Agricultural disturbance affects taxonomic and functional diversity of Afrotropical macroinvertebrate composition in a South African river system
- Akamagwuna, Frank C, Odume, Oghenekaro N, Richoux, Nicole B
- Authors: Akamagwuna, Frank C , Odume, Oghenekaro N , Richoux, Nicole B
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/454293 , vital:75333 , xlink:href="https://doi.org/10.1016/j.indic.2023.100251"
- Description: Developing species-level biomonitoring tools to monitor riverine systems threatened by anthropogenic pollution, including local agricultural activities in the Afrotropical region, remain a critical challenge. Here we explored the utility of taxonomic-based (diversity, richness, and composition) as well as functional-based (functional diversity) indices to examine the effects of agricultural disturbance on macroinvertebrate communities in the Kat River, Eastern Cape Province of South Africa. We collected physicochemical parameters and macroinvertebrates from eight sites delineated into four land-use categories (highly impacted, HIC; impacted category, IC; moderately impacted, MIC and least impacted, LIC) using agricultural land cover. We recorded 70 macroinvertebrate taxa belonging to 49 families and 48 genera in the Kat River. Redundancy analysis (RDA) and Pearson correlation analysis revealed that species of Lymnaeidae, Belostomatidae, Planorbidae and Libellulidae families and class Oligochaeta were tolerant to agricultural disturbance, as they were dominant in the highly impacted sites and were significantly associated with high salinity, temperature, total dissolved solids (TDS), flow velocity and nutrients. Conversely, species of Baetidae, Caenidae and Potamonautidae were negatively associated with the highly impacted sites and high salinity, temperature, and nutrients. On the other hand, taxonomic indices showed more sensitivity to indicators of agricultural pollution than functional indices, with taxon richness, Shannon index, Simpson's index and Margalef's index declining significantly in the highly disturbed sites (p less than 0.05). They were negatively associated with high electrical conductivity, large river width, and high nitrite and nitrate concentrations; hence they were identified as indicator metrics sensitive to agricultural pollution. Overall, our study revealed that agricultural disturbance could differentially affect the structure and function of macroinvertebrates, and indicator taxonomic and functional indices were identified for long-term monitoring of rivers that drain agricultural landscapes.
- Full Text:
- Date Issued: 2023
- Authors: Akamagwuna, Frank C , Odume, Oghenekaro N , Richoux, Nicole B
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/454293 , vital:75333 , xlink:href="https://doi.org/10.1016/j.indic.2023.100251"
- Description: Developing species-level biomonitoring tools to monitor riverine systems threatened by anthropogenic pollution, including local agricultural activities in the Afrotropical region, remain a critical challenge. Here we explored the utility of taxonomic-based (diversity, richness, and composition) as well as functional-based (functional diversity) indices to examine the effects of agricultural disturbance on macroinvertebrate communities in the Kat River, Eastern Cape Province of South Africa. We collected physicochemical parameters and macroinvertebrates from eight sites delineated into four land-use categories (highly impacted, HIC; impacted category, IC; moderately impacted, MIC and least impacted, LIC) using agricultural land cover. We recorded 70 macroinvertebrate taxa belonging to 49 families and 48 genera in the Kat River. Redundancy analysis (RDA) and Pearson correlation analysis revealed that species of Lymnaeidae, Belostomatidae, Planorbidae and Libellulidae families and class Oligochaeta were tolerant to agricultural disturbance, as they were dominant in the highly impacted sites and were significantly associated with high salinity, temperature, total dissolved solids (TDS), flow velocity and nutrients. Conversely, species of Baetidae, Caenidae and Potamonautidae were negatively associated with the highly impacted sites and high salinity, temperature, and nutrients. On the other hand, taxonomic indices showed more sensitivity to indicators of agricultural pollution than functional indices, with taxon richness, Shannon index, Simpson's index and Margalef's index declining significantly in the highly disturbed sites (p less than 0.05). They were negatively associated with high electrical conductivity, large river width, and high nitrite and nitrate concentrations; hence they were identified as indicator metrics sensitive to agricultural pollution. Overall, our study revealed that agricultural disturbance could differentially affect the structure and function of macroinvertebrates, and indicator taxonomic and functional indices were identified for long-term monitoring of rivers that drain agricultural landscapes.
- Full Text:
- Date Issued: 2023
Assessment of spatial variation in carbon utilization by benthic and pelagic invertebrates in a temperate South African estuary using stable isotope signatures
- Richoux, Nicole B, Froneman, P William
- Authors: Richoux, Nicole B , Froneman, P William
- Date: 2007
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/457923 , vital:75695 , xlink:href="https://doi.org/10.1016/j.ecss.2006.09.007 "
- Description: Stable isotope analyses (δ13C and δ15N) were used to evaluate the spatial variations in carbon flow from primary producers to consumers at two sites in the temperate and permanently open Kariega Estuary on the southeastern coast of South Africa during October 2005 and February 2006. One site was located opposite a salt marsh while the second was upstream of the marsh. Except for significantly enriched δ13C values of Zostera capensis and surface sediments near the salt marsh, the δ13C and δ15N signatures of the producers were similar between sites. The invertebrates were clustered into groups roughly corresponding to the predominant feeding modes. The suspension feeders showed δ13C values closest to the seston, whereas the deposit feeders, detritivores and scavengers/predators had more enriched δ13C values reflecting primary carbon sources that were likely a combination of seston, Spartina maritima and Z. capensis at the upstream site, with an increased influence of benthic algae and Z. capensis at the salt marsh site. The δ15N signatures of the consumers showed a stepwise continuum rather than distinct levels of fractionation, indicating highly complex trophic linkages and significant dietary overlap among the species. Consumers exhibited significantly enriched δ13C values at the salt marsh site, an effect that was attributed to enriched Z. capensis detritus in this region in addition to increased phytoplankton biomass in their diets compared with invertebrates living upstream. The data reinforce the concept that between-site variations in the stable isotope ratios of consumers can result not only from dietary shifts, but also from alterations in the isotope ratios of primary producers.
- Full Text:
- Date Issued: 2007
- Authors: Richoux, Nicole B , Froneman, P William
- Date: 2007
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/457923 , vital:75695 , xlink:href="https://doi.org/10.1016/j.ecss.2006.09.007 "
- Description: Stable isotope analyses (δ13C and δ15N) were used to evaluate the spatial variations in carbon flow from primary producers to consumers at two sites in the temperate and permanently open Kariega Estuary on the southeastern coast of South Africa during October 2005 and February 2006. One site was located opposite a salt marsh while the second was upstream of the marsh. Except for significantly enriched δ13C values of Zostera capensis and surface sediments near the salt marsh, the δ13C and δ15N signatures of the producers were similar between sites. The invertebrates were clustered into groups roughly corresponding to the predominant feeding modes. The suspension feeders showed δ13C values closest to the seston, whereas the deposit feeders, detritivores and scavengers/predators had more enriched δ13C values reflecting primary carbon sources that were likely a combination of seston, Spartina maritima and Z. capensis at the upstream site, with an increased influence of benthic algae and Z. capensis at the salt marsh site. The δ15N signatures of the consumers showed a stepwise continuum rather than distinct levels of fractionation, indicating highly complex trophic linkages and significant dietary overlap among the species. Consumers exhibited significantly enriched δ13C values at the salt marsh site, an effect that was attributed to enriched Z. capensis detritus in this region in addition to increased phytoplankton biomass in their diets compared with invertebrates living upstream. The data reinforce the concept that between-site variations in the stable isotope ratios of consumers can result not only from dietary shifts, but also from alterations in the isotope ratios of primary producers.
