Photo-physicochemical studies and photodynamic therapy activity of indium and gallium phthalocyanines
- Tshangana, Charmaine Sesethu
- Authors: Tshangana, Charmaine Sesethu
- Date: 2015
- Subjects: Quantum dots , Nanoparticles , Photochemotherapy , Phthalocyanines
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4548 , http://hdl.handle.net/10962/d1017928
- Description: The potential toxicity of seven different types of quantum dots without shell (L-cysteine-CdTe, TGA-CdTe, MPA-CdTe, TGA-CdSe) and with the shell (GSH-CdSe@ZnS, GSH-CdTe@ZnS,) with different capping agents were evaluated. The growth inhibitory effects of the various quantum dots on human pancreatic BON cancerous cells were determined. The least cytotoxic of the various quantum dots synthesized and the one displaying the lowest growth inhibitory potential and no embryotoxicity was determined to be the GSH-CdSe@ZnS quantum dots. The GSH-CdSe@ZnS quantum dots were then conjugated to gallium, aluminium and indium octacarboxy phthalocyanine and the photophysical behaviour of the conjugates studied for potential use in photodynamic therapy and imaging applications. The sizes, morphology, thermal stability and confirmation of successful conjugation was determined using X-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR), respectively. The study was extended by conjugating amino functionalized magnetic nanoparticles (Fe₃O₄) to indium octacarboxy phthalocyanine to study the photophysical behaviour of the conjugate as a potential bi-functional anti-cancer agent (hyperthermia and photodynamic therapy applications). A three-in-one multifunctional nanocomposite comprising of the quantum dots, magnetic nanoparticles and indium octacarboxy phthalocyanine was developed with the aim of developing a multifunctional composite that is able detect, monitor and treat cancer. All conjugates showed improved and enhanced photophysical behaviour. Finally, GSH-CdSe@ZnS conjugated to aluminium octacarboxy phthalocyanine was applied in human pancreatic carcinoid BON cells. The conjugates induced cell death dose-dependently.
- Full Text:
- Date Issued: 2015
- Authors: Tshangana, Charmaine Sesethu
- Date: 2015
- Subjects: Quantum dots , Nanoparticles , Photochemotherapy , Phthalocyanines
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4548 , http://hdl.handle.net/10962/d1017928
- Description: The potential toxicity of seven different types of quantum dots without shell (L-cysteine-CdTe, TGA-CdTe, MPA-CdTe, TGA-CdSe) and with the shell (GSH-CdSe@ZnS, GSH-CdTe@ZnS,) with different capping agents were evaluated. The growth inhibitory effects of the various quantum dots on human pancreatic BON cancerous cells were determined. The least cytotoxic of the various quantum dots synthesized and the one displaying the lowest growth inhibitory potential and no embryotoxicity was determined to be the GSH-CdSe@ZnS quantum dots. The GSH-CdSe@ZnS quantum dots were then conjugated to gallium, aluminium and indium octacarboxy phthalocyanine and the photophysical behaviour of the conjugates studied for potential use in photodynamic therapy and imaging applications. The sizes, morphology, thermal stability and confirmation of successful conjugation was determined using X-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR), respectively. The study was extended by conjugating amino functionalized magnetic nanoparticles (Fe₃O₄) to indium octacarboxy phthalocyanine to study the photophysical behaviour of the conjugate as a potential bi-functional anti-cancer agent (hyperthermia and photodynamic therapy applications). A three-in-one multifunctional nanocomposite comprising of the quantum dots, magnetic nanoparticles and indium octacarboxy phthalocyanine was developed with the aim of developing a multifunctional composite that is able detect, monitor and treat cancer. All conjugates showed improved and enhanced photophysical behaviour. Finally, GSH-CdSe@ZnS conjugated to aluminium octacarboxy phthalocyanine was applied in human pancreatic carcinoid BON cells. The conjugates induced cell death dose-dependently.
