Multirotor UAV-based autonomous rural security system
- Welgemoed, Jacques Christian
- Authors: Welgemoed, Jacques Christian
- Date: 2022-04
- Subjects: Mechatronics , Computer security -- Software
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10948/58544 , vital:59761
- Description: This dissertation presents the development, implementation and experimental verification of a multirator UAV-based autonomous rural security system. this system is capable of autonomously responding to security-related events, broadcasting and analysing a video feed of the event, returning to a home position, and performing a precision landing using onbroad intelligence, computer vision, and state-of-the-art flight control software. this research is intended to address some of the issues associated with security in rural areas, for example, farmlands by providing a rapid response mechanism. An integrated hardware and software architecture was developed to achieve the aim and objectives of this research. , Thesis (MA) -- Faculty of Engineering, the Built Environment, and Technology, 2022
- Full Text:
- Date Issued: 2022-04
- Authors: Welgemoed, Jacques Christian
- Date: 2022-04
- Subjects: Mechatronics , Computer security -- Software
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10948/58544 , vital:59761
- Description: This dissertation presents the development, implementation and experimental verification of a multirator UAV-based autonomous rural security system. this system is capable of autonomously responding to security-related events, broadcasting and analysing a video feed of the event, returning to a home position, and performing a precision landing using onbroad intelligence, computer vision, and state-of-the-art flight control software. this research is intended to address some of the issues associated with security in rural areas, for example, farmlands by providing a rapid response mechanism. An integrated hardware and software architecture was developed to achieve the aim and objectives of this research. , Thesis (MA) -- Faculty of Engineering, the Built Environment, and Technology, 2022
- Full Text:
- Date Issued: 2022-04
Securing software development using developer access control
- Authors: Ongers, Grant
- Date: 2020
- Subjects: Computer software -- Development , Computers -- Access control , Computer security -- Software , Computer networks -- Security measures , Source code (Computer science) , Plug-ins (Computer programs) , Data encryption (Computer science) , Network Access Control , Data Loss Prevention , Google’s BeyondCorp , Confidentiality, Integrity and Availability (CIA) triad
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/149022 , vital:38796
- Description: This research is aimed at software development companies and highlights the unique information security concerns in the context of a non-malicious software developer’s work environment; and furthermore explores an application driven solution which focuses specifically on providing developer environments with access control for source code repositories. In order to achieve that, five goals were defined as discussed in section 1.3. The application designed to provide the developer environment with access control to source code repositories was modelled on lessons taken from the principles of Network Access Control (NAC), Data Loss Prevention (DLP), and Google’s BeyondCorp (GBC) for zero-trust end-user computing. The intention of this research is to provide software developers with maximum access to source code without compromising Confidentiality, as per the Confidentiality, Integrity and Availability (CIA) triad. Employing data gleaned from examining the characteristics of DLP, NAC, and Beyond- Corp—proof-of-concept code was developed to regulate access to the developer’s environment and source code. The system required sufficient flexibility to support the diversity of software development environments. In order to achieve this, a modular design was selected. The system comprised a client side agent and a plug-in-ready server component. The client side agent mounts and dismounts encrypted volumes containing source code. Furthermore, it provides the server with information of the client that is demanded by plug-ins. The server side service provided encryption keys to facilitate the mounting of the volumes and, through plug-ins, asked questions of the client agent to determine whether access should be granted. The solution was then tested with integration and system testing. There were plans to have it used by development teams who were then to be surveyed as to their view on the proof of concept but this proved impossible. The conclusion provides a basis by which organisations that develop software can better balance the two corners of the CIA triad most often in conflict: Confidentiality in terms of their source code against the Availability of the same to developers.
- Full Text:
- Date Issued: 2020
- Authors: Ongers, Grant
- Date: 2020
- Subjects: Computer software -- Development , Computers -- Access control , Computer security -- Software , Computer networks -- Security measures , Source code (Computer science) , Plug-ins (Computer programs) , Data encryption (Computer science) , Network Access Control , Data Loss Prevention , Google’s BeyondCorp , Confidentiality, Integrity and Availability (CIA) triad
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/149022 , vital:38796
- Description: This research is aimed at software development companies and highlights the unique information security concerns in the context of a non-malicious software developer’s work environment; and furthermore explores an application driven solution which focuses specifically on providing developer environments with access control for source code repositories. In order to achieve that, five goals were defined as discussed in section 1.3. The application designed to provide the developer environment with access control to source code repositories was modelled on lessons taken from the principles of Network Access Control (NAC), Data Loss Prevention (DLP), and Google’s BeyondCorp (GBC) for zero-trust end-user computing. The intention of this research is to provide software developers with maximum access to source code without compromising Confidentiality, as per the Confidentiality, Integrity and Availability (CIA) triad. Employing data gleaned from examining the characteristics of DLP, NAC, and Beyond- Corp—proof-of-concept code was developed to regulate access to the developer’s environment and source code. The system required sufficient flexibility to support the diversity of software development environments. In order to achieve this, a modular design was selected. The system comprised a client side agent and a plug-in-ready server component. The client side agent mounts and dismounts encrypted volumes containing source code. Furthermore, it provides the server with information of the client that is demanded by plug-ins. The server side service provided encryption keys to facilitate the mounting of the volumes and, through plug-ins, asked questions of the client agent to determine whether access should be granted. The solution was then tested with integration and system testing. There were plans to have it used by development teams who were then to be surveyed as to their view on the proof of concept but this proved impossible. The conclusion provides a basis by which organisations that develop software can better balance the two corners of the CIA triad most often in conflict: Confidentiality in terms of their source code against the Availability of the same to developers.
- Full Text:
- Date Issued: 2020
Preimages for SHA-1
- Authors: Motara, Yusuf Moosa
- Date: 2018
- Subjects: Data encryption (Computer science) , Computer security -- Software , Hashing (Computer science) , Data compression (Computer science) , Preimage , Secure Hash Algorithm 1 (SHA-1)
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/57885 , vital:27004
- Description: This research explores the problem of finding a preimage — an input that, when passed through a particular function, will result in a pre-specified output — for the compression function of the SHA-1 cryptographic hash. This problem is much more difficult than the problem of finding a collision for a hash function, and preimage attacks for very few popular hash functions are known. The research begins by introducing the field and giving an overview of the existing work in the area. A thorough analysis of the compression function is made, resulting in alternative formulations for both parts of the function, and both statistical and theoretical tools to determine the difficulty of the SHA-1 preimage problem. Different representations (And- Inverter Graph, Binary Decision Diagram, Conjunctive Normal Form, Constraint Satisfaction form, and Disjunctive Normal Form) and associated tools to manipulate and/or analyse these representations are then applied and explored, and results are collected and interpreted. In conclusion, the SHA-1 preimage problem remains unsolved and insoluble for the foreseeable future. The primary issue is one of efficient representation; despite a promising theoretical difficulty, both the diffusion characteristics and the depth of the tree stand in the way of efficient search. Despite this, the research served to confirm and quantify the difficulty of the problem both theoretically, using Schaefer's Theorem, and practically, in the context of different representations.
- Full Text:
- Date Issued: 2018
- Authors: Motara, Yusuf Moosa
- Date: 2018
- Subjects: Data encryption (Computer science) , Computer security -- Software , Hashing (Computer science) , Data compression (Computer science) , Preimage , Secure Hash Algorithm 1 (SHA-1)
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/57885 , vital:27004
- Description: This research explores the problem of finding a preimage — an input that, when passed through a particular function, will result in a pre-specified output — for the compression function of the SHA-1 cryptographic hash. This problem is much more difficult than the problem of finding a collision for a hash function, and preimage attacks for very few popular hash functions are known. The research begins by introducing the field and giving an overview of the existing work in the area. A thorough analysis of the compression function is made, resulting in alternative formulations for both parts of the function, and both statistical and theoretical tools to determine the difficulty of the SHA-1 preimage problem. Different representations (And- Inverter Graph, Binary Decision Diagram, Conjunctive Normal Form, Constraint Satisfaction form, and Disjunctive Normal Form) and associated tools to manipulate and/or analyse these representations are then applied and explored, and results are collected and interpreted. In conclusion, the SHA-1 preimage problem remains unsolved and insoluble for the foreseeable future. The primary issue is one of efficient representation; despite a promising theoretical difficulty, both the diffusion characteristics and the depth of the tree stand in the way of efficient search. Despite this, the research served to confirm and quantify the difficulty of the problem both theoretically, using Schaefer's Theorem, and practically, in the context of different representations.