- Full Text:
- Date Issued: 2007
Characterisation of the dietary relationships of two sympatric hake species, Merluccius capensis and M. paradoxus, in the northern Benguela region using fatty acid profiles
- Iitembu, Johannes A, Richoux, Nicole B
- Authors: Iitembu, Johannes A , Richoux, Nicole B
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/456010 , vital:75475 , xlink:href="https://doi.org/10.2989/1814232X.2015.1115778"
- Description: The two sympatric species of Cape hake, Merluccius capensis and M. paradoxus, have been the main targets of bottom-trawl fisheries off Namibia for several decades. The feeding ecology of these hakes has been studied mainly using stomach content analyses and thus there remain some gaps in our knowledge about food assimilated over the longer term. In this study, we used fatty acid (FA) profiles to characterise the dietary relationships of M. capensis and M. paradoxus. Muscle samples from hake (n=110) and their known prey (n=68) were collected during trawl surveys off Namibia during 2011. Significant differences between the neutral FA profiles of the hake populations were detected in December 2011 but not in January 2011, an indication of temporal variations in diet and resource partitioning. Comparisons of the neutral FAs in hake and the total FAs of potential prey showed no clear trophic connections, with the exception of flying squid Todarodes sagittatus, which had FA profiles very similar to those of M. paradoxus in December 2011. Our results highlight the complex and temporally shifting relationships that exist between hake and the large pool of prey available to them, and between the two hake species that overlap in their feeding habits and distribution within the highly productive Benguela Current region.
- Full Text:
- Date Issued: 2016
- Authors: Iitembu, Johannes A , Richoux, Nicole B
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/456010 , vital:75475 , xlink:href="https://doi.org/10.2989/1814232X.2015.1115778"
- Description: The two sympatric species of Cape hake, Merluccius capensis and M. paradoxus, have been the main targets of bottom-trawl fisheries off Namibia for several decades. The feeding ecology of these hakes has been studied mainly using stomach content analyses and thus there remain some gaps in our knowledge about food assimilated over the longer term. In this study, we used fatty acid (FA) profiles to characterise the dietary relationships of M. capensis and M. paradoxus. Muscle samples from hake (n=110) and their known prey (n=68) were collected during trawl surveys off Namibia during 2011. Significant differences between the neutral FA profiles of the hake populations were detected in December 2011 but not in January 2011, an indication of temporal variations in diet and resource partitioning. Comparisons of the neutral FAs in hake and the total FAs of potential prey showed no clear trophic connections, with the exception of flying squid Todarodes sagittatus, which had FA profiles very similar to those of M. paradoxus in December 2011. Our results highlight the complex and temporally shifting relationships that exist between hake and the large pool of prey available to them, and between the two hake species that overlap in their feeding habits and distribution within the highly productive Benguela Current region.
- Full Text:
- Date Issued: 2016
Connectivity through allochthony: Reciprocal links between adjacent aquatic and terrestrial ecosystems in South Africa
- Richoux, Nicole B, Moyo, Sydney, Chari, Lenin D, Bergamino, Leandro, Carassou, Laure, Dalu, Tatenda, Hean, Jeffrey W, Sikutshwa, Likho, Gininda, Simphiwe, Magoro, Mandla L, Perhar, Gurbir, Ni, Felicity, Villet, Martin H, Whitfield, Alan K, Parker, Daniel M, Froneman, P William, Arhonditsis, George, Craig, Adrian J F K
- Authors: Richoux, Nicole B , Moyo, Sydney , Chari, Lenin D , Bergamino, Leandro , Carassou, Laure , Dalu, Tatenda , Hean, Jeffrey W , Sikutshwa, Likho , Gininda, Simphiwe , Magoro, Mandla L , Perhar, Gurbir , Ni, Felicity , Villet, Martin H , Whitfield, Alan K , Parker, Daniel M , Froneman, P William , Arhonditsis, George , Craig, Adrian J F K
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , report
- Identifier: http://hdl.handle.net/10962/438363 , vital:73454 , ISBN 978-1-4312-0679-7 , https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/2186-1-15.pdf
- Description: An important aspect of the dynamics of nutrients and pollutants in natural systems is captured in the concept of allochthony, founded on the observation that nutrients and energy in a variety of forms are transferred between adjacent habitats, com-munities and ecosystems that are not routinely considered as connected. Different forms of nutrients and energy move across the conceptual boundaries of habitats via organisms’ activities or physical processes such as wind or water currents, and these transfers can represent important food subsidies. Such cross-partition ecolog-ical subsidies can augment the nutritional condition, biomass and biodiversity of communities, particularly where local production (or autochthony) alone may be inadequate to support local food webs. Furthermore, organic subsidies can influ-ence population dynamics, community interactions and ecosystem processes, and can represent dominant flux inputs in ecosystem budgets. Our intention was to ex-plore organic nutrient fluxes in relation to a primarily lotic (i.e. flowing) aquatic sys-tem at the scale of a hydrological catchment.
- Full Text:
- Date Issued: 2015
- Authors: Richoux, Nicole B , Moyo, Sydney , Chari, Lenin D , Bergamino, Leandro , Carassou, Laure , Dalu, Tatenda , Hean, Jeffrey W , Sikutshwa, Likho , Gininda, Simphiwe , Magoro, Mandla L , Perhar, Gurbir , Ni, Felicity , Villet, Martin H , Whitfield, Alan K , Parker, Daniel M , Froneman, P William , Arhonditsis, George , Craig, Adrian J F K
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , report
- Identifier: http://hdl.handle.net/10962/438363 , vital:73454 , ISBN 978-1-4312-0679-7 , https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/2186-1-15.pdf
- Description: An important aspect of the dynamics of nutrients and pollutants in natural systems is captured in the concept of allochthony, founded on the observation that nutrients and energy in a variety of forms are transferred between adjacent habitats, com-munities and ecosystems that are not routinely considered as connected. Different forms of nutrients and energy move across the conceptual boundaries of habitats via organisms’ activities or physical processes such as wind or water currents, and these transfers can represent important food subsidies. Such cross-partition ecolog-ical subsidies can augment the nutritional condition, biomass and biodiversity of communities, particularly where local production (or autochthony) alone may be inadequate to support local food webs. Furthermore, organic subsidies can influ-ence population dynamics, community interactions and ecosystem processes, and can represent dominant flux inputs in ecosystem budgets. Our intention was to ex-plore organic nutrient fluxes in relation to a primarily lotic (i.e. flowing) aquatic sys-tem at the scale of a hydrological catchment.
- Full Text:
- Date Issued: 2015
Critical indirect effects of climate change on sub-A ntarctic ecosystem functioning
- Allan, E Louise, Froneman, P William, Durgadoo, Jonathan V, McQuaid, Christopher D, Ansorge, Isabelle J, Richoux, Nicole B
- Authors: Allan, E Louise , Froneman, P William , Durgadoo, Jonathan V , McQuaid, Christopher D , Ansorge, Isabelle J , Richoux, Nicole B
- Date: 2013
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/457934 , vital:75696 , xlink:href="https://doi.org/10.1002/ece3.678"
- Description: Sub‐Antarctic islands represent critical breeding habitats for land‐based top predators that dominate Southern Ocean food webs. Reproduction and molting incur high energetic demands that are sustained at the sub‐Antarctic Prince Edward Islands (PEIs) by both inshore (phytoplankton blooms; “island mass effect”; autochthonous) and offshore (allochthonous) productivity. As the relative contributions of these sustenance pathways are, in turn, affected by oceanographic conditions around the PEIs, we address the consequences of climatically driven changes in the physical environment on this island ecosystem. We show that there has been a measurable long‐term shift in the carbon isotope signatures of the benthos inhabiting the shallow shelf region of the PEIs, most likely reflecting a long‐term decline in enhanced phytoplankton productivity at the islands in response to a climate‐driven shift in the position of the sub‐Antarctic Front. Our results indicate that regional climate change has affected the balance between allochthonous and autochthonous productivity at the PEIs. Over the last three decades, inshore‐feeding top predators at the islands have shown a marked decrease in their population sizes. Conversely, population sizes of offshore‐feeding predators that forage over great distances from the islands have remained stable or increased, with one exception. Population decline of predators that rely heavily on organisms inhabiting the inshore region strongly suggest changes in prey availability, which are likely driven by factors such as fisheries impacts on some prey populations and shifts in competitive interactions among predators. In addition to these local factors, our analysis indicates that changes in prey availability may also result indirectly through regional climate change effects on the islands' marine ecosystem. Most importantly, our results indicate that a fundamental shift in the balance between allochthonous and autochthonous trophic pathways within this island ecosystem may be detected throughout the food web, demonstrating that the most powerful effects of climate change on marine systems may be indirect.
- Full Text:
- Date Issued: 2013
- Authors: Allan, E Louise , Froneman, P William , Durgadoo, Jonathan V , McQuaid, Christopher D , Ansorge, Isabelle J , Richoux, Nicole B
- Date: 2013
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/457934 , vital:75696 , xlink:href="https://doi.org/10.1002/ece3.678"
- Description: Sub‐Antarctic islands represent critical breeding habitats for land‐based top predators that dominate Southern Ocean food webs. Reproduction and molting incur high energetic demands that are sustained at the sub‐Antarctic Prince Edward Islands (PEIs) by both inshore (phytoplankton blooms; “island mass effect”; autochthonous) and offshore (allochthonous) productivity. As the relative contributions of these sustenance pathways are, in turn, affected by oceanographic conditions around the PEIs, we address the consequences of climatically driven changes in the physical environment on this island ecosystem. We show that there has been a measurable long‐term shift in the carbon isotope signatures of the benthos inhabiting the shallow shelf region of the PEIs, most likely reflecting a long‐term decline in enhanced phytoplankton productivity at the islands in response to a climate‐driven shift in the position of the sub‐Antarctic Front. Our results indicate that regional climate change has affected the balance between allochthonous and autochthonous productivity at the PEIs. Over the last three decades, inshore‐feeding top predators at the islands have shown a marked decrease in their population sizes. Conversely, population sizes of offshore‐feeding predators that forage over great distances from the islands have remained stable or increased, with one exception. Population decline of predators that rely heavily on organisms inhabiting the inshore region strongly suggest changes in prey availability, which are likely driven by factors such as fisheries impacts on some prey populations and shifts in competitive interactions among predators. In addition to these local factors, our analysis indicates that changes in prey availability may also result indirectly through regional climate change effects on the islands' marine ecosystem. Most importantly, our results indicate that a fundamental shift in the balance between allochthonous and autochthonous trophic pathways within this island ecosystem may be detected throughout the food web, demonstrating that the most powerful effects of climate change on marine systems may be indirect.
- Full Text:
- Date Issued: 2013
Cross boundary fluxes: Basal resource use by aquatic invertebrates matches fatty acid transfers from river to land
- Moyo, Sydney, Richoux, Nicole B
- Authors: Moyo, Sydney , Richoux, Nicole B
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/454304 , vital:75334 , xlink:href="https://doi.org/10.1016/j.limno.2022.126035"
- Description: Emerging insects transfer valuable lipids originating in aquatic food sources to terrestrial consumers. The objective of this study was to determine how the export of physiologically important fatty acids from a river to adjacent land via insect emergence relates to the type and quality of the aquatic food consumed, and which emerging insects were primarily responsible for these fluxes. We ran mixing models and hypervolumes incorporating stable carbon isotope ratios of basal resources and emergent invertebrates to determine the major contributors to insect larvae diets. Our data revealed that aquatic food sources (epiphyton, epilithon and suspended particulate matter) were the major organic matter sources (more than 50 %) supporting consumers (Diptera, Ephemeroptera, Odonata and Trichoptera), with allochthonous food sources (C3 plants) being of importance at upstream sites. We calculated fluxes of highly unsaturated fatty acids (HUFAs) via emerging insects and found that these corresponded with the spatial and temporal patterns in the nutritional quality of these same basal resources in the river (quality measured as concentrations of HUFAs). These patterns provide evidence of a direct coupling between food quality and trophic subsidy fluxes from water to land, particularly by emergent dipterans and ephemeropterans.
- Full Text:
- Date Issued: 2022
- Authors: Moyo, Sydney , Richoux, Nicole B
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/454304 , vital:75334 , xlink:href="https://doi.org/10.1016/j.limno.2022.126035"
- Description: Emerging insects transfer valuable lipids originating in aquatic food sources to terrestrial consumers. The objective of this study was to determine how the export of physiologically important fatty acids from a river to adjacent land via insect emergence relates to the type and quality of the aquatic food consumed, and which emerging insects were primarily responsible for these fluxes. We ran mixing models and hypervolumes incorporating stable carbon isotope ratios of basal resources and emergent invertebrates to determine the major contributors to insect larvae diets. Our data revealed that aquatic food sources (epiphyton, epilithon and suspended particulate matter) were the major organic matter sources (more than 50 %) supporting consumers (Diptera, Ephemeroptera, Odonata and Trichoptera), with allochthonous food sources (C3 plants) being of importance at upstream sites. We calculated fluxes of highly unsaturated fatty acids (HUFAs) via emerging insects and found that these corresponded with the spatial and temporal patterns in the nutritional quality of these same basal resources in the river (quality measured as concentrations of HUFAs). These patterns provide evidence of a direct coupling between food quality and trophic subsidy fluxes from water to land, particularly by emergent dipterans and ephemeropterans.
- Full Text:
- Date Issued: 2022
Culture environment and hatchery of origin influence growth, condition and feeding organ morphology in the Pacific oyster Crassostrea gigas in South Africa
- Nel, A, Pitcher, G, Richoux, Nicole B, Jackson, S
- Authors: Nel, A , Pitcher, G , Richoux, Nicole B , Jackson, S
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/457215 , vital:75617 , xlink:href="https://doi.org/10.2989/1814232X.2014.982187"
- Description: South Africa lacks a commercial oyster hatchery. To inform the sourcing of seed for future hatchery establishments, we compared half-sib Pacific oyster Crassostrea gigas cohorts from hatcheries in Namibia and Chile. We measured oyster growth, mortality, condition and feeding organ morphology in Algoa Bay (AB, Eastern Cape) and Saldanha Bay (SB, Western Cape), South Africa, from July 2011 to June 2012. Within SB, 14.3% of mean daily sea temperatures exceeded this species’ thermal optimum of 19 °C, compared to 50.5% in AB. Food abundance (mean daily chlorophyll a concentration) in SB (7.8 mg m–3) was double that in AB (3.9 mg m–3) where, presumably to increase particle clearance rates in a relatively phytoplankton-poor environment, oysters had larger gill:palp surface area ratios. Plankton fatty acid profiles (indicators of food quality) differed between locations. In AB, instantaneous growth rates differed between cohorts, and trends varied seasonally. Within both locations, condition index was usually higher in Chilean oysters, whereas shell density was higher in Namibian oysters. In AB only, Chilean seed suffered substantially higher summer mortalities than Namibian seed, suggesting that the latter are more suited to temperatures in AB. AB should also be assessed for culture of the indigenous oyster species that occur there.
- Full Text:
- Date Issued: 2014
- Authors: Nel, A , Pitcher, G , Richoux, Nicole B , Jackson, S
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/457215 , vital:75617 , xlink:href="https://doi.org/10.2989/1814232X.2014.982187"
- Description: South Africa lacks a commercial oyster hatchery. To inform the sourcing of seed for future hatchery establishments, we compared half-sib Pacific oyster Crassostrea gigas cohorts from hatcheries in Namibia and Chile. We measured oyster growth, mortality, condition and feeding organ morphology in Algoa Bay (AB, Eastern Cape) and Saldanha Bay (SB, Western Cape), South Africa, from July 2011 to June 2012. Within SB, 14.3% of mean daily sea temperatures exceeded this species’ thermal optimum of 19 °C, compared to 50.5% in AB. Food abundance (mean daily chlorophyll a concentration) in SB (7.8 mg m–3) was double that in AB (3.9 mg m–3) where, presumably to increase particle clearance rates in a relatively phytoplankton-poor environment, oysters had larger gill:palp surface area ratios. Plankton fatty acid profiles (indicators of food quality) differed between locations. In AB, instantaneous growth rates differed between cohorts, and trends varied seasonally. Within both locations, condition index was usually higher in Chilean oysters, whereas shell density was higher in Namibian oysters. In AB only, Chilean seed suffered substantially higher summer mortalities than Namibian seed, suggesting that the latter are more suited to temperatures in AB. AB should also be assessed for culture of the indigenous oyster species that occur there.
