The phloem unloading and sucrose-sequestration pathway in the internodal stem tissue of the Saccharum hybrid var. NCo376
- Authors: Gerber, Jacqués
- Date: 2001
- Subjects: Saccharum , Sugarcane , Sugar -- Synthesis , Sugar growing
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4194 , http://hdl.handle.net/10962/d1003763
- Description: Internodes 5-8, 10, 13 and 15 of Saccharum sp. var. NCo376 were examined for evidence of symplasmic phloem unloading of sucrose from the phloem, via the bundle sheath to the storage parenchyma. The vascular bundle possesses wellisolated phloem comprised of large diameter sieve elements and small diameter companion cells. A layer of phloem parenchyma surrounds the phloem, except where the phloem abuts the crushed protophloem. Outside this is a sclerenchymatous sheath, directly endarch to a parenchymatous bundle sheath, which is surrounded by storage parenchyma. The bundle sheath is interrupted at the centrifugal pole of the vascular bundle by a phloem fibre cap. Scanning Electron Microscopy revealed plasmodesmal fields throughout the bundle sheath and pith tissue. Transmission Electron Microscopy studies provided evidence of plasmodesmal occlusion, but not in all tissues. Aniline blue reactions under UV light indicate the presence of occluded plasmodesmal fields at the phloem parenchyma / sclerenchymatous sheath interface, and in localised regions of cells which are smaller than the surrounding storage parenchyma cells. This suggests a symplasmic transport pathway at these locations, and, based on these positive aniline blue reactions, with regulation via callose-mediated transplasmodesmal transport. Osmotic stress experiments, which included the addition of Ca2+, did not reveal further callose occlusion in the parenchyma, suggesting that the plasmodesmata in these regions may be closed via a noncallosic mechanism. Dye-coupling studies, using Lucifer Yellow (LYCH), which was iontophoretically injected following turgor-pressure equalisation, showed only rare, limited symplastic transport, usually only between the injected cell and one adjacent cell. Most injections did not result in transport of LYCH, suggesting either a lack of plasmodesmal connectivity, occlusion, or gating of any plasmodesmata present. This limited symplasmic transport, combined with the presence of occluded plasmodesmata at the phloem parenchyma / sclerenchymatous sheath interface suggests the presence of a two-domain phloem-unloading pathway. While symplastic transport may occur from the phloem to the sclerenchymatous sheath, further sucrose transport to the storage parenchyma appears to proceed apoplasmically from the sclerenchymatous sheath / bundle sheath interface, and into storage parenchyma cells across the cell wall and cell membrane via specialised sucrose transporters.
- Full Text:
- Date Issued: 2001
- Authors: Gerber, Jacqués
- Date: 2001
- Subjects: Saccharum , Sugarcane , Sugar -- Synthesis , Sugar growing
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4194 , http://hdl.handle.net/10962/d1003763
- Description: Internodes 5-8, 10, 13 and 15 of Saccharum sp. var. NCo376 were examined for evidence of symplasmic phloem unloading of sucrose from the phloem, via the bundle sheath to the storage parenchyma. The vascular bundle possesses wellisolated phloem comprised of large diameter sieve elements and small diameter companion cells. A layer of phloem parenchyma surrounds the phloem, except where the phloem abuts the crushed protophloem. Outside this is a sclerenchymatous sheath, directly endarch to a parenchymatous bundle sheath, which is surrounded by storage parenchyma. The bundle sheath is interrupted at the centrifugal pole of the vascular bundle by a phloem fibre cap. Scanning Electron Microscopy revealed plasmodesmal fields throughout the bundle sheath and pith tissue. Transmission Electron Microscopy studies provided evidence of plasmodesmal occlusion, but not in all tissues. Aniline blue reactions under UV light indicate the presence of occluded plasmodesmal fields at the phloem parenchyma / sclerenchymatous sheath interface, and in localised regions of cells which are smaller than the surrounding storage parenchyma cells. This suggests a symplasmic transport pathway at these locations, and, based on these positive aniline blue reactions, with regulation via callose-mediated transplasmodesmal transport. Osmotic stress experiments, which included the addition of Ca2+, did not reveal further callose occlusion in the parenchyma, suggesting that the plasmodesmata in these regions may be closed via a noncallosic mechanism. Dye-coupling studies, using Lucifer Yellow (LYCH), which was iontophoretically injected following turgor-pressure equalisation, showed only rare, limited symplastic transport, usually only between the injected cell and one adjacent cell. Most injections did not result in transport of LYCH, suggesting either a lack of plasmodesmal connectivity, occlusion, or gating of any plasmodesmata present. This limited symplasmic transport, combined with the presence of occluded plasmodesmata at the phloem parenchyma / sclerenchymatous sheath interface suggests the presence of a two-domain phloem-unloading pathway. While symplastic transport may occur from the phloem to the sclerenchymatous sheath, further sucrose transport to the storage parenchyma appears to proceed apoplasmically from the sclerenchymatous sheath / bundle sheath interface, and into storage parenchyma cells across the cell wall and cell membrane via specialised sucrose transporters.
