A comparison between the responsiveness of selected physiological and subjective mental workload indicators during real-world driving scenarios
- Authors: Schmidtke, Nadia-Jasmine
- Date: 2020
- Subjects: Automobile driving -- Physiological aspects , Automobile driving -- Psychological aspects , Automobile drivers -- Health and hygiene , Mental fatigue , Mental work -- Case studies
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/148115 , vital:38711
- Description: Sub-optimal levels of mental workload in automobile drivers is a risk factor for road accidents. However, mental workload as a construct cannot be directly measured. Common indicators of mental workload include heart rate frequency and variability, eye motion and subjective rating tools. Namely, the National Aeronautics and Space Administration Task Load Index (NASA-TLX), its modified, unweighted version called the Raw-TLX, and the Rating Scale of Mental Effort (RSME). Comparisons between the suitability and responsiveness of these mental workload indicators have been almost exclusively examined in driving simulators. However, real-world driving research is important as even high-fidelity simulators cannot capture the complexity of driving scenarios. Hence, this research aimed to compare the suitability and responsiveness of these mental workload indicators in response to real-world driving scenarios. Six participants drove along a set route for an hour while wearing a heart rate monitor and eye tracker. A dashcam was used to capture footage of the different driving scenarios encountered. The set route comprised of driving through the industrial, residential, provincial main road and Rhodes University campus areas. RSME scores were taken during brief stops after driving though each zone. The NASA-TLX questionnaire was administered on completion of the drive and analysed later as the modified Raw-TLX version. The data collected in response to the encountered driving scenarios were sorted into three meta-groupings. (1) Data was segmented according to the different areas that participants drove through. This was termed Area Events and were long duration scenarios of between five and thirty minutes. These driving scenarios were further segmented into two meta-groups with short duration driving scenarios (< 90 seconds). (2) The Common Events meta-group consisted of driving scenarios that were encountered by all participants. These were scenarios were anticipated by drivers. (3) The All Events meta-group was grouped according to all the driving scenarios that were encountered by participants. It consisted of both anticipated and unanticipated driving scenarios of short durations. Data were further analysed using a method of systematically selecting a threshold value for each mental workload indicator. Responses to driving scenarios which surpassed the threshold were considered indicative of an increase in mental workload. The total frequency of higher mental workload events was used as a determiner responsiveness (or ‘sensitivity’) for each mental workload indicator. Mental workload indicators were evaluated for their responsiveness and suitability for assessing mental workload. Results found blink frequency to be a responsive mental workload indicator for all categories of driving scenarios. Blink frequency and duration were the most responsive short duration mental workload indicators. Furthermore, the indicators were able to distinguish between higher and lower mental workload driving scenarios. However, blink parameters are also sensitive to driver fatigue and drowsiness. Further research on distinguishing mental workload from that of fatigue in response to real-world driving was recommended. Pupil diameter, fixation duration, saccade saccade duration and saccade amplitude were found to be responsive short duration mental workload indicators. However, these measures were not determined to be suitable for real-world driving applications. Pupil diameter was confounded by changing illumination levels. Fixation and saccade responses were confounded by the driving task itself as gaze could not be accounted for. For long duration driving scenarios heart rate frequency, heart rate variability: high-frequency power, blink frequency and RSME were found to be responsive and suitable MWL indicators. The Raw-TLX results could not be assessed for responsiveness as it was administered once. However, it was confirmed as a suitable cumulative mental workload indicator in the application of real-world driving. The moderate levels of workload reported by participants agreed with the experimental protocol that prevented inducing sub-optimal mental workload. Blink frequency shows promise as a responsive and suitable mental workload indicator for different types of driving scenarios. More research is needed regarding the assessment of mental workload during short durations using blink frequency and blink duration. For driving durations between five and thirty minutes long, further research into heart rate frequency, heart rate variability: high frequency power, and the RSME was recommended.
