The evaluation of indomethacin and theophylline oral controlled/modified-release dosage forms in vitro-in vivo correlations
- Tandt, Ludo Alfons Germaan Luc
- Authors: Tandt, Ludo Alfons Germaan Luc
- Date: 1992
- Subjects: Theophylline , Indomethacin , Drugs -- Controlled release , Drugs -- Dosage forms
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3794 , http://hdl.handle.net/10962/d1003272 , Theophylline , Indomethacin , Drugs -- Controlled release , Drugs -- Dosage forms
- Description: Over the past few decades many researchers have investigated the utility of in vitro - in vivo correlations for the assessment of dosage forms. These investigations are, however, dependent on reproducible dissolution data and well conducted biostudies in order to establish meaningful and robust correlations. Despite the fact that the establishment of such correlations is perhaps idealistic, considerable interest has still been shown in this area of research. Various Controlled/Modified Release Dosage Forms (CMRD's) of theophylline, a weakly basic drug, and indomethacin, a weakly acidic drug, were assessed in order to establish in vitro - in vivo correlations. Dissolution rate studies were carried out using either the USP basket or paddle apparatus. The dissolution rate studies were conducted in a range of dissolution media of varying pH. Bioavailability studies were conducted on the dosage forms used by the Biopharmaceutics Research Institute at Rhodes University. The results of these biostudies were kindly made available for use in this research project. Type A correlations were established using a mathematical simulation process whereby expected in vivo responses are simulated and compared to actual profiles obtained for the dosage forms. In order to perform the simulations the dissolution rate profiles were stripped and using linear regression and the methods of residuals the dissolution rate order and the relevant dissolution rates were obtained. The results of the s imulations indicated that the in vivo serum concentration-time curves could be accurately predicted for the theophylline dosage forms but to a lesser extent, for the indomethacin formulations. The dissolution rate studies indicated that the paddle method is a suitable method for dissolution rate studies of theophylline CMRD's, although it appeared that the optimum pH of the dissolution medium was formulation dependent. Dissolution rate studies conducted on indomethacin formulations indicated that the USP specified basket method for extended-release indomethacin formulations was not able to distinguish between two formulations which exhibited different in vivo profiles. The conversion to the paddle method was, however, able to highlight the differences between these formulations. The use of three dimensional topographs to depict dissolution rate profiles was demonstrated for formulations of both theophylline and indomethacin. The topographs enabled the successful differentiation between bioinequivalent formulations. The dissolution rate profiles were also fitted to the Wei bull equation and the parameters obtained from this were compared to the Weibull parameters obtained from the in vivo absorption plots obtained using the Wagner-Nelson method. The results indicated that the Weibull function was suitable to describe both the in vivo and in vitro data. The following recommendations for the preformulation dissolution studies of weakly acidic and weakly basic drugs are proposed. The dissolution rate studies of weakly acid drugs, such as indomethacin, should be carried out over a range of pH utilising the paddle apparatus. Three dimensional topographs based on the dissolution data should be constructed and used as a comparative tool for different formulations. Based on these comparisons the appropriate formulation can then be selected for a pilot scale in vivo bioavailability study. The dissolution rate studies of weakly basic drugs, such as theophylline, should be carried out over a range of pH utilising the paddle apparatus. The dissolution data should then be used to simulate the expected in vivo profile and on this basis the appropriate formulation selected for a pilot scale bioavailability study. The above approach to the preformulation studies of new CMRO's would allow for the more careful selection of new dosage forms and could thus eliminate costly and unnecessary bioavailability studies performed on inferior formulations.
- Full Text:
- Authors: Tandt, Ludo Alfons Germaan Luc
- Date: 1992
- Subjects: Theophylline , Indomethacin , Drugs -- Controlled release , Drugs -- Dosage forms
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3794 , http://hdl.handle.net/10962/d1003272 , Theophylline , Indomethacin , Drugs -- Controlled release , Drugs -- Dosage forms
- Description: Over the past few decades many researchers have investigated the utility of in vitro - in vivo correlations for the assessment of dosage forms. These investigations are, however, dependent on reproducible dissolution data and well conducted biostudies in order to establish meaningful and robust correlations. Despite the fact that the establishment of such correlations is perhaps idealistic, considerable interest has still been shown in this area of research. Various Controlled/Modified Release Dosage Forms (CMRD's) of theophylline, a weakly basic drug, and indomethacin, a weakly acidic drug, were assessed in order to establish in vitro - in vivo correlations. Dissolution rate studies were carried out using either the USP basket or paddle apparatus. The dissolution rate studies were conducted in a range of dissolution media of varying pH. Bioavailability studies were conducted on the dosage forms used by the Biopharmaceutics Research Institute at Rhodes University. The results of these biostudies were kindly made available for use in this research project. Type A correlations were established using a mathematical simulation process whereby expected in vivo responses are simulated and compared to actual profiles obtained for the dosage forms. In order to perform the simulations the dissolution rate profiles were stripped and using linear regression and the methods of residuals the dissolution rate order and the relevant dissolution rates were obtained. The results of the s imulations indicated that the in vivo serum concentration-time curves could be accurately predicted for the theophylline dosage forms but to a lesser extent, for the indomethacin formulations. The dissolution rate studies indicated that the paddle method is a suitable method for dissolution rate studies of theophylline CMRD's, although it appeared that the optimum pH of the dissolution medium was formulation dependent. Dissolution rate studies conducted on indomethacin formulations indicated that the USP specified basket method for extended-release indomethacin formulations was not able to distinguish between two formulations which exhibited different in vivo profiles. The conversion to the paddle method was, however, able to highlight the differences between these formulations. The use of three dimensional topographs to depict dissolution rate profiles was demonstrated for formulations of both theophylline and indomethacin. The topographs enabled the successful differentiation between bioinequivalent formulations. The dissolution rate profiles were also fitted to the Wei bull equation and the parameters obtained from this were compared to the Weibull parameters obtained from the in vivo absorption plots obtained using the Wagner-Nelson method. The results indicated that the Weibull function was suitable to describe both the in vivo and in vitro data. The following recommendations for the preformulation dissolution studies of weakly acidic and weakly basic drugs are proposed. The dissolution rate studies of weakly acid drugs, such as indomethacin, should be carried out over a range of pH utilising the paddle apparatus. Three dimensional topographs based on the dissolution data should be constructed and used as a comparative tool for different formulations. Based on these comparisons the appropriate formulation can then be selected for a pilot scale in vivo bioavailability study. The dissolution rate studies of weakly basic drugs, such as theophylline, should be carried out over a range of pH utilising the paddle apparatus. The dissolution data should then be used to simulate the expected in vivo profile and on this basis the appropriate formulation selected for a pilot scale bioavailability study. The above approach to the preformulation studies of new CMRO's would allow for the more careful selection of new dosage forms and could thus eliminate costly and unnecessary bioavailability studies performed on inferior formulations.
