Thermal tolerance and the potential effects of climate change on coastal intertidal and estuarine organisms in the Kariega Estuary and adjacent intertitdal coastline, Eastern Cape, South Africa
- Authors: Van der Walt, Kerry-Ann
- Date: 2020
- Subjects: Ectotherms -- Climatic factors , Ectotherms -- Effect of temperature on , Fishes -- Climatic factors , Fishes -- Effect of temperature on , Climatic changes -- South Africa -- Eastern Cape
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/148459 , vital:38741
- Description: Temperature changes due to the effects of climate change are evident on all continents and oceans. As a result, there is a growing concern over how marine ectotherms will respond to extreme or fluctuating environmental temperatures. Temperature changes have strong direct and indirect effects on individual, population, and ecosystem functioning traits. A multi-scale approach determining the thermal tolerance and performance of several marine ectotherms belonging to different coastal habitats is rarely considered in thermal physiology studies but is effective for an integrated ecosystem assessment. As such, for this thesis, I aimed to quantify and compare the thermal tolerance and performance of a range of coastal marine ectotherms (fish and macro-invertebrates) with different biogeographical distributions from estuarine, subtidal and rocky intertidal habitats to available and projected in situ temperature data. This was also undertaken to gauge the local vulnerability of each species across summer and winter in a warm-temperate region of South Africa. This was done using a multi-method physiological approach, which included the dynamic method (CTmax and CTmin), static respirometry and maximum heart rate fHmax). Results of the dynamic method on several fish and macro-invertebrate species indicated that there are differences in thermal tolerance according to taxonomy, biogeography and habitat for both summer and winter. Macro-invertebrate species generally had higher CTmax endpoints, lower CTmin endpoints, higher upper and lower breadths in tolerance, higher upper and lower thermal safety margins and higher thermal scopes than the fish species. This could be a result of the macro-invertebrate species studied being less mobile compared with fish species (which are able to move to more favourable conditions) as well as having broader geographical distributions. In addition, macro-invertebrates from the intertidal rock pool habitat (Palaemon peringueyi; Pernaperna) were more tolerant of high and low temperatures compared with the macro-invertebrates from the estuarine habitat (Clibanarius virescens; Parasesarma catenatum; Upogebia africana). Overall, macro-invertebrates, with the exception of Parechinus angulosus, investigated in this study indicated that current temperatures and projected climate change scenarios across seasons would not have a significant impact on them and that they are highly adaptable to changing temperature regimes. This sign of high tolerance was further supported by the heart rates of P. perna and P. catenatum under an acute increase in temperature (1.0 °C.h-1) which showed individuals of each species physiologically depressing their metabolism until a final Arrhenius breakpoint temperature was reached (TAB). Among the fish species investigated in this study, tropical species (Chaetodon marleyi; Kuhlia mugil) had the highest CTmax and CTmin endpoints when compared with the temperate (Diplodus capensis; Sarpa salpa), warm-water endemic (Chelon dumerili; Rhabdosargus holubi) and cool-water endemic (Chelon richardsonii) fishes. This suggests that due to their lower breadths in tolerance and thermal safety margins being small, tropical species may be less tolerant of cold temperatures and thermal variability, especially in the form of summer upwelling events which are expected to increase in intensity and frequency in this region as a result of anthropogenic climate change effects. On the other hand, however, if a temperature increase of 2.0 - 4.0 °C takes place at the end of the century as predicted by the Intergovernmental Panel on Climate Change (IPCC), it is likely that tropical species such as C. marleyi will become more common. Temperate species such as D. capensis and S. salpa were able to tolerate a wide range of temperatures (wide thermal scope) compared with the other fish species. These findings may suggest that D. capensis and S. salpa are thermally resilient and may be the least vulnerable to climate change effects and temperature variability. When evaluating the different life stages of D. capensis, however, using the dynamic method (juveniles and adults), static respirometry (juveniles) and maximum heart rate (adults), results suggested that juveniles of this temperate species will be more resilient to increases in ocean temperatures compared with the adults because they have a higher thermal tolerance (CTmax/TCRIT) and a greater metabolic scope (TOPT) at higher temperatures. For both juveniles and adults, temperatures beyond 28.0 °C (upper Tpej; Tarr) will have a significant impact on their physiology. Using a multi-scale and multi-method approach thus helped to identify which species or community may be vulnerable to the effects of climate change within shallow coastal environments in this warm-temperate climate change hotspot. Adopting this type of approach will assist policy makers in developing comprehensive climate change management frameworks for coastal ecosystems globally and around South Africa.
