TiRiFiG, a graphical 3D kinematic modelling tool
- Authors: Twum, Samuel Nyarko
- Date: 2019
- Subjects: Tilted Ring Fitting GUI , Astronomy -- Observations , Galaxies -- Observations , Galaxies -- Measurement , Galaxies -- Measurement -- Data processing , Kinematics
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/76409 , vital:30558
- Description: Galaxy kinematics is of crucial importance to understanding the structure, formation and evolution of galaxies. The studies of mass distributions giving rise to the missing mass problem, first raised by Zwicky (1933), give us an insight into dark matter distributions which are tightly linked to cosmology. Neutral hydrogen (H i) has been widely used as a tracer in the kinematic studies of galaxies. The Square Kilometre Array (SKA) and its precursors will produce large Hi datasets which will require kinematic modelling tools to extract kinematic parameters such as rotation curves. TiRiFiC (Józsa et al., 2007) is an example of such a tool for 3D kinematic modelling of resolved spectroscopic observations of rotating disks in terms of the tilted-ring model with varying complexities. TiRiFiC can be used to model a large number (20+) of parameters which are set in a configuration file (.def) for its execution. However, manually editing these parameters in a text editor is uncomfortable. In this work, we present TiRiFiG, Tilted Ring Fitting GUI, which is the graphical user interface that provides an easy way for parameter inputs to be modified in an interactive manner.
- Full Text:
- Date Issued: 2019
Effects of incremented loads over preferred values on psychophysical and selected gait kinematic factor
- Authors: Manley, Peter Gwynne
- Date: 1989
- Subjects: Psychophysiology , Kinematics , Work -- Physiological aspects , Human engineering
- Language: English
- Type: Thesis , Masters , MA
- Identifier: vital:5160 , http://hdl.handle.net/10962/d1015734
- Description: This study investigated the effects of incremented loads greater than maximal acceptable loads on selected locomotor kinematic and psychophysical variables for four different hand-held load-carriage methods. Ten male and ten female subjects, between the ages of 18 and 30, participated in four experimental sessions. Data collection involved obtaining selected anthropometric, strength, maximal load and preferred load, gait kinematic, and psychophysical values. The anthropometric, strength and load capacity variables enabled absolute and morphology normalised sex-based comparisons to be made. The kinematic and psychophysical parameters were used to quantify any changes from two sets of baseline values,"unloaded" and "maximal acceptable load" values, when loads were increased and carrying methods changed. Statistical analysis revealed that males were taller, heavier and stronger than females (p<0.05). Males chose significantly greater maximal acceptable loads and absolute maximal loads than females when expressed in their absolute or relative terms. Preferred walking speeds were not significantly different for unloaded or loaded conditions, although males walked significantly faster in absolute terms (but not in relative terms) than females. Different load carrying methods and incremented loads brought. about significant changes to several of the kinematic parameters investigated. Finally, ratings of perceived exertion, as well as the number of exertion sites, were seen to increase significantly as load increased. These values were not, however, significantly affected by differences in load carriage method.
- Full Text:
- Date Issued: 1989