- Full Text:
Investigating the effect of various film-forming polymers on the evaporation rate of a volatile component in a cosmetic formulation
- Authors: Barnard, Carla
- Date: 2010
- Subjects: Cosmetic delivery systems , Controlled release preparations , Cosmetics , Polymers , Drugs -- Controlled release
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10377 , http://hdl.handle.net/10948/1498 , Cosmetic delivery systems , Controlled release preparations , Cosmetics , Polymers , Drugs -- Controlled release
- Description: The topical application of many substances, including drugs, enzymes, moisturizers and fragrances, contributes largely to the cosmetic and pharmaceutical industries. These components are often volatile in nature and dissipate in a matter of hours. When considering the different types of slow release systems, an overwhelming variety of these systems is available. Each one of the systems is unique in a way, and is designed to perform a particular function, whether it facilitates the controlled release of an active into the body via the skin surface (transdermal delivery) or whether it reduces the rate of loss of an active from the skin surface to the surrounding environment. For the purpose of this study, a previously existing fixative formulation which is believed to reduce the rate of loss of an active component to the environment, through film formation on the skin surface, was investigated. Alternative ingredients or components were incorporated together with the original fixative formulation ingredients into an experimental design which investigates the effect of each group of the components present. 18 formulations with various concentrations of the components within the groups and specified upper and lower limits for each component were formulated. The fixative properties of the formulations were analysed through the incorporation of a fixed amount of a simple fragrance molecule, 4- methoxybenzaldehyde, into each formulation and evaporation studies were conducted in an environmental room at 28±1° C over a period of 5 hours followed by gas chromatography analysis and finally data analyses using statistical methods. The most efficient fixative formulation was established using regression analysis. The fragrance compound in this formulation was found to evaporate at a rate of 0.47 g/L per hour. The least efficient fixative formulation lead to the loss of 0.78 g/L of the fragrance component per hour. From the calculated fragrance concentrations, the rate constant for each individual fixative formulation could be calculated and response surface 8 modelling by backward regression was used in order to determine how each component contributes to the rate of loss of the fragrance compound. Since the sum of the original ingredient and its alternative was constant, each of the original ingredients was coupled directly to its alternative and no conclusion could be made about the contribution of individual components. By increasing the concentration of Hydroxypropylcellulose (HPC) 100K and its alternative HPC 140K, while keeping the effects of the other components constant, a decrease in the rate of fragrance loss was observed. The same conclusion could be made when increasing the concentrations of PEG-12 Dimethicone and its alternative cetyl dimethicone (decreases the evaporation rate). An interaction took place between HPC 100K and PEG-12 dimethicone and their alternatives. The negative effect was, however, not as strong as the combined positive effect on the rate of fragrance loss of the individual components HPC and PEG-12 dimethicone. Evidence suggested that the removal of the components polyvinylpyrrolidone and its alternative, polyurethane-32 (Baycusan® C1003), would improve the effectiveness of the fixative formulation in terms of its slow release properties. A confirmation experiment established that the exclusion of these components from the fixative formulation does improve the “slow release” properties thereof. A larger, more intricate design is required to investigate the effect of each one of the individual components and where the sum of the components (original and its alternative) is not constant.
- Full Text:
- Authors: Barnard, Carla
- Date: 2010
- Subjects: Cosmetic delivery systems , Controlled release preparations , Cosmetics , Polymers , Drugs -- Controlled release
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10377 , http://hdl.handle.net/10948/1498 , Cosmetic delivery systems , Controlled release preparations , Cosmetics , Polymers , Drugs -- Controlled release
- Description: The topical application of many substances, including drugs, enzymes, moisturizers and fragrances, contributes largely to the cosmetic and pharmaceutical industries. These components are often volatile in nature and dissipate in a matter of hours. When considering the different types of slow release systems, an overwhelming variety of these systems is available. Each one of the systems is unique in a way, and is designed to perform a particular function, whether it facilitates the controlled release of an active into the body via the skin surface (transdermal delivery) or whether it reduces the rate of loss of an active from the skin surface to the surrounding environment. For the purpose of this study, a previously existing fixative formulation which is believed to reduce the rate of loss of an active component to the environment, through film formation on the skin surface, was investigated. Alternative ingredients or components were incorporated together with the original fixative formulation ingredients into an experimental design which investigates the effect of each group of the components present. 18 formulations with various concentrations of the components within the groups and specified upper and lower limits for each component were formulated. The fixative properties of the formulations were analysed through the incorporation of a fixed amount of a simple fragrance molecule, 4- methoxybenzaldehyde, into each formulation and evaporation studies were conducted in an environmental room at 28±1° C over a period of 5 hours followed by gas chromatography analysis and finally data analyses using statistical methods. The most efficient fixative formulation was established using regression analysis. The fragrance compound in this formulation was found to evaporate at a rate of 0.47 g/L per hour. The least efficient fixative formulation lead to the loss of 0.78 g/L of the fragrance component per hour. From the calculated fragrance concentrations, the rate constant for each individual fixative formulation could be calculated and response surface 8 modelling by backward regression was used in order to determine how each component contributes to the rate of loss of the fragrance compound. Since the sum of the original ingredient and its alternative was constant, each of the original ingredients was coupled directly to its alternative and no conclusion could be made about the contribution of individual components. By increasing the concentration of Hydroxypropylcellulose (HPC) 100K and its alternative HPC 140K, while keeping the effects of the other components constant, a decrease in the rate of fragrance loss was observed. The same conclusion could be made when increasing the concentrations of PEG-12 Dimethicone and its alternative cetyl dimethicone (decreases the evaporation rate). An interaction took place between HPC 100K and PEG-12 dimethicone and their alternatives. The negative effect was, however, not as strong as the combined positive effect on the rate of fragrance loss of the individual components HPC and PEG-12 dimethicone. Evidence suggested that the removal of the components polyvinylpyrrolidone and its alternative, polyurethane-32 (Baycusan® C1003), would improve the effectiveness of the fixative formulation in terms of its slow release properties. A confirmation experiment established that the exclusion of these components from the fixative formulation does improve the “slow release” properties thereof. A larger, more intricate design is required to investigate the effect of each one of the individual components and where the sum of the components (original and its alternative) is not constant.
