Electrochemical studies of titanium, manganese and cobalt phthalocyanines
- Authors: Nombona, Nolwazi
- Date: 2009
- Subjects: Titanium , Manganese , Cobalt , Phthalocyanines , Electrochemistry , Electrodes , Self-assembly (Chemistry)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4312 , http://hdl.handle.net/10962/d1004970 , Titanium , Manganese , Cobalt , Phthalocyanines , Electrochemistry , Electrodes , Self-assembly (Chemistry)
- Description: Syntheses, spectral, electrochemical and spectroelectrochemical studies of phenylthio and amino derivatised metallophthalocyanines complexes are reported. The complexes are immobilized onto a gold macro disk, gold ultramicroelectrode and gold coated fiber electrodes via self assembly with phenylthio MPc derivatives or onto a glassy carbon electrode via electropolymerisation with amino MPc derivatives. For the first time MPc SAMs were formed on gold coated fiber. The electrocatalytic behavior of the modified electrodes was studied for the detection of nitrite and L-cysteine, all modified electrodes showed improved electrocatalytic oxidation compared to the unmodified electrode. The MPc complexes catalyzed nitrite oxidation via a two-electron mechanism producing nitrate. Cobalt tetraaminophthalocyanine showed the best catalytic activity for nitrite oxidation in terms of overpotential lowering compared to other complexes and thus was used for nitrite detection in a food sample, the nitrite concentration was determined to be 59.13 ppm, well within the limit for cured meat products. Electrocatalytic oxidation of L-cysteine on SAM modified gold coated fiber was reported for the first time. The gold coated fiber and ultamicro cylinder electrode were less stable towards the electro-oxidation of cysteine compared to its oxidation on the gold disk. The gold disk electrode gave better catalytic performance in terms of stability and reduction of overpotential. The phenylthio cobalt phthalocyanine derivative gave the best catalytic activity for L-cysteine oxidation in terms of overpotential lowering compared to other phenylthio derivatized MPc complexes. The amount of L-cysteine in human urine was 2.4 mM, well within the urinary L-cysteine excretion range for a healthy human being.
- Full Text:
- Date Issued: 2009
Synthesis and photophysical properties of antimony and lead phthalocyanines
- Authors: Modibane, Kwena Desmond , Guest
- Date: 2009 , 2009-02-27
- Subjects: Phthalocyanines , Photochemistry , Antimony compounds , Lead compounds
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4370 , http://hdl.handle.net/10962/d1005035 , Phthalocyanines , Photochemistry , Antimony compounds , Lead compounds
- Description: This work hereby presents the synthesis, spectroscopic and photophysical properties of newly synthesized lead (PbPc) and antimony (SbPc) phthalocyanines. The complexes are either unsubstituted or substituted at the peripheral and non-peripheral positions with phenoxy, 4-t-butylphenoxy and 4-benzyloxyphenoxy groups. The photophysical properties of these complexes were studied in dimethylsulfoxide, dimethylformamide, toluene, tetrahydrofuran and chloroform as solvents. The fluorescence spectra for PbPc complexes were different to that of the excitation spectra due to demetallation upon excitation. On the other hand, the excitation spectra of oxidized antimony (Sb(V)Pc) derivatives were found to be similar to absorption spectra. High triplet quantum yields for PbPc and SbPc complexes ranging from 0.70 to 0.86, low triplet lifetimes (20–60 μs in DMSO, while they were <10 μs in the rest of the solvents) and low fluorescence quantum yields were observed and is attributed to the presence of heavy atoms (Pb and Sb ions). The nonlinear optical properties of PbPc complexes were studied in dimethylsulfoxide. The optical limiting threshold intensity (Ilim) for the PbPc derivatives were calculated and ranged from 2.1 to 6.8 W/cm2. The photodegradation studies of the PbPc and SbPc complexes synthesized showed that then are stable.
