Generalizations of some fixed point theorems in banach and metric spaces
- Niyitegeka, Jean Marie Vianney
- Authors: Niyitegeka, Jean Marie Vianney
- Date: 2015
- Subjects: Fixed point theory , Banach spaces , Mappings (Mathematics)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10948/5265 , vital:20828
- Description: A fixed point of a mapping is an element in the domain of the mapping that is mapped into itself by the mapping. The study of fixed points has been a field of interests to mathematicians since the discovery of the Banach contraction theorem, i.e. if is a complete metric space and is a contraction mapping (i.e. there exists such that for all ), then has a unique fixed point. The Banach contraction theorem has found many applications in pure and applied mathematics. Due to fixed point theory being a mixture of analysis, geometry, algebra and topology, its applications to other fields such as physics, economics, game theory, chemistry, engineering and many others has become vital. The theory is nowadays a very active field of research in which many new theorems are published, some of them applied and many others generalized. Motivated by all of this, we give an exposition of some generalizations of fixed point theorems in metric fixed point theory, which is a branch of fixed point theory about results of fixed points of mappings between metric spaces, where certain properties of the mappings involved need not be preserved under equivalent metrics. For instance, the contractive property of mappings between metric spaces need not be preserved under equivalent metrics. Since metric fixed point theory is wide, we limit ourselves to fixed point theorems for self and non-self-mappings on Banach and metric spaces. We also take a look at some open problems on this topic of study. At the end of the dissertation, we suggest our own problems for future research.
- Full Text:
- Date Issued: 2015
- Authors: Niyitegeka, Jean Marie Vianney
- Date: 2015
- Subjects: Fixed point theory , Banach spaces , Mappings (Mathematics)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10948/5265 , vital:20828
- Description: A fixed point of a mapping is an element in the domain of the mapping that is mapped into itself by the mapping. The study of fixed points has been a field of interests to mathematicians since the discovery of the Banach contraction theorem, i.e. if is a complete metric space and is a contraction mapping (i.e. there exists such that for all ), then has a unique fixed point. The Banach contraction theorem has found many applications in pure and applied mathematics. Due to fixed point theory being a mixture of analysis, geometry, algebra and topology, its applications to other fields such as physics, economics, game theory, chemistry, engineering and many others has become vital. The theory is nowadays a very active field of research in which many new theorems are published, some of them applied and many others generalized. Motivated by all of this, we give an exposition of some generalizations of fixed point theorems in metric fixed point theory, which is a branch of fixed point theory about results of fixed points of mappings between metric spaces, where certain properties of the mappings involved need not be preserved under equivalent metrics. For instance, the contractive property of mappings between metric spaces need not be preserved under equivalent metrics. Since metric fixed point theory is wide, we limit ourselves to fixed point theorems for self and non-self-mappings on Banach and metric spaces. We also take a look at some open problems on this topic of study. At the end of the dissertation, we suggest our own problems for future research.
- Full Text:
- Date Issued: 2015
Some general convergence theorems on fixed points
- Authors: Panicker, Rekha Manoj
- Date: 2014
- Subjects: Fixed point theory , Convergence , Coincidence theory (Mathematics)
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5426 , http://hdl.handle.net/10962/d1013112
- Description: In this thesis, we first obtain coincidence and common fixed point theorems for a pair of generalized non-expansive type mappings in a normed space. Then we discuss two types of convergence theorems, namely, the convergence of Mann iteration procedures and the convergence and stability of fixed points. In addition, we discuss the viscosity approximations generated by (ψ ,ϕ)-weakly contractive mappings and a sequence of non-expansive mappings and then establish Browder and Halpern type convergence theorems on Banach spaces. With regard to iteration procedures, we obtain a result on the convergence of Mann iteration for generalized non-expansive type mappings in a Banach space which satisfies Opial's condition. And, in the case of stability of fixed points, we obtain a number of stability results for the sequence of (ψ,ϕ)- weakly contractive mappings and the sequence of their corresponding fixed points in metric and 2-metric spaces. We also present a generalization of Fraser and Nadler type stability theorems in 2-metric spaces involving a sequence of metrics.
- Full Text:
- Date Issued: 2014
- Authors: Panicker, Rekha Manoj
- Date: 2014
- Subjects: Fixed point theory , Convergence , Coincidence theory (Mathematics)
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5426 , http://hdl.handle.net/10962/d1013112
- Description: In this thesis, we first obtain coincidence and common fixed point theorems for a pair of generalized non-expansive type mappings in a normed space. Then we discuss two types of convergence theorems, namely, the convergence of Mann iteration procedures and the convergence and stability of fixed points. In addition, we discuss the viscosity approximations generated by (ψ ,ϕ)-weakly contractive mappings and a sequence of non-expansive mappings and then establish Browder and Halpern type convergence theorems on Banach spaces. With regard to iteration procedures, we obtain a result on the convergence of Mann iteration for generalized non-expansive type mappings in a Banach space which satisfies Opial's condition. And, in the case of stability of fixed points, we obtain a number of stability results for the sequence of (ψ,ϕ)- weakly contractive mappings and the sequence of their corresponding fixed points in metric and 2-metric spaces. We also present a generalization of Fraser and Nadler type stability theorems in 2-metric spaces involving a sequence of metrics.
- Full Text:
- Date Issued: 2014
- «
- ‹
- 1
- ›
- »