Application of computer-aided drug design for identification of P. falciparum inhibitors
- Authors: Diallo, Bakary N’tji
- Date: 2021-10-29
- Subjects: Plasmodium falciparum , Malaria -- Chemotherapy , Molecular dynamics , Antimalarials , Cheminformatics , Drug development , Ligand binding (Biochemistry) , Plasmodium falciparum1-deoxy-D-xylulose-5-phosphate reductoisomerase (PfDXR) , South African Natural Compounds Database
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/192798 , vital:45265 , 10.21504/10962/192798
- Description: Malaria is a millennia-old disease with the first recorded cases dating back to 2700 BC found in Chinese medical records, and later in other civilizations. It has claimed human lives to such an extent that there are a notable associated socio-economic consequences. Currently, according to the World Health Organization (WHO), Africa holds the highest disease burden with 94% of deaths and 82% of cases with P. falciparum having ~100% prevalence. Chemotherapy, such as artemisinin combination therapy, has been and continues to be the work horse in the fight against the disease, together with seasonal malaria chemoprevention and the use of insecticides. Natural products such as quinine and artemisinin are particularly important in terms of their antimalarial activity. The emphasis in current chemotherapy research is the need for time and cost-effective workflows focussed on new mechanisms of action (MoAs) covering the target candidate profiles (TCPs). Despite a decline in cases over the past decades with, countries increasingly becoming certified malaria free, a stalling trend has been observed in the past five years resulting in missing the 2020 Global Technical Strategy (GTS) milestones. With no effective vaccine, a reduction in funding, slower drug approval than resistance emergence from resistant and invasive vectors, and threats in diagnosis with the pfhrp2/3 gene deletion, malaria remains a major health concern. Motivated by these reasons, the primary aim of this work was a contribution to the antimalarial pipeline through in silico approaches focusing on P. falciparum. We first intended an exploration of malarial targets through a proteome scale screening on 36 targets using multiple metrics to account for the multi-objective nature of drug discovery. The continuous growth of structural data offers the ideal scenario for mining new MoAs covering antimalarials TCPs. This was combined with a repurposing strategy using a set of orally available FDA approved drugs. Further, use was made of time- and cost-effective strategies combining QVina-W efficiency metrics that integrate molecular properties, GRIM rescoring for molecular interactions and a hydrogen mass repartitioning (HMR) molecular dynamics (MD) scheme for accelerated development of antimalarials in the context of resistance. This pipeline further integrates a complex ranking for better drug-target selectivity, and normalization strategies to overcome docking scoring function bias. The different metrics, ranking, normalization strategies and their combinations were first assessed using their mean ranking error (MRE). A version combining all metrics was used to select 36 unique protein-ligand complexes, assessed in MD, with the final retention of 25. From the 16 in vitro tested hits of the 25, fingolimod, abiraterone, prazosin, and terazosin showed antiplasmodial activity with IC50 2.21, 3.37, 16.67 and 34.72 μM respectively and of these, only fingolimod was found to be not safe with respect to human cell viability. These compounds were predicted active on different molecular targets, abiraterone was predicted to interact with a putative liver-stage essential target, hence promising as a transmission-blocking agent. The pipeline had a promising 25% hit rate considering the proteome-scale and use of cost-effective approaches. Secondly, we focused on Plasmodium falciparum 1-deoxy-D-xylulose-5-phosphate reductoisomerase (PfDXR) using a more extensive screening pipeline to overcome some of the current in silico screening limitations. Starting from the ZINC lead-like library of ~3M, hierarchical ligand-based virtual screening (LBVS) and structure-based virtual screening (SBVS) approaches with molecular docking and re-scoring using eleven scoring functions (SFs) were used. Later ranking with an exponential consensus strategy was included. Selected hits were further assessed through Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA), advanced MD sampling in a ligand pulling simulations and (Weighted Histogram Analysis Method) WHAM analysis for umbrella sampling (US) to derive binding free energies. Four leads had better predicted affinities in US than LC5, a 280 nM potent PfDXR inhibitor with ZINC000050633276 showing a promising binding of -20.43 kcal/mol. As shown with fosmidomycin, DXR inhibition offers fast acting compounds fulfilling antimalarials TCP1. Yet, fosmidomycin has a high polarity causing its short half-life and hampering its clinical use. These leads scaffolds are different from fosmidomycin and hence may offer better pharmacokinetic and pharmacodynamic properties and may also be promising for lead optimization. A combined analysis of residues’ contributions to the free energy of binding in MM-PBSA and to steered molecular dynamics (SMD) Fmax indicated GLU233, CYS268, SER270, TRP296, and HIS341 as exploitable for compound optimization. Finally, we updated the SANCDB library with new NPs and their commercially available analogs as a solution to NP availability. The library is extended to 1005 compounds from its initial 600 compounds and the database is integrated to Mcule and Molport APIs for analogs automatic update. The new set may contribute to virtual screening and to antimalarials as the most effective ones have NP origin. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2021
