Monitoring the impact of deforestation on an aquatic ecosystem using remote sensing: a case study of the Mngazana mangrove forest in the eastern cape province.
- Authors: Madasa, Akhona
- Date: 2020-12
- Subjects: Remote sensing , Mangrove forests , Climatic changes
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10353/20815 , vital:46598
- Description: Coastal mangrove vegetation at Mngazana continues to be threatened and reduced periodically due to unmonitored harvesting. Covering an area of 148ha, the Mngazana mangrove forest remains unreserved, thus, research on the Mngazana mangroves is essential in order to monitor their state and sustainable management. Since in-situ monitoring of mangrove areas is both challenging and time-consuming, remote sensing technologies have been used to monitor these ecosystems. This study was carried out to monitor the impact of deforestation using ASTER satellite images over ten years: from 2008 - 2018. Validation was carried out by comparing classification results with the ground-referenced data, which yielded satisfactory agreement, with an overall accuracy of 94.64 percent and Kappa coefficient of 0.93 for 2008; and in 2009, the overall accuracy was 88.62 percent and a Kappa coefficient of 0.85. While the overall accuracy of 95.08 percent and a Kappa coefficient of 0.92 for 2016 and 2018 were observed, the overall accuracy of 93.58 percent and a Kappa coefficient of 0.91 was yielded. NDVI and SAVI indices were used as monitoring indicators. The results obtained in the study indicated that the canopy density of the mangrove forest remained unchanged in the years under investigation. However, insignificant changes in canopy density were identified between 2009 and 2016. , Thesis (MSc) (Applied Remote Sensing & GIS) -- University of Fort Hare, 2021
- Full Text:
- Date Issued: 2020-12
- Authors: Madasa, Akhona
- Date: 2020-12
- Subjects: Remote sensing , Mangrove forests , Climatic changes
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10353/20815 , vital:46598
- Description: Coastal mangrove vegetation at Mngazana continues to be threatened and reduced periodically due to unmonitored harvesting. Covering an area of 148ha, the Mngazana mangrove forest remains unreserved, thus, research on the Mngazana mangroves is essential in order to monitor their state and sustainable management. Since in-situ monitoring of mangrove areas is both challenging and time-consuming, remote sensing technologies have been used to monitor these ecosystems. This study was carried out to monitor the impact of deforestation using ASTER satellite images over ten years: from 2008 - 2018. Validation was carried out by comparing classification results with the ground-referenced data, which yielded satisfactory agreement, with an overall accuracy of 94.64 percent and Kappa coefficient of 0.93 for 2008; and in 2009, the overall accuracy was 88.62 percent and a Kappa coefficient of 0.85. While the overall accuracy of 95.08 percent and a Kappa coefficient of 0.92 for 2016 and 2018 were observed, the overall accuracy of 93.58 percent and a Kappa coefficient of 0.91 was yielded. NDVI and SAVI indices were used as monitoring indicators. The results obtained in the study indicated that the canopy density of the mangrove forest remained unchanged in the years under investigation. However, insignificant changes in canopy density were identified between 2009 and 2016. , Thesis (MSc) (Applied Remote Sensing & GIS) -- University of Fort Hare, 2021
- Full Text:
- Date Issued: 2020-12
Thermal studies on three common mangrove-associated ectotherms in Mngazana Estuary, with emphasis on the survival of the salt marsh crab, Parasesarma catenatum (Ortman 1897
- Nonyukela, Asandiswa Simamkele
- Authors: Nonyukela, Asandiswa Simamkele
- Date: 2020-02
- Subjects: Mangrove forests
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10353/20838 , vital:46627
- Description: Ecological data on the development and distribution of mangroves over time suggest that mangroves were strictly tropical in nature but have extended to higher latitudes during warmer periods. Species distribution models show that the mangrove range may have since 1963 expand by 17 km in 2020 and by as much as 68 km southwards by 2050. More climate data obtained, and modelling of future climate have increased interest in the thermal tolerance or organisms. Critical thermal maxima (CTMax) and thermal tolerance were employed to determine the thermal limits of common estuarine species associated with the mangrove forests at Mngazana Estuary. Three species were selected, each representing a medium within the mangrove environment: for water, i) Palaemon peringueyi; ii) for air, Cerithidea decollata; and iii) Parasesarma catenatum on the substratum. Animals were acclimated for 48 