- Full Text:
Formulation and assessment of verapamil sustained release tablets
- Khamanga, Sandile Maswazi Malungelo
- Authors: Khamanga, Sandile Maswazi Malungelo
- Date: 2005
- Subjects: Verapamil , Tablets (Medicine) , Drugs -- Administration , Cardiovascular agents , Calcium -- Antagonists , Drugs -- Controlled release
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3869 , http://hdl.handle.net/10962/d1018236
- Description: The oral route of drug administration is most extensively used due to the obvious ease of administration. Verapamil hydrochloride is a WHO listed phenylalkylarnine, L-type calcium channel antagonist that is mainly indicated for cardiovascular disorders such as angina pectoris, supraventricular tachycardia and hypertension. Due to its relatively short half-life of approximately 4.0 hours, the formulation of a sustained-release dosage form is useful to improve patient compliance and to achieve predictable and optimized therapeutic plasma concentrations. Direct compression and wet granulation were initially used as methods for tablet manufacture. The direct compression method of manufacture produced tablets that exhibited formulation and manufacturing difficulties. Mini-tablets containing veraparnil hydrochloride were then prepared by wet granulation using Surelease® E-7-19010.and Eudragit® NE 30D as the granulating agents after which the granules were incorporated with an hydrophilic matrix material, Carbopol® 974P NF. Granule and powder blends were evaluated using the angle of repose, loose and tapped bulk density, Can's compressibility index, Hausner's ratio and drug content. Granules with good flow properties and satisfactory compressibility were used for further studies. Tablets were subjected to thickness, diameter and weight variation tests, crushing strength, tensile strength, friability and content uniformity studies. Tablets that showed acceptable pharmaco-technical properties were selected for further analysis. Drug content uniformity and dissolution release rates were determined using a validated isocratic HPLC method. Initially, USP apparatus 1 and 3 dissolution apparatus were used to determine in-vitro drug release rates from the formulations over a 22-hour period. USP apparatus 3 was finally selected as it offers the advantages of mimicking, in part, the changes in the physicochemical environment experienced by products in the gastro-intestinal tract. Differences in release rates between the test formulations and a commercially available product, Isoptin® SR were observed at different pH's using USP apparatus 1. The release of veraparnil hydrochloride from matrix tablets was pH dependent and was markedly reduced at higher pH values. This may be due, in part, to the poor solubility of veraparnil hydrochloride at these pH values and also the possible interaction of verapamil hydrochloride with anionic polymers used in these formulations. Swelling and erosion behaviour of the tablets were evaluated and differences in behaviour were observed which may be attributed to the physico-chemical characteristics of the polymers used in this study. In-vitro dissolution profiles were characterized by the difference (j1) and similarity factor (j2) and also by a new similarity factor, Sct. In addition, the mechanism of drug release from these dosage forms was mainly evaluated using the Korsmeyer-Peppas model and the kinetics of drug release assessed using other models, including Zero order, First order, Higuchi, HixsonCrowell, Weibull and the Baker-Lonsdale model. Dissolution kinetics were best described by application of the Weibull model, and the Korsmeyer-Peppas model. The release exponent, n, confirmed that drug release from these dosage forms was due to the mixed effects of diffusion and swelling and therefore, anomalous release kinetics are predominant. In conclusion, two test batches were found to be comparable to the reference product Isoptin® SR with respect to their in-vitro release profiles.
- Full Text:
- Authors: Khamanga, Sandile Maswazi Malungelo
- Date: 2005
- Subjects: Verapamil , Tablets (Medicine) , Drugs -- Administration , Cardiovascular agents , Calcium -- Antagonists , Drugs -- Controlled release
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3869 , http://hdl.handle.net/10962/d1018236
- Description: The oral route of drug administration is most extensively used due to the obvious ease of administration. Verapamil hydrochloride is a WHO listed phenylalkylarnine, L-type calcium channel antagonist that is mainly indicated for cardiovascular disorders such as angina pectoris, supraventricular tachycardia and hypertension. Due to its relatively short half-life of approximately 4.0 hours, the formulation of a sustained-release dosage form is useful to improve patient compliance and to achieve predictable and optimized therapeutic plasma concentrations. Direct compression and wet granulation were initially used as methods for tablet manufacture. The direct compression method of manufacture produced tablets that exhibited formulation and manufacturing difficulties. Mini-tablets containing veraparnil hydrochloride were then prepared by wet granulation using Surelease® E-7-19010.and Eudragit® NE 30D as the granulating agents after which the granules were incorporated with an hydrophilic matrix material, Carbopol® 974P NF. Granule and powder blends were evaluated using the angle of repose, loose and tapped bulk density, Can's compressibility index, Hausner's ratio and drug content. Granules with good flow properties and satisfactory compressibility were used for further studies. Tablets were subjected to thickness, diameter and weight variation tests, crushing strength, tensile strength, friability and content uniformity studies. Tablets that showed acceptable pharmaco-technical properties were selected for further analysis. Drug content uniformity and dissolution release rates were determined using a validated isocratic HPLC method. Initially, USP apparatus 1 and 3 dissolution apparatus were used to determine in-vitro drug release rates from the formulations over a 22-hour period. USP apparatus 3 was finally selected as it offers the advantages of mimicking, in part, the changes in the physicochemical environment experienced by products in the gastro-intestinal tract. Differences in release rates between the test formulations and a commercially available product, Isoptin® SR were observed at different pH's using USP apparatus 1. The release of veraparnil hydrochloride from matrix tablets was pH dependent and was markedly reduced at higher pH values. This may be due, in part, to the poor solubility of veraparnil hydrochloride at these pH values and also the possible interaction of verapamil hydrochloride with anionic polymers used in these formulations. Swelling and erosion behaviour of the tablets were evaluated and differences in behaviour were observed which may be attributed to the physico-chemical characteristics of the polymers used in this study. In-vitro dissolution profiles were characterized by the difference (j1) and similarity factor (j2) and also by a new similarity factor, Sct. In addition, the mechanism of drug release from these dosage forms was mainly evaluated using the Korsmeyer-Peppas model and the kinetics of drug release assessed using other models, including Zero order, First order, Higuchi, HixsonCrowell, Weibull and the Baker-Lonsdale model. Dissolution kinetics were best described by application of the Weibull model, and the Korsmeyer-Peppas model. The release exponent, n, confirmed that drug release from these dosage forms was due to the mixed effects of diffusion and swelling and therefore, anomalous release kinetics are predominant. In conclusion, two test batches were found to be comparable to the reference product Isoptin® SR with respect to their in-vitro release profiles.