- Full Text:
- Date Issued: 2009
Removal and photocatalysis of 4-Nitrophenol using metallophthalocyanines
- Authors: Marais, Eloïse Ann
- Date: 2008
- Subjects: Photocatalysis , Catalysis , Electrochemistry , Nitrophenols , Phthalocyanines
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4343 , http://hdl.handle.net/10962/d1005005 , Photocatalysis , Catalysis , Electrochemistry , Nitrophenols , Phthalocyanines
- Description: Photodegradation of 4-nitrophenol (4-Np) in the presence of water-soluble zinc phthalocyanines and water-insoluble metallophthalocyanines is reported. The water-soluble phthalocyanines employed include zinc tetrasulphophthalocyanine (ZnPcS[subscript 4]), zinc octacarboxyphthalocyanine (ZnPc(COOH)[subscript 8]) and a sulphonated ZnPc containing a mixture of differently sulphonated derivatives (ZnPcS[subscript mix]), while the water-insoluble phthalocyanines used include unsubstituted magnesium (MgPc), zinc (ZnPc) and chloroaluminium (ClAlPc) phthalocyanine complexes and the ring-substituted zinc tetranitro (ZnPc(NO[subscript 2])[subscript 4]), zinc tetraamino (ZnPc(NH[subscript 2])[subscript 4]), zinc hexadecafluoro (ZnPcF[subscript 16]) and zinc hexadecachloro (ZnPcCl[subscript 16]) phthalocyanines. The most effective water-soluble photocatalyst is ZnPcS[subscript mix] in terms of the high quantum yield obtained for 4-Np degradation (Φ[subscript 4-Np]) as well as its photostability. While ZnPc(COOH)[subscript 8] has the highest Φ[subscript 4-Np] value relative to the other water-soluble complexes, it degrades readily during photocatalysis. The Φ[subscript 4-Np] values were closely related to the singlet oxygen quantum yields Φ[subscript Δ] and hence aggregation. The rate constants for the reaction with 4-Np were kr = 0.67 x 10[superscript 6] mol[superscript -1] dm[superscript 3] s[superscript -1] for ZnPcS[subscript mix] and 7.7 x 10[superscript 6] mol[superscript -1] dm[superscript 3] s[superscript -1] for ZnPc(COOH)[subscript 8]. ClAlPc is the most effective photocatalyst relative to the other heterogeneous photocatalysts for the phototransformation of 4-Np, with 89 ± 8.4 % degradation of 4-Np achieved after 100 min. The least effective catalysts were ZnPcCl[subscript 16] and MgPc. The final products of the photocatalysis of 4-Np in the presence of the homogeneous photocatalysts include 4-nitrocatechol and hydroquinone, while degradation of 4-Np in the presence of the heterogeneous photocatalysts resulted in fumaric acid and 4-nitrocatechol. ClAlPc was employed for the heterogeneous photocatalysis of the non-systemic insecticide, methyl paraoxon. Complete degradation of the pesticide was confirmed by the disappearance of the HPLC trace for methyl paraoxon after 100 min of irradiation with visible light. The removal of 4-Np from an aqueous medium using commercially available Amberlite[superscript ®] IRA-900 modified with metal phthalocyanines was also investigated. The metallophthalocyanines immobilised onto the surface of Amberlite[superscript ®] IRA-900 include Fe (FePcS[subscript 4]), Co (CoPcS[subscript 4]) and Ni (NiPcS[subscript 4]) tetrasulphophthalocyanines, and differently sulphonated phthalocyanine mixtures of Fe (FePcS[subscript mix]), Co (CoPcS[subscript mix]) and Ni (NiPcS[subscript mix]). Adsorption rates were fastest for the modified adsorbents at pH 9. Using the Langmuir-Hinshelwood kinetic model, the complexes showed the following order of 4-Np adsorption: CoPcS[subscript mix] > NiPcS[subscript 4] > NiPcS[subscript mix] > FePcS[subscript 4] > FePcS[subscript mix] > CoPcS[subscript 4]. The adsorbents were regenerated using dilute HNO[subscript 3], with 76 % (7.6 x 10[superscript -5] mol) of 4-Np recovered within 150 min.
