Optimization of the vermidegradation of cow dung – waste paper mixtures
- Authors: Unuofin, Frank Oshioname
- Date: 2014
- Subjects: Biodegradation , Vermicomposting , Waste paper , Earthworm culture , Phosphatic fertilizers
- Language: English
- Type: Thesis , Doctoral , PhD (Soil Science)
- Identifier: vital:11966 , http://hdl.handle.net/10353/d1021276 , Biodegradation , Vermicomposting , Waste paper , Earthworm culture , Phosphatic fertilizers
- Description: Vermicomposting is an eco-friendly waste management strategy. Its successful performance necessitate that key functioning parameters like earthworm stocking density, nutrient enrichment be established for each target waste/waste mixture. One main target waste mixture in South Africa, and in the University of Fort Hare in particular is waste paper mixed with cow dung and rock phosphate (RP) for phosphorus (P) enrichment. This study was carried out to address the following specific objectives, to determine (i) the effect of Eisenia fetida stocking density on the bioconversion of cow dung waste paper mixtures enriched with rock phosphate, (ii) an optimum application rate of low grade South African Rock Phosphate and time required for efficient vermicomposting of cow dung-waste paper mixtures, and (iii) to determine if the phosphorus in RP is responsible for improved biodegradation during the vermicomposting of cow dung-waste paper mixtures. Results of this study revealed that bioconversion of cow dung waste paper mixtures enriched with RP was highly dependent on E. fetida stocking density and time. The stocking density of 12.5 g-worms kg-1 feedstock of the mixtures resulted in highest earthworm growth rate and humification of the waste mixture as reflected by a C: N ratio of < 12, polymerization index (PI) or humic acid/fulvic acid ratio of > 1.9, and a humification index of >13 for the cow dung waste paper mixtures. A germination test carried out also revealed that the resultant vermicompost had no inhibitory effect on the germination of tomato, carrot, and radish. Extractable P increased with stocking density up to 22.5 g-worm kg-1 feedstock, suggesting that for maximum P release from RP enriched wastes, a high stocking density should be considered. Informed by an earlier study which demonstrated that RP improved vermidegration, a follow up study was done to determine the optimum amount of rock phosphate necessary for efficient vermidegradation of cow dung waste paper mixtures while ensuring a phosphorus rich vermicompost. The results showed that addition of RP at rates ≤ 1% P as RP efficiently enhanced the bioconversion of cow dung waste paper mixtures as reflected by low C: N ratio, high polymerization index (PI), HI and HR used as maturity indicators for matured compost. Final vermicompost products obtained at minimum amounts of RP application rates resulted highly humified vermicompost with finer morphological structure, with no inhibitory effect on the germination of tomato, carrot, and radish similar to the ones obtained at higher RP rates. The findings suggest that 1%P as RP application rate is optimum for efficient vermidegradation of cow dung waste paper mixtures. Since P or Ca happen to be the most prevalent elements in most rock phosphate used for compost enrichment, a study was carried out to determine if P or Ca in RP is predominantly responsible for the improved biodegradation of cow-dung waste paper mixture observed during vermicomposting. Phosphorus sources in form of triple superphosphate (TSP), phosphoric acid (PHA) and Ca in form of calcium chloride (CaCl2) salt were compared with rock phosphate. The results from the study indicated that TSP, a water soluble P source, resulted in greater and faster degradation of the waste mixtures than RP while the Ca source had the least effect. With TSP incorporation the compost maturity C: N ratio of 12 was reached within 28 days while RP, PHA and CaCl2 needed 42, 56 and more than 56 days, respectively. The results indicated that P was largely responsible for the enhanced bioconversion of the waste mixtures. This appeared linked to the effect of P to stimulate microbial growth as reflected by higher microbial biomass carbon levels where water soluble P sources were applied. The C: N ratios of the final vermicomposts at day 56 were 10, 11.5, 13, 14, and 23 for TSP, RP,PHA, Control (No P added) and CaCl2 treatments, respectively. Although TSP gave superior superior performance, RP may still be the preferred additive in the vermicomposting of cow dung waste paper mixtures as it is cheaper and produces mature compost in a shorter period of 8 weeks. Generally, the results of this study have shown that the vemidegradation of cow dung waste paper mixtures can be optimized through adoption of an E. fetida stocking density of 12.5g- worm kg-1 and an RP incorporation rate of 1% P as RP. However, higher rates of RPincorporation may be adopted where final vermicomposts with higher P fertilizer value are desired. Phosphorus appears to be the RP constituent responsible for its ability to enhance the vermidegradation of cow dung waste paper mixtures. Future studies should explore the effectiveness of other P-bearing minerals for their effectiveness in enhancing vemidegradation.
