The chemistry of Algoa Bay ascidians
- Authors: Bromley, Candice Leigh
- Date: 2016
- Subjects: Sea squirts -- South Africa -- Algoa Bay , Marine metabolites , Chemistry, Analytic , Liquid chromatography , Inductively coupled plasma mass spectrometry , Metal ions , Nucleosides , Vanadium
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4560 , http://hdl.handle.net/10962/d1020606
- Description: This thesis investigates the chemistry of 25 ascidian species collected from Algoa Bay, South Africa with a concerted focus on metal accumulation by these ascidians and the possible interaction of these metals with ascidian metabolites. Chapter 2 details the screening techniques employed to establish the presence of nitrogenous metabolites (1H- 15N HMBC), hyper-accumulated metal ions (ICP-MS) and potential metal ion/ ascidian metabolite complexes (LC-ICP-MS/ESI-MS). Unfortunately, exhaustive attempts to detect intact metal ion/ascidian metabolite complexes through the use of liquid chromatography with parallel inductively coupled plasma mass spectrometry/electrospray mass spectrometry (LC-ICPMS/ ESI-MS) were unsuccessful. However, the LC-ICP-MS/ESI-MS data obtained for the crude organic extracts of six of the Algoa Bay ascidian species, Distaplia skoogi, Aplidium monile, Aplidium sp., Didemnum sp., Leptoclindines sp. and Polycitor sp. enabled identification of a number of ten halogenated metabolites, namely the indoles 2.28-2.30, and the tyramine and tyrosine derivatives (2.31-2.33, 2.41, 2.43, 2.44 and 2.46), within the ascidian extracts. This study confirmed that LC-ICP-MS/ESI-MS is a powerful tool for the dereplication of halogenated metabolites in complex mixtures especially where these compounds are present in very small amounts. This study is also the first report of these compounds (eight of which are known) in African ascidians. Compounds 2.32 and 2.46 have not been reported before from a marine source. Compounds 2.28-2.30 and 2.33 were present in sufficient amounts in the respective ascidian extracts to allow their isolation and structure elucidation using standard spectroscopic techniques Chapter 3 explores the ability of ascidians to accumulate a wide range of metal ions at concentrations which are often orders of magnitude higher than those of the surrounding sea water. Inductively coupled plasma mass spectrometry (ICP-MS) was used to determine the total ion concentrations of 24 metals in 25 Algoa Bay ascidian species. To the best of our knowledge this is the largest and most extensive investigation of metal concentrations in a group of different ascidians occurring in the same area. Hypotheisizing that the metal ion concentrations for each ascidian specimen screened may represent a unique fingerprint for each specimen principal component analysis (PCA) was used in an attempt to establish whether there were spatial, temporal or phylogenetic relationships associated with the metal concentration fingerprints of the ascidians that formed part of this study. The PCA results showed that there were no statistically significant relationships between ascidian metal ion concentrations and either the collection year or the collection site of the ascidians. However, species from the family Didemnidae provided the clearest statistical evidence supporting a phylogenetic relationship between these ascidians and their hyperaccumulated metal ion profiles. Furthermore, these results suggested that ascidian species are indeed actively concentrating metal ions from the surrounding sea water and are not simply sinks for passively accumulated metal ions. Interestingly, the concentration of vanadium in the set of ascidians studied did not appear to correlate with any of the other metals accumulated by these ascidians suggesting that there is possibly a unique method employed for the accumulation of vanadium by ascidians. Chapter 4 investigated this possibility further after the nucleosides 4.10, 4.11, 4.13, 4.15, 4.17 and 4.40 were isolated from the vanadium accumulating ascidian Aplidium monile. Studies into the interactions between nucleosides and vanadyl are unfortunately rare and usually qualitative in nature with limited information provided about the stability or structures of the complexes formed. The vanadyl accumulating aplousobranch ascidians e.g. Aplidium monile dominated our study of Algoa Bay ascidians therefore providing us with the rationale to investigate the relatively little studied binding ability and stability of vandyl-nucleoside complexes. Potentiometric studies were conducted to determine the stability constants of complexes formed between the oxovanadium ion vanadyl (VO2+) and the commercially available nucleosides 4.10-4.14. The data afforded by this analysis clearly confirmed the complexity of the vanadyl/nucleoside complexation and suggested that guanosine (4.12) formed the most stable complex with oxovanadium ions. We were also able to establish a third protonation constant for the hydroxyl moiety in 4.12 with a logK 8.87 which has not been previously reported. Finally, Chapter 5 revisited the cytoxicity two Algoa Bay ascidians, Clavelina sp. and Atriolum marinense the extracts from which produced promising bioactivity results in previous studies against oesophageal cancer cells. The HP-20 fractionated extracts of Clavelina sp. and Atriolum marinense proved to be similalrly cytotoxic to breast cancer cells. With the exception for the 100% acetone(aq)fractions the NMR data for both species suggested that most active non polar fractions were dominated by what appeared to be structurally unremarkable fatty acid glycerides and as such were not pursued further. Purification of the 100% acetone(aq)fraction of A. marinense resulted in the isolation of a styrene trimer, 5.1, common to both ascidian extracts. The NMR simulation software WIN-DAISY was employed to confirm the structure of 5.1. Attempts to establish if 5.1 was an isolation artefact or a product of marine pollution were inconclusive
- Full Text:
- Date Issued: 2016
- Authors: Bromley, Candice Leigh
- Date: 2016
- Subjects: Sea squirts -- South Africa -- Algoa Bay , Marine metabolites , Chemistry, Analytic , Liquid chromatography , Inductively coupled plasma mass spectrometry , Metal ions , Nucleosides , Vanadium
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4560 , http://hdl.handle.net/10962/d1020606
- Description: This thesis investigates the chemistry of 25 ascidian species collected from Algoa Bay, South Africa with a concerted focus on metal accumulation by these ascidians and the possible interaction of these metals with ascidian metabolites. Chapter 2 details the screening techniques employed to establish the presence of nitrogenous metabolites (1H- 15N HMBC), hyper-accumulated metal ions (ICP-MS) and potential metal ion/ ascidian metabolite complexes (LC-ICP-MS/ESI-MS). Unfortunately, exhaustive attempts to detect intact metal ion/ascidian metabolite complexes through the use of liquid chromatography with parallel inductively coupled plasma mass spectrometry/electrospray mass spectrometry (LC-ICPMS/ ESI-MS) were unsuccessful. However, the LC-ICP-MS/ESI-MS data obtained for the crude organic extracts of six of the Algoa Bay ascidian species, Distaplia skoogi, Aplidium monile, Aplidium sp., Didemnum sp., Leptoclindines sp. and Polycitor sp. enabled identification of a number of ten halogenated metabolites, namely the indoles 2.28-2.30, and the tyramine and tyrosine derivatives (2.31-2.33, 2.41, 2.43, 2.44 and 2.46), within the ascidian extracts. This study confirmed that LC-ICP-MS/ESI-MS is a powerful tool for the dereplication of halogenated metabolites in complex mixtures especially where these compounds are present in very small amounts. This study is also the first report of these compounds (eight of which are known) in African ascidians. Compounds 2.32 and 2.46 have not been reported before from a marine source. Compounds 2.28-2.30 and 2.33 were present in sufficient amounts in the respective ascidian extracts to allow their isolation and structure elucidation using standard spectroscopic techniques Chapter 3 explores the ability of ascidians to accumulate a wide range of metal ions at concentrations which are often orders of magnitude higher than those of the surrounding sea water. Inductively coupled plasma mass spectrometry (ICP-MS) was used to determine the total ion concentrations of 24 metals in 25 Algoa Bay ascidian species. To the best of our knowledge this is the largest and most extensive investigation of metal concentrations in a group of different ascidians occurring in the same area. Hypotheisizing that the metal ion concentrations for each ascidian specimen screened may represent a unique fingerprint for each specimen principal component analysis (PCA) was used in an attempt to establish whether there were spatial, temporal or phylogenetic relationships associated with the metal concentration fingerprints of the ascidians that formed part of this study. The PCA results showed that there were no statistically significant relationships between ascidian metal ion concentrations and either the collection year or the collection site of the ascidians. However, species from the family Didemnidae provided the clearest statistical evidence supporting a phylogenetic relationship between these ascidians and their hyperaccumulated metal ion profiles. Furthermore, these results suggested that ascidian species are indeed actively concentrating metal ions from the surrounding sea water and are not simply sinks for passively accumulated metal ions. Interestingly, the concentration of vanadium in the set of ascidians studied did not appear to correlate with any of the other metals accumulated by these ascidians suggesting that there is possibly a unique method employed for the accumulation of