Forecasting solar cycle 24 using neural networks
- Authors: Uwamahoro, Jean
- Date: 2009
- Subjects: Solar cycle , Neural networks (Computer science) , Ionosphere , Ionospheric electron density , Ionospheric forecasting , Solar thermal energy
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5468 , http://hdl.handle.net/10962/d1005253 , Solar cycle , Neural networks (Computer science) , Ionosphere , Ionospheric electron density , Ionospheric forecasting , Solar thermal energy
- Description: The ability to predict the future behavior of solar activity has become of extreme importance due to its effect on the near-Earth environment. Predictions of both the amplitude and timing of the next solar cycle will assist in estimating the various consequences of Space Weather. Several prediction techniques have been applied and have achieved varying degrees of success in the domain of solar activity prediction. These techniques include, for example, neural networks and geomagnetic precursor methods. In this thesis, various neural network based models were developed and the model considered to be optimum was used to estimate the shape and timing of solar cycle 24. Given the recent success of the geomagnetic precusrsor methods, geomagnetic activity as measured by the aa index is considered among the main inputs to the neural network model. The neural network model developed is also provided with the time input parameters defining the year and the month of a particular solar cycle, in order to characterise the temporal behaviour of sunspot number as observed during the last 10 solar cycles. The structure of input-output patterns to the neural network is constructed in such a way that the network learns the relationship between the aa index values of a particular cycle, and the sunspot number values of the following cycle. Assuming January 2008 as the minimum preceding solar cycle 24, the shape and amplitude of solar cycle 24 is estimated in terms of monthly mean and smoothed monthly sunspot number. This new prediction model estimates an average solar cycle 24, with the maximum occurring around June 2012 [± 11 months], with a smoothed monthly maximum sunspot number of 121 ± 9.
- Full Text:
- Authors: Uwamahoro, Jean
- Date: 2009
- Subjects: Solar cycle , Neural networks (Computer science) , Ionosphere , Ionospheric electron density , Ionospheric forecasting , Solar thermal energy
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5468 , http://hdl.handle.net/10962/d1005253 , Solar cycle , Neural networks (Computer science) , Ionosphere , Ionospheric electron density , Ionospheric forecasting , Solar thermal energy
- Description: The ability to predict the future behavior of solar activity has become of extreme importance due to its effect on the near-Earth environment. Predictions of both the amplitude and timing of the next solar cycle will assist in estimating the various consequences of Space Weather. Several prediction techniques have been applied and have achieved varying degrees of success in the domain of solar activity prediction. These techniques include, for example, neural networks and geomagnetic precursor methods. In this thesis, various neural network based models were developed and the model considered to be optimum was used to estimate the shape and timing of solar cycle 24. Given the recent success of the geomagnetic precusrsor methods, geomagnetic activity as measured by the aa index is considered among the main inputs to the neural network model. The neural network model developed is also provided with the time input parameters defining the year and the month of a particular solar cycle, in order to characterise the temporal behaviour of sunspot number as observed during the last 10 solar cycles. The structure of input-output patterns to the neural network is constructed in such a way that the network learns the relationship between the aa index values of a particular cycle, and the sunspot number values of the following cycle. Assuming January 2008 as the minimum preceding solar cycle 24, the shape and amplitude of solar cycle 24 is estimated in terms of monthly mean and smoothed monthly sunspot number. This new prediction model estimates an average solar cycle 24, with the maximum occurring around June 2012 [± 11 months], with a smoothed monthly maximum sunspot number of 121 ± 9.
- Full Text:
A global ionospheric F2 region peak electron density model using neural networks and extended geophysically relevant inputs
- Authors: Oyeyemi, Elijah Oyedola
- Date: 2006
- Subjects: Neural networks (Computer science) , Ionospheric electron density , Ionosphere , Ionosphere -- Mathematical models
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5470 , http://hdl.handle.net/10962/d1005255
- Description: This thesis presents my research on the development of a neural network (NN) based global empirical model of the ionospheric F2 region peak electron density using extended geophysically relevant inputs. The main principle behind this approach has been to utilize parameters other than simple geographic co-ordinates, on which the F2 peak electron density is known to depend, and to exploit the technique of NNs, thereby establishing and modeling the non-linear dynamic processes (both in space and time)associated with the F2 region electron density on a global scale. Four different models have been developed in this work. These are the foF2 NN model, M(3000)F2 NN model, short-term forecasting foF2 NN, and a near-real time foF2 NN model. Data used in the training of the NNs were obtained from the worldwide ionosonde stations spanning the period 1964 to 1986 based on availability, which included all periods of calm and disturbed magnetic activity. Common input parameters used in the training of all 4 models are day number (day of the year, DN), Universal Time (UT), a 2 month running mean of the sunspot number (R2), a 2 day running mean of the 3-hour planetary magnetic index ap (A16), solar zenith angle (CHI), geographic latitude (q), magnetic dip angle (I), angle of magnetic declination (D), angle of meridian relative to subsolar point (M). For the short-term and near-real time foF2 models, additional input parameters related to recent past observations of foF2 itself were included in the training of the NNs. The results of the foF2 NN model and M(3000)F2 NN model presented in this work, which compare favourably with the IRI (International Reference Ionosphere) model successfully demonstrate the potential of NNs for spatial and temporal modeling of the ionospheric parameters foF2 and M(3000)F2 globally. The results obtained from the short-term foF2 NN model and nearreal time foF2 NN model reveal that, in addition to the temporal and spatial input variables, short-term forecasting of foF2 is much improved by including past observations of foF2 itself. Results obtained from the near-real time foF2 NN model also reveal that there exists a correlation between measured foF2 values at different locations across the globe. Again, comparisons of the foF2 NN model and M(3000)F2 NN model predictions with that of the IRI model predictions and observed values at some selected high latitude stations, suggest that the NN technique can successfully be employed to model the complex irregularities associated with the high latitude regions. Based on the results obtained in this research and the comparison made with the IRI model (URSI and CCIR coefficients), these results justify consideration of the NN technique for the prediction of global ionospheric parameters. I believe that, after consideration by the IRI community, these models will prove to be valuable to both the high frequency (HF) communication and worldwide ionospheric communities.
- Full Text:
- Authors: Oyeyemi, Elijah Oyedola
- Date: 2006
- Subjects: Neural networks (Computer science) , Ionospheric electron density , Ionosphere , Ionosphere -- Mathematical models
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5470 , http://hdl.handle.net/10962/d1005255
- Description: This thesis presents my research on the development of a neural network (NN) based global empirical model of the ionospheric F2 region peak electron density using extended geophysically relevant inputs. The main principle behind this approach has been to utilize parameters other than simple geographic co-ordinates, on which the F2 peak electron density is known to depend, and to exploit the technique of NNs, thereby establishing and modeling the non-linear dynamic processes (both in space and time)associated with the F2 region electron density on a global scale. Four different models have been developed in this work. These are the foF2 NN model, M(3000)F2 NN model, short-term forecasting foF2 NN, and a near-real time foF2 NN model. Data used in the training of the NNs were obtained from the worldwide ionosonde stations spanning the period 1964 to 1986 based on availability, which included all periods of calm and disturbed magnetic activity. Common input parameters used in the training of all 4 models are day number (day of the year, DN), Universal Time (UT), a 2 month running mean of the sunspot number (R2), a 2 day running mean of the 3-hour planetary magnetic index ap (A16), solar zenith angle (CHI), geographic latitude (q), magnetic dip angle (I), angle of magnetic declination (D), angle of meridian relative to subsolar point (M). For the short-term and near-real time foF2 models, additional input parameters related to recent past observations of foF2 itself were included in the training of the NNs. The results of the foF2 NN model and M(3000)F2 NN model presented in this work, which compare favourably with the IRI (International Reference Ionosphere) model successfully demonstrate the potential of NNs for spatial and temporal modeling of the ionospheric parameters foF2 and M(3000)F2 globally. The results obtained from the short-term foF2 NN model and nearreal time foF2 NN model reveal that, in addition to the temporal and spatial input variables, short-term forecasting of foF2 is much improved by including past observations of foF2 itself. Results obtained from the near-real time foF2 NN model also reveal that there exists a correlation between measured foF2 values at different locations across the globe. Again, comparisons of the foF2 NN model and M(3000)F2 NN model predictions with that of the IRI model predictions and observed values at some selected high latitude stations, suggest that the NN technique can successfully be employed to model the complex irregularities associated with the high latitude regions. Based on the results obtained in this research and the comparison made with the IRI model (URSI and CCIR coefficients), these results justify consideration of the NN technique for the prediction of global ionospheric parameters. I believe that, after consideration by the IRI community, these models will prove to be valuable to both the high frequency (HF) communication and worldwide ionospheric communities.
- Full Text:
Protein secondary structure prediction using neural networks and support vector machines
- Authors: Tsilo, Lipontseng Cecilia
- Date: 2009
- Subjects: Neural networks (Computer science) , Support vector machines , Proteins -- Structure -- Mathematical models
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5569 , http://hdl.handle.net/10962/d1002809 , Neural networks (Computer science) , Support vector machines , Proteins -- Structure -- Mathematical models
- Description: Predicting the secondary structure of proteins is important in biochemistry because the 3D structure can be determined from the local folds that are found in secondary structures. Moreover, knowing the tertiary structure of proteins can assist in determining their functions. The objective of this thesis is to compare the performance of Neural Networks (NN) and Support Vector Machines (SVM) in predicting the secondary structure of 62 globular proteins from their primary sequence. For each NN and SVM, we created six binary classifiers to distinguish between the classes’ helices (H) strand (E), and coil (C). For NN we use Resilient Backpropagation training with and without early stopping. We use NN with either no hidden layer or with one hidden layer with 1,2,...,40 hidden neurons. For SVM we use a Gaussian kernel with parameter fixed at = 0.1 and varying cost parameters C in the range [0.1,5]. 10- fold cross-validation is used to obtain overall estimates for the probability of making a correct prediction. Our experiments indicate for NN and SVM that the different binary classifiers have varying accuracies: from 69% correct predictions for coils vs. non-coil up to 80% correct predictions for stand vs. non-strand. It is further demonstrated that NN with no hidden layer or not more than 2 hidden neurons in the hidden layer are sufficient for better predictions. For SVM we show that the estimated accuracies do not depend on the value of the cost parameter. As a major result, we will demonstrate that the accuracy estimates of NN and SVM binary classifiers cannot distinguish. This contradicts a modern belief in bioinformatics that SVM outperforms other predictors.
- Full Text:
- Authors: Tsilo, Lipontseng Cecilia
- Date: 2009
- Subjects: Neural networks (Computer science) , Support vector machines , Proteins -- Structure -- Mathematical models
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5569 , http://hdl.handle.net/10962/d1002809 , Neural networks (Computer science) , Support vector machines , Proteins -- Structure -- Mathematical models
- Description: Predicting the secondary structure of proteins is important in biochemistry because the 3D structure can be determined from the local folds that are found in secondary structures. Moreover, knowing the tertiary structure of proteins can assist in determining their functions. The objective of this thesis is to compare the performance of Neural Networks (NN) and Support Vector Machines (SVM) in predicting the secondary structure of 62 globular proteins from their primary sequence. For each NN and SVM, we created six binary classifiers to distinguish between the classes’ helices (H) strand (E), and coil (C). For NN we use Resilient Backpropagation training with and without early stopping. We use NN with either no hidden layer or with one hidden layer with 1,2,...,40 hidden neurons. For SVM we use a Gaussian kernel with parameter fixed at = 0.1 and varying cost parameters C in the range [0.1,5]. 10- fold cross-validation is used to obtain overall estimates for the probability of making a correct prediction. Our experiments indicate for NN and SVM that the different binary classifiers have varying accuracies: from 69% correct predictions for coils vs. non-coil up to 80% correct predictions for stand vs. non-strand. It is further demonstrated that NN with no hidden layer or not more than 2 hidden neurons in the hidden layer are sufficient for better predictions. For SVM we show that the estimated accuracies do not depend on the value of the cost parameter. As a major result, we will demonstrate that the accuracy estimates of NN and SVM binary classifiers cannot distinguish. This contradicts a modern belief in bioinformatics that SVM outperforms other predictors.
- Full Text:
An analysis of neural networks and time series techniques for demand forecasting
- Authors: Winn, David
- Date: 2007
- Subjects: Time-series analysis , Neural networks (Computer science) , Artificial intelligence , Marketing -- Management , Marketing -- Data processing , Marketing -- Statistical methods , Consumer behaviour
- Language: English
- Type: Thesis , Masters , MCom
- Identifier: vital:5572 , http://hdl.handle.net/10962/d1004362 , Time-series analysis , Neural networks (Computer science) , Artificial intelligence , Marketing -- Management , Marketing -- Data processing , Marketing -- Statistical methods , Consumer behaviour
- Description: This research examines the plausibility of developing demand forecasting techniques which are consistently and accurately able to predict demand. Time Series Techniques and Artificial Neural Networks are both investigated. Deodorant sales in South Africa are specifically studied in this thesis. Marketing techniques which are used to influence consumer buyer behaviour are considered, and these factors are integrated into the forecasting models wherever possible. The results of this research suggest that Artificial Neural Networks can be developed which consistently outperform industry forecasting targets as well as Time Series forecasts, suggesting that producers could reduce costs by adopting this more effective method.
- Full Text:
- Authors: Winn, David
- Date: 2007
- Subjects: Time-series analysis , Neural networks (Computer science) , Artificial intelligence , Marketing -- Management , Marketing -- Data processing , Marketing -- Statistical methods , Consumer behaviour
- Language: English
- Type: Thesis , Masters , MCom
- Identifier: vital:5572 , http://hdl.handle.net/10962/d1004362 , Time-series analysis , Neural networks (Computer science) , Artificial intelligence , Marketing -- Management , Marketing -- Data processing , Marketing -- Statistical methods , Consumer behaviour
- Description: This research examines the plausibility of developing demand forecasting techniques which are consistently and accurately able to predict demand. Time Series Techniques and Artificial Neural Networks are both investigated. Deodorant sales in South Africa are specifically studied in this thesis. Marketing techniques which are used to influence consumer buyer behaviour are considered, and these factors are integrated into the forecasting models wherever possible. The results of this research suggest that Artificial Neural Networks can be developed which consistently outperform industry forecasting targets as well as Time Series forecasts, suggesting that producers could reduce costs by adopting this more effective method.
- Full Text:
Universal approximation properties of feedforward artificial neural networks.
- Authors: Redpath, Stuart Frederick
- Date: 2011
- Subjects: Neural networks (Computer science) , Artificial intelligence -- Biological applications , Functional analysis , Weierstrass-Stone Theorem , Banach-Hahn theorem
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5430 , http://hdl.handle.net/10962/d1015869
- Description: In this thesis we summarise several results in the literature which show the approximation capabilities of multilayer feedforward artificial neural networks. We show that multilayer feedforward artificial neural networks are capable of approximating continuous and measurable functions from Rn to R to any degree of accuracy under certain conditions. In particular making use of the Stone-Weierstrass and Hahn-Banach theorems, we show that a multilayer feedforward artificial neural network can approximate any continuous function to any degree of accuracy, by using either an arbitrary squashing function or any continuous sigmoidal function for activation. Making use of the Stone-Weirstrass Theorem again, we extend these approximation capabilities of multilayer feedforward artificial neural networks to the space of measurable functions under any probability measure.
- Full Text:
- Authors: Redpath, Stuart Frederick
- Date: 2011
- Subjects: Neural networks (Computer science) , Artificial intelligence -- Biological applications , Functional analysis , Weierstrass-Stone Theorem , Banach-Hahn theorem
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5430 , http://hdl.handle.net/10962/d1015869
- Description: In this thesis we summarise several results in the literature which show the approximation capabilities of multilayer feedforward artificial neural networks. We show that multilayer feedforward artificial neural networks are capable of approximating continuous and measurable functions from Rn to R to any degree of accuracy under certain conditions. In particular making use of the Stone-Weierstrass and Hahn-Banach theorems, we show that a multilayer feedforward artificial neural network can approximate any continuous function to any degree of accuracy, by using either an arbitrary squashing function or any continuous sigmoidal function for activation. Making use of the Stone-Weirstrass Theorem again, we extend these approximation capabilities of multilayer feedforward artificial neural networks to the space of measurable functions under any probability measure.
- Full Text:
Damage recovery for robot controllers and simulators evolved using bootstrapped neuro-simulation
- Authors: Leonard, Brydon Andrew
- Date: 2019
- Subjects: Robots -- Control systems , Robots -- Programming , Robotics , Neural networks (Computer science)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10948/40424 , vital:36164
- Description: Robots are becoming increasingly complex. This has made manually designing the software responsible for controlling these robots (controllers) challenging, leading to the creation of the field of evolutionary robotics (ER). The ER approach aims to automatically evolve robot controllers and morphologies by utilising concepts from biological evolution. ER techniques use evolutionary algorithms (EA) to evolve populations of controllers - a process that requires the evaluation of a large number of controllers. Performing these evaluations on a real-world robot is both infeasibly time-consuming and poses the risk of damage to the robot. Simulators present a solution to the issue by allowing the evaluation of controllers to take place on a virtual robot. Traditional methods of controller evolution in simulation encounter two major issues. Firstly, physics simulators are complex to create and are often very computationally expensive. Secondly, the reality gap is encountered when controllers are evolved in simulators that are unable to simulate the real world well enough due to implications or small inaccuracies in the simulation, which together cause controllers in the simulation to be unable to transfer effectively to reality. Bootstrapped Neuro-Simulation (BNS) is an ER algorithm that aims to address the issues inherent with the use of simulators. The algorithm concurrently creates a simulator and evolves a population of controllers. The process starts with an initially random population of controllers and an untrained simulator neural network (SNN), a type of robot simulator which utilises artificial neural networks (ANNs) to simulate a robot's behaviour. Controllers are then continually selected for evaluation in the real world, and the data from these real-world evaluations is used to train the controller-evaluation SNN. BNS is a relatively new algorithm that has not yet been explored in depth. An investigation was, therefore, conducted into BNS's ability to evolve closed-loop controllers. BNS was successful in evolving such controllers, and various adaptations to the algorithm were investigated for their ability to improve the evolution of closed-loop controllers. In addition, the factors which had the greatest impact on BNS's effectiveness were reported upon. Damage recovery is an area that has been the focus of a great deal of research. This is because the progression of the field of robotics means that robots no longer operate only in the safe environments that they once did. Robots are now put to use in areas as inaccessible as the surface of Mars, where repairs by a human are impossible. Various methods of damage recovery have previously been proposed and evaluated, but none focused on BNS as a method of damage recovery. In this research, it was hypothesised that BNS's constantly learning nature would allow it to recover from damage, as it would continue to use new information about the state of the real robot to evolve new controllers capable of functioning in the damaged robot. BNS was found to possess the hypothesised damage recovery ability. The algorithm's evaluation was carried out through the evolution of controllers for simple navigation and light-following tasks for a wheeled robot, as well as a locomotion task for a complex legged robot. Various adaptations to the algorithm were then evaluated through extensive parameter investigations in simulation, showing varying levels of effectiveness. These results were further confirmed through evaluation of the adaptations and effective parameter values in real-world evaluations on a real robot. Both a simple and more complex robot morphology were investigated.
- Full Text:
- Authors: Leonard, Brydon Andrew
- Date: 2019
- Subjects: Robots -- Control systems , Robots -- Programming , Robotics , Neural networks (Computer science)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10948/40424 , vital:36164
- Description: Robots are becoming increasingly complex. This has made manually designing the software responsible for controlling these robots (controllers) challenging, leading to the creation of the field of evolutionary robotics (ER). The ER approach aims to automatically evolve robot controllers and morphologies by utilising concepts from biological evolution. ER techniques use evolutionary algorithms (EA) to evolve populations of controllers - a process that requires the evaluation of a large number of controllers. Performing these evaluations on a real-world robot is both infeasibly time-consuming and poses the risk of damage to the robot. Simulators present a solution to the issue by allowing the evaluation of controllers to take place on a virtual robot. Traditional methods of controller evolution in simulation encounter two major issues. Firstly, physics simulators are complex to create and are often very computationally expensive. Secondly, the reality gap is encountered when controllers are evolved in simulators that are unable to simulate the real world well enough due to implications or small inaccuracies in the simulation, which together cause controllers in the simulation to be unable to transfer effectively to reality. Bootstrapped Neuro-Simulation (BNS) is an ER algorithm that aims to address the issues inherent with the use of simulators. The algorithm concurrently creates a simulator and evolves a population of controllers. The process starts with an initially random population of controllers and an untrained simulator neural network (SNN), a type of robot simulator which utilises artificial neural networks (ANNs) to simulate a robot's behaviour. Controllers are then continually selected for evaluation in the real world, and the data from these real-world evaluations is used to train the controller-evaluation SNN. BNS is a relatively new algorithm that has not yet been explored in depth. An investigation was, therefore, conducted into BNS's ability to evolve closed-loop controllers. BNS was successful in evolving such controllers, and various adaptations to the algorithm were investigated for their ability to improve the evolution of closed-loop controllers. In addition, the factors which had the greatest impact on BNS's effectiveness were reported upon. Damage recovery is an area that has been the focus of a great deal of research. This is because the progression of the field of robotics means that robots no longer operate only in the safe environments that they once did. Robots are now put to use in areas as inaccessible as the surface of Mars, where repairs by a human are impossible. Various methods of damage recovery have previously been proposed and evaluated, but none focused on BNS as a method of damage recovery. In this research, it was hypothesised that BNS's constantly learning nature would allow it to recover from damage, as it would continue to use new information about the state of the real robot to evolve new controllers capable of functioning in the damaged robot. BNS was found to possess the hypothesised damage recovery ability. The algorithm's evaluation was carried out through the evolution of controllers for simple navigation and light-following tasks for a wheeled robot, as well as a locomotion task for a complex legged robot. Various adaptations to the algorithm were then evaluated through extensive parameter investigations in simulation, showing varying levels of effectiveness. These results were further confirmed through evaluation of the adaptations and effective parameter values in real-world evaluations on a real robot. Both a simple and more complex robot morphology were investigated.