- Full Text:
- Date Issued: 2014
- Authors: Unuofin, Frank Oshioname
- Date: 2014
- Subjects: Biodegradation , Vermicomposting , Waste paper , Earthworm culture , Phosphatic fertilizers
- Language: English
- Type: Thesis , Doctoral , PhD (Soil Science)
- Identifier: vital:11966 , http://hdl.handle.net/10353/d1021276 , Biodegradation , Vermicomposting , Waste paper , Earthworm culture , Phosphatic fertilizers
- Description: Vermicomposting is an eco-friendly waste management strategy. Its successful performance necessitate that key functioning parameters like earthworm stocking density, nutrient enrichment be established for each target waste/waste mixture. One main target waste mixture in South Africa, and in the University of Fort Hare in particular is waste paper mixed with cow dung and rock phosphate (RP) for phosphorus (P) enrichment. This study was carried out to address the following specific objectives, to determine (i) the effect of Eisenia fetida stocking density on the bioconversion of cow dung waste paper mixtures enriched with rock phosphate, (ii) an optimum application rate of low grade South African Rock Phosphate and time required for efficient vermicomposting of cow dung-waste paper mixtures, and (iii) to determine if the phosphorus in RP is responsible for improved biodegradation during the vermicomposting of cow dung-waste paper mixtures. Results of this study revealed that bioconversion of cow dung waste paper mixtures enriched with RP was highly dependent on E. fetida stocking density and time. The stocking density of 12.5 g-worms kg-1 feedstock of the mixtures resulted in highest earthworm growth rate and humification of the waste mixture as reflected by a C: N ratio of < 12, polymerization index (PI) or humic acid/fulvic acid ratio of > 1.9, and a humification index of >13 for the cow dung waste paper mixtures. A germination test carried out also revealed that the resultant vermicompost had no inhibitory effect on the germination of tomato, carrot, and radish. Extractable P increased with stocking density up to 22.5 g-worm kg-1 feedstock, suggesting that for maximum P release from RP enriched wastes, a high stocking density should be considered. Informed by an earlier study which demonstrated that RP improved vermidegration, a follow up study was done to determine the optimum amount of rock phosphate necessary for efficient vermidegradation of cow dung waste paper mixtures while ensuring a phosphorus rich vermicompost. The results showed that addition of RP at rates ≤ 1% P as RP efficiently enhanced the bioconversion of cow dung waste paper mixtures as reflected by low C: N ratio, high polymerization index (PI), HI and HR used as maturity indicators for matured compost. Final vermicompost products obtained at minimum amounts of RP application rates resulted highly humified vermicompost with finer morphological structure, with no inhibitory effect on the germination of tomato, carrot, and radish similar to the ones obtained at higher RP rates. The findings suggest that 1%P as RP application rate is optimum for efficient vermidegradation of cow dung waste paper mixtures. Since P or Ca happen to be the most prevalent elements in most rock phosphate used for compost enrichment, a study was carried out to determine if P or Ca in RP is predominantly responsible for the improved biodegradation of cow-dung waste paper mixture observed during vermicomposting. Phosphorus sources in form of triple superphosphate (TSP), phosphoric acid (PHA) and Ca in form of calcium chloride (CaCl2) salt were compared with rock phosphate. The results from the study indicated that TSP, a water soluble P source, resulted in greater and faster degradation of the waste mixtures than RP while the Ca source had the least effect. With TSP incorporation the compost maturity C: N ratio of 12 was reached within 28 days while RP, PHA and CaCl2 needed 42, 56 and more than 56 days, respectively. The results indicated that P was largely responsible for the enhanced bioconversion of the waste mixtures. This appeared