An initial investigation into biological control options for Schinus terebinthifolia in South Africa
- Magengelele, Nwabisa Laurencia
- Authors: Magengelele, Nwabisa Laurencia
- Date: 2020
- Subjects: Anacardiaceae -- Biological control -- South Africa , Plants, Ornamental -- South Africa , Invasive plants -- Biological control -- South Africa , Insects as biological pest control agents -- South Africa , Brazilian pepper tree -- Biological control -- South Africa
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/103835 , vital:32306
- Description: Schinus terebinthifolia Raddi (Anacardiaceae) (Brazilian pepper tree) is a native tree to subtropical South America that was introduced into South Africa as an ornamental plant. Globally, it is regarded as one of the world’s worst invasive trees. In South Africa, this aggressive pioneer species is becoming increasingly problematic and is being considered as a target for biological control. In South Africa the tree has acquired a native seed-feeding wasp, Megastigmus transvaalensis Hussey (Hymenoptera: Torymidae). The wasp’s native hosts are indigenous Rhus species (Anacardiaceae), but it has expanded its host range to form a new association with both S. terebinthifolia and its close relative S. molle L. (Anacardiaceae). In order to quantify the seed predation by M. transvaalensis on S. terebinthifolia seeds, tree populations were surveyed across the Eastern Cape and KwaZulu-Natal provinces. The wasp was present at 99% of the S. terebinthifolia populations with an average of 22% of the seeds being destroyed. In the Eastern Cape Province, the highest seed damage occurred at the start of the winter months, when about 35% of seeds were damaged. This fell to less than 12% in spring and summer when the plants were flowering. Megastigmus transvaalensis may have slowed the rate of spread of the plant, but it is unlikely to reduce population sizes of S. terebinthifolia in South Africa in the long-term. Biological control efforts can be assisted by knowing the origin and invasion history of the target species. Genetic analyses are often the only way to elucidate the invasion history of invasive alien plants because it is rare to find detailed records of plant introductions. Both microsatellite and chloroplast DNA analysis were conducted on S. terebinthifolia trees from the plant’s introduced distribution in South Africa and both Florida and Hawaii, USA. These samples were compared to plants from the native distribution of South America. The analysis indicated that the S. terebinthifolia in South Africa was most likely sourced from the state of Rio de Janeiro in Brazil, which is the same source of the invasive populations in Florida and Hawaii. Importantly, the South African populations were all found to be “haplotype A”. Plants samples collected from Hawaii USA were the closest match to the South African plants. Biological control agents known to damage haplotype A which have been considered for use in Hawaii and Florida should therefore be prioritised for South Africa. Schinus terebinthifolia has a broad distribution in South Africa; however, the majority of the current distribution is limited to the coastal regions along the eastern coast in KwaZulu-Natal Province. This suggests that the species may be climatically limited. Species distribution models in MaxEnt were used to predict the suitable ecological niche of the species. Using occurrence localities from both the native and invaded range to calibrate the models resulted in 56% of the modelled areas being considered suitable for the growth of S. terebinthifolia in South Africa. This included areas in the Eastern Cape, Western Cape and Limpopo provinces. When the models were calibrated using just the native range data, or just the invaded range data, predicted distributions were more restricted and limited to the coastal areas of the Eastern Cape and KwaZulu-Natal provinces. The coastal areas between Florianopolis and Santos in Brazil were highlighted as the most climatically similar to the invasive populations of S. terebinthifolia in South Africa. These areas should be prioritised if native range surveys for potential biological control agents are conducted in South America. Although the native seed-feeding wasp is damaging to S. terebinthifolia in South Africa, the tree is still not under suitable levels of biological control and is likely to spread and increase in density. New biological control agents are therefore required. Genetic and climatic matching has determined where the most appropriate region to collect new potential biological control agents is. The genetic matching data has also indicated that biological control agents that have been released, or are being considered for release, in Hawaii and Florida, are likely to be suitable for the South African plants because they have been shown to be damaging to ‘haplotype A’. These agents should therefore be the first to be considered for release in South Africa.
- Full Text:
- Date Issued: 2020
An initial investigation into biological control options for Schinus terebinthifolia in South Africa
- Authors: Magengelele, Nwabisa Laurencia
- Date: 2020
- Subjects: Anacardiaceae -- Biological control -- South Africa , Plants, Ornamental -- South Africa , Invasive plants -- Biological control -- South Africa , Insects as biological pest control agents -- South Africa , Brazilian pepper tree -- Biological control -- South Africa
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/103835 , vital:32306
- Description: Schinus terebinthifolia Raddi (Anacardiaceae) (Brazilian pepper tree) is a native tree to subtropical South America that was introduced into South Africa as an ornamental plant. Globally, it is regarded as one of the world’s worst invasive trees. In South Africa, this aggressive pioneer species is becoming increasingly problematic and is being considered as a target for biological control. In South Africa the tree has acquired a native seed-feeding wasp, Megastigmus transvaalensis Hussey (Hymenoptera: Torymidae). The wasp’s native hosts are indigenous Rhus species (Anacardiaceae), but it has expanded its host range to form a new association with both S. terebinthifolia and its close relative S. molle L. (Anacardiaceae). In order to quantify the seed predation by M. transvaalensis on S. terebinthifolia seeds, tree populations were surveyed across the Eastern Cape and KwaZulu-Natal provinces. The wasp was present at 99% of the S. terebinthifolia populations with an average of 22% of the seeds being destroyed. In the Eastern Cape Province, the highest seed damage occurred at the start of the winter months, when about 35% of seeds were damaged. This fell to less than 12% in spring and summer when the plants were flowering. Megastigmus transvaalensis may have slowed the rate of spread of the plant, but it is unlikely to reduce population sizes of S. terebinthifolia in South Africa in the long-term. Biological control efforts can be assisted by knowing the origin and invasion history of the target species. Genetic analyses are often the only way to elucidate the invasion history of invasive alien plants because it is rare to find detailed records of plant introductions. Both microsatellite and chloroplast DNA analysis were conducted on S. terebinthifolia trees from the plant’s introduced distribution in South Africa and both Florida and Hawaii, USA. These samples were compared to plants from the native distribution of South America. The analysis indicated that the S. terebinthifolia in South Africa was most likely sourced from the state of Rio de Janeiro in Brazil, which is the same source of the invasive populations in Florida and Hawaii. Importantly, the South African populations were all found to be “haplotype A”. Plants samples collected from Hawaii USA were the closest match to the South African plants. Biological control agents known to damage haplotype A which have been considered for use in Hawaii and Florida should therefore be prioritised for South Africa. Schinus terebinthifolia has a broad distribution in South Africa; however, the majority of the current distribution is limited to the coastal regions along the eastern coast in KwaZulu-Natal Province. This suggests that the species may be climatically limited. Species distribution models in MaxEnt were used to predict the suitable ecological niche of the species. Using occurrence localities from both the native and invaded range to calibrate the models resulted in 56% of the modelled areas being considered suitable for the growth of S. terebinthifolia in South Africa. This included areas in the Eastern Cape, Western Cape and Limpopo provinces. When the models were calibrated using just the native range data, or just the invaded range data, predicted distributions were more restricted and limited to the coastal areas of the Eastern Cape and KwaZulu-Natal provinces. The coastal areas between Florianopolis and Santos in Brazil were highlighted as the most climatically similar to the invasive populations of S. terebinthifolia in South Africa. These areas should be prioritised if native range surveys for potential biological control agents are conducted in South America. Although the native seed-feeding wasp is damaging to S. terebinthifolia in South Africa, the tree is still not under suitable levels of biological control and is likely to spread and increase in density. New biological control agents are therefore required. Genetic and climatic matching has determined where the most appropriate region to collect new potential biological control agents is. The genetic matching data has also indicated that biological control agents that have been released, or are being considered for release, in Hawaii and Florida, are likely to be suitable for the South African plants because they have been shown to be damaging to ‘haplotype A’. These agents should therefore be the first to be considered for release in South Africa.
