Visit the COVID-19 Corona Virus South African Resource Portal on https://sacoronavirus.co.za/
Radio studies of ionized hydrogen in the southern Milky Way
- Authors: Gaylard, Michael John
- Date: 1990
- Subjects: Interstellar hydrogen , Milky Way , Astrophysics
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5440 , http://hdl.handle.net/10962/d1001993
- Description: This thesis describes the results of a survey of the HI42ɑ recombination line emission at 2.3 GHz from HII regions in the Southern Milky Way, carried out with the 26 m diameter Hartebeesthoek radio telescope. The Galactic Longitude range covered was 290° to 40°. Single recombination lines were detected from 375 positions. Multiple lines were observed towards 90 positions in the inner Galaxy. No line emission could be detected in 28 positions. Continuum antenna temperatures were estimated from drift scans or radio maps observed for the purpose. LTE electron temperatures and turbulent velocities of the HII regions were calculated where possible. The properties of the sample were compared to those observed in HI09ɑ surveys. The lines observed from over 50 positions were first detections, of which half were associated with optically-identified HII regions. In about 150 cases the lines were only the second to be detected from those HII regions. The processes of the radio emission, detection, and analysis were simulated numerically. The detectability of the emission and the magnitude of non-LTE effects and pressure-broadening in multi-component HII regions was predicted and compared to observations. The radio luminosity function of the HII regions was determined over a range of three orders of magnitude in intrinsic brightness for the first time, using techniques which corrected for different types of incompleteness in the samples. The luminosity function was compared to those in five selected spiral galaxies, and shown to lie between those of M33 and M81. An alternate form of the luminosity function was developed for use with a numerical model of the spiral arm structure of the Milky Way. The physical parameters defining the major spiral arms were established by comparing synthesized diagrams of radial velocity versus Galactic Longitude with those actually observed. The faint, extended HII regions S9 and RCW129 in Scorpius, the Barnard Loop in Orion, and S296 in Canis Major were analyzed, using all available data. All the recombination lines from these HII regions were first detections
- Full Text:
- Authors: Gaylard, Michael John
- Date: 1990
- Subjects: Interstellar hydrogen , Milky Way , Astrophysics
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5440 , http://hdl.handle.net/10962/d1001993
- Description: This thesis describes the results of a survey of the HI42ɑ recombination line emission at 2.3 GHz from HII regions in the Southern Milky Way, carried out with the 26 m diameter Hartebeesthoek radio telescope. The Galactic Longitude range covered was 290° to 40°. Single recombination lines were detected from 375 positions. Multiple lines were observed towards 90 positions in the inner Galaxy. No line emission could be detected in 28 positions. Continuum antenna temperatures were estimated from drift scans or radio maps observed for the purpose. LTE electron temperatures and turbulent velocities of the HII regions were calculated where possible. The properties of the sample were compared to those observed in HI09ɑ surveys. The lines observed from over 50 positions were first detections, of which half were associated with optically-identified HII regions. In about 150 cases the lines were only the second to be detected from those HII regions. The processes of the radio emission, detection, and analysis were simulated numerically. The detectability of the emission and the magnitude of non-LTE effects and pressure-broadening in multi-component HII regions was predicted and compared to observations. The radio luminosity function of the HII regions was determined over a range of three orders of magnitude in intrinsic brightness for the first time, using techniques which corrected for different types of incompleteness in the samples. The luminosity function was compared to those in five selected spiral galaxies, and shown to lie between those of M33 and M81. An alternate form of the luminosity function was developed for use with a numerical model of the spiral arm structure of the Milky Way. The physical parameters defining the major spiral arms were established by comparing synthesized diagrams of radial velocity versus Galactic Longitude with those actually observed. The faint, extended HII regions S9 and RCW129 in Scorpius, the Barnard Loop in Orion, and S296 in Canis Major were analyzed, using all available data. All the recombination lines from these HII regions were first detections
- Full Text:
Statistical Analysis of the Radio-Interferometric Measurement Equation, a derived adaptive weighting scheme, and applications to LOFAR-VLBI observation of the Extended Groth Strip
- Authors: Bonnassieux, Etienne
- Date: 2019
- Subjects: Radio astronomy , Astrophysics , Astrophysics -- Instruments -- Calibration , Imaging systems in astronomy , Radio interferometers , Radio telescopes , Astronomy -- Observations
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/93789 , vital:30942
- Description: J.R.R Tolkien wrote, in his Mythopoeia, that “He sees no stars who does not see them first, of living silver made that sudden burst, to flame like flowers beneath the ancient song”. In his defense of myth-making, he formulates the argument that the attribution of meaning is an act of creation - that “trees are not ‘trees’ until so named and seen” - and that this capacity for creation defines the human creature. The scientific endeavour, in this context, can be understood as a social expression of a fundamental feature of humanity, and from this endeavour flows much understanding. This thesis, one thread among many, focuses on the study of astronomical objects as seen by the radio waves they emit. What are radio waves? Electromagnetic waves were theorised by James Clerk Maxwell (Maxwell 1864) in his great theoretical contribution to modern physics, their speed matching the speed of light as measured by Ole Christensen R0mer and, later, James Bradley. It was not until Heinrich Rudolf Hertz’s 1887 experiment that these waves were measured in a laboratory, leading to the dawn of radio communications - and, later, radio astronomy. The link between radio waves and light was one of association: light is known to behave as a wave (Young double-slit experiment), with the same propagation speed as electromagnetic radiation. Light “proper” is also known to exist beyond the optical regime: Herschel’s experiment shows that when diffracted through a prism, sunlight warms even those parts of a desk which are not observed to be lit (first evidence of infrared light). The link between optical light and unseen electromagnetic radiation is then an easy step to make, and one confirmed through countless technological applications (e.g. optical fiber to name but one). And as soon as this link is established, a question immediately comes to the mind of the astronomer: what does the sky, our Universe, look like to the radio “eye”? Radio astronomy has a short but storied history: from Karl Jansky’s serendipitous observation of the centre of the Milky Way, which outshines our Sun in the radio regime, in 1933, to Grote Reber’s hand-built back-yard radio antenna in 1937, which successfully detected radio emission from the Milky Way itself, to such monumental projects as the Square Kilometer Array and its multiple pathfinders, it has led to countless discoveries and the opening of a truly new window on the Universe. The work presented in this thesis is a contribution to this discipline - the culmination of three years of study, which is a rather short time to get a firm grasp of radio interferometry both in theory and in practice. The need for robust, automated methods - which are improving daily, thanks to the tireless labour of the scientists in the field - is becoming ever stronger as the SKA approaches, looming large on the horizon; but even today, in the precursor era of LOFAR, MeerKAT and other pathfinders, it is keenly felt. When I started my doctorate, the sheer scale of the task at hand felt overwhelming - to actually be able to contribute to its resolution seemed daunting indeed! Thankfully, as the saying goes, no society sets for itself material goals which it cannot achieve. This thesis took place at an exciting time for radio interferometry: at the start of my doctorate, the LOFAR international stations were - to my knowledge - only beginning to be used, and even then, only tentatively; MeerKAT had not yet shown its first light; the techniques used throughout my work were still being developed. At the time of writing, great strides have been made. One of the greatest technical challenges of LOFAR - imaging using the international stations - is starting to become reality. This technical challenge is the key problem that this thesis set out to address. While we only achieved partial success so far, it is a testament to the difficulty of the task that it is not yet truly resolved. One of the major results of this thesis is a model of a bright resolved source near a famous extragalactic field: properly modeling this source not only allows the use of international LOFAR stations, but also grants deeper access to the extragalactic field itself, which is otherwise polluted by the 3C source’s sidelobes. This result was only achieved thanks to the other major result of this thesis: the development of a theoretical framework with which to better understand the effect of calibration errors on images made from interferometric data, and an algorithm to strongly mitigate them. The structure of this manuscript is as follows: we begin with an introduction to radio interferometry, LOFAR, and the emission mechanisms which dominate for our field of interest. These introductions are primarily intended to give a brief overview of the technical aspects of the data reduced in this thesis. We follow with an overview of the Measurement Equation formalism, which underpins our theoretical work. This is the keystone of this thesis. We then show the theoretical work that was developed as part of the research work done during the doctorate - which was published in Astronomy & Astrophysics. Its practical application - a quality-based weighting scheme - is used throughout our data reduction. This data reduction is the next topic of this thesis: we contextualise the scientific interest of the data we reduce, and explain both the methods and the results we achieve.
- Full Text:
- Authors: Bonnassieux, Etienne
- Date: 2019
- Subjects: Radio astronomy , Astrophysics , Astrophysics -- Instruments -- Calibration , Imaging systems in astronomy , Radio interferometers , Radio telescopes , Astronomy -- Observations
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/93789 , vital:30942
- Description: J.R.R Tolkien wrote, in his Mythopoeia, that “He sees no stars who does not see them first, of living silver made that sudden burst, to flame like flowers beneath the ancient song”. In his defense of myth-making, he formulates the argument that the attribution of meaning is an act of creation - that “trees are not ‘trees’ until so named and seen” - and that this capacity for creation defines the human creature. The scientific endeavour, in this context, can be understood as a social expression of a fundamental feature of humanity, and from this endeavour flows much understanding. This thesis, one thread among many, focuses on the study of astronomical objects as seen by the radio waves they emit. What are radio waves? Electromagnetic waves were theorised by James Clerk Maxwell (Maxwell 1864) in his great theoretical contribution to modern physics, their speed matching the speed of light as measured by Ole Christensen R0mer and, later, James Bradley. It was not until Heinrich Rudolf Hertz’s 1887 experiment that these waves were measured in a laboratory, leading to the dawn of radio communications - and, later, radio astronomy. The link between radio waves and light was one of association: light is known to behave as a wave (Young double-slit experiment), with the same propagation speed as electromagnetic radiation. Light “proper” is also known to exist beyond the optical regime: Herschel’s experiment shows that when diffracted through a prism, sunlight warms even those parts of a desk which are not observed to be lit (first evidence of infrared light). The link between optical light and unseen electromagnetic radiation is then an easy step to make, and one confirmed through countless technological applications (e.g. optical fiber to name but one). And as soon as this link is established, a question immediately comes to the mind of the astronomer: what does the sky, our Universe, look like to the radio “eye”? Radio astronomy has a short but storied history: from Karl Jansky’s serendipitous observation of the centre of the Milky Way, which outshines our Sun in the radio regime, in 1933, to Grote Reber’s hand-built back-yard radio antenna in 1937, which successfully detected radio emission from the Milky Way itself, to such monumental projects as the Square Kilometer Array and its multiple pathfinders, it has led to countless discoveries and the opening of a truly new window on the Universe. The work presented in this thesis is a contribution to this discipline - the culmination of three years of study, which is a rather short time to get a firm grasp of radio interferometry both in theory and in practice. The need for robust, automated methods - which are improving daily, thanks to the tireless labour of the scientists in the field - is becoming ever stronger as the SKA approaches, looming large on the horizon; but even today, in the precursor era of LOFAR, MeerKAT and other pathfinders, it is keenly felt. When I started my doctorate, the sheer scale of the task at hand felt overwhelming - to actually be able to contribute to its resolution seemed daunting indeed! Thankfully, as the saying goes, no society sets for itself material goals which it cannot achieve. This thesis took place at an exciting time for radio interferometry: at the start of my doctorate, the LOFAR international stations were - to my knowledge - only beginning to be used, and even then, only tentatively; MeerKAT had not yet shown its first light; the techniques used throughout my work were still being developed. At the time of writing, great strides have been made. One of the greatest technical challenges of LOFAR - imaging using the international stations - is starting to become reality. This technical challenge is the key problem that this thesis set out to address. While we only achieved partial success so far, it is a testament to the difficulty of the task that it is not yet truly resolved. One of the major results of this thesis is a model of a bright resolved source near a famous extragalactic field: properly modeling this source not only allows the use of international LOFAR stations, but also grants deeper access to the extragalactic field itself, which is otherwise polluted by the 3C source’s sidelobes. This result was only achieved thanks to the other major result of this thesis: the development of a theoretical framework with which to better understand the effect of calibration errors on images made from interferometric data, and an algorithm to strongly mitigate them. The structure of this manuscript is as follows: we begin with an introduction to radio interferometry, LOFAR, and the emission mechanisms which dominate for our field of interest. These introductions are primarily intended to give a brief overview of the technical aspects of the data reduced in this thesis. We follow with an overview of the Measurement Equation formalism, which underpins our theoretical work. This is the keystone of this thesis. We then show the theoretical work that was developed as part of the research work done during the doctorate - which was published in Astronomy & Astrophysics. Its practical application - a quality-based weighting scheme - is used throughout our data reduction. This data reduction is the next topic of this thesis: we contextualise the scientific interest of the data we reduce, and explain both the methods and the results we achieve.
- Full Text:
- «
- ‹
- 1
- ›
- »