- Full Text:
- Date Issued: 2015
The photophysical properties of low symmetry phthalocyanines in conjunction with quantum dots
- Authors: D'Souza, Sarah
- Date: 2011
- Subjects: Phthalocyanines , Photochemistry , Zinc , Quantum dots , Spectrum analysis , Nanoparticles
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4331 , http://hdl.handle.net/10962/d1004992 , Phthalocyanines , Photochemistry , Zinc , Quantum dots , Spectrum analysis , Nanoparticles
- Description: he synthesis, extensive spectroscopic characterization and photophysical studies of low symmetry zinc phthalocyanine have been conducted. Comparisons have been made taking into consideration the influence of the solvent properties as well as substituent type and position. Photosensitizing properties of the zinc phthalocyanine derivatives in the presence of thiol capped CdTe quantum dots (QDs) were compared. The QDs were used as energy transfer donors and to facilitate with energy transfer through Förster resonance energy transfer (FRET) from the QDs to the MPcs. The linkage of unsymmetrically substituted 4-monoaminophenoxy zinc phthalocyanine (ZnAPPc) to CdTe quantum dots capped with mercaptopropionic acid (MPA), L-cysteine (L-cys) or thioglycolic acid (TGA) has been achieved using the coupling agents ethyl-N3 dimethylaminopropyl)carbodiimide (EDC) and N-hydroxy succinimide (NHS), which facilitate formation of an amide bond to form the QD-ZnAPPc-linked complex. The formation of the amide bond was confirmed using UV-Vis, Raman and IR spectroscopies, as well as AFM (atomic force microscopy). Förster resonance energy transfer (FRET) resulted in stimulated emission of ZnAPPc in both the linked (QDZnAPPc-linked) and mixed (QD:ZnAPPc-mixed) conjugates for MPA only. The linked L-cys and TGA complexes (QD-ZnAPPc-linked) gave the largest FRET efficiencies hence showing the advantages of covalent linking. Fluorescence quantum yields of QDs were decreased in QD:ZnAPPc-mixed and QD:ZnAPPc-linked. High triplet state quantum yields were obtained for the linked QD-phthalocyanine derivatives (ZnAPPc)and monoaminozinc phthalocyanine (ZnAPc) compared to when ZnAPPc and ZnAPc were mixed with MPA QDs without a chemical bond.
- Full Text:
- Date Issued: 2011
- Authors: D'Souza, Sarah
- Date: 2011
- Subjects: Phthalocyanines , Photochemistry , Zinc , Quantum dots , Spectrum analysis , Nanoparticles
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4331 , http://hdl.handle.net/10962/d1004992 , Phthalocyanines , Photochemistry , Zinc , Quantum dots , Spectrum analysis , Nanoparticles
- Description: he synthesis, extensive spectroscopic characterization and photophysical studies of low symmetry zinc phthalocyanine have been conducted. Comparisons have been made taking into consideration the influence of the solvent properties as well as substituent type and position. Photosensitizing properties of the zinc phthalocyanine derivatives in the presence of thiol capped CdTe quantum dots (QDs) were compared. The QDs were used as energy transfer donors and to facilitate with energy transfer through Förster resonance energy transfer (FRET) from the QDs to the MPcs. The linkage of unsymmetrically substituted 4-monoaminophenoxy zinc phthalocyanine (ZnAPPc) to CdTe quantum dots capped with mercaptopropionic acid (MPA), L-cysteine (L-cys) or thioglycolic acid (TGA) has been achieved using the coupling agents ethyl-N3 dimethylaminopropyl)carbodiimide (EDC) and N-hydroxy succinimide (NHS), which facilitate formation of an amide bond to form the QD-ZnAPPc-linked complex. The formation of the amide bond was confirmed using UV-Vis, Raman and IR spectroscopies, as well as AFM (atomic force microscopy). Förster resonance energy transfer (FRET) resulted in stimulated emission of ZnAPPc in both the linked (QDZnAPPc-linked) and mixed (QD:ZnAPPc-mixed) conjugates for MPA only. The linked L-cys and TGA complexes (QD-ZnAPPc-linked) gave the largest FRET efficiencies hence showing the advantages of covalent linking. Fluorescence quantum yields of QDs were decreased in QD:ZnAPPc-mixed and QD:ZnAPPc-linked. High triplet state quantum yields were obtained for the linked QD-phthalocyanine derivatives (ZnAPPc)and monoaminozinc phthalocyanine (ZnAPc) compared to when ZnAPPc and ZnAPc were mixed with MPA QDs without a chemical bond.
- Full Text:
- Date Issued: 2011
- «
- ‹
- 1
- ›
- »