- Full Text:
- Date Issued: 2020
Post release evaluation of the distribution and efficacy of Eccritotarsus catarinensis and Eccritotarsus eichhorniae on Pontederia crassipes in South Africa
- Authors: Maseko, Zolile
- Date: 2020
- Subjects: Water hyacinth -- Biological control -- South Africa , Weeds -- Biological control -- South Africa , Miridae -- South Africa , Insects as biological pest control agents -- South Africa
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/143046 , vital:38196
- Description: Biological control involves the release of new species into the environment and therefore, needs to be carefully monitored through post-release assessments which have been largely neglected in the science. Post-release evaluations of biological control programmes reveal whether the control agent has established and if it impacts weed demography, while cost-benefit analyses require a different set of data that show the magnitude on return on investment. The biological control effort on Pontederia crassipes in South Africa uses, amongst others, two species of mirid, Eccritotarsus catarinensis and E. eichhorniae. Initially, they were released as a single species, but were recently divided using molecular techniques. Eccritotarsus catarinensis was released in 1999, and E. eichhorniae in 2007. After many releases over two decades, there was need to assess where each species was established in the country. Molecular techniques proved to be valuable in identifying the two species as they are morphologically indistinguishable in the field. Therefore, molecular techniques should be routinely used for screening biocontrol agents, whether new or as re-introductions. Annual surveys of the mirid release sites around South Africa were undertaken between 2016 and 2019. At each site both insect and plant parameters were measured. Only E. catarinensis is established in the field in South Africa despite the multiple releases of E. eichhorniae at over 70 sites across the country, and E. catarinensis has established at only 22 of the 45 release sites accessed during this study. This thesis tested climate, interaction with other agents already on P. crassipes, and direct competition between the two mirid species as reasons for the lack of establishment of E. eichhorniae. The results of the country-wide surveys showed that climate and water trophic status were the major determinants in the establishment of E. catarinensis. Most of the establishment was recorded in the warmer regions of the country, however, a few populations of the mirid also established in cooler areas, thus demonstrating a degree of thermal plasticity, and possible microclimates as the mirids persisted at sites shaded by riparian vegetation. Stochastic events such as active herbicide campaigns, winter frosts, droughts and floods were responsible for the absence of the mirid at some sites. At some of the eutrophic sites, despite the abundance of E. catarinensis, plants still proliferated as the water trophic status facilitated plant growth, thus, plants were able to compensate for the damage inflicted by the mirid. A more intensive, monthly, post-release evaluation was conducted on the Kubusi River, Eastern Cape Province between 2016 and 2019. This is regarded as one of the cooler water hyacinth sites. Populations of biological control agents at this site fluctuated seasonally. At this site, cold winters caused frosting of the leaves of P. crassipes with the exception of plants growing under overhanging vegetation that provided a refuge for the mirid. But, cool temperatures in the winter months (May to August) severely reduced the populations of E. catarinensis that required a long recovery phase in spring. The consequence of this was that the plants grew unchecked from the onset of the growing season forming dense mats. Of the four agents at the Kubusi River site, Eccritotarsus catarinensis recovered slowest after winter, with lag phases ranging from two months to several months of the three-year period. The release of a suite of agents has implications on the agents themselves, where interactions between the agents can be important. Interactions between pairs and even multiple agents can have implications for biocontrol, where agents are either complimentary or interfere with each other. In this case, because E. catarinensis recovered the slowest of the four agents at the site, plants were of a poor quality by mid-summer resulting in low mirid populations. Competition in weed biological control could be expected to be strongest between pairs of agents that share the same niche, and this could be the reason why E. eichhorniae failed to establish at sites where E. catarinensis had already been established for several years. When the two mirids were combined in manipulated trials in a polytunnel, populations were lower compared to when the two mirids occurred separately. Under warm conditions, it is likely that E. eichhorniae would be the superior agent compared to E. catarinensis. The evaluations discussed in this thesis highlighted gaps in agent release methodology in multispecies settings, as well as the need for strategic augmentation pre- and post-winter. It is important to release agents that will complement each other rather than compete, therefore, when releasing agents in a multispecies setting, niche differentiation needs to be considered. Here it is concluded that the best practice for dealing with the mirids is that they should be released individually, and at sites that have no other biological control agents in order to ultimately assess their efficacy. Landscape level, long-term monitoring of biological control programmes shows the impact of the control programme at a broader scale and, are far more informative than short-term studies and at fewer sites. Long-term post-release evaluations should be mandatory in biological control programmes. Furthermore, these assessments will help develop new strategies or improve on existing ones, thus achieve greater success in control.
- Full Text:
- Date Issued: 2020
- Authors: Maseko, Zolile
- Date: 2020
- Subjects: Water hyacinth -- Biological control -- South Africa , Weeds -- Biological control -- South Africa , Miridae -- South Africa , Insects as biological pest control agents -- South Africa
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/143046 , vital:38196
- Description: Biological control involves the release of new species into the environment and therefore, needs to be carefully monitored through post-release assessments which have been largely neglected in the science. Post-release evaluations of biological control programmes reveal whether the control agent has established and if it impacts weed demography, while cost-benefit analyses require a different set of data that show the magnitude on return on investment. The biological control effort on Pontederia crassipes in South Africa uses, amongst others, two species of mirid, Eccritotarsus catarinensis and E. eichhorniae. Initially, they were released as a single species, but were recently divided using molecular techniques. Eccritotarsus catarinensis was released in 1999, and E. eichhorniae in 2007. After many releases over two decades, there was need to assess where each species was established in the country. Molecular techniques proved to be valuable in identifying the two species as they are morphologically indistinguishable in the field. Therefore, molecular techniques should be routinely used for screening biocontrol agents, whether new or as re-introductions. Annual surveys of the mirid release sites around South Africa were undertaken between 2016 and 2019. At each site both insect and plant parameters were measured. Only E. catarinensis is established in the field in South Africa despite the multiple releases of E. eichhorniae at over 70 sites across the country, and E. catarinensis has established at only 22 of the 45 release sites accessed during this study. This thesis tested climate, interaction with other agents already on P. crassipes, and direct competition between the two mirid species as reasons for the lack of establishment of E. eichhorniae. The results of the country-wide surveys showed that climate and water trophic status were the major determinants in the establishment of E. catarinensis. Most of the establishment was recorded in the warmer regions of the country, however, a few populations of the mirid also established in cooler areas, thus demonstrating a degree of thermal plasticity, and possible microclimates as the mirids persisted at sites shaded by riparian vegetation. Stochastic events such as active herbicide campaigns, winter frosts, droughts and floods were responsible for the absence of the mirid at some sites. At some of the eutrophic sites, despite the abundance of E. catarinensis, plants still proliferated as the water trophic status facilitated plant growth, thus, plants were able to compensate for the damage inflicted by the mirid. A more intensive, monthly, post-release evaluation was conducted on the Kubusi River, Eastern Cape Province between 2016 and 2019. This is regarded as one of the cooler water hyacinth sites. Populations of biological control agents at this site fluctuated seasonally. At this site, cold winters caused frosting of the leaves of P. crassipes with the exception of plants growing under overhanging vegetation that provided a refuge for the mirid. But, cool temperatures in the winter months (May to August) severely reduced the populations of E. catarinensis that required a long recovery phase in spring. The consequence of this was that the plants grew unchecked from the onset of the growing season forming dense mats. Of the four agents at the Kubusi River site, Eccritotarsus catarinensis recovered slowest after winter, with lag phases ranging from two months to several months of the three-year period. The release of a suite of agents has implications on the agents themselves, where interactions between the agents can be important. Interactions between pairs and even multiple agents can have implications for biocontrol, where agents are either complimentary or interfere with each other. In this case, because E. catarinensis recovered the slowest of the four agents at the site, plants were of a poor quality by mid-summer resulting in low mirid populations. Competition in weed biological control could be expected to be strongest between pairs of agents that share the same niche, and this could be the reason why E. eichhorniae failed to establish at sites where E. catarinensis had already been established for several years. When the two mirids were combined in manipulated trials in a polytunnel, populations were lower compared to when the two mirids occurred separately. Under warm conditions, it is likely that E. eichhorniae would be the superior agent compared to E. catarinensis. The evaluations discussed in this thesis highlighted gaps in agent release methodology in multispecies settings, as well as the need for strategic augmentation pre- and post-winter. It is important to release agents that will complement each other rather than compete, therefore, when releasing agents in a multispecies setting, niche differentiation needs to be considered. Here it is concluded that the best practice for dealing with the mirids is that they should be released individually, and at sites that have no other biological control agents in order to ultimately assess their efficacy. Landscape level, long-term monitoring of biological control programmes shows the impact of the control programme at a broader scale and, are far more informative than short-term studies and at fewer sites. Long-term post-release evaluations should be mandatory in biological control programmes. Furthermore, these assessments will help develop new strategies or improve on existing ones, thus achieve greater success in control.