- Full Text:
- Date Issued: 2020
Using a multi-method approach to understand the movement patterns and the associated environmental correlates of an iconic West African recreational fish
- Authors: Winkler, Alexander Claus
- Date: 2019
- Subjects: Carangidae fishing , Carangidae -- Migration , Carangidae -- Namibia , Carangidae -- Angola , Fish tagging , Carangidae -- Benguela Current , Underwater acoustic telemetry , Ocean temperature -- Physiological effect , Fishes -- Effect of temperature on
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/76530 , vital:30597
- Description: The leerfish (Lichia amia), is a large, primarily coastal recreational fish species with a distribution extending from Portugal down the west coast of African to southern Mozambique. Owing to its large size (30 kg), strong fighting abilities and habit of taking surface artificial lures, this species has taken on an iconic stature among shore-based recreational anglers. Its reputation has made it an important angling tourism species that makes an important contribution to the economy of developing countries. For example, the species brought US$243 per harvested kilogramme into the local southern Angola economy. Despite its high value, little is known about its movement patterns in the northern Benguela coastal region, a region which includes southern Angola and northern Namibia. While much is known about the migratory patterns of the South African stock of L. amia, recent molecular studies have shown that the northern Benguela stock of L. amia has been isolated from the South African population for at least two million years, a consequence of the development of the cold Lüderitz upwelling cell in southern Namibia. Although the global population of L. amia is considered a single species, prominent biogeographic barriers within its distribution and subtle morphological differences between specimens captured within its tropical versus warm-temperate distribution suggest otherwise. A multi-method approach incorporating passive acoustic telemetry (PAT), recreational catch-per-unit-effort (CPUE) and conventional tagging (CT) in southern Angola, as well as recreational fisher-ecological knowledge (FEK) from Namibia, was used to investigate the large-scale movement patterns of L. amia within the northern Benguela coastal region. While each method had its own associated limitations, the combination provided a holistic picture of the population's seasonal migratory patterns. Furthermore, PAT successfully identified partial migration with 25% vs 75% of monitored fish exhibiting resident (movements < 100 km) or migratory (movements > 100 km) behaviour, respectively. Further behavioural diversity was observed with ‘resident’, ‘roaming’ and ‘embayment’ contingents identified based on varying levels of affinity to certain habitats. The presence of both resident and migratory individuals within the northernmost study during June and July, combined with available biological information, suggested that area-specific spawning may take place. While PAT, CPUE and CT largely aligned in determining area specific high-area use, results from network analyses and mixed effects models conducted on the PAT data supported the spawning hypothesis, with anomalous behaviour around specific receivers during the spawning season. All fish, regardless of behavioural contingent, displayed similar movement behaviour during the spawning season and this was driven by factors generally associated with reproduction, such as lunar illumination. Interestingly, these drivers were different from those that determined the area specific use of individuals outside of the spawning season. The environmental drivers of longshore migration into the northern study site were identified as a decline in water temperature and shorter day lengths. The results of this study highlight the importance of using a multi-method approach in determining migratory movement behaviour, area specific area use, and stock structure of key fisheries species. The identification of different behavioural contingents highlights the importance of acknowledging individual variation in movement and habitat-use patterns. This is particularly relevant as future climate change and spatiotemporal variation in fishing effort may artificially skew natural selection processes to favour certain behavioural groups. This study also highlighted the importance of scientists forming relationships with resource-users, such as recreational angling lodges in areas where limited research has been conducted. This is particularly relevant within the West African context where little is known about many of the fish species that are being increasingly targeted by tourism angling ventures.
