High-performance liquid chromatographic studies of the acid degradation, pharmacokinetics and comparative bioavailability of erythromycin
- Authors: Glew, Fiona
- Date: 1989
- Subjects: High performance liquid chromatography , Erythromycin -- Analysis , Erythromycin -- Pharmacokinetics , Erythromycin -- Bioavailability
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3737 , http://hdl.handle.net/10962/d1001529
- Description: Erythromycin is a macrolide antibiotic with a spectrum similar to penicillin and is used mainly in the treatment of infections caused by gram-positive organisms. Since its discovery in 1952, erythromycin has achieved wide-spread clinical use. Susceptibility of erythromycin base to inactivation by acid results in decreased availability following exposure to acidic gastric fluids. Formulation of acid resistant dosage forms and the preparation of acid stable chemical derivatives have been attempted to improve absorption and subsequent clinical efficacy . Two of the most commonly used erythromycin derivatives are the stearic acid salt (erythromycin stearate) and the lauryl sulphate salt of the propionyl ester (erythromycin estolate). Although it has been known for many years that erythromycin is susceptible to acid degradation, very few reports on the stability of erythromycin in aqueous solutions appear in the literature. In this study, a high-performance liquid chromatographic system using electrochemical detection was employed for a kinetic study of erythromycin degradation. The effect of varying acid pH on the degradation rate of both erythromycin base and erythromycin stearate, and the effect on the hydrolysis rate of erythromycin estolate is presented. In addition, the effect of temperature on erythromycin degradation was also investigated. Until recently, the majority of pharmacokinetic and bioavailability studies have utilized relatively non-specific microbiological assay procedures. However, in this study a solid phase extraction, followed by the use of a high-performance liquid chromatographic system using electrochemical coulometric detection was employed for the determination of erythromycin in biological fluids. Human volunteers each received enteric coated erythromycin base pellets in capsule dosage form and also film coated erythromycin stearate tablets on separate occasions. Results from the clinical trials revealed the enteric coated erythromycin base pellets had a greater bioavailability than the film coated erythromycin stearate tablets. Computer fitting of data revealed no intra-volunteer variability in elimination rate constants, suggesting differences in serum levels following administration of both dosage forms are due to variation in absorption. Results from the clinical trials were also compared with those obtained from a further trial, during which the same volunteers received erythromycin estolate
- Full Text:
- Authors: Glew, Fiona
- Date: 1989
- Subjects: High performance liquid chromatography , Erythromycin -- Analysis , Erythromycin -- Pharmacokinetics , Erythromycin -- Bioavailability
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3737 , http://hdl.handle.net/10962/d1001529
- Description: Erythromycin is a macrolide antibiotic with a spectrum similar to penicillin and is used mainly in the treatment of infections caused by gram-positive organisms. Since its discovery in 1952, erythromycin has achieved wide-spread clinical use. Susceptibility of erythromycin base to inactivation by acid results in decreased availability following exposure to acidic gastric fluids. Formulation of acid resistant dosage forms and the preparation of acid stable chemical derivatives have been attempted to improve absorption and subsequent clinical efficacy . Two of the most commonly used erythromycin derivatives are the stearic acid salt (erythromycin stearate) and the lauryl sulphate salt of the propionyl ester (erythromycin estolate). Although it has been known for many years that erythromycin is susceptible to acid degradation, very few reports on the stability of erythromycin in aqueous solutions appear in the literature. In this study, a high-performance liquid chromatographic system using electrochemical detection was employed for a kinetic study of erythromycin degradation. The effect of varying acid pH on the degradation rate of both erythromycin base and erythromycin stearate, and the effect on the hydrolysis rate of erythromycin estolate is presented. In addition, the effect of temperature on erythromycin degradation was also investigated. Until recently, the majority of pharmacokinetic and bioavailability studies have utilized relatively non-specific microbiological assay procedures. However, in this study a solid phase extraction, followed by the use of a high-performance liquid chromatographic system using electrochemical coulometric detection was employed for the determination of erythromycin in biological fluids. Human volunteers each received enteric coated erythromycin base pellets in capsule dosage form and also film coated erythromycin stearate tablets on separate occasions. Results from the clinical trials revealed the enteric coated erythromycin base pellets had a greater bioavailability than the film coated erythromycin stearate tablets. Computer fitting of data revealed no intra-volunteer variability in elimination rate constants, suggesting differences in serum levels following administration of both dosage forms are due to variation in absorption. Results from the clinical trials were also compared with those obtained from a further trial, during which the same volunteers received erythromycin estolate
- Full Text:
Development of a high pressure liquid chromatographic method for the simultaneous analysis of sulphamethoxazole and trimethoprim and its application to biological fluids and dissolution rate studies on solid oral dosage forms
- Authors: Gochin, Rosa
- Date: 1980
- Subjects: High performance liquid chromatography , Body fluids -- Analysis , Drugs -- Dosage forms
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3735 , http://hdl.handle.net/10962/d1001524
- Description: Co-trimoxazole, a combination of a 5-to-l ratio of Sulphamethoxazole (SMZ) and Trimethoprim (TMP) , is a highly effective, broad-spectrum antibacterial agent. Since its introduction in 1968, it has been extensively used in infections of the respiratory and urinary tracts. Co-trimoxazole was developed by the systematic investigation of a series of compounds whose mechanism of action was already known. As early as 1950 synergy between sulphonamides and 2,4-diaminopyrimidines was reported. This was to be expected as both groups of drugs exert their antibacterial activity by interfering with the same biochemical pathway in bacteria. TMP was chosen from among many 2,4-diaminopyrimidines tested because of its good antibacterial activity and low toxicity. SMZ was chosen from the sulphonamides available for combination with TMP because of similarity of their biological half-lives. The widespread use of the combination coupled with the fact that monitoring of the levels of all drugs in the body is becoming increasingly important has stimulated research into rapid and efficient methods for the analysis of TMP and SMZ in biological fluids. Another consequence of the immense popularity of the combination is the appearance on the market of several generic preparations of Co-trimoxazole. It is now generally recognized that drug products from different manufacturers which are chemically equivalent may not be therapeutically equivalent. This is due to the fact that the absorption rate and/or bioavailability (extent of absorption) of a poorly soluble drug may be markedly affected by its release rate from the product and by its subsequent dissolution rate in gastrointestinal fluids. Hence bioequivalence of these various products should be established
- Full Text:
- Authors: Gochin, Rosa
- Date: 1980
- Subjects: High performance liquid chromatography , Body fluids -- Analysis , Drugs -- Dosage forms
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3735 , http://hdl.handle.net/10962/d1001524
- Description: Co-trimoxazole, a combination of a 5-to-l ratio of Sulphamethoxazole (SMZ) and Trimethoprim (TMP) , is a highly effective, broad-spectrum antibacterial agent. Since its introduction in 1968, it has been extensively used in infections of the respiratory and urinary tracts. Co-trimoxazole was developed by the systematic investigation of a series of compounds whose mechanism of action was already known. As early as 1950 synergy between sulphonamides and 2,4-diaminopyrimidines was reported. This was to be expected as both groups of drugs exert their antibacterial activity by interfering with the same biochemical pathway in bacteria. TMP was chosen from among many 2,4-diaminopyrimidines tested because of its good antibacterial activity and low toxicity. SMZ was chosen from the sulphonamides available for combination with TMP because of similarity of their biological half-lives. The widespread use of the combination coupled with the fact that monitoring of the levels of all drugs in the body is becoming increasingly important has stimulated research into rapid and efficient methods for the analysis of TMP and SMZ in biological fluids. Another consequence of the immense popularity of the combination is the appearance on the market of several generic preparations of Co-trimoxazole. It is now generally recognized that drug products from different manufacturers which are chemically equivalent may not be therapeutically equivalent. This is due to the fact that the absorption rate and/or bioavailability (extent of absorption) of a poorly soluble drug may be markedly affected by its release rate from the product and by its subsequent dissolution rate in gastrointestinal fluids. Hence bioequivalence of these various products should be established
- Full Text:
Analytical procedures for the determination of wattle polyphenols in wastewaters
- Authors: Hendry, Antony John
- Date: 1984
- Subjects: Liquid chromatography , Spectrophotometry , High performance liquid chromatography , Water -- Purification
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4431 , http://hdl.handle.net/10962/d1007221 , Liquid chromatography , Spectrophotometry , High performance liquid chromatography , Water -- Purification
- Full Text:
- Authors: Hendry, Antony John
- Date: 1984
- Subjects: Liquid chromatography , Spectrophotometry , High performance liquid chromatography , Water -- Purification
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4431 , http://hdl.handle.net/10962/d1007221 , Liquid chromatography , Spectrophotometry , High performance liquid chromatography , Water -- Purification
- Full Text:
Phenylpropanolamine : analytical and pharmacokinetic studies using high-performance liquid chromatography
- Authors: Scherzinger, Sabine Hilda
- Date: 1988
- Subjects: Phenylpropanolamine , Pharmacokinetics , High performance liquid chromatography
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: vital:3811 , http://hdl.handle.net/10962/d1004528
- Description: Phenylpropanolamine (PPA), a synthetic sympathomimetic amine structurally related to ephedrine has been widely used over t he past 40 years as a nasal decongestant and appetite suppressant. It has been the focus of much controversy concerning the efficacy of the drug in its use as an anorectic agent, and due to the side effects caused by the higher doses of PPA required for appetite suppression. Although extensively used, there is little information concerning the determination of PPA in biological fluids and on the pharmacokinetics of this drug. An adaptation of a published high-performance liquid chromatographic (HPLC) assay for PPA in serum and urine using U.V. detection at 210 nm is presented. PPA was separated in the reversed phase mode. The method has a limit of sensitivity of 5.0 ng/mL and 10.0 ng/mL in serum and urine respectively. Serum concentration data following a single 25 mg dose of phenylpropanolamine in human volunteers demonstrate the application of the analytical method for bioavailability and pharmacokinetic studies. After the administration of 25 mg, 50 mg or 100 mg PPA.HCl solutions to 5 human volunteers, a dose proportionality study demonstrated that PPA appears to exhibit linear kinetics. Linear one body compartment kinetics were assumed and the wagner-Nelson method used to transform in vivo serum data to absorption plots. The serum data were fitted to a model using nonlinear regression techniques to characterize the pharmacokinetic processes of PPA. The absorption of phenylpropanolamine appears to be discontinuous and the drug seems to favour a two body compartment model. The pharmacokinetic parameters obtained from a steady state study using multiple dosing of PPA.HCl solutions compared with those found from previous studies after the administration of sustained-release formulations. A plasma protein binding study using equilibrium dialysis demonstrated that PPA is not highly protein bound in the blood.
- Full Text:
- Authors: Scherzinger, Sabine Hilda
- Date: 1988
- Subjects: Phenylpropanolamine , Pharmacokinetics , High performance liquid chromatography
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: vital:3811 , http://hdl.handle.net/10962/d1004528
- Description: Phenylpropanolamine (PPA), a synthetic sympathomimetic amine structurally related to ephedrine has been widely used over t he past 40 years as a nasal decongestant and appetite suppressant. It has been the focus of much controversy concerning the efficacy of the drug in its use as an anorectic agent, and due to the side effects caused by the higher doses of PPA required for appetite suppression. Although extensively used, there is little information concerning the determination of PPA in biological fluids and on the pharmacokinetics of this drug. An adaptation of a published high-performance liquid chromatographic (HPLC) assay for PPA in serum and urine using U.V. detection at 210 nm is presented. PPA was separated in the reversed phase mode. The method has a limit of sensitivity of 5.0 ng/mL and 10.0 ng/mL in serum and urine respectively. Serum concentration data following a single 25 mg dose of phenylpropanolamine in human volunteers demonstrate the application of the analytical method for bioavailability and pharmacokinetic studies. After the administration of 25 mg, 50 mg or 100 mg PPA.HCl solutions to 5 human volunteers, a dose proportionality study demonstrated that PPA appears to exhibit linear kinetics. Linear one body compartment kinetics were assumed and the wagner-Nelson method used to transform in vivo serum data to absorption plots. The serum data were fitted to a model using nonlinear regression techniques to characterize the pharmacokinetic processes of PPA. The absorption of phenylpropanolamine appears to be discontinuous and the drug seems to favour a two body compartment model. The pharmacokinetic parameters obtained from a steady state study using multiple dosing of PPA.HCl solutions compared with those found from previous studies after the administration of sustained-release formulations. A plasma protein binding study using equilibrium dialysis demonstrated that PPA is not highly protein bound in the blood.
