Comparative study of the effect of silver nanoparticles on the hexokinase activity from human and Trypanosoma brucei
- Authors: Mlozen, Madalitso Martin
- Date: 2015
- Subjects: Nanoparticles , Silver , Glucokinase , Trypanosoma brucei , Drug resistance , African trypanosomiasis
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4149 , http://hdl.handle.net/10962/d1017910
- Full Text:
- Date Issued: 2015
- Authors: Mlozen, Madalitso Martin
- Date: 2015
- Subjects: Nanoparticles , Silver , Glucokinase , Trypanosoma brucei , Drug resistance , African trypanosomiasis
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4149 , http://hdl.handle.net/10962/d1017910
- Full Text:
- Date Issued: 2015
Synthesis of silver nanoparticles and their role against human and Plasmodium falciparum leucine aminopeptidase
- Authors: Mnkandhla, Dumisani
- Date: 2015
- Subjects: Silver , Nanoparticles , Plasmodium falciparum , Leucine aminopeptidase , Antimalarials , Nanotechnology
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4150 , http://hdl.handle.net/10962/d1017911
- Description: Antimalarial drug discovery remains a challenging endeavour as malaria parasites continue to develop resistance to drugs, including those which are currently the last line of defence against the disease. Plasmodium falciparum is the most virulent of the malaria parasites and it delivers its deadliest impact during the erythrocytic stages of the parasite’s life cycle; a stage characterised by elevated catabolism of haemoglobin and anabolism of parasite proteins. The present study investigates the use of nanotechnology in the form of metallic silver nanoparticles (AgNPs) against P. falciparum leucine aminopeptidase (PfLAP), a validated biomedical target involved in haemoglobin metabolism. AgNPs were also tested against the human homolog cytosolic Homo sapiens leucine aminopeptidase (HsLAP) to ascertain their selective abilities. PfLAP and HsLAP were successfully expressed in Escherichia coli BL21(DE3) cells. PfLAP showed optimal thermal stability at 25 °C and optimal pH stability at pH 8.0 with a Km of 42.7 mM towards leucine-p-nitroanilide (LpNA) and a Vmax of 59.9 μmol.ml⁻¹.min⁻¹. HsLAP was optimally stable at 37 °C and at pH 7.0 with a Km of 16.7 mM and a Vmax of 17.2 μmol.ml⁻¹.min⁻¹. Both enzymes exhibited optimal activity in the presence of 2 mM Mn²⁺. On interaction with polyvinylpyrrolidone (PVP) stabilised AgNPs, both enzymes were inhibited to differing extents with PfLAP losing three fold of its catalytic efficiency relative to HsLAP. These results show the ability of AgNPs to selectively inhibit PfLAP whilst having much lesser effects on its human homolog. With the use of available targeting techniques, the present study shows the potential use of nanotechnology based approaches as “silver bullets” that can target PfLAP without adversely affecting the host. However further research needs to be conducted to better understand the mechanisms of AgNP action, drug targeting and the health and safety issues associated with nanotechnology use.
- Full Text:
- Date Issued: 2015
- Authors: Mnkandhla, Dumisani
- Date: 2015
- Subjects: Silver , Nanoparticles , Plasmodium falciparum , Leucine aminopeptidase , Antimalarials , Nanotechnology
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4150 , http://hdl.handle.net/10962/d1017911
- Description: Antimalarial drug discovery remains a challenging endeavour as malaria parasites continue to develop resistance to drugs, including those which are currently the last line of defence against the disease. Plasmodium falciparum is the most virulent of the malaria parasites and it delivers its deadliest impact during the erythrocytic stages of the parasite’s life cycle; a stage characterised by elevated catabolism of haemoglobin and anabolism of parasite proteins. The present study investigates the use of nanotechnology in the form of metallic silver nanoparticles (AgNPs) against P. falciparum leucine aminopeptidase (PfLAP), a validated biomedical target involved in haemoglobin metabolism. AgNPs were also tested against the human homolog cytosolic Homo sapiens leucine aminopeptidase (HsLAP) to ascertain their selective abilities. PfLAP and HsLAP were successfully expressed in Escherichia coli BL21(DE3) cells. PfLAP showed optimal thermal stability at 25 °C and optimal pH stability at pH 8.0 with a Km of 42.7 mM towards leucine-p-nitroanilide (LpNA) and a Vmax of 59.9 μmol.ml⁻¹.min⁻¹. HsLAP was optimally stable at 37 °C and at pH 7.0 with a Km of 16.7 mM and a Vmax of 17.2 μmol.ml⁻¹.min⁻¹. Both enzymes exhibited optimal activity in the presence of 2 mM Mn²⁺. On interaction with polyvinylpyrrolidone (PVP) stabilised AgNPs, both enzymes were inhibited to differing extents with PfLAP losing three fold of its catalytic efficiency relative to HsLAP. These results show the ability of AgNPs to selectively inhibit PfLAP whilst having much lesser effects on its human homolog. With the use of available targeting techniques, the present study shows the potential use of nanotechnology based approaches as “silver bullets” that can target PfLAP without adversely affecting the host. However further research needs to be conducted to better understand the mechanisms of AgNP action, drug targeting and the health and safety issues associated with nanotechnology use.