- Full Text:
- Date Issued: 2014
Depth and habitat determine assemblage structure of South Africa’s warm-temperate reef fish
- Heyns-Veale, Elodie R, Bernard, Anthony T F, Richoux, Nicole B, Parker, Daniel M, Langlois, T J, Harvey, E S, Götz, Albrecht
- Authors: Heyns-Veale, Elodie R , Bernard, Anthony T F , Richoux, Nicole B , Parker, Daniel M , Langlois, T J , Harvey, E S , Götz, Albrecht
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/456035 , vital:75477 , xlink:href="https://doi.org/10.1007/s00227-016-2933-8"
- Description: Depth and habitat are important predictors of fish assemblage structure, yet current no-take marine protected area (MPA) networks are generally limited to providing refuge for fish species that inhabit shallow waters and may exclude deep habitats essential to exploited populations. To ensure MPA efficacy at the design, uptake and management levels, baseline data on fish populations associated with deep nearshore reefs are needed. This study employed baited remote underwater stereo-video systems to investigate fish habitat associations at shallow (11–25 m) and deep (45–75 m) reef sites in the Tsitsikamma National Park MPA, South Africa. The compositions of fish assemblages at shallow and deep reef sites were significantly different. Specifically, rare species, juveniles and low trophic level species dominated the shallow reef, while deep reef assemblages were characterised by large, sexually mature and predatory fish. The body size of abundant species was also correlated with depth, with larger individuals being more abundant on deeper reefs. Habitat types were identified according to a habitat classification system established in a previous study, which resulted in four broad depth separated habitat types (defined by macrobenthos and environmental variables). Canonical analysis of principle coordinates (CAP) indicated that habitat type was a good categorical predictor of the observed fish assemblages. The CAP analysis determined that 86 % of the samples were correctly assigned to the habitat type from which they were collected, indicating that specific fish assemblages were associated with distinct habitat types. This study highlights the importance of protecting both shallow and deep reefs, not only to ensure the conservation of particular fish assemblages, but also to provide protection for all stages of the life cycle of fish species.
- Full Text:
- Date Issued: 2016
- Authors: Heyns-Veale, Elodie R , Bernard, Anthony T F , Richoux, Nicole B , Parker, Daniel M , Langlois, T J , Harvey, E S , Götz, Albrecht
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/456035 , vital:75477 , xlink:href="https://doi.org/10.1007/s00227-016-2933-8"
- Description: Depth and habitat are important predictors of fish assemblage structure, yet current no-take marine protected area (MPA) networks are generally limited to providing refuge for fish species that inhabit shallow waters and may exclude deep habitats essential to exploited populations. To ensure MPA efficacy at the design, uptake and management levels, baseline data on fish populations associated with deep nearshore reefs are needed. This study employed baited remote underwater stereo-video systems to investigate fish habitat associations at shallow (11–25 m) and deep (45–75 m) reef sites in the Tsitsikamma National Park MPA, South Africa. The compositions of fish assemblages at shallow and deep reef sites were significantly different. Specifically, rare species, juveniles and low trophic level species dominated the shallow reef, while deep reef assemblages were characterised by large, sexually mature and predatory fish. The body size of abundant species was also correlated with depth, with larger individuals being more abundant on deeper reefs. Habitat types were identified according to a habitat classification system established in a previous study, which resulted in four broad depth separated habitat types (defined by macrobenthos and environmental variables). Canonical analysis of principle coordinates (CAP) indicated that habitat type was a good categorical predictor of the observed fish assemblages. The CAP analysis determined that 86 % of the samples were correctly assigned to the habitat type from which they were collected, indicating that specific fish assemblages were associated with distinct habitat types. This study highlights the importance of protecting both shallow and deep reefs, not only to ensure the conservation of particular fish assemblages, but also to provide protection for all stages of the life cycle of fish species.
- Full Text:
- Date Issued: 2016
Depth-related distribution patterns of subtidal macrobenthos in a well-established marine protected area
- Heyns, E R, Bernard, Anthony T F, Richoux, Nicole B, Götz, A
- Authors: Heyns, E R , Bernard, Anthony T F , Richoux, Nicole B , Götz, A
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/457230 , vital:75618 , xlink:href="https://doi.org/10.1007/s00227-016-2816-z"
- Description: Effective marine resource management requires knowledge of the distribution of critical habitats that support resource populations and the processes that maintain them. Reefs that host diverse macrobenthic communities are important habitats for fish. However, detailed information on macrobenthic communities is rarely available and is usually limited to SCUBA diving depths. To establish depth-related distribution patterns and drivers that structure reef communities, the macrobenthos situated in a warm-temperate marine protected area (MPA; 34°01′24S; 23°54′09E) was sampled between 2009 and 2012. Comparison of shallow (11–25 m) and deep (45–75 m) sites revealed significantly different communities, sharing only 27.9 % of species. LINKTREE analysis revealed a changeover of species along the depth gradient, resulting in four significantly different assemblage clusters, each associated with particular environmental variables. High light intensity supported benthic algae at shallow depths, and as light availability decreased with depth, algal cover diminished and was eventually absent from the deep reef. Upright growth forms and settled particulate matter were positively related to depth and dominated the deep reef. Reduced wave action and currents on the deep reef can explain the increased settling of suspended particles. Under such conditions, clogging of feeding parts of the encrusting species is expected, and upright growth would be favoured. Considering that most MPAs are restricted to shallow coastal habitats and that macrobenthic communities change significantly with depth, it is probable that many unique deep reef habitats are currently afforded no protection.
- Full Text:
- Date Issued: 2016
- Authors: Heyns, E R , Bernard, Anthony T F , Richoux, Nicole B , Götz, A
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/457230 , vital:75618 , xlink:href="https://doi.org/10.1007/s00227-016-2816-z"
- Description: Effective marine resource management requires knowledge of the distribution of critical habitats that support resource populations and the processes that maintain them. Reefs that host diverse macrobenthic communities are important habitats for fish. However, detailed information on macrobenthic communities is rarely available and is usually limited to SCUBA diving depths. To establish depth-related distribution patterns and drivers that structure reef communities, the macrobenthos situated in a warm-temperate marine protected area (MPA; 34°01′24S; 23°54′09E) was sampled between 2009 and 2012. Comparison of shallow (11–25 m) and deep (45–75 m) sites revealed significantly different communities, sharing only 27.9 % of species. LINKTREE analysis revealed a changeover of species along the depth gradient, resulting in four significantly different assemblage clusters, each associated with particular environmental variables. High light intensity supported benthic algae at shallow depths, and as light availability decreased with depth, algal cover diminished and was eventually absent from the deep reef. Upright growth forms and settled particulate matter were positively related to depth and dominated the deep reef. Reduced wave action and currents on the deep reef can explain the increased settling of suspended particles. Under such conditions, clogging of feeding parts of the encrusting species is expected, and upright growth would be favoured. Considering that most MPAs are restricted to shallow coastal habitats and that macrobenthic communities change significantly with depth, it is probable that many unique deep reef habitats are currently afforded no protection.
- Full Text:
- Date Issued: 2016
Determining spatial changes in the diet of nearshore suspension-feeders along the South African coastline: stable isotope and fatty acid signatures
- Allan, E Louise, Ambrose, Shan T, Richoux, Nicole B, Froneman, P William
- Authors: Allan, E Louise , Ambrose, Shan T , Richoux, Nicole B , Froneman, P William
- Date: 2010
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/457945 , vital:75697 , xlink:href="https://doi.org/10.1016/j.ecss.2010.02.004"
- Description: Mesoscale oceanographic features, such as upwellings, are known to play an important role in regulating the structure and productivity of nearshore marine communities. Stable isotope (δ13C and δ15N) and fatty acid analyses were employed to assess the influence of an upwelling cell along the south-eastern coastline of southern Africa on the diet of the mussel, Perna perna. Eight sites were sampled: two upstream, three in the vicinity and three downstream of the upwelling cell. Stable isotope and fatty acid signatures indicated that the mussels consumed a diet of detritus derived mainly from macroalgae, diatoms and dinoflagellates. One-way ANOVA on the δ13C and δ15N signatures and the principal component analysis of the fatty acid profiles of the mussels identified distinct groups corresponding to the above mentioned regions. The proportion of diatom biomarkers in the fatty acid profiles decreased downstream of the upwelling region while the proportion of dinoflagellate biomarkers increased. Upwelling regions are typically associated with elevated levels of productivity; however, these systems usually become silicon depleted and result in the replacement of diatoms with dinoflagellates. The highest proportions of the dinoflagellate markers were recorded in the two furthest sites downstream of the upwelling cell. The spatial variation in the diet of the mussels, therefore, appears to reflect the presence of the upwelling cell in the nearshore biology of the region.
- Full Text:
- Date Issued: 2010
- Authors: Allan, E Louise , Ambrose, Shan T , Richoux, Nicole B , Froneman, P William
- Date: 2010
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/457945 , vital:75697 , xlink:href="https://doi.org/10.1016/j.ecss.2010.02.004"
- Description: Mesoscale oceanographic features, such as upwellings, are known to play an important role in regulating the structure and productivity of nearshore marine communities. Stable isotope (δ13C and δ15N) and fatty acid analyses were employed to assess the influence of an upwelling cell along the south-eastern coastline of southern Africa on the diet of the mussel, Perna perna. Eight sites were sampled: two upstream, three in the vicinity and three downstream of the upwelling cell. Stable isotope and fatty acid signatures indicated that the mussels consumed a diet of detritus derived mainly from macroalgae, diatoms and dinoflagellates. One-way ANOVA on the δ13C and δ15N signatures and the principal component analysis of the fatty acid profiles of the mussels identified distinct groups corresponding to the above mentioned regions. The proportion of diatom biomarkers in the fatty acid profiles decreased downstream of the upwelling region while the proportion of dinoflagellate biomarkers increased. Upwelling regions are typically associated with elevated levels of productivity; however, these systems usually become silicon depleted and result in the replacement of diatoms with dinoflagellates. The highest proportions of the dinoflagellate markers were recorded in the two furthest sites downstream of the upwelling cell. The spatial variation in the diet of the mussels, therefore, appears to reflect the presence of the upwelling cell in the nearshore biology of the region.
- Full Text:
- Date Issued: 2010
Dietary fatty acids of spiders reveal spatial and temporal variations in aquatic-terrestrial linkages
- Chari, Lenin D, Richoux, Nicole B, Moyo, Sydney, Villet, Martin H
- Authors: Chari, Lenin D , Richoux, Nicole B , Moyo, Sydney , Villet, Martin H
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/441919 , vital:73935 , https://doi.org/10.1016/j.fooweb.2020.e00152
- Description: Stream and riparian food webs can be strongly linked by inputs of aquatic emergent insect prey to terrestrial predators. However, quantifying these linkages and understanding how they vary in time and space is challenging. We investigated the dynamic width of a riverine trophic subsidy zone by determining the relationship between perpendicular distance from a river and dietary contributions of aquatic insect prey to web-building spiders' diets. To assess this relationship, riparian web-building spiders at two river sites were sampled during four seasons and analysed for the fatty acids 16:0, 16:1ω7 and 20:5ω3, their total ω3-fatty acid content and their ω3:ω6 ratio to evaluate trophic subsidies reaching them from an adjacent river. River-derived fatty acids generally declined with increased distance from the river, indicating a diffusion of aquatically derived subsidies into the riparian zone. While the river was only 16 m wide at its broadest, river-derived trophic subsidies were detected up to four times that distance from the river edge. Spiders at a downstream section of the river, characterised by generally higher emergence rates of aquatic insects, contained higher proportions of aquatic indicator fatty acids compared with spiders located upstream, where emergence rates were lower. Similarly, proportions of aquatic indicator fatty acids in spiders were lowest during winter when aquatic insect emergence rates were lowest. The fatty acid 20:5ω3 (eicosapentaenoic acid; EPA) held the best promise as a biomarker of aquatic-derived tropic subsidies and could be developed as a useful tool for riparian research and management.
- Full Text:
- Date Issued: 2020
- Authors: Chari, Lenin D , Richoux, Nicole B , Moyo, Sydney , Villet, Martin H
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/441919 , vital:73935 , https://doi.org/10.1016/j.fooweb.2020.e00152
- Description: Stream and riparian food webs can be strongly linked by inputs of aquatic emergent insect prey to terrestrial predators. However, quantifying these linkages and understanding how they vary in time and space is challenging. We investigated the dynamic width of a riverine trophic subsidy zone by determining the relationship between perpendicular distance from a river and dietary contributions of aquatic insect prey to web-building spiders' diets. To assess this relationship, riparian web-building spiders at two river sites were sampled during four seasons and analysed for the fatty acids 16:0, 16:1ω7 and 20:5ω3, their total ω3-fatty acid content and their ω3:ω6 ratio to evaluate trophic subsidies reaching them from an adjacent river. River-derived fatty acids generally declined with increased distance from the river, indicating a diffusion of aquatically derived subsidies into the riparian zone. While the river was only 16 m wide at its broadest, river-derived trophic subsidies were detected up to four times that distance from the river edge. Spiders at a downstream section of the river, characterised by generally higher emergence rates of aquatic insects, contained higher proportions of aquatic indicator fatty acids compared with spiders located upstream, where emergence rates were lower. Similarly, proportions of aquatic indicator fatty acids in spiders were lowest during winter when aquatic insect emergence rates were lowest. The fatty acid 20:5ω3 (eicosapentaenoic acid; EPA) held the best promise as a biomarker of aquatic-derived tropic subsidies and could be developed as a useful tool for riparian research and management.
- Full Text:
- Date Issued: 2020
Dietary fatty acids of spiders reveal spatial and temporal variations in aquatic-terrestrial linkages
- Chari, Lenin D, Richoux, Nicole B, Moyo, Sydney, Villet, Martin H
- Authors: Chari, Lenin D , Richoux, Nicole B , Moyo, Sydney , Villet, Martin H
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/454320 , vital:75335 , xlink:href="https://doi.org/10.1016/j.fooweb.2020.e00152"
- Description: Stream and riparian food webs can be strongly linked by inputs of aquatic emergent insect prey to terrestrial predators. However, quantifying these linkages and understanding how they vary in time and space is challenging. We investigated the dynamic width of a riverine trophic subsidy zone by determining the relationship between perpendicular distance from a river and dietary contributions of aquatic insect prey to web-building spiders' diets. To assess this relationship, riparian web-building spiders at two river sites were sampled during four seasons and analysed for the fatty acids 16:0, 16:1ω7 and 20:5ω3, their total ω3-fatty acid content and their ω3:ω6 ratio to evaluate trophic subsidies reaching them from an adjacent river. River-derived fatty acids generally declined with increased distance from the river, indicating a diffusion of aquatically derived subsidies into the riparian zone. While the river was only 16 m wide at its broadest, river-derived trophic subsidies were detected up to four times that distance from the river edge. Spiders at a downstream section of the river, characterised by generally higher emergence rates of aquatic insects, contained higher proportions of aquatic indicator fatty acids compared with spiders located upstream, where emergence rates were lower. Similarly, proportions of aquatic indicator fatty acids in spiders were lowest during winter when aquatic insect emergence rates were lowest. The fatty acid 20:5ω3 (eicosapentaenoic acid; EPA) held the best promise as a biomarker of aquatic-derived tropic subsidies and could be developed as a useful tool for riparian research and management.
- Full Text:
- Date Issued: 2020
- Authors: Chari, Lenin D , Richoux, Nicole B , Moyo, Sydney , Villet, Martin H
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/454320 , vital:75335 , xlink:href="https://doi.org/10.1016/j.fooweb.2020.e00152"
- Description: Stream and riparian food webs can be strongly linked by inputs of aquatic emergent insect prey to terrestrial predators. However, quantifying these linkages and understanding how they vary in time and space is challenging. We investigated the dynamic width of a riverine trophic subsidy zone by determining the relationship between perpendicular distance from a river and dietary contributions of aquatic insect prey to web-building spiders' diets. To assess this relationship, riparian web-building spiders at two river sites were sampled during four seasons and analysed for the fatty acids 16:0, 16:1ω7 and 20:5ω3, their total ω3-fatty acid content and their ω3:ω6 ratio to evaluate trophic subsidies reaching them from an adjacent river. River-derived fatty acids generally declined with increased distance from the river, indicating a diffusion of aquatically derived subsidies into the riparian zone. While the river was only 16 m wide at its broadest, river-derived trophic subsidies were detected up to four times that distance from the river edge. Spiders at a downstream section of the river, characterised by generally higher emergence rates of aquatic insects, contained higher proportions of aquatic indicator fatty acids compared with spiders located upstream, where emergence rates were lower. Similarly, proportions of aquatic indicator fatty acids in spiders were lowest during winter when aquatic insect emergence rates were lowest. The fatty acid 20:5ω3 (eicosapentaenoic acid; EPA) held the best promise as a biomarker of aquatic-derived tropic subsidies and could be developed as a useful tool for riparian research and management.
- Full Text:
- Date Issued: 2020
Dietary tracers and stomach contents reveal pronounced alimentary flexibility in the freshwater mullet (Myxus capensis, Mugilidae) concomitant with ontogenetic shifts in habitat use and seasonal food availability
- Carassou, Laure, Whitfield, Alan K, Moyo, Sydney, Richoux, Nicole B
- Authors: Carassou, Laure , Whitfield, Alan K , Moyo, Sydney , Richoux, Nicole B
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/456201 , vital:75493 , xlink:href="https://doi.org/10.1007/s10750-017-3230-3"
- Description: We investigated ontogenetic and seasonal variations in the diet of the freshwater mullet (Myxus capensis) across a river–estuary interface using dietary tracer (stable isotopes and fatty acids) and stomach content analyses. Two hypotheses were tested: (A) the freshwater mullet diet shifts as individuals grow and migrate from the estuary to the river, and (B) the dominant food resources utilized by freshwater mullet vary through time, mainly as a function of the seasonal changes in the availability of preferred food items in each habitat. Both hypotheses were supported, as our results indicated broad dietary flexibility by M. capensis, with utilized food items ranging from benthic microalgae to insects depending on habitat and seasonal patterns in availability of resources. Given the unexpected importance of invertebrate-derived prey, including some of terrestrial origin (i.e. aerial or semi-aquatic insects), during the freshwater phase of the M. capensis life cycle, we also emphasize a need for a re-assessment of the trophic designation of this species (previously designated as a strict detritivore).
- Full Text:
- Date Issued: 2017
- Authors: Carassou, Laure , Whitfield, Alan K , Moyo, Sydney , Richoux, Nicole B
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/456201 , vital:75493 , xlink:href="https://doi.org/10.1007/s10750-017-3230-3"
- Description: We investigated ontogenetic and seasonal variations in the diet of the freshwater mullet (Myxus capensis) across a river–estuary interface using dietary tracer (stable isotopes and fatty acids) and stomach content analyses. Two hypotheses were tested: (A) the freshwater mullet diet shifts as individuals grow and migrate from the estuary to the river, and (B) the dominant food resources utilized by freshwater mullet vary through time, mainly as a function of the seasonal changes in the availability of preferred food items in each habitat. Both hypotheses were supported, as our results indicated broad dietary flexibility by M. capensis, with utilized food items ranging from benthic microalgae to insects depending on habitat and seasonal patterns in availability of resources. Given the unexpected importance of invertebrate-derived prey, including some of terrestrial origin (i.e. aerial or semi-aquatic insects), during the freshwater phase of the M. capensis life cycle, we also emphasize a need for a re-assessment of the trophic designation of this species (previously designated as a strict detritivore).
- Full Text:
- Date Issued: 2017
Effects of temperature and food quality on isotopic turnover and discrimination in a cladoceran
- Masclaux, Hélène, Richoux, Nicole B
- Authors: Masclaux, Hélène , Richoux, Nicole B
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/456216 , vital:75494 , xlink:href="https://doi.org/10.1007/s10452-016-9592-1"
- Description: Our experimental study was designed to assess the effects of temperature on nitrogen isotope turnover and to measure the effects of temperature and food quality on the stable carbon and nitrogen isotope discrimination factors (Δ13C and Δ15N) in a cladoceran. For the first part of our study, Daphnia were fed with non-enriched or 15N-enriched Scenedesmus obliquus at 12, 15, 20, and 25 °C. For the second part, Daphnia were reared at 15, 20, and 25 °C on Scenedesmus or Cryptomonas sp. There were no clear effects of temperature on turnover rates of the nitrogen isotope of cladocerans. However, a general increase in Δ13C with increasing temperature was measured, regardless of the food source. Δ15N was also affected by temperature, but contrasting results were measured depending on the food source used. There were significant effects of food quality on Δ13C and Δ15N in Daphnia, as values obtained for Daphnia fed Scenedesmus were always higher than those obtained for Daphnia fed Cryptomonas. Our experiments produced discrimination factors that were very different from those usually considered in isotope studies and showed that the values used for isotope model implementation to analyze field data need to be adapted to environmental conditions.
- Full Text:
- Date Issued: 2017
- Authors: Masclaux, Hélène , Richoux, Nicole B
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/456216 , vital:75494 , xlink:href="https://doi.org/10.1007/s10452-016-9592-1"
- Description: Our experimental study was designed to assess the effects of temperature on nitrogen isotope turnover and to measure the effects of temperature and food quality on the stable carbon and nitrogen isotope discrimination factors (Δ13C and Δ15N) in a cladoceran. For the first part of our study, Daphnia were fed with non-enriched or 15N-enriched Scenedesmus obliquus at 12, 15, 20, and 25 °C. For the second part, Daphnia were reared at 15, 20, and 25 °C on Scenedesmus or Cryptomonas sp. There were no clear effects of temperature on turnover rates of the nitrogen isotope of cladocerans. However, a general increase in Δ13C with increasing temperature was measured, regardless of the food source. Δ15N was also affected by temperature, but contrasting results were measured depending on the food source used. There were significant effects of food quality on Δ13C and Δ15N in Daphnia, as values obtained for Daphnia fed Scenedesmus were always higher than those obtained for Daphnia fed Cryptomonas. Our experiments produced discrimination factors that were very different from those usually considered in isotope studies and showed that the values used for isotope model implementation to analyze field data need to be adapted to environmental conditions.
- Full Text:
- Date Issued: 2017
Evidence of spatial and temporal changes in sources of organic matter in estuarine sediments
- Bergamino, Leandro, Dalu, Tatenda, Richoux, Nicole B
- Authors: Bergamino, Leandro , Dalu, Tatenda , Richoux, Nicole B
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/457242 , vital:75619 , xlink:href="https://doi.org/10.1007/s10750-014-1853-1"
- Description: We investigated spatial and temporal changes in sources of organic matter in sediments within an estuarine environment in South Africa using fatty acids (FA) and stable isotopes (SI). Samples of sediments and sources of organic matter [i.e., particulate organic matter, microphytobenthos (MPB), macrophytes, salt marsh plants, and terrestrial leaves] were collected during spring and summer 2012, and autumn and winter 2013 from the upper, middle, and lower reaches. A Stable Isotope Analysis in R (SIAR) mixing model was used to identify the organic matter sources contributing to sediments in each estuarine reach and season. We found that diatom-associated fatty acids (20:5ω3; 16:1ω7) increased toward the upper reaches, while long-chained terrigenous fatty acids (24:0) tended to be more prevalent in lower reach sediments. In support of the FA results, the SI mixing model showed a substantial contribution from the marsh grass Spartina maritima in sediments of the lower estuary during periods of low-freshwater discharge (autumn and winter), while MPB was the main component in sediments from the upper and middle reaches during all seasons. Our results have implications for evaluating estuarine food webs since the spatial and seasonal variability in the organic matter deposited can influence estuarine community structure.