hrs following the thermal history of the environment. Each individual was exposed to constant rate of water temperature increase of 1°C.h-1. Different size classes (adult, sub-adult, juveniles) of crabs were used to determine the CTMax performance. Parasesarma catenatum showed intraspecific variability in CTMax in both air and water. Palaemon Peringueyi had a CTMax value of 33.8°C±1.96 while C. decollata had a CTMax of 39.6°C±2.76 and P. catenatum had a CTMax of 36,38 ±1,57 in water and 34,1 ±1,67 in air. Different size classes (Adult, Sub-adult, Juveniles) of crabs were used to further determine their CTMax performance. Parasesarma catenatum showed of intraspecific variability in CTMax in both air and water. Juvenile crabs showed higher CTMax in water than in air, while adult and sub-adults showed a higher CTMax in air. The size classes of P. catenatum (Adult, Sub-adult, Juveniles) were exposed to a range of salinity treatments from 5-65 for both shock and acclimated exposures. For acclimated exposures, crabs were acclimated down/up at change of 5-10 untill the test salinity was reached, at which point the crabs were exposed. For the shock exposure, the crabs were directly exposed to the test salinity from the holding salinity of 35. This study shows P. catenatum is euryhaline, tolerating salinities been 10 and 50. Survival was highest across all cohorts for the short-term (shock) exposure, suggesting prolonged exposure to hypo/hypersaline conditions may be detrimental for this keystone Mngazana Estuary species. Juven.ile populations showed the highest survival rate for both shock and acclimated exposure. This study highlights the importance of microhabitat variability and its effect on the tolerance of different species to abiotic factors and so may be useful in modelling the effects of climate change in these systems. , Thesis (MSc) (Zoology) -- University of Fort Hare, 2021
- Full Text:
- Date Issued: 2020-02
- Authors: Nonyukela, Asandiswa Simamkele
- Date: 2020-02
- Subjects: Mangrove forests
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10353/20838 , vital:46627
- Description: Ecological data on the development and distribution of mangroves over time suggest that mangroves were strictly tropical in nature but have extended to higher latitudes during warmer periods. Species distribution models show that the mangrove range may have since 1963 expand by 17 km in 2020 and by as much as 68 km southwards by 2050. More climate data obtained, and modelling of future climate have increased interest in the thermal tolerance or organisms. Critical thermal maxima (CTMax) and thermal tolerance were employed to determine the thermal limits of common estuarine species associated with the mangrove forests at Mngazana Estuary. Three species were selected, each representing a medium within the mangrove environment: for water, i) Palaemon peringueyi; ii) for air, Cerithidea decollata; and iii) Parasesarma catenatum on the substratum. Animals were acclimated for 48 hrs following the thermal history of the environment. Each individual was exposed to constant rate of water temperature increase of 1°C.h-1. Different size classes (adult, sub-adult, juveniles) of crabs were used to determine the CTMax performance. Parasesarma catenatum showed intraspecific variability in CTMax in both air and water. Palaemon Peringueyi had a CTMax value of 33.8°C±1.96 while C. decollata had a CTMax of 39.6°C±2.76 and P. catenatum had a CTMax of 36,38 ±1,57 in water and 34,1 ±1,67 in air. Different size classes (Adult, Sub-adult, Juveniles) of crabs were used to further determine their CTMax performance. Parasesarma catenatum showed of intraspecific variability in CTMax in both air and water. Juvenile crabs showed higher CTMax in water than in air, while adult and sub-adults showed a higher CTMax in air. The size classes of P. catenatum (Adult, Sub-adult, Juveniles) were exposed to a range of salinity treatments from 5-65 for both shock and acclimated exposures. For acclimated exposures, crabs were acclimated down/up at change of 5-10 untill the test salinity was reached, at which point the crabs were exposed. For the shock exposure, the crabs were directly exposed to the test salinity from the holding salinity of 35. This study shows P. catenatum is euryhaline, tolerating salinities been 10 and 50. Survival was highest across all cohorts for the short-term (shock) exposure, suggesting prolonged exposure to hypo/hypersaline conditions may be detrimental for this keystone Mngazana Estuary species. Juven.ile populations showed the highest survival rate for both shock and acclimated exposure. This study highlights the importance of microhabitat variability and its effect on the tolerance of different species to abiotic factors and so may be useful in modelling the effects of climate change in these systems. , Thesis (MSc) (Zoology) -- University of Fort Hare, 2021