- Full Text:
- Date Issued: 2015
Synthesis of silver nanoparticles and their role against a thiazolekinase enzyme from Plasmodium falciparum
- Yao, Jia
- Authors: Yao, Jia
- Date: 2014
- Subjects: Silver , Nanoparticles , Thiazoles , Plasmodium falciparum , Antimalarials , Malaria -- Chemotherapy
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4168 , http://hdl.handle.net/10962/d1020894
- Description: Malaria, a mosquito-borne infectious disease, caused by the protozoan Plasmodium genus, is the greatest health challenges worldwide. The plasmodial vitamin B1 biosynthetic enzyme PfThzK diverges significantly, both structurally and functionally from its counterpart in higher eukaryotes, thereby making it particularly attractive as a biomedical target. In the present study, PfThzK was recombinantly produced as 6×His fusion protein in E. coli BL21, purified using nickel affinity chromatography and size exclusion chromatography resulting in 1.03% yield and specific activity 0.28 U/mg. The enzyme was found to be a monomer with a molecular mass of 34 kDa. Characterization of the PfThzK showed an optimum temperature and pH of 37°C and 7.5 respectively, and it is relatively stable (t₁/₂=2.66 h). Ag nanoparticles were synthesized by NaBH₄/tannic acid, and characterized by UV-vis spectroscopy and transmission electron microscopy. The morphologies of these Ag nanoparticles (in terms of size) synthesized by tannic acid appeared to be more controlled with the size of 7.06±2.41 nm, compared with those synthesized by NaBH₄, with the sized of 12.9±4.21 nm. The purified PfThzK was challenged with Ag NPs synthesized by tannic acid, and the results suggested that they competitively inhibited PfThzK (89 %) at low concentrations (5-10 μM) with a Ki = 6.45 μM.
- Full Text:
- Date Issued: 2014
- Authors: Yao, Jia
- Date: 2014
- Subjects: Silver , Nanoparticles , Thiazoles , Plasmodium falciparum , Antimalarials , Malaria -- Chemotherapy
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4168 , http://hdl.handle.net/10962/d1020894
- Description: Malaria, a mosquito-borne infectious disease, caused by the protozoan Plasmodium genus, is the greatest health challenges worldwide. The plasmodial vitamin B1 biosynthetic enzyme PfThzK diverges significantly, both structurally and functionally from its counterpart in higher eukaryotes, thereby making it particularly attractive as a biomedical target. In the present study, PfThzK was recombinantly produced as 6×His fusion protein in E. coli BL21, purified using nickel affinity chromatography and size exclusion chromatography resulting in 1.03% yield and specific activity 0.28 U/mg. The enzyme was found to be a monomer with a molecular mass of 34 kDa. Characterization of the PfThzK showed an optimum temperature and pH of 37°C and 7.5 respectively, and it is relatively stable (t₁/₂=2.66 h). Ag nanoparticles were synthesized by NaBH₄/tannic acid, and characterized by UV-vis spectroscopy and transmission electron microscopy. The morphologies of these Ag nanoparticles (in terms of size) synthesized by tannic acid appeared to be more controlled with the size of 7.06±2.41 nm, compared with those synthesized by NaBH₄, with the sized of 12.9±4.21 nm. The purified PfThzK was challenged with Ag NPs synthesized by tannic acid, and the results suggested that they competitively inhibited PfThzK (89 %) at low concentrations (5-10 μM) with a Ki = 6.45 μM.