- Full Text:
- Date Issued: 2021-10-29
- Authors: Diallo, Bakary N’tji
- Date: 2021-10-29
- Subjects: Plasmodium falciparum , Malaria -- Chemotherapy , Molecular dynamics , Antimalarials , Cheminformatics , Drug development , Ligand binding (Biochemistry) , Plasmodium falciparum1-deoxy-D-xylulose-5-phosphate reductoisomerase (PfDXR) , South African Natural Compounds Database
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/192798 , vital:45265 , 10.21504/10962/192798
- Description: Malaria is a millennia-old disease with the first recorded cases dating back to 2700 BC found in Chinese medical records, and later in other civilizations. It has claimed human lives to such an extent that there are a notable associated socio-economic consequences. Currently, according to the World Health Organization (WHO), Africa holds the highest disease burden with 94% of deaths and 82% of cases with P. falciparum having ~100% prevalence. Chemotherapy, such as artemisinin combination therapy, has been and continues to be the work horse in the fight against the disease, together with seasonal malaria chemoprevention and the use of insecticides. Natural products such as quinine and artemisinin are particularly important in terms of their antimalarial activity. The emphasis in current chemotherapy research is the need for time and cost-effective workflows focussed on new mechanisms of action (MoAs) covering the target candidate profiles (TCPs). Despite a decline in cases over the past decades with, countries increasingly becoming certified malaria free, a stalling trend has been observed in the past five years resulting in missing the 2020 Global Technical Strategy (GTS) milestones. With no effective vaccine, a reduction in funding, slower drug approval than resistance emergence from resistant and invasive vectors, and threats in diagnosis with the pfhrp2/3 gene deletion, malaria remains a major health concern. Motivated by these reasons, the primary aim of this work was a contribution to the antimalarial pipeline through in silico approaches focusing on P. falciparum. We first intended an exploration of malarial targets through a proteome scale screening on 36 targets using multiple metrics to account for the multi-objective nature of drug discovery. The continuous growth of structural data offers the ideal scenario for mining new MoAs covering antimalarials TCPs. This was combined with a repurposing strategy using a set of orally available FDA approved drugs. Further, use was made of time- and cost-effective strategies combining QVina-W efficiency metrics that integrate molecular properties, GRIM rescoring for molecular interactions and a hydrogen mass repartitioning (HMR) molecular dynamics (MD) scheme for accelerated development of antimalarials in the context of resistance. This pipeline further integrates a complex ranking for better drug-target selectivity, and normalization strategies to overcome docking scoring function bias. The different metrics, ranking, normalization strategies and their combinations were first assessed using their mean ranking error (MRE). A version combining all metrics was used to select 36 unique protein-ligand complexes, assessed in MD, with the final retention of 25. From the 16 in vitro tested hits of the 25, fingolimod, abiraterone, prazosin, and terazosin showed antiplasmodial activity with IC50 2.21, 3.37, 16.67 and 34.72 μM respectively and of these, only fingolimod was found to be not safe with respect to human cell viability. These compounds were predicted active on different molecular targets, abiraterone was predicted to interact with a putative liver-stage essential target, hence promising as a transmission-blocking agent. The pipeline had a promising 25% hit rate considering the proteome-scale and use of cost-effective approaches. Secondly, we focused on Plasmodium falciparum 1-deoxy-D-xylulose-5-phosphate reductoisomerase (PfDXR) using a more extensive screening pipeline to overcome some of the current in silico screening limitations. Starting from the ZINC lead-like library of ~3M, hierarchical ligand-based virtual screening (LBVS) and structure-based virtual screening (SBVS) approaches with molecular docking and re-scoring using eleven scoring functions (SFs) were used. Later ranking with an exponential consensus strategy was included. Selected hits were further assessed through Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA), advanced MD sampling in a ligand pulling simulations and (Weighted Histogram