- Full Text:
Application of machine learning, molecular modelling and structural data mining against antiretroviral drug resistance in HIV-1
- Sheik Amamuddy, Olivier Serge André
- Authors: Sheik Amamuddy, Olivier Serge André
- Date: 2020
- Subjects: Machine learning , Molecules -- Models , Data mining , Neural networks (Computer science) , Antiretroviral agents , Protease inhibitors , Drug resistance , Multidrug resistance , Molecular dynamics , Renin-angiotensin system , HIV (Viruses) -- South Africa , HIV (Viruses) -- Social aspects -- South Africa , South African Natural Compounds Database
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/115964 , vital:34282
- Description: Millions are affected with the Human Immunodeficiency Virus (HIV) world wide, even though the death toll is on the decline. Antiretrovirals (ARVs), more specifically protease inhibitors have shown tremendous success since their introduction into therapy since the mid 1990’s by slowing down progression to the Acquired Immune Deficiency Syndrome (AIDS). However, Drug Resistance Mutations (DRMs) are constantly selected for due to viral adaptation, making drugs less effective over time. The current challenge is to manage the infection optimally with a limited set of drugs, with differing associated levels of toxicities in the face of a virus that (1) exists as a quasispecies, (2) may transmit acquired DRMs to drug-naive individuals and (3) that can manifest class-wide resistance due to similarities in design. The presence of latent reservoirs, unawareness of infection status, education and various socio-economic factors make the problem even more complex. Adequate timing and choice of drug prescription together with treatment adherence are very important as drug toxicities, drug failure and sub-optimal treatment regimens leave room for further development of drug resistance. While CD4 cell count and the determination of viral load from patients in resource-limited settings are very helpful to track how well a patient’s immune system is able to keep the virus in check, they can be lengthy in determining whether an ARV is effective. Phenosense assay kits answer this problem using viruses engineered to contain the patient sequences and evaluating their growth in the presence of different ARVs, but this can be expensive and too involved for routine checks. As a cheaper and faster alternative, genotypic assays provide similar information from HIV pol sequences obtained from blood samples, inferring ARV efficacy on the basis of drug resistance mutation patterns. However, these are inherently complex and the various methods of in silico prediction, such as Geno2pheno, REGA and Stanford HIVdb do not always agree in every case, even though this gap decreases as the list of resistance mutations is updated. A major gap in HIV treatment is that the information used for predicting drug resistance is mainly computed from data containing an overwhelming majority of B subtype HIV, when these only comprise about 12% of the worldwide HIV infections. In addition to growing evidence that drug resistance is subtype-related, it is intuitive to hypothesize that as subtyping is a phylogenetic classification, the more divergent a subtype is from the strains used in training prediction models, the less their resistance profiles would correlate. For the aforementioned reasons, we used a multi-faceted approach to attack the virus in multiple ways. This research aimed to (1) improve resistance prediction methods by focusing solely on the available subtype, (2) mine structural information pertaining to resistance in order to find any exploitable weak points and increase knowledge of the mechanistic processes of drug resistance in HIV protease. Finally, (3) we screen for protease inhibitors amongst a database of natural compounds [the South African natural compound database (SANCDB)] to find molecules or molecular properties usable to come up with improved inhibition against the drug target. In this work, structural information was mined using the Anisotropic Network Model, Dynamics Cross-Correlation, Perturbation Response Scanning, residue contact network analysis and the radius of gyration. These methods failed to give any resistance-associated patterns in terms of natural movement, internal correlated motions, residue perturbation response, relational behaviour and global compaction respectively. Applications of drug docking, homology-modelling and energy minimization for generating features suitable for machine-learning were not very promising, and rather suggest that the value of binding energies by themselves from Vina may not be very reliable quantitatively. All these failures lead to a refinement that resulted in a highly sensitive statistically-guided network construction and analysis, which leads to key findings in the early dynamics associated with resistance across all PI drugs. The latter experiment unravelled a conserved lateral expansion motion occurring at the flap elbows, and an associated contraction that drives the base of the dimerization domain towards the catalytic site’s floor in the case of drug resistance. Interestingly, we found that despite the conserved movement, bond angles were degenerate. Alongside, 16 Artificial Neural Network models were optimised for HIV proteases and reverse transcriptase inhibitors, with performances on par with Stanford HIVdb. Finally, we prioritised 9 compounds with potential protease inhibitory activity using virtual screening and molecular dynamics (MD) to additionally suggest a promising modification to one of the compounds. This yielded another molecule inhibiting equally well both opened and closed receptor target conformations, whereby each of the compounds had been selected against an array of multi-drug-resistant receptor variants. While a main hurdle was a lack of non-B subtype data, our findings, especially from the statistically-guided network analysis, may extrapolate to a certain extent to them as the level of conservation was very high within subtype B, despite all the present variations. This network construction method lays down a sensitive approach for analysing a pair of alternate phenotypes for which complex patterns prevail, given a sufficient number of experimental units. During the course of research a weighted contact mapping tool was developed to compare renin-angiotensinogen variants and packaged as part of the MD-TASK tool suite. Finally the functionality, compatibility and performance of the MODE-TASK tool were evaluated and confirmed for both Python2.7.x and Python3.x, for the analysis of normals modes from single protein structures and essential modes from MD trajectories. These techniques and tools collectively add onto the conventional means of MD analysis.
- Full Text:
- Authors: Sheik Amamuddy, Olivier Serge André
- Date: 2020
- Subjects: Machine learning , Molecules -- Models , Data mining , Neural networks (Computer science) , Antiretroviral agents , Protease inhibitors , Drug resistance , Multidrug resistance , Molecular dynamics , Renin-angiotensin system , HIV (Viruses) -- South Africa , HIV (Viruses) -- Social aspects -- South Africa , South African Natural Compounds Database
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/115964 , vital:34282
- Description: Millions are affected with the Human Immunodeficiency Virus (HIV) world wide, even though the death toll is on the decline. Antiretrovirals (ARVs), more specifically protease inhibitors have shown tremendous success since their introduction into therapy since the mid 1990’s by slowing down progression to the Acquired Immune Deficiency Syndrome (AIDS). However, Drug Resistance Mutations (DRMs) are constantly selected for due to viral adaptation, making drugs less effective over time. The current challenge is to manage the infection optimally with a limited set of drugs, with differing associated levels of toxicities in the face of a virus that (1) exists as a quasispecies, (2) may transmit acquired DRMs to drug-naive individuals and (3) that can manifest class-wide resistance due to similarities in design. The presence of latent reservoirs, unawareness of infection status, education and various socio-economic factors make the problem even more complex. Adequate timing and choice of drug prescription together with treatment adherence are very important as drug toxicities, drug failure and sub-optimal treatment regimens leave room for further development of drug resistance. While CD4 cell count and the determination of viral load from patients in resource-limited settings are very helpful to track how well a patient’s immune system is able to keep the virus in check, they can be lengthy in determining whether an ARV is effective. Phenosense assay kits answer this problem using viruses engineered to contain the patient sequences and evaluating their growth in the presence of different ARVs, but this can be expensive and too involved for routine checks. As a cheaper and faster alternative, genotypic assays provide similar information from HIV pol sequences obtained from blood samples, inferring ARV efficacy on the basis of drug resistance mutation patterns. However, these are inherently complex and the various methods of in silico prediction, such as Geno2pheno, REGA and Stanford HIVdb do not always agree in every case, even though this gap decreases as the list of resistance mutations is updated. A major gap in HIV treatment is that the information used for predicting drug resistance is mainly computed from data containing an overwhelming majority of B subtype HIV, when these only comprise about 12% of the worldwide HIV infections. In addition to growing evidence that drug resistance is subtype-related, it is intuitive to hypothesize that as subtyping is a phylogenetic classification, the more divergent a subtype is from the strains used in training prediction models, the less their resistance profiles would correlate. For the aforementioned reasons, we used a multi-faceted approach to attack the virus in multiple ways. This research aimed to (1) improve resistance prediction methods by focusing solely on the available subtype, (2) mine structural information pertaining to resistance in order to find any exploitable weak points and increase knowledge of the mechanistic processes of drug resistance in HIV protease. Finally, (3) we screen for protease inhibitors amongst a database of natural compounds [the South African natural compound database (SANCDB)] to find molecules or molecular properties usable to come up with improved inhibition against the drug target. In this work, structural information was mined using the Anisotropic Network Model, Dynamics Cross-Correlation, Perturbation Response Scanning, residue contact network analysis and the radius of gyration. These methods failed to give any resistance-associated patterns in terms of natural movement, internal correlated motions, residue perturbation response, relational behaviour and global compaction respectively. Applications of drug docking, homology-modelling and energy minimization for generating features suitable for machine-learning were not very promising, and rather suggest that the value of binding energies by themselves from Vina may not be very reliable quantitatively. All these failures lead to a refinement that resulted in a highly sensitive statistically-guided network construction and analysis, which leads to key findings in the early dynamics associated with resistance across all PI drugs. The latter experiment unravelled a conserved lateral expansion motion occurring at the flap elbows, and an associated contraction that drives the base of the dimerization domain towards the catalytic site’s floor in the case of drug resistance. Interestingly, we found that despite the conserved movement, bond angles were degenerate. Alongside, 16 Artificial Neural Network models were optimised for HIV proteases and reverse transcriptase inhibitors, with performances on par with Stanford HIVdb. Finally, we prioritised 9 compounds with potential protease inhibitory activity using virtual screening and molecular dynamics (MD) to additionally suggest a promising modification to one of the compounds. This yielded another molecule inhibiting equally well both opened and closed receptor target conformations, whereby each of the compounds had been selected against an array of multi-drug-resistant receptor variants. While a main hurdle was a lack of non-B subtype data, our findings, especially from the statistically-guided network analysis, may extrapolate to a certain extent to them as the level of conservation was very high within subtype B, despite all the present variations. This network construction method lays down a sensitive approach for analysing a pair of alternate phenotypes for which complex patterns prevail, given a sufficient number of experimental units. During the course of research a weighted contact mapping tool was developed to compare renin-angiotensinogen variants and packaged as part of the MD-TASK tool suite. Finally the functionality, compatibility and performance of the MODE-TASK tool were evaluated and confirmed for both Python2.7.x and Python3.x, for the analysis of normals modes from single protein structures and essential modes from MD trajectories. These techniques and tools collectively add onto the conventional means of MD analysis.
- Full Text:
Predictability of Geomagnetically Induced Currents using neural networks
- Authors: Lotz, Stefan
- Date: 2009
- Subjects: Advanced Composition Explorer (Artificial satellite) , Geomagnetism , Electromagnetic induction , Neural networks (Computer science) , Artificial intelligence
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5483 , http://hdl.handle.net/10962/d1005269 , Advanced Composition Explorer (Artificial satellite) , Geomagnetism , Electromagnetic induction , Neural networks (Computer science) , Artificial intelligence
- Description: It is a well documented fact that Geomagnetically Induced Currents (GIC’s) poses a significant threat to ground-based electric conductor networks like oil pipelines, railways and powerline networks. A study is undertaken to determine the feasibility of using artificial neural network models to predict GIC occurrence in the Southern African power grid. The magnitude of an induced current at a specific location on the Earth’s surface is directly related to the temporal derivative of the geomagnetic field (specifically its horizontal components) at that point. Hence, the focus of the problem is on the prediction of the temporal variations in the horizontal geomagnetic field (@Bx/@t and @By/@t). Artificial neural networks are used to predict @Bx/@t and @By/@t measured at Hermanus, South Africa (34.27◦ S, 19.12◦ E) with a 30 minute prediction lead time. As input parameters to the neural networks, insitu solar wind measurements made by the Advanced Composition Explorer (ACE) satellite are used. The results presented here compare well with similar models developed at high-latitude locations (e.g. Sweden, Finland, Canada) where extensive GIC research has been undertaken. It is concluded that it would indeed be feasible to use a neural network model to predict GIC occurrence in the Southern African power grid, provided that GIC measurements, powerline configuration and network parameters are made available.
- Full Text:
- Authors: Lotz, Stefan
- Date: 2009
- Subjects: Advanced Composition Explorer (Artificial satellite) , Geomagnetism , Electromagnetic induction , Neural networks (Computer science) , Artificial intelligence
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5483 , http://hdl.handle.net/10962/d1005269 , Advanced Composition Explorer (Artificial satellite) , Geomagnetism , Electromagnetic induction , Neural networks (Computer science) , Artificial intelligence
- Description: It is a well documented fact that Geomagnetically Induced Currents (GIC’s) poses a significant threat to ground-based electric conductor networks like oil pipelines, railways and powerline networks. A study is undertaken to determine the feasibility of using artificial neural network models to predict GIC occurrence in the Southern African power grid. The magnitude of an induced current at a specific location on the Earth’s surface is directly related to the temporal derivative of the geomagnetic field (specifically its horizontal components) at that point. Hence, the focus of the problem is on the prediction of the temporal variations in the horizontal geomagnetic field (@Bx/@t and @By/@t). Artificial neural networks are used to predict @Bx/@t and @By/@t measured at Hermanus, South Africa (34.27◦ S, 19.12◦ E) with a 30 minute prediction lead time. As input parameters to the neural networks, insitu solar wind measurements made by the Advanced Composition Explorer (ACE) satellite are used. The results presented here compare well with similar models developed at high-latitude locations (e.g. Sweden, Finland, Canada) where extensive GIC research has been undertaken. It is concluded that it would indeed be feasible to use a neural network model to predict GIC occurrence in the Southern African power grid, provided that GIC measurements, powerline configuration and network parameters are made available.
