Raman spectroscopy of ternary III-V semiconducting films
- Authors: Mashigo, Donald
- Date: 2009
- Subjects: Raman spectroscopy , Semiconductor films , Compound semiconductors
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10522 , http://hdl.handle.net/10948/1011 , Raman spectroscopy , Semiconductor films , Compound semiconductors
- Description: The III-V semiconductor compounds (i.e. In Ga As x 1-x , 1 x x InAs Sb - , In Ga Sb x 1-x and Al Ga As x 1-x ) have been studied using room temperature Raman spectroscopy. X-ray diffraction has been used as a complementary characterization technique. In this study all the III-V semiconductor compounds were grown by metal organic chemical vapour deposition (MOCVD) on GaAs and GaSb substrates. The layers were studied with respect to composition, strain variation and critical thickness. Raman spectroscopy has been employed to assess the composition dependence of optical phonons in the layers. The alloy composition was varied, while the thickness was kept constant in order to investigate compositional effects. A significant frequency shift of the phonon modes were observed as the composition changed. The composition dependence of the phonon frequencies were described by linear and polynomial expressions. The results of this study were compared with previous Raman and infrared work on III-V semiconductor compounds. Strain relaxation in InGaAs and InGaSb has been investigated by Raman and X-ray diffraction. Measurements were performed on several series of layers. For each series, the thickness was varied, while keeping the composition constant. For a given composition, the layer thicknesses were such that some layers should be fully strained, some partially relaxed and some fully relaxed. The Raman peak shifts and XRD confirm that a layer grows up to the critical thickness and then releases the strain as the thickness increases. Critical layer thickness values measured in this study were compared with published data, in which various techniques had been used to estimate the critical thickness.
- Full Text:
- Date Issued: 2009
- Authors: Mashigo, Donald
- Date: 2009
- Subjects: Raman spectroscopy , Semiconductor films , Compound semiconductors
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10522 , http://hdl.handle.net/10948/1011 , Raman spectroscopy , Semiconductor films , Compound semiconductors
- Description: The III-V semiconductor compounds (i.e. In Ga As x 1-x , 1 x x InAs Sb - , In Ga Sb x 1-x and Al Ga As x 1-x ) have been studied using room temperature Raman spectroscopy. X-ray diffraction has been used as a complementary characterization technique. In this study all the III-V semiconductor compounds were grown by metal organic chemical vapour deposition (MOCVD) on GaAs and GaSb substrates. The layers were studied with respect to composition, strain variation and critical thickness. Raman spectroscopy has been employed to assess the composition dependence of optical phonons in the layers. The alloy composition was varied, while the thickness was kept constant in order to investigate compositional effects. A significant frequency shift of the phonon modes were observed as the composition changed. The composition dependence of the phonon frequencies were described by linear and polynomial expressions. The results of this study were compared with previous Raman and infrared work on III-V semiconductor compounds. Strain relaxation in InGaAs and InGaSb has been investigated by Raman and X-ray diffraction. Measurements were performed on several series of layers. For each series, the thickness was varied, while keeping the composition constant. For a given composition, the layer thicknesses were such that some layers should be fully strained, some partially relaxed and some fully relaxed. The Raman peak shifts and XRD confirm that a layer grows up to the critical thickness and then releases the strain as the thickness increases. Critical layer thickness values measured in this study were compared with published data, in which various techniques had been used to estimate the critical thickness.
- Full Text:
- Date Issued: 2009
A raman spectroscopy study of semiconducting thin films
- Authors: Goosen, William Edward
- Date: 2006
- Subjects: Raman spectroscopy , Semiconductor films , Thin films
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10514 , http://hdl.handle.net/10948/426 , Raman spectroscopy , Semiconductor films , Thin films
- Description: A home-built Raman system, utilizing a pseudo-backscattering geometry, was built in the Physics Department at the Nelson Mandela Metropolitan University (NMMU). The system was then used to analyse a variety of bulk and thin film semiconducting materials currently being studied in the Physics Department. Silicon wafers were exposed to hydrogen plasma. Raman analysis of hydrogen induced platelets (HIPs), resulting from hydrogen plasma treatment of silicon, is reported. ZnO layers were deposited on glass, GaAs, Si, sapphire and SiC-Si substrates by metalorganic chemical vapour deposition (MOCVD) in the Physics Department at the NMMU. It was found that the ZnO layers grown by MOCVD all exhibited a strong E2 (high) phonon mode that dominated the Raman spectra. Furthermore, the spectra lacked the A1 (LO) phonon mode which is usually associated with the O-vacancy, the Zn-interstitial, or complexes of the two, indicating that the layers were all of good quality. The influence of depositing the ZnO thin film on a 3 mm thick SiC layer was also investigated and compared with the deposition of ZnO on Si substrate, in order to reduce the lattice mismatch between ZnO and the Si substrate. The possible shift of the Raman peaks due to the residual strain in the film, if present, could not be resolved. Characterization of GaN and AlxGa1-xN produced by MOCVD at the CRHEA laboratory of the CNRS in Valbonne, France is reported. A sharp peak at 567 cm-1 corresponding to the E2 (high) mode of GaN broadens and shifts to higher wavenumbers as the aluminium content of the AlxGa1-xN is increased. The shift is accompanied by a decrease in the intensity and a broadening of this peak. The broadening was attributed to a general decrease in the quality of the layers which accompanies increased aluminium content in AlxGa1-xN.
- Full Text:
- Date Issued: 2006
- Authors: Goosen, William Edward
- Date: 2006
- Subjects: Raman spectroscopy , Semiconductor films , Thin films
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10514 , http://hdl.handle.net/10948/426 , Raman spectroscopy , Semiconductor films , Thin films
- Description: A home-built Raman system, utilizing a pseudo-backscattering geometry, was built in the Physics Department at the Nelson Mandela Metropolitan University (NMMU). The system was then used to analyse a variety of bulk and thin film semiconducting materials currently being studied in the Physics Department. Silicon wafers were exposed to hydrogen plasma. Raman analysis of hydrogen induced platelets (HIPs), resulting from hydrogen plasma treatment of silicon, is reported. ZnO layers were deposited on glass, GaAs, Si, sapphire and SiC-Si substrates by metalorganic chemical vapour deposition (MOCVD) in the Physics Department at the NMMU. It was found that the ZnO layers grown by MOCVD all exhibited a strong E2 (high) phonon mode that dominated the Raman spectra. Furthermore, the spectra lacked the A1 (LO) phonon mode which is usually associated with the O-vacancy, the Zn-interstitial, or complexes of the two, indicating that the layers were all of good quality. The influence of depositing the ZnO thin film on a 3 mm thick SiC layer was also investigated and compared with the deposition of ZnO on Si substrate, in order to reduce the lattice mismatch between ZnO and the Si substrate. The possible shift of the Raman peaks due to the residual strain in the film, if present, could not be resolved. Characterization of GaN and AlxGa1-xN produced by MOCVD at the CRHEA laboratory of the CNRS in Valbonne, France is reported. A sharp peak at 567 cm-1 corresponding to the E2 (high) mode of GaN broadens and shifts to higher wavenumbers as the aluminium content of the AlxGa1-xN is increased. The shift is accompanied by a decrease in the intensity and a broadening of this peak. The broadening was attributed to a general decrease in the quality of the layers which accompanies increased aluminium content in AlxGa1-xN.
- Full Text:
- Date Issued: 2006
- «
- ‹
- 1
- ›
- »