- Full Text:
- Date Issued: 2018
Towards a threat assessment framework for consumer health wearables
- Authors: Mnjama, Javan Joshua
- Date: 2018
- Subjects: Activity trackers (Wearable technology) , Computer networks -- Security measures , Data protection , Information storage and retrieval systems -- Security systems , Computer security -- Software , Consumer Health Wearable Threat Assessment Framework , Design Science Research
- Language: English
- Type: text , Thesis , Masters , MCom
- Identifier: http://hdl.handle.net/10962/62649 , vital:28225
- Description: The collection of health data such as physical activity, consumption and physiological data through the use of consumer health wearables via fitness trackers are very beneficial for the promotion of physical wellness. However, consumer health wearables and their associated applications are known to have privacy and security concerns that can potentially make the collected personal health data vulnerable to hackers. These concerns are attributed to security theoretical frameworks not sufficiently addressing the entirety of privacy and security concerns relating to the diverse technological ecosystem of consumer health wearables. The objective of this research was therefore to develop a threat assessment framework that can be used to guide the detection of vulnerabilities which affect consumer health wearables and their associated applications. To meet this objective, the Design Science Research methodology was used to develop the desired artefact (Consumer Health Wearable Threat Assessment Framework). The framework is comprised of fourteen vulnerabilities classified according to Authentication, Authorization, Availability, Confidentiality, Non-Repudiation and Integrity. Through developing the artefact, the threat assessment framework was demonstrated on two fitness trackers and their associated applications. It was discovered, that the framework was able to identify how these vulnerabilities affected, these two test cases based on the classification categories of the framework. The framework was also evaluated by four security experts who assessed the quality, utility and efficacy of the framework. Experts, supported the use of the framework as a relevant and comprehensive framework to guide the detection of vulnerabilities towards consumer health wearables and their associated applications. The implication of this research study is that the framework can be used by developers to better identify the vulnerabilities of consumer health wearables and their associated applications. This will assist in creating a more securer environment for the storage and use of health data by consumer health wearables.
- Full Text:
- Date Issued: 2018
- Authors: Mnjama, Javan Joshua
- Date: 2018
- Subjects: Activity trackers (Wearable technology) , Computer networks -- Security measures , Data protection , Information storage and retrieval systems -- Security systems , Computer security -- Software , Consumer Health Wearable Threat Assessment Framework , Design Science Research
- Language: English
- Type: text , Thesis , Masters , MCom
- Identifier: http://hdl.handle.net/10962/62649 , vital:28225
- Description: The collection of health data such as physical activity, consumption and physiological data through the use of consumer health wearables via fitness trackers are very beneficial for the promotion of physical wellness. However, consumer health wearables and their associated applications are known to have privacy and security concerns that can potentially make the collected personal health data vulnerable to hackers. These concerns are attributed to security theoretical frameworks not sufficiently addressing the entirety of privacy and security concerns relating to the diverse technological ecosystem of consumer health wearables. The objective of this research was therefore to develop a threat assessment framework that can be used to guide the detection of vulnerabilities which affect consumer health wearables and their associated applications. To meet this objective, the Design Science Research methodology was used to develop the desired artefact (Consumer Health Wearable Threat Assessment Framework). The framework is comprised of fourteen vulnerabilities classified according to Authentication, Authorization, Availability, Confidentiality, Non-Repudiation and Integrity. Through developing the artefact, the threat assessment framework was demonstrated on two fitness trackers and their associated applications. It was discovered, that the framework was able to identify how these vulnerabilities affected, these two test cases based on the classification categories of the framework. The framework was also evaluated by four security experts who assessed the quality, utility and efficacy of the framework. Experts, supported the use of the framework as a relevant and comprehensive framework to guide the detection of vulnerabilities towards consumer health wearables and their associated applications. The implication of this research study is that the framework can be used by developers to better identify the vulnerabilities of consumer health wearables and their associated applications. This will assist in creating a more securer environment for the storage and use of health data by consumer health wearables.
- Full Text:
- Date Issued: 2018
- «
- ‹
- 1
- ›
- »