- Full Text:
- Date Issued: 2019
Fishes in the Mngazi and Mngazana estuaries, with particular emphasis on the community structure and primary carbon sources
- Authors: Mbande, Sekiwe
- Date: 2004
- Subjects: Fishes -- South Africa -- Mngazi Estuary , Fishes -- South Africa -- Mngazana Estuary , Fishes -- Effect of habitat modification on -- South Africa -- Mngazi Estuary , Fishes -- Effect of habitat modification on -- South Africa -- Mngazana Estuary , Estuarine fishes -- South Africa -- Eastern Cape , Estuarine ecology -- South Africa -- Eastern Cape , Fishes -- Physiology , Fishes -- Effect of water quality on , Fishes -- Effect of temperature on , Fishes -- Food , Fishes -- Effect of turbidity on
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5700 , http://hdl.handle.net/10962/d1005386 , Fishes -- South Africa -- Mngazi Estuary , Fishes -- South Africa -- Mngazana Estuary , Fishes -- Effect of habitat modification on -- South Africa -- Mngazi Estuary , Fishes -- Effect of habitat modification on -- South Africa -- Mngazana Estuary , Estuarine fishes -- South Africa -- Eastern Cape , Estuarine ecology -- South Africa -- Eastern Cape , Fishes -- Physiology , Fishes -- Effect of water quality on , Fishes -- Effect of temperature on , Fishes -- Food , Fishes -- Effect of turbidity on
- Description: The fish community structure of two contrasting estuaries, one with a well developed mangrove forest (Mngazana) and the other without mangroves (Mngazi) was compared. Both the Mngazi and Mngazana estuary fish communities were dominated by marine species, reflecting the importance of these systems as nursery areas for marine fishes. The Mngazi Estuary contained 18% more estuarine fishes in terms of catch per unit effort (CPUE) than the Mngazana Estuary. The reduced tidal influence due to the narrow mouth opening is a possible reason for the heightened CPUE of estuarine species in the Mngazi estuary. The recorded higher diversity of fish species in the Mngazana Estuary when compared with the Mngazi Estuary was attributed to the greater influence of the marine environment due to the wide permanently open mouth, as well as the presence of a variety of habitats in this system. In both estuaries tropical and temperate species were captured, confirming the transitional nature of their biogeographic location which is situated close to the boundary between the subtropical and warm temperate regions of the Southern African coastline. Contrary to previous studies, which recorded seasonal changes in the proportions of tropical and temperate species, the proportions of tropical species remained unchanged at approximately 70% during the January and June sampling occasions. Global warming as a possible reason for the increased dominance of tropical species is discussed. Although several studies in southern Africa have investigated estuarine food web structure, none have compared mangrove and non-mangrove estuaries. In this study, the primary sources of carbon utilised by the fish fauna in the Mngazi and Mngazana estuaries was investigated. The carbon isotopic values of fishes in both estuaries displayed a continuum rather than a tight clustering around particular energy sources. Most detritus feeders of the family Mugilidae (mullets) from both estuaries were relatively more enriched than other fish taxa. The isotopic values of the mullet species suggest a diet derived from relatively enriched carbon sources such as benthic microalgae, the eelgrass Zostera capensis and associated epiphytes. Based on the isotopic values, piscivorous fishes from both estuaries could not be linked to specific prey fish taxa, but clearly the mullet species were not their main food source. The invertebrate feeders that were found in both estuaries showed greater isotopic variations in the Mngazana Estuary than in the Mngazi Estuary, probably reflecting the higher diversity of habitats (carbon sources) and invertebrate prey species in the Mngazana system. Generally the isotopic signatures of fishes from the Mngazi Estuary were more enriched than those from the Mngazana Estuary, thus indicating the possible effect of δ¹³C depleted mangrove derived carbon in the latter system.
- Full Text:
- Date Issued: 2004
Some aspects of the effect of temperature on the respiratory and cardiac activities of the Cichlid Teleost Tilapia mossambica
- Authors: Josman, V
- Date: 1971
- Subjects: Fishes -- Effect of temperature on , Cichlids
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5859 , http://hdl.handle.net/10962/d1012613
- Description: The importance of the cichlid teleost Tilapia mossambica as a protein source, coupled with its remarkable adaptability, has resulted in its introduction into many water systems throughout the tropical, sub-tropical and even temperate regions of the world. However, its successful exploitation of these waters is dependent very largely upon the value of minimum temperatures and their duration. For e.g. Long et al (1961) has drawn attention to the tremendous mortalities of T. mossambica that occur in shallow water bodies during the precipitous temperature decreases that accompany the winter monsoons in Vietnam and other eastern countries, even at temperatures as high as 14 or 16º C. Coehe (1967) does not recommend stocking with T. mossambica where temperatures are not above 14º C all the time. Ailanson et al (1962) conclude, after an experimental study, that low temperatures (13º C or lower) in South African highveld dams in winter are certainly an important factor in the extensive mortalities of T. mossambica that have been reported from these dams. Jubb (1961) also reports that this species is often killed during a severe winter in Rhodesia. Intro., p.1.
- Full Text:
- Date Issued: 1971