linked to the effect of P to stimulate microbial growth as reflected by higher microbial biomass carbon levels where water soluble P sources were applied. The C: N ratios of the final vermicomposts at day 56 were 10, 11.5, 13, 14, and 23 for TSP, RP,PHA, Control (No P added) and CaCl2 treatments, respectively. Although TSP gave superior superior performance, RP may still be the preferred additive in the vermicomposting of cow dung waste paper mixtures as it is cheaper and produces mature compost in a shorter period of 8 weeks. Generally, the results of this study have shown that the vemidegradation of cow dung waste paper mixtures can be optimized through adoption of an E. fetida stocking density of 12.5g- worm kg-1 and an RP incorporation rate of 1% P as RP. However, higher rates of RPincorporation may be adopted where final vermicomposts with higher P fertilizer value are desired. Phosphorus appears to be the RP constituent responsible for its ability to enhance the vermidegradation of cow dung waste paper mixtures. Future studies should explore the effectiveness of other P-bearing minerals for their effectiveness in enhancing vemidegradation.
- Full Text:
- Date Issued: 2014
Enhancing phosphorus availability in some phosphate fixing soils of the Transkei region, South Africa using goat manure
- Authors: Gichangi, Elias Maina
- Date: 2007
- Subjects: Phosphorus in agriculture , Soils -- Phosphorus content , Phosphatic fertilizers , Soils -- Phosphorus content -- South Africa -- Transkei
- Language: English
- Type: Thesis , Doctoral , PhD (Soil Science)
- Identifier: vital:11960 , http://hdl.handle.net/10353/80 , Phosphorus in agriculture , Soils -- Phosphorus content , Phosphatic fertilizers , Soils -- Phosphorus content -- South Africa -- Transkei
- Description: Low availability of soil phosphorus (P) caused by strong sorption of P is a major constraint to agricultural production in most South African soils, particularly those from the high rainfall areas. The aim of this study was therefore to investigate whether combined addition of goat manure with inorganic P fertilizers could enhance P availability in some P fixing soils of the Transkei region, South Africa. The study addressed the following specific objectives (i) to assess P sorption capacities and requirements of selected soils and their relationship with selected soil properties and single point sorption test, (ii) to assess the effects of goat manure and lime addition on P sorption properties of selected P fixing soils (iii) to assess the temporal changes in concentration of inorganic and microbial biomass P fractions following application of inorganic fertilizer P with goat manure in a laboratory incubation experiment, and, (iv) to assess the effects of goat manure application with inorganic phosphate on inorganic and microbial biomass P fractions, P uptake and dry matter yield of maize. Sorption maxima (Smax) of seven soils examined ranged from 192.3 to 909.1 (mg P kg-1) and were highly and positively correlated with sorption affinity constant (r = 0.93, p = 0.01) and organic C (r = 0.71, p = 0.01). The amount of P required for maintaining a soil solution concentration of 0.2 mg P l-1 ranged from 2.1 to 123.5 mg P kg-1 soil. Soils collected from Qweqwe (a Cambisol), Qunu (an Acrisol), Ncihane (a Luvisol) and Bethania (a Ferralsol) had lower external P requirement values and were classified as lower sorbers, whereas soils from Ntlonyana (a Planosol), Chevy Chase (a Ferralsol) and Flagstaff (a Ferralsol) were classified as moderate sorbers. The results suggested that P availability could be compromised in 43 percent iii of the soils studied and that measures to mitigate the adverse effects of P sorption were needed to ensure that P is not a limiting factor to crop production, where such soils are found. Goat manure addition at varying rates (5, 10 and 20 tha-1 dry weight basis) to two of the moderately P fixing soils from Chevy Chase and Flagstaff, reduced P sorption maxima (Smax) compared to the control treatment. Phosphate