- Full Text:
- Date Issued: 2020-02
Mesozooplankton dynamics in a biogeographical transition zone estuary
- Deyzel, (Shaun) Herklaas Phillipus
- Authors: Deyzel, (Shaun) Herklaas Phillipus
- Date: 2012
- Subjects: Marine zooplankton -- South Africa , Benthos -- South Africa , Estuarine ecology -- South Africa , Mangrove forests
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:10687 , http://hdl.handle.net/10948/d1007901 , Marine zooplankton -- South Africa , Benthos -- South Africa , Estuarine ecology -- South Africa , Mangrove forests
- Description: This thesis presents the first intensive community-level investigation of the mesozooplankton from a biogeographical transition zone estuary. The Mgazana Estuary is located along a rural, semi-undeveloped part of South Africa’s east coast, believed to represent a transition zone between the subtropical and warm-temperate biogeographical zones. The research represented in this thesis involves data collected over a five year period between 2002 and 2006, with additional data collection made in 2008. The study focussed on five areas of investigation, the first of which investigated the physico-chemical dynamics of the Mgazana Estuary. The Mgazana Estuary exhibited marked vertical, horizontal and regional structures in the hydrological environment. Prominent vertical and horizontal stratification characterised summer months. A substantial turbidity front was observed in the lower estuary during summer and winter. The upper estuary was marked by considerable variation in multiple variables but especially salinity. These structures appeared to have shifted in position over the horizontal plane, which was attributed to variation in freshwater flow. The second study focused on the spatial dynamics of mesozooplankton in the Mgazana Estuary. The zooplankton was rich and in terms of composition typical of mangrove systems. The Copepoda were dominant, numerically and in terms of taxonomic representation. Calanoids Acartiella natalensis and Pseudodiaptomus hessei characterised middle and upper reaches in summer and mostly upper reaches in winter. On community level, a highly structured assemblage arrangement was observed during summer and winter months. These trends were further scrutinised under the theoretical framework of ecological boundaries. In so doing, an agreeable spatial association emerged between specific assemblages and their environments. These trends were concluded to reflect ecoclinal as well as ecotonal properties, the latter describing interactions over narrow spatial bands of marked changes in turbidity. The third study investigated flooding events as short-lived extreme meteorological events and the influence on zooplankton. Within this regard, second-stage multivariate statistics was used to assess year-to-year variability in assemblage structures on whole-system and regional scales. The impact of two major flooding events that flushed the estuary some days prior to sampling could clearly be elucidated. Flooding emerged as a significant source of inter-annual variability in the zooplankton of the Mgazana Estuary. Second-stage multivariate analysis proved to be an effective analytical strategy for investigating inter-annual variability in species assemblage structures. Results from the preceding study prompted a detailed investigation into the spatio-temporal dynamics of Acartiella natalensis, the most important zooplankton species of the system aimed at elucidating flood responses. Acartiella natalensis showed indication of temporal arrest in association with flooding events in a similar fashion as is observed in seasonal variation trends in estuaries towards its geographical distribution limit south of the study area. It was concluded that A. natalensis was severely affected by floods and the possibility exist for entrainment of entire populations from the estuary during flooding events. The final study tested the hypothesis of post-flood propagation from a resting egg bank in the sediments of the Mgazana Estuary. Preliminary data revealed that numerous eggs were present in the sediments. Nauplii hatched from eggs under laboratory conditions were identified as belonging to the family Acartiidae. The preliminary mode of diapause is presented as a schematic model, emphasising the role of freshwater flow and specific environmental variables. This was the first discovery of resting eggs from a subtropical estuary from South Africa. It is hoped that the findings of this study would give rise to new research initiatives investigating the importance of resting stages in estuarine and coastal Copepoda species and the role such reproductive strategies may play in estuarine functioning.
