
- Authors: Winn, David
- Date: 2007
- Subjects: Time-series analysis , Neural networks (Computer science) , Artificial intelligence , Marketing -- Management , Marketing -- Data processing , Marketing -- Statistical methods , Consumer behaviour
- Language: English
- Type: Thesis , Masters , MCom
- Identifier: vital:5572 , http://hdl.handle.net/10962/d1004362 , Time-series analysis , Neural networks (Computer science) , Artificial intelligence , Marketing -- Management , Marketing -- Data processing , Marketing -- Statistical methods , Consumer behaviour
- Description: This research examines the plausibility of developing demand forecasting techniques which are consistently and accurately able to predict demand. Time Series Techniques and Artificial Neural Networks are both investigated. Deodorant sales in South Africa are specifically studied in this thesis. Marketing techniques which are used to influence consumer buyer behaviour are considered, and these factors are integrated into the forecasting models wherever possible. The results of this research suggest that Artificial Neural Networks can be developed which consistently outperform industry forecasting targets as well as Time Series forecasts, suggesting that producers could reduce costs by adopting this more effective method.
- Full Text:
- Date Issued: 2007
- «
- ‹
- 1
- ›
- »