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Abstract 

 

The coordination behaviour of 4-aminoantipyrine (H2pap) and its Schiff base derivatives 

with the oxorhenium(V) and tricarbonyl rhenium(I) cores are reported. The reactions of 

trans-[ReOX3(PPh3)2] (X = Cl, Br) with H2pap were studied, and the complexes cis-

[ReX2(pap)(H2pap)(PPh3)](ReO4) were isolated. The ligand pap is coordinated 

monodentately through the doubly deprotonated amino nitrogen as an imide, and H2pap 

acts as a neutral bidentate chelate, with coordination through the neutral amino nitrogen 

and the ketonic oxygen. The reactions of trans-[ReOBr3(PPh3)2] and cis-[ReO2I(PPh3)2] 

with 4-(2-aminobenzylideneamino)-1,2-dihydro-2,3-dimethyl-1-phenylpyrazol-5-one 

(H2nap) and 4-(2-hydroxybenzylideneamino)-1,2-dihydro-2,3-dimethyl-1-phenylpyrazol-

5-one (Hoap) are also reported. The complexes cis-[Re(nap)Br2(PPh3)]Br, 

[ReO(OEt)(Hnap)(PPh3)]I and [ReO(OMe)(oap)(PPh3)]I were isolated and structurally 

characterized. The reactions of the Schiff base derivatives 1,2-(diimino-4’-

antipyrinyl)ethane (dae) and 2,6-bis(4-amino-1,2-dihydro-2,3-dimethyl-1-phenylpyrazol-

5-one)pyridine (bap) with [Re(CO)5X] (X = Br or Cl) produced fac-[Re(CO)3(dae)Cl]   

and fac-[Re(CO)3(bap)Br] respectively. 

 

A series of rhenium(I) tricarbonyl complexes containing bidentate derivatives of aniline 

was synthesized and structurally characterized. With 1,2-diaminobenzene (Hpda) the 

‘2+1’ complex salt fac-[Re(CO)3(κ
1
-Hpda)(κ

2
-Hpda)]Br was isolated, but with 2-

mercaptophenol (Hspo) the bridged dimer [Re2(CO)7(spo)2] was found. The neutral 

complex [Re(CO)3(ons)(Hno)] was isolated from the reaction of [Re(CO)5Br] with 2-[(2-

methylthio)benzylideneimino]phenol (Hons; Hno = 2-aminophenol), with ons 

coordinated as a bidentate chelate with a free SCH3 group. In the complex 

[Re(CO)3(Htpn)Br] (Htpn = N-(2-(methylthio)benzylidene)benzene-1,2-diamine) the 

potentially tridentate ligand Htpn is coordinated via the methylthiol sulfur and imino 

nitrogen atoms only, with a free amino group. These rhenium(I) complexes, with the 

exception of [Re2(CO)7(spo)2], revealed broad emissions centred around 535 nm. 
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The reactions of the rhenium(V) complex cis-[ReO2I(PPh3)2] with 2-aminothiophenol 

(H2atp), benzene-1,2-dithiol (H2tdt) and 2-hydroxybenzenethiol (H2otp) led to the 

formation of the rhenium(III) compounds [Re(Hatp)(ibsq)2].OPPh3, [Re(sbsq)3].OPPh3 

and [Re(obsq)3].OPPh3 (ibsq = 2-iminothiobenzosemiquinonate, sbsq = 1,2-

dithiobenzosemiquinonate, obsq = 2-hydroxothiobenzosemiquinonate) respectively. The 

complexes adopt a trigonal prismatic geometry around the rhenium centre with average 

twists angles between 3.20-26.10˚. The E1/2 values for the Re(III)/Re(IV) redox couple 

were found to be 0.022, 0.142 and 0.126 V for [Re(Hatp)(ibsq)2].OPPh3, 

[Re(sbsq)3].OPPh3 and [Re(obsq)3].OPPh3 respectively. 

 

The reactions of the benzoxazole ligands, 3-(benzoxazol-2-yl)pyridin-2-ol (Hbop) and 5-

amino-2-(benzoxazol-2-yl)phenol (Habo) with a [ReO]
3+

 precursor led to the 

rhenium(III) complex, [ReCl2(bop)(PPh3)2], and the complex salt, 

[ReO(abo)I(PPh3)2]ReO4, respectively. A variety of benzothiazole and benzimidazole 

derivatives were reacted with [Re(CO)5Br]. In the case of bis(benzothiazol-2-

ylethyl)sulfide (bts), the neutral complex fac-[Re(CO)3(bts)Br] was obtained. The 

dimeric complexes (μ-dbt)2[Re(CO)3]2 and (μ-mbt)2[Re(CO)3]2 were formed when 1,3-

bis(benzothiazol-2-yl)thiourea (Hdbt) and 1-(benzothiazol-2-ylidene)-3-methylthiourea 

(Hmbt) were used as ligands. The reaction of 2,2’-

(oxybis(methylene))bis(benzimidazole) (bmb) with [Re(CO)5Cl] resulted in the 

rhenium(I) complex salt fac-[Re(CO)3(bmb)]
+
, with the tri-μ-chlorohexacarbonyl 

dirhenate [Re2(CO)6Cl3]
-
 as the counter anion. The neutral complex fac-[Re(CO)3(btp)Cl] 

was isolated from the reaction of the 2,9-bis(benzothiazol-2-yl)-1,10-phenanthroline (btp) 

ligand and [Re(CO)5Cl]. The reactions of trans-[ReOCl3(PPh3)2] with bis(benzimidazol-

2-ylethyl)sulfide (btn) and 1-(benzothiazol-2-ylidene)-3-methylthiourea (Hmbt) led to the 

formation of the cationic compounds (μ-O)2[Re2O2(btn)2]I2 and [ReCl2(bte)(PPh3)2]Cl 

(bte = (benzothiazole-2-yl)-N-ethylidenemethanamine) respectively.  

 

Keywords: Rhenium, bidentate, tridentate, 4-aminoantipyrine, benzothiazole, 

benzoxazole, benzimidazole, oxo, crystal structure 
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Chapter 1 

 

Introduction 

 

1.1   General Background 

 

Coordination chemistry is crucial in the design of new radiopharmaceuticals, since it will 

determine the stability and geometry of the radiopharmaceutical, which are important in 

the biodistribution of the potential radiopharmaceutical [1]. Rhenium has significance in 

nuclear medicine as a therapeutic agent due to the favourable nuclear characteristics of 

the 
186

Re and 
188

Re radionuclides, and an understanding of its coordination chemistry is 

therefore essential [1-4].  

 

Rhenium is also often used as a model to imitate the reactivity of 
99m

Tc 

radiopharmaceuticals (Eγ = 140 keV, t1/2 = 6.02 h) which dominate the field of diagnostic 

nuclear medicine [2]. The physical properties of these group VII congeners are similar; 

however rhenium complexes are more kinetically inert and are more prone to oxidation 

[1]. 

 

Rhenium has a rich redox chemistry, exhibiting a wide range of oxidation states ranging 

from -I to +VII. The complexity to control the oxidation state of the metal provides 

research impetus to manipulate the structural, magnetic, redox and ultimately the 

biodistribution of rhenium complexes with the use of a variety of donor atoms, chelators 

and the inclusion of non-coordinating functional groups [1].  

 

The coordