Comparisons of the thermal physiology of water hyacinth biological control agents: predicting establishment and distribution pre-and post-release
- May, Bronwen, Coetzee, Julia Angela
- Authors: May, Bronwen , Coetzee, Julia Angela
- Date: 2013
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/123476 , vital:35446 , https://doi.10.1111/eea.120628
- Description: Investigations into the thermal physiology of weed biological control agents may elucidate reasons for establishment failure following release. Such studies have shown that the success of water hyacinth biological control in South Africa remains variable in the high-lying interior Highveld region, because the control agents are restricted to establishment and development due to extreme winter conditions. To determine the importance of thermal physiology studies, both pre- and post-release, this study compared the known thermal requirements of Eccritotarsus catarinensis (Carvalho) (Hemiptera: Miridae) released in 1996, with those of an agent released in 1990, Niphograpta albiguttalis (Warren) (Lepidoptera: Pyralidae) and a candidate agent, Megamelus scutellaris Berg (Hemiptera: Delphacidae), which is currently under consideration for release. The lower developmental threshold (to) and rate of development (K) were determined for N. albiguttalis and M. scutellaris, using a reduced axis regression, and incorporated into a degree-day model which compared the number of generations that E. catarinensis, N. albiguttalis, and M. scutellaris are capable of producing annually at any given site in South Africa. The degree-day models predicted that N. albiguttalis (K = 439.43, to = 9.866) can complete 4–11 generations per year, whereas M. scutellaris (K = 502.96, to = 11.458) can only complete 0–10 generations per year, compared with E. catarinensis (K = 342, to = 10.3) which is predicted to complete 3–14 generations per year. This suggests that the candidate agent, M. scutellaris, will not fare better in establishment than the other two agents that have been released in the Highveld, and that it may not be worth releasing an agent with higher thermal requirements than the agents that already occur in these high-lying areas. Thermal physiology studies conducted prior to release are important tools in biological control programmes, particularly those in resource-limited countries, to prevent wasting efforts in getting an agent established.
- Full Text:
- Authors: May, Bronwen , Coetzee, Julia Angela
- Date: 2013
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/123476 , vital:35446 , https://doi.10.1111/eea.120628
- Description: Investigations into the thermal physiology of weed biological control agents may elucidate reasons for establishment failure following release. Such studies have shown that the success of water hyacinth biological control in South Africa remains variable in the high-lying interior Highveld region, because the control agents are restricted to establishment and development due to extreme winter conditions. To determine the importance of thermal physiology studies, both pre- and post-release, this study compared the known thermal requirements of Eccritotarsus catarinensis (Carvalho) (Hemiptera: Miridae) released in 1996, with those of an agent released in 1990, Niphograpta albiguttalis (Warren) (Lepidoptera: Pyralidae) and a candidate agent, Megamelus scutellaris Berg (Hemiptera: Delphacidae), which is currently under consideration for release. The lower developmental threshold (to) and rate of development (K) were determined for N. albiguttalis and M. scutellaris, using a reduced axis regression, and incorporated into a degree-day model which compared the number of generations that E. catarinensis, N. albiguttalis, and M. scutellaris are capable of producing annually at any given site in South Africa. The degree-day models predicted that N. albiguttalis (K = 439.43, to = 9.866) can complete 4–11 generations per year, whereas M. scutellaris (K = 502.96, to = 11.458) can only complete 0–10 generations per year, compared with E. catarinensis (K = 342, to = 10.3) which is predicted to complete 3–14 generations per year. This suggests that the candidate agent, M. scutellaris, will not fare better in establishment than the other two agents that have been released in the Highveld, and that it may not be worth releasing an agent with higher thermal requirements than the agents that already occur in these high-lying areas. Thermal physiology studies conducted prior to release are important tools in biological control programmes, particularly those in resource-limited countries, to prevent wasting efforts in getting an agent established.
- Full Text:
Assessing the morphological and physiological adaptations of the parasitoid wasp E chthrodesis lamorali for survival in an intertidal environment
- Owen, Candice A, Coetzee, Julia Angela, van Noort, Simon, Austin, Andrew D
- Authors: Owen, Candice A , Coetzee, Julia Angela , van Noort, Simon , Austin, Andrew D
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/123178 , vital:35412 , https://doi.org/10.1111/phen.12187
- Description: As a result of a variety of chemical, environmental, mechanical and physiological difficulties, insects that spend their entire life spans in the marine or intertidal region are relatively rare. The present study assesses whether morphological and physiological adaptations have evolved in a maritime parasitoidwasp species Echthrodesis lamorali Masner, 1968 (Hymenoptera: Platygastridae, Scelioninae), in response to environmental pressures on its respiratory functioning. Scanning electron and light microscopy of whole and sectioned specimens show the presence of structure-retaining taenidia in the tracheal tubes, although there is an absence of other major adaptations associated with the trachea or spiracles. Histological sectioning reveals the presence of unusual sacs in the female metasoma whose role is unknown, although they are hypothesized to most likely be linked to ovipositor control. Respirometry experiments illustrate the formation of a plastron when submerged, with the longevity of the wasps being increased by quiescence. The critical thermal range of E. lamorali is shown to be large: from −1.1 ∘C±0.16 to 45.7 ∘C±0.26 (mean±SE). Behavioural and physiological adaptations in E. lamorali appear to have evolved in response to exposure to the heterogeneous environmental conditions experienced within the intertidal zone.
- Full Text:
- Authors: Owen, Candice A , Coetzee, Julia Angela , van Noort, Simon , Austin, Andrew D
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/123178 , vital:35412 , https://doi.org/10.1111/phen.12187
- Description: As a result of a variety of chemical, environmental, mechanical and physiological difficulties, insects that spend their entire life spans in the marine or intertidal region are relatively rare. The present study assesses whether morphological and physiological adaptations have evolved in a maritime parasitoidwasp species Echthrodesis lamorali Masner, 1968 (Hymenoptera: Platygastridae, Scelioninae), in response to environmental pressures on its respiratory functioning. Scanning electron and light microscopy of whole and sectioned specimens show the presence of structure-retaining taenidia in the tracheal tubes, although there is an absence of other major adaptations associated with the trachea or spiracles. Histological sectioning reveals the presence of unusual sacs in the female metasoma whose role is unknown, although they are hypothesized to most likely be linked to ovipositor control. Respirometry experiments illustrate the formation of a plastron when submerged, with the longevity of the wasps being increased by quiescence. The critical thermal range of E. lamorali is shown to be large: from −1.1 ∘C±0.16 to 45.7 ∘C±0.26 (mean±SE). Behavioural and physiological adaptations in E. lamorali appear to have evolved in response to exposure to the heterogeneous environmental conditions experienced within the intertidal zone.
- Full Text:
Plant–herbivore–parasitoid interactions in an experimental freshwater tritrophic system: higher trophic levels modify competitive interactions between invasive macrophytes
- Martin, Grant Douglas, Coetzee, Julia Angela, Compton, Stephen
- Authors: Martin, Grant Douglas , Coetzee, Julia Angela , Compton, Stephen
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/125686 , vital:35808 , https://doi.org/10.1007/s10750-017-341
- Description: Natural enemies are known to modify competitive hierarchies among terrestrial plants. Here we examine whether the same applies to freshwatersystems. Lagarosiphon major (Hydrocharitaceae) is a submerged aquatic macrophyte, indigenous to South Africa. Outside its native range, it outcompetes with indigenous submerged species and degrades aquatic habitats. Hydrellia lagarosiphon (Diptera: Ephydridae) is the most abundant and ubiquitous herbivore associated with L. major in South Africa and is a potential biological control agent elsewhere. Chaenusa anervata (Hymenoptera: Braconidae: Alysiinae) is its main parasitoid. We generated an experimental system involving one, two or three trophic levels to monitor variation in the competitive ability of L. major relative to that of Myriophyllum spicatum (Haloragaceae), a second submerged macrophyte that can also be invasive. Using inverse linear models to monitor competition, we found that herbivory by H. lagarosiphon greatly reduced the competitive ability of L. major. Addition of the wasp at typical field densities halved the impact of herbivory and reestablished the competitive advantage of L. major. Our results demonstrate how multitrophic interactions modify relative competitive abilities among aquatic plants, emphasize the significance of higher tropic levels in these systems and illustrate how parasitoids can reduce the effectiveness of insects released as biocontrol agents.
- Full Text:
- Authors: Martin, Grant Douglas , Coetzee, Julia Angela , Compton, Stephen
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/125686 , vital:35808 , https://doi.org/10.1007/s10750-017-341
- Description: Natural enemies are known to modify competitive hierarchies among terrestrial plants. Here we examine whether the same applies to freshwatersystems. Lagarosiphon major (Hydrocharitaceae) is a submerged aquatic macrophyte, indigenous to South Africa. Outside its native range, it outcompetes with indigenous submerged species and degrades aquatic habitats. Hydrellia lagarosiphon (Diptera: Ephydridae) is the most abundant and ubiquitous herbivore associated with L. major in South Africa and is a potential biological control agent elsewhere. Chaenusa anervata (Hymenoptera: Braconidae: Alysiinae) is its main parasitoid. We generated an experimental system involving one, two or three trophic levels to monitor variation in the competitive ability of L. major relative to that of Myriophyllum spicatum (Haloragaceae), a second submerged macrophyte that can also be invasive. Using inverse linear models to monitor competition, we found that herbivory by H. lagarosiphon greatly reduced the competitive ability of L. major. Addition of the wasp at typical field densities halved the impact of herbivory and reestablished the competitive advantage of L. major. Our results demonstrate how multitrophic interactions modify relative competitive abilities among aquatic plants, emphasize the significance of higher tropic levels in these systems and illustrate how parasitoids can reduce the effectiveness of insects released as biocontrol agents.
- Full Text:
- «
- ‹
- 1
- ›
- »