vanadium by ascidians. Chapter 4 investigated this possibility further after the nucleosides 4.10, 4.11, 4.13, 4.15, 4.17 and 4.40 were isolated from the vanadium accumulating ascidian Aplidium monile. Studies into the interactions between nucleosides and vanadyl are unfortunately rare and usually qualitative in nature with limited information provided about the stability or structures of the complexes formed. The vanadyl accumulating aplousobranch ascidians e.g. Aplidium monile dominated our study of Algoa Bay ascidians therefore providing us with the rationale to investigate the relatively little studied binding ability and stability of vandyl-nucleoside complexes. Potentiometric studies were conducted to determine the stability constants of complexes formed between the oxovanadium ion vanadyl (VO2+) and the commercially available nucleosides 4.10-4.14. The data afforded by this analysis clearly confirmed the complexity of the vanadyl/nucleoside complexation and suggested that guanosine (4.12) formed the most stable complex with oxovanadium ions. We were also able to establish a third protonation constant for the hydroxyl moiety in 4.12 with a logK 8.87 which has not been previously reported. Finally, Chapter 5 revisited the cytoxicity two Algoa Bay ascidians, Clavelina sp. and Atriolum marinense the extracts from which produced promising bioactivity results in previous studies against oesophageal cancer cells. The HP-20 fractionated extracts of Clavelina sp. and Atriolum marinense proved to be similalrly cytotoxic to breast cancer cells. With the exception for the 100% acetone(aq)fractions the NMR data for both species suggested that most active non polar fractions were dominated by what appeared to be structurally unremarkable fatty acid glycerides and as such were not pursued further. Purification of the 100% acetone(aq)fraction of A. marinense resulted in the isolation of a styrene trimer, 5.1, common to both ascidian extracts. The NMR simulation software WIN-DAISY was employed to confirm the structure of 5.1. Attempts to establish if 5.1 was an isolation artefact or a product of marine pollution were inconclusive
- Full Text:
- Date Issued: 2016
Reactions in the solid state
- Authors: Brown, Michael Ewart
- Date: 2006
- Subjects: Solid state chemistry , Thermal analysis , Chemistry, Analytic
- Language: English
- Type: Thesis , Doctoral , DSc
- Identifier: vital:4529 , http://hdl.handle.net/10962/d1015762
- Description: I have chosen the title for this thesis, "Reactions in the Solid State", for two reasons: Firstly, it is broad enough to cover all of my areas of research, which have been: • Effects of irradiation on solids (PhD topic) • Silver refining (while at the Chamber of Mines) • Kinetics of decomposition of solids (with Dr A.K. Galwey and various others) • Techniques of thermal analysis • Pyrotechnic delay systems (with support from AECI Explosives) • Thermal and photostability of drugs (with Prof B.D. Glass) and, secondly, it was the title of the very successful book co-authored by Drs Andrew Galwey, David Dollimore and me. A large part of my research has been involved in the writing and editing of books, so these are covered in a separate commentary, while commentary on the more than 100 papers to which I have contributed forms the main part of this compilation. It is hoped that the electronic format will enable ready access of to all aspects of my research, including electronic versions of the original papers. The reader will need a copy of Adobe Acrobat Reader to access these.
- Full Text:
- Date Issued: 2006
- Authors: Brown, Michael Ewart
- Date: 2006
- Subjects: Solid state chemistry , Thermal analysis , Chemistry, Analytic
- Language: English
- Type: Thesis , Doctoral , DSc
- Identifier: vital:4529 , http://hdl.handle.net/10962/d1015762
- Description: I have chosen the title for this thesis, "Reactions in the Solid State", for two reasons: Firstly, it is broad enough to cover all of my areas of research, which have been: • Effects of irradiation on solids (PhD topic) • Silver refining (while at the Chamber of Mines) • Kinetics of decomposition of solids (with Dr A.K. Galwey and various others) • Techniques of thermal analysis • Pyrotechnic delay systems (with support from AECI Explosives) • Thermal and photostability of drugs (with Prof B.D. Glass) and, secondly, it was the title of the very successful book co-authored by Drs Andrew Galwey, David Dollimore and me. A large part of my research has been involved in the writing and editing of books, so these are covered in a separate commentary, while commentary on the more than 100 papers to which I have contributed forms the main part of this compilation. It is hoped that the electronic format will enable ready access of to all aspects of my research, including electronic versions of the original papers. The reader will need a copy of Adobe Acrobat Reader to access these.