- Full Text:
High performance liquid chromatographic analysis of erythromycin in serum and urine
- Authors: Stubbs, Christopher
- Date: 1985 , 2013-03-13
- Subjects: High performance liquid chromatography , Erythromycin , Erythromycin -- Pharmacokinetics , Chromatographic analysis
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3813 , http://hdl.handle.net/10962/d1004581 , High performance liquid chromatography , Erythromycin , Erythromycin -- Pharmacokinetics , Chromatographic analysis
- Description: Erythromycin, a macrolide antibiotic used mainly against gram-positive bacteria has been in clinical use since 1952 (1). Previous pharmacokinetic data published on this antibiotic have been derived predominantly from microbiological assay techniques. However, these techniques are relatively imprecise as well as being non-specific and extremely tedious to perform. A novel high performance liquid chromatographic analysis of erythromycin in human serum and urine using U.V. detection at 200 nm and/or electrochemical detection using both an amperometric and a coulometric electrochemical detector is presented. The method involves a solid phase extraction procedure followed by a simple phase separation step and chromatography on a reverse phase column. In order to select the optimum U.V. detector for this analysis, five "state of the art" detectors were compared in terms of their signal-to-noise ratios at U.V. wavelengths between 200 and 210 nm. A known metabolite des-N-methylerythromycin is readily detectable using U.V. detection, whilst another metabolite/degradation product anhydroerythromycin is not seen using U.V. detection but is readily observable using an electrochemical detector. The method has a limit of sensitivity of 0.25 μg/mL and 1.00 μg/mL in serum and urine respectively (U.V. detection) and is sufficiently sensitive to monitor serum and urine concentrations of erythromycin in man after administration of a single 500 mg erythromycin stearate tablet. , KMBT_363 , Adobe Acrobat 9.53 Paper Capture Plug-in
- Full Text:
- Authors: Stubbs, Christopher
- Date: 1985 , 2013-03-13
- Subjects: High performance liquid chromatography , Erythromycin , Erythromycin -- Pharmacokinetics , Chromatographic analysis
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3813 , http://hdl.handle.net/10962/d1004581 , High performance liquid chromatography , Erythromycin , Erythromycin -- Pharmacokinetics , Chromatographic analysis
- Description: Erythromycin, a macrolide antibiotic used mainly against gram-positive bacteria has been in clinical use since 1952 (1). Previous pharmacokinetic data published on this antibiotic have been derived predominantly from microbiological assay techniques. However, these techniques are relatively imprecise as well as being non-specific and extremely tedious to perform. A novel high performance liquid chromatographic analysis of erythromycin in human serum and urine using U.V. detection at 200 nm and/or electrochemical detection using both an amperometric and a coulometric electrochemical detector is presented. The method involves a solid phase extraction procedure followed by a simple phase separation step and chromatography on a reverse phase column. In order to select the optimum U.V. detector for this analysis, five "state of the art" detectors were compared in terms of their signal-to-noise ratios at U.V. wavelengths between 200 and 210 nm. A known metabolite des-N-methylerythromycin is readily detectable using U.V. detection, whilst another metabolite/degradation product anhydroerythromycin is not seen using U.V. detection but is readily observable using an electrochemical detector. The method has a limit of sensitivity of 0.25 μg/mL and 1.00 μg/mL in serum and urine respectively (U.V. detection) and is sufficiently sensitive to monitor serum and urine concentrations of erythromycin in man after administration of a single 500 mg erythromycin stearate tablet. , KMBT_363 , Adobe Acrobat 9.53 Paper Capture Plug-in
- Full Text:
High pressure liquid chromatographic quantification of nitrile biocatalysis
- Authors: Mathiba, Kgama
- Date: 2012
- Subjects: High performance liquid chromatography , Rhodococcus , Biocatalysis , Organic compounds -- Industrial applications
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4129 , http://hdl.handle.net/10962/d1015710
- Description: Nitrile biocatalysts are of use in the chemical and pharmaceutical industries for the synthesis of carboxyamides and carboxylic acids. In particular, the application of biocatalysts in the synthesis of single enantiomer compounds is of increasing interest, but requires novel substrate specific highly stereoselective biocatalysts. Addition to the limited toolbox of known nitrile biocatalysts requires definitive characterisation of the biocatalysts through accurate determination of the substrate profiles and quantification of activity. The accurate quantification of stereoisomers chiral mixtures to determine biocatalyst stereoselectivity remains a significant challenge due to the difficulty in separating stereoisomers by physical methods. The known nitrile metabolising organism, Rhodococcus rhodochrous ATCC BAA-870, was grown in a defined medium and harvested, providing whole cell biocatalyst. Additional biomass was disrupted to provide a cell free enzyme extract, which was put through an enzyme purification protocol to provide a solution with specific activity of 351 U.mg⁻¹. A portion of the enzyme was self immobilised using the SphereZyme™ technique. The nitrile hydratase SphereZymes™ (1.2 U.mg⁻¹ initial activity) that were prepared had pH and temperature optima of 6 and 30°C respectively, and could be recovered by repeated washing. The particles retained activity in the presence of the organic solvents isooctane and n-hexadecane saturated with 50 mM phosphate buffer (pH 7.5). An initial analytical system was devised for quantification of the nitrile hydratase activity using the non-chiral substrate benzonitrile. An improved reversed phase high performance liquid chromatography method was developed to separate and quantify benzamide, benzoic acid and benzonitrile. The mobile phase consisting of 0.1% trifluoroacetic acid in H₂O and acetonitrile (70:30, %v/v), at a flow rate of 0.5 ml.ml⁻¹, 25°C, resolved all three analytes in 3.5 minutes on a Waters X-Terra MS C18 3.5μm column. UV detection was carried out at 210 nm. Analytical methods to determine activity and enantioselectivity of the whole cell biocatalyst were subsequently developed for both β-amino nitriles and β-hydroxy nitrile substrates and hydrolysis products.
- Full Text:
- Authors: Mathiba, Kgama
- Date: 2012
- Subjects: High performance liquid chromatography , Rhodococcus , Biocatalysis , Organic compounds -- Industrial applications
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4129 , http://hdl.handle.net/10962/d1015710
- Description: Nitrile biocatalysts are of use in the chemical and pharmaceutical industries for the synthesis of carboxyamides and carboxylic acids. In particular, the application of biocatalysts in the synthesis of single enantiomer compounds is of increasing interest, but requires novel substrate specific highly stereoselective biocatalysts. Addition to the limited toolbox of known nitrile biocatalysts requires definitive characterisation of the biocatalysts through accurate determination of the substrate profiles and quantification of activity. The accurate quantification of stereoisomers chiral mixtures to determine biocatalyst stereoselectivity remains a significant challenge due to the difficulty in separating stereoisomers by physical methods. The known nitrile metabolising organism, Rhodococcus rhodochrous ATCC BAA-870, was grown in a defined medium and harvested, providing whole cell biocatalyst. Additional biomass was disrupted to provide a cell free enzyme extract, which was put through an enzyme purification protocol to provide a solution with specific activity of 351 U.mg⁻¹. A portion of the enzyme was self immobilised using the SphereZyme™ technique. The nitrile hydratase SphereZymes™ (1.2 U.mg⁻¹ initial activity) that were prepared had pH and temperature optima of 6 and 30°C respectively, and could be recovered by repeated washing. The particles retained activity in the presence of the organic solvents isooctane and n-hexadecane saturated with 50 mM phosphate buffer (pH 7.5). An initial analytical system was devised for quantification of the nitrile hydratase activity using the non-chiral substrate benzonitrile. An improved reversed phase high performance liquid chromatography method was developed to separate and quantify benzamide, benzoic acid and benzonitrile. The mobile phase consisting of 0.1% trifluoroacetic acid in H₂O and acetonitrile (70:30, %v/v), at a flow rate of 0.5 ml.ml⁻¹, 25°C, resolved all three analytes in 3.5 minutes on a Waters X-Terra MS C18 3.5μm column. UV detection was carried out at 210 nm. Analytical methods to determine activity and enantioselectivity of the whole cell biocatalyst were subsequently developed for both β-amino nitriles and β-hydroxy nitrile substrates and hydrolysis products.
- Full Text:
An evaluation of UPLC technology for the simultaneous analysis of actives in a multi-active drug
- Authors: Bawjee, Janita
- Date: 2011
- Subjects: High performance liquid chromatography
- Language: English
- Type: Thesis , Masters , MTech
- Identifier: vital:10384 , http://hdl.handle.net/10948/d1008407 , High performance liquid chromatography
- Description: The evaluation of the potential to use Ultra Performance Liquid Chromatography (UPLC) for the simultaneous quantification of all the actives in a multi-active tablet is described in this work. Part of the evaluation was to ensure that the necessary regulatory requirements were adhered to by ascertaining that an analytical method is suitable for a specific purpose through analytical method validation for the specific multi-active tablet. The UPLC method was also tested for the analysis of similar products, namely tablet formulations that contain similar active ingredients in the same proportions but with an additional active ingredient. A method for the simultaneous determination of paracetamol, caffeine and codeine phosphate was developed using UPLC technology. The UPLC developed method was more efficient than the existing in-house HPLC method. The UPLC method was then validated in accordance to ICH and USP guidelines. The application of this UPLC method for the analysis of similar products containing paracetamol, caffeine, codeine phosphate and one extra active ingredient was very challenging. The low concentration of the additional component, differences in sample matrix and differences in formulations added to the challenges. The direct application for the analysis of products Y and Z was not successful; however the method could be used as a platform for further research. A cost comparison between the UPLC and HPLC methods showed the UPLC method to be more cost effective. Thus, while maintenance costs are higher for the UPLC instrument, column costs are comparable to HPLC columns, but solvent and waste disposal charges decrease considerably due to lower solvent use. The reduction in instrument time dramatically improves the cost effectiveness of UPLC over HPLC due to a concurrent reduction in analyst time requirement. The results of this study show that the analytical costs associated with the analysis of multi-active drugs using HPLC procedures can be reduced substantially by the CONFIDENTIAL INTELLECTUAL PROPERTY OF ASPEN PHARMACARE implementation of UPLC technology. The hypothesis that the enhanced chromatographic power of UPLC can be leveraged to provide faster analysis times hence increased product throughput rates, and lower operating costs for the analysis of multi-active drugs was accepted. These advantages were achieved whilst meeting all regulatory requirements for analytical methods as required by regulatory bodies.
- Full Text:
- Authors: Bawjee, Janita
- Date: 2011
- Subjects: High performance liquid chromatography
- Language: English
- Type: Thesis , Masters , MTech
- Identifier: vital:10384 , http://hdl.handle.net/10948/d1008407 , High performance liquid chromatography
- Description: The evaluation of the potential to use Ultra Performance Liquid Chromatography (UPLC) for the simultaneous quantification of all the actives in a multi-active tablet is described in this work. Part of the evaluation was to ensure that the necessary regulatory requirements were adhered to by ascertaining that an analytical method is suitable for a specific purpose through analytical method validation for the specific multi-active tablet. The UPLC method was also tested for the analysis of similar products, namely tablet formulations that contain similar active ingredients in the same proportions but with an additional active ingredient. A method for the simultaneous determination of paracetamol, caffeine and codeine phosphate was developed using UPLC technology. The UPLC developed method was more efficient than the existing in-house HPLC method. The UPLC method was then validated in accordance to ICH and USP guidelines. The application of this UPLC method for the analysis of similar products containing paracetamol, caffeine, codeine phosphate and one extra active ingredient was very challenging. The low concentration of the additional component, differences in sample matrix and differences in formulations added to the challenges. The direct application for the analysis of products Y and Z was not successful; however the method could be used as a platform for further research. A cost comparison between the UPLC and HPLC methods showed the UPLC method to be more cost effective. Thus, while maintenance costs are higher for the UPLC instrument, column costs are comparable to HPLC columns, but solvent and waste disposal charges decrease considerably due to lower solvent use. The reduction in instrument time dramatically improves the cost effectiveness of UPLC over HPLC due to a concurrent reduction in analyst time requirement. The results of this study show that the analytical costs associated with the analysis of multi-active drugs using HPLC procedures can be reduced substantially by the CONFIDENTIAL INTELLECTUAL PROPERTY OF ASPEN PHARMACARE implementation of UPLC technology. The hypothesis that the enhanced chromatographic power of UPLC can be leveraged to provide faster analysis times hence increased product throughput rates, and lower operating costs for the analysis of multi-active drugs was accepted. These advantages were achieved whilst meeting all regulatory requirements for analytical methods as required by regulatory bodies.