- Full Text:
A framework to measure human behaviour whilst reading
- Salehzadeh, Seyed Amirsaleh, Greyling, Jean
- Authors: Salehzadeh, Seyed Amirsaleh , Greyling, Jean
- Date: 2019
- Subjects: Computational intelligence , Machine learning , Artificial intelligence , Neural networks (Computer science)
- Language: English
- Type: Thesis , Doctoral , DPhil
- Identifier: http://hdl.handle.net/10948/43578 , vital:36921
- Description: The brain is the most complex object in the known universe that gives a sense of being to humans and characterises human behaviour. Building models of brain functions is perhaps the most fascinating scientific challenge in the 21st century. Reading is a significant cognitive process in the human brain that plays a critical role in the vital process of learning and in performing some daily activities. The study of human behaviour during reading has been an area of interest for researchers in different fields of science. This thesis is based upon providing a novel framework, called ARSAT (Assisting Researchers in the Selection of Appropriate Technologies), that measures the behaviour of humans when reading text. The ARSAT framework aims at assisting researchers in the selection and application of appropriate technologies to measure the behaviour of a person who is reading text. The ARSAT framework will assist to researchers who investigate the reading process and find it difficult to select appropriate theories, metrics, data collection methods and data analytics techniques. The ARSAT framework enhances the ability of its users to select appropriate metrics indicating the effective factors on the characterisation of different aspects of human behaviour during the reading process. As will be shown in this research study, human behaviour is characterised by a complicated interplay of action, cognition and emotion. The ARSAT framework also facilitates selecting appropriate sensory technologies that can be used to monitor and collect data for the metrics. Moreover, this research study will introduce BehaveNet, a novel Deep Learning modelling approach, which can be used for training Deep Learning models of human behaviour from the sensory data collected. In this thesis, a comprehensive literature study is presented that was conducted to acquire adequate knowledge for designing the ARSAT framework. In order to identify the contributing factors that affect the reading process, an overview of some existing theories of the reading process is provided. Furthermore, a number of sensory technologies and techniques that can be applied to monitoring the changes in the metrics indicating the factors are also demonstrated. Only, the technologies that are commercially available on the market are recommended by the ARSAT framework. A variety of Machine Learning techniques were also investigated when designing the BehaveNet. The BehaveNet takes advantage of the complementarity of Convolutional Neural Networks, Long Short-Term Memory networks and Deep Neural Networks. The design of a Human Behaviour Monitoring System (HBMS), by utilising the ARSAT framework for recognising three attention-seeking activities of humans, is also presented in this research study. Reading printed text, as well as speaking out loudly and watching a programme on TV were proposed as activities that a person unintentionally may shift his/her attention from reading into distractions. Between sensory devices recommended by the ARSAT framework, the Muse headband which is an Electroencephalography (EEG) and head motion-sensing wearable device, was selected to track the forehead EEG and a person’s head movements. The EEG and 3-axes accelerometer data were recorded from eight participants when they read printed text, as well as the time they performed two other activities. An imbalanced dataset consisting over 1.2 million rows of noisy data was created and used to build a model of the activities (60% training and 20% validating data) and evaluating the model (20% of the data). The efficiency of the framework is demonstrated by comparing the performance of the models built by utilising the BehaveNet, with the models built by utilising a number of competing Deep Learning models for raw EEG and accelerometer data, that have attained state-of-the-art performance. The classification results are evaluated by some metrics including the classification accuracy, F1 score, confusion matrix, Receiver Operating Characteristic curve, and Area under Curve (AUC) score. By considering the results, the BehaveNet contributed to the body of knowledge as an approach for measuring human behaviour by using sensory devices. In comparison with the performance of the other models, the models built by utilising the BehaveNet, attained better performance when classifying data of two EEG channels (Accuracy = 95%; AUC=0.99; F1 = 0.95), data of a single EEG channel (Accuracy = 85%; AUC=0.96; F1 = 0.83), accelerometer data (Accuracy = 81%; AUC = 0.9; F1 = 0.76) and all of the data in the dataset (Accuracy = 97%; AUC = 0.99; F1 = 0.96). The dataset and the source code of this project are also published on the Internet to help the science community. The Muse headband is also shown to be an economical and standard wearable device that can be successfully used in behavioural research.
- Full Text:
- Authors: Salehzadeh, Seyed Amirsaleh , Greyling, Jean
- Date: 2019
- Subjects: Computational intelligence , Machine learning , Artificial intelligence , Neural networks (Computer science)
- Language: English
- Type: Thesis , Doctoral , DPhil
- Identifier: http://hdl.handle.net/10948/43578 , vital:36921
- Description: The brain is the most complex object in the known universe that gives a sense of being to humans and characterises human behaviour. Building models of brain functions is perhaps the most fascinating scientific challenge in the 21st century. Reading is a significant cognitive process in the human brain that plays a critical role in the vital process of learning and in performing some daily activities. The study of human behaviour during reading has been an area of interest for researchers in different fields of science. This thesis is based upon providing a novel framework, called ARSAT (Assisting Researchers in the Selection of Appropriate Technologies), that measures the behaviour of humans when reading text. The ARSAT framework aims at assisting researchers in the selection and application of appropriate technologies to measure the behaviour of a person who is reading text. The ARSAT framework will assist to researchers who investigate the reading process and find it difficult to select appropriate theories, metrics, data collection methods and data analytics techniques. The ARSAT framework enhances the ability of its users to select appropriate metrics indicating the effective factors on the characterisation of different aspects of human behaviour during the reading process. As will be shown in this research study, human behaviour is characterised by a complicated interplay of action, cognition and emotion. The ARSAT framework also facilitates selecting appropriate sensory technologies that can be used to monitor and collect data for the metrics. Moreover, this research study will introduce BehaveNet, a novel Deep Learning modelling approach, which can be used for training Deep Learning models of human behaviour from the sensory data collected. In this thesis, a comprehensive literature study is presented that was conducted to acquire adequate knowledge for designing the ARSAT framework. In order to identify the contributing factors that affect the reading process, an overview of some existing theories of the reading process is provided. Furthermore, a number of sensory technologies and techniques that can be applied to monitoring the changes in the metrics indicating the factors are also demonstrated. Only, the technologies that are commercially available on the market are recommended by the ARSAT framework. A variety of Machine Learning techniques were also investigated when designing the BehaveNet. The BehaveNet takes advantage of the complementarity of Convolutional Neural Networks, Long Short-Term Memory networks and Deep Neural Networks. The design of a Human Behaviour Monitoring System (HBMS), by utilising the ARSAT framework for recognising three attention-seeking activities of humans, is also presented in this research study. Reading printed text, as well as speaking out loudly and watching a programme on TV were proposed as activities that a person unintentionally may shift his/her attention from reading into distractions. Between sensory devices recommended by the ARSAT framework, the Muse headband which is an Electroencephalography (EEG) and head motion-sensing wearable device, was selected to track the forehead EEG and a person’s head movements. The EEG and 3-axes accelerometer data were recorded from eight participants when they read printed text, as well as the time they performed two other activities. An imbalanced dataset consisting over 1.2 million rows of noisy data was created and used to build a model of the activities (60% training and 20% validating data) and evaluating the model (20% of the data). The efficiency of the framework is demonstrated by comparing the performance of the models built by utilising the BehaveNet, with the models built by utilising a number of competing Deep Learning models for raw EEG and accelerometer data, that have attained state-of-the-art performance. The classification results are evaluated by some metrics including the classification accuracy, F1 score, confusion matrix, Receiver Operating Characteristic curve, and Area under Curve (AUC) score. By considering the results, the BehaveNet contributed to the body of knowledge as an approach for measuring human behaviour by using sensory devices. In comparison with the performance of the other models, the models built by utilising the BehaveNet, attained better performance when classifying data of two EEG channels (Accuracy = 95%; AUC=0.99; F1 = 0.95), data of a single EEG channel (Accuracy = 85%; AUC=0.96; F1 = 0.83), accelerometer data (Accuracy = 81%; AUC = 0.9; F1 = 0.76) and all of the data in the dataset (Accuracy = 97%; AUC = 0.99; F1 = 0.96). The dataset and the source code of this project are also published on the Internet to help the science community. The Muse headband is also shown to be an economical and standard wearable device that can be successfully used in behavioural research.
- Full Text:
Development of a neural network based model for predicting the occurrence of spread F within the Brazilian sector
- Authors: Paradza, Masimba Wellington
- Date: 2009
- Subjects: Neural networks (Computer science) , Ionosphere , F region
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5460 , http://hdl.handle.net/10962/d1005245 , Neural networks (Computer science) , Ionosphere , F region
- Description: Spread F is a phenomenon of the ionosphere in which the pulses returned from the ionosphere are of a much greater duration than the transmitted ones. The occurrence of spread F can be predicted using the technique of Neural Networks (NNs). This thesis presents the development and evaluation of NN based models (two single station models and a regional model) for predicting the occurrence of spread F over selected stations within the Brazilian sector. The input space for the NNs included the day number (seasonal variation), hour (diurnal variation), sunspot number (measure of the solar activity), magnetic index (measure of the magnetic activity) and magnetic position (latitude, magnetic declination and inclination). Twelve years of spread F data measured during 1978 to 1989 inclusively at the equatorial site Fortaleza and low latitude site Cachoeira Paulista are used in the development of an input space and NN architecture for the NN models. Spread F data that is believed to be related to plasma bubble developments (range spread F) were used in the development of the models while those associated with narrow spectrum irregularities that occur near the F layer (frequency spread F) were excluded. The results of the models show the dependency of the probability of spread F as a function of local time, season and latitude. The models also illustrate some characteristics of spread F such as the onset and peak occurrence of spread F as a function of distance from the equator. Results from these models are presented in this thesis and compared to measured data and to modelled data obtained with an empirical model developed for the same purpose.
- Full Text:
- Authors: Paradza, Masimba Wellington
- Date: 2009
- Subjects: Neural networks (Computer science) , Ionosphere , F region
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5460 , http://hdl.handle.net/10962/d1005245 , Neural networks (Computer science) , Ionosphere , F region
- Description: Spread F is a phenomenon of the ionosphere in which the pulses returned from the ionosphere are of a much greater duration than the transmitted ones. The occurrence of spread F can be predicted using the technique of Neural Networks (NNs). This thesis presents the development and evaluation of NN based models (two single station models and a regional model) for predicting the occurrence of spread F over selected stations within the Brazilian sector. The input space for the NNs included the day number (seasonal variation), hour (diurnal variation), sunspot number (measure of the solar activity), magnetic index (measure of the magnetic activity) and magnetic position (latitude, magnetic declination and inclination). Twelve years of spread F data measured during 1978 to 1989 inclusively at the equatorial site Fortaleza and low latitude site Cachoeira Paulista are used in the development of an input space and NN architecture for the NN models. Spread F data that is believed to be related to plasma bubble developments (range spread F) were used in the development of the models while those associated with narrow spectrum irregularities that occur near the F layer (frequency spread F) were excluded. The results of the models show the dependency of the probability of spread F as a function of local time, season and latitude. The models also illustrate some characteristics of spread F such as the onset and peak occurrence of spread F as a function of distance from the equator. Results from these models are presented in this thesis and compared to measured data and to modelled data obtained with an empirical model developed for the same purpose.
