Natural enemies from South Africa for biological control of Lagarosiphon major (Ridl.) Moss ex Wager (Hydrocharitaceae) in Europe
- Baars, J-R, Coetzee, Julie, Martin, Grant D, Hill, Martin Patrick, Caffrey, J M
- Authors: Baars, J-R , Coetzee, Julie , Martin, Grant D , Hill, Martin Patrick , Caffrey, J M
- Date: 2010
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/76914 , vital:30637 , https://doi.org/10.1007/s10750-010-0427-0
- Description: The non-native invasive plant, Lagarosiphon major (Hydrocharitaceae) is a submersed aquatic macrophyte that poses a significant threat to water bodies in Europe. Dense infestations prove difficult to manage using traditional methods. In order to initiate a biocontrol programme, a survey for natural enemies of Lagarosiphon was conducted in South Africa. Several phytophagous species were recorded for the first time, with at least three showing notable promise as candidate agents. Amongst these, a leaf-mining fly, Hydrellia sp. (Ephydridae) that occurred over a wide distribution causes significant leaf damage despite high levels of parasitism by braconid wasps. Another yet unidentified fly was recorded mining the stem of L. major. Two leaf-feeding and shoot boring weevils, cf. Bagous sp. (Curculionidae) were recorded damaging the shoot tips and stunting the growth of the stem. Several leaf-feeding lepidopteran species (Nymphulinae) were frequently recorded, but are expected to feed on a wide range of plant species and are not considered for importation before other candidates are assessed. The discovery of several natural enemies in the country of origin improves the biological control prospects of L. major in Europe.
- Full Text:
- Authors: Baars, J-R , Coetzee, Julie , Martin, Grant D , Hill, Martin Patrick , Caffrey, J M
- Date: 2010
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/76914 , vital:30637 , https://doi.org/10.1007/s10750-010-0427-0
- Description: The non-native invasive plant, Lagarosiphon major (Hydrocharitaceae) is a submersed aquatic macrophyte that poses a significant threat to water bodies in Europe. Dense infestations prove difficult to manage using traditional methods. In order to initiate a biocontrol programme, a survey for natural enemies of Lagarosiphon was conducted in South Africa. Several phytophagous species were recorded for the first time, with at least three showing notable promise as candidate agents. Amongst these, a leaf-mining fly, Hydrellia sp. (Ephydridae) that occurred over a wide distribution causes significant leaf damage despite high levels of parasitism by braconid wasps. Another yet unidentified fly was recorded mining the stem of L. major. Two leaf-feeding and shoot boring weevils, cf. Bagous sp. (Curculionidae) were recorded damaging the shoot tips and stunting the growth of the stem. Several leaf-feeding lepidopteran species (Nymphulinae) were frequently recorded, but are expected to feed on a wide range of plant species and are not considered for importation before other candidates are assessed. The discovery of several natural enemies in the country of origin improves the biological control prospects of L. major in Europe.
- Full Text:
Hydrellia lagarosiphon Deeming (Diptera: Ephydridae), a potential biological control agent for the submerged aquatic weed, Lagarosiphon major (Ridl.) Moss ex Wager (Hydrocharitaceae)
- Martin, Grant D, Coetzee, Julie, Baars, J-R
- Authors: Martin, Grant D , Coetzee, Julie , Baars, J-R
- Date: 2013
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/103912 , vital:32322 , https://doi.org/10.4001/003.021.0118
- Description: The leaf-mining fly, Hydrellia lagarosiphon Deeming (Diptera: Ephydridae), was investigated in its native range in South Africa, to determine its potential as a biological control agent for Lagarosiphon major (Ridl.) Moss ex Wager (Hydrocharitaceae), an invasive submerged macrophyte that is weedy in many parts of the world. The fly was found throughout the indigenous range of the plant in South Africa. High larval abundance was recorded at field sites with nearly all L. major shoots sampled ontaining larvae, with densities of up to 10 larvae per shoot. Adults laid batches of up to 15 eggs, usually on the abaxial sides of L. major leaves. The larvae mined internally, leaving the epidermal tissues of the upper and lower leaves intact. The larvae underwent three instars which took an average of 24 days and pupated within the leaf tissue, from which the adults emerged. Impact studies in the laboratory showed that H. lagarosiphon larval feeding significantly restricted the formation of L. major side branches. Based on its biology and damage caused to the plant, Hydrellia lagarosiphon could be considered as a useful biological control candidate for L. major in countries where the plant is invasive.
- Full Text:
- Authors: Martin, Grant D , Coetzee, Julie , Baars, J-R
- Date: 2013
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/103912 , vital:32322 , https://doi.org/10.4001/003.021.0118
- Description: The leaf-mining fly, Hydrellia lagarosiphon Deeming (Diptera: Ephydridae), was investigated in its native range in South Africa, to determine its potential as a biological control agent for Lagarosiphon major (Ridl.) Moss ex Wager (Hydrocharitaceae), an invasive submerged macrophyte that is weedy in many parts of the world. The fly was found throughout the indigenous range of the plant in South Africa. High larval abundance was recorded at field sites with nearly all L. major shoots sampled ontaining larvae, with densities of up to 10 larvae per shoot. Adults laid batches of up to 15 eggs, usually on the abaxial sides of L. major leaves. The larvae mined internally, leaving the epidermal tissues of the upper and lower leaves intact. The larvae underwent three instars which took an average of 24 days and pupated within the leaf tissue, from which the adults emerged. Impact studies in the laboratory showed that H. lagarosiphon larval feeding significantly restricted the formation of L. major side branches. Based on its biology and damage caused to the plant, Hydrellia lagarosiphon could be considered as a useful biological control candidate for L. major in countries where the plant is invasive.
- Full Text:
Competition between two aquatic macrophytes, Lagarosiphon major (Ridley) Moss (Hydrocharitaceae) and Myriophyllum spicatum Linnaeus (Haloragaceae) as influenced by substrate sediment and nutrients
- Martin, Grant D, Coetzee, Julie
- Authors: Martin, Grant D , Coetzee, Julie
- Date: 2014
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/76925 , vital:30641 , https://doi.org/10.1016/j.aquabot.2013.11.001
- Description: Competition between two globally economic and ecologically important submerged aquatic macrophytes, Lagarosiphon major (Rid.) Moss ex Wager and Myriophyllum spicatum L., was studied in response to growing in different substrate nutrient and sediment treatments. Addition series experiments were conducted with mixed plantings of L. major and M. spicatum grown under two soil nutrient concentrations (high vs. low) and two sediment treatments (sand vs. loam). Competitive ability of the plants was determined using an inverse linear model of the total dry weights as the yield variable. In high nutrient sediment treatments, L. major was the stronger competitor relative to M. spicatum, with one L. major plant being competitively equivalent to 2.5 M. spicatum plants in terms of their respective ability to reduce L. major biomass. In the loam sediment treatments, L. major was an even stronger competitor relative to M. spicatum with one L. major being equivalent to 10 M. spicatum plants. Additionally, L. major had a faster relative growth rate (RGR) than M. spicatum when grown in mixed cultures, a loam sediment type and at both high and low planting densities. The results indicated that L. major is a superior competitor to M. spicatum and that both nutrient and sediment conditions significantly affect the competitive ability of both species. The results contribute to the understanding of competition between submerged invasive macrophytes, and provide insight into the establishment and spread of invasive submerged macrophytes.
- Full Text:
- Authors: Martin, Grant D , Coetzee, Julie
- Date: 2014
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/76925 , vital:30641 , https://doi.org/10.1016/j.aquabot.2013.11.001
- Description: Competition between two globally economic and ecologically important submerged aquatic macrophytes, Lagarosiphon major (Rid.) Moss ex Wager and Myriophyllum spicatum L., was studied in response to growing in different substrate nutrient and sediment treatments. Addition series experiments were conducted with mixed plantings of L. major and M. spicatum grown under two soil nutrient concentrations (high vs. low) and two sediment treatments (sand vs. loam). Competitive ability of the plants was determined using an inverse linear model of the total dry weights as the yield variable. In high nutrient sediment treatments, L. major was the stronger competitor relative to M. spicatum, with one L. major plant being competitively equivalent to 2.5 M. spicatum plants in terms of their respective ability to reduce L. major biomass. In the loam sediment treatments, L. major was an even stronger competitor relative to M. spicatum with one L. major being equivalent to 10 M. spicatum plants. Additionally, L. major had a faster relative growth rate (RGR) than M. spicatum when grown in mixed cultures, a loam sediment type and at both high and low planting densities. The results indicated that L. major is a superior competitor to M. spicatum and that both nutrient and sediment conditions significantly affect the competitive ability of both species. The results contribute to the understanding of competition between submerged invasive macrophytes, and provide insight into the establishment and spread of invasive submerged macrophytes.
- Full Text:
Prioritisation of potential agents for the biological control of the invasive alien weed, Pereskia aculeata (Cactaceae), in South Africa
- Paterson, Iain D, Vitorino, M D, de Cristo, S C, Martin, Grant D, Hill, Martin Patrick
- Authors: Paterson, Iain D , Vitorino, M D , de Cristo, S C , Martin, Grant D , Hill, Martin Patrick
- Date: 2014
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/76946 , vital:30644 , https://doi.org/10.1080/09583157.2013.864382
- Description: Pereskia aculeata Miller (Cactaceae) is an invasive alien species in South Africa that is native in Central and South America. In South Africa, P. aculeata outcompetes native plant species leading to a reduction in biodiversity at infested sites. Herbicidal and mechanical control of the plant is ineffective and unsustainable, so biological control is considered the only potential solution. Climatic matching and genotype matching indicated that the most appropriate regions in which to collect biological control agents were Santa Catarina and Rio de Janeiro provinces in Southern Brazil. Surveys throughout the native distribution resulted in 15 natural enemy species that were associated with the plant. Field host range data, as well as previous host plant records, were used to prioritise which of the species were most likely to be suitably host specific for release in South Africa. The mode of damage was used to determine which species were most likely to be damaging and effective if released. The most promising species prioritised for further study, including host specificity and impact studies, were the stem-wilter Catorhintha schaffneri Brailovsky and Garcia (Coreidae); the stem boring species Acanthodoxus machacalis Martins and Monné (Cerambycidae), Cryptorhynchus sp. (Curculionidae) and Maracayia chlorisalis (Walker) (Crambidae) and the fruit galler Asphondylia sp. (Cecidomyiidae). By prioritising the potential biological control agents that are most likely to be host-specific and damaging, the risk of conducting host specificity testing on unsuitable or ineffective biological control agents is reduced.
- Full Text:
- Authors: Paterson, Iain D , Vitorino, M D , de Cristo, S C , Martin, Grant D , Hill, Martin Patrick
- Date: 2014
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/76946 , vital:30644 , https://doi.org/10.1080/09583157.2013.864382
- Description: Pereskia aculeata Miller (Cactaceae) is an invasive alien species in South Africa that is native in Central and South America. In South Africa, P. aculeata outcompetes native plant species leading to a reduction in biodiversity at infested sites. Herbicidal and mechanical control of the plant is ineffective and unsustainable, so biological control is considered the only potential solution. Climatic matching and genotype matching indicated that the most appropriate regions in which to collect biological control agents were Santa Catarina and Rio de Janeiro provinces in Southern Brazil. Surveys throughout the native distribution resulted in 15 natural enemy species that were associated with the plant. Field host range data, as well as previous host plant records, were used to prioritise which of the species were most likely to be suitably host specific for release in South Africa. The mode of damage was used to determine which species were most likely to be damaging and effective if released. The most promising species prioritised for further study, including host specificity and impact studies, were the stem-wilter Catorhintha schaffneri Brailovsky and Garcia (Coreidae); the stem boring species Acanthodoxus machacalis Martins and Monné (Cerambycidae), Cryptorhynchus sp. (Curculionidae) and Maracayia chlorisalis (Walker) (Crambidae) and the fruit galler Asphondylia sp. (Cecidomyiidae). By prioritising the potential biological control agents that are most likely to be host-specific and damaging, the risk of conducting host specificity testing on unsuitable or ineffective biological control agents is reduced.
- Full Text:
Community entomology: insects, science and society
- Weaver, Kim N, Hill, Jaclyn Marie, Martin, Grant D, Paterson, Iain D, Coetzee, Julie, Hill, Martin Patrick
- Authors: Weaver, Kim N , Hill, Jaclyn Marie , Martin, Grant D , Paterson, Iain D , Coetzee, Julie , Hill, Martin Patrick
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/123343 , vital:35429 , https://hdl.handle.net/10520/EJC-c859bebd5
- Description: Educative outreach programmes have been found to be effective ways in which to raise awareness around basic scientific concepts. The Biological Control Research Group (BCRG) in the Department of Zoology and Entomology at Rhodes University, South Africa, is involved in community engaged initiatives that aim to be interactive and informative around entomology, and more specifically, the use of biological control against invasive alien plants. As a higher education institution, Rhodes University has a civic responsibility to engage with local communities and work with them around local challenges. Three groups of activities undertaken by the BCRG in partnership with local schools and other community partners are described and assessed in this paper as a way of assessing them and exploring future research areas around the aims and outcomes of these programmes.
- Full Text:
- Authors: Weaver, Kim N , Hill, Jaclyn Marie , Martin, Grant D , Paterson, Iain D , Coetzee, Julie , Hill, Martin Patrick
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/123343 , vital:35429 , https://hdl.handle.net/10520/EJC-c859bebd5
- Description: Educative outreach programmes have been found to be effective ways in which to raise awareness around basic scientific concepts. The Biological Control Research Group (BCRG) in the Department of Zoology and Entomology at Rhodes University, South Africa, is involved in community engaged initiatives that aim to be interactive and informative around entomology, and more specifically, the use of biological control against invasive alien plants. As a higher education institution, Rhodes University has a civic responsibility to engage with local communities and work with them around local challenges. Three groups of activities undertaken by the BCRG in partnership with local schools and other community partners are described and assessed in this paper as a way of assessing them and exploring future research areas around the aims and outcomes of these programmes.
- Full Text:
Genetic analysis of native and introduced populations of the aquatic weed Sagittaria platyphylla – implications for biological control in Australia and South Africa
- Kwong, Raelene M, Broadhurst, Linda M, Keener, Brian R, Coetzee, Julie, Knerr, Nunzio, Martin, Grant D
- Authors: Kwong, Raelene M , Broadhurst, Linda M , Keener, Brian R , Coetzee, Julie , Knerr, Nunzio , Martin, Grant D
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/76991 , vital:30653 , https://doi.org/10.1016/j.biocontrol.2017.06.002
- Description: Sagittaria platyphylla (Engelm.) J.G. Sm. (Alismataceae) is an emergent aquatic plant native to southern USA. Imported into Australia and South Africa as an ornamental and aquarium plant, the species is now a serious invader of shallow freshwater wetlands, slow-flowing rivers, irrigation channels, drains and along the margins of lakes and reservoirs. As a first step towards initiating a classical biological control program, a population genetic study was conducted to determine the prospects of finding compatible biological control agents and to refine the search for natural enemies to source populations with closest genetic match to Australian and South African genotypes. Using AFLP markers we surveyed genetic diversity and population genetic structure in 26 populations from the USA, 19 from Australia and 7 from South Africa. Interestingly, we have established that populations introduced into South Africa and to a lesser extent Australia have maintained substantial molecular genetic diversity comparable with that in the native range. Results from principal coordinates analysis, population graph theory and Bayesian-based clustering analysis all support the notion that introduced populations in Australia and South Africa were founded by multiple sources from the USA. Furthermore, the divergence of some Australian populations from the USA suggests that intraspecific hybridization between genetically distinct lineages from the native range may have occurred. The implications of these findings in relation to biological control are discussed.
- Full Text:
- Authors: Kwong, Raelene M , Broadhurst, Linda M , Keener, Brian R , Coetzee, Julie , Knerr, Nunzio , Martin, Grant D
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/76991 , vital:30653 , https://doi.org/10.1016/j.biocontrol.2017.06.002
- Description: Sagittaria platyphylla (Engelm.) J.G. Sm. (Alismataceae) is an emergent aquatic plant native to southern USA. Imported into Australia and South Africa as an ornamental and aquarium plant, the species is now a serious invader of shallow freshwater wetlands, slow-flowing rivers, irrigation channels, drains and along the margins of lakes and reservoirs. As a first step towards initiating a classical biological control program, a population genetic study was conducted to determine the prospects of finding compatible biological control agents and to refine the search for natural enemies to source populations with closest genetic match to Australian and South African genotypes. Using AFLP markers we surveyed genetic diversity and population genetic structure in 26 populations from the USA, 19 from Australia and 7 from South Africa. Interestingly, we have established that populations introduced into South Africa and to a lesser extent Australia have maintained substantial molecular genetic diversity comparable with that in the native range. Results from principal coordinates analysis, population graph theory and Bayesian-based clustering analysis all support the notion that introduced populations in Australia and South Africa were founded by multiple sources from the USA. Furthermore, the divergence of some Australian populations from the USA suggests that intraspecific hybridization between genetically distinct lineages from the native range may have occurred. The implications of these findings in relation to biological control are discussed.
- Full Text:
Biological control of Salvinia molesta in South Africa revisited
- Martin, Grant D, Coetzee, Julie, Weyl, Philip S R, Parkinson, M C, Hill, Martin Patrick
- Authors: Martin, Grant D , Coetzee, Julie , Weyl, Philip S R , Parkinson, M C , Hill, Martin Patrick
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/103878 , vital:32318 , https://doi.org/10.1016/j.biocontrol.2018.06.011
- Description: The aquatic weed Salvinia molesta D.S. Mitch. (Salviniaceae) was first recorded in South Africa in the early 1900s, and by the 1960s was regarded as one of South Africa’s worst aquatic weeds. Following the release of the weevil, Cyrtobagous salviniae Calder and Sands (Coleoptera: Curculionidae) in 1985, the weed is now considered under successful biological control. However, the post-release evaluation of this biological control programme has been ad hoc, therefore, to assess the efficacy of the agent, annual quantitative surveys of South African freshwater systems have been undertaken since 2008. Over the last ten years, of the 57 S. molesta sites visited annually in South Africa, the weevil has established at all of them. Eighteen sites are under successful biological control, where the weed no longer poses a threat to the system and 19 are under substantial biological control, where biological control has reduced the impact of the weed. Since 2008, the average percentage weed cover at sites has declined significantly from 51–100% cover to 0–5% cover in 2017 (R2 = 0.78; P < 0.05). Observations of site-specific characteristics suggest that biological control is most effective at small sites and more difficult at larger and shaded sites. Our findings show that S. molesta remains under good biological control in South Africa, however, some sites require intermittent strategic management, such as augmentative releases of C. salviniae.
- Full Text:
- Authors: Martin, Grant D , Coetzee, Julie , Weyl, Philip S R , Parkinson, M C , Hill, Martin Patrick
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/103878 , vital:32318 , https://doi.org/10.1016/j.biocontrol.2018.06.011
- Description: The aquatic weed Salvinia molesta D.S. Mitch. (Salviniaceae) was first recorded in South Africa in the early 1900s, and by the 1960s was regarded as one of South Africa’s worst aquatic weeds. Following the release of the weevil, Cyrtobagous salviniae Calder and Sands (Coleoptera: Curculionidae) in 1985, the weed is now considered under successful biological control. However, the post-release evaluation of this biological control programme has been ad hoc, therefore, to assess the efficacy of the agent, annual quantitative surveys of South African freshwater systems have been undertaken since 2008. Over the last ten years, of the 57 S. molesta sites visited annually in South Africa, the weevil has established at all of them. Eighteen sites are under successful biological control, where the weed no longer poses a threat to the system and 19 are under substantial biological control, where biological control has reduced the impact of the weed. Since 2008, the average percentage weed cover at sites has declined significantly from 51–100% cover to 0–5% cover in 2017 (R2 = 0.78; P < 0.05). Observations of site-specific characteristics suggest that biological control is most effective at small sites and more difficult at larger and shaded sites. Our findings show that S. molesta remains under good biological control in South Africa, however, some sites require intermittent strategic management, such as augmentative releases of C. salviniae.
- Full Text:
Invaded habitat incompatibility affects the suitability of the potential biological control agent Listronotus sordidus for Sagittaria platyphylla in South Africa
- Martin, Grant D, Coetzee, Julie, Lloyd, Mellissa, Nombewu, Sinoxolo E, Ndlovu, Mpilonhle S, Kwong, Raelene M
- Authors: Martin, Grant D , Coetzee, Julie , Lloyd, Mellissa , Nombewu, Sinoxolo E , Ndlovu, Mpilonhle S , Kwong, Raelene M
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/103926 , vital:32323 , https://doi.org/10.1080/09583157.2018.1460314
- Description: Sagittaria platyphylla (Engelmann) J.G. Smith (Alismataceae) was first recorded in South Africa in 2008 and is considered to be an emerging weed with naturalised populations occurring throughout the country. A biological control programme was initiated in Australia and surveys conducted between 2010 and 2012 yielded potential agents, including the crown feeding weevil, Listronotus sordidus Gyllenhal (Coleoptera: Curculionidae). The potential of L. sordidus as a candidate biological control agent against S. platyphylla in South Africa was examined. Although adult feeding was recorded on a number of plant species, oviposition and larval development indicated a narrow host range restricted to the Alismataceae. In South Africa, S. platyphylla populations are primarily found in inundated systems. However, laboratory studies showed that L. sordidus did not oviposit on inundated plants, potentially nullifying the impact of the insect on South African populations. It is suggested that even though L. sordidus is a damaging, specific agent, its limited impact on inundated plant populations in South Africa does not justify the inherent risk associated with the release of a biological control agent.
- Full Text: false
- Authors: Martin, Grant D , Coetzee, Julie , Lloyd, Mellissa , Nombewu, Sinoxolo E , Ndlovu, Mpilonhle S , Kwong, Raelene M
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/103926 , vital:32323 , https://doi.org/10.1080/09583157.2018.1460314
- Description: Sagittaria platyphylla (Engelmann) J.G. Smith (Alismataceae) was first recorded in South Africa in 2008 and is considered to be an emerging weed with naturalised populations occurring throughout the country. A biological control programme was initiated in Australia and surveys conducted between 2010 and 2012 yielded potential agents, including the crown feeding weevil, Listronotus sordidus Gyllenhal (Coleoptera: Curculionidae). The potential of L. sordidus as a candidate biological control agent against S. platyphylla in South Africa was examined. Although adult feeding was recorded on a number of plant species, oviposition and larval development indicated a narrow host range restricted to the Alismataceae. In South Africa, S. platyphylla populations are primarily found in inundated systems. However, laboratory studies showed that L. sordidus did not oviposit on inundated plants, potentially nullifying the impact of the insect on South African populations. It is suggested that even though L. sordidus is a damaging, specific agent, its limited impact on inundated plant populations in South Africa does not justify the inherent risk associated with the release of a biological control agent.
- Full Text: false
Plant–herbivore–parasitoid interactions in an experimental freshwater tritrophic system: higher trophic levels modify competitive interactions between invasive macrophytes
- Martin, Grant D, Coetzee, Julie, Compton, Stephen
- Authors: Martin, Grant D , Coetzee, Julie , Compton, Stephen
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/103892 , vital:32321 , https://doi.org/10.1007/s10750-017-3417-7
- Description: Natural enemies are known to modify competitive hierarchies among terrestrial plants. Here we examine whether the same applies to freshwater systems. Lagarosiphon major (Hydrocharitaceae) is a submerged aquatic macrophyte, indigenous to South Africa. Outside its native range, it outcompetes with indigenous submerged species and degrades aquatic habitats. Hydrellia lagarosiphon (Diptera: Ephydridae) is the most abundant and ubiquitous herbivore associated with L. major in South Africa and is a potential biological control agent elsewhere. Chaenusa anervata (Hymenoptera: Braconidae: Alysiinae) is its main parasitoid. We generated an experimental system involving one, two or three trophic levels to monitor variation in the competitive ability of L. major relative to that of Myriophyllum spicatum (Haloragaceae), a second submerged macrophyte that can also be invasive. Using inverse linear models to monitor competition, we found that herbivory by H. lagarosiphon greatly reduced the competitive ability of L. major. Addition of the wasp at typical field densities halved the impact of herbivory and re-established the competitive advantage of L. major. Our results demonstrate how multitrophic interactions modify relative competitive abilities among aquatic plants, emphasize the significance of higher tropic levels in these systems and illustrate how parasitoids can reduce the effectiveness of insects released as biocontrol agents.
- Full Text:
- Authors: Martin, Grant D , Coetzee, Julie , Compton, Stephen
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/103892 , vital:32321 , https://doi.org/10.1007/s10750-017-3417-7
- Description: Natural enemies are known to modify competitive hierarchies among terrestrial plants. Here we examine whether the same applies to freshwater systems. Lagarosiphon major (Hydrocharitaceae) is a submerged aquatic macrophyte, indigenous to South Africa. Outside its native range, it outcompetes with indigenous submerged species and degrades aquatic habitats. Hydrellia lagarosiphon (Diptera: Ephydridae) is the most abundant and ubiquitous herbivore associated with L. major in South Africa and is a potential biological control agent elsewhere. Chaenusa anervata (Hymenoptera: Braconidae: Alysiinae) is its main parasitoid. We generated an experimental system involving one, two or three trophic levels to monitor variation in the competitive ability of L. major relative to that of Myriophyllum spicatum (Haloragaceae), a second submerged macrophyte that can also be invasive. Using inverse linear models to monitor competition, we found that herbivory by H. lagarosiphon greatly reduced the competitive ability of L. major. Addition of the wasp at typical field densities halved the impact of herbivory and re-established the competitive advantage of L. major. Our results demonstrate how multitrophic interactions modify relative competitive abilities among aquatic plants, emphasize the significance of higher tropic levels in these systems and illustrate how parasitoids can reduce the effectiveness of insects released as biocontrol agents.
- Full Text:
Synergies between research organisations and the wider community in enhancing weed biological control in South Africa
- Martin, Grant D, Hill, Martin Patrick, Coetzee, Julie, Weaver, Kim N, Hill, Jaclyn Marie
- Authors: Martin, Grant D , Hill, Martin Patrick , Coetzee, Julie , Weaver, Kim N , Hill, Jaclyn Marie
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/68452 , vital:29258 , https://doi.org/10.1007/s10526-017-9846-4
- Description: Biological control offers a cost effective and ecologically sustainable tool for the management of invasive alien plants. Its implementation, however, has historically been slow and poorly co-ordinated. In South Africa, as in many other countries, most aspects of biological control programmes were done by researchers, but from 1995 onwards, with the advent of the Working for Water Programme, a more inclusive approach to biological control has been adopted. In this paper, we report on the development of community-based biological control implementation programmes in South Africa, after 1995, and highlight a number of initiatives, including employing persons with disabilities at mass-rearing facilities and in particular, we outline a suite of educational and outreach programmes for the general public and for schools, which have increased capacity, education and employment in the field of weed biological control.
- Full Text:
- Authors: Martin, Grant D , Hill, Martin Patrick , Coetzee, Julie , Weaver, Kim N , Hill, Jaclyn Marie
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/68452 , vital:29258 , https://doi.org/10.1007/s10526-017-9846-4
- Description: Biological control offers a cost effective and ecologically sustainable tool for the management of invasive alien plants. Its implementation, however, has historically been slow and poorly co-ordinated. In South Africa, as in many other countries, most aspects of biological control programmes were done by researchers, but from 1995 onwards, with the advent of the Working for Water Programme, a more inclusive approach to biological control has been adopted. In this paper, we report on the development of community-based biological control implementation programmes in South Africa, after 1995, and highlight a number of initiatives, including employing persons with disabilities at mass-rearing facilities and in particular, we outline a suite of educational and outreach programmes for the general public and for schools, which have increased capacity, education and employment in the field of weed biological control.
- Full Text:
The establishment and rapid spread of Sagittaria Platyphylla in South Africa:
- Ndlovu, Mpilonhle S, Coetzee, Julie A, Nxumalo, Menzi M, Lalla, Reshnee, Shabalala, Ntombifuthi, Martin, Grant D
- Authors: Ndlovu, Mpilonhle S , Coetzee, Julie A , Nxumalo, Menzi M , Lalla, Reshnee , Shabalala, Ntombifuthi , Martin, Grant D
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/149788 , vital:38884 , https://doi.org/10.3390/w12051472
- Description: Sagittaria platyphylla Engelm. (Alismataceae) is a freshwater aquatic macrophyte that has become an important invasive weed in freshwater systems in South Africa, New Zealand, Australia, and recently China. In South Africa, due to its rapid increase in distribution and ineffective control options, it is recognised as one of the country’s worst invasive aquatic alien plants. In this paper, we investigate the spread of the plant since its first detection in 2008, and the management strategies currently carried out against it. Despite early detection and rapid response programmes, which included chemical and mechanical control measures, the plant was able to spread both within and between sites, increasing from just one site in 2008 to 72 by 2019. Once introduced into a lotic system, the plant was able to spread rapidly, in some cases up to 120 km within 6 years, with an average of 10 km per year. The plant was successfully extirpated at some sites, however, due to the failure of chemical and mechanical control, biological control is currently being considered as a potential control option.
- Full Text:
- Authors: Ndlovu, Mpilonhle S , Coetzee, Julie A , Nxumalo, Menzi M , Lalla, Reshnee , Shabalala, Ntombifuthi , Martin, Grant D
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/149788 , vital:38884 , https://doi.org/10.3390/w12051472
- Description: Sagittaria platyphylla Engelm. (Alismataceae) is a freshwater aquatic macrophyte that has become an important invasive weed in freshwater systems in South Africa, New Zealand, Australia, and recently China. In South Africa, due to its rapid increase in distribution and ineffective control options, it is recognised as one of the country’s worst invasive aquatic alien plants. In this paper, we investigate the spread of the plant since its first detection in 2008, and the management strategies currently carried out against it. Despite early detection and rapid response programmes, which included chemical and mechanical control measures, the plant was able to spread both within and between sites, increasing from just one site in 2008 to 72 by 2019. Once introduced into a lotic system, the plant was able to spread rapidly, in some cases up to 120 km within 6 years, with an average of 10 km per year. The plant was successfully extirpated at some sites, however, due to the failure of chemical and mechanical control, biological control is currently being considered as a potential control option.
- Full Text:
- «
- ‹
- 1
- ›
- »