sorption decreased with increasing amounts of goat manure in both soils but the extent of reduction was greater on Chevy Chase soil than on Flagstaff soil. The relative liming effects of the different rates of goat manure followed the order 20 t GM ha-1 > 10 t GM ha-1 > 5 t GM ha-1. In a separate experiment, addition of inorganic P at varying rates (0, 90, 180, and 360 kg P ha-1) to Flagstaff soil increased labile P fractions (resin P, biomass P and NaHCO3-Pi) and the increases were greater when goat manure was co-applied. The control treatments contained only 17.2 and 27.5 mg P kg-1 of resin extractable P in the un-amended and manure amended treatments, respectively which increased to 118.2 and 122.7 mg P kg-1 on day 28 of incubation. Biomass P concentration was increased from 16.8 to 43.9 mg P kg-1 in P alone treatments but the fraction was greatly enhanced with manure addition, increasing it from 32.6 to 97.7 mg P kg-1. NaOH-Pi was the largest extractable Pi fraction and ranged from 144.3 to 250.6 mg P kg-1 and 107.5 to 213.2 mg P kg-1 in the unamended and manure amended treatments, respectively. Dry matter yield and P uptake by maize grown in the glasshouse were highly and significantly (p = 0.05) correlated with the different P fractions in the soil. The correlations followed the order resin P (r = 0.85) > NaOH-Pi (r = 0.85) > NaHCO3-Pi (r = 0.84) >> biomass P (r = 0.56) for dry matter yield at 6 weeks after planting. At 12 weeks after planting, goat manure had iv highly significant effects on resin P and biomass P but had no effect on NaHCO3-Pi and NaOH–Pi. The combination of biomass P, resin P and NaHCO3-Pi explained 75.8 percent of the variation in dry matter yield of which 63.0 percent of the variation was explained by biomass P alone. The greatest increase in biomass P occurred when added P was co-applied with 5 or 10 tha-1 goat manure. The predictive equation for maize dry matter yield (DM) was: DM (g) = 1.897 biomass P + 0.645 resin P (r = 0.73). Resin P was the fraction that was most depleted due to plant uptake and decreased by 56 to 68 percent between the 6th week and the 12th week of sampling indicating that it played a greater role in supplying plant available P. The results therefore suggested that the use of goat manure may allow resource poor farmers to use lower levels of commercial phosphate fertilizers because of its effect to reduce soil P sorption. In addition, higher increases in biomass P due to manure addition observed at lower rates of added P indicated that goat manure has potential for enhancing bioavailability and fertilizer use efficiency of small inorganic P applications.
- Full Text:
- Date Issued: 2007
- Authors: Gichangi, Elias Maina
- Date: 2007
- Subjects: Phosphorus in agriculture , Soils -- Phosphorus content , Phosphatic fertilizers , Soils -- Phosphorus content -- South Africa -- Transkei
- Language: English
- Type: Thesis , Doctoral , PhD (Soil Science)
- Identifier: vital:11960 , http://hdl.handle.net/10353/80 , Phosphorus in agriculture , Soils -- Phosphorus content , Phosphatic fertilizers , Soils -- Phosphorus content -- South Africa -- Transkei
- Description: Low availability of soil phosphorus (P) caused by strong sorption of P is a major constraint to agricultural production in most South African soils, particularly those from the high rainfall areas. The aim of this study was therefore to investigate whether combined addition of goat manure with inorganic P fertilizers could enhance P availability in some P fixing soils of the Transkei region, South Africa. The study addressed the following specific objectives (i) to assess P sorption capacities and requirements of selected soils and their relationship with selected soil properties and single point sorption test, (ii) to assess the effects of goat manure and lime addition on P sorption properties of selected P fixing soils (iii) to assess the temporal changes in concentration of inorganic and microbial biomass P fractions following application of inorganic fertilizer P with goat manure in a