- Full Text:
- Date Issued: 2014
The interaction of silver nanoparticles with triosephosphate isomerase from human and malarial parasite (Plasmodium falciparum) : a comparative study
- De Moor, Warren Ralph Josephus
- Authors: De Moor, Warren Ralph Josephus
- Date: 2014
- Subjects: Silver , Nanoparticles , Triose-phosphate isomerase , Plasmodium falciparum , Nanotechnology , Antimalarials , Povidone
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4169 , http://hdl.handle.net/10962/d1020895
- Description: The advent of advanced modern nanotechnology techniques offers new and exciting opportunities to develop novel nanotech-derived antimalarial nanodrugs with enhanced selective and targeting abilities that allow for lower effective drug dosages, longer drug persistence and reduced drug degradation within the body. Using a nanodrug approach also has the advantage of avoiding drug resistance problems that plague reconfigured versions of already-existing antimalarial drugs. In this study recombinant triosephosphate isomerase enzymes from Plasmodium falciparum (PfTIM) and Humans (hTIM) were recombinantly expressed, purified and characterised. PfTIM was shown to have optimal pH stability at pH 5.0-5.5 and thermal stability at 25°C with Km 4.34 mM and Vmax 0.876 μmol.ml⁻ₑmin⁻ₑ. For hTIM, these parameters were as follows: pH optima of 6.5-7.0; temperature optima of 30°C, with Km 2.27 mM and Vmax 0.714 μmol.ml⁻ₑmin⁻ₑ. Recombinant TIM enzymes were subjected to inhibition studies using polyvinylpyrrolidone (PVP) stabilised silver nanoparticles (AgNPs) of 4-12 nm in diameter. These studies showed that the AgNPs were able to selectively inhibit PfTIM over hTIM with an 8-fold greater decrease in enzymatic efficiency (Kcat/Km) observed for PfTIM, as compared to hTIM, for kinetics tests done using 0.06 μM of AgNPs. Complete inhibition of PfTIM under optimal conditions was achieved using 0.25 μM AgNPs after 45 minutes while hTIM maintained approximately 31% of its activity at this AgNP concentration. The above results indicate that selective enzymatic targeting of the important, key metabolic enzyme TIM, can be achieved using nanotechnology-derived nanodrugs. It was demonstrated that the key structural differences, between the two enzyme variants, were significant enough to create unique characteristics for each TIM variant, thereby allowing for selective enzyme targeting using AgNPs. If these AgNPs could be coupled with a nanotechnology-derived, targeted localization mechanism – possibly using apoferritin to deliver the AgNPs to infected erythrocytes (Burns and Pollock, 2008) – then such an approach could offer new opportunities for the development of viable antimalarial nanodrugs. For this to be achieved further research into several key areas will be required, including nanoparticle toxicity, drug localization and testing the lethality of the system on live parasite cultures.
- Full Text:
- Date Issued: 2014
- Authors: De Moor, Warren Ralph Josephus
- Date: 2014
- Subjects: Silver , Nanoparticles , Triose-phosphate isomerase , Plasmodium falciparum , Nanotechnology , Antimalarials , Povidone
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4169 , http://hdl.handle.net/10962/d1020895
- Description: The advent of advanced modern nanotechnology techniques offers new and exciting opportunities to develop novel nanotech-derived antimalarial nanodrugs with enhanced selective and targeting abilities that allow for lower effective drug dosages, longer drug persistence and reduced drug degradation within the body. Using a nanodrug approach also has the advantage of avoiding drug resistance problems that plague reconfigured versions of already-existing antimalarial drugs. In this study recombinant triosephosphate isomerase enzymes from Plasmodium falciparum (PfTIM) and Humans (hTIM) were recombinantly expressed, purified and characterised. PfTIM was shown to have optimal pH stability at pH 5.0-5.5 and thermal stability at 25°C with Km 4.34 mM and Vmax 0.876 μmol.ml⁻ₑmin⁻ₑ. For hTIM, these parameters were as follows: pH optima of 6.5-7.0; temperature optima of 30°C, with Km 2.27 mM and Vmax 0.714 μmol.ml⁻ₑmin⁻ₑ. Recombinant TIM enzymes were subjected to inhibition studies using polyvinylpyrrolidone (PVP) stabilised silver nanoparticles (AgNPs) of 4-12 nm in diameter. These studies showed that the AgNPs were able to selectively inhibit PfTIM over hTIM with an 8-fold greater decrease in enzymatic efficiency (Kcat/Km) observed for PfTIM, as compared to hTIM, for kinetics tests done using 0.06 μM of AgNPs. Complete inhibition of PfTIM under optimal conditions was achieved using 0.25 μM AgNPs after 45 minutes while hTIM maintained approximately 31% of its activity at this AgNP concentration. The above results indicate that selective enzymatic targeting of the important, key metabolic enzyme TIM, can be achieved using nanotechnology-derived nanodrugs. It was demonstrated that the key structural differences, between the two enzyme variants, were significant enough to create unique characteristics for each TIM variant, thereby allowing for selective enzyme targeting using AgNPs. If these AgNPs could be coupled with a nanotechnology-derived, targeted localization mechanism – possibly using apoferritin to deliver the AgNPs to infected erythrocytes (Burns and Pollock, 2008) – then such an approach could offer new opportunities for the development of viable antimalarial nanodrugs. For this to be achieved further research into several key areas will be required, including nanoparticle toxicity, drug localization and testing the lethality of the system on live parasite cultures.