- Full Text:
- Date Issued: 2012
- Authors: Deyzel, (Shaun) Herklaas Phillipus
- Date: 2012
- Subjects: Marine zooplankton -- South Africa , Benthos -- South Africa , Estuarine ecology -- South Africa , Mangrove forests
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:10687 , http://hdl.handle.net/10948/d1007901 , Marine zooplankton -- South Africa , Benthos -- South Africa , Estuarine ecology -- South Africa , Mangrove forests
- Description: This thesis presents the first intensive community-level investigation of the mesozooplankton from a biogeographical transition zone estuary. The Mgazana Estuary is located along a rural, semi-undeveloped part of South Africa’s east coast, believed to represent a transition zone between the subtropical and warm-temperate biogeographical zones. The research represented in this thesis involves data collected over a five year period between 2002 and 2006, with additional data collection made in 2008. The study focussed on five areas of investigation, the first of which investigated the physico-chemical dynamics of the Mgazana Estuary. The Mgazana Estuary exhibited marked vertical, horizontal and regional structures in the hydrological environment. Prominent vertical and horizontal stratification characterised summer months. A substantial turbidity front was observed in the lower estuary during summer and winter. The upper estuary was marked by considerable variation in multiple variables but especially salinity. These structures appeared to have shifted in position over the horizontal plane, which was attributed to variation in freshwater flow. The second study focused on the spatial dynamics of mesozooplankton in the Mgazana Estuary. The zooplankton was rich and in terms of composition typical of mangrove systems. The Copepoda were dominant, numerically and in terms of taxonomic representation. Calanoids Acartiella natalensis and Pseudodiaptomus hessei characterised middle and upper reaches in summer and mostly upper reaches in winter. On community level, a highly structured assemblage arrangement was observed during summer and winter months. These trends were further scrutinised under the theoretical framework of ecological boundaries. In so doing, an agreeable spatial association emerged between specific assemblages and their environments. These trends were concluded to reflect ecoclinal as well as ecotonal properties, the latter describing interactions over narrow spatial bands of marked changes in turbidity. The third study investigated flooding events as short-lived extreme meteorological events and the influence on zooplankton. Within this regard, second-stage multivariate statistics was used to assess year-to-year variability in assemblage structures on whole-system and regional scales. The impact of two major flooding events that flushed the estuary some days prior to sampling could clearly be elucidated. Flooding emerged as a significant source of inter-annual variability in the zooplankton of the Mgazana Estuary. Second-stage multivariate analysis proved to be an effective analytical strategy for investigating inter-annual variability in species assemblage structures. Results from the preceding study prompted a detailed investigation into the spatio-temporal dynamics of Acartiella natalensis, the most important zooplankton species of the system aimed at elucidating flood responses. Acartiella natalensis showed indication of temporal arrest in association with flooding events in a similar fashion as is observed in seasonal variation trends in estuaries towards its geographical distribution limit south of the study area. It was concluded that A. natalensis was severely affected by floods and the possibility exist for entrainment of entire populations from the estuary during flooding events. The final study tested the hypothesis of post-flood propagation from a resting egg bank in the sediments of the Mgazana Estuary. Preliminary data revealed that numerous eggs were present in the sediments. Nauplii hatched from eggs under laboratory conditions were identified as belonging to the family Acartiidae. The preliminary mode of diapause is presented as a schematic model, emphasising the role of freshwater flow and specific environmental variables. This was the first discovery of resting eggs from a subtropical estuary from South Africa. It is hoped that the findings of this study would give rise to new research initiatives investigating the importance of resting stages in estuarine and coastal Copepoda species and the role such reproductive strategies may play in estuarine functioning.