- Full Text:
- Date Issued: 2020
Interactions between two biological control agents released on Pereskia aculeata Miller (Cactaceae), in South Africa
- Authors: Mnqeta, Zezethu
- Date: 2017
- Subjects: Pereskia aculeata -- Biological control , Cactus -- Biological control -- South Africa , Alien plants -- Biological control -- South Africa , Flea beetles -- South Africa , Coreidae -- South Africa , Insects as biological pest control agents -- South Africa
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/7949 , vital:21327
- Description: Pereskia aculeata Miller (Cactaceae) is an alien invasive plant introduced into South Africa from Brazil, which has negative impacts on native biodiversity in South Africa. Phenrica guerini Bechyne (Chrysomelidae) and Catorhintha schaffneri Brailovsky & Garcia (Coreidae) are two biological control agents released against P. aculeata in South Africa. Phenrica guerini was first released against P. aculeata, in 1991, followed by C. schaffneri in 2014. The overall aim of this study was to improve the biological control programme against P. aculeata in order to decrease its density to a level where it does not threaten the native biodiversity of South Africa. The first part of this study evaluated the efficacy of P. guerini on P. aculeata at Port Alfred (Eastern Cape) to better understand the role of P. guerini in the biological control of P. aculeata. An insecticide exclusion experiment was conducted over 100 days. Plots with P. guerini had a mean of 187 (SE ± 62) fewer leaves/m2 than plots without P. guerini. The agent reduced percentage cover in plots with P. guerini, with a mean of 19.42% (SE ± 3.15) lower cover than plots without P. guerini. Although P. guerini had an impact on P. aculeata at Port Alfred previous studies have indicated that a reduction to below 50% cover is required for native biodiversity to recover and the agent only reduced cover to 62% at Port Alfred. Phenrica guerini has therefore not reduced percentage cover sufficiently to completely control the weed. The data collected from Port Alfred was compared to the performance of the agent nationwide. Although P. guerini was found at far more sites than previously recorded, there were very few sites with comparable levels of damage to Port Alfred. This evidence suggests that P. guerini is not sufficiently damaging to reduce P. aculeata to acceptable levels and other biological control agents should be considered.Interactions between two biological control agents can have complex and unexpected impacts for a biological control programme. The second part of this study was to investigate interactions between C. schaffneri and P. guerini under laboratory conditions to test whether the two agents, individually or jointly, enhanced or reduced their impact on P. aculeata. Potted P. aculeata plants were exposed to one of four treatments: control (no agents), P. guerini only, C. schaffneri only and both species in combination. Four stocking densities, ranging from 2 to 12 insects per plant were used. Catorhintha schaffneri alone at high densities was more damaging than all other treatments with a significantly greater reduction in the mean number of leaves, 11.7 (SE ± 1.29), and shoot lengths, 2.17cm (SE ± O. 75). Even at lower density treatments, the combination of the two agents was not significantly more damaging than C. schaffneri alone and C. schaffneri was always more damaging than P. guerini alone. Mortality of P. guerini was significantly higher than C. schaffneri at the highest stocking density when in combination. Phenrica guerini contributes towards the biological control of P. aculeata at some sites in South Africa but not enough to completely control the weed. The antagonistic interaction between P. guerini and C. schaffneri suggests that these agents should not be released together because this would impact negatively on the overall biocontrol programme against P. aculeata. Catorhintha schaffneri should be released at sites were P. guerini is not present and evaluations of the success of this agent in the field should be conducted. Extrapolation of laboratory-based studies into the field is often challenging so mass-rearing of P. guerini should continue until there is convincing proof that C. schaffneri alone is more effective than P. guerini in the field.
- Full Text:
- Date Issued: 2017
- Authors: Mnqeta, Zezethu
- Date: 2017
- Subjects: Pereskia aculeata -- Biological control , Cactus -- Biological control -- South Africa , Alien plants -- Biological control -- South Africa , Flea beetles -- South Africa , Coreidae -- South Africa , Insects as biological pest control agents -- South Africa
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/7949 , vital:21327
- Description: Pereskia aculeata Miller (Cactaceae) is an alien invasive plant introduced into South Africa from Brazil, which has negative impacts on native biodiversity in South Africa. Phenrica guerini Bechyne (Chrysomelidae) and Catorhintha schaffneri Brailovsky & Garcia (Coreidae) are two biological control agents released against P. aculeata in South Africa. Phenrica guerini was first released against P. aculeata, in 1991, followed by C. schaffneri in 2014. The overall aim of this study was to improve the biological control programme against P. aculeata in order to decrease its density to a level where it does not threaten the native biodiversity of South Africa. The first part of this study evaluated the efficacy of P. guerini on P. aculeata at Port Alfred (Eastern Cape) to better understand the role of P. guerini in the biological control of P. aculeata. An insecticide exclusion experiment was conducted over 100 days. Plots with P. guerini had a mean of 187 (SE ± 62) fewer leaves/m2 than plots without P. guerini. The agent reduced percentage cover in plots with P. guerini, with a mean of 19.42% (SE ± 3.15) lower cover than plots without P. guerini. Although P. guerini had an impact on P. aculeata at Port Alfred previous studies have indicated that a reduction to below 50% cover is required for native biodiversity to recover and the agent only reduced cover to 62% at Port Alfred. Phenrica guerini has therefore not reduced percentage cover sufficiently to completely control the weed. The data collected from Port Alfred was compared to the performance of the agent nationwide. Although P. guerini was found at far more sites than previously recorded, there were very few sites with comparable levels of damage to Port Alfred. This evidence suggests that P. guerini is not sufficiently damaging to reduce P. aculeata to acceptable levels and other biological control agents should be considered.Interactions between two biological control agents can have complex and unexpected impacts for a biological control programme. The second part of this study was to investigate interactions between C. schaffneri and P. guerini under laboratory conditions to test whether the two agents, individually or jointly, enhanced or reduced their impact on P. aculeata. Potted P. aculeata plants were exposed to one of four treatments: control (no agents), P. guerini only, C. schaffneri only and both species in combination. Four stocking densities, ranging from 2 to 12 insects per plant were used. Catorhintha schaffneri alone at high densities was more damaging than all other treatments with a significantly greater reduction in the mean number of leaves, 11.7 (SE ± 1.29), and shoot lengths, 2.17cm (SE ± O. 75). Even at lower density treatments, the combination of the two agents was not significantly more damaging than C. schaffneri alone and C. schaffneri was always more damaging than P. guerini alone. Mortality of P. guerini was significantly higher than C. schaffneri at the highest stocking density when in combination. Phenrica guerini contributes towards the biological control of P. aculeata at some sites in South Africa but not enough to completely control the weed. The antagonistic interaction between P. guerini and C. schaffneri suggests that these agents should not be released together because this would impact negatively on the overall biocontrol programme against P. aculeata. Catorhintha schaffneri should be released at sites were P. guerini is not present and evaluations of the success of this agent in the field should be conducted. Extrapolation of laboratory-based studies into the field is often challenging so mass-rearing of P. guerini should continue until there is convincing proof that C. schaffneri alone is more effective than P. guerini in the field.