- Full Text:
A feasibility study into total electron content prediction using neural networks
- Authors: Habarulema, John Bosco
- Date: 2008
- Subjects: Electrons , Neural networks (Computer science) , Global Positioning System , Ionosphere , Ionospheric electron density
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5466 , http://hdl.handle.net/10962/d1005251 , Electrons , Neural networks (Computer science) , Global Positioning System , Ionosphere , Ionospheric electron density
- Description: Global Positioning System (GPS) networks provide an opportunity to study the dynamics and continuous changes in the ionosphere by supplementing ionospheric measurements which are usually obtained by various techniques such as ionosondes, incoherent scatter radars and satellites. Total electron content (TEC) is one of the physical quantities that can be derived from GPS data, and provides an indication of ionospheric variability. This thesis presents a feasibility study for the development of a Neural Network (NN) based model for the prediction of South African GPS derived TEC. The South African GPS receiver network is operated and maintained by the Chief Directorate Surveys and Mapping (CDSM) in Cape Town, South Africa. Three South African locations were identified and used in the development of an input space and NN architecture for the model. The input space includes the day number (seasonal variation), hour (diurnal variation), sunspot number (measure of the solar activity), and magnetic index(measure of the magnetic activity). An attempt to study the effects of solar wind on TEC variability was carried out using the Advanced Composition Explorer (ACE) data and it is recommended that more study be done using low altitude satellite data. An analysis was done by comparing predicted NN TEC with TEC values from the IRI2001 version of the International Reference Ionosphere (IRI), validating GPS TEC with ionosonde TEC (ITEC) and assessing the performance of the NN model during equinoxes and solstices. Results show that NNs predict GPS TEC more accurately than the IRI at South African GPS locations, but that more good quality GPS data is required before a truly representative empirical GPS TEC model can be released.
- Full Text:
- Authors: Habarulema, John Bosco
- Date: 2008
- Subjects: Electrons , Neural networks (Computer science) , Global Positioning System , Ionosphere , Ionospheric electron density
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5466 , http://hdl.handle.net/10962/d1005251 , Electrons , Neural networks (Computer science) , Global Positioning System , Ionosphere , Ionospheric electron density
- Description: Global Positioning System (GPS) networks provide an opportunity to study the dynamics and continuous changes in the ionosphere by supplementing ionospheric measurements which are usually obtained by various techniques such as ionosondes, incoherent scatter radars and satellites. Total electron content (TEC) is one of the physical quantities that can be derived from GPS data, and provides an indication of ionospheric variability. This thesis presents a feasibility study for the development of a Neural Network (NN) based model for the prediction of South African GPS derived TEC. The South African GPS receiver network is operated and maintained by the Chief Directorate Surveys and Mapping (CDSM) in Cape Town, South Africa. Three South African locations were identified and used in the development of an input space and NN architecture for the model. The input space includes the day number (seasonal variation), hour (diurnal variation), sunspot number (measure of the solar activity), and magnetic index(measure of the magnetic activity). An attempt to study the effects of solar wind on TEC variability was carried out using the Advanced Composition Explorer (ACE) data and it is recommended that more study be done using low altitude satellite data. An analysis was done by comparing predicted NN TEC with TEC values from the IRI2001 version of the International Reference Ionosphere (IRI), validating GPS TEC with ionosonde TEC (ITEC) and assessing the performance of the NN model during equinoxes and solstices. Results show that NNs predict GPS TEC more accurately than the IRI at South African GPS locations, but that more good quality GPS data is required before a truly representative empirical GPS TEC model can be released.
- Full Text:
A hybridisation technique for game playing using the upper confidence for trees algorithm with artificial neural networks
- Authors: Burger, Clayton
- Date: 2014
- Subjects: Neural networks (Computer science) , Computer algorithms
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10948/3957 , vital:20495
- Description: In the domain of strategic game playing, the use of statistical techniques such as the Upper Confidence for Trees (UCT) algorithm, has become the norm as they offer many benefits over classical algorithms. These benefits include requiring no game-specific strategic knowledge and time-scalable performance. UCT does not incorporate any strategic information specific to the game considered, but instead uses repeated sampling to effectively brute-force search through the game tree or search space. The lack of game-specific knowledge in UCT is thus both a benefit but also a strategic disadvantage. Pattern recognition techniques, specifically Neural Networks (NN), were identified as a means of addressing the lack of game-specific knowledge in UCT. Through a novel hybridisation technique which combines UCT and trained NNs for pruning, the UCTNN algorithm was derived. The NN component of UCT-NN was trained using a UCT self-play scheme to generate game-specific knowledge without the need to construct and manage game databases for training purposes. The UCT-NN algorithm is outlined for pruning in the game of Go-Moku as a candidate case-study for this research. The UCT-NN algorithm contained three major parameters which emerged from the UCT algorithm, the use of NNs and the pruning schemes considered. Suitable methods for finding candidate values for these three parameters were outlined and applied to the game of Go-Moku on a 5 by 5 board. An empirical investigation of the playing performance of UCT-NN was conducted in comparison to UCT through three benchmarks. The benchmarks comprise a common randomly moving opponent, a common UCTmax player which is given a large amount of playing time, and a pair-wise tournament between UCT-NN and UCT. The results of the performance evaluation for 5 by 5 Go-Moku were promising, which prompted an evaluation of a larger 9 by 9 Go-Moku board. The results of both evaluations indicate that the time allocated to the UCT-NN algorithm directly affects its performance when compared to UCT. The UCT-NN algorithm generally performs better than UCT in games with very limited time-constraints in all benchmarks considered except when playing against a randomly moving player in 9 by 9 Go-Moku. In real-time and near-real-time Go-Moku games, UCT-NN provides statistically significant improvements compared to UCT. The findings of this research contribute to the realisation of applying game-specific knowledge to the UCT algorithm.
- Full Text:
- Authors: Burger, Clayton
- Date: 2014
- Subjects: Neural networks (Computer science) , Computer algorithms
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10948/3957 , vital:20495
- Description: In the domain of strategic game playing, the use of statistical techniques such as the Upper Confidence for Trees (UCT) algorithm, has become the norm as they offer many benefits over classical algorithms. These benefits include requiring no game-specific strategic knowledge and time-scalable performance. UCT does not incorporate any strategic information specific to the game considered, but instead uses repeated sampling to effectively brute-force search through the game tree or search space. The lack of game-specific knowledge in UCT is thus both a benefit but also a strategic disadvantage. Pattern recognition techniques, specifically Neural Networks (NN), were identified as a means of addressing the lack of game-specific knowledge in UCT. Through a novel hybridisation technique which combines UCT and trained NNs for pruning, the UCTNN algorithm was derived. The NN component of UCT-NN was trained using a UCT self-play scheme to generate game-specific knowledge without the need to construct and manage game databases for training purposes. The UCT-NN algorithm is outlined for pruning in the game of Go-Moku as a candidate case-study for this research. The UCT-NN algorithm contained three major parameters which emerged from the UCT algorithm, the use of NNs and the pruning schemes considered. Suitable methods for finding candidate values for these three parameters were outlined and applied to the game of Go-Moku on a 5 by 5 board. An empirical investigation of the playing performance of UCT-NN was conducted in comparison to UCT through three benchmarks. The benchmarks comprise a common randomly moving opponent, a common UCTmax player which is given a large amount of playing time, and a pair-wise tournament between UCT-NN and UCT. The results of the performance evaluation for 5 by 5 Go-Moku were promising, which prompted an evaluation of a larger 9 by 9 Go-Moku board. The results of both evaluations indicate that the time allocated to the UCT-NN algorithm directly affects its performance when compared to UCT. The UCT-NN algorithm generally performs better than UCT in games with very limited time-constraints in all benchmarks considered except when playing against a randomly moving player in 9 by 9 Go-Moku. In real-time and near-real-time Go-Moku games, UCT-NN provides statistically significant improvements compared to UCT. The findings of this research contribute to the realisation of applying game-specific knowledge to the UCT algorithm.
- Full Text:
A comparative study of artificial neural networks and physics models as simulators in evolutionary robotics
- Pretorius, Christiaan Johannes
- Authors: Pretorius, Christiaan Johannes
- Date: 2019
- Subjects: Neural networks (Computer science)
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10948/30789 , vital:31131
- Description: The Evolutionary Robotics (ER) process is a technique that applies evolutionary optimization algorithms to the task of automatically developing, or evolving, robotic control programs. These control programs, or simply controllers, are evolved in order to allow a robot to perform a required task. During the ER process, use is often made of robotic simulators to evaluate the performance of candidate controllers that are produced in the course of the controller evolution process. Such simulators accelerate and otherwise simplify the controller evolution process, as opposed to the more arduous process of evaluating controllers in the real world without use of simulation. To date, the vast majority of simulators that have been applied in ER are physics- based models which are constructed by taking into account the underlying physics governing the operation of the robotic system in question. An alternative approach to simulator implementation in ER is the usage of Artificial Neural Networks (ANNs) as simulators in the ER process. Such simulators are referred to as Simulator Neural Networks (SNNs). Previous studies have indicated that SNNs can successfully be used as an alter- native to physics-based simulators in the ER process on various robotic platforms. At the commencement of the current study it was not, however, known how this relatively new method of simulation would compare to traditional physics-based simulation approaches in ER. The study presented in this thesis thus endeavoured to quantitatively compare SNNs and physics-based models as simulators in the ER process. In order to con- duct this comparative study, both SNNs and physics simulators were constructed for the modelling of three different robotic platforms: a differentially-steered robot, a wheeled inverted pendulum robot and a hexapod robot. Each of these two types of simulation was then used in simulation-based evolution processes to evolve con- trollers for each robotic platform. During these controller evolution processes, the SNNs and physics models were compared in terms of their accuracy in making pre- dictions of robotic behaviour, their computational efficiency in arriving at these predictions, the human effort required to construct each simulator and, most im- portantly, the real-world performance of controllers evolved by making use of each simulator. The results obtained in this study illustrated experimentally that SNNs were, in the majority of cases, able to make more accurate predictions than the physics- based models and these SNNs were arguably simpler to construct than the physics simulators. Additionally, SNNs were also shown to be a computationally efficient alternative to physics-based simulators in ER and, again in the majority of cases, these SNNs were able to produce controllers which outperformed those evolved in the physics-based simulators, when these controllers were uploaded to the real-world robots. The results of this thesis thus suggest that SNNs are a viable alternative to more commonly-used physics simulators in ER and further investigation of the potential of this simulation technique appears warranted.
