Improved concurrent Java processes
- Ntlahla, Mbalentle Apelele Wiseman
- Authors: Ntlahla, Mbalentle Apelele Wiseman
- Date: 2021-10-29
- Subjects: Java (Computer program language) , Computer multitasking , Sequential processing (Computer science) , Parallel programming (Computer science) , Simultaneous multithreading processors
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/192129 , vital:45198
- Description: The rise in the number of cores in a processor has resulted in computer programmers needing to write concurrent programs to utilize the extra available processors. Concurrent programming can utilize the extra processors available in a multi-core architecture. However, writing concurrent programs introduces complexities that are not encountered in sequential programming (race conditions, deadlocks, starvation, liveness, etc., are some of the complexities that come with concurrent programming). These complexities require programming languages to provide functionality to help programmers with writing concurrent programs. The Java language is designed to support concurrent programming, mostly through threads. The support is provided through the Java programming language itself and Java class libraries. Although concurrent processes are important and have their own advantages over concurrent threads Java has limited support for concurrent processes. In this thesis we attempt to provide the same support that Java has for threads through the java.util.concurrent library to processes. This is attempted to be done through a Java library (za.co.jcp). The library will provide synchronisation methods of multiple processes, Java process shared variables, atomic variables, process-safe data structures, and a process executors framework similar to that of the executor framework provided by Java for threads. The two libraries' similarities, and performance is analyzed. The analysis between the two libraries is performed to compare the code portability, ease of use, and performance difference between the two libraries. The results from the project have shown that it is possible for Java to provide support for concurrency through processes and not only threads. In addition from the benchmarks performed the performance of the za.co.jcp library is not significantly slower than the current java.util.concurrent thread library. This means that Java concurrent applications will also now be able to use cooperating processes rather than be confined to using threads. , Thesis (MSc) -- Faculty of Science, Computer Science, 2021
- Full Text:
- Date Issued: 2021-10-29
- Authors: Ntlahla, Mbalentle Apelele Wiseman
- Date: 2021-10-29
- Subjects: Java (Computer program language) , Computer multitasking , Sequential processing (Computer science) , Parallel programming (Computer science) , Simultaneous multithreading processors
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/192129 , vital:45198
- Description: The rise in the number of cores in a processor has resulted in computer programmers needing to write concurrent programs to utilize the extra available processors. Concurrent programming can utilize the extra processors available in a multi-core architecture. However, writing concurrent programs introduces complexities that are not encountered in sequential programming (race conditions, deadlocks, starvation, liveness, etc., are some of the complexities that come with concurrent programming). These complexities require programming languages to provide functionality to help programmers with writing concurrent programs. The Java language is designed to support concurrent programming, mostly through threads. The support is provided through the Java programming language itself and Java class libraries. Although concurrent processes are important and have their own advantages over concurrent threads Java has limited support for concurrent processes. In this thesis we attempt to provide the same support that Java has for threads through the java.util.concurrent library to processes. This is attempted to be done through a Java library (za.co.jcp). The library will provide synchronisation methods of multiple processes, Java process shared variables, atomic variables, process-safe data structures, and a process executors framework similar to that of the executor framework provided by Java for threads. The two libraries' similarities, and performance is analyzed. The analysis between the two libraries is performed to compare the code portability, ease of use, and performance difference between the two libraries. The results from the project have shown that it is possible for Java to provide support for concurrency through processes and not only threads. In addition from the benchmarks performed the performance of the za.co.jcp library is not significantly slower than the current java.util.concurrent thread library. This means that Java concurrent applications will also now be able to use cooperating processes rather than be confined to using threads. , Thesis (MSc) -- Faculty of Science, Computer Science, 2021
- Full Text:
- Date Issued: 2021-10-29
A development method for deriving reusable concurrent programs from verified CSP models
- Authors: Dibley, James
- Date: 2019
- Subjects: CSP (Computer program language) , Sequential processing (Computer science) , Go (Computer program language) , CSPIDER (Open source tool)
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/72329 , vital:30035
- Description: This work proposes and demonstrates a novel method for software development that applies formal verification techniques to the design and implementation of concurrent programs. This method is supported by a new software tool, CSPIDER, which translates machine-readable Communicating Sequential Processes (CSP) models into encapsulated, reusable components coded in the Go programming language. In relation to existing CSP implementation techniques, this work is only the second to implement a translator and it provides original support for some CSP language constructs and modelling approaches. The method is evaluated through three case studies: a concurrent sorting array, a trialdivision prime number generator, and a component node for the Ricart-Agrawala distributed mutual exclusion algorithm. Each of these case studies presents the formal verification of safety and functional requirements through CSP model-checking, and it is shown that CSPIDER is capable of generating reusable implementations from each model. The Ricart-Agrawala case study demonstrates the application of the method to the design of a protocol component. This method maintains full compatibility with the primary CSP verification tool. Applying the CSPIDER tool requires minimal commitment to an explicitly defined modelling style and a very small set of pre-translation annotations, but all of these measures can be instated prior to verification. The Go code that CSPIDER produces requires no intervention before it may be used as a component within a larger development. The translator provides a traceable, structured implementation of the CSP model, automatically deriving formal parameters and a channel-based client interface from its interpretation of the CSP model. Each case study demonstrates the use of the translated component within a simple test development.
- Full Text:
- Date Issued: 2019
- Authors: Dibley, James
- Date: 2019
- Subjects: CSP (Computer program language) , Sequential processing (Computer science) , Go (Computer program language) , CSPIDER (Open source tool)
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/72329 , vital:30035
- Description: This work proposes and demonstrates a novel method for software development that applies formal verification techniques to the design and implementation of concurrent programs. This method is supported by a new software tool, CSPIDER, which translates machine-readable Communicating Sequential Processes (CSP) models into encapsulated, reusable components coded in the Go programming language. In relation to existing CSP implementation techniques, this work is only the second to implement a translator and it provides original support for some CSP language constructs and modelling approaches. The method is evaluated through three case studies: a concurrent sorting array, a trialdivision prime number generator, and a component node for the Ricart-Agrawala distributed mutual exclusion algorithm. Each of these case studies presents the formal verification of safety and functional requirements through CSP model-checking, and it is shown that CSPIDER is capable of generating reusable implementations from each model. The Ricart-Agrawala case study demonstrates the application of the method to the design of a protocol component. This method maintains full compatibility with the primary CSP verification tool. Applying the CSPIDER tool requires minimal commitment to an explicitly defined modelling style and a very small set of pre-translation annotations, but all of these measures can be instated prior to verification. The Go code that CSPIDER produces requires no intervention before it may be used as a component within a larger development. The translator provides a traceable, structured implementation of the CSP model, automatically deriving formal parameters and a channel-based client interface from its interpretation of the CSP model. Each case study demonstrates the use of the translated component within a simple test development.
- Full Text:
- Date Issued: 2019
- «
- ‹
- 1
- ›
- »