Analysis Method) WHAM analysis for umbrella sampling (US) to derive binding free energies. Four leads had better predicted affinities in US than LC5, a 280 nM potent PfDXR inhibitor with ZINC000050633276 showing a promising binding of -20.43 kcal/mol. As shown with fosmidomycin, DXR inhibition offers fast acting compounds fulfilling antimalarials TCP1. Yet, fosmidomycin has a high polarity causing its short half-life and hampering its clinical use. These leads scaffolds are different from fosmidomycin and hence may offer better pharmacokinetic and pharmacodynamic properties and may also be promising for lead optimization. A combined analysis of residues’ contributions to the free energy of binding in MM-PBSA and to steered molecular dynamics (SMD) Fmax indicated GLU233, CYS268, SER270, TRP296, and HIS341 as exploitable for compound optimization. Finally, we updated the SANCDB library with new NPs and their commercially available analogs as a solution to NP availability. The library is extended to 1005 compounds from its initial 600 compounds and the database is integrated to Mcule and Molport APIs for analogs automatic update. The new set may contribute to virtual screening and to antimalarials as the most effective ones have NP origin. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2021
- Full Text:
- Date Issued: 2021-10-29
In silico study of Plasmodium 1-deoxy-dxylulose 5-phosphate reductoisomerase (DXR) for identification of novel inhibitors from SANCDB
- Authors: Diallo, Bakary N'tji
- Date: 2018
- Subjects: Plasmodium 1-deoxy-dxylulose 5-phosphate reductoisomerase , Isoprenoids , Plasmodium , Antimalarials , Malaria -- Chemotherapy , Molecules -- Models , Molecular dynamics , South African Natural Compounds Database
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/64012 , vital:28523
- Description: Malaria remains a major health concern with a complex parasite constantly developing resistance to the different drugs introduced to treat it, threatening the efficacy of the current ACT treatment recommended by WHO (World Health Organization). Different antimalarial compounds with different mechanisms of action are ideal as this decreases chances of resistance occurring. Inhibiting DXR and consequently the MEP pathway is a good strategy to find a new antimalarial with a novel mode of action. From literature, all the enzymes of the MEP pathway have also been shown to be indispensable for the synthesis of isoprenoids. They have been validated as drug targets and the X-ray structure of each of the enzymes has been solved. DXR is a protein which catalyses the second step of the MEP pathway. There are currently 255 DXR inhibitors in the Binding Database (accessed November 2017) generally based on the fosmidomycin structural scaffold and thus often showing poor drug likeness properties. This study aims to research new DXR inhibitors using in silico techniques. We analysed the protein sequence and built 3D models in close and open conformations for the different Plasmodium sequences. Then SANCDB compounds were screened to identify new potential DXR inhibitors with new chemical scaffolds. Finally, the identified hits were submitted to molecular dynamics studies, preceded by a parameterization of the manganese atom in the protein active site.
- Full Text:
- Date Issued: 2018
- Authors: Diallo, Bakary N'tji
- Date: 2018
- Subjects: Plasmodium 1-deoxy-dxylulose 5-phosphate reductoisomerase , Isoprenoids , Plasmodium , Antimalarials , Malaria -- Chemotherapy , Molecules -- Models , Molecular dynamics , South African Natural Compounds Database
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/64012 , vital:28523
- Description: Malaria remains a major health concern with a complex parasite constantly developing resistance to the different drugs introduced to treat it, threatening the efficacy of the current ACT treatment recommended by WHO (World Health Organization). Different antimalarial compounds with different mechanisms of action are ideal as this decreases chances of resistance occurring. Inhibiting DXR and consequently the MEP pathway is a good strategy to find a new antimalarial with a novel mode of action. From literature, all the enzymes of the MEP pathway have also been shown to be indispensable for the synthesis of isoprenoids. They have been validated as drug targets and the X-ray structure of each of the enzymes has been solved. DXR is a protein which catalyses the second step of the MEP pathway. There are currently 255 DXR inhibitors in the Binding Database (accessed November 2017) generally based on the fosmidomycin structural scaffold and thus often showing poor drug likeness properties. This study aims to research new DXR inhibitors using in silico techniques. We analysed the protein sequence and built 3D models in close and open conformations for the different Plasmodium sequences. Then SANCDB compounds were screened to identify new potential DXR inhibitors with new chemical scaffolds. Finally, the identified hits were submitted to molecular dynamics studies, preceded by a parameterization of the manganese atom in the protein active site.
- Full Text:
- Date Issued: 2018
- «
- ‹
- 1
- ›
- »