- Full Text:
- Date Issued: 2012
Response of mangroves in South Africa to anthropogenic and natural impacts
- Hoppe-Speer, Sabine Clara-Lisa
- Authors: Hoppe-Speer, Sabine Clara-Lisa
- Date: 2012
- Subjects: Mangrove forests , Climatic changes , Forest resilience
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:10630 , http://hdl.handle.net/10948/d1012123 , Mangrove forests , Climatic changes , Forest resilience
- Description: The total mangrove area cover in South Africa is 1631.7 ha, with the largest area cover in a few estuaries in the KwaZulu-Natal Province (1391.1 ha) and the remainder recorded in the Eastern Cape Province with 240.6 ha. This represents 0.05 percent of Africa‟s mangrove area cover and although small adds irreplaceable value to the biodiversity of South Africa. Mangroves are threatened by over-utilization through harvesting for firewood and building materials as well as excessive browsing and trampling by livestock. The objective of this study was to investigate the response of mangroves to different stressors from natural change as well as anthropogenic pressures. This was done by identifying pressures, measuring area cover, population structure and environmental parameters such as sediment characteristics. Mangroves in 17 estuaries along the east coast were investigated. Population structure and the area covered by mangroves in 2011/2012 were compared with data from the same area for 1999. Detailed studies were conducted in St. Lucia Estuary to investigate the response of mangroves to reduced tidal flooding; mangrove expansion at a latitudinal limit in a protected area at Nahoon Estuary was studied and the effect of cattle browsing on mangroves was measured at Nxaxo Estuary. The St. Lucia Estuary (28°S; 32°E) represented a unique study site as the mouth has been closed to the sea since 2002 and the mangrove habitats have been non-tidal. St. Lucia Estuary is both a Ramsar and World Heritage site and therefore understanding the response of mangroves to changes in the environment is important. In 2010 sediment characteristics and mangrove population structure were measured at four sites which were chosen to represent different salinity and water level conditions. The site fringing the main channel had the highest density of mangrove seedlings and saplings. The dry site had a lower density of mangroves with mostly only tall adult trees and few saplings. Mangrove tree height and density increased at sites with high sediment moisture and low surface sediment salinity. Few seedlings and saplings were found at sites with dry surface sediment and high salinity. Long term data are needed to assess the influence of mouth closure on recruitment and survival of the mangrove forest at St. Lucia Estuary; however this study has shown that sediment characteristics are unfavourable for mangrove growth at sites now characterized by a lack of tidal flooding. It is not known when exactly the mangroves were planted in Nahoon Estuary (32°S; 27° E), East London, but it is suspected that this was in the early 1970s. Avicennia marina (Forrsk.)Vierh. was planted first, followed a few years later by the planting of Bruguiera gymnorrhiza (L.) Lam. and Rhizophora mucronata (L.) among the larger A. marina trees. Surprisingly the mangrove population appears to be thriving and this study tested the hypothesis that mangroves have expanded and replaced salt marsh over a 33 year period. This study provides important information on mangroves growing at higher latitudes, where they were thought to not occur naturally due to lower annual average temperatures. It further provides insights on future scenarios of possible shifts in vegetation types due to climate change at one of the most southerly distribution sites worldwide. The expansion of mangroves was measured over a 33 year period (1978 - 2011) using past aerial photographs and Esri ArcGIS Desktop 10 software. In addition, field surveys were completed in 2011 to determine the population structure of the present mangrove forest and relate this to environmental conditions. The study showed that mangrove area cover increased linearly at a rate of 0.06 ha-1 expanding over a bare mudflat area, while the salt marsh area cover also increased (0.09 ha-1) but was found to be variable over time. The mangrove area is still small (< 2 ha) and at present no competition between mangroves and salt marsh can be deduced. Instead the area has the ability to maintain high biodiversity and biomass. Avicennia marina was the dominant mangrove species and had high recruitment (seedling density was 33 822 ± 16 364 ha-1) but only a few Bruguiera gymnorrhiza and Rhizophora