- Full Text:
- Date Issued: 2020
- Authors: Schmidtke, Nadia-Jasmine
- Date: 2020
- Subjects: Automobile driving -- Physiological aspects , Automobile driving -- Psychological aspects , Automobile drivers -- Health and hygiene , Mental fatigue , Mental work -- Case studies
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/148115 , vital:38711
- Description: Sub-optimal levels of mental workload in automobile drivers is a risk factor for road accidents. However, mental workload as a construct cannot be directly measured. Common indicators of mental workload include heart rate frequency and variability, eye motion and subjective rating tools. Namely, the National Aeronautics and Space Administration Task Load Index (NASA-TLX), its modified, unweighted version called the Raw-TLX, and the Rating Scale of Mental Effort (RSME). Comparisons between the suitability and responsiveness of these mental workload indicators have been almost exclusively examined in driving simulators. However, real-world driving research is important as even high-fidelity simulators cannot capture the complexity of driving scenarios. Hence, this research aimed to compare the suitability and responsiveness of these mental workload indicators in response to real-world driving scenarios. Six participants drove along a set route for an hour while wearing a heart rate monitor and eye tracker. A dashcam was used to capture footage of the different driving scenarios encountered. The set route comprised of driving through the industrial, residential, provincial main road and Rhodes University campus areas. RSME scores were taken during brief stops after driving though each zone. The NASA-TLX questionnaire was administered on completion of the drive and analysed later as the modified Raw-TLX version. The data collected in response to the encountered driving scenarios were sorted into three meta-groupings. (1) Data was segmented according to the different areas that participants drove through. This was termed Area Events and were long duration scenarios of between five and thirty minutes. These driving scenarios were further segmented into two meta-groups with short duration driving scenarios (< 90 seconds). (2) The Common Events meta-group consisted of driving scenarios that were encountered by all participants. These were scenarios were anticipated by drivers. (3) The All Events meta-group was grouped according to all the driving scenarios that were encountered by participants. It consisted of both anticipated and unanticipated driving scenarios of short durations. Data were further analysed using a method of systematically selecting a threshold value for each mental workload indicator. Responses to driving scenarios which surpassed the threshold were considered indicative of an increase in mental workload. The total frequency of higher mental workload events was used as a determiner responsiveness (or ‘sensitivity’) for each mental workload indicator. Mental workload indicators were evaluated for their responsiveness and suitability for assessing mental workload. Results found blink frequency to be a responsive mental workload indicator for all categories of driving scenarios. Blink frequency and duration were the most responsive short duration mental workload indicators. Furthermore, the indicators were able to distinguish between higher and lower mental workload driving scenarios. However, blink parameters are also sensitive to driver fatigue and drowsiness. Further research on distinguishing mental workload from that of fatigue in response to real-world driving was recommended. Pupil diameter, fixation duration, saccade saccade duration and saccade amplitude were found to be responsive short duration mental workload indicators. However, these measures were not determined to be suitable for real-world driving applications. Pupil diameter was confounded by changing illumination levels. Fixation and saccade responses were confounded by the driving task itself as gaze could not be accounted for. For long duration driving scenarios heart rate frequency, heart rate variability: high-frequency power, blink frequency and RSME were found to be responsive and suitable MWL indicators. The Raw-TLX results could not be assessed for responsiveness as it was administered once. However, it was confirmed as a suitable cumulative mental workload indicator in the application of real-world driving. The moderate levels of workload reported by participants agreed with the experimental protocol that prevented inducing sub-optimal mental workload. Blink frequency shows promise as a responsive and suitable mental workload indicator for different types of driving scenarios. More research is needed regarding the assessment of mental workload during short durations using blink frequency and blink duration. For driving durations between five and thirty minutes long, further research into heart rate frequency, heart rate variability: high frequency power, and the RSME was recommended.