- Full Text:
- Date Issued: 2014
Photophysicochemical and photodynamic antimicrobial chemotherapeutic studies of novel phthalocyanines conjugated to silver nanoparticles
- Authors: Rapulenyane, Nomasonto
- Date: 2013 , 2013-06-10
- Subjects: Phthalocyanines , Photochemistry , Photochemotherapy , Cancer -- Photochemotherapy , Anti-infective agents , Escherichia coli , Nanoparticles , Silver , Zinc
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4291 , http://hdl.handle.net/10962/d1003912 , Phthalocyanines , Photochemistry , Photochemotherapy , Cancer -- Photochemotherapy , Anti-infective agents , Escherichia coli , Nanoparticles , Silver , Zinc
- Description: This work reports on the synthesis, characterization and the physicochemical properties of novel unsymmetrically substituted zinc phthalocyanines: namely tris{11,19, 27-(1,2- diethylaminoethylthiol)-2-(captopril) phthalocyanine Zn ((ZnMCapPc (1.5)), hexakis{8,11,16,19,42,27-(octylthio)-1-(4-phenoxycarboxy) phthalocyanine} Zn (ZnMPCPc(1.7)) and Tris {11, 19, 27-(1,2-diethylaminoethylthiol)-1,2(caffeic acid) phthalocyanine} Zn ((ZnMCafPc (1.3)). Symmetrically substituted counterparts (tetrakis(diethylamino)zinc phthalocyaninato (3.8), octakis(octylthio)zinc phthalocyaninato (3.9) and tetrakis (carboxyphenoxy)zinc phthalocyaninato (3.10) complexes) were also synthesized for comparison of the photophysicochemical properties and to investigate the effect of the substituents on the low symmetry Pcs. The complexes were successfully characterized by IR, NMR, mass spectral and elemental analyses. All the complexes showed the ability to produce singlet oxygen, while the highest triplet quantum yields were obtained for 1.7, 1.5 and 3.9 (0.80, 0.65 and 0.62 respectively and the lowest were obtained for 1.3 and 3.10 (0.57 and 0.47 respectively). High triplet lifetimes (109-286 μs) were also obtained for all complexes, with 1.7 being the highest (286 μs) which also corresponds to its triplet and singlet quantum yields (0.80 and 0.77 respectively). The photosensitizing properties of low symmetry derivatives, ZnMCapPc and ZnMCafPc were investigated by conjugating glutathione (GSH) capped silver nanoparticles (AgNP). The formation of the amide bond was confirmed by IR and UV-Vis spectroscopies. The photophysicochemical behaviour of the novel phthalocyanine-GSH-AgNP conjugates and the simple mixture of the Ag NPs with low the symmetry phthalocyanines were investigated. It was observed that upon conjugation of the phthalocyanines to the GSH-AgNPs, a blue shift in the Q band was induced. The triplet lifetimes and quantum yields improved upon conjugation as compared to the phthalocyanines (Pc) alone. Complex 1.5 triplet lifetimes increased from 109 to 148 and triplet quantum yield from 0.65 to 0.86 upon conjugation. Fluorescence lifetimes and quantum yields decreased for the conjugates compared to the phthalocyanines alone, due to the quenching caused by the Ag NPs. The antimicrobial activity of the zinc phthalocyanines (complexes 1.3 and 1.5) and their conjugates against Escherichia coli was investigated. Only 1.3 and 1.5 complexes were investigated because of the availability of the sample. In general phthalocyanines showed increase in antibacterial activity with the increase in phthalocyanines concentration in the presence and absence of light. The Pc complexes and their Ag NP conjugates showed an increase in antibacterial activity, due to the synergistic effect afforded by Ag NP and Pcs. Improved antibacterial properties were obtained upon irradiation. 1.5-AgNPs had the highest antibacterial activity compared to 1.3-AgNPs conjugate; these results are in agreement with the photophysical behaviour. This work demonstrates improved photophysicochemical properties of low symm