mucronata individuals were found (< 10 adult trees). The site provides opportunities for studies on mangrove / salt marsh interactions in response to a changing climate at the most southern limit of mangrove distribution in Africa. This research has provided the baseline data, permanent quadrats and tagged trees to be used in future long-term monitoring of population growth and sediment characteristics. At Nxaxo Estuary (32°S; 28°E) the response of mangrove trees (Avicennia marina) to cattle browsing and trampling was investigated by using cattle exclusion plots. Exclusion plots were established by fencing in five 25 m2 quadrats and adjacent to each experimental quadrat a control quadrat (not fenced in, 25 m2) was set-up. Trees were tagged and measured annually from 2010 to 2012. Sediment salinity, pH, moisture, organic content, compaction as well as sediment particle size was also measured in each quadrat. Sediment characteristics did not vary between control and experimental plots but did show changes between the years. The mangrove trees in the cattle exclusion plots grew exponentially over a period of two years. There was a significant increase in mean plant height (5.41 ± 0.53 cm), crown volume (0.54 ± 0.01 m3) and crown diameter (7.09 ± 0.60 cm) from 2010 to 2012. Trees in the control plots had significantly lower growth (p < 0.05). There was a decrease in plant height (-0.07 ± 0.67cm1) and only small increases in crown volume (0.14 ± 0.1 m3) and crown diameter (2.03 ± 2.61 cm). The research showed that browsing on mangroves by cattle stunts growth and causes a shrubby appearance as a result of coppicing. The browsed trees were dwarfed with horizontal spreading of branches and intact foliage close to the ground while the plants in the cattle exclusion plots showed an increase in vertical growth and expansion. In the cattle exclusion plots there was a significantly higher percentage of flowering (67 percent) and fruiting (39 percent) trees in 2012 compared to the control sites where 34 percent of the plants were flowering and 5.4 percent of the plants carried immature propagules. Observations in the field also indicated that cattle had trampled a number of seedlings thus influencing mangrove survival. The study concluded that browsing changes the morphological structure of mangrove trees and reduces growth and seedling establishment. This is an additional stress that the mangroves are exposed to in rural areas where cattle are allowed to roam free. Seventeen permanently open estuaries provide habitat for mangrove forests along the former Transkei coast. This part of the Eastern Cape is mostly undeveloped and difficult to access. Mangrove area cover, species distribution, population structure and health of the mangrove habitat were compared with results from previous studies in 1982 and 1999. The mangrove Bruguiera gymnorrhiza had the densest stands and was widely distributed as it was present in 13 of the 17 estuaries. Avicennia marina was dominant in those estuaries which had the largest area cover of mangroves and was present in 10 estuaries, while Rhizophora mucronata was rare and only present in five estuaries. Anthropogenic and natural impacts were noted within the mangrove habitats in each of these estuaries. Harvesting of mangrove wood, livestock browsing and trampling and footpaths occurred in most of the estuaries (> 70 percent). It was observed that browsing on trees resulted in a clear browse-line and browsing on propagules mainly by goats resulted in reduced seedling establishment in most of the estuaries except those in protected areas. Mangroves had re-established in estuaries where they had been previously lost but mouth closure due to drought and sea storms resulted in the mass die back of mangroves in the Kobonqaba Estuary. There was a total loss of 31.5 ha in mangrove area cover in the last 30 years and this was a total reduction of 10.5 ha (11 percent) for every decade. This is high considering that the present total mangrove area cover is only 240.6 ha for all the Transkei estuaries. In this study it was concluded that the anthropogenic impacts such as livestock browsing and trampling as well as harvesting in these estuaries contributed most to the mangrove degradation as these are continuous pressures occurring over long periods and are expected to increase in future with increasing human population. Natural changes such as sea storms occur less frequently but could result in large scale destruction over shorter periods. Examples of these are mouth closure that result in mangrove mass mortality as well as strong floods which destroy forest by scouring of the banks.