- Full Text:
Design, development and evaluation of encapsulated oral controlled release theophylline mini-tablets
- Authors: Munday, Dale Leslie
- Date: 1991
- Subjects: Drugs -- Administration , Drugs -- Bioavailability , Drugs -- Controlled release , Drugs -- Dosage forms , Tablets (Medicine) , Biopharmaceutics , Drugs -- Testing
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3777 , http://hdl.handle.net/10962/d1003255 , Drugs -- Administration , Drugs -- Bioavailability , Drugs -- Controlled release , Drugs -- Dosage forms , Tablets (Medicine) , Biopharmaceutics , Drugs -- Testing
- Description: Conventional solid dosage forms often lead to fluctuations which exceed the maximum safe therapeutic level and/or decline below the minimum effective level. It is recognised that many drugs for chronic administration should be administered on a schedule that maintains plasma drug concentration within the therapeutic window. Research in controlled release dosage forms aims at designing a system with a zero-order input (eg, ideally to deliver 8.33% of the dose per hour over a 12 hour duration), producing steady state plasma drug levels. Oral dministration of drugs prepared as a controlled release formulation is extremely popular, and has attracted the attention of pharmaceutical scientists during the last decade. This has been due to the simultaneous convergence of various factors (eg, discovery of novel polymers and devices, better understanding of formulation and physiological constraints, expiration of existing patents, prohibitive cost of developing new drug entities), involved in the development of these delivery systems. Controlled release oral products can be formulated as single or multiple unit dosage forms and the relative merits of multiple unit forms with their own rate controlling systems are well established. This work describes the development of a relatively inexpensive multiple-unit capsule dosage form of theophylline containing coated mini-tablets for drug delivery throughout the gastrointestinal tract. Preformulation studies on theophylline anhydrous included solubility and dissolution rate determinations. Techniques including X-ray powder diffraction, differential scanning colorimetry and infrared spectroscopy provided no evidence of true polymorphism after recrystallisation from various solvents. However, scanning electron micrographs showed the effects of solvent polarity and cooling rate on the size and shape of recrystallised particles. Theophylline granules were manufactured by using various binders and were film coated by fluidised bed technology with various proportions of ethylcellulose, containing varying amounts of PEG 1540. In vitro release rates were dependent upon coating thickness and the proportion of PEG, which, being water soluble, created pores in the coating during dissolution studies as observed by a scanning electron microscope. However, substantial proportions of the drug remained unreleased from the granules. In order to overcome the problems of drug retention, plain granules were used and theophylline mini-tablets (3 mm diameter, weighing 15 - 20 mg) were manufactured and film coated with various Eudragits ® and other polymeric mixtures (soluble and insoluble). In vitro dissolution profiles from samples enclosed in hard gelatin capsules were determined using the USPXXI paddle apparatus in test media at pH 1.2 (HCI), pH 5.4 and 7.4 (phosphate buffers) at 37'C. Monitoring of in vitro theophylline release over 12 h, under identical hydrodynamic conditions, showed that the dissolution rate at pH 1.2 is substantially greater (95% of total drug content released in < 10 h) than that in phosphate buffers. The maximum release after 12 h was approximately 20 and 30% of total drug content of the tablet at pH 5.4 and 7.4, respectively. However, in vivo bioavailability after oral administration of tablets to rabbits corresponded to over 95% of total drug, compared with the same dose administered intravenously. The retarded drug release during in vitro dissolution in phosphate buffer was attributed to a possible interaction of phosphate ions with theophylline molecules at the tablet core-coat interface. These findings indicate that both rate and extent of theophylline release from the slow release coated mini-tablets are highly sensitive to phosphate buffers. The data also emphasise the usefulness of an animal model for assessment of in vivo drug release and subsequent absorption during the development of modified release dosage forms. Mini-tablets were subjected to isothermal and cyclic stresses to reach conditions for up to 6 months at different temperatures and relative humidity. The film integrity was maintained but ageing of the coating occurred which impeded dissolution. Reduced drug release was temperature related while the effect of relative humidi% was insignific~t. Encapsulated mini-tablets (uncoated and coated with Eudragit RL and RS 2% w/w) equivalent to a 300 mg dose, were evaluated both in vitro and in vivo using beagle dogs. The pharmacokinetic parameters from single and multiple dose studies showed several advantages over Theo-Dur® 300 mg tablets. Precise dosage titration is possible by careful adjustment of the number of encapsulated mini-tablets. This multiple unit mini-tablet delivery system will allow for greater flexibility in dosage adjustment compared to the currently available preparations, allowing individualised fine dose titration in those patients requiring therapeutic drug monitoring. The developmentof the multiple unit mini-tablet formulation appears to provide an optimal dosage form with maximum flexibility in respect of dose, duration range and ease of production.
- Full Text:
Design, development and evaluation of encapsulated oral controlled release theophylline mini-tablets
- Authors: Munday, Dale Leslie
- Date: 1991
- Subjects: Drugs -- Administration , Drugs -- Bioavailability , Drugs -- Controlled release , Drugs -- Dosage forms , Tablets (Medicine) , Biopharmaceutics , Drugs -- Testing
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3777 , http://hdl.handle.net/10962/d1003255 , Drugs -- Administration , Drugs -- Bioavailability , Drugs -- Controlled release , Drugs -- Dosage forms , Tablets (Medicine) , Biopharmaceutics , Drugs -- Testing
- Description: Conventional solid dosage forms often lead to fluctuations which exceed the maximum safe therapeutic level and/or decline below the minimum effective level. It is recognised that many drugs for chronic administration should be administered on a schedule that maintains plasma drug concentration within the therapeutic window. Research in controlled release dosage forms aims at designing a system with a zero-order input (eg, ideally to deliver 8.33% of the dose per hour over a 12 hour duration), producing steady state plasma drug levels. Oral dministration of drugs prepared as a controlled release formulation is extremely popular, and has attracted the attention of pharmaceutical scientists during the last decade. This has been due to the simultaneous convergence of various factors (eg, discovery of novel polymers and devices, better understanding of formulation and physiological constraints, expiration of existing patents, prohibitive cost of developing new drug entities), involved in the development of these delivery systems. Controlled release oral products can be formulated as single or multiple unit dosage forms and the relative merits of multiple unit forms with their own rate controlling systems are well established. This work describes the development of a relatively inexpensive multiple-unit capsule dosage form of theophylline containing coated mini-tablets for drug delivery throughout the gastrointestinal tract. Preformulation studies on theophylline anhydrous included solubility and dissolution rate determinations. Techniques including X-ray powder diffraction, differential scanning colorimetry and infrared spectroscopy provided no evidence of true polymorphism after recrystallisation from various solvents. However, scanning electron micrographs showed the effects of solvent polarity and cooling rate on the size and shape of recrystallised particles. Theophylline granules were manufactured by using various binders and were film coated by fluidised bed technology with various proportions of ethylcellulose, containing varying amounts of PEG 1540. In vitro release rates were dependent upon coating thickness and the proportion of PEG, which, being water soluble, created pores in the coating during dissolution studies as observed by a scanning electron microscope. However, substantial proportions of the drug remained unreleased from the granules. In order to overcome the problems of drug retention, plain granules were used and theophylline mini-tablets (3 mm diameter, weighing 15 - 20 mg) were manufactured and film coated with various Eudragits ® and other polymeric mixtures (soluble and insoluble). In vitro dissolution profiles from samples enclosed in hard gelatin capsules were determined using the USPXXI paddle apparatus in test media at pH 1.2 (HCI), pH 5.4 and 7.4 (phosphate buffers) at 37'C. Monitoring of in vitro