- Full Text:
- Date Issued: 2013
- Authors: Rapulenyane, Nomasonto
- Date: 2013 , 2013-06-10
- Subjects: Phthalocyanines , Photochemistry , Photochemotherapy , Cancer -- Photochemotherapy , Anti-infective agents , Escherichia coli , Nanoparticles , Silver , Zinc
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4291 , http://hdl.handle.net/10962/d1003912 , Phthalocyanines , Photochemistry , Photochemotherapy , Cancer -- Photochemotherapy , Anti-infective agents , Escherichia coli , Nanoparticles , Silver , Zinc
- Description: This work reports on the synthesis, characterization and the physicochemical properties of novel unsymmetrically substituted zinc phthalocyanines: namely tris{11,19, 27-(1,2- diethylaminoethylthiol)-2-(captopril) phthalocyanine Zn ((ZnMCapPc (1.5)), hexakis{8,11,16,19,42,27-(octylthio)-1-(4-phenoxycarboxy) phthalocyanine} Zn (ZnMPCPc(1.7)) and Tris {11, 19, 27-(1,2-diethylaminoethylthiol)-1,2(caffeic acid) phthalocyanine} Zn ((ZnMCafPc (1.3)). Symmetrically substituted counterparts (tetrakis(diethylamino)zinc phthalocyaninato (3.8), octakis(octylthio)zinc phthalocyaninato (3.9) and tetrakis (carboxyphenoxy)zinc phthalocyaninato (3.10) complexes) were also synthesized for comparison of the photophysicochemical properties and to investigate the effect of the substituents on the low symmetry Pcs. The complexes were successfully characterized by IR, NMR, mass spectral and elemental analyses. All the complexes showed the ability to produce singlet oxygen, while the highest triplet quantum yields were obtained for 1.7, 1.5 and 3.9 (0.80, 0.65 and 0.62 respectively and the lowest were obtained for 1.3 and 3.10 (0.57 and 0.47 respectively). High triplet lifetimes (109-286 μs) were also obtained for all complexes, with 1.7 being the highest (286 μs) which also corresponds to its triplet and singlet quantum yields (0.80 and 0.77 respectively). The photosensitizing properties of low symmetry derivatives, ZnMCapPc and ZnMCafPc were investigated by conjugating glutathione (GSH) capped silver nanoparticles (AgNP). The formation of the amide bond was confirmed by IR and UV-Vis spectroscopies. The photophysicochemical behaviour of the novel phthalocyanine-GSH-AgNP conjugates and the simple mixture of the Ag NPs with low the symmetry phthalocyanines were investigated. It was observed that upon conjugation of the phthalocyanines to the GSH-AgNPs, a blue shift in the Q band was induced. The triplet lifetimes and quantum yields improved upon conjugation as compared to the phthalocyanines (Pc) alone. Complex 1.5 triplet lifetimes increased from 109 to 148 and triplet quantum yield from 0.65 to 0.86 upon conjugation. Fluorescence lifetimes and quantum yields decreased for the conjugates compared to the phthalocyanines alone, due to the quenching caused by the Ag NPs. The antimicrobial activity of the zinc phthalocyanines (complexes 1.3 and 1.5) and their conjugates against Escherichia coli was investigated. Only 1.3 and 1.5 complexes were investigated because of the availability of the sample. In general phthalocyanines showed increase in antibacterial activity with the increase in phthalocyanines concentration in the presence and absence of light. The Pc complexes and their Ag NP conjugates showed an increase in antibacterial activity, due to the synergistic effect afforded by Ag NP and Pcs. Improved antibacterial properties were obtained upon irradiation. 1.5-AgNPs had the highest antibacterial activity compared to 1.3-AgNPs conjugate; these results are in agreement with the photophysical behaviour. This work demonstrates improved photophysicochemical properties of low symm
- Full Text:
- Date Issued: 2013
- «
- ‹
- 1
- ›
- »