- Full Text:
- Date Issued: 2008
Synthesis, photochemical and photophysical properties of gallium and indium phthalocyanine derivatives
- Authors: Chauke, Vongani Portia
- Date: 2008
- Subjects: Phthalocyanines , Photochemotherapy , Electrochemistry , Gallium , Indium
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4375 , http://hdl.handle.net/10962/d1005040 , Phthalocyanines , Photochemotherapy , Electrochemistry , Gallium , Indium
- Description: The syntheses of octasubstituted and unsusbstitituted Gallium(III) chloride and indium(III) chloride phthalocyanines (GaPc and InPc), their photophysical, photochemical and nonlinear optical parameters are hereby presented. The photocatalytic oxidation of 1-hexene using the synthesized GaPc and InPc complexes as well as electrochemical characterization is also presented in this thesis. Fluorescence quantum yields do not vary much among the four Ga complexes, except for complex 21c; therefore it was concluded that the effect of substituents is not significant among them. Solvents however, had an effect on the results. Lower Φ[subscript F] values were obtained in low viscosity solvents like toluene, relative to highly viscous solvents, such as DMSO. The triplet quantum yields were found to be lower in DMSO than in DMF and toluene. The rate constants for fluorescence, intersystem crossing and internal conversion as well as fluorescence and triplet lifetimes are reported. Photodegradation and singlet oxygen quantum yields have also been reported. There was no clear correlation between the latter parameters. It was however established that the four gallium MPcs were stable, within the allowed stability range for phthalocyanines. High quantum yields of triplet state (Φ[subscript T] ranging from 0.70 to 0.91 in dimethysulfoxide, DMSO) and singlet oxygen generation (Φ[subscript greek capital letter delta], ranging from 0.61 to 0.79 in DMSO) were obtained. Short triplet lifetimes 50 to 60 μs were obtained in DMSO). Calculated non-linear parameters of these complexes are compared with those of the corresponding GaPc derivatives and tetrasubstituted GaPc and InPc complexes. The optical limiting threshold intensity (I[subscript lim]) values for the InPc and GaPc derivatives were calculated and compared with those of corresponding tetrasubstituted InPc and GaPc complexes. The octasubstituted were found to be better optical limiters. Photocatalytic oxidation of 1-hexene by GaPc (21a-c) and InPc (22a-c) derivatives is also presented. The photocatalytic oxidation products for 1-hexene were 1,2- epoxyhexane and 1-hexen-3-ol. The % conversion values of 1-hexene and % selectivity of 1,2-epoxyhexane were generally higher for InPc derivatives. Even though InPc derivatives showed better photocatalytic results than GaPc derivatives, the former were less stable relative to the latter. Both type I and type II mechanism were implicated in the photocatalysis mechanism.
- Full Text:
- Date Issued: 2008
Synthesis, photophysics and electrochemical study of tin macrocycles
- Authors: Khene, Mielie Samson
- Date: 2008
- Subjects: Electrochemistry , Photochemistry , Phthalocyanines , Macrocyclic compounds , Spectrum analysis
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4376 , http://hdl.handle.net/10962/d1005041 , Electrochemistry , Photochemistry , Phthalocyanines , Macrocyclic compounds , Spectrum analysis
- Description: Three non-peripherally substituted tin(IV) macrocylic compounds, octahexylphthalocyaninato dichlorotin(IV) (35a), octahexyltetrabenzo-5,10,15-triazaporphyrinato dichlorotin(IV) (35b) and octadecylphthalocyaninato dichlorotin(IV) (35c) were synthesized and their photophysical and electrochemical behaviour studied. Complex (35b), containing a CH group in place of one of the aza nitrogen atom of the phthalocyanine core, shows a split Q band due to its lower symmetry. The triplet state quantum yields were found to be lower than would be expected on the basis of the heavy atom effect of tin as the central metal for phthalocyanine derivatives (35a and 35c). In contrast, (35b) shows a triplet quantum yield ΦT = 0.78. The triplet state lifetimes were solvent dependent, and were higher in THF than in toluene. Cyclic voltammetry and spectroelectrochemistry of the complexes revealed only ring based redox processes. This thesis also reports on the microwave syntheses of tetrasulphonated tin phthalocyanine and tetrasulphonated tin α,β,γ-tetrabenzcorrole. The latter was only formed at low ratios (< 1:8) of 4-sulfophthalic acid to urea. Both complexes are aggregated in aqueous media, but can be partly or fully disaggregated by the addition of Triton X-100. The SnTSTBC complex has lower triplet life times and yields, while binding constant and quenching (of bovine serum albumin) constant are lower for SnTSTBC, compared to SnTSPc. Finally Non-peripherally (α) tetra- (40) and octa-(38a) substituted dodecyl-mercapto tin(IV) phthalocyanines where synthesized and the electrochemical behavior studied. Cyclic voltammetry and spectroelectrochemistry show ring-based reductions for (38a) and (40); the former shows two ring oxidations, while the latter shows only one ring based oxidation. The adsorption kinetics of (38a) and (40) on a gold electrode have been investigated by electrochemical impedance spectroscopy (EIS). The equilibrium constant (K) for the adsorption and the Gibbs free energy ΔG(ads) of the self-assembled monolayer (SAMs) were evaluated based on the Frumkin isotherm. The interaction factor between adsorbate –adsorbate molecules is also discussed.