- Full Text:
- Date Issued: 2012
- Authors: Hoppe-Speer, Sabine Clara-Lisa
- Date: 2012
- Subjects: Mangrove forests , Climatic changes , Forest resilience
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:10630 , http://hdl.handle.net/10948/d1012123 , Mangrove forests , Climatic changes , Forest resilience
- Description: The total mangrove area cover in South Africa is 1631.7 ha, with the largest area cover in a few estuaries in the KwaZulu-Natal Province (1391.1 ha) and the remainder recorded in the Eastern Cape Province with 240.6 ha. This represents 0.05 percent of Africa‟s mangrove area cover and although small adds irreplaceable value to the biodiversity of South Africa. Mangroves are threatened by over-utilization through harvesting for firewood and building materials as well as excessive browsing and trampling by livestock. The objective of this study was to investigate the response of mangroves to different stressors from natural change as well as anthropogenic pressures. This was done by identifying pressures, measuring area cover, population structure and environmental parameters such as sediment characteristics. Mangroves in 17 estuaries along the east coast were investigated. Population structure and the area covered by mangroves in 2011/2012 were compared with data from the same area for 1999. Detailed studies were conducted in St. Lucia Estuary to investigate the response of mangroves to reduced tidal flooding; mangrove expansion at a latitudinal limit in a protected area at Nahoon Estuary was studied and the effect of cattle browsing on mangroves was measured at Nxaxo Estuary. The St. Lucia Estuary (28°S; 32°E) represented a unique study site as the mouth has been closed to the sea since 2002 and the mangrove habitats have been non-tidal. St. Lucia Estuary is both a Ramsar and World Heritage site and therefore understanding the response of mangroves to changes in the environment is important. In 2010 sediment characteristics and mangrove population structure were measured at four sites which were chosen to represent different salinity and water level conditions. The site fringing the main channel had the highest density of mangrove seedlings and saplings. The dry site had a lower density of mangroves with mostly only tall adult trees and few saplings. Mangrove tree height and density increased at sites with high sediment moisture and low surface sediment salinity. Few seedlings and saplings were found at sites with dry surface sediment and high salinity. Long term data are needed to assess the influence of mouth closure on recruitment and survival of the mangrove forest at St. Lucia Estuary; however this study has shown that sediment characteristics are unfavourable for mangrove growth at sites now characterized by a lack of tidal flooding. It is not known when exactly the mangroves were planted in Nahoon Estuary (32°S; 27° E), East London, but it is suspected that this was in the early 1970s. Avicennia marina (Forrsk.)Vierh. was planted first, followed a few years later by the planting of Bruguiera gymnorrhiza (L.) Lam. and Rhizophora mucronata (L.) among the larger A. marina trees. Surprisingly the mangrove population appears to be thriving and this study tested the hypothesis that mangroves have expanded and replaced salt marsh over a 33 year period. This study provides important information on mangroves growing at higher latitudes, where they were thought to not occur naturally due to lower annual average temperatures. It further provides insights on future scenarios of possible shifts in vegetation types due to climate change at one of the most southerly distribution sites worldwide. The expansion of mangroves was measured over a 33 year period (1978 - 2011) using past aerial photographs and Esri ArcGIS Desktop 10 software. In addition, field surveys were completed in 2011 to determine the population structure of the present mangrove forest and relate this to environmental conditions. The study showed that mangrove area cover increased linearly at a rate of 0.06 ha-1 expanding over a bare mudflat area, while the salt marsh area cover also increased (0.09 ha-1) but was found to be variable over time. The mangrove area is still small (< 2 ha) and at present no competition between mangroves and salt marsh can be deduced. Instead the area has the ability to maintain high biodiversity and biomass. Avicennia marina was the dominant mangrove species and had high recruitment (seedling density was 33 822 ± 16 364 ha-1) but only a few Bruguiera gymnorrhiza and Rhizophora mucronata individuals were found (< 10 adult trees). The site provides opportunities