- Full Text:
- Date Issued: 2020
An investigation into control mechanisms of driving performance : resource depletion and effort-regulation
- Authors: Louw, Tyron Linton
- Date: 2013
- Subjects: Automobile driving simulators , Automobile driving -- Psychological aspects , Automobile driving -- Physiological aspects , Traffic accidents , Traffic safety , Fatigue
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5101 , http://hdl.handle.net/10962/d1001842 , Automobile driving simulators , Automobile driving -- Psychological aspects , Automobile driving -- Physiological aspects , Traffic accidents , Traffic safety , Fatigue
- Description: Driver fatigue is a complex phenomenon that has a range of causal factors including sleeprelated and task-related factors. These manifest as different safety and performance outcomes. Extensive research has been applied to linking these factors to performance impairment. However, little research focuses on the mechanisms by which this link exists. This research project therefore focuses on the processes underlying how driving performance is controlled and maintained during the development on non-sleep-related driver fatigue. The main aim was to establish whether progressive impairment of driving control over a prolonged drive could be attributed to a depletion of attentional resources, as proposed by Resource Theory, or to a withdrawal of effort, as proposed by Effort-Regulation Theory. As a multicomponent skill, driving requires perception, cognition and motor output. The secondary aim of this research was therefore to assess whether a prolonged drive impairs stage-specific information processing. Participants (n=24) in three experimental groups performed a 90-minute simulated drive wherein they were expected to keep the bonnet of a car on a lane (tracking task). The three groups differed in terms of lane width: small, medium and large, corresponding to low, medium, and high task-demand, respectively. To assess the impacts of this task on stagespecific information processing, participants performed a set of resource specific tests before and after the prolonged drive. Each task had two difficulty variations to ensure that performance decrement was due not only to the task-characteristic, but specifically to resource depletion. The tests probing information processing were: a modified Fitts' tapping task for motor programming, a digit recall task for perception, and an object recognition reading task for cognition. Performance was measured as lateral deviation of the car. Physiological measures included heart rate frequency (HR) and various time- and frequencydomain heart rate variability (HRV) parameters, eye blink frequency and duration. The Borg CR-10 scale was used to evaluate subjective effort and fatigue during the task. Driving control declined over time and was supplemented by HR, HRV, blink frequency and duration, indicating an increase in parasympathetic activity (or a reduction in arousal). An increase in blink frequency was considered as a sign of withdrawal of attentional resources over time. Driving control declined to a greater extent in the large road width group and reflected a lower parasympathetic activity, whereas the inverse was observed for the small road width group. Resource tests reveal a non-specific impairment of information processing following the prolonged drive. However, this was accompanied by an increase in parasympathetic activity. Overall, results indicate that Effort-Regulation Theory better accounts for the impairment of driving control in prolonged driving than does Resource Theory. This suggests that the impact of fatigue is guided more by task goals and intrinsic motivation than by the manner in which the fatigue state developed. Moreover, performance impairment by effort-regulation is dependant more on time on task than on task-demand
- Full Text:
- Date Issued: 2013
- Authors: Louw, Tyron Linton
- Date: 2013
- Subjects: Automobile driving simulators , Automobile driving -- Psychological aspects , Automobile driving -- Physiological aspects , Traffic accidents , Traffic safety , Fatigue
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5101 , http://hdl.handle.net/10962/d1001842 , Automobile driving simulators , Automobile driving -- Psychological aspects , Automobile driving -- Physiological aspects , Traffic accidents , Traffic safety , Fatigue
- Description: Driver fatigue is a complex phenomenon that has a range of causal factors including sleeprelated and task-related factors. These manifest as different safety and performance outcomes. Extensive research has been applied to linking these factors to performance impairment. However, little research focuses on the mechanisms by which this link exists. This research project therefore focuses on the processes underlying how driving performance is controlled and maintained during the development on non-sleep-related driver fatigue. The main aim was to establish whether progressive impairment of driving control over a prolonged drive could be attributed to a depletion of attentional resources, as proposed by Resource Theory, or to a withdrawal of effort, as proposed by Effort-Regulation Theory. As a multicomponent skill, driving requires perception, cognition and motor output. The secondary aim of this research was therefore to assess whether a prolonged drive impairs stage-specific information processing. Participants (n=24) in three experimental groups performed a 90-minute simulated drive wherein they were expected to keep the bonnet of a car on a lane (tracking task). The three groups differed in terms of lane width: small, medium and large, corresponding to low, medium, and high task-demand, respectively. To assess the impacts of this task on stagespecific information processing, participants performed a set of resource specific tests before and after the prolonged drive. Each task had two difficulty variations to ensure that performance decrement was due not only to the task-characteristic, but specifically to resource depletion. The tests probing information processing were: a modified Fitts' tapping task for motor programming, a digit recall task for perception, and an object recognition reading task for cognition. Performance was measured as lateral deviation of the car. Physiological measures included heart rate frequency (HR) and various time- and frequencydomain heart rate variability (HRV) parameters, eye blink frequency and duration. The Borg CR-10 scale was used to evaluate subjective effort and fatigue during the task. Driving control declined over time and was supplemented by HR, HRV, blink frequency and duration, indicating an increase in parasympathetic activity (or a reduction in arousal). An increase in blink frequency was considered as a sign of withdrawal of attentional resources over time. Driving control declined to a greater extent in the large road width group and reflected a lower parasympathetic activity, whereas the inverse was observed for the small road width group. Resource tests reveal a non-specific impairment of information processing following the prolonged drive. However, this was accompanied by an increase in parasympathetic activity. Overall, results indicate that Effort-Regulation Theory better accounts for the impairment of driving control in prolonged driving than does Resource Theory. This suggests that the impact of fatigue is guided more by task goals and intrinsic motivation than by the manner in which the fatigue state developed. Moreover, performance impairment by effort-regulation is dependant more on time on task than on task-demand
- Full Text:
- Date Issued: 2013
Investigation of the effect of short duration breaks in delaying the onset of performance related fatigue during long distance monotonous driving at different times of the day
- Authors: Ndaki, Ntombikayise
- Date: 2012
- Subjects: Fatigue -- Physiological aspects , Drowsiness -- Physiological aspects , Automobile driving -- Physiological aspects , Traffic safety -- South Africa , Automobile driving -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5170 , http://hdl.handle.net/10962/d1016353
- Description: Road traffic accidents are a serious burden to the health systems of many countries especially in South Africa. Research aimed at reducing traffic related accidents is of importance as traffic crashes are rated as the second leading cause of fatalities in South Africa and ninth in the world. Despite the extensive efforts into research and development of new technology, driver fatigue still remains a cause of vehicle accidents worldwide. Fatigue plays a role in up to 20% of vehicle accidents with many being serious or fatal. Numerous coping behaviours are employed by drivers to counteract the negative effects of fatigue. The most common coping behaviours include taking short naps, talking to passengers, listening to the radio, opening windows and drinking stimulants. Driving breaks have long been identified as an effective countermeasure against fatigue. Most research done in driving breaks has investigated the duration of the breaks, activity undertaken during the break and the frequency of the breaks taken outside the vehicle. However limited literature is available on the effectiveness of breaks in counteracting the effects of fatigue. The objective of the current study was aimed at assessing whether short duration breaks are an effective countermeasure against fatigue. Physiological, neurophysiological, subjective and performance measures were used as indicators for fatigue. Additional focus of the research was determining whether breaks were more or less effective at counteracting the effects of fatigue at different times of day. Twelve participants were recruited for the study, six males and six females. The participants were required to perform a driving task on a simulator for 90 minutes. The study consisted of four independent conditions, namely driving during the day with breaks, driving during the day without breaks, driving during the night with breaks and driving during the night without breaks. The without breaks conditions were similar except that they occurred at different times of the day, one session at night and the other session during day time, as was the case for the conditions with breaks. The driving task used in the current study was a low fidelity simulator tracking task. The participants were required to follow a centre line displayed on a tracking path as accurately as possible. The measurements that were recorded in this study included physiological, performance, subjective and neurophysiological. Physiological measures included heart rate and heart rate variability (frequency domain) and core body temperature. The ascending threshold of the critical flicker fusion frequency was the only neurophysiological measurement included in the current investigation. Performance was quantified by mean deviation from a centre line participants were meant to track. Two rating scales were used: Karolinska sleepiness scale and the Wits sleepiness scale were used for the measurement of subjective sleepiness. Heart rate, heart rate variability and mean deviation were measured continuously throughout the 90 minute driving task. Critical flicker fusion frequency, temperature and the subjective scales were measured before and after the 90 minute driving task. The results indicated that the short duration breaks during day time had a positive effect on driving performance; however the breaks at night had a negative effect on driving performance. Heart rate was higher during the day compared to night time and the heart rate variability high frequency spectrum values were lower during the day condition, to show the activation of the sympathetic nervous system which is characteristic of day time. The night conditions had lower heart rate values and higher heart rate variability high frequency values, which show the activation of the parasympathetic nervous system which is dominant during periods of fatigue and night time. Subjective sleepiness levels were also higher at night compared to day time.
- Full Text:
- Date Issued: 2012
- Authors: Ndaki, Ntombikayise
- Date: 2012
- Subjects: Fatigue -- Physiological aspects , Drowsiness -- Physiological aspects , Automobile driving -- Physiological aspects , Traffic safety -- South Africa , Automobile driving -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5170 , http://hdl.handle.net/10962/d1016353
- Description: Road traffic accidents are a serious burden to the health systems of many countries especially in South Africa. Research aimed at reducing traffic related accidents is of importance as traffic crashes are rated as the second leading cause of fatalities in South Africa and ninth in the world. Despite the extensive efforts into research and development of new technology, driver fatigue still remains a cause of vehicle accidents worldwide. Fatigue plays a role in up to 20% of vehicle accidents with many being serious or fatal. Numerous coping behaviours are employed by drivers to counteract the negative effects of fatigue. The most common coping behaviours include taking short naps, talking to passengers, listening to the radio, opening windows and drinking stimulants. Driving breaks have long been identified as an effective countermeasure against fatigue. Most research done in driving breaks has investigated the duration of the breaks, activity undertaken during the break and the frequency of the breaks taken outside the vehicle. However limited literature is available on the effectiveness of breaks in counteracting the effects of fatigue. The objective of the current study was aimed at assessing whether short duration breaks are an effective countermeasure against fatigue. Physiological, neurophysiological, subjective and performance measures were used as indicators for fatigue. Additional focus of the research was determining whether breaks were more or less effective at counteracting the effects of fatigue at different times of day. Twelve participants were recruited for the study, six males and six females. The participants were required to perform a driving task on a simulator for 90 minutes. The study consisted of four independent conditions, namely driving during the day with breaks, driving during the day without breaks, driving during the night with breaks and driving during the night without breaks. The without breaks conditions were similar except that they occurred at different times of the day, one session at night and the other session during day time, as was the case for the conditions with breaks. The driving task used in the current study was a low fidelity simulator tracking task. The participants were required to follow a centre line displayed on a tracking path as accurately as possible. The measurements that were recorded in this study included physiological, performance, subjective and neurophysiological. Physiological measures included heart rate and heart rate variability (frequency domain) and core body temperature. The ascending threshold of the critical flicker fusion frequency was the only neurophysiological measurement included in the current investigation. Performance was quantified by mean deviation from a centre line participants were meant to track. Two rating scales were used: Karolinska sleepiness scale and the Wits sleepiness scale were used for the measurement of subjective sleepiness. Heart rate, heart rate variability and mean deviation were measured continuously throughout the 90 minute driving task. Critical flicker fusion frequency, temperature and the subjective scales were measured before and after the 90 minute driving task. The results indicated that the short duration breaks during day time had a positive effect on driving performance; however the breaks at night had a negative effect on driving performance. Heart rate was higher during the day compared to night time and the heart rate variability high frequency spectrum values were lower during the day condition, to show the activation of the sympathetic nervous system which is characteristic of day time. The night conditions had lower heart rate values and higher heart rate variability high frequency values, which show the activation of the parasympathetic nervous system which is dominant during periods of fatigue and night time. Subjective sleepiness levels were also higher at night compared to day time.
- Full Text:
- Date Issued: 2012
Peripheral vision field fatigue during simulated driving : the effects of time on task and time of day on selected psychophysiological, performance and subjective responses
- Authors: Robertson, Jade Kelly
- Date: 2012 , 2012-09-22
- Subjects: Automobile driving simulators , Automobile driving -- Psychological aspects , Automobile driving -- Physiological aspects , Traffic accidents , Traffic safety , Fatigue , Peripheral vision
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5141 , http://hdl.handle.net/10962/d1007136 , Automobile driving simulators , Automobile driving -- Psychological aspects , Automobile driving -- Physiological aspects , Traffic accidents , Traffic safety , Fatigue , Peripheral vision
- Description: Worldwide, motor accidents are responsible for a large number of deaths and disabilities (Connor et al., 2001), and one of the major causes of motor accidents is driver fatigue. Although majority of drivers are aware of the dangers of fatigued driving, accidents related to this continues to contribute to a large percentage of all accidents, between 5 and 50% (Nilsson et al., 1997; Williamson et al., 2011). The purpose of the research was to establish the effect that fatigue renders on an individual’s peripheral visual field and to determine whether a decrement in driving performance occurs at the same rate as a decrement in peripheral visual performance. Fatigue was induced through time of day as well as time on task. Sixteen students from Rhodes University were recruited, subject to no previous sleep disorders, among other criteria. Each participant was required to partake in two conditions, namely a day condition (09h00–11h00) and a night condition (23h00– 01h00). Each condition consisted of a 90 minute dual task; the primary task was a tracking task, in which participants were instructed to track a white line as accurately as possible. A secondary peripheral response task was introduced, in which participants were instructed to respond as quickly as possible to the peripheral stimuli, by pressing one of two clickers located on the steering wheel. The peripheral stimuli were located at 20º, 30º and 40º visual angle. Psychophysiological, performance and subjective measures were obtained before, during and after the main task. The pre- and post-tests included core body temperature, critical flicker fusion frequency threshold, a digit span memory test, Wits Sleepiness Scale and a NASA-TLX questionnaire. The psychophysiological and performance measures of heart rate, heart rate variability, blink frequency, blink duration, lane deviation, number of saccades towards peripheral stimuli, response time to peripheral stimuli and the percentage of missed peripheral responses were all recorded throughout the 90 minute main dual task. The results revealed significant differences (p<0.05) for heart rate variability, number of saccades towards peripheral stimuli and the Wits Sleepiness Scale, with regard to time of day. For time on task, significant effects were established for lane deviation, response time to peripheral stimuli, percentage of missed peripheral responses, heart rate, heart rate variability, blink frequency, blink duration, critical flicker fusion frequency threshold, core body temperature and the Wits Sleepiness Scale. Eccentricity was analysed and found to be significant for response time to peripheral stimuli, as well as for the percentage of missed peripheral responses; there was a significant increase in both measures with an increase in the stimuli eccentricity. No significances were established for time of day or between the pre- and post-tests conducted for the digit span memory performance; however, a significant interactional effect between the two was established. When assessing the percentage rate of decrement of driving performance compared to the percentage rate in the decrement of the missed peripheral responses, it was found that the percentage rate of decrement was equal for both measures. Thus from this research it can be seen that, concurrent with a decrement in driving performance, there are adverse effects on an individuals' peripheral vision, which have great implications for the safety of workers in industry and transport, as well as motorists. It was also established that time on task is possibly a more appropriate variable to consider than time of day, when implementing work schedules and rest breaks in industry, transport and fields alike, as more significant findings were seen for time on task compared to time of day. , Adobe Acrobat 9.53 Paper Capture Plug-in
- Full Text:
- Date Issued: 2012
- Authors: Robertson, Jade Kelly
- Date: 2012 , 2012-09-22
- Subjects: Automobile driving simulators , Automobile driving -- Psychological aspects , Automobile driving -- Physiological aspects , Traffic accidents , Traffic safety , Fatigue , Peripheral vision
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5141 , http://hdl.handle.net/10962/d1007136 , Automobile driving simulators , Automobile driving -- Psychological aspects , Automobile driving -- Physiological aspects , Traffic accidents , Traffic safety , Fatigue , Peripheral vision
- Description: Worldwide, motor accidents are responsible for a large number of deaths and disabilities (Connor et al., 2001), and one of the major causes of motor accidents is driver fatigue. Although majority of drivers are aware of the dangers of fatigued driving, accidents related to this continues to contribute to a large percentage of all accidents, between 5 and 50% (Nilsson et al., 1997; Williamson et al., 2011). The purpose of the research was to establish the effect that fatigue renders on an individual’s peripheral visual field and to determine whether a decrement in driving performance occurs at the same rate as a decrement in peripheral visual performance. Fatigue was induced through time of day as well as time on task. Sixteen students from Rhodes University were recruited, subject to no previous sleep disorders, among other criteria. Each participant was required to partake in two conditions, namely a day condition (09h00–11h00) and a night condition (23h00– 01h00). Each condition consisted of a 90 minute dual task; the primary task was a tracking task, in which participants were instructed to track a white line as accurately as possible. A secondary peripheral response task was introduced, in which participants were instructed to respond as quickly as possible to the peripheral stimuli, by pressing one of two clickers located on the steering wheel. The peripheral stimuli were located at 20º, 30º and 40º visual angle. Psychophysiological, performance and subjective measures were obtained before, during and after the main task. The pre- and post-tests included core body temperature, critical flicker fusion frequency threshold, a digit span memory test, Wits Sleepiness Scale and a NASA-TLX questionnaire. The psychophysiological and performance measures of heart rate, heart rate variability, blink frequency, blink duration, lane deviation, number of saccades towards peripheral stimuli, response time to peripheral stimuli and the percentage of missed peripheral responses were all recorded throughout the 90 minute main dual task. The results revealed significant differences (p<0.05) for heart rate variability, number of saccades towards peripheral stimuli and the Wits Sleepiness Scale, with regard to time of day. For time on task, significant effects were established for lane deviation, response time to peripheral stimuli, percentage of missed peripheral responses, heart rate, heart rate variability, blink frequency, blink duration, critical flicker fusion frequency threshold, core body temperature and the Wits Sleepiness Scale. Eccentricity was analysed and found to be significant for response time to peripheral stimuli, as well as for the percentage of missed peripheral responses; there was a significant increase in both measures with an increase in the stimuli eccentricity. No significances were established for time of day or between the pre- and post-tests conducted for the digit span memory performance; however, a significant interactional effect between the two was established. When assessing the percentage rate of decrement of driving performance compared to the percentage rate in the decrement of the missed peripheral responses, it was found that the percentage rate of decrement was equal for both measures. Thus from this research it can be seen that, concurrent with a decrement in driving performance, there are adverse effects on an individuals' peripheral vision, which have great implications for the safety of workers in industry and transport, as well as motorists. It was also established that time on task is possibly a more appropriate variable to consider than time of day, when implementing work schedules and rest breaks in industry, transport and fields alike, as more significant findings were seen for time on task compared to time of day. , Adobe Acrobat 9.53 Paper Capture Plug-in
- Full Text:
- Date Issued: 2012
- «
- ‹
- 1
- ›
- »