Removal of lead from solution by the non-viable biomass of the water fern Azolla filiculoides
- Authors: Sanyahumbi, Douglas
- Date: 1999
- Subjects: Azolla , Heavy metals -- Absorption and adsorption , Lead , Water -- Purification -- Biological treatment
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3901 , http://hdl.handle.net/10962/d1003960 , Azolla , Heavy metals -- Absorption and adsorption , Lead , Water -- Purification -- Biological treatment
- Description: The removal of lead from aqueous solution and lead-acid battery manufacturing waste-water by the non-viable biomass of the water fern Azolla filiculoides was investigated in both batch and column reactors. The maximum lead uptake by the Azolla biomass at a pH value of approximately 5, was found to be 100 mg lead/g biomass from aqueous solution. Lead removal varied from 30% of the initial lead concentration at pH 1.5 to approximately 95% at pH values of 3.5 and 5.6. Lead removal from aqueous solution decreased to 30% of the initial lead concentration if the lead concentration was initially over 400 mg/l. At initial lead concentrations of less than 400 mg/l, percentage lead removal was found to be over 90% of the initial lead concentration. Lead removal remained at approximately 90% between 10°C and 50°C. Biomass concentration (4-8 mg/l) had little effect on lead removal. The presence of iron (Fe) and lead, copper (Cu) and lead or all three metal ions in solution at varying ratios to each other did not appear to have any significant effect on lead removal. Percentage lead, copper and iron removal from aqueous solution was 80-95, 45-50 and 65-75% respectively for the different multiple-metal solutions studied. No break-through points were observed for lead removal from aqueous solutions in column reactors, with initial lead concentrations of less than 100 mg/l at varying flow rates of 2, 5 and 10 ml/min. This suggested that flow rate, and therefore retention time, had little effect on percentage lead removal from aqueous solution, which was more that 95%, at low initial lead concentrations (less than 100 mg/l). At initial lead concentrations of 200 mg/l or more, an increase in flow rate, which equates to a decrease in column retention time, resulted in break-through points occurring earlier in the column run. Percentage lead removal values, from lead-acid battery efiluent in column systems, of over 95% were achieved. Desorption of approximately 30% and 40% of bound lead was achieved, with 0.5 M HNO₃ in a volume of 50 ml, from two lead-acid battery. Repeated adsorption and desorption of lead by the Azalia biomass over 10 cycles did not result in any decrease in the percentage lead removal from effluent, which strongly suggested that the Azalla biomass could be re-used a number of times without deterioration in its physical integrity, or lead removal capacity. No evidence of deterioration in the Azolla biomass's physical integrity after 10 successive adsorption and desorption procedures was observed using scanning electron microscopy. The Azolla filiculoides biomass was, therefore, found to be able to effectively remove lead from aqueous solution and lead-acid battery effluent repeatedly, with no observed reduction in it's uptake capacity or physical integrity.
- Full Text:
- Date Issued: 1999
The removal of toxic heavy metals from aqueous solutions by algal extracellular polysaccharides
- Authors: Selepe, Mamaropeng Marcus
- Date: 1999
- Subjects: Heavy metals -- Absorption and adsorption , Copper , Lead , Algae -- Biotechnology , Polysaccharides -- Biotechnology
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3994 , http://hdl.handle.net/10962/d1004054 , Heavy metals -- Absorption and adsorption , Copper , Lead , Algae -- Biotechnology , Polysaccharides -- Biotechnology
- Description: This study investigated the possible use of algal extracellular polysaccharide as a biosorbent for removal of heavy metals (copper and lead) from aqueous solutions as a means of bioremediation for metal containing effluents. This biopolymer has good biosorbent properties and a potential to provide a cost effective, selective and efficient purification system. A variety of environmental conditions induce the production of extracellular polysaccharides in algae. The production of exopolysaccharides by Dunaliella cultures was induced by nitrogen deficient conditions. A high ratio of carbon to nitrogen source considerably enhanced the polysaccharide release. Purified extracellular polysaccharide samples exhibited a monosaccharide composition consisting of the following sugars: xylose, arabinose, 2-0-methyl mannose, mannose, glucose and galactose. The relative abundance (%) of these sugars were calculated relative to xylose. The major sugar constituent was 2-0-methyl mannose, which was present at approximately 160% relative to xylose. The percentage relative abundance of other sugars was as follows: 18.8; 86.8; 85.3 and 22.3% for arabinose; mannose; glucose and galactose respectively. The identity of the various constituents were confirmed by mass spectrometry. The ability of Dunaliella exopolysaccharides to accumulate metals was investigated. The following parameters were studied because they affect metal uptake: solution pH, biomass concentration, temperature, time and metal concentration. The uptake of both copper and lead were pH dependent. However, metal uptake was not significantly affected by temperature. Kinetic studies showed that Dunaliella extracellular polysaccharides exhibit good bioremediation properties. Metal uptake was rapid. In addition, the exopolysaccharide has good metal binding capacity with an uptake capacity for lead of 80 mg/g from a solution containing initial lead concentration of approximately 40 mg/l. Competition studies revealed that the presence of a second metal in solution inhibits uptake of the other metal compared to uptake in single metal solution of that particular metal. The presence of lead inhibited the uptake of copper from approximately 65% in single metal solution to 10% in binary metal solution. The presence of copper also inhibited lead uptake, though not to the same extent. Higher concentrations of lead could not completely prevent removal of copper from solution and visa versa. The same was true for lead which could not be displaced by a four-fold concentration of copper. Instead, a certain percentage of copper was always removed showing that lead did not compete with copper for these binding sites. In conclusion it appears that, copper and lead bind to different sites on Dunaliella exopolysaccharides and that they exhibit selective or preferential removal of lead.
- Full Text:
- Date Issued: 1999