theophylline release over 12 h, under identical hydrodynamic conditions, showed that the dissolution rate at pH 1.2 is substantially greater (95% of total drug content released in < 10 h) than that in phosphate buffers. The maximum release after 12 h was approximately 20 and 30% of total drug content of the tablet at pH 5.4 and 7.4, respectively. However, in vivo bioavailability after oral administration of tablets to rabbits corresponded to over 95% of total drug, compared with the same dose administered intravenously. The retarded drug release during in vitro dissolution in phosphate buffer was attributed to a possible interaction of phosphate ions with theophylline molecules at the tablet core-coat interface. These findings indicate that both rate and extent of theophylline release from the slow release coated mini-tablets are highly sensitive to phosphate buffers. The data also emphasise the usefulness of an animal model for assessment of in vivo drug release and subsequent absorption during the development of modified release dosage forms. Mini-tablets were subjected to isothermal and cyclic stresses to reach conditions for up to 6 months at different temperatures and relative humidity. The film integrity was maintained but ageing of the coating occurred which impeded dissolution. Reduced drug release was temperature related while the effect of relative humidi% was insignific~t. Encapsulated mini-tablets (uncoated and coated with Eudragit RL and RS 2% w/w) equivalent to a 300 mg dose, were evaluated both in vitro and in vivo using beagle dogs. The pharmacokinetic parameters from single and multiple dose studies showed several advantages over Theo-Dur® 300 mg tablets. Precise dosage titration is possible by careful adjustment of the number of encapsulated mini-tablets. This multiple unit mini-tablet delivery system will allow for greater flexibility in dosage adjustment compared to the currently available preparations, allowing individualised fine dose titration in those patients requiring therapeutic drug monitoring. The developmentof the multiple unit mini-tablet formulation appears to provide an optimal dosage form with maximum flexibility in respect of dose, duration range and ease of production.
- Full Text:
The use of response surface methodology and artificial neural networks for the establishment of a design space for a sustained release salbutamol sulphate formulation
- Authors: Chaibva, Faith Anesu
- Date: 2010
- Subjects: Salbutamol sulphate , Artificial intelligence -- Medical applications , Neural networks (Computer science) , Response surfaces (Statistics) , Pharmaceutical biotechnology -- Quality contro , Drugs -- Design , Pharmacokinetics , Drugs -- Dosage forms , Drugs -- Controlled release
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3845 , http://hdl.handle.net/10962/d1010432
- Description: Quality by Design (QbD) is a systematic approach that has been recommended as suitable for the development of quality pharmaceutical products. The QbD approach commences with the definition of a quality target drug profile and predetermined objectives that are then used to direct the formulation development process with an emphasis on understanding the pharmaceutical science and manufacturing principles that apply to a product. The design space is directly linked to the use of QbD for formulation development and is a multidimensional combination and interaction of input variables and process parameters that have been demonstrated to provide an assurance of quality. The objective of these studies was to apply the principles of QbD as a framework for the optimisation of a sustained release (SR) formulation of salbutamol sulphate (SBS), and for the establishment of a design space using Response Surface Methodology (RSM) and Artificial Neural Networks (ANN). SBS is a short-acting ♭₂ agonist that is used for the management of asthma and chronic obstructive pulmonary disease (COPD). The use of a SR formulation of SBS may provide clinical benefits in the management of these respiratory disorders. Ashtalin®8 ER (Cipla Ltd., Mumbai, Maharashtra, India) was selected as a reference formulation for use in these studies. An Ishikawa or Cause and Effect diagram was used to determine the impact of formulation and process factors that have the potential to affect product quality. Key areas of concern that must be monitored include the raw materials, the manufacturing equipment and processes, and the analytical and assessment methods employed. The conditions in the laboratory and manufacturing processes were carefully monitored and recorded for any deviation from protocol, and equipment for assessment of dosage form performance, including dissolution equipment, balances and hardness testers, underwent regular maintenance. Preliminary studies to assess the potential utility of Methocel® Kl OOM, alone and in combination with other matrix forming polymers, revealed that the combination of this polymer with xanthan gum and Carbopol® has the potential to modulate the release of SBS at a specific rate, for a period of 12 hr. A central composite design using Methocel® KlOOM, xanthan gum, Carbopol® 974P and Surelease® as the granulating fluid was constructed to fully evaluate the impact of these formulation variables on the rate and extent of SBS release from manufactured formulations. The results revealed that although Methocel® KlOOM and xanthan gum had the greatest retardant effect on drug release, interactions between the polymers used in the study were also important determinants of the measureable responses. An ANN model was trained for optimisation using the data generated from a central composite study. The efficiency of the network was optimised by assessing the impact of the number of nodes in the hidden layer using a three layer Multi Layer Perceptron (MLP). The results revealed that a network with nine nodes in the hidden layer had the best predictive ability, suitable for application to formulation optimisation studies. Pharmaceutical optimisation was conducted using both the RSM and the trained ANN models. The results from the two optimisation procedures yielded two different formulation compositions that were subjected to in vitro dissolution testing using USP Apparatus 3. The results revealed that, although the formulation compositions that were derived from the optimisation procedures were different, both solutions gave reproducible results for which the dissolution profiles were indeed similar to that of the reference formulation. RSM and ANN were further investigated as possible means of establishing a design space for formulation compositions that would result in dosage forms that have similar in vitro release test profiles comparable to the reference product. Constraint plots were used to determine the bounds of the formulation variables that would result in the manufacture of dosage forms with the desired release profile. ANN simulations with hypothetical formulations that were generated within a small region of the experimental domain were investigated as a means of understanding the impact of varying the composition of the formulation on resultant dissolution profiles. Although both methods were suitable for the establishment of a design space, the use of ANN may be better suited for this purpose because of the manner in which ANN handles data. As more information about the behaviour of a formulation and its processes is generated during the product Iifecycle, ANN may be used to evaluate the impact of formulation and process variables on measureable responses. It is recommended that ANN may be suitable for the optimisation of pharmaceutical formulations and establishment of a design space in line with ICH Pharmaceutical Development [1], Quality Risk Management [2] and Pharmaceutical Quality Systems [3]
- Full Text:
- Authors: Chaibva, Faith Anesu
- Date: 2010
- Subjects: Salbutamol sulphate , Artificial intelligence -- Medical applications , Neural networks (Computer science) , Response surfaces (Statistics) , Pharmaceutical biotechnology -- Quality contro , Drugs -- Design , Pharmacokinetics , Drugs -- Dosage forms , Drugs -- Controlled release
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3845 , http://hdl.handle.net/10962/d1010432
- Description: Quality by Design (QbD) is a systematic approach that has been recommended as suitable for the development of quality pharmaceutical products. The QbD approach commences with the definition of a quality target drug profile and predetermined objectives that are then used to direct the formulation development process with an emphasis on understanding the pharmaceutical science and manufacturing principles that apply to a product. The design space is directly linked to the use of QbD for formulation development and is a multidimensional combination and interaction of input variables and process parameters that have been demonstrated to provide an assurance of quality. The objective of these studies was to apply the principles of QbD as a framework for the optimisation of a sustained release (SR) formulation of salbutamol sulphate (SBS), and for the establishment of a design space using Response Surface Methodology (RSM) and Artificial Neural Networks (ANN). SBS is a short-acting ♭₂ agonist that is used for the management of asthma and chronic obstructive pulmonary disease (COPD). The use of a SR formulation of SBS may provide clinical benefits in the management of these respiratory disorders. Ashtalin®8 ER (Cipla Ltd., Mumbai, Maharashtra, India) was selected as a reference formulation for use in these studies. An Ishikawa or Cause and Effect diagram was used to determine the impact of formulation and process factors that have the potential to affect product quality. Key areas of concern that must be monitored include the raw materials, the manufacturing equipment and processes, and the analytical and assessment methods employed. The conditions in the laboratory and manufacturing processes were carefully monitored and recorded for any deviation from protocol, and equipment for assessment of dosage form performance, including dissolution equipment, balances and hardness testers, underwent regular maintenance. Preliminary studies to assess the potential utility of Methocel® Kl OOM, alone and in combination with other matrix forming polymers, revealed that the combination of this polymer with xanthan gum and Carbopol® has the potential to modulate the release of SBS at a specific rate, for a period of 12 hr. A central composite design using Methocel® KlOOM, xanthan gum, Carbopol® 974P and Surelease® as the granulating fluid was constructed to fully evaluate the impact of these formulation variables on the rate and extent of SBS release from manufactured formulations. The results revealed that although Methocel® KlOOM and xanthan gum had the greatest retardant effect on drug release, interactions between the polymers used in the study were also important determinants of the measureable responses. An ANN model was trained for optimisation using the data generated from a central composite study. The efficiency of the network was optimised by assessing the impact of the number of nodes in the hidden layer using a three layer Multi Layer Perceptron (MLP). The results revealed that a network with nine nodes in the hidden layer had the best predictive ability, suitable for application to formulation optimisation studies. Pharmaceutical optimisation was conducted using both the RSM and the trained ANN models. The results from the two optimisation procedures yielded two different formulation compositions that were subjected to in vitro dissolution testing using USP Apparatus 3. The results revealed that, although the formulation compositions that were derived from the optimisation procedures were different, both solutions gave reproducible results for which the dissolution profiles were indeed similar to that of the reference formulation. RSM and ANN were further investigated as possible means of establishing a design space for formulation compositions that would result in dosage forms that have similar in vitro release test profiles comparable to the reference product. Constraint plots were used to determine the bounds of the formulation variables that would result in the manufacture of dosage forms with the desired release profile. ANN simulations with hypothetical formulations that were generated within a small region of the experimental domain were investigated as a means of understanding the impact of varying the composition of the formulation on resultant dissolution profiles. Although both methods were suitable for the establishment of a design space, the use of ANN may be better suited for this purpose because of the manner in which ANN handles data. As more information about the behaviour of a formulation and its processes is generated during the product Iifecycle, ANN may be used to evaluate the impact of formulation and process variables on measureable responses. It is recommended that ANN may be suitable for the optimisation of pharmaceutical formulations and establishment of a design space in line with ICH Pharmaceutical Development [1], Quality Risk Management [2] and Pharmaceutical Quality Systems [3]
- Full Text:
The development and assessment of a generic carbamazepine sustained release dosage form
- Authors: Patel, Fathima
- Date: 2006
- Subjects: Carbamazepine , Pharmacokinetics , Drugs -- Controlled release , Drugs -- Dosage forms , Tablets (Medicine) , Drugs -- Administration
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3784 , http://hdl.handle.net/10962/d1003262
- Description: Carbamazepine (CBZ) is a first-line drug used for the treatment of partial and tonic-clonic seizures. It is also the drug of choice for use during pregnancy and recommended for the treatment of seizure disorders in children. CBZ possesses the ability to induce metabolism of drugs that are transformed in the liver and has the unique ability to induce its own metabolism by a phenomenon known as ‘auto- induction’, where its biological half-life is significantly reduced during chronic administration. Large doses of CBZ are often prescribed as daily divided doses and this often adversely affects patient compliance, with the result that therapy is ineffective. A sustained-release dosage form containing CBZ is currently marketed as Tegretol® CR and the development of a generic product would provide patients with an equivalent product with a similar dosing frequency, at a reduced cost. Therefore, the development of a polymer-based matrix tablet was undertaken to produce a sustained-release dosage form of CBZ, since these dosage forms are relatively simple and cheap to produce when compared to other, more sophisticated forms of sustained-release technology. Preformulation studies were conducted to assess moisture content of excipients and dosage forms and to identify possible incompatibilities between CBZ and potential formulation excipients. Furthermore, studies were conducted to assess the potential for polymorphic transitions to occur during manufacture. Stability testing was conducted to assess the behaviour of the dosage forms under storage conditions that the product may be exposed to. Dissolution testing was undertaken using USP Apparatus 3, which allowed for a more realistic assessment and prediction of in vivo drug release rates. Samples were analysed using a high performance liquid chromatographic method that was developed and validated for the determination of CBZ. Tablets were manufactured by wet granulation and direct compression techniques, and the resultant drug release profiles were evaluated statistically by means of the f1 and f2 difference and similarity factors. The f2 factor was incorporated as an assessment criterion in the design of an artificial neural network that was used to predict drug release profiles and formulation composition. A direct compression tablet formulation was successfully adapted from a prototype wet granulation matrix formulation and a number of formulation variables were assessed to establish their effect(s) on the dissolution rate profile of CBZ that resulted from testing of the dosage forms. The particle size grade of CBZ was also investigated and it was ascertained that fine particle size grade CBZ showed improved drug release profiles when compared to the coarse grade CBZ which was desirable, since CBZ is a highly water insoluble compound. Furthermore, the impact of the viscosity grade and proportion of rate-controlling polymer, viz., hydroxypropyl methylcellulose was also investigated for its effect on drug release rates. The lower viscosity grade was found to be more appropriate for use with CBZ. The type of anti-frictional agent used in the formulations did not appear to affect drug release from the polymeric matrix tablets, however specific compounds may have an effect on the physical characteristics of the polymeric tablets. The resultant formulations did not display zero-order drug release kinetics and a first-order mathematical model was developed to provide an additional resource for athematical analysis of dissolution profiles. An artificial neural network was designed, developed and applied to predict dissolution rate profiles for formulation. Furthermore, the network was used to predict formulation compositions that would produce drug release profiles comparable to the reference product, Tegretol® CR. The formulation composition predicted by the network to match the dissolution profile of the innovator product was manufactured and tested in vitro. The formulation was further manipulated, empirically, so as to match the in vitro dissolution rate profile of Tegretol® CR, more completely. The test tablets that were produced were tested in two health male volunteers using Tegretol® CR 400mg as the reference product. The batch used for this “proof of concept” biostudy was produced in accordance with cGMP guidelines and the protocol in accordance with ICH guidelines. The test matrix tablets revealed in vivo bioavailability profiles for CBZ, however, bioequivalence between the test and reference product could not be established. It can be concluded that the polymeric matrix CBZ tablets have the potential to be used as a twice-daily dosage form for the treatment of relevant seizure disorders.