- Full Text:
- Date Issued: 2006
Intersolid pyrotechnic reactions of silicon
- Authors: Rugunanan, Rajan Anil
- Date: 1992
- Subjects: Thermochemistry , Thermal analysis , Chemistry, Analytic , Chemistry, Organic , Silicon
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4527 , http://hdl.handle.net/10962/d1015571
- Description: A study of the role of different oxidants with silicon as the fuel in simple binary pyrotechnic compositions is reported. Several oxidants were examined, but only three (Sb₂0₃, Fe₂0₃ and Sn0₂) satisfied the restrictions that the combustion temperatures should be below the melting point of platinum/rhodium thermocouples (1760°C), that burning rates should not exceed the response of the thermocouples, and that burning should occur without significant mass-transport. A fourth oxidant, KN0₃, was selected on account of its low melting point and general importance as a pyrotechnic oxidant. The oxidation of silicon in the presence of either Sb₂0₃ or KN0₃ could be identified from thermal analysis curves. No thermal events were noted when Si/Sn0₂ and SiFe₂0₃ compositions were heated under similar conditions. The oxidation of Si powder in oxygen was also studied. All four binary systems sustained burning over a reasonably wide range of compositions. The range of burning rates measured (2 to 35 mm s⁻¹) depended on the oxidant used. Fe₂0₃ and Sb₂0₃ gave slow burning mixtures compared to Sn0₂ and to KN0₃ compositions with a high Si content. Burning rates generally increased with increasing specific surface area of silicon, but decreased in the presence of inert diluents and moisture. The burning rates of the Si/Fe₂0₃ and Si/Sn0₂ systems increased with increasing compaction of the samples. Kinetic parameters derived from the temperature proftles recorded during combustion were generally low (6 to 37 kJ mol⁻¹). This is in keeping with proposals that burning is diffusion controlled. The values of kinetic parameters derived from thermal analysis curves were considerably greater ( > 250 kJ mol⁻¹). Two other fuels, FeSi₇ and CaSi₂, gave similar thermal analysis curves when used instead of silicon. There were considerable differences in the burning rates for binary mixtures of these fuels compared to silicon. Ternary systems with two fuels or two oxidants showed that only limited interaction occurs during thermal analysis. The use of a second fuel or oxidant did, however, modify the burning behaviour considerably. Other techniques used in this study to probe the details of the reaction processes included bomb calorimetry, measurement of thermal conductivities, infrared spectroscopy, X-ray diffraction and scanning electron micoscropy.
- Full Text:
- Date Issued: 1992
- Authors: Rugunanan, Rajan Anil
- Date: 1992
- Subjects: Thermochemistry , Thermal analysis , Chemistry, Analytic , Chemistry, Organic , Silicon
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4527 , http://hdl.handle.net/10962/d1015571
- Description: A study of the role of different oxidants with silicon as the fuel in simple binary pyrotechnic compositions is reported. Several oxidants were examined, but only three (Sb₂0₃, Fe₂0₃ and Sn0₂) satisfied the restrictions that the combustion temperatures should be below the melting point of platinum/rhodium thermocouples (1760°C), that burning rates should not exceed the response of the thermocouples, and that burning should occur without significant mass-transport. A fourth oxidant, KN0₃, was selected on account of its low melting point and general importance as a pyrotechnic oxidant. The oxidation of silicon in the presence of either Sb₂0₃ or KN0₃ could be identified from thermal analysis curves. No thermal events were noted when Si/Sn0₂ and SiFe₂0₃ compositions were heated under similar conditions. The oxidation of Si powder in oxygen was also studied. All four binary systems sustained burning over a reasonably wide range of compositions. The range of burning rates measured (2 to 35 mm s⁻¹) depended on the oxidant used. Fe₂0₃ and Sb₂0₃ gave slow burning mixtures compared to Sn0₂ and to KN0₃ compositions with a high Si content. Burning rates generally increased with increasing specific surface area of silicon, but decreased in the presence of inert diluents and moisture. The burning rates of the Si/Fe₂0₃ and Si/Sn0₂ systems increased with increasing compaction of the samples. Kinetic parameters derived from the temperature proftles recorded during combustion were generally low (6 to 37 kJ mol⁻¹). This is in keeping with proposals that burning is diffusion controlled. The values of kinetic parameters derived from thermal analysis curves were considerably greater ( > 250 kJ mol⁻¹). Two other fuels, FeSi₇ and CaSi₂, gave similar thermal analysis curves when used instead of silicon. There were considerable differences in the burning rates for binary mixtures of these fuels compared to silicon. Ternary systems with two fuels or two oxidants showed that only limited interaction occurs during thermal analysis. The use of a second fuel or oxidant did, however, modify the burning behaviour considerably. Other techniques used in this study to probe the details of the reaction processes included bomb calorimetry, measurement of thermal conductivities, infrared spectroscopy, X-ray diffraction and scanning electron micoscropy.