laboratory incubation experiment, and, (iv) to assess the effects of goat manure application with inorganic phosphate on inorganic and microbial biomass P fractions, P uptake and dry matter yield of maize. Sorption maxima (Smax) of seven soils examined ranged from 192.3 to 909.1 (mg P kg-1) and were highly and positively correlated with sorption affinity constant (r = 0.93, p = 0.01) and organic C (r = 0.71, p = 0.01). The amount of P required for maintaining a soil solution concentration of 0.2 mg P l-1 ranged from 2.1 to 123.5 mg P kg-1 soil. Soils collected from Qweqwe (a Cambisol), Qunu (an Acrisol), Ncihane (a Luvisol) and Bethania (a Ferralsol) had lower external P requirement values and were classified as lower sorbers, whereas soils from Ntlonyana (a Planosol), Chevy Chase (a Ferralsol) and Flagstaff (a Ferralsol) were classified as moderate sorbers. The results suggested that P availability could be compromised in 43 percent iii of the soils studied and that measures to mitigate the adverse effects of P sorption were needed to ensure that P is not a limiting factor to crop production, where such soils are found. Goat manure addition at varying rates (5, 10 and 20 tha-1 dry weight basis) to two of the moderately P fixing soils from Chevy Chase and Flagstaff, reduced P sorption maxima (Smax) compared to the control treatment. Phosphate sorption decreased with increasing amounts of goat manure in both soils but the extent of reduction was greater on Chevy Chase soil than on Flagstaff soil. The relative liming effects of the different rates of goat manure followed the order 20 t GM ha-1 > 10 t GM ha-1 > 5 t GM ha-1. In a separate experiment, addition of inorganic P at varying rates (0, 90, 180, and 360 kg P ha-1) to Flagstaff soil increased labile P fractions (resin P, biomass P and NaHCO3-Pi) and the increases were greater when goat manure was co-applied. The control treatments contained only 17.2 and 27.5 mg P kg-1 of resin extractable P in the un-amended and manure amended treatments, respectively which increased to 118.2 and 122.7 mg P kg-1 on day 28 of incubation. Biomass P concentration was increased from 16.8 to 43.9 mg P kg-1 in P alone treatments but the fraction was greatly enhanced with manure addition, increasing it from 32.6 to 97.7 mg P kg-1. NaOH-Pi was the largest extractable Pi fraction and ranged from 144.3 to 250.6 mg P kg-1 and 107.5 to 213.2 mg P kg-1 in the unamended and manure amended treatments, respectively. Dry matter yield and P uptake by maize grown in the glasshouse were highly and significantly (p = 0.05) correlated with the different P fractions in the soil. The correlations followed the order resin P (r = 0.85) > NaOH-Pi (r = 0.85) > NaHCO3-Pi (r = 0.84) >> biomass P (r = 0.56) for dry matter yield at 6 weeks after planting. At 12 weeks after planting, goat manure had iv highly significant effects on resin P and biomass P but had no effect on NaHCO3-Pi and NaOH–Pi. The combination of biomass P, resin P and NaHCO3-Pi explained 75.8 percent of the variation in dry matter yield of which 63.0 percent of the variation was explained by biomass P alone. The greatest increase in biomass P occurred when added P was co-applied with 5 or 10 tha-1 goat manure. The predictive equation for maize dry matter yield (DM) was: DM (g) = 1.897 biomass P + 0.645 resin P (r = 0.73). Resin P was the fraction that was most depleted due to plant uptake and decreased by 56 to 68 percent between the 6th week and the 12th week of sampling indicating that it played a greater role in supplying plant available P. The results therefore suggested that the use of goat manure may allow resource poor farmers to use lower levels of commercial phosphate fertilizers because of its effect to reduce soil P sorption. In addition, higher increases in biomass P due to manure addition observed at lower rates of added P indicated that goat manure has potential for enhancing bioavailability and fertilizer use efficiency of small inorganic P applications.
- Full Text:
- Date Issued: 2007
- «
- ‹
- 1
- ›
- »