- Full Text:
- Date Issued: 2001
Synthesis and reactions of sugar chlorosulphates
- Authors: Naidoo, Nadasen Thargarajan
- Date: 1980
- Subjects: Sugar -- Synthesis , Chemical reactions
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3734 , http://hdl.handle.net/10962/d1001522
- Description: Sugar chlorosulphates of furanoid and pyranoid derivatives bearing chlorosulphonyloxy groups at primary and secondary positions, were synthesized and examined mainly with a view to determine their extent of reactivity in terms of nucleophilic substitution reactions, especially with azide. Inversion of configuration occurred at reactive chiral centres, whereas intermediate azidosulphonyloxy derivatives (azidosulphates) were formed via S-Cℓ bond fission of the chlorosulphonyloxy group at less reactive primary or secondary centres, e.g. 1,2:3,4-diO̲isopropyl idene-α-D-galactopyranose 6-azidosulphate, 1,2-O̲isopropylidenea- D-xylofuranose 3-azidosulphate and 1,2:5,6-di-O̲-isopropyl idene-α-Dglucofuranose 3-azidosulphate. 1,2:3,4-Di-O̲-isopropylidene-α-Dgalactopyranose 6-azidosulphate ultimately afforded the 6-azidodeoxy derivative probably by an SN2 mechanism. Some SNi characteristics were,however, evident when substitution occurred at a reactive primary centre (e.g. methyl 2,3,4-tri-O̲-methyla- D-glucopyranoside 6-chlorosulphate), as the 6-azidodeoxy derivative obtained, appeared to be contaminated with a trace amount of the corresponding 6-chlorodeoxy sugar, which had presumably formed via an internal SNi mechanism, while no intermediate azidosulphonyloxy derivative was isolated. In another study, the reaction pathways for the synthesis of benzylated chlorodeoxy sugars having potential biological properties as exemplified by the multivalent drug, tribenoside, were also investigated
- Full Text:
- Date Issued: 1980
- Authors: Naidoo, Nadasen Thargarajan
- Date: 1980
- Subjects: Sugar -- Synthesis , Chemical reactions
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3734 , http://hdl.handle.net/10962/d1001522
- Description: Sugar chlorosulphates of furanoid and pyranoid derivatives bearing chlorosulphonyloxy groups at primary and secondary positions, were synthesized and examined mainly with a view to determine their extent of reactivity in terms of nucleophilic substitution reactions, especially with azide. Inversion of configuration occurred at reactive chiral centres, whereas intermediate azidosulphonyloxy derivatives (azidosulphates) were formed via S-Cℓ bond fission of the chlorosulphonyloxy group at less reactive primary or secondary centres, e.g. 1,2:3,4-diO̲isopropyl idene-α-D-galactopyranose 6-azidosulphate, 1,2-O̲isopropylidenea- D-xylofuranose 3-azidosulphate and 1,2:5,6-di-O̲-isopropyl idene-α-Dglucofuranose 3-azidosulphate. 1,2:3,4-Di-O̲-isopropylidene-α-Dgalactopyranose 6-azidosulphate ultimately afforded the 6-azidodeoxy derivative probably by an SN2 mechanism. Some SNi characteristics were,however, evident when substitution occurred at a reactive primary centre (e.g. methyl 2,3,4-tri-O̲-methyla- D-glucopyranoside 6-chlorosulphate), as the 6-azidodeoxy derivative obtained, appeared to be contaminated with a trace amount of the corresponding 6-chlorodeoxy sugar, which had presumably formed via an internal SNi mechanism, while no intermediate azidosulphonyloxy derivative was isolated. In another study, the reaction pathways for the synthesis of benzylated chlorodeoxy sugars having potential biological properties as exemplified by the multivalent drug, tribenoside, were also investigated
- Full Text:
- Date Issued: 1980
- «
- ‹
- 1
- ›
- »