- Full Text:
Application of high-performance liquid chromatography to the analysis, stability and pharmacokinetics of erythromycin
- Authors: Stubbs, Christopher
- Date: 1988
- Subjects: Erythromycin , High performance liquid chromatography
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3809 , http://hdl.handle.net/10962/d1004372
- Description: Erythromycin is a macrolide antibiotic used mainly in the treatment of infections caused by gram-positive organisms. Erythromycin base is rap idly degraded in acidic media necessitating the use of structurally modified erythromycin derivatives or acid resistant dosage forms in order to decrease gastric inactivation of the drug. The majority of pharmacokinetic studies to-date have utilized relatively non-specific microbiological assay procedures which are unable to differentiate between concentrations of active erythromycin base and the inactive pro-drug derivatives. A high-performance liquid chromatographic (HPLC) technique is described for the simultaneous determination of erythromycin base and propionate (inactive pro-drug form) in human serum and urine following the oral administration of erythromycin estolate, an acid stable derivative of erythromycin. The method involves a solid-phase extraction step prior to chromatography on a C18 reversed-phase column with coulometric electrochemical detection. Sample handling and storage techniques are presented which minimize hydrolysis of the inactive ester moiety between sample collection and analysis, thereby more accurately reflecting the in vivo situation than in previously published studies. Results from single dose pharmacokinetic studies indicate that only 10-15% of the total erythromycin concentration in vivo is present as the active base component following oral administration of erythromycin estolate. This percentage increases to approximately 25% during multiple dose administration. Novel urinary excretion data are presented which reveal that approximately 40% and 55% of the total erythromycin excreted in urine is excreted as erythromycin base following single and multiple dosages respectively. Computer fitting of mean serum concentration-time data revealed that an open one compartment model with linear first order absorption and elimination best described the absorption and disposition of erythromycin, although poor computer fits for individual data sets were observed. Some evidence of non-linear elimination is presented utilizing both compartmental and non-compartmental pharmacokinetic techniques. Large intra-and inter-personal variability in erythromycin absorption and disposition was experienced which was evaluated in five subjects who each received one 500 mg erythromycin estolate tablet from the same batch, on three separate occasions. In addition. an HPLC method is described for the analysis of "total erythromycin" concentrations following erythromycin estolate administration which involves hydrolysis of the ester component prior to chromatography. as well as an HPLC method utilizing amperometric electrochemical detection capable of monitoring the stability of erythromycin base in stored biological fluids. These methods were uti I ized in various stability studies involving erythromycin base and propionate as well as for the analysis of erythromycin estolate dosage forms.
- Full Text:
- Authors: Stubbs, Christopher
- Date: 1988
- Subjects: Erythromycin , High performance liquid chromatography
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3809 , http://hdl.handle.net/10962/d1004372
- Description: Erythromycin is a macrolide antibiotic used mainly in the treatment of infections caused by gram-positive organisms. Erythromycin base is rap idly degraded in acidic media necessitating the use of structurally modified erythromycin derivatives or acid resistant dosage forms in order to decrease gastric inactivation of the drug. The majority of pharmacokinetic studies to-date have utilized relatively non-specific microbiological assay procedures which are unable to differentiate between concentrations of active erythromycin base and the inactive pro-drug derivatives. A high-performance liquid chromatographic (HPLC) technique is described for the simultaneous determination of erythromycin base and propionate (inactive pro-drug form) in human serum and urine following the oral administration of erythromycin estolate, an acid stable derivative of erythromycin. The method involves a solid-phase extraction step prior to chromatography on a C18 reversed-phase column with coulometric electrochemical detection. Sample handling and storage techniques are presented which minimize hydrolysis of the inactive ester moiety between sample collection and analysis, thereby more accurately reflecting the in vivo situation than in previously published studies. Results from single dose pharmacokinetic studies indicate that only 10-15% of the total erythromycin concentration in vivo is present as the active base component following oral administration of erythromycin estolate. This percentage increases to approximately 25% during multiple dose administration. Novel urinary excretion data are presented which reveal that approximately 40% and 55% of the total erythromycin excreted in urine is excreted as erythromycin base following single and multiple dosages respectively. Computer fitting of mean serum concentration-time data revealed that an open one compartment model with linear first order absorption and elimination best described the absorption and disposition of erythromycin, although poor computer fits for individual data sets were observed. Some evidence of non-linear elimination is presented utilizing both compartmental and non-compartmental pharmacokinetic techniques. Large intra-and inter-personal variability in erythromycin absorption and disposition was experienced which was evaluated in five subjects who each received one 500 mg erythromycin estolate tablet from the same batch, on three separate occasions. In addition. an HPLC method is described for the analysis of "total erythromycin" concentrations following erythromycin estolate administration which involves hydrolysis of the ester component prior to chromatography. as well as an HPLC method utilizing amperometric electrochemical detection capable of monitoring the stability of erythromycin base in stored biological fluids. These methods were uti I ized in various stability studies involving erythromycin base and propionate as well as for the analysis of erythromycin estolate dosage forms.
- Full Text:
Evaluation of the safety and efficacy of topical mometasone furoate formulations
- Authors: Chamboko, Bernadett Vongayi
- Date: 2007
- Subjects: Adrenocortical hormones -- Physiological effect , Drugs -- Testing , Dermatopharmacology , High performance liquid chromatography
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3748 , http://hdl.handle.net/10962/d1003226 , Adrenocortical hormones -- Physiological effect , Drugs -- Testing , Dermatopharmacology , High performance liquid chromatography
- Description: The human skin blanching assay (HSBA) is a well-researched and validated method for the bioequivalence assessment of topical corticosteroids. Traditionally, visual assessment of skin blanching has been used. Such testing methods are not conducive for interlaboratory comparisons. Regulatory bodies prefer less subjective methods of analysis. The FDA released guidelines on the assessment of bioequivalence for topical corticosteroids that recommends the use of a chromameter as a reliable method to measure skin blanching although the use of visual assessment with acceptable validation is also provided for. However, the FDA does not elucidate on the manipulation and handling of the chromameter during skin blanching measurements. The purpose of this project was several fold, which included investigations to standardize the manipulation and handling of a chromameter. In particular, measures to avoid skin whitening resulting from the effects of pressure on the skin during chromameter use were investigated. Other methods of analysis should surpass or at least be comparable to the HSBA if such methods are to be used for the assessment of topical corticosteroids. Microdialysis is a relatively new technique for assessing the rate at which drug penetrates the skin. The advantage of using this method is that there are fewer restrictions for selection of an appropriate study population unlike those required for the HSBA where one has to be both a ‘responder’ and a ‘detector’ for their results to be used in data analysis. Microdialysis was investigated by initially conducting experiments in which microdialysis probes were embedded into topical formulations containing mometasone furoate (MF) and the initial results revealed that relatively low drug was released from the formulations. These results indicated that should microdialysis be applied to measure the in vivo release of MF from such topical formulations following application to the skin, even lower concentrations of MF would likely result in the dialysate, necessitating the need for ultra-high sensitive methods of analysis. Typically, the availability of an appropriate analytical technique such as liquid chromatography coupled with mass spectrometry (LCMS) would be a pre-requisite for such in vivo studies. However, only high-pressure liquid chromatography (HPLC) and other less sensitive equipment was available in the laboratories. The study objectives were therefore focussed on in vitro assessment of the release of MF from topical formulations using microdialysis and Franz cells. In addition, the in vivo release of MF was also studied using the HSBA. Data obtained from the microdialysis experiments were compared with the data obtained from the Franz cell diffusion studies in order to provide information on the pharmaceutical availability of MF from the various topical MF dosage forms. Subsequently, pharmaceutical equivalence was investigated from the comparative pharmaceutical availability data using statistical analysis. An additional objective was to attempt to correlate in vitro with in vivo data (IVIVC) to establish a model that could be used to assess safety and efficacy of generic topical drug products. The in vivo data obtained from the HSBA were processed according to the FDA requirements and these pharmacodynamic data were subsequently compared with the microdialysis and Franz cell results. In summary the objectives of this project were: 1. To develop a system to improve the reproducibility of the use of a Minolta® chromameter and compare this with the standard/normal manipulation and handling of such instruments. 2. To develop and validate an HPLC method for the analysis of MF for use with in vitro diffusion studies using microdialysis and Franz cells. 3. To conduct a comparative HSBA on proprietary MF topical creams from two different countries in accordance with the FDA guidance. 4. To assess the pharmaceutical equivalence of topical formulations containing MF using Franz diffusion cells and in vitro microdialysis. 5. To compare the in vivo data obtained from the HSBA with those obtained in vitro using microdialysis and Franz cells.
- Full Text:
- Authors: Chamboko, Bernadett Vongayi
- Date: 2007
- Subjects: Adrenocortical hormones -- Physiological effect , Drugs -- Testing , Dermatopharmacology , High performance liquid chromatography
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3748 , http://hdl.handle.net/10962/d1003226 , Adrenocortical hormones -- Physiological effect , Drugs -- Testing , Dermatopharmacology , High performance liquid chromatography
- Description: The human skin blanching assay (HSBA) is a well-researched and validated method for the bioequivalence assessment of topical corticosteroids. Traditionally, visual assessment of skin blanching has been used. Such testing methods are not conducive for interlaboratory comparisons. Regulatory bodies prefer less subjective methods of analysis. The FDA released guidelines on the assessment of bioequivalence for topical corticosteroids that recommends the use of a chromameter as a reliable method to measure skin blanching although the use of visual assessment with acceptable validation is also provided for. However, the FDA does not elucidate on the manipulation and handling of the chromameter during skin blanching measurements. The purpose of this project was several fold, which included investigations to standardize the manipulation and handling of a chromameter. In particular, measures to avoid skin whitening resulting from the effects of pressure on the skin during chromameter use were investigated. Other methods of analysis should surpass or at least be comparable to the HSBA if such methods are to be used for the assessment of topical corticosteroids. Microdialysis is a relatively new technique for assessing the rate at which drug penetrates the skin. The advantage of using this method is that there are fewer restrictions for selection of an appropriate study population unlike those required for the HSBA where one has to be both a ‘responder’ and a ‘detector’ for their results to be used in data analysis. Microdialysis was investigated by initially conducting experiments in which microdialysis probes were embedded into topical formulations containing mometasone furoate (MF) and the initial results revealed that relatively low drug was released from the formulations. These results indicated that should microdialysis be applied to measure the in vivo release of MF from such topical formulations following application to the skin, even lower concentrations of MF would likely result in the dialysate, necessitating the need for ultra-high sensitive methods of analysis. Typically, the availability of an appropriate analytical technique such as liquid chromatography coupled with mass spectrometry (LCMS) would be a pre-requisite for such in vivo studies. However, only high-pressure liquid chromatography (HPLC) and other less sensitive equipment was available in the laboratories. The study objectives were therefore focussed on in vitro assessment of the release of MF from topical formulations using microdialysis and Franz cells. In addition, the in vivo release of MF was also studied using the HSBA. Data obtained from the microdialysis experiments were compared with the data obtained from the Franz cell diffusion studies in order to provide information on the pharmaceutical availability of MF from the various topical MF dosage forms. Subsequently, pharmaceutical equivalence was investigated from the comparative pharmaceutical availability data using statistical analysis. An additional objective was to attempt to correlate in vitro with in vivo data (IVIVC) to establish a model that could be used to assess safety and efficacy of generic topical drug products. The in vivo data obtained from the HSBA were processed according to the FDA requirements and these pharmacodynamic data were subsequently compared with the microdialysis and Franz cell results. In summary the objectives of this project were: 1. To develop a system to improve the reproducibility of the use of a Minolta® chromameter and compare this with the standard/normal manipulation and handling of such instruments. 2. To develop and validate an HPLC method for the analysis of MF for use with in vitro diffusion studies using microdialysis and Franz cells. 3. To conduct a comparative HSBA on proprietary MF topical creams from two different countries in accordance with the FDA guidance. 4. To assess the pharmaceutical equivalence of topical formulations containing MF using Franz diffusion cells and in vitro microdialysis. 5. To compare the in vivo data obtained from the HSBA with those obtained in vitro using microdialysis and Franz cells.
- Full Text:
In vitro release of ketoprofen from proprietary and extemporaneously manufactured gels
- Tettey-Amlalo, Ralph Nii Okai
- Authors: Tettey-Amlalo, Ralph Nii Okai
- Date: 2005
- Subjects: Transdermal medication , Drug delivery systems , High performance liquid chromatography , Nonsteroidal anti-inflammatory agents , Rheumatoid arthritis -- Treatment
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3797 , http://hdl.handle.net/10962/d1003275 , Transdermal medication , Drug delivery systems , High performance liquid chromatography , Nonsteroidal anti-inflammatory agents , Rheumatoid arthritis -- Treatment
- Description: Ketoprofen is a potent non-steroidal anti-inflammatory drug which is used for the treatment of rheumatoid arthritis. The oral administration of ketoprofen can cause gastric irritation and adverse renal effects. Transdermal delivery of the drug can bypass gastrointestinal disturbances and provide relatively consistent drug concentrations at the site of administration. The release of ketoprofen from proprietary gel products from three different countries was evaluated by comparing the in vitro release profiles. Twenty extemporaneously prepared ketoprofen gel formulations using Carbopol® polymers were manufactured. The effect of polymer, drug concentration, pH and solvent systems on the in vitro release of ketoprofen from these formulations were investigated. The gels were evaluated for drug content and pH. The release of the drug from all the formulations obeyed the Higuchi principle. Two static FDA approved diffusion cells, namely the modified Franz diffusion cell and the European Pharmacopoeia diffusion cell, were compared by measuring the in vitro release rate of ketoprofen from all the gel formulations through a synthetic silicone membrane. High-performance liquid chromatography and ultraviolet spectrophotometric analytical techniques were both used for the analysis of ketoprofen. The validated methods were employed for the determination of ketoprofen in the sample solutions taken from the receptor fluid. Two of the three proprietary products registered under the same manufacturing license exhibited similar results whereas the third product differed significantly. Among the variables investigated, the vehicle pH and solvent composition were found have the most significant effect on the in vitro release of ketoprofen from Carbopol® polymers. The different grades of Carbopol® polymers showed statistically significantly different release kinetics with respect to lag time. When evaluating the proprietary products, both the modified Franz diffusion cell and the European Pharmacopoeia diffusion cell were deemed adequate although higher profiles were generally obtained from the European Pharmacopoeia diffusion cells. Smoother diffusion profiles were obtained from samples analysed by high-performance liquid chromatography than by ultraviolet spectrophotometry in both diffusion cells. Sample solutions taken from Franz diffusion cells and analysed by ultraviolet spectrophotometry also produced smooth diffusion profiles. Erratic and higher diffusion profiles were observed with samples taken from the European Pharmacopoeia diffusion cell and analysed by ultraviolet spectrophotometry. The choice of diffusion cells and analytical procedure in product development must be weighed against the relatively poor reproducibility as observed with the European Pharmacopoeia diffusion cell.
- Full Text:
- Authors: Tettey-Amlalo, Ralph Nii Okai
- Date: 2005
- Subjects: Transdermal medication , Drug delivery systems , High performance liquid chromatography , Nonsteroidal anti-inflammatory agents , Rheumatoid arthritis -- Treatment
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3797 , http://hdl.handle.net/10962/d1003275 , Transdermal medication , Drug delivery systems , High performance liquid chromatography , Nonsteroidal anti-inflammatory agents , Rheumatoid arthritis -- Treatment
- Description: Ketoprofen is a potent non-steroidal anti-inflammatory drug which is used for the treatment of rheumatoid arthritis. The oral administration of ketoprofen can cause gastric irritation and adverse renal effects. Transdermal delivery of the drug can bypass gastrointestinal disturbances and provide relatively consistent drug concentrations at the site of administration. The release of ketoprofen from proprietary gel products from three different countries was evaluated by comparing the in vitro release profiles. Twenty extemporaneously prepared ketoprofen gel formulations using Carbopol® polymers were manufactured. The effect of polymer, drug concentration, pH and solvent systems on the in vitro release of ketoprofen from these formulations were investigated. The gels were evaluated for drug content and pH. The release of the drug from all the formulations obeyed the Higuchi principle. Two static FDA approved diffusion cells, namely the modified Franz diffusion cell and the European Pharmacopoeia diffusion cell, were compared by measuring the in vitro release rate of ketoprofen from all the gel formulations through a synthetic silicone membrane. High-performance liquid chromatography and ultraviolet spectrophotometric analytical techniques were both used for the analysis of ketoprofen. The validated methods were employed for the determination of ketoprofen in the sample solutions taken from the receptor fluid. Two of the three proprietary products registered under the same manufacturing license exhibited similar results whereas the third product differed significantly. Among the variables investigated, the vehicle pH and solvent composition were found have the most significant effect on the in vitro release of ketoprofen from Carbopol® polymers. The different grades of Carbopol® polymers showed statistically significantly different release kinetics with respect to lag time. When evaluating the proprietary products, both the modified Franz diffusion cell and the European Pharmacopoeia diffusion cell were deemed adequate although higher profiles were generally obtained from the European Pharmacopoeia diffusion cells. Smoother diffusion profiles were obtained from samples analysed by high-performance liquid chromatography than by ultraviolet spectrophotometry in both diffusion cells. Sample solutions taken from Franz diffusion cells and analysed by ultraviolet spectrophotometry also produced smooth diffusion profiles. Erratic and higher diffusion profiles were observed with samples taken from the European Pharmacopoeia diffusion cell and analysed by ultraviolet spectrophotometry. The choice of diffusion cells and analytical procedure in product development must be weighed against the relatively poor reproducibility as observed with the European Pharmacopoeia diffusion cell.
- Full Text:
Purification and characterization of fructosyltransferase for the synthesis of short-chain fructo-oligosaccharides and investigation into thier anti-carcinogenic properties
- Authors: Nemukula, Aluwani
- Date: 2009
- Subjects: Oligosaccharides , Polygalacturonase , Aspergillus , Fructose , Inulin , Cancer -- Prevention , Cancer -- Research , Carcinogens , High performance liquid chromatography
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3927 , http://hdl.handle.net/10962/d1003986 , Oligosaccharides , Polygalacturonase , Aspergillus , Fructose , Inulin , Cancer -- Prevention , Cancer -- Research , Carcinogens , High performance liquid chromatography
- Description: There is a growing attention in the synthesis of fructo-oligosaccharides (FOS) due to their excellent bio-functional and health-promoting properties. The current production processes are limited to chemical hydrolysis reactions of plant extracts, which are often associated with several drawbacks. In this study, fructosyltransferase (FTase) and polygalacturonase (PGase) activities, present in a commercial enzyme preparation (Pectinex® Ultra SP-L) sourced from Aspergillus aculeatus, have been separated and fully purified by anion-exchange and sizeexclusion chromatography. The FTase possesses fructosyl transfer activity for FOS synthesis and the PGase has pectin hydrolytic activity. Fructosyltransferase is a single-band protein with a molecular weight of 85 kDa, whereas PGase is a distinct protein of 40 kDa. The temperature and pH optima of FTase were 60 ºC and 6.0, with a half-life of 8 h; while that for PGase were 40 ºC and 6.0, respectively. FTase was slightly inhibited in the presence of Ni²⁺, Mg²⁺ and urea; but PGase was more susceptible to divalent ions such as Ca²⁺, Mg²⁺ and Mn²⁺. The kinetic parameters (Km and Vmax) of FTase for the hydrolysis of β-(2→1) linkages from sucrose were 752.3 mM and 120.5 μmol.min⁻¹.mL⁻¹, respectively; whereas the same parameters for pectin hydrolysis by PGase were 13.0 mg.mL⁻¹ and 263 μmol.min-1.mL⁻¹, respectively. The purified FTase was able to transfer fructosyl residues from sucrose, synthesizing the corresponding chains of FOS. PGase was relatively stable at 40 ºC (t½ > 3 h), depolymerizing the pectin backbone while releasing the inulins from within the chicory roots. Analysis of various mixtures of FOS by mass spectrometry, HPLC and ¹H-NMR was undertaken. Results indicated that MS with electrospray ionization and ¹H-NMR are capable of providing relative quantitative data of the FOS present in the mixtures. The pharmaceutical effects of various sc-FOS (0.5%, v/v) and SCFA (0.3%, v/v) on certain bacterial enzymes (β-glucuronidase, urease and β-glucosidase) associated with the formation of carcinogens were also studied. These enzyme activities were not directly influenced by the sc-FOS, but were found to be remarkably decreased by SCFA, pointing toward the prebiotic effect of FOS in intestinal microflora modulation.
- Full Text:
- Authors: Nemukula, Aluwani
- Date: 2009
- Subjects: Oligosaccharides , Polygalacturonase , Aspergillus , Fructose , Inulin , Cancer -- Prevention , Cancer -- Research , Carcinogens , High performance liquid chromatography
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3927 , http://hdl.handle.net/10962/d1003986 , Oligosaccharides , Polygalacturonase , Aspergillus , Fructose , Inulin , Cancer -- Prevention , Cancer -- Research , Carcinogens , High performance liquid chromatography
- Description: There is a growing attention in the synthesis of fructo-oligosaccharides (FOS) due to their excellent bio-functional and health-promoting properties. The current production processes are limited to chemical hydrolysis reactions of plant extracts, which are often associated with several drawbacks. In this study, fructosyltransferase (FTase) and polygalacturonase (PGase) activities, present in a commercial enzyme preparation (Pectinex® Ultra SP-L) sourced from Aspergillus aculeatus, have been separated and fully purified by anion-exchange and sizeexclusion chromatography. The FTase possesses fructosyl transfer activity for FOS synthesis and the PGase has pectin hydrolytic activity. Fructosyltransferase is a single-band protein with a molecular weight of 85 kDa, whereas PGase is a distinct protein of 40 kDa. The temperature and pH optima of FTase were 60 ºC and 6.0, with a half-life of 8 h; while that for PGase were 40 ºC and 6.0, respectively. FTase was slightly inhibited in the presence of Ni²⁺, Mg²⁺ and urea; but PGase was more susceptible to divalent ions such as Ca²⁺, Mg²⁺ and Mn²⁺. The kinetic parameters (Km and Vmax) of FTase for the hydrolysis of β-(2→1) linkages from sucrose were 752.3 mM and 120.5 μmol.min⁻¹.mL⁻¹, respectively; whereas the same parameters for pectin hydrolysis by PGase were 13.0 mg.mL⁻¹ and 263 μmol.min-1.mL⁻¹, respectively. The purified FTase was able to transfer fructosyl residues from sucrose, synthesizing the corresponding chains of FOS. PGase was relatively stable at 40 ºC (t½ > 3 h), depolymerizing the pectin backbone while releasing the inulins from within the chicory roots. Analysis of various mixtures of FOS by mass spectrometry, HPLC and ¹H-NMR was undertaken. Results indicated that MS with electrospray ionization and ¹H-NMR are capable of providing relative quantitative data of the FOS present in the mixtures. The pharmaceutical effects of various sc-FOS (0.5%, v/v) and SCFA (0.3%, v/v) on certain bacterial enzymes (β-glucuronidase, urease and β-glucosidase) associated with the formation of carcinogens were also studied. These enzyme activities were not directly influenced by the sc-FOS, but were found to be remarkably decreased by SCFA, pointing toward the prebiotic effect of FOS in intestinal microflora modulation.
- Full Text:
African traditional medicines-antiretroviral drug interactions: the effect of African potato (Hypoxis hemerocallidea) on the pharmacokinetics of efavirenz in humans
- Authors: Mogatle, Seloi
- Date: 2009
- Subjects: Potatoes -- Africa , Potatoes -- Therapeutic use , Medicinal plants , Traditional medicine , AIDS (Disease) -- Treatment , HIV infections -- Drug therapy , Drug interactions , Antiretroviral agents , Pharmacokinetics , Hypoxidaceae -- Therapeutic use , High performance liquid chromatography
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3773 , http://hdl.handle.net/10962/d1003251
- Description: African Potato (Hypoxis hemerocallidea), (AP) is an African traditional medicine (TM) that is commonly used for various nutritional/medicinal purposes and also by people infected with the human immuno deficiency virus HIV and AIDS patients as an immune booster. The use of AP has also been recommended by the former Minister of Health of South Africa for use by HIV positive people. The main phytochemical component of AP is a norlignan glucoside, hypoxoside, and other relatively minor components have also been reported. A recent in vitro study reported the effects of AP extracts, hypoxoside and rooperol (the metabolite of hypoxoside) on human metabolic enzymes such as the cytochrome P450 (CYP450) group of enzymes and also on the transporter protein, p-glycoprotein (P-gp). This research focussed on investigating the clinical significance of those in vitro effects on the pharmacokinetics of efavirenz (EFV) in humans. EFV was chosen as the substrate drug because it is in first-line regimen of treatment of HIV/AIDS in South Africa, and also has been reported to be a substrate for the specific CYP isozymes, 3A4 and 2B6, in common with APs metabolic involvement with 3A4. A high performance liquid chromatography method with ultra-violet detection (HPLC-UV) for the quantitative determination of EFV in plasma was developed and successfully validated according to international standards with good reproducibility, accuracy, recovery, linear response and requisite sensitivity. The preparation of the plasma samples for analysis was effected by using a simple and rapid precipitation method, and the mobile phase consisted of readily available solvents. EFV in plasma samples was found to be stable under the relevant storage conditions studied. The oral dose of AP, administered as a freshly prepared traditional decoction, was standardised based on the hypoxoside content, and the quality of all the AP decoctions was analysed immediately prior to administration, using a validated HPLC-UV method. A single dose, two-phase sequential study was conducted over a period of 31 days in 10 healthy volunteers. The clinical study was approved by the Rhodes University Ethical Standards Committee, and all the participants agreed to the conditions of the study by giving their informed consent. On day 1 of the study, human subjects were administered a 600 mg EFV tablet and blood samples were collected before dosing and at various intervals over a period of 48 hr post dosing. From day 16, a traditionally prepared AP decoction was administered daily at a standardized dose of 15 mg/kg/day per subject until day 30. On day 29, volunteers were administered a single 600 mg dose of EFV as was done on day 1. Plasma samples were harvested immediately after blood sample collection and frozen at -80 ºC until assayed. Geometric mean ratios of relevant pharmacokinetic parameters, Cmax (maximum plasma concentration achieved following dosing) and AUC0-48 (area under the curve of a plot of drug plasma concentrations versus time representing the extent of absorption) of EFV before and after co-administration of 14 successive daily doses of AP were compared and evaluated to determine whether an interaction had occurred. All subjects completed the study and the geometric mean ratios of Cmax and AUC0-48 were 97.30 and 102.82 with corresponding 90% confidence intervals (CIs) of 78.81-120.14% and 89.04-118.80%, respectively. Whereas the acceptance criteria for the ratios of the AUCs fell within the preset 90% CIs indicating no interaction, the Cmax ratios fell outside the limits. Although the protocol was developed in accordance with the United States of America Food & Drug Administration’s Guidance for Drug Interactions, a priori stating that both criteria need to fall within the acceptance limits to indicate no interaction, an argument is presented to waive the Cmax requirement for the declaration of an interaction. As a result, the pharmacokinetic data generated during this study indicated that the effect of AP on the pharmacokinetics of EFV is not clinically significant. Hence, co-administration of AP is unlikely to affect the clinical use of EFV. In summary the objectives of this project were: 1. To develop and validate a suitable HPLC-UV method for the quantitative determination of EFV in plasma. 2. To perform a mini-validation of the determination of hypoxoside for use as a marker in the quality control and standardisation of AP decoctions. 3. To conduct a clinical interaction study in order to determine whether AP affects the pharmacokinetics of EFV following concurrent administration. 4. To apply the validated HPLC-UV method to determine plasma concentrations of EFV in plasma of human subjects. 5. To use appropriate statistical methods and treatments such as a non-compartmental pharmacokinetic analysis to determine the occurrence of an interaction.
- Full Text:
- Authors: Mogatle, Seloi
- Date: 2009
- Subjects: Potatoes -- Africa , Potatoes -- Therapeutic use , Medicinal plants , Traditional medicine , AIDS (Disease) -- Treatment , HIV infections -- Drug therapy , Drug interactions , Antiretroviral agents , Pharmacokinetics , Hypoxidaceae -- Therapeutic use , High performance liquid chromatography
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3773 , http://hdl.handle.net/10962/d1003251
- Description: African Potato (Hypoxis hemerocallidea), (AP) is an African traditional medicine (TM) that is commonly used for various nutritional/medicinal purposes and also by people infected with the human immuno deficiency virus HIV and AIDS patients as an immune booster. The use of AP has also been recommended by the former Minister of Health of South Africa for use by HIV positive people. The main phytochemical component of AP is a norlignan glucoside, hypoxoside, and other relatively minor components have also been reported. A recent in vitro study reported the effects of AP extracts, hypoxoside and rooperol (the metabolite of hypoxoside) on human metabolic enzymes such as the cytochrome P450 (CYP450) group of enzymes and also on the transporter protein, p-glycoprotein (P-gp). This research focussed on investigating the clinical significance of those in vitro effects on the pharmacokinetics of efavirenz (EFV) in humans. EFV was chosen as the substrate drug because it is in first-line regimen of treatment of HIV/AIDS in South Africa, and also has been reported to be a substrate for the specific CYP isozymes, 3A4 and 2B6, in common with APs metabolic involvement with 3A4. A high performance liquid chromatography method with ultra-violet detection (HPLC-UV) for the quantitative determination of EFV in plasma was developed and successfully validated according to international standards with good reproducibility, accuracy, recovery, linear response and requisite sensitivity. The preparation of the plasma samples for analysis was effected by using a simple and rapid precipitation method, and the mobile phase consisted of readily available solvents. EFV in plasma samples was found to be stable under the relevant storage conditions studied. The oral dose of AP, administered as a freshly prepared traditional decoction, was standardised based on the hypoxoside content, and the quality of all the AP decoctions was analysed immediately prior to administration, using a validated HPLC-UV method. A single dose, two-phase sequential study was conducted over a period of 31 days in 10 healthy volunteers. The clinical study was approved by the Rhodes University Ethical Standards Committee, and all the participants agreed to the conditions of the study by giving their informed consent. On day 1 of the study, human subjects were administered a 600 mg EFV tablet and blood samples were collected before dosing and at various intervals over a period of 48 hr post dosing. From day 16, a traditionally prepared AP decoction was administered daily at a standardized dose of 15 mg/kg/day per subject until day 30. On day 29, volunteers were administered a single 600 mg dose of EFV as was done on day 1. Plasma samples were harvested immediately after blood sample collection and frozen at -80 ºC until assayed. Geometric mean ratios of relevant pharmacokinetic parameters, Cmax (maximum plasma concentration achieved following dosing) and AUC0-48 (area under the curve of a plot of drug plasma concentrations versus time representing the extent of absorption) of EFV before and after co-administration of 14 successive daily doses of AP were compared and evaluated to determine whether an interaction had occurred. All subjects completed the study and the geometric mean ratios of Cmax and AUC0-48 were 97.30 and 102.82 with corresponding 90% confidence intervals (CIs) of 78.81-120.14% and 89.04-118.80%, respectively. Whereas the acceptance criteria for the ratios of the AUCs fell within the preset 90% CIs indicating no interaction, the Cmax ratios fell outside the limits. Although the protocol was developed in accordance with the United States of America Food & Drug Administration’s Guidance for Drug Interactions, a priori stating that both criteria need to fall within the acceptance limits to indicate no interaction, an argument is presented to waive the Cmax requirement for the declaration of an interaction. As a result, the pharmacokinetic data generated during this study indicated that the effect of AP on the pharmacokinetics of EFV is not clinically significant. Hence, co-administration of AP is unlikely to affect the clinical use of EFV. In summary the objectives of this project were: 1. To develop and validate a suitable HPLC-UV method for the quantitative determination of EFV in plasma. 2. To perform a mini-validation of the determination of hypoxoside for use as a marker in the quality control and standardisation of AP decoctions. 3. To conduct a clinical interaction study in order to determine whether AP affects the pharmacokinetics of EFV following concurrent administration. 4. To apply the validated HPLC-UV method to determine plasma concentrations of EFV in plasma of human subjects. 5. To use appropriate statistical methods and treatments such as a non-compartmental pharmacokinetic analysis to determine the occurrence of an interaction.
- Full Text:
Application of CE, HPLC and LC-MS-MS for the analysis and quality control of Ginkgo biloba dosage forms
- Authors: Dubber, Mary-Jean
- Date: 2006
- Subjects: Pharmaceutical chemistry -- Quality control , Ginkgo , Micelles , Capillary electrophoresis , High performance liquid chromatography , Drugs -- Dosage forms , Flavonoids , Terpenes , Herbals
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3757 , http://hdl.handle.net/10962/d1003235
- Description: Natural products are complex mixtures of compounds with therapeutic effects which are often reported to be due to the synergistic action of multiple and sometimes unknown components. Consequently, standardization of these products is complex and a lack of effective quality control (QC) criteria in most countries has led to marketing of commercial products with questionable quality, safety and efficacy (QSE). The aim of this study was therefore to develop qualitative and quantitative analytical methods for use in the QC of Ginkgo biloba solid oral dosage forms. Initially, a micellar electrokinetic chromatography (MEKC) method was developed for the identification of the flavonol glycosides, rutin and quercitrin as well as 3 flavonol aglycones, quercetin, kaempferol and isorhamnetin in crude extracts of 4 Ginkgo biloba solid oral dosage forms using ultraviolet (UV) detection. A reversed-flow cyclodextrin-modified MEKC method was subsequently developed for the simultaneous determination of the aforementioned flavonols as well as ginkgolide A, B, C, J and bilobalide (all positive markers) in Ginkgo commercial products. A non-aqueous capillary electrophoresis (CE) method was also developed for fingerprinting the presence of ginkgolic acids (negative markers) in Ginkgo biloba leaf extracts, which are purported to be associated with toxic properties. This method was also applied to 2 Ginkgo biloba commercial products. Since the flavonols have strong UV absorbing chromophores, a reversed phase high-performance liquid chromatographic (RP-HPLC) method was developed and validated using photo-diode-array (PDA) detection which was then successfully applied to fingerprint commercially available Ginkgo biloba solid oral dosage forms as well as quantify the relevant flavonol markers present in these extracts. Sample preparation was simple, rapid and cost efficient with minimal clean-up and the employment of a minibore column which requires low mobile phase flow rates contributed to the economy of the method. Unlike the conventional QC approach, samples were not hydrolyzed and direct determination of 2 intact flavonol glycosides, together with the usual aglycone markers was facilitated which provided maximal content information for fingerprint comparisons. On the other hand, terpene trilactones possess poor chromophores and an alternative detection method to UV was required in order to obtain suitable sensitivity. RP-HPLC with evaporative light scattering detection (ELSD) was selected for quantification of these non-volatile constituents in Ginkgo dosage forms and this method was deemed suitable for the routine QC analysis of these positive markers in commercial products. Since approximately 33 flavonoids have been identified in Ginkgo biloba leaf extracts, baseline separation using UV/PDA detection normally requires complex gradient programs and long analysis times. In addition, unequivocal identification of the flavonoids with similar UV spectra and elution times cannot be guaranteed. A liquid chromatographic tandem mass spectrometric (LC-MS-MS) method was therefore developed and validated in order to ensure accurate quantification of the selected flavonol marker compounds in Ginkgo commercial products. LC-MS-MS analysis of Ginkgo extracts revealed, in addition to rutin, the possible presence of other quercetin analogues, quercetin-3-Orhamnoside-7-O-glucoside or quercetin-3-O-glucoside-7-O-rhamnoside, previously unreported in Ginkgo biloba leaf extracts or dosage forms. In terms of evaluating the most suitable analytical method for QC, CE shows exceptional potential in the future analysis of Ginkgo biloba dosage forms while HPLC-PDA and HPLC-ELSD are currently the most affordable and practical instruments for the routine analysis of the flavonols and terpenoids, respectively. LC-MS-MS proved to be pivotal for the accurate identification and quantification of the flavonols due to interference by other flavonoid compounds with similar retention times and UV spectra to the peaks of interest. All quantitative and qualitative results revealed large discrepancies in the marker content between the products regardless of which batch was analysed and product labels disclosed little relevant information. Although currently not required by most regulatory agencies, some of the usual quality criteria applied to orthodox medicines was evaluated. In particular, dissolution analysis, disintegration, tablet hardness and weight uniformity were assessed and revealed similar inconsistencies. This thesis emphasises that implementation of effective QC criteria is long overdue and is essential to ensure consistent product QSE of commercially available Ginkgo biloba solid oral dosage forms.
- Full Text:
- Authors: Dubber, Mary-Jean
- Date: 2006
- Subjects: Pharmaceutical chemistry -- Quality control , Ginkgo , Micelles , Capillary electrophoresis , High performance liquid chromatography , Drugs -- Dosage forms , Flavonoids , Terpenes , Herbals
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3757 , http://hdl.handle.net/10962/d1003235
- Description: Natural products are complex mixtures of compounds with therapeutic effects which are often reported to be due to the synergistic action of multiple and sometimes unknown components. Consequently, standardization of these products is complex and a lack of effective quality control (QC) criteria in most countries has led to marketing of commercial products with questionable quality, safety and efficacy (QSE). The aim of this study was therefore to develop qualitative and quantitative analytical methods for use in the QC of Ginkgo biloba solid oral dosage forms. Initially, a micellar electrokinetic chromatography (MEKC) method was developed for the identification of the flavonol glycosides, rutin and quercitrin as well as 3 flavonol aglycones, quercetin, kaempferol and isorhamnetin in crude extracts of 4 Ginkgo biloba solid oral dosage forms using ultraviolet (UV) detection. A reversed-flow cyclodextrin-modified MEKC method was subsequently developed for the simultaneous determination of the aforementioned flavonols as well as ginkgolide A, B, C, J and bilobalide (all positive markers) in Ginkgo commercial products. A non-aqueous capillary electrophoresis (CE) method was also developed for fingerprinting the presence of ginkgolic acids (negative markers) in Ginkgo biloba leaf extracts, which are purported to be associated with toxic properties. This method was also applied to 2 Ginkgo biloba commercial products. Since the flavonols have strong UV absorbing chromophores, a reversed phase high-performance liquid chromatographic (RP-HPLC) method was developed and validated using photo-diode-array (PDA) detection which was then successfully applied to fingerprint commercially available Ginkgo biloba solid oral dosage forms as well as quantify the relevant flavonol markers present in these extracts. Sample preparation was simple, rapid and cost efficient with minimal clean-up and the employment of a minibore column which requires low mobile phase flow rates contributed to the economy of the method. Unlike the conventional QC approach, samples were not hydrolyzed and direct determination of 2 intact flavonol glycosides, together with the usual aglycone markers was facilitated which provided maximal content information for fingerprint comparisons. On the other hand, terpene trilactones possess poor chromophores and an alternative detection method to UV was required in order to obtain suitable sensitivity. RP-HPLC with evaporative light scattering detection (ELSD) was selected for quantification of these non-volatile constituents in Ginkgo dosage forms and this method was deemed suitable for the routine QC analysis of these positive markers in commercial products. Since approximately 33 flavonoids have been identified in Ginkgo biloba leaf extracts, baseline separation using UV/PDA detection normally requires complex gradient programs and long analysis times. In addition, unequivocal identification of the flavonoids with similar UV spectra and elution times cannot be guaranteed. A liquid chromatographic tandem mass spectrometric (LC-MS-MS) method was therefore developed and validated in order to ensure accurate quantification of the selected flavonol marker compounds in Ginkgo commercial products. LC-MS-MS analysis of Ginkgo extracts revealed, in addition to rutin, the possible presence of other quercetin analogues, quercetin-3-Orhamnoside-7-O-glucoside or quercetin-3-O-glucoside-7-O-rhamnoside, previously unreported in Ginkgo biloba leaf extracts or dosage forms. In terms of evaluating the most suitable analytical method for QC, CE shows exceptional potential in the future analysis of Ginkgo biloba dosage forms while HPLC-PDA and HPLC-ELSD are currently the most affordable and practical instruments for the routine analysis of the flavonols and terpenoids, respectively. LC-MS-MS proved to be pivotal for the accurate identification and quantification of the flavonols due to interference by other flavonoid compounds with similar retention times and UV spectra to the peaks of interest. All quantitative and qualitative results revealed large discrepancies in the marker content between the products regardless of which batch was analysed and product labels disclosed little relevant information. Although currently not required by most regulatory agencies, some of the usual quality criteria applied to orthodox medicines was evaluated. In particular, dissolution analysis, disintegration, tablet hardness and weight uniformity were assessed and revealed similar inconsistencies. This thesis emphasises that implementation of effective QC criteria is long overdue and is essential to ensure consistent product QSE of commercially available Ginkgo biloba solid oral dosage forms.
- Full Text:
Application of dermal microdialysis and tape stripping methods to determine the bioavailability and/or bioequivalence of topical ketoprofen formulations
- Tettey-Amlalo, Ralph Nii Okai
- Authors: Tettey-Amlalo, Ralph Nii Okai
- Date: 2008
- Subjects: Drugs -- Therapeutic equivalency , Transdermal medication , High performance liquid chromatography , Nonsteroidal anti-inflammatory agents -- Bioavailability , Nonsteroidal anti-inflammatory agents -- Effectiveness , Nonsteroidal anti-inflammatory agents -- Testing , Nonsteroidal anti-inflammatory agents -- Side effects
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3796 , http://hdl.handle.net/10962/d1003274
- Description: The widespread acceptance of topical formulations intended for local and/or regional activity has prompted renewed interest in developing a model to determine the bioavailability of drugs in order to establish bioequivalence as a means of evaluating formulation performance of multisource products and also for use during formulation development. Current in vivo techniques such as blister suction and skin biopsy amongst others used to determine the bioavailability and/or bioequivalence of topical formulations are either too invasive to generate appropriate concentration-time profiles or require large numbers of study subjects thereby making the study expensive and time-consuming. Moreover, there are currently no sampling techniques that can demonstrate dermal bioavailability and/or bioequivalence of topical formulations intended for local and/or regional activity. Dermal microdialysis is a relatively new application of microdialysis that permits continuous monitoring of endogenous and/or exogenous solutes in the interstitial fluid. The technique is involves the implantation of semi-permeable membranes which are perfused with an isotonic medium at extremely slow flow rates and collection of microlitre sample volumes containing diffused drugs. Tape stripping, a relatively older technique, has been extensively used in comparative bioavailability studies of various topical formulations. However, due to shortcomings arising from reproducibility and inter-subject variation amongst others, the published FDA guidance outlining the initial protocol was subsequently withdrawn. The incorporation of transepidermal water loss with tape stripping has garnered renewed interest and has been used for the determination of drug bioavailability from a number of topical formulations. Hence the primary objective of this research is to develop and evaluate microdialysis sampling and tape stripping techniques, including the incorporation of the determination of transepidermal water loss, to assess the dermal bioavailability of ketoprofen from topical gel formulations and to develop models for bioequivalence assessment. A rapid UPLC-MS/MS method with requisite sensitivity for the analysis of samples generated from dermal microdialysis was developed and validated which accommodated the microlitre sample volumes collected. An HPLC-UV method was developed and validated for the analysis of samples generated from the in vitro microdialysis and in vivo tape stripping studies. The work presented herein contributes to a growing body of scientific knowledge seeking to develop a model for the determination of bioequivalence of pharmaceutically equivalent topical formulations intended for local and/or regional activity in human subjects.
- Full Text:
- Authors: Tettey-Amlalo, Ralph Nii Okai
- Date: 2008
- Subjects: Drugs -- Therapeutic equivalency , Transdermal medication , High performance liquid chromatography , Nonsteroidal anti-inflammatory agents -- Bioavailability , Nonsteroidal anti-inflammatory agents -- Effectiveness , Nonsteroidal anti-inflammatory agents -- Testing , Nonsteroidal anti-inflammatory agents -- Side effects
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3796 , http://hdl.handle.net/10962/d1003274
- Description: The widespread acceptance of topical formulations intended for local and/or regional activity has prompted renewed interest in developing a model to determine the bioavailability of drugs in order to establish bioequivalence as a means of evaluating formulation performance of multisource products and also for use during formulation development. Current in vivo techniques such as blister suction and skin biopsy amongst others used to determine the bioavailability and/or bioequivalence of topical formulations are either too invasive to generate appropriate concentration-time profiles or require large numbers of study subjects thereby making the study expensive and time-consuming. Moreover, there are currently no sampling techniques that can demonstrate dermal bioavailability and/or bioequivalence of topical formulations intended for local and/or regional activity. Dermal microdialysis is a relatively new application of microdialysis that permits continuous monitoring of endogenous and/or exogenous solutes in the interstitial fluid. The technique is involves the implantation of semi-permeable membranes which are perfused with an isotonic medium at extremely slow flow rates and collection of microlitre sample volumes containing diffused drugs. Tape stripping, a relatively older technique, has been extensively used in comparative bioavailability studies of various topical formulations. However, due to shortcomings arising from reproducibility and inter-subject variation amongst others, the published FDA guidance outlining the initial protocol was subsequently withdrawn. The incorporation of transepidermal water loss with tape stripping has garnered renewed interest and has been used for the determination of drug bioavailability from a number of topical formulations. Hence the primary objective of this research is to develop and evaluate microdialysis sampling and tape stripping techniques, including the incorporation of the determination of transepidermal water loss, to assess the dermal bioavailability of ketoprofen from topical gel formulations and to develop models for bioequivalence assessment. A rapid UPLC-MS/MS method with requisite sensitivity for the analysis of samples generated from dermal microdialysis was developed and validated which accommodated the microlitre sample volumes collected. An HPLC-UV method was developed and validated for the analysis of samples generated from the in vitro microdialysis and in vivo tape stripping studies. The work presented herein contributes to a growing body of scientific knowledge seeking to develop a model for the determination of bioequivalence of pharmaceutically equivalent topical formulations intended for local and/or regional activity in human subjects.
- Full Text:
Biopharmaceutics of phenylpropanolamine
- Authors: Dowse, Roslind
- Date: 1984
- Subjects: Biopharmaceutics , Pharmacokinetics , Phenylpropanolamine , Pharmacology , High performance liquid chromatography
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3818 , http://hdl.handle.net/10962/d1004915
- Description: Phenylpropanolamine (PPA), a sympathomimetic amine, has been widely used over the past 40 years as a decongestant and, in much larger dosages, as an appetite suppressant. Considerable interest has recently been shown in this drug due to its increasing popularity as an over-the-counter anorectic agent. Much controversy exists concerning the unfavourable side-effects of PPA resulting from the higher doses required for appetite suppression and the potential of this drug for abuse. A literature search revealed a paucity of information concerning the determination of PPA in biological fluids and, most noticeably, on the pharmacokinetics of this drug. An original method for determining PPA in serum and urine using high performance liquid chromatography (HPLC) which has increased sensitivity over other published HPLC methods is presented here. The simplicity of the extraction from biological fluids and subsequent determination by HPLC, enables concentrations of PPA to be monitored after a single dose of the drug. This method is therefore readily applicable to bioavailability and pharmacokinetic studies. The dissolution profiles of 4 sustained-release formulations of PPA were determined in a modified USP rotating paddle apparatus and the samples analysed using HPLC. A mathematical equation was applied to these data which are expressed in terms of dissolution parameters. Oral test dosage forms and solutions of PPA were investigated in bioavailability trials using the developed HPLC method to analyse the urine and serum samples. Linear one body compartment kinetics were assumed and the WagnerNelson method used to transform in vivo serum data to absorption plots which were then fitted to the well known Weibull equation. In order to more appropriately characterize the kinetic processes of absorption, distribution and elimination, a more complex model was utilized which involved numerical integration of a series of differential equations. The data were fitted to these models using nonlinear regression techniques. The pharmacokinetics of PPA are shown to exhibit some evidence of nonlinearity. The absorption of the drug appears to be di scontinuous and PPA seems to favour a two body compartment model.
- Full Text:
- Authors: Dowse, Roslind
- Date: 1984
- Subjects: Biopharmaceutics , Pharmacokinetics , Phenylpropanolamine , Pharmacology , High performance liquid chromatography
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3818 , http://hdl.handle.net/10962/d1004915
- Description: Phenylpropanolamine (PPA), a sympathomimetic amine, has been widely used over the past 40 years as a decongestant and, in much larger dosages, as an appetite suppressant. Considerable interest has recently been shown in this drug due to its increasing popularity as an over-the-counter anorectic agent. Much controversy exists concerning the unfavourable side-effects of PPA resulting from the higher doses required for appetite suppression and the potential of this drug for abuse. A literature search revealed a paucity of information concerning the determination of PPA in biological fluids and, most noticeably, on the pharmacokinetics of this drug. An original method for determining PPA in serum and urine using high performance liquid chromatography (HPLC) which has increased sensitivity over other published HPLC methods is presented here. The simplicity of the extraction from biological fluids and subsequent determination by HPLC, enables concentrations of PPA to be monitored after a single dose of the drug. This method is therefore readily applicable to bioavailability and pharmacokinetic studies. The dissolution profiles of 4 sustained-release formulations of PPA were determined in a modified USP rotating paddle apparatus and the samples analysed using HPLC. A mathematical equation was applied to these data which are expressed in terms of dissolution parameters. Oral test dosage forms and solutions of PPA were investigated in bioavailability trials using the developed HPLC method to analyse the urine and serum samples. Linear one body compartment kinetics were assumed and the WagnerNelson method used to transform in vivo serum data to absorption plots which were then fitted to the well known Weibull equation. In order to more appropriately characterize the kinetic processes of absorption, distribution and elimination, a more complex model was utilized which involved numerical integration of a series of differential equations. The data were fitted to these models using nonlinear regression techniques. The pharmacokinetics of PPA are shown to exhibit some evidence of nonlinearity. The absorption of the drug appears to be di scontinuous and PPA seems to favour a two body compartment model.
- Full Text:
HPLC analysis and pharmacokinetics of cyclizine
- Authors: Walker, Roderick Bryan
- Date: 1995
- Subjects: High performance liquid chromatography , Piperazine , Pharmacokinetics
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3801 , http://hdl.handle.net/10962/d1003279
- Description: The investigations detailed in this dissertation have been conducted to address the paucity of pharmacokinetic information, in published literature, pertaining to cyclizine. The areas of investigation have included the selective quantitation of both cyclizine and its demethylated metabolite, norcyclizine in serum and urine, assessment of stability of both compounds in stored biological samples, dosage form analysis, dissolution rate testing of tablets, and bioavailability and pharmacokinetics following administration of an intravenous solution, and tablets to humans. High-performance liquid chromatography (HPLC) was used as the main analytical technique throughout these studies. An original HPLC method employing ultraviolet detection with a limit of quantitation of 5μg/ℓ was developed for the determination of cyclizine in serum and both cyclizine and norcyclizine in urine, Solid-phase extraction using extraction columns packed with reversed-phase C18 material, and followed by a simple phase-separation step proved successful for the accurate and precise isolation of the compounds. The validated method was applied to the analysis of serum and urine samples from a pilot study in which a single volunteer was administered 50mg of cyclizine hydrochloride. Several samples collected during the pilot study revealed the presence of both drug and metabolite in concentrations below the limit of detection. In order to improve the selectivity and sensitivity of the analytical method an HPLC method with electrochemical detection operating in the "oxidative-screen" mode was developed. The solid-phase extraction procedure was modified slightly and the method found to be precise, accurate, selective and highly sensitive with a limit of quantitation of Iμg/g/l for both cyclizine and norcyclizine in both serum and urine. This method was applied to the determination of both compounds after intravenous and oral administration of cyclizine to humans. HPLC with electrochemical detection was used for the analysis of samples collected during dissolution studies on the batch of tablets used for pharmacokinetic studies. In addition, this method was used to assess content uniformity of the tablets and of samples from the batch of intravenous ampoules of cyclizine lactate. Dissolution studies showed that all tablets tested passed the compendial specifications for cyclizine. Content uniformity assessment revealed that within-batch uniformity existed for both the tablets and ampoules and, therefore, variations in pharmacokinetic parameters for the drug would more than likely be as a result of inter- and intra-individual variability within the subject population. Pharmacokinetic information for cyclizine was obtained following administration of an intravenous bolus dose of cyclizine lactate as a solution, oral administration of cyclizine hydrochloride as a single dose of 50mg and as fixed multiple doses of 50mg every 8 hours for five days. Further information was acquired following administration of single doses of 100mg and 150mg cyclizine hydrochloride. Data collected from these studies were evaluated using both compartmental and non-compartmental techniques. Cyclizine was rapidly absorbed following oral administration with mean kₐ = 1.54 hr⁻¹ and was found to have an absolute bioavailability (F) of 0.47. The presence of norcyclizine in serum following oral and not intravenous dosing suggests cyclizine is susceptible to "first-pass" metabolism in either the gut wall or the I iver. Mean ClTOT determined following the intravenous dose was 0.865 ℓ/hr/kg. The mean ClTOT of 0.823 ℓ/hr/kg calculated following oral dosing, using a unique value of F for each subject compared favourahly with that obtained following intravenous dosing. Renal clearance of cyclizine is negligihle indicating that non-renal routes of elimination account for the majority of removal of cyclizine form the body. Cyclizine is extensively distributed and the mean Vz following an intravenous dose was 16.70 ℓ/kg. This value is lower than that calculated from all oral studies from which the mean Vz was determined to be 25.74 ℓ/kg. Cyclizine is eliminated slowly with a mean elimination t½ = 20.11 hours. Cyclizine dose not appear to follow dosedependent kinetics and therefore, inability to predict steady state levels are more than likely due to accumulation as a result of frequent dosing rather than saturation of elimination mechanisms. Modelling of intravenous data to one-compartment (lBCM), two-compartment (2BCM) and threecompartment models indicated that the pharmacokinetics of cyclizine can be adequately described by a 3BCM. The drug is rapidly distributed into a "shallow" peripheral compartment (α = 9.44 hr⁻¹ , and k₂₁ = 2.09 hr⁻¹ ), and slowly distributed to the "deep" peripheral compartment (β = 0.451 hr⁻¹ and k₃₁ = 0.120 hr⁻¹ ). Modelling of all oral data indicated that a 2BCM best described the pharmacokinetics of the drug, however, distribution to the peripheral compartment is not as rapid as to the "shallow" peripheral compartment following the intravenous dose. Mean distribution parameters were α = 0.64 hr⁻¹1 and, k₂₁ = 0.39 hr⁻¹. Mean CITOT following intravenous dosing of 0.70 ℓ/hr/kg was similar to the mean CIToT of 0.73 ℓ/hr/kg determined after oral dosing. The mean distribution volume at steady state determined following intravenous dosing (17.78 ℓ/kg) was lower than that obtained from the oral studies (25.52 ℓ/kg). The mean terminal elimination half-lives calculated for cyclizine following fitting of intravenous and oral data was 25.09 hours. In general, mean pharmacokinetic parameters calculated following titting of data to a 2BCM after oral administration correlate closely with those calculated using non-compartmental techniques. However, the pharmacokinetics following intravenous dosing are better described by a 3BCM and a close correlation between parameters estimated using noncompartmental techniques and compartmental techniques is evident when a 3BCM model is used.
- Full Text:
- Authors: Walker, Roderick Bryan
- Date: 1995
- Subjects: High performance liquid chromatography , Piperazine , Pharmacokinetics
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3801 , http://hdl.handle.net/10962/d1003279
- Description: The investigations detailed in this dissertation have been conducted to address the paucity of pharmacokinetic information, in published literature, pertaining to cyclizine. The areas of investigation have included the selective quantitation of both cyclizine and its demethylated metabolite, norcyclizine in serum and urine, assessment of stability of both compounds in stored biological samples, dosage form analysis, dissolution rate testing of tablets, and bioavailability and pharmacokinetics following administration of an intravenous solution, and tablets to humans. High-performance liquid chromatography (HPLC) was used as the main analytical technique throughout these studies. An original HPLC method employing ultraviolet detection with a limit of quantitation of 5μg/ℓ was developed for the determination of cyclizine in serum and both cyclizine and norcyclizine in urine, Solid-phase extraction using extraction columns packed with reversed-phase C18 material, and followed by a simple phase-separation step proved successful for the accurate and precise isolation of the compounds. The validated method was applied to the analysis of serum and urine samples from a pilot study in which a single volunteer was administered 50mg of cyclizine hydrochloride. Several samples collected during the pilot study revealed the presence of both drug and metabolite in concentrations below the limit of detection. In order to improve the selectivity and sensitivity of the analytical method an HPLC method with electrochemical detection operating in the "oxidative-screen" mode was developed. The solid-phase extraction procedure was modified slightly and the method found to be precise, accurate, selective and highly sensitive with a limit of quantitation of Iμg/g/l for both cyclizine and norcyclizine in both serum and urine. This method was applied to the determination of both compounds after intravenous and oral administration of cyclizine to humans. HPLC with electrochemical detection was used for the analysis of samples collected during dissolution studies on the batch of tablets used for pharmacokinetic studies. In addition, this method was used to assess content uniformity of the tablets and of samples from the batch of intravenous ampoules of cyclizine lactate. Dissolution studies showed that all tablets tested passed the compendial specifications for cyclizine. Content uniformity assessment revealed that within-batch uniformity existed for both the tablets and ampoules and, therefore, variations in pharmacokinetic parameters for the drug would more than likely be as a result of inter- and intra-individual variability within the subject population. Pharmacokinetic information for cyclizine was obtained following administration of an intravenous bolus dose of cyclizine lactate as a solution, oral administration of cyclizine hydrochloride as a single dose of 50mg and as fixed multiple doses of 50mg every 8 hours for five days. Further information was acquired following administration of single doses of 100mg and 150mg cyclizine hydrochloride. Data collected from these studies were evaluated using both compartmental and non-compartmental techniques. Cyclizine was rapidly absorbed following oral administration with mean kₐ = 1.54 hr⁻¹ and was found to have an absolute bioavailability (F) of 0.47. The presence of norcyclizine in serum following oral and not intravenous dosing suggests cyclizine is susceptible to "first-pass" metabolism in either the gut wall or the I iver. Mean ClTOT determined following the intravenous dose was 0.865 ℓ/hr/kg. The mean ClTOT of 0.823 ℓ/hr/kg calculated following oral dosing, using a unique value of F for each subject compared favourahly with that obtained following intravenous dosing. Renal clearance of cyclizine is negligihle indicating that non-renal routes of elimination account for the majority of removal of cyclizine form the body. Cyclizine is extensively distributed and the mean Vz following an intravenous dose was 16.70 ℓ/kg. This value is lower than that calculated from all oral studies from which the mean Vz was determined to be 25.74 ℓ/kg. Cyclizine is eliminated slowly with a mean elimination t½ = 20.11 hours. Cyclizine dose not appear to follow dosedependent kinetics and therefore, inability to predict steady state levels are more than likely due to accumulation as a result of frequent dosing rather than saturation of elimination mechanisms. Modelling of intravenous data to one-compartment (lBCM), two-compartment (2BCM) and threecompartment models indicated that the pharmacokinetics of cyclizine can be adequately described by a 3BCM. The drug is rapidly distributed into a "shallow" peripheral compartment (α = 9.44 hr⁻¹ , and k₂₁ = 2.09 hr⁻¹ ), and slowly distributed to the "deep" peripheral compartment (β = 0.451 hr⁻¹ and k₃₁ = 0.120 hr⁻¹ ). Modelling of all oral data indicated that a 2BCM best described the pharmacokinetics of the drug, however, distribution to the peripheral compartment is not as rapid as to the "shallow" peripheral compartment following the intravenous dose. Mean distribution parameters were α = 0.64 hr⁻¹1 and, k₂₁ = 0.39 hr⁻¹. Mean CITOT following intravenous dosing of 0.70 ℓ/hr/kg was similar to the mean CIToT of 0.73 ℓ/hr/kg determined after oral dosing. The mean distribution volume at steady state determined following intravenous dosing (17.78 ℓ/kg) was lower than that obtained from the oral studies (25.52 ℓ/kg). The mean terminal elimination half-lives calculated for cyclizine following fitting of intravenous and oral data was 25.09 hours. In general, mean pharmacokinetic parameters calculated following titting of data to a 2BCM after oral administration correlate closely with those calculated using non-compartmental techniques. However, the pharmacokinetics following intravenous dosing are better described by a 3BCM and a close correlation between parameters estimated using noncompartmental techniques and compartmental techniques is evident when a 3BCM model is used.
- Full Text:
The quantification of fucoxanthin from selected South African marine brown algae (Phaeophyta) using HPLC-UV/Vis
- Authors: Mubaiwa, Byron Tawanda
- Date: 2015
- Subjects: Marine algae , Brown algae , High performance liquid chromatography , Functional foods , Xanthophylls , Carotenoids , Extraction (Chemistry)
- Language: English
- Type: Thesis , Masters , MPharm
- Identifier: vital:3868 , http://hdl.handle.net/10962/d1017879
- Description: Marine brown algae (seaweeds) are a rich source of fucoxanthin, a xanthophyll carotenoid that is naturally, an accessory pigment in the process of photosynthesis of sea vegetation such as Sargassum incisifolium. Fucoxanthin has been exploited by nutraceutical companies for its anti-obesity effects that has resulted in an increase of seaweed slimming preparations such as FucoThin™. The field is getting widespread consumer attention as interest in fucoxanthin has also transcended to its widespread biological potential which include cytotoxicity, anti-diabetic, anti-oxidant, anti-inflammatory and anti-plasmodium effects. We therefore wanted to identify a reliable source(s) of fucoxanthin from diverse samples of South African marine brown algae in order to explore our medicinal chemistry interests around the cytotoxicity and anti-malarial potential of fucoxanthin. A known source, Sargassum incisifolium, was used to isolate (maceration in CH₂Cl₂/MeOH at 35 °C followed by a hexane/EtOAc step gradient silica column of the crude extract and reversed phase semi-prep HPLC) and characterize (1D and 2D NMR) fucoxanthin (reference standard) in order to develop an analytical method for its determination in selected diverse brown algae commonly found in South Africa. The HPLC [Column: Phenomenex® Synergi™ (250 x 3.0 mm i.d); Mobile phase: ACN/H2O (95:5)] method developed for this analysis was validated according the guidelines set by the International Conference on Harmonization (ICH). Fifteen species were then assessed for fucoxanthin content (μg/g of dried weight) using the developed method. Stability studies on fucoxanthin were also carried out to assess photo- and pH degradation of fucoxanthin. Zonaria subarticulata (KOS130226-18) from Kenton-On-Sea beach and Sargassum incisifolium (PA130427-1) from Port Alfred beach were found to be the highest producers of fucoxanthin with 0.50 mg/g and 0.45 mg/g dried weight respectively. Fucoxanthin was found to be both photo-labile and sensitive to both acidic and basic pH environments. However, the pigment was more photostable in pure as opposed to extract form and also showed to be more stable at pH 10.0. Our findings show that Z. subarticulata and S. incisifolium could be reliable sources of fucoxanthin and can be considered as the algae to use in optimized extraction procedures in further studies. Also, when working with fucoxanthin, it is important to protect it from light. Any consideration of taking fucoxanthin preparation orally (as a nutraceutical) should consider protecting the active from the harsh conditions of the gastrointestinal tract. Any upscale production of fucoxanthin from seaweed should consider variations such as geographical, seasonal, lifecycle stage, etc. of identified algae as these may be important factors in obtaining effective concentrations of fucoxanthin.
- Full Text:
- Authors: Mubaiwa, Byron Tawanda
- Date: 2015
- Subjects: Marine algae , Brown algae , High performance liquid chromatography , Functional foods , Xanthophylls , Carotenoids , Extraction (Chemistry)
- Language: English
- Type: Thesis , Masters , MPharm
- Identifier: vital:3868 , http://hdl.handle.net/10962/d1017879
- Description: Marine brown algae (seaweeds) are a rich source of fucoxanthin, a xanthophyll carotenoid that is naturally, an accessory pigment in the process of photosynthesis of sea vegetation such as Sargassum incisifolium. Fucoxanthin has been exploited by nutraceutical companies for its anti-obesity effects that has resulted in an increase of seaweed slimming preparations such as FucoThin™. The field is getting widespread consumer attention as interest in fucoxanthin has also transcended to its widespread biological potential which include cytotoxicity, anti-diabetic, anti-oxidant, anti-inflammatory and anti-plasmodium effects. We therefore wanted to identify a reliable source(s) of fucoxanthin from diverse samples of South African marine brown algae in order to explore our medicinal chemistry interests around the cytotoxicity and anti-malarial potential of fucoxanthin. A known source, Sargassum incisifolium, was used to isolate (maceration in CH₂Cl₂/MeOH at 35 °C followed by a hexane/EtOAc step gradient silica column of the crude extract and reversed phase semi-prep HPLC) and characterize (1D and 2D NMR) fucoxanthin (reference standard) in order to develop an analytical method for its determination in selected diverse brown algae commonly found in South Africa. The HPLC [Column: Phenomenex® Synergi™ (250 x 3.0 mm i.d); Mobile phase: ACN/H2O (95:5)] method developed for this analysis was validated according the guidelines set by the International Conference on Harmonization (ICH). Fifteen species were then assessed for fucoxanthin content (μg/g of dried weight) using the developed method. Stability studies on fucoxanthin were also carried out to assess photo- and pH degradation of fucoxanthin. Zonaria subarticulata (KOS130226-18) from Kenton-On-Sea beach and Sargassum incisifolium (PA130427-1) from Port Alfred beach were found to be the highest producers of fucoxanthin with 0.50 mg/g and 0.45 mg/g dried weight respectively. Fucoxanthin was found to be both photo-labile and sensitive to both acidic and basic pH environments. However, the pigment was more photostable in pure as opposed to extract form and also showed to be more stable at pH 10.0. Our findings show that Z. subarticulata and S. incisifolium could be reliable sources of fucoxanthin and can be considered as the algae to use in optimized extraction procedures in further studies. Also, when working with fucoxanthin, it is important to protect it from light. Any consideration of taking fucoxanthin preparation orally (as a nutraceutical) should consider protecting the active from the harsh conditions of the gastrointestinal tract. Any upscale production of fucoxanthin from seaweed should consider variations such as geographical, seasonal, lifecycle stage, etc. of identified algae as these may be important factors in obtaining effective concentrations of fucoxanthin.
- Full Text:
Application of high-performance liquid chromatography for the analysis and pharmocokinetics of mephenoxalone
- Authors: Van der Westhuizen, Fiona
- Date: 1988 , 2013-03-06
- Subjects: High performance liquid chromatography , Central nervous system depressants
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3810 , http://hdl.handle.net/10962/d1004385 , High performance liquid chromatography , Central nervous system depressants
- Description: Mephenoxalone is a mild central nervous system depressant with activity resembling that of meprobamate. Since its introduction in 1961 mephenoxalone has been used as an anxiolytic and as a muscle relaxant, although the latter effect is weak. Preliminary studies on the absorption and disposition of mephenoxalone have been conducted in beagle dogs but no pharmacokinetic data from human studies have been reported, except for a single study in which the biotransformation products present in human urine were identified. Methods presently available for the determination of mephenoxalone in biological fluids lack the sensitivity, specificity and precision required for detailed pharmacokinetic studies. In this study, a rapid, sensitive, precise reverse-phase high-performance liquid chromatographic method with ultraviolet detection at 200nm was employed for the determination of mephenoxalone in biological fluids. Serum and urine samples were prepared for chromatographic analysis using simple liquid-liquid extraction techniques. The application of the assay to pharmacokinetic studies in humans is presented. After administration of a single oral dose of 400mg mephenoxalone dispersed in 150ml water to six young, healthy volunteers, the compound was rapidly absorbed with the peak concentration of 8μg/ml occurring after about 1 hour. The elimination half-life was approximately 3 hours. The drug was extensively metabolized with only about 1 percent of the administered dose being excreted unchanged in the urine after 24 hours. The bioavailability of a newly developed mephenoxalone-containing tablet was also investigated. The drug was absorbed more rapidly from the tablet than from the dispersed dose. This was attributed to a shorter in vivo dissolution time on the basis of in vitro tests, but this effect is not expected to be clinically significant. In addition, two human urinary metabolites of mephenoxalone were identified as unconjugated hydroxylated derivatives using thermospray HPLC-mass spectrometry. The plasma protein-binding properties of mephenoxalone were also investigated.
- Full Text:
- Authors: Van der Westhuizen, Fiona
- Date: 1988 , 2013-03-06
- Subjects: High performance liquid chromatography , Central nervous system depressants
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3810 , http://hdl.handle.net/10962/d1004385 , High performance liquid chromatography , Central nervous system depressants
- Description: Mephenoxalone is a mild central nervous system depressant with activity resembling that of meprobamate. Since its introduction in 1961 mephenoxalone has been used as an anxiolytic and as a muscle relaxant, although the latter effect is weak. Preliminary studies on the absorption and disposition of mephenoxalone have been conducted in beagle dogs but no pharmacokinetic data from human studies have been reported, except for a single study in which the biotransformation products present in human urine were identified. Methods presently available for the determination of mephenoxalone in biological fluids lack the sensitivity, specificity and precision required for detailed pharmacokinetic studies. In this study, a rapid, sensitive, precise reverse-phase high-performance liquid chromatographic method with ultraviolet detection at 200nm was employed for the determination of mephenoxalone in biological fluids. Serum and urine samples were prepared for chromatographic analysis using simple liquid-liquid extraction techniques. The application of the assay to pharmacokinetic studies in humans is presented. After administration of a single oral dose of 400mg mephenoxalone dispersed in 150ml water to six young, healthy volunteers, the compound was rapidly absorbed with the peak concentration of 8μg/ml occurring after about 1 hour. The elimination half-life was approximately 3 hours. The drug was extensively metabolized with only about 1 percent of the administered dose being excreted unchanged in the urine after 24 hours. The bioavailability of a newly developed mephenoxalone-containing tablet was also investigated. The drug was absorbed more rapidly from the tablet than from the dispersed dose. This was attributed to a shorter in vivo dissolution time on the basis of in vitro tests, but this effect is not expected to be clinically significant. In addition, two human urinary metabolites of mephenoxalone were identified as unconjugated hydroxylated derivatives using thermospray HPLC-mass spectrometry. The plasma protein-binding properties of mephenoxalone were also investigated.
- Full Text:
Preparation, characterization and optimization of carbamazepine based pellets prepared by extrusion-spheronization technique
- Authors: Makoni, Kudzai Gabriella
- Date: 2020-04
- Subjects: Carbamazepine , Pharmacokinetics , Anticonvulsants , Drugs -- Controlled release , Drugs -- Dosage forms , Tablets (Medicine) , Drugs -- Administration , High performance liquid chromatography , International Conference on Harmonisation , Experimental design
- Language: English
- Type: Thesis , Masters , MSc (Pharmacy)
- Identifier: http://hdl.handle.net/10962/140478 , vital:37893
- Description: Carbamazepine (CBZ) is an oral antiepileptic drug (AED) that is prescribed as a first-line treatment for partial seizures. CBZ is a class II compound according to the Biopharmaceutical Classification System (BCS), hence it exhibits low aqueous solubility and high gastrointestinal tract (GIT) permeability...
- Full Text:
- Authors: Makoni, Kudzai Gabriella
- Date: 2020-04
- Subjects: Carbamazepine , Pharmacokinetics , Anticonvulsants , Drugs -- Controlled release , Drugs -- Dosage forms , Tablets (Medicine) , Drugs -- Administration , High performance liquid chromatography , International Conference on Harmonisation , Experimental design
- Language: English
- Type: Thesis , Masters , MSc (Pharmacy)
- Identifier: http://hdl.handle.net/10962/140478 , vital:37893
- Description: Carbamazepine (CBZ) is an oral antiepileptic drug (AED) that is prescribed as a first-line treatment for partial seizures. CBZ is a class II compound according to the Biopharmaceutical Classification System (BCS), hence it exhibits low aqueous solubility and high gastrointestinal tract (GIT) permeability...
- Full Text:
- «
- ‹
- 1
- ›
- »