- Full Text:
- Date Issued: 2017
Investigating herbivory and plant origin on tall-statured grasses in South Africa
- Authors: Canavan, Kim N
- Date: 2017
- Subjects: Insects as biological pest control agents -- South Africa , Arundo donax , Giant reed -- South Africa , Giant reed -- Biological control -- South Africa , Phragmites australis , Phragmites mauritianus , Phragmites , Tetramesa romana , Biological invasions -- South Africa , Wasps -- Host plants , Wasps -- South Africa
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/6147 , vital:21051
- Description: South African riparian zones have been heavily degraded through anthropogenic activities such as dam construction and extraction of water for irrigation, which has resulted in a loss of ecosystem services and functioning. A consequence of such disturbances to riparian areas is in their susceptibility to invasive alien species (IAS). One such IAS is the giant reed, Arundo donax L. (Poaceae), introduced to South Africa in the 1700s largely for erosion control. Arundo donax has since greatly expanded in the country and is now one of the most abundant IAS. Arundo donax has been found to displace native vegetation and in South Africa this will most likely lead to the displacement of the native tall-statured grasses, Phragmites australis (Cav.) Trin. ex Steud. and Phragmites mauritianus Kunth. This study aimed to enhance our understanding of the tall-statured grasses A. donax, P. australis and P. mauritianus to better manage them in riparian areas. For A. donax, biological control is seen as the most viable option to control stands in the long-term. However, before such a programme is put in place, it is important to first collect baseline data that can be used to guide the direction of the biological control project in South Africa. For the Phragmites spp., despite being a dominant vegetative type in riparian areas, very little is known about their status in South Africa. Furthermore, there have been increasing reports of both Phragmites species having an expansion of their range and abundance. In North America, there has been a similar trend of reed expansion and through molecular work it was determined that a cryptic invasion has occurred with the introduction of an invasive non-native haplotype from Europe. It is therefore unknown if Phragmites spp. populations are expanding due to anthropogenic activities or due to a cryptic invasion. To address these shortfalls in knowledge the study investigated the tall-statured grasses in two parts; firstly, molecular techniques are used to explore the plant origin and genetic diversity of A. donax, P. australis and P. mauritianus and secondly using the Enemy Release Hypothesis as a framework, herbivore assemblages for each reed was determined across their distribution in South Africa. Molecular-techniques determined that both P. australis and P. mauritianus had only one haplotype - known as haplotype K and haplotype V respectively, across their distribution. For P. australis, haplotype K shares a close connection with populations from a Mediterranean lineage and this was further confirmed with a shared grass-waxy band. The direction and timing of genetic exchange between the two regions could not be ascertained and thus still remains unknown. Microsatellite analysis determined that both Phragmites spp. had a high genetic diversity compared to worldwide lineages. With no evidence of any cryptic invasions of haplotypes from other regions, both Phragmites spp. populations are likely to be native to South Africa. For A. donax all populations across South Africa were determined to be haplotype M1; a cosmopolitan haplotype that has an ancient native range in Afghanistan and Pakistan (Indus Valley). Populations were found to have no genetic diversity and thus can be considered one clone. A pre-introductory survey determined a list of herbivores associated with each tall- statured grass. For A. donax, a total of seven herbivores were found. Of these, one herbivore, a galling wasp, Tetramesa romana Walker (Hymenoptera: Eurytomidae) was found to be highly abundant and widely distributed in South Africa. Tetramesa romana is already a biological control agent in North America and thus is likely exerting some pressure on A. donax populations in South Africa. For both Phragmites spp. a total of ten herbivores were found, although having higher species richness compared to A. donax, when compared to other regions, these native species have a relatively low species richness. Providing baseline data on plant origin, genetic diversity and herbivory on A. donax, P. australis and P. mauritianus has provided important information on managing these species in riparian ecosystems in South Africa. For the Phragmites spp. with no evidence of any cryptic invasions, it is recommended that reed stands continue to be managed as native species. Phragmites spp. are important dominant vegetative species and thus should be protected; however, if reed stands become expansive, control methods can be put in place to focus on managing spread and abundance. For A. donax, this study was able to provide pivotal information in guiding the biological control programme. By determining the ancient lineage of South African populations, research can be focused in this area to find potential biological control agents. Lastly, the pre-introductory survey determined that a biological control agent, T. romana was already established with an unknown introduction and also highlighted potential plant parts that should be targeted. In particular, no rhizome feeding herbivores were found in South Africa and therefore this highlights an important niche that should be explored in biological control agents.
- Full Text:
- Date Issued: 2017
- Authors: Canavan, Kim N
- Date: 2017
- Subjects: Insects as biological pest control agents -- South Africa , Arundo donax , Giant reed -- South Africa , Giant reed -- Biological control -- South Africa , Phragmites australis , Phragmites mauritianus , Phragmites , Tetramesa romana , Biological invasions -- South Africa , Wasps -- Host plants , Wasps -- South Africa
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/6147 , vital:21051
- Description: South African riparian zones have been heavily degraded through anthropogenic activities such as dam construction and extraction of water for irrigation, which has resulted in a loss of ecosystem services and functioning. A consequence of such disturbances to riparian areas is in their susceptibility to invasive alien species (IAS). One such IAS is the giant reed, Arundo donax L. (Poaceae), introduced to South Africa in the 1700s largely for erosion control. Arundo donax has since greatly expanded in the country and is now one of the most abundant IAS. Arundo donax has been found to displace native vegetation and in South Africa this will most likely lead to the displacement of the native tall-statured grasses, Phragmites australis (Cav.) Trin. ex Steud. and Phragmites mauritianus Kunth. This study aimed to enhance our understanding of the tall-statured grasses A. donax, P. australis and P. mauritianus to better manage them in riparian areas. For A. donax, biological control is seen as the most viable option to control stands in the long-term. However, before such a programme is put in place, it is important to first collect baseline data that can be used to guide the direction of the biological control project in South Africa. For the Phragmites spp., despite being a dominant vegetative type in riparian areas, very little is known about their status in South Africa. Furthermore, there have been increasing reports of both Phragmites species having an expansion of their range and abundance. In North America, there has been a similar trend of reed expansion and through molecular work it was determined that a cryptic invasion has occurred with the introduction of an invasive non-native haplotype from Europe. It is therefore unknown if Phragmites spp. populations are expanding due to anthropogenic activities or due to a cryptic invasion. To address these shortfalls in knowledge the study investigated the tall-statured grasses in two parts; firstly, molecular techniques are used to explore the plant origin and genetic diversity of A. donax, P. australis and P. mauritianus and secondly using the Enemy Release Hypothesis as a framework, herbivore assemblages for each reed was determined across their distribution in South Africa. Molecular-techniques determined that both P. australis and P. mauritianus had only one haplotype - known as haplotype K and haplotype V respectively, across their distribution. For P. australis, haplotype K shares a close connection with populations from a Mediterranean lineage and this was further confirmed with a shared grass-waxy band. The direction and timing of genetic exchange between the two regions could not be ascertained and thus still remains unknown. Microsatellite analysis determined that both Phragmites spp. had a high genetic diversity compared to worldwide lineages. With no evidence of any cryptic invasions of haplotypes from other regions, both Phragmites spp. populations are likely to be native to South Africa. For A. donax all populations across South Africa were determined to be haplotype M1; a cosmopolitan haplotype that has an ancient native range in Afghanistan and Pakistan (Indus Valley). Populations were found to have no genetic diversity and thus can be considered one clone. A pre-introductory survey determined a list of herbivores associated with each tall- statured grass. For A. donax, a total of seven herbivores were found. Of these, one herbivore, a galling wasp, Tetramesa romana Walker (Hymenoptera: Eurytomidae) was found to be highly abundant and widely distributed in South Africa. Tetramesa romana is already a biological control agent in North America and thus is likely exerting some pressure on A. donax populations in South Africa. For both Phragmites spp. a total of ten herbivores were found, although having higher species richness compared to A. donax, when compared to other regions, these native species have a relatively low species richness. Providing baseline data on plant origin, genetic diversity and herbivory on A. donax, P. australis and P. mauritianus has provided important information on managing these species in riparian ecosystems in South Africa. For the Phragmites spp. with no evidence of any cryptic invasions, it is recommended that reed stands continue to be managed as native species. Phragmites spp. are important dominant vegetative species and thus should be protected; however, if reed stands become expansive, control methods can be put in place to focus on managing spread and abundance. For A. donax, this study was able to provide pivotal information in guiding the biological control programme. By determining the ancient lineage of South African populations, research can be focused in this area to find potential biological control agents. Lastly, the pre-introductory survey determined that a biological control agent, T. romana was already established with an unknown introduction and also highlighted potential plant parts that should be targeted. In particular, no rhizome feeding herbivores were found in South Africa and therefore this highlights an important niche that should be explored in biological control agents.
- Full Text:
- Date Issued: 2017
- «
- ‹
- 1
- ›
- »