for studies on mangrove / salt marsh interactions in response to a changing climate at the most southern limit of mangrove distribution in Africa. This research has provided the baseline data, permanent quadrats and tagged trees to be used in future long-term monitoring of population growth and sediment characteristics. At Nxaxo Estuary (32°S; 28°E) the response of mangrove trees (Avicennia marina) to cattle browsing and trampling was investigated by using cattle exclusion plots. Exclusion plots were established by fencing in five 25 m2 quadrats and adjacent to each experimental quadrat a control quadrat (not fenced in, 25 m2) was set-up. Trees were tagged and measured annually from 2010 to 2012. Sediment salinity, pH, moisture, organic content, compaction as well as sediment particle size was also measured in each quadrat. Sediment characteristics did not vary between control and experimental plots but did show changes between the years. The mangrove trees in the cattle exclusion plots grew exponentially over a period of two years. There was a significant increase in mean plant height (5.41 ± 0.53 cm), crown volume (0.54 ± 0.01 m3) and crown diameter (7.09 ± 0.60 cm) from 2010 to 2012. Trees in the control plots had significantly lower growth (p < 0.05). There was a decrease in plant height (-0.07 ± 0.67cm1) and only small increases in crown volume (0.14 ± 0.1 m3) and crown diameter (2.03 ± 2.61 cm). The research showed that browsing on mangroves by cattle stunts growth and causes a shrubby appearance as a result of coppicing. The browsed trees were dwarfed with horizontal spreading of branches and intact foliage close to the ground while the plants in the cattle exclusion plots showed an increase in vertical growth and expansion. In the cattle exclusion plots there was a significantly higher percentage of flowering (67 percent) and fruiting (39 percent) trees in 2012 compared to the control sites where 34 percent of the plants were flowering and 5.4 percent of the plants carried immature propagules. Observations in the field also indicated that cattle had trampled a number of seedlings thus influencing mangrove survival. The study concluded that browsing changes the morphological structure of mangrove trees and reduces growth and seedling establishment. This is an additional stress that the mangroves are exposed to in rural areas where cattle are allowed to roam free. Seventeen permanently open estuaries provide habitat for mangrove forests along the former Transkei coast. This part of the Eastern Cape is mostly undeveloped and difficult to access. Mangrove area cover, species distribution, population structure and health of the mangrove habitat were compared with results from previous studies in 1982 and 1999. The mangrove Bruguiera gymnorrhiza had the densest stands and was widely distributed as it was present in 13 of the 17 estuaries. Avicennia marina was dominant in those estuaries which had the largest area cover of mangroves and was present in 10 estuaries, while Rhizophora mucronata was rare and only present in five estuaries. Anthropogenic and natural impacts were noted within the mangrove habitats in each of these estuaries. Harvesting of mangrove wood, livestock browsing and trampling and footpaths occurred in most of the estuaries (> 70 percent). It was observed that browsing on trees resulted in a clear browse-line and browsing on propagules mainly by goats resulted in reduced seedling establishment in most of the estuaries except those in protected areas. Mangroves had re-established in estuaries where they had been previously lost but mouth closure due to drought and sea storms resulted in the mass die back of mangroves in the Kobonqaba Estuary. There was a total loss of 31.5 ha in mangrove area cover in the last 30 years and this was a total reduction of 10.5 ha (11 percent) for every decade. This is high considering that the present total mangrove area cover is only 240.6 ha for all the Transkei estuaries. In this study it was concluded that the anthropogenic impacts such as livestock browsing and trampling as well as harvesting in these estuaries contributed most to the mangrove degradation as these are continuous pressures occurring over long periods and are expected to increase in future with increasing human population. Natural changes such as sea storms occur less frequently but could result in large scale destruction over shorter periods. Examples of these are mouth closure that result in mangrove mass mortality as well as strong floods which destroy forest by scouring of the banks.
- Full Text:
- Date Issued: 2012
- «
- ‹
- 1
- ›
- »