- Full Text:
- Date Issued: 2008
Study of metallophthalocyanines attached onto pre-modified gold surfaces
- Authors: Mashazi, Philani Nkosinathi
- Date: 2007
- Subjects: Phthalocyanines , Electrochemistry , Electrodes, Enzyme , Glucose -- Measurement
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4361 , http://hdl.handle.net/10962/d1005026 , Phthalocyanines , Electrochemistry , Electrodes, Enzyme , Glucose -- Measurement
- Description: Tetra-carboxy acid chloride phthalocyanine complexes of cobalt, iron and manganese were synthesized and characterized using spectroscopic and electrochemical techniques. These complexes were fabricated as thin films on gold electrode following a covalent immobilization and self-assembling methods. Surface electrochemical and spectroscopic characterization showed that these complexes are surface-confined species. The characterization using spectroscopic and electrochemical methods confirmed the formation of thiol and MPc SAMs on gold electrode. The electrocatalytic behaviour of the SAM modified gold electrodes was studied for the detection of L-cysteine and hydrogen peroxide. The limits of detection (LoD) for Lcysteine were of the orders of 10[superscript -7] mol.L[superscript -1] for all the MPc complexes studied and the LoD for hydrogen peroxide at cobalt phthalocyanine modified gold electrode was of the orders of 10[superscript -7]mol.L[superscript -1] for both electrocatalytic oxidation and reduction. The modification process for gold electrodes was reproducible and showed good stability, if stored in pH 4 phosphate buffer solutions and can be used over a long period of time. The cobalt phthalocyanine modified gold electrode was also investigated for the fabrication of glucose oxidase (GOx)-based biosensor and as an electron mediator between the enzyme and gold electrode. The behaviour of the enzyme modified gold electrode towards the detection of glucose was studied and the results gave a limit of detection of the orders of 10[superscript -6] mol.L[superscript -1] with low binding constant (4.8 mM) of enzyme (GOx) to substrate (glucose) referred to as Michaelis-Menten constant. The practical applications, i.e. the real sample analysis and interference studies, for the enzyme modified gold electrodes were investigated. These studies showed that the enzyme electrode is valuable and can be used for glucose detection.
- Full Text:
- Date Issued: 2007
Substituted phthalocyanines development and self-assembled monolayer sensor studies
- Authors: Matemadombo, Fungisai
- Date: 2006
- Subjects: Phthalocyanines , Monomolecular films , Electrochemistry , Spectrum analysis
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4364 , http://hdl.handle.net/10962/d1005029 , Phthalocyanines , Monomolecular films , Electrochemistry , Spectrum analysis
- Description: Zinc, cobalt and iron phenylthio substituted phthalocyanines have been synthesized and characterized. Cyclic and square wave voltammetry in dimethylformamide containing tetrabutylammonium perchlorate revealed five and six redox processes respectively for the cobalt and iron phenylthio substituted phthalocyanines. These complexes are easier to reduce compared to the corresponding unsubstituted MPc and to butylthio substituted derivatives. Spectroelectrochemistry (in dimethylformamide containing tetrabutylammonium perchlorate) was employed to assign the cyclic voltammetry peaks, and gave spectra characteristic of Fe(I)Pc for reduction of iron phenylthio substituted phthalocyanine and Co(I)Pc for the reduction of cobalt phenylthio substituted phthalocyanine. The spectrum of the former is particularly of importance since such species have not received much attention in literature. Cobalt and iron phenylthio substituted phthalocyanines have been deposited on Au electrode surfaces through the self assembled monolayer (SAM) technique. The so formed layers were studied using voltammetric techniques. These SAMs blocked a number of Faradic processes and electrocatalyzed the oxidation of L-cysteine. Amine substituted cobalt phthalocyanine (CoTAPc) was deposited on gold surfaces by using an interconnecting SAM of mercaptopropionic acid or dithiobis(N-succinimidyl propionate) through the creation of an amide. Reductive and oxidative desorption of the SAMs limit the useful potential window. The SAM-CoTAPc layers show electrocatalytic activities towards oxygen reduction through the Co(I) central metal ion. Both SAMs were highly stable and hence will be interesting tools for further research in surface modification and sensor development.
- Full Text:
- Date Issued: 2006
Synthesis, photochemical and photophysical properties of phthalocyanine derivatives
- Authors: Maqanda, Weziwe Theorine
- Date: 2005 , 2013-06-18
- Subjects: Photochemotherapy , Phthalocyanines , Zinc , Magnesium
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4436 , http://hdl.handle.net/10962/d1007472 , Photochemotherapy , Phthalocyanines , Zinc , Magnesium
- Description: Substituted zinc and magnesium phthalocyanine and porphyrazine derivatives were synthesized according to the reported procedures. The magnesium and zinc phthalocyanine and porphyrazine derivatives were synthesized by ring enlargement of subphthalocyanine and statistical condensation of the two phthalonitrile derivatives. Characterization of the complexes involved the use of infrared spectroscopy, nuclear magnetic resonance spectroscopy, ultraviolet and visible spectroscopy, and Maldi-TOF spectroscopy (for selected compounds) and elemental analysis. Photochemical and photophysical properties of the complexes in non-aqueous solution was then investigated. Photobleaching quantum yields are in order of 10⁻⁵ indicating their relative photostability. Complexes containing more electron-donating substituents were more easily oxidized. For complexes 66 and 69 (as these complexes have the same number of substituents but differ in the metal center) photobleaching quantum yield for the ZincPc complex 69 was slightly less than that of the MgPc complex 66. Singlet oxygen quantum yields of the various complexes in DMSO using diphenylisobenzofuran (DPBF) as a quencher in organic solvents were determined. Singlet oxygen quantum yields of the complexes range from 0.23 to 0.67. High values of Φ[subscript]Δ ZnPc complexes was observed compared to the corresponding MgPc, complexes. This was evidenced by complexes 66 and 69 with Φ[subscript]Δ values of Φ[subscript]Δ = 0.26 and 0.40, respectively. Varying number of phenoxy substituents, complex 71 gave significantly large value of Φ[subscript]Δ compared to 70 (that is, the presence of more electron-donating substituted group, gave higher singlet oxygen quantum yields (0 .67 and 0.25 for 71 and 70 repectively). The triplet quantum yields and triplet lifetimes were determined by laser flash photolysis for selected compounds. The triplet quantum yields increase as the number of substituents increases e.g 68 > 67 > 66. Comparing porphyrazine complexes (63, 64 and 65), 63 with benzene attached to the ring, has higher triplet state lifetime (420 μs) compared to 64 and 65 containing long alkyl chain and tertbutyl substituents, 350 and 360 μs,respectively). The observed Φ[subscript]f values for 68 and 63 were quiet suprising, since low values are observed compared to the rest of the complexes (e.g 0.03 and 0.02 respectively). Although these values seem so low, they are sufficient for fluorescence imaging applications. The Φ[subscript]f values for the complexes under study are within the range reported for complexes currently used for PDT. , KMBT_363 , Adobe Acrobat 9.54 Paper Capture Plug-in
- Full Text:
- Date Issued: 2005
Synthesis of zinc phthalocyanine derivatives for possible use in photodynamic therapy
- Authors: Matlaba, Pulane Maseleka
- Date: 2003
- Subjects: Photochemotherapy , Electrochemistry , Phthalocyanines , Zinc
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4374 , http://hdl.handle.net/10962/d1005039 , Photochemotherapy , Electrochemistry , Phthalocyanines , Zinc
- Description: The synthesis of symmetrically and unsymmetrically substituted zinc phthalocyanines (ZnPc) derivatives is done according to reported procedures. The unsymmetrical ZnPc derivatives are synthesized by ring expansion of sub-phthalocyanine complexes. Ring substitution is effected with tert-butyl phenol, naphthol, and hydroxybenzoic acid. Comparison of the redox potentials for the complexes substituted with varying numbers of tert-butyl phenol: 1, 2, 3, 6 and 8 show that the complex with the highest number of substituents are more difficult to oxidize and easier to reduce. Water soluble sulphonated ZnPc (ZnPcSn) was prepared. The possibility of using axial ligation to increase the solubility and the photochemical activity of sulphotnated ZnPc in aqueous solutions was investigated. Pyridine, aminopyridyl and bipyridyl were used as axial ligands. When bipyridyl was used as the axial ligand, solubility of the ZnPcSn increased, shown by the increase in the Q-band of the monomer species in solution and the singlet oxygen quantum yields was relatively higher than that of the unligated ZnPcSn. The singlet oxygen quantum yields by the various complexes in DMF using diphenylisobenzofuran as a chemical quencher for organic solvent were determined. Singlet oxygen quantum yields for the unsymmetrically ring substituted complexes range from 0.22 to 0.68. Photobleaching quantum yields are in the order of 10-5, which means that the complexes are relatively photostable.
- Full Text:
- Date Issued: 2003
Effects of Axial Ligands on the Photosensitising Properties of Silicon Octaphenoxyphthalocyanines
- Authors: Maree, Machiel David
- Date: 2002
- Subjects: Ligands , Photochemotherapy , Phthalocyanines
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4553 , http://hdl.handle.net/10962/d1018246
- Description: Various axially substituted Silicon octaphenoxyphthalocyanines were synthesised as potential photosensitisers in the photodynamic therapy of cancer. Conventional reflux reactions were used for synthesis as well as new microwave irradiation reactions, wherein the reaction times were decreased tenfold with a marginal increase in reaction yield and product purity. An interesting series of oligomeric (dimer to a nonamer) silicon octaphenoxyphthalocyanines were also successfully synthesised in a reaction similar to polymerisation reactions. These compounds were found to undergo an axial ligand transformation upon irradiation with red light (> 600 nm) in dimethylsulphoxide solution. All the ligands were transformed into the dihydroxy silicon octaphenoxyphthalocyanine with varying degrees of phototransformation quantum yields ranging in order from 10⁻³ to 10⁻⁵ depending on the axial ligand involved. During and after axial ligand transformations a photodegredation of the dihydroxy silicon octaphenoxy phthalocyanine was observed upon continued irradiation. The oligomers were found to undergo the same axial ligand transformation process with a phototransformation quantum yield of 10⁻⁵ The singlet oxygen quantum yields of the unaggregated monomeric silicon octaphenoxy phthalocyanines were all found to be approximately 0.2 with the exception of a compound with two (trihexyl)siloxy axial substituents that had a singlet oxygen quantum yield of approximately 0.4 in dimethylsulphoxide solutions. The oligomers showed a surprising trend of an increase in singlet oxygen quantum yield with an increase in phthalocyanine ring number up to the pentamer and then a dramatic decrease to the nonamer. The triplet quantum yield and triplet lifetime were determined by laser flash photolysis for selected compounds and no correlation was observed with any of these properties and the singlet oxygen quantum yields. These selected compounds all fluoresce and a very good correlation was found between the fluorescence lifetimes determined experimentally by laser photolysis and the Strickler-Berg equation for the non-aggregated compounds. Electrochemical measurements also indicate the importance of the axial ligands upon the behaviour of the phthalocyanines as cyclic voltammetric behaviour was determined by the nature of the axial ligand.
- Full Text:
- Date Issued: 2002
Effects of substituents on the photosensitizing and electrocatalytic properties of phthalocyanines
- Authors: Maree, Suzanne Elizabeth
- Date: 2002
- Subjects: Phthalocyanines
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4554 , http://hdl.handle.net/10962/d1018247
- Description: In this work a selection of octasubstituted phthalocyaninato Zinc, Ge(IV) and Sn(IV) complexes were synthesized for possible use in photodynamic therapy and their photochemistry, photophysics and electrochemistry studied. Third-generation complexes containing steroids, e.g. cholesterol and estrone, were synthesized to improve tumour selectivity. The zinc phthalocyanine complexes (ZnPc) showed that complexes containing electron-donating groups have higher photostability. Germanium phthalocyanine complexes (GePc) undergo phototransformation rather than direct photobleaching and the tin phthalocyanine complexes (SnPc) undergo photobleaching mediated by photoreduction of the phthalocyanine ring. Singlet oxygen production showed increased in the following order: GePc>SnPc>ZnPc. Triplet lifetimes of the GePc (168-340μs) are very similar to that of the ZnPc (197 - 366μs), but the triplet lifetimes of the SnPc are ten fold shorter (10 - 32μs ). Triplet quantum yields are higher for the GePc (0.20 - 0.50) and SnPc (0.08 - 0.45) than for the ZnPc (0.02 - 0.25). Fluorescence lifetimes of GePc ( 4.0 - 5.1 ns) are significantly longer than that of ZnPc (1.9 - 3.0 ns) and SnPc (0.2 - 0.4 ns). Fluorescence quantum yields decrease in the following order: GePc(0.21-0.31)>ZnPc(0.02-0.21)>SnPc(0.02- 0.06). Ring-substituted cobalt phthalocyanine complexes of the form CoPc(R)4 (R= NH2, N02, C(CH3)3, S03H and COOH) are compared for their catalytic activities towards the oxidation of cysteine. The potential for the electrocatalytic oxidation of cysteine is closely related to the Com/Co11 couple of the CoPc(R)4 complexes in acidic media and to the Con/Co1 couple in basic media. The catalytic current and the oxidation potential for cysteine are dependent on the pH of the solution, the potential becoming less positive and the currents increasing with increase in pH.
- Full Text:
- Date Issued: 2002
Photosensitizing properties of non-transition metal porphyrazines towards the generation of singlet oxygen
- Authors: Seotsanyana-Mokhosi, Itumeleng
- Date: 2001 , 2013-05-02
- Subjects: Phthalocyanines , Photosensitization, Biological , Active oxygen -- Physiological effect , Photosensitizing compounds
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4395 , http://hdl.handle.net/10962/d1006086 , Phthalocyanines , Photosensitization, Biological , Active oxygen -- Physiological effect , Photosensitizing compounds
- Description: Metallophthalocyanine complexes containing non-transition metals are very useful as sensitizers for photodynamic therapy, a cure for cancer that is based on visible light activation of tumour localized photo sensitizers. Excited sensitizers generate singlet oxygen as the main hyperactive species that destroy the tumour. Water soluble sensitizers are sought after for the convenience of delivery into the body. Thus, phthalocyanine (pc), tetrapyridinoporphyrazines (tppa) and tetramethyltetrapyridinoporphyrazines (tmtppa) with non-transition central metal atoms of Ge, Si, Sn and Zn were studied. First was the synthesis of these complexes, followed by their characterisation. The characterisation involved the use of ultraviolet and visible absorption spectroscopy, infrared spectroscopy, nuclear magnetic resonance spectroscopy, electrochemical properties and elemental analysis. Photochemical properties of the complexes were then investigated. Photolysis of these macrocycles showed two processes; -reduction of the dye and photobleaching, which leads to the disintegration of the conjugated chromophore structure of the dye. Photobleaching is the reductive quenching of the excited state of the sensitizers. The intensity of the quenching decreased progressively from tmtppa, tppa to pc metal complexes with photobleaching quantum yields, 6.6 x 10.5⁻¹, 1.8 x 10.5⁻¹ and 5.4 x 10⁻⁶ for Zntmtppa, Zntppa and Znpc, respectively. Efficiency of singlet oxygen sensitization is solvent dependent with very different values obtained for the same compound in different solvents, for example, 0.25 and 0.38 were observed as singlet oxygen quantum yields for Gepc complex in DMSO and DMF respectively. In DMSO the efficiency of ¹O₂ generation decrease considerably from pc to tppa and finally tmtppa. In water Getmtppa exhibits much higher singlet oxygen quantum yield, hence promising to be effective as a sensitizer for photodynamic therapy.
- Full Text:
- Date Issued: 2001