- Full Text:
- Authors: Patel, Fathima
- Date: 2006
- Subjects: Carbamazepine , Pharmacokinetics , Drugs -- Controlled release , Drugs -- Dosage forms , Tablets (Medicine) , Drugs -- Administration
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3784 , http://hdl.handle.net/10962/d1003262
- Description: Carbamazepine (CBZ) is a first-line drug used for the treatment of partial and tonic-clonic seizures. It is also the drug of choice for use during pregnancy and recommended for the treatment of seizure disorders in children. CBZ possesses the ability to induce metabolism of drugs that are transformed in the liver and has the unique ability to induce its own metabolism by a phenomenon known as ‘auto- induction’, where its biological half-life is significantly reduced during chronic administration. Large doses of CBZ are often prescribed as daily divided doses and this often adversely affects patient compliance, with the result that therapy is ineffective. A sustained-release dosage form containing CBZ is currently marketed as Tegretol® CR and the development of a generic product would provide patients with an equivalent product with a similar dosing frequency, at a reduced cost. Therefore, the development of a polymer-based matrix tablet was undertaken to produce a sustained-release dosage form of CBZ, since these dosage forms are relatively simple and cheap to produce when compared to other, more sophisticated forms of sustained-release technology. Preformulation studies were conducted to assess moisture content of excipients and dosage forms and to identify possible incompatibilities between CBZ and potential formulation excipients. Furthermore, studies were conducted to assess the potential for polymorphic transitions to occur during manufacture. Stability testing was conducted to assess the behaviour of the dosage forms under storage conditions that the product may be exposed to. Dissolution testing was undertaken using USP Apparatus 3, which allowed for a more realistic assessment and prediction of in vivo drug release rates. Samples were analysed using a high performance liquid chromatographic method that was developed and validated for the determination of CBZ. Tablets were manufactured by wet granulation and direct compression techniques, and the resultant drug release profiles were evaluated statistically by means of the f1 and f2 difference and similarity factors. The f2 factor was incorporated as an assessment criterion in the design of an artificial neural network that was used to predict drug release profiles and formulation composition. A direct compression tablet formulation was successfully adapted from a prototype wet granulation matrix formulation and a number of formulation variables were assessed to establish their effect(s) on the dissolution rate profile of CBZ that resulted from testing of the dosage forms. The particle size grade of CBZ was also investigated and it was ascertained that fine particle size grade CBZ showed improved drug release profiles when compared to the coarse grade CBZ which was desirable, since CBZ is a highly water insoluble compound. Furthermore, the impact of the viscosity grade and proportion of rate-controlling polymer, viz., hydroxypropyl methylcellulose was also investigated for its effect on drug release rates. The lower viscosity grade was found to be more appropriate for use with CBZ. The type of anti-frictional agent used in the formulations did not appear to affect drug release from the polymeric matrix tablets, however specific compounds may have an effect on the physical characteristics of the polymeric tablets. The resultant formulations did not display zero-order drug release kinetics and a first-order mathematical model was developed to provide an additional resource for athematical analysis of dissolution profiles. An artificial neural network was designed, developed and applied to predict dissolution rate profiles for formulation. Furthermore, the network was used to predict formulation compositions that would produce drug release profiles comparable to the reference product, Tegretol® CR. The formulation composition predicted by the network to match the dissolution profile of the innovator product was manufactured and tested in vitro. The formulation was further manipulated, empirically, so as to match the in vitro dissolution rate profile of Tegretol® CR, more completely. The test tablets that were produced were tested in two health male volunteers using Tegretol® CR 400mg as the reference product. The batch used for this “proof of concept” biostudy was produced in accordance with cGMP guidelines and the protocol in accordance with ICH guidelines. The test matrix tablets revealed in vivo bioavailability profiles for CBZ, however, bioequivalence between the test and reference product could not be established. It can be concluded that the polymeric matrix CBZ tablets have the potential to be used as a twice-daily dosage form for the treatment of relevant seizure disorders.
- Full Text:
Development and assessment of minocycline sustained release capsule formulations
- Sachikonye, Tinotenda Chipo Victoria
- Authors: Sachikonye, Tinotenda Chipo Victoria
- Date: 2010
- Subjects: Drugs -- Controlled release , Drugs -- Dosage forms , Capsules (Pharmacy) , Drugs -- Administration , Acne -- Treatment , Tetracyclines , Antibiotics -- Side effects
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3854 , http://hdl.handle.net/10962/d1013127
- Description: The use of minocycline for the treatment of a broad range of systemic infections and for severe acne has been associated with vestibular side effects. The severity of side effects may lead to poor adherence to therapy by patients. The use of sustained release formulations of minocycline that display slow dissolution of minocycline following administration may be beneficial in reducing the incidence and severity of side effects. Therefore, sustained release capsule dosage forms containing 100 mg minocycline (base) were manufactured and assessed for use as sustained release oral dosage forms of minocycline. Minocycline sustained release capsules were manufactured based on matrix technologies using hydroxypropylmethyl cellulose (HPMC) and Compritol® as release retarding polymers. The rate and extent of minocycline release from the capsules was evaluated using USP Apparatus 1 and samples were analysed using a validated High Performance Liquid Chromatographic (HPLC) method with ultraviolet (UV) detection. Differences in the rate and extent of minocycline release from formulations manufactured using HPMC or Compritol® were influenced by the concentration of polymer used in the formulations. The rate and extent of minocycline release was faster and greater when low concentrations of polymer were used in formulations. The effect of different excipients on the release pattern(s) of minocycline and particularly their potential to optimise minocycline release from experimental formulations was investigated. The use of diluents such as lactose and microcrystalline cellulose (MCC) revealed that lactose facilitated minocycline release when HPMC was used as the polymer matrix. In contrast, the use of lactose as diluent resulted in slower release of minocycline from Compritol® based formulations. The addition of sodium starch glycolate to HPMC based formulations resulted in slower release of minocycline than when no sodium starch glycolate was used. Compritol® based formulations were observed to release minocycline faster following addition of sodium starch glycolate and Poloxamer 188 to experimental formulations. In vitro dissolution profiles were compared to a target or reference profile using the difference and similarity factors, ƒ1 and ƒ2 , and a one way analysis of variance (ANOVA). In addition, the mechanism of minocycline release was elucidated following fitting of dissolution data to the Korsmeyer-Peppas, Higuchi and Zero order models. Minocycline release kinetics were best described by the Korsmeyer-Peppas model and the values of the release exponent, n (italics), revealed that drug release was a result of the combined effects of minocycline diffusion through matrices and erosion of the matrices. These in vitro dissolution profiles were better fit to the Higuchi model than to the Zero order model. Two formulations that displayed a fit to the Zero order model were identified for further studies as potential dosage forms for sustained release minocycline.
- Full Text:
- Authors: Sachikonye, Tinotenda Chipo Victoria
- Date: 2010
- Subjects: Drugs -- Controlled release , Drugs -- Dosage forms , Capsules (Pharmacy) , Drugs -- Administration , Acne -- Treatment , Tetracyclines , Antibiotics -- Side effects
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3854 , http://hdl.handle.net/10962/d1013127
- Description: The use of minocycline for the treatment of a broad range of systemic infections and for severe acne has been associated with vestibular side effects. The severity of side effects may lead to poor adherence to therapy by patients. The use of sustained release formulations of minocycline that display slow dissolution of minocycline following administration may be beneficial in reducing the incidence and severity of side effects. Therefore, sustained release capsule dosage forms containing 100 mg minocycline (base) were manufactured and assessed for use as sustained release oral dosage forms of minocycline. Minocycline sustained release capsules were manufactured based on matrix technologies using hydroxypropylmethyl cellulose (HPMC) and Compritol® as release retarding polymers. The rate and extent of minocycline release from the capsules was evaluated using USP Apparatus 1 and samples were analysed using a validated High Performance Liquid Chromatographic (HPLC) method with ultraviolet (UV) detection. Differences in the rate and extent of minocycline release from formulations manufactured using HPMC or Compritol® were influenced by the concentration of polymer used in the formulations. The rate and extent of minocycline release was faster and greater when low concentrations of polymer were used in formulations. The effect of different excipients on the release pattern(s) of minocycline and particularly their potential to optimise minocycline release from experimental formulations was investigated. The use of diluents such as lactose and microcrystalline cellulose (MCC) revealed that lactose facilitated minocycline release when HPMC was used as the polymer matrix. In contrast, the use of lactose as diluent resulted in slower release of minocycline from Compritol® based formulations. The addition of sodium starch glycolate to HPMC based formulations resulted in slower release of minocycline than when no sodium starch glycolate was used. Compritol® based formulations were observed to release minocycline faster following addition of sodium starch glycolate and Poloxamer 188 to experimental formulations. In vitro dissolution profiles were compared to a target or reference profile using the difference and similarity factors, ƒ1 and ƒ2 , and a one way analysis of variance (ANOVA). In addition, the mechanism of minocycline release was elucidated following fitting of dissolution data to the Korsmeyer-Peppas, Higuchi and Zero order models. Minocycline release kinetics were best described by the Korsmeyer-Peppas model and the values of the release exponent, n (italics), revealed that drug release was a result of the combined effects of minocycline diffusion through matrices and erosion of the matrices. These in vitro dissolution profiles were better fit to the Higuchi model than to the Zero order model. Two formulations that displayed a fit to the Zero order model were identified for further studies as potential dosage forms for sustained release minocycline.
- Full Text:
Preparation, characterization and optimization of carbamazepine based pellets prepared by extrusion-spheronization technique
- Authors: Makoni, Kudzai Gabriella
- Date: 2020-04
- Subjects: Carbamazepine , Pharmacokinetics , Anticonvulsants , Drugs -- Controlled release , Drugs -- Dosage forms , Tablets (Medicine) , Drugs -- Administration , High performance liquid chromatography , International Conference on Harmonisation , Experimental design
- Language: English
- Type: Thesis , Masters , MSc (Pharmacy)
- Identifier: http://hdl.handle.net/10962/140478 , vital:37893
- Description: Carbamazepine (CBZ) is an oral antiepileptic drug (AED) that is prescribed as a first-line treatment for partial seizures. CBZ is a class II compound according to the Biopharmaceutical Classification System (BCS), hence it exhibits low aqueous solubility and high gastrointestinal tract (GIT) permeability...
- Full Text:
- Authors: Makoni, Kudzai Gabriella
- Date: 2020-04
- Subjects: Carbamazepine , Pharmacokinetics , Anticonvulsants , Drugs -- Controlled release , Drugs -- Dosage forms , Tablets (Medicine) , Drugs -- Administration , High performance liquid chromatography , International Conference on Harmonisation , Experimental design
- Language: English
- Type: Thesis , Masters , MSc (Pharmacy)
- Identifier: http://hdl.handle.net/10962/140478 , vital:37893
- Description: Carbamazepine (CBZ) is an oral antiepileptic drug (AED) that is prescribed as a first-line treatment for partial seizures. CBZ is a class II compound according to the Biopharmaceutical Classification System (BCS), hence it exhibits low aqueous solubility and high gastrointestinal tract (GIT) permeability...
- Full Text:
- «
- ‹
- 1
- ›
- »