- Full Text:
- Date Issued: 2014
- Authors: Bergamino, Leandro , Dalu, Tatenda , Richoux, Nicole B
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/457242 , vital:75619 , xlink:href="https://doi.org/10.1007/s10750-014-1853-1"
- Description: We investigated spatial and temporal changes in sources of organic matter in sediments within an estuarine environment in South Africa using fatty acids (FA) and stable isotopes (SI). Samples of sediments and sources of organic matter [i.e., particulate organic matter, microphytobenthos (MPB), macrophytes, salt marsh plants, and terrestrial leaves] were collected during spring and summer 2012, and autumn and winter 2013 from the upper, middle, and lower reaches. A Stable Isotope Analysis in R (SIAR) mixing model was used to identify the organic matter sources contributing to sediments in each estuarine reach and season. We found that diatom-associated fatty acids (20:5ω3; 16:1ω7) increased toward the upper reaches, while long-chained terrigenous fatty acids (24:0) tended to be more prevalent in lower reach sediments. In support of the FA results, the SI mixing model showed a substantial contribution from the marsh grass Spartina maritima in sediments of the lower estuary during periods of low-freshwater discharge (autumn and winter), while MPB was the main component in sediments from the upper and middle reaches during all seasons. Our results have implications for evaluating estuarine food webs since the spatial and seasonal variability in the organic matter deposited can influence estuarine community structure.
- Full Text:
- Date Issued: 2014
Exploring the community structure of Afrotropical macroinvertebrate traits and ecological preferences along an agricultural pollution gradient in the Kat River, Eastern Cape, South Africa
- Akamagwuna, Frank C, Odume, Oghenekaro N, Richoux, Nicole B
- Authors: Akamagwuna, Frank C , Odume, Oghenekaro N , Richoux, Nicole B
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/454334 , vital:75336 , xlink:href="https://doi.org/10.1016/j.ecolind.2022.108570"
- Description: Agricultural activities impact riverine ecosystem structure, function, and processes. In the Afrotropical regions, research on agricultural effects on macroinvertebrate trait distribution is sparse. In this study, we investigated the spatial and temporal changes in the community structure of macroinvertebrate traits along an agricultural disturbance gradient in an Afrotropical River system. Physicochemical variables were sampled alongside macroinvertebrates at eight sites in the dry (winter and spring) and wet (summer and autumn) periods of 2018–2019. We grouped the sites into four categories using the percentage of agricultural land-use cover within each drainage area. Our results showed that agricultural pollution exhibited varying effects on traits and ecological preferences, with traits such as a predatory lifestyle, medium body-size (>10–20 mm), active swimming, possession of spiracles and haemoglobin, and adult aquatic life stage increasing with the pollution gradient. These traits were positively associated with nutrients (PO4+-P, NO2+-N, NH4+-N and NO3+-N), salinity, turbidity and temperature and were deemed tolerant of agricultural pollution. Shredding, crawling, and a preference for macrophytes as food showed strong positive associations with the least disturbed sites and were negatively associated with increasing nutrients, salinity, turbidity and water temperature. As such, these three traits were considered sensitive to agricultural pollution. The identified indicator traits can be used to predict the survival and distribution patterns of organisms under the impact of agriculture-induced stress.
- Full Text:
- Date Issued: 2022
- Authors: Akamagwuna, Frank C , Odume, Oghenekaro N , Richoux, Nicole B
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/454334 , vital:75336 , xlink:href="https://doi.org/10.1016/j.ecolind.2022.108570"
- Description: Agricultural activities impact riverine ecosystem structure, function, and processes. In the Afrotropical regions, research on agricultural effects on macroinvertebrate trait distribution is sparse. In this study, we investigated the spatial and temporal changes in the community structure of macroinvertebrate traits along an agricultural disturbance gradient in an Afrotropical River system. Physicochemical variables were sampled alongside macroinvertebrates at eight sites in the dry (winter and spring) and wet (summer and autumn) periods of 2018–2019. We grouped the sites into four categories using the percentage of agricultural land-use cover within each drainage area. Our results showed that agricultural pollution exhibited varying effects on traits and ecological preferences, with traits such as a predatory lifestyle, medium body-size (>10–20 mm), active swimming, possession of spiracles and haemoglobin, and adult aquatic life stage increasing with the pollution gradient. These traits were positively associated with nutrients (PO4+-P, NO2+-N, NH4+-N and NO3+-N), salinity, turbidity and temperature and were deemed tolerant of agricultural pollution. Shredding, crawling, and a preference for macrophytes as food showed strong positive associations with the least disturbed sites and were negatively associated with increasing nutrients, salinity, turbidity and water temperature. As such, these three traits were considered sensitive to agricultural pollution. The identified indicator traits can be used to predict the survival and distribution patterns of organisms under the impact of agriculture-induced stress.
- Full Text:
- Date Issued: 2022
Exploring trophodynamics in the Southern Ocean: applications of fatty acid biomarkers and stable isotope ratios
- Richoux, Nicole B, Froneman, P William
- Authors: Richoux, Nicole B , Froneman, P William
- Date: 2007
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/457956 , vital:75703 , xlink:href="http://hdl.handle.net/123456789/28541"
- Description: The dynamics of transfer of organic carbon among producers and consumers has interested trophic ecologists for several decades1. This field of research has proven to be particularly challenging for those investigating aquatic environments, as organisms of interest are often very small, remote and/or behaviourally complex. Furthermore, many species of plankton demonstrate a high degree of feeding plasticity, as the nature and availability of food can vary considerably both spatially and temporally. The diets of consumers are classically studied using gut contents and/or gut fluorescence analyses, approaches that are limited to freshly ingested prey, and in the latter case to herbivorous feeding2. Two methods that provide a time-integrated view of an organism's assimilated feeding history and incorporate both herbivorous and carnivorous pathways involve the determination of stable isotope ratios and fatty acid profiles3 4. Stable isotope ratios in animal tissues can be used as tracers to original sources of carbon at the base of a food chain as well as indicators of the trophic level of a population5, and fatty acids can provide information on the type and quality of resources assimilated by aquatic animals over ecologically meaningful time periods6,7. The aims of our current study are to determine trophodynamics among the numerically dominant zooplankton species and to assess regional differences in ecosystem fitness within the Subtropical Convergence zone (STC) using both stable isotope ratios and fatty acid profiles. As the STC can act as an effective biogeographical barrier8 food webs and the dynamics of energy transfer from primary producers to consumers on either side of this barrier are expected to differ. As global climate change has the potential to cause major shifts in the location, strength and physical and biological properties of the STC9 it is important to understand the potential effects on the biological communities inhabiting the region. Any changes in the food quality or availability for the dominant species or in the trophic relationships among producers and consumers may have serious implications for top consumers such as fish, birds and mammals. Successful characterization of food webs in the STC will provide an excellent framework for future studies in Southern Ocean trophic ecology.
- Full Text:
- Date Issued: 2007
- Authors: Richoux, Nicole B , Froneman, P William
- Date: 2007
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/457956 , vital:75703 , xlink:href="http://hdl.handle.net/123456789/28541"
- Description: The dynamics of transfer of organic carbon among producers and consumers has interested trophic ecologists for several decades1. This field of research has proven to be particularly challenging for those investigating aquatic environments, as organisms of interest are often very small, remote and/or behaviourally complex. Furthermore, many species of plankton demonstrate a high degree of feeding plasticity, as the nature and availability of food can vary considerably both spatially and temporally. The diets of consumers are classically studied using gut contents and/or gut fluorescence analyses, approaches that are limited to freshly ingested prey, and in the latter case to herbivorous feeding2. Two methods that provide a time-integrated view of an organism's assimilated feeding history and incorporate both herbivorous and carnivorous pathways involve the determination of stable isotope ratios and fatty acid profiles3 4. Stable isotope ratios in animal tissues can be used as tracers to original sources of carbon at the base of a food chain as well as indicators of the trophic level of a population5, and fatty acids can provide information on the type and quality of resources assimilated by aquatic animals over ecologically meaningful time periods6,7. The aims of our current study are to determine trophodynamics among the numerically dominant zooplankton species and to assess regional differences in ecosystem fitness within the Subtropical Convergence zone (STC) using both stable isotope ratios and fatty acid profiles. As the STC can act as an effective biogeographical barrier8 food webs and the dynamics of energy transfer from primary producers to consumers on either side of this barrier are expected to differ. As global climate change has the potential to cause major shifts in the location, strength and physical and biological properties of the STC9 it is important to understand the potential effects on the biological communities inhabiting the region. Any changes in the food quality or availability for the dominant species or in the trophic relationships among producers and consumers may have serious implications for top consumers such as fish, birds and mammals. Successful characterization of food webs in the STC will provide an excellent framework for future studies in Southern Ocean trophic ecology.
- Full Text:
- Date Issued: 2007
Fatty acid analyses provide novel insights on hippo defecation and consequences for aquatic food webs
- Dawson, Jessica, Pillay, Deena, Perissinotto, Renzo, Richoux, Nicole B
- Authors: Dawson, Jessica , Pillay, Deena , Perissinotto, Renzo , Richoux, Nicole B
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/454346 , vital:75337 , xlink:href="https://doi.org/10.1038/s41598-020-68369-5"
- Description: By defecating grasses into aquatic systems at massive scales and intensities, hippos can initiate complex changes to aquatic ecosystems. However, consequent effects on food webs are not well understood, particularly regarding shifts in basal resource contributions to consumer diets and their physiological condition. Here, we use fatty acid analysis to show that dense hippo aggregations and high dung loading are associated with (1) alterations to basal resource pools, (2) reduced quality of sediment organic matter and (3) increases in terrestrial and bacterial biomarker levels, but declines in those of diatoms in estuarine secondary consumers. While hippo defecation can increase boundary permeability between terrestrial and aquatic systems, our findings indicate that this may lead to a shift from a microphytobenthic food web base to one with increasing bacterial contributions to higher consumers. Our findings expand understanding of the mechanisms by which an iconic African megaherbivore indirectly structures aquatic ecosystems.
- Full Text:
- Date Issued: 2020
- Authors: Dawson, Jessica , Pillay, Deena , Perissinotto, Renzo , Richoux, Nicole B
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/454346 , vital:75337 , xlink:href="https://doi.org/10.1038/s41598-020-68369-5"
- Description: By defecating grasses into aquatic systems at massive scales and intensities, hippos can initiate complex changes to aquatic ecosystems. However, consequent effects on food webs are not well understood, particularly regarding shifts in basal resource contributions to consumer diets and their physiological condition. Here, we use fatty acid analysis to show that dense hippo aggregations and high dung loading are associated with (1) alterations to basal resource pools, (2) reduced quality of sediment organic matter and (3) increases in terrestrial and bacterial biomarker levels, but declines in those of diatoms in estuarine secondary consumers. While hippo defecation can increase boundary permeability between terrestrial and aquatic systems, our findings indicate that this may lead to a shift from a microphytobenthic food web base to one with increasing bacterial contributions to higher consumers. Our findings expand understanding of the mechanisms by which an iconic African megaherbivore indirectly structures aquatic ecosystems.
- Full Text:
- Date Issued: 2020
Fatty acids reveal the importance of autochthonous non-vascular plant inputs to an austral river food web
- Moyo, Sydney, Richoux, Nicole B
- Authors: Moyo, Sydney , Richoux, Nicole B
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/456677 , vital:75542 , xlink:href="https://doi.org/10.1007/s10750-017-3347-4"
- Description: We hypothesised that the dominant organic source supporting macroinvertebrate consumers in a South African river is autochthonously produced non-vascular algae (regardless of season), and that the prevalence of autochthony increases with increasing distance from the headwaters. Fatty acid profiles of macroinvertebrates from six sites and four sample times were assessed to characterise the consumer diets and estimate the relative assimilation of autochthonous versus allochthonous-based sources in the food web. Fatty acid markers, ordination analyses and mixing models confirmed that the ultimate nutritional source for the invertebrate assemblages was autochthonous-produced carbon, with some contributions occurring from vascular plants (potentially of allochthonous and autochthonous origin, as some vascular plants were aquatic macrophytes). However, contrary to our second hypothesis, the prevalence of autochthony did not change predictably along the river. Such an autochthonous-based food web is consistent with many large rivers in well-researched regions of the world, although the complexity and variability that we observed in the fatty acid profiles of macroinvertebrate consumers in a small South African river should help stimulate renewed interest in investigations of carbon flow within small rivers from less-studied regions (particularly in arid climates).
- Full Text:
- Date Issued: 2018
- Authors: Moyo, Sydney , Richoux, Nicole B
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/456677 , vital:75542 , xlink:href="https://doi.org/10.1007/s10750-017-3347-4"
- Description: We hypothesised that the dominant organic source supporting macroinvertebrate consumers in a South African river is autochthonously produced non-vascular algae (regardless of season), and that the prevalence of autochthony increases with increasing distance from the headwaters. Fatty acid profiles of macroinvertebrates from six sites and four sample times were assessed to characterise the consumer diets and estimate the relative assimilation of autochthonous versus allochthonous-based sources in the food web. Fatty acid markers, ordination analyses and mixing models confirmed that the ultimate nutritional source for the invertebrate assemblages was autochthonous-produced carbon, with some contributions occurring from vascular plants (potentially of allochthonous and autochthonous origin, as some vascular plants were aquatic macrophytes). However, contrary to our second hypothesis, the prevalence of autochthony did not change predictably along the river. Such an autochthonous-based food web is consistent with many large rivers in well-researched regions of the world, although the complexity and variability that we observed in the fatty acid profiles of macroinvertebrate consumers in a small South African river should help stimulate renewed interest in investigations of carbon flow within small rivers from less-studied regions (particularly in arid climates).
- Full Text:
- Date Issued: 2018
Food preferences of the estuarine crab Sesarma catenata estimated through laboratory experiments
- Bergamino, Leandro, Richoux, Nicole B
- Authors: Bergamino, Leandro , Richoux, Nicole B
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/457256 , vital:75620 , xlink:href="https://doi.org/10.1071/MF14122"
- Description: Feeding by sesarmid crabs on plants represents an important energy pathway within some estuarine ecosystems. We examined the trophic ecology of estuarine sesarmid crabs Sesarma catenata through a series of laboratory feeding-preference experiments. Our experiments considered decomposed and mature leaves of terrestrial riparian trees, marsh plants Chenolea diffusa and Sarcocornia perennis and the marshgrass Spartina maritima as potential food items. S. catenata preferred decomposed leaves of terrestrial riparian trees, followed by decomposed and mature leaves of S. maritima. We suggest that the low carbon:nitrogen (C:N) ratios of S. maritima and high bacterial production associated with decomposed terrestrial leaves may explain the trophic behaviour of S. catenata. The faecal production by S. catenata during these experiments confirmed the preferential assimilation of decomposed material by the crabs. By combining the consumption rates with an estimated density of S. catenata within the local estuary that it inhabits, we suggest that moderate proportions of the leaf material can potentially be consumed by this species (34% of total leaf litter), leaving substantial amounts of unconsumed leaf litter that may represent an important subsidy for adjacent environments. Our results validate previously published trophic data, showing the value of linking feeding experiments with biological tracers to improve food-web models.
- Full Text:
- Date Issued: 2015
- Authors: Bergamino, Leandro , Richoux, Nicole B
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/457256 , vital:75620 , xlink:href="https://doi.org/10.1071/MF14122"
- Description: Feeding by sesarmid crabs on plants represents an important energy pathway within some estuarine ecosystems. We examined the trophic ecology of estuarine sesarmid crabs Sesarma catenata through a series of laboratory feeding-preference experiments. Our experiments considered decomposed and mature leaves of terrestrial riparian trees, marsh plants Chenolea diffusa and Sarcocornia perennis and the marshgrass Spartina maritima as potential food items. S. catenata preferred decomposed leaves of terrestrial riparian trees, followed by decomposed and mature leaves of S. maritima. We suggest that the low carbon:nitrogen (C:N) ratios of S. maritima and high bacterial production associated with decomposed terrestrial leaves may explain the trophic behaviour of S. catenata. The faecal production by S. catenata during these experiments confirmed the preferential assimilation of decomposed material by the crabs. By combining the consumption rates with an estimated density of S. catenata within the local estuary that it inhabits, we suggest that moderate proportions of the leaf material can potentially be consumed by this species (34% of total leaf litter), leaving substantial amounts of unconsumed leaf litter that may represent an important subsidy for adjacent environments. Our results validate previously published trophic data, showing the value of linking feeding experiments with biological tracers to improve food-web models.
- Full Text:
- Date Issued: 2015