- Full Text:
- Authors: Pretorius, Christiaan Johannes
- Date: 2019
- Subjects: Neural networks (Computer science)
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10948/30789 , vital:31131
- Description: The Evolutionary Robotics (ER) process is a technique that applies evolutionary optimization algorithms to the task of automatically developing, or evolving, robotic control programs. These control programs, or simply controllers, are evolved in order to allow a robot to perform a required task. During the ER process, use is often made of robotic simulators to evaluate the performance of candidate controllers that are produced in the course of the controller evolution process. Such simulators accelerate and otherwise simplify the controller evolution process, as opposed to the more arduous process of evaluating controllers in the real world without use of simulation. To date, the vast majority of simulators that have been applied in ER are physics- based models which are constructed by taking into account the underlying physics governing the operation of the robotic system in question. An alternative approach to simulator implementation in ER is the usage of Artificial Neural Networks (ANNs) as simulators in the ER process. Such simulators are referred to as Simulator Neural Networks (SNNs). Previous studies have indicated that SNNs can successfully be used as an alter- native to physics-based simulators in the ER process on various robotic platforms. At the commencement of the current study it was not, however, known how this relatively new method of simulation would compare to traditional physics-based simulation approaches in ER. The study presented in this thesis thus endeavoured to quantitatively compare SNNs and physics-based models as simulators in the ER process. In order to con- duct this comparative study, both SNNs and physics simulators were constructed for the modelling of three different robotic platforms: a differentially-steered robot, a wheeled inverted pendulum robot and a hexapod robot. Each of these two types of simulation was then used in simulation-based evolution processes to evolve con- trollers for each robotic platform. During these controller evolution processes, the SNNs and physics models were compared in terms of their accuracy in making pre- dictions of robotic behaviour, their computational efficiency in arriving at these predictions, the human effort required to construct each simulator and, most im- portantly, the real-world performance of controllers evolved by making use of each simulator. The results obtained in this study illustrated experimentally that SNNs were, in the majority of cases, able to make more accurate predictions than the physics- based models and these SNNs were arguably simpler to construct than the physics simulators. Additionally, SNNs were also shown to be a computationally efficient alternative to physics-based simulators in ER and, again in the majority of cases, these SNNs were able to produce controllers which outperformed those evolved in the physics-based simulators, when these controllers were uploaded to the real-world robots. The results of this thesis thus suggest that SNNs are a viable alternative to more commonly-used physics simulators in ER and further investigation of the potential of this simulation technique appears warranted.
- Full Text:
An analysis of sources and predictability of geomagnetic storms
- Authors: Uwamahoro, Jean
- Date: 2011
- Subjects: Ionospheric storms , Solar flares , Interplanetary magnetic fields , Magnetospheric substorms , Coronal mass ejections , Space environment , Neural networks (Computer science)
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5451 , http://hdl.handle.net/10962/d1005236
- Description: Solar transient eruptions are the main cause of interplanetary-magnetospheric disturbances leading to the phenomena known as geomagnetic storms. Eruptive solar events such as coronal mass ejections (CMEs) are currently considered the main cause of geomagnetic storms (GMS). GMS are strong perturbations of the Earth’s magnetic field that can affect space-borne and ground-based technological systems. The solar-terrestrial impact on modern technological systems is commonly known as Space Weather. Part of the research study described in this thesis was to investigate and establish a relationship between GMS (periods with Dst ≤ −50 nT) and their associated solar and interplanetary (IP) properties during solar cycle (SC) 23. Solar and IP geoeffective properties associated with or without CMEs were investigated and used to qualitatively characterise both intense and moderate storms. The results of this analysis specifically provide an estimate of the main sources of GMS during an average 11-year solar activity period. This study indicates that during SC 23, the majority of intense GMS (83%) were associated with CMEs, while the non-associated CME storms were dominant among moderate storms. GMS phenomena are the result of a complex and non-linear chaotic system involving the Sun, the IP medium, the magnetosphere and ionosphere, which make the prediction of these phenomena challenging. This thesis also explored the predictability of both the occurrence and strength of GMS. Due to their nonlinear driving mechanisms, the prediction of GMS was attempted by the use of neural network (NN) techniques, known for their non-linear modelling capabilities. To predict the occurrence of storms, a combination of solar and IP parameters were used as inputs in the NN model that proved to predict the occurrence of GMS with a probability of 87%. Using the solar wind (SW) and IP magnetic field (IMF) parameters, a separate NN-based model was developed to predict the storm-time strength as measured by the global Dst and ap geomagnetic indices, as well as by the locally measured K-index. The performance of the models was tested on data sets which were not part of the NN training process. The results obtained indicate that NN models provide a reliable alternative method for empirically predicting the occurrence and strength of GMS on the basis of solar and IP parameters. The demonstrated ability to predict the geoeffectiveness of solar and IP transient events is a key step in the goal towards improving space weather modelling and prediction.
- Full Text:
- Authors: Uwamahoro, Jean
- Date: 2011
- Subjects: Ionospheric storms , Solar flares , Interplanetary magnetic fields , Magnetospheric substorms , Coronal mass ejections , Space environment , Neural networks (Computer science)
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5451 , http://hdl.handle.net/10962/d1005236
- Description: Solar transient eruptions are the main cause of interplanetary-magnetospheric disturbances leading to the phenomena known as geomagnetic storms. Eruptive solar events such as coronal mass ejections (CMEs) are currently considered the main cause of geomagnetic storms (GMS). GMS are strong perturbations of the Earth’s magnetic field that can affect space-borne and ground-based technological systems. The solar-terrestrial impact on modern technological systems is commonly known as Space Weather. Part of the research study described in this thesis was to investigate and establish a relationship between GMS (periods with Dst ≤ −50 nT) and their associated solar and interplanetary (IP) properties during solar cycle (SC) 23. Solar and IP geoeffective properties associated with or without CMEs were investigated and used to qualitatively characterise both intense and moderate storms. The results of this analysis specifically provide an estimate of the main sources of GMS during an average 11-year solar activity period. This study indicates that during SC 23, the majority of intense GMS (83%) were associated with CMEs, while the non-associated CME storms were dominant among moderate storms. GMS phenomena are the result of a complex and non-linear chaotic system involving the Sun, the IP medium, the magnetosphere and ionosphere, which make the prediction of these phenomena challenging. This thesis also explored the predictability of both the occurrence and strength of GMS. Due to their nonlinear driving mechanisms, the prediction of GMS was attempted by the use of neural network (NN) techniques, known for their non-linear modelling capabilities. To predict the occurrence of storms, a combination of solar and IP parameters were used as inputs in the NN model that proved to predict the occurrence of GMS with a probability of 87%. Using the solar wind (SW) and IP magnetic field (IMF) parameters, a separate NN-based model was developed to predict the storm-time strength as measured by the global Dst and ap geomagnetic indices, as well as by the locally measured K-index. The performance of the models was tested on data sets which were not part of the NN training process. The results obtained indicate that NN models provide a reliable alternative method for empirically predicting the occurrence and strength of GMS on the basis of solar and IP parameters. The demonstrated ability to predict the geoeffectiveness of solar and IP transient events is a key step in the goal towards improving space weather modelling and prediction.
- Full Text:
Modelling Ionospheric vertical drifts over the African low latitude region
- Dubazane, Makhosonke Berthwell
- Authors: Dubazane, Makhosonke Berthwell
- Date: 2018
- Subjects: Ionospheric drift , Magnetometers , Functions, Orthogonal , Neural networks (Computer science) , Ionospheric electron density -- Africa , Communication and Navigation Outage Forecasting Systems (C/NOFS)
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/63356 , vital:28396
- Description: Low/equatorial latitudes vertical plasma drifts and electric fields govern the formation and changes of ionospheric density structures which affect space-based systems such as communications, navigation and positioning. Dynamical and electrodynamical processes play important roles in plasma distribution at different altitudes. Because of the high variability of E × B drift in low latitude regions, coupled with various processes that sometimes originate from high latitudes especially during geomagnetic storm conditions, it is challenging to develop accurate vertical drift models. This is despite the fact that there are very few instruments dedicated to provide electric field and hence E × B drift data in low/equatorial latitude regions. To this effect, there exists no ground-based instrument for direct measurements of E×B drift data in the African sector. This study presents the first time investigation aimed at modelling the long-term variability of low latitude vertical E × B drift over the African sector using a combination of Communication and Navigation Outage Forecasting Systems (C/NOFS) and ground-based magnetometer observations/measurements during 2008-2013. Because the approach is based on the estimation of equatorial electrojet from ground-based magnetometer observations, the developed models are only valid for local daytime. Three modelling techniques have been considered. The application of Empirical Orthogonal Functions and partial least squares has been performed on vertical E × B drift modelling for the first time. The artificial neural networks that have the advantage of learning underlying changes between a set of inputs and known output were also used in vertical E × B drift modelling. Due to lack of E×B drift data over the African sector, the developed models were validated using satellite data and the climatological Scherliess-Fejer model incorporated within the International Reference Ionosphere model. Maximum correlation coefficient of ∼ 0.8 was achieved when validating the developed models with C/NOFS E × B drift observations that were not used in any model development. For most of the time, the climatological model overestimates the local daytime vertical E × B drift velocities. The methods and approach presented in this study provide a background for constructing vertical E ×B drift databases in longitude sectors that do not have radar instrumentation. This will in turn make it possible to study day-to-day variability of vertical E×B drift and hopefully lead to the development of regional and global models that will incorporate local time information in different longitude sectors.
- Full Text:
- Authors: Dubazane, Makhosonke Berthwell
- Date: 2018
- Subjects: Ionospheric drift , Magnetometers , Functions, Orthogonal , Neural networks (Computer science) , Ionospheric electron density -- Africa , Communication and Navigation Outage Forecasting Systems (C/NOFS)
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/63356 , vital:28396
- Description: Low/equatorial latitudes vertical plasma drifts and electric fields govern the formation and changes of ionospheric density structures which affect space-based systems such as communications, navigation and positioning. Dynamical and electrodynamical processes play important roles in plasma distribution at different altitudes. Because of the high variability of E × B drift in low latitude regions, coupled with various processes that sometimes originate from high latitudes especially during geomagnetic storm conditions, it is challenging to develop accurate vertical drift models. This is despite the fact that there are very few instruments dedicated to provide electric field and hence E × B drift data in low/equatorial latitude regions. To this effect, there exists no ground-based instrument for direct measurements of E×B drift data in the African sector. This study presents the first time investigation aimed at modelling the long-term variability of low latitude vertical E × B drift over the African sector using a combination of Communication and Navigation Outage Forecasting Systems (C/NOFS) and ground-based magnetometer observations/measurements during 2008-2013. Because the approach is based on the estimation of equatorial electrojet from ground-based magnetometer observations, the developed models are only valid for local daytime. Three modelling techniques have been considered. The application of Empirical Orthogonal Functions and partial least squares has been performed on vertical E × B drift modelling for the first time. The artificial neural networks that have the advantage of learning underlying changes between a set of inputs and known output were also used in vertical E × B drift modelling. Due to lack of E×B drift data over the African sector, the developed models were validated using satellite data and the climatological Scherliess-Fejer model incorporated within the International Reference Ionosphere model. Maximum correlation coefficient of ∼ 0.8 was achieved when validating the developed models with C/NOFS E × B drift observations that were not used in any model development. For most of the time, the climatological model overestimates the local daytime vertical E × B drift velocities. The methods and approach presented in this study provide a background for constructing vertical E ×B drift databases in longitude sectors that do not have radar instrumentation. This will in turn make it possible to study day-to-day variability of vertical E×B drift and hopefully lead to the development of regional and global models that will incorporate local time information in different longitude sectors.
- Full Text:
Deep learning applied to the semantic segmentation of tyre stockpiles
- Barfknecht, Nicholas Christopher
- Authors: Barfknecht, Nicholas Christopher
- Date: 2018
- Subjects: Neural networks (Computer science)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10948/23947 , vital:30647
- Description: The global push for manufacturing which is environmentally sustainable has disrupted standard methods of waste tyre disposal. This push is further intensified by the health and safety risks discarded tyres pose to the surrounding population. Waste tyre recycling initiatives in South Africa are on the increase; however, there is still a growing number of undocumented tyre stockpiles developing throughout the country. The plans put in place to eradicate these tyre stockpiles have been met with collection, transport and storage logistical issues caused by the remoteness and distant locales. Eastwood (2016) aimed at optimising the logistics associated with collection, by estimating the number of visible tyres from images of tyre stockpiles. This research was limited by the need for manual segmentation of each tyre stockpile located within each image. This research proposes the use of semantic segmentation to automatically segment images of tyre stockpiles. An initial review of neural network, convolutional network and semantic segmentation literature resulted in the selection of Dilated Net as the semantic segmentation architecture for this research. Dilated Net builds upon the VGG-16 classification architecture to perform semantic segmentation. This resulted in classification experiments which were evaluated using precision, recall and f1-score. The results indicated that regardless of tyre stockpile image dimension, fairly accurate levels of classification accuracy can be attained. This was followed by semantic segmentation experiments which made use of intersection over union (IoU) and pixel accuracy to evaluate the effectiveness of Dilated Net on images of tyre stockpiles. The results indicated that accurate tyre stockpile segmentation regions can be obtained and that the trained model generalises well to unseen images.