- Full Text:
- Date Issued: 1992
An investigation of the structural problems in relation to some synthetic waxes
- Authors: Stokhuyzen, Rolf
- Date: 1970
- Subjects: Chemistry, Analytic , Waxes , Synthetic products
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4443 , http://hdl.handle.net/10962/d1007695 , Chemistry, Analytic , Waxes , Synthetic products
- Description: From Introduction: Wax and wax-like substances have been defined in many ways. One reasonably extensive definition, by Hatt and Lamberton (1956) is given below: "The term "wax" seems best used to denote a group of substances which qualitatively have certain physical properties in common. These properties are familiar ones, for in almost all countries some natural wax - beeswax, Japan wax, Chinese insect wax, the carnauba and candelilla waxes of the Americas - has been an important material in art and industry from prehistoric times. Waxes are understood to be opaque or translucent solids, which melt without decomposition to form mobile liquids at temperatures in the region of 100⁰C. They differ in hardness, but are all essentially soft substances with poor mechanical strength. Most waxes can be easily shaped or kneaded at a little above ambient temperatures. In fact, the term could easily have been made to cover the whole class now named thermoplastics." Pure n-paraffins would be too crystalline and brittle for use as waxes, whereas mixtures of n-paraffins have some valuable properties. The molecules bear such close resemblance to one another that they form mixed crystals of lowered crystallinity and the melting point is a function of the mean molecular weight. This is a desirable feature for it permits crystallinity and brittleness to be reduced without a marked loss in the melting point or hardness. It also allows a mixture to simulate a pure compound very closely. Waxes, in general, have been put to a large number of uses. They are used, for example, in candles, polishes, paper-coating, plastics, printing, matches, rust protectants and insulation. Each application requires its own appropriate range of wax properties.
- Full Text:
- Date Issued: 1970
- Authors: Stokhuyzen, Rolf
- Date: 1970
- Subjects: Chemistry, Analytic , Waxes , Synthetic products
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4443 , http://hdl.handle.net/10962/d1007695 , Chemistry, Analytic , Waxes , Synthetic products
- Description: From Introduction: Wax and wax-like substances have been defined in many ways. One reasonably extensive definition, by Hatt and Lamberton (1956) is given below: "The term "wax" seems best used to denote a group of substances which qualitatively have certain physical properties in common. These properties are familiar ones, for in almost all countries some natural wax - beeswax, Japan wax, Chinese insect wax, the carnauba and candelilla waxes of the Americas - has been an important material in art and industry from prehistoric times. Waxes are understood to be opaque or translucent solids, which melt without decomposition to form mobile liquids at temperatures in the region of 100⁰C. They differ in hardness, but are all essentially soft substances with poor mechanical strength. Most waxes can be easily shaped or kneaded at a little above ambient temperatures. In fact, the term could easily have been made to cover the whole class now named thermoplastics." Pure n-paraffins would be too crystalline and brittle for use as waxes, whereas mixtures of n-paraffins have some valuable properties. The molecules bear such close resemblance to one another that they form mixed crystals of lowered crystallinity and the melting point is a function of the mean molecular weight. This is a desirable feature for it permits crystallinity and brittleness to be reduced without a marked loss in the melting point or hardness. It also allows a mixture to simulate a pure compound very closely. Waxes, in general, have been put to a large number of uses. They are used, for example, in candles, polishes, paper-coating, plastics, printing, matches, rust protectants and insulation. Each application requires its own appropriate range of wax properties.
- Full Text:
- Date Issued: 1970
- «
- ‹
- 1
- ›
- »