Regional differentiation of three goatfishes (Parupeneus Spp.) within the Western Indian Ocean
- Springbok–Njokweni, Nosiphiwo
- Authors: Springbok–Njokweni, Nosiphiwo
- Date: 2015
- Subjects: Marine fishes -- South Africa , Mitochondrial DNA -- South Africa , Mullidae -- South Africa , Biogeography -- South Africa
- Language: English
- Type: Thesis , Masters , MSc (Zoology)
- Identifier: vital:11798 , http://hdl.handle.net/10353/d1020262 , Marine fishes -- South Africa , Mitochondrial DNA -- South Africa , Mullidae -- South Africa , Biogeography -- South Africa
- Description: Goatfishes inhabit inshore reefs and corals and are commercially important across their distribution in the Western Indian Ocean (WIO). The biogeography of these species in the WIO has not been explored with regards to their levels of diversity and relationships among regions. The genetic connectivity and differentiation of three goatfishes of the genus Parupeneus (P. barberinus, P. macronemus and P. rubescens) was studied using two mitochondrial genes (ND2 and 16S rRNA) and one nuclear gene (RAG1) using specimens from East and southern Africa, islands around the Mascarene plateau, Oman, Maldives and the Red Sea. Haplotype diversities, networks and AMOVA were used to measure genetic variance among localities and defined regional groups. There were high haplotype (HD > 0.9) and low nucleotide diversities (< 0.006) among all species for all gene regions, suggesting high levels of genetic differentiation among different areas, except for the mtDNA 16S data for P. macronemus and P. rubescens. For all three species, the FST population pairwise values revealed significant differentiation in all datasets for most population pairwise comparisons with the Maldives and genetic connectivity with haplotypes being shared among other localities. The 16S and RAG1, AMOVA for P. barberinus revealed a significant (P < 0.05) strong genetic structure among groups, for example P = 0.00 was estimated in the 16S data for four groups (the Maldives, WIO islands, Kenya and eastern mainland). This study found evidence for regional differentiation within the WIO for these three species supporting the presence of genetic breaks among areas. This differentiation could be either due to the historical isolation among areas or due to geographic and oceanic barriers such as the Mascarene Plateau and the Agulhas Current eddies in the Mozambique Channel. The effects of oceanographic features and physical barriers in the species distribution range and the dispersal potential based on the life history features of the species can have an influence on the genetic structuring of a population. It is also important to note that the length of the pelagic larval phase is just one factor affecting dispersal in marine organisms that can also explain the difference in genetic population structure. Unfortunately there is no specific information on the larval dispersal of these three goatfish. Therefore, studies are needed to be conducted on the specific biology and life history strategies of each Parupeneus species. These results suggest the importance of other factors, such as currents, and larval retention that may cause strong differentiation. These factors should also be considered when observing larval dispersal and its effect on population genetic structure. This study support the hypotheses that physical factors, processes (geographic barriers and oceanographic characteristics) and life history parameters need to be studied to understand the genetic differentiation of these Parupeneus reef fishes.
- Full Text:
- Date Issued: 2015
- Authors: Springbok–Njokweni, Nosiphiwo
- Date: 2015
- Subjects: Marine fishes -- South Africa , Mitochondrial DNA -- South Africa , Mullidae -- South Africa , Biogeography -- South Africa
- Language: English
- Type: Thesis , Masters , MSc (Zoology)
- Identifier: vital:11798 , http://hdl.handle.net/10353/d1020262 , Marine fishes -- South Africa , Mitochondrial DNA -- South Africa , Mullidae -- South Africa , Biogeography -- South Africa
- Description: Goatfishes inhabit inshore reefs and corals and are commercially important across their distribution in the Western Indian Ocean (WIO). The biogeography of these species in the WIO has not been explored with regards to their levels of diversity and relationships among regions. The genetic connectivity and differentiation of three goatfishes of the genus Parupeneus (P. barberinus, P. macronemus and P. rubescens) was studied using two mitochondrial genes (ND2 and 16S rRNA) and one nuclear gene (RAG1) using specimens from East and southern Africa, islands around the Mascarene plateau, Oman, Maldives and the Red Sea. Haplotype diversities, networks and AMOVA were used to measure genetic variance among localities and defined regional groups. There were high haplotype (HD > 0.9) and low nucleotide diversities (< 0.006) among all species for all gene regions, suggesting high levels of genetic differentiation among different areas, except for the mtDNA 16S data for P. macronemus and P. rubescens. For all three species, the FST population pairwise values revealed significant differentiation in all datasets for most population pairwise comparisons with the Maldives and genetic connectivity with haplotypes being shared among other localities. The 16S and RAG1, AMOVA for P. barberinus revealed a significant (P < 0.05) strong genetic structure among groups, for example P = 0.00 was estimated in the 16S data for four groups (the Maldives, WIO islands, Kenya and eastern mainland). This study found evidence for regional differentiation within the WIO for these three species supporting the presence of genetic breaks among areas. This differentiation could be either due to the historical isolation among areas or due to geographic and oceanic barriers such as the Mascarene Plateau and the Agulhas Current eddies in the Mozambique Channel. The effects of oceanographic features and physical barriers in the species distribution range and the dispersal potential based on the life history features of the species can have an influence on the genetic structuring of a population. It is also important to note that the length of the pelagic larval phase is just one factor affecting dispersal in marine organisms that can also explain the difference in genetic population structure. Unfortunately there is no specific information on the larval dispersal of these three goatfish. Therefore, studies are needed to be conducted on the specific biology and life history strategies of each Parupeneus species. These results suggest the importance of other factors, such as currents, and larval retention that may cause strong differentiation. These factors should also be considered when observing larval dispersal and its effect on population genetic structure. This study support the hypotheses that physical factors, processes (geographic barriers and oceanographic characteristics) and life history parameters need to be studied to understand the genetic differentiation of these Parupeneus reef fishes.
- Full Text:
- Date Issued: 2015
A predictive biogeography of selected alien plant invaders in South Africa
- Authors: Youthed, Jennifer Gay
- Date: 1997
- Subjects: Alien plants -- South Africa , Biogeography -- South Africa , Acacia -- South Africa , Acacia mearnsii -- South Africa , Opuntia ficus-indica -- South Africa , Solanum -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4846 , http://hdl.handle.net/10962/d1005522 , Alien plants -- South Africa , Biogeography -- South Africa , Acacia -- South Africa , Acacia mearnsii -- South Africa , Opuntia ficus-indica -- South Africa , Solanum -- South Africa
- Description: Five techniques were used to predict the potential biogeography of the four alien plant species, Acacia longifolia, Acacia mearnsii, Opuntia ficus-indica and Solanum sisymbrifolium. Prediction was based on five environmental factors, median annual rainfall, co-efficient of variation for rainfall, mean monthly maximum temperature for January, mean monthly minimum temperature for July and elevation. A geographical information system was used to manage the data and produce the predictive maps. The models were constructed with presence and absence data and then validated by means of an independent data set and chisquared tests. Of the five models used, three (the range, principal components analysis and discriminant function analysis) were linear while the other two (artificial neural networks and fuzzy logic) were non-linear. The two non-linear techniques were chosen as a plant's response to its environment is commonly assumed to be non-linear. However, these two techniques did not offer significant advantages over the linear methods. The principal components analysis was particularly useful in ascertaining the variables that were important in determining the distribution of each species. Artifacts on the predictive maps were also proved useful for this purpose. The techniques that produced the most statistically accurate validation results were the artificial neural networks (77% correct median prediction rate) and the discriminant function analysis (71% correct median prediction rate) while the techniques that performed the worst were the range and the fuzzy classification. The artificial neural network, discriminant function analysis and principal component analysis techniques all show great potential as predictive distribution models.
- Full Text:
- Date Issued: 1997
- Authors: Youthed, Jennifer Gay
- Date: 1997
- Subjects: Alien plants -- South Africa , Biogeography -- South Africa , Acacia -- South Africa , Acacia mearnsii -- South Africa , Opuntia ficus-indica -- South Africa , Solanum -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4846 , http://hdl.handle.net/10962/d1005522 , Alien plants -- South Africa , Biogeography -- South Africa , Acacia -- South Africa , Acacia mearnsii -- South Africa , Opuntia ficus-indica -- South Africa , Solanum -- South Africa
- Description: Five techniques were used to predict the potential biogeography of the four alien plant species, Acacia longifolia, Acacia mearnsii, Opuntia ficus-indica and Solanum sisymbrifolium. Prediction was based on five environmental factors, median annual rainfall, co-efficient of variation for rainfall, mean monthly maximum temperature for January, mean monthly minimum temperature for July and elevation. A geographical information system was used to manage the data and produce the predictive maps. The models were constructed with presence and absence data and then validated by means of an independent data set and chisquared tests. Of the five models used, three (the range, principal components analysis and discriminant function analysis) were linear while the other two (artificial neural networks and fuzzy logic) were non-linear. The two non-linear techniques were chosen as a plant's response to its environment is commonly assumed to be non-linear. However, these two techniques did not offer significant advantages over the linear methods. The principal components analysis was particularly useful in ascertaining the variables that were important in determining the distribution of each species. Artifacts on the predictive maps were also proved useful for this purpose. The techniques that produced the most statistically accurate validation results were the artificial neural networks (77% correct median prediction rate) and the discriminant function analysis (71% correct median prediction rate) while the techniques that performed the worst were the range and the fuzzy classification. The artificial neural network, discriminant function analysis and principal component analysis techniques all show great potential as predictive distribution models.
- Full Text:
- Date Issued: 1997
- «
- ‹
- 1
- ›
- »