- Full Text:
- Authors: Barfknecht, Nicholas Christopher
- Date: 2018
- Subjects: Neural networks (Computer science)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10948/23947 , vital:30647
- Description: The global push for manufacturing which is environmentally sustainable has disrupted standard methods of waste tyre disposal. This push is further intensified by the health and safety risks discarded tyres pose to the surrounding population. Waste tyre recycling initiatives in South Africa are on the increase; however, there is still a growing number of undocumented tyre stockpiles developing throughout the country. The plans put in place to eradicate these tyre stockpiles have been met with collection, transport and storage logistical issues caused by the remoteness and distant locales. Eastwood (2016) aimed at optimising the logistics associated with collection, by estimating the number of visible tyres from images of tyre stockpiles. This research was limited by the need for manual segmentation of each tyre stockpile located within each image. This research proposes the use of semantic segmentation to automatically segment images of tyre stockpiles. An initial review of neural network, convolutional network and semantic segmentation literature resulted in the selection of Dilated Net as the semantic segmentation architecture for this research. Dilated Net builds upon the VGG-16 classification architecture to perform semantic segmentation. This resulted in classification experiments which were evaluated using precision, recall and f1-score. The results indicated that regardless of tyre stockpile image dimension, fairly accurate levels of classification accuracy can be attained. This was followed by semantic segmentation experiments which made use of intersection over union (IoU) and pixel accuracy to evaluate the effectiveness of Dilated Net on images of tyre stockpiles. The results indicated that accurate tyre stockpile segmentation regions can be obtained and that the trained model generalises well to unseen images.
- Full Text:
Updating the ionospheric propagation factor, M(3000)F2, global model using the neural network technique and relevant geophysical input parameters
- Oronsaye, Samuel Iyen Jeffrey
- Authors: Oronsaye, Samuel Iyen Jeffrey
- Date: 2013
- Subjects: Neural networks (Computer science) , Ionospheric radio wave propagation , Ionosphere , Geophysics , Ionosondes
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5434 , http://hdl.handle.net/10962/d1001609 , Neural networks (Computer science) , Ionospheric radio wave propagation , Ionosphere , Geophysics , Ionosondes
- Description: This thesis presents an update to the ionospheric propagation factor, M(3000)F2, global empirical model developed by Oyeyemi et al. (2007) (NNO). An additional aim of this research was to produce the updated model in a form that could be used within the International Reference Ionosphere (IRI) global model without adding to the complexity of the IRI. M(3000)F2 is the highest frequency at which a radio signal can be received over a distance of 3000 km after reflection in the ionosphere. The study employed the artificial neural network (ANN) technique using relevant geophysical input parameters which are known to influence the M(3000)F2 parameter. Ionosonde data from 135 ionospheric stations globally, including a number of equatorial stations, were available for this work. M(3000)F2 hourly values from 1976 to 2008, spanning all periods of low and high solar activity were used for model development and verification. A preliminary investigation was first carried out using a relatively small dataset to determine the appropriate input parameters for global M(3000)F2 parameter modelling. Inputs representing diurnal variation, seasonal variation, solar variation, modified dip latitude, longitude and latitude were found to be the optimum parameters for modelling the diurnal and seasonal variations of the M(3000)F2 parameter both on a temporal and spatial basis. The outcome of the preliminary study was applied to the overall dataset to develop a comprehensive ANN M(3000)F2 model which displays a remarkable improvement over the NNO model as well as the IRI version. The model shows 7.11% and 3.85% improvement over the NNO model as well as 13.04% and 10.05% over the IRI M(3000)F2 model, around high and low solar activity periods respectively. A comparison of the diurnal structure of the ANN and the IRI predicted values reveal that the ANN model is more effective in representing the diurnal structure of the M(3000)F2 values than the IRI M(3000)F2 model. The capability of the ANN model in reproducing the seasonal variation pattern of the M(3000)F2 values at 00h00UT, 06h00UT, 12h00UT, and l8h00UT more appropriately than the IRI version is illustrated in this work. A significant result obtained in this study is the ability of the ANN model in improving the post-sunset predicted values of the M(3000)F2 parameter which is known to be problematic to the IRI M(3000)F2 model in the low-latitude and the equatorial regions. The final M(3000)F2 model provides for an improved equatorial prediction and a simplified input space that allows for easy incorporation into the IRI model.
- Full Text:
- Authors: Oronsaye, Samuel Iyen Jeffrey
- Date: 2013
- Subjects: Neural networks (Computer science) , Ionospheric radio wave propagation , Ionosphere , Geophysics , Ionosondes
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5434 , http://hdl.handle.net/10962/d1001609 , Neural networks (Computer science) , Ionospheric radio wave propagation , Ionosphere , Geophysics , Ionosondes
- Description: This thesis presents an update to the ionospheric propagation factor, M(3000)F2, global empirical model developed by Oyeyemi et al. (2007) (NNO). An additional aim of this research was to produce the updated model in a form that could be used within the International Reference Ionosphere (IRI) global model without adding to the complexity of the IRI. M(3000)F2 is the highest frequency at which a radio signal can be received over a distance of 3000 km after reflection in the ionosphere. The study employed the artificial neural network (ANN) technique using relevant geophysical input parameters which are known to influence the M(3000)F2 parameter. Ionosonde data from 135 ionospheric stations globally, including a number of equatorial stations, were available for this work. M(3000)F2 hourly values from 1976 to 2008, spanning all periods of low and high solar activity were used for model development and verification. A preliminary investigation was first carried out using a relatively small dataset to determine the appropriate input parameters for global M(3000)F2 parameter modelling. Inputs representing diurnal variation, seasonal variation, solar variation, modified dip latitude, longitude and latitude were found to be the optimum parameters for modelling the diurnal and seasonal variations of the M(3000)F2 parameter both on a temporal and spatial basis. The outcome of the preliminary study was applied to the overall dataset to develop a comprehensive ANN M(3000)F2 model which displays a remarkable improvement over the NNO model as well as the IRI version. The model shows 7.11% and 3.85% improvement over the NNO model as well as 13.04% and 10.05% over the IRI M(3000)F2 model, around high and low solar activity periods respectively. A comparison of the diurnal structure of the ANN and the IRI predicted values reveal that the ANN model is more effective in representing the diurnal structure of the M(3000)F2 values than the IRI M(3000)F2 model. The capability of the ANN model in reproducing the seasonal variation pattern of the M(3000)F2 values at 00h00UT, 06h00UT, 12h00UT, and l8h00UT more appropriately than the IRI version is illustrated in this work. A significant result obtained in this study is the ability of the ANN model in improving the post-sunset predicted values of the M(3000)F2 parameter which is known to be problematic to the IRI M(3000)F2 model in the low-latitude and the equatorial regions. The final M(3000)F2 model provides for an improved equatorial prediction and a simplified input space that allows for easy incorporation into the IRI model.
- Full Text:
NeGPAIM : a model for the proactive detection of information security intrusions, utilizing fuzzy logic and neural network techniques
- Authors: Botha, Martin
- Date: 2003
- Subjects: Computer security , Fuzzy logic , Neural networks (Computer science)
- Language: English
- Type: Thesis , Doctoral , DTech (Computer Studies)
- Identifier: vital:10792 , http://hdl.handle.net/10948/142 , Computer security , Fuzzy logic , Neural networks (Computer science)
- Description: “Information is the lifeblood of any organisation and everything an organisation does involves using information in some way” (Peppard, 1993, p.5). Therefore, it can be argued that information is an organisation’s most precious asset and as with all other assets, like equipment, money, personnel, and so on, this asset needs to be protected properly at all times (Whitman & Mattord, 2003, pp.1-14). The introduction of modern technologies, such as e-commerce, will not only increase the value of information, but will also increase security requirements of those organizations that are intending to utilize such technologies. Evidence of these requirements can be observed in the 2001 CSI/FBI Computer Crime and Security Survey (Power, 2001). According to this source, the annual financial losses caused through security breaches in 2001 have increased by 277% when compared to the results from 1997. The 2002 and 2003 Computer Crime and Security Survey confirms this by stating that the threat of computer crime and other related information security breaches continues unabated and that the financial toll is mounting (Richardson, 2003). Information is normally protected by means of a process of identifying, implementing, managing and maintaining a set of information security controls, countermeasures or safeguards (GMITS, 1998). In the rest of this thesis, the term security controls will be utilized when referring to information protection mechanisms or procedures. These security controls can be of a physical (for example, door locks), a technical (for example, passwords) and/or a procedural nature (for example, to make back-up copies of critical files)(Pfleeger, 2003, pp.22-23; Stallings, 1995, p.1). The effective identification, implementation, management and maintenance of this set of security controls are usually integrated into an Information Security Management Program, the objective of which is to ensure an acceptable level of information confidentiality, integrity and availability within the organisation at all times (Pfleeger, 2003, pp.10-12; Whitman & Mattord, 2003, pp.1-14; Von Solms, 1993). Once the most effective security controls have been identified and implemented, it is important that this level of security be maintained through a process of continued control. For this reason, it is important that proper change management, measurement, audit, monitoring and detection be implemented (Bruce & Dempsey, 1997). Monitoring and detection are important functions and refer to the ability to identify and detect situations where information security policies have been compromised and/or breached or security violations have taken place (BS 7799, 1999; GMITS, 1998; Von Solms, 1993). The Information Security Officer is usually the person responsible for most of the operational tasks in the control process within an Information Security Management Program (Von Solms, 1993). In practice, these tasks could also be performed by a system administrator, network administrator, etc. In the rest of the thesis the person responsible for these tasks will be referred to as system administrator. These tasks have proved to be very challenging and demanding. The main reason for this is the rapid advancement of technology in the discipline of Information Technology, for example, the modern distributed computing environment, the Internet, the “freedom” of end-users, the introduction of e-commerce, and etc. (Whitman & Mattord, 2003, p.9; Sundaram, 2000, p.1; Moses, 2001, p.6; Allen, 2001, p.1). As a result of the importance of this control process, and especially the monitoring and detection tasks, it is vital that the system administrator has proper tools at his/her disposal to perform this task effectively. Many of the tools that are currently available to the system administrator, utilize technical controls, such as, audit logs and user profiles. Audit logs are normally used to record all events executed on a system. These logs are simply files that record security and non-security related events that take place on a computer system within an organisation. For this reason, these logs can be used by these tools to gain valuable information on security violations, such as intrusions and, therefore, are able to monitor the current actions of each user (Microsoft, 2002; Smith, 1989, pp. 116-117). User profiles are files that contain information about users` desktop operating environments and are used by the operating system to structure each user environment so that it is the same each time a user logs onto the system (Microsoft, 2002; Block, 1994, p.54). Thus, a user profile is used to indicate which actions the user is allowed to perform on the system. Both technical controls (audit logs and user profiles) are frequently available in most computer environments (such as, UNIX, Firewalls, Windows, etc.) (Cooper et al, 1995, p.129). Therefore, seeing that the audit logs record most events taking place on an information system and the user profile indicates the authorized actions of each user, the system administrator could most probably utilise these controls in a more proactive manner.
- Full Text:
- Authors: Botha, Martin
- Date: 2003
- Subjects: Computer security , Fuzzy logic , Neural networks (Computer science)
- Language: English
- Type: Thesis , Doctoral , DTech (Computer Studies)
- Identifier: vital:10792 , http://hdl.handle.net/10948/142 , Computer security , Fuzzy logic , Neural networks (Computer science)
- Description: “Information is the lifeblood of any organisation and everything an organisation does involves using information in some way” (Peppard, 1993, p.5). Therefore, it can be argued that information is an organisation’s most precious asset and as with all other assets, like equipment, money, personnel, and so on, this asset needs to be protected properly at all times (Whitman & Mattord, 2003, pp.1-14). The introduction of modern technologies, such as e-commerce, will not only increase the value of information, but will also increase security requirements of those organizations that are intending to utilize such technologies. Evidence of these requirements can be observed in the 2001 CSI/FBI Computer Crime and Security Survey (Power, 2001). According to this source, the annual financial losses caused through security breaches in 2001 have increased by 277% when compared to the results from 1997. The 2002 and 2003 Computer Crime and Security Survey confirms this by stating that the threat of computer crime and other related information security breaches continues unabated and that the financial toll is mounting (Richardson, 2003). Information is normally protected by means of a process of identifying, implementing, managing and maintaining a set of information security controls, countermeasures or safeguards (GMITS, 1998). In the rest of this thesis, the term security controls will be utilized when referring to information protection mechanisms or procedures. These security controls can be of a physical (for example, door locks), a technical (for example, passwords) and/or a procedural nature (for example, to make back-up copies of critical files)(Pfleeger, 2003, pp.22-23; Stallings, 1995, p.1). The effective identification, implementation, management and maintenance of this set of security controls are usually integrated into an Information Security Management Program, the objective of which is to ensure an acceptable level of information confidentiality, integrity and availability within the organisation at all times (Pfleeger, 2003, pp.10-12; Whitman & Mattord, 2003, pp.1-14; Von Solms, 1993). Once the most effective security controls have been identified and implemented, it is important that this level of security be maintained through a process of continued control. For this reason, it is important that proper change management, measurement, audit, monitoring and detection be implemented (Bruce & Dempsey, 1997). Monitoring and detection are important functions and refer to the ability to identify and detect situations where information security policies have been compromised and/or breached or security violations have taken place (BS 7799, 1999; GMITS, 1998; Von Solms, 1993). The Information Security Officer is usually the person responsible for most of the operational tasks in the control process within an Information Security Management Program (Von Solms, 1993). In practice, these tasks could also be performed by a system administrator, network administrator, etc. In the rest of the thesis the person responsible for these tasks will be referred to as system administrator. These tasks have proved to be very challenging and demanding. The main reason for this is the rapid advancement of technology in the discipline of Information Technology, for example, the modern distributed computing environment, the Internet, the “freedom” of end-users, the introduction of e-commerce, and etc. (Whitman & Mattord, 2003, p.9; Sundaram, 2000, p.1; Moses, 2001, p.6; Allen, 2001, p.1). As a result of the importance of this control process, and especially the monitoring and detection tasks, it is vital that the system administrator has proper tools at his/her disposal to perform this task effectively. Many of the tools that are currently available to the system administrator, utilize technical controls, such as, audit logs and user profiles. Audit logs are normally used to record all events executed on a system. These logs are simply files that record security and non-security related events that take place on a computer system within an organisation. For this reason, these logs can be used by these tools to gain valuable information on security violations, such as intrusions and, therefore, are able to monitor the current actions of each user (Microsoft, 2002; Smith, 1989, pp. 116-117). User profiles are files that contain information about users` desktop operating environments and are used by the operating system to structure each user environment so that it is the same each time a user logs onto the system (Microsoft, 2002; Block, 1994, p.54). Thus, a user profile is used to indicate which actions the user is allowed to perform on the system. Both technical controls (audit logs and user profiles) are frequently available in most computer environments (such as, UNIX, Firewalls, Windows, etc.) (Cooper et al, 1995, p.129). Therefore, seeing that the audit logs record most events taking place on an information system and the user profile indicates the authorized actions of each user, the system administrator could most probably utilise these controls in a more proactive manner.
- Full Text:
Intelligence based error detection and classification for 3D measurement systems
- Van Rooyen, Ivän Jan-Richard
- Authors: Van Rooyen, Ivän Jan-Richard
- Date: 2017
- Subjects: Computer integrated manufacturing systems , Manufacturing processes -- Automation , Computers, Special purpose , Neural networks (Computer science)
- Language: English
- Type: Thesis , Masters , MEng
- Identifier: http://hdl.handle.net/10948/21241 , vital:29461
- Description: For many years 2D machine vision has been used to perform automated inspection and measuring in the manufacturing environment. A strong drive to automate manufacturing has meant improvements in robotics and sensor technologies. So has machine vision seen a steady movement away from 2D and towards 3D. It is necessary to research and develop software that can use these new 3D sensing equipment in novel and useful ways. One task that is particularly useful, for a variety of situations is object recognition. It was hypothesised that it should be possible to train artificial neural networks to recognise 3D objects. For this purpose a 3D laser scanner was developed. This scanner and its software was developed and tested first in a virtual environment and what was learned there was then used to implemented an actual scanner. This scanner served the purpose of verifying what was done in the virtual environment. Neural networks of different sized were trained to establish whether they are a feasible classifier for the task of object recognition. Testing showed that, with the correct preprocessing, it is possible to perform 3D object recognition on simple geometric shapes by means of artificial neural networks.
- Full Text:
- Authors: Van Rooyen, Ivän Jan-Richard
- Date: 2017
- Subjects: Computer integrated manufacturing systems , Manufacturing processes -- Automation , Computers, Special purpose , Neural networks (Computer science)
- Language: English
- Type: Thesis , Masters , MEng
- Identifier: http://hdl.handle.net/10948/21241 , vital:29461
- Description: For many years 2D machine vision has been used to perform automated inspection and measuring in the manufacturing environment. A strong drive to automate manufacturing has meant improvements in robotics and sensor technologies. So has machine vision seen a steady movement away from 2D and towards 3D. It is necessary to research and develop software that can use these new 3D sensing equipment in novel and useful ways. One task that is particularly useful, for a variety of situations is object recognition. It was hypothesised that it should be possible to train artificial neural networks to recognise 3D objects. For this purpose a 3D laser scanner was developed. This scanner and its software was developed and tested first in a virtual environment and what was learned there was then used to implemented an actual scanner. This scanner served the purpose of verifying what was done in the virtual environment. Neural networks of different sized were trained to establish whether they are a feasible classifier for the task of object recognition. Testing showed that, with the correct preprocessing, it is possible to perform 3D object recognition on simple geometric shapes by means of artificial neural networks.
- Full Text:
Tomographic imaging of East African equatorial ionosphere and study of equatorial plasma bubbles
- Authors: Giday, Nigussie Mezgebe
- Date: 2018
- Subjects: Ionosphere -- Africa, Central , Tomography -- Africa, Central , Global Positioning System , Neural networks (Computer science) , Space environment , Multi-Instrument Data Analysis System (MIDAS) , Equatorial plasma bubbles
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/63980 , vital:28516
- Description: In spite of the fact that the African ionospheric equatorial region has the largest ground footprint along the geomagnetic equator, it has not been well studied due to the absence of adequate ground-based instruments. This thesis presents research on both tomographic imaging of the African equatorial ionosphere and the study of the ionospheric irregularities/equatorial plasma bubbles (EPBs) under varying geomagnetic conditions. The Multi-Instrument Data Analysis System (MIDAS), an inversion algorithm, was investigated for its validity and ability as a tool to reconstruct multi-scaled ionospheric structures for different geomagnetic conditions. This was done for the narrow East African longitude sector with data from the available ground Global Positioning Sys-tem (GPS) receivers. The MIDAS results were compared to the results of two models, namely the IRI and GIM. MIDAS results compared more favourably with the observation vertical total electron content (VTEC), with a computed maximum correlation coefficient (r) of 0.99 and minimum root-mean-square error (RMSE) of 2.91 TECU, than did the results of the IRI-2012 and GIM models with maximum r of 0.93 and 0.99, and minimum RMSE of 13.03 TECU and 6.52 TECU, respectively, over all the test stations and validation days. The ability of MIDAS to reconstruct storm-time TEC was also compared with the results produced by the use of a Artificial Neural Net-work (ANN) for the African low- and mid-latitude regions. In terms of latitude, on average,MIDAS performed 13.44 % better than ANN in the African mid-latitudes, while MIDAS under performed in low-latitudes. This thesis also reports on the effects of moderate geomagnetic conditions on the evolution of EPBs and/or ionospheric irregularities during their season of occurrence using data from (or measurements by) space- and ground-based instruments for the east African equatorial sector. The study showed that the strength of daytime equatorial electrojet (EEJ), the steepness of the TEC peak-to-trough gradient and/or the meridional/transequatorial thermospheric winds sometimes have collective/interwoven effects, while at other times one mechanism dominates. In summary, this research offered tomographic results that outperform the results of the commonly used (“standard”) global models (i.e. IRI and GIM) for a longitude sector of importance to space weather, which has not been adequately studied due to a lack of sufficient instrumentation.
- Full Text:
- Authors: Giday, Nigussie Mezgebe
- Date: 2018
- Subjects: Ionosphere -- Africa, Central , Tomography -- Africa, Central , Global Positioning System , Neural networks (Computer science) , Space environment , Multi-Instrument Data Analysis System (MIDAS) , Equatorial plasma bubbles
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/63980 , vital:28516
- Description: In spite of the fact that the African ionospheric equatorial region has the largest ground footprint along the geomagnetic equator, it has not been well studied due to the absence of adequate ground-based instruments. This thesis presents research on both tomographic imaging of the African equatorial ionosphere and the study of the ionospheric irregularities/equatorial plasma bubbles (EPBs) under varying geomagnetic conditions. The Multi-Instrument Data Analysis System (MIDAS), an inversion algorithm, was investigated for its validity and ability as a tool to reconstruct multi-scaled ionospheric structures for different geomagnetic conditions. This was done for the narrow East African longitude sector with data from the available ground Global Positioning Sys-tem (GPS) receivers. The MIDAS results were compared to the results of two models, namely the IRI and GIM. MIDAS results compared more favourably with the observation vertical total electron content (VTEC), with a computed maximum correlation coefficient (r) of 0.99 and minimum root-mean-square error (RMSE) of 2.91 TECU, than did the results of the IRI-2012 and GIM models with maximum r of 0.93 and 0.99, and minimum RMSE of 13.03 TECU and 6.52 TECU, respectively, over all the test stations and validation days. The ability of MIDAS to reconstruct storm-time TEC was also compared with the results produced by the use of a Artificial Neural Net-work (ANN) for the African low- and mid-latitude regions. In terms of latitude, on average,MIDAS performed 13.44 % better than ANN in the African mid-latitudes, while MIDAS under performed in low-latitudes. This thesis also reports on the effects of moderate geomagnetic conditions on the evolution of EPBs and/or ionospheric irregularities during their season of occurrence using data from (or measurements by) space- and ground-based instruments for the east African equatorial sector. The study showed that the strength of daytime equatorial electrojet (EEJ), the steepness of the TEC peak-to-trough gradient and/or the meridional/transequatorial thermospheric winds sometimes have collective/interwoven effects, while at other times one mechanism dominates. In summary, this research offered tomographic results that outperform the results of the commonly used (“standard”) global models (i.e. IRI and GIM) for a longitude sector of importance to space weather, which has not been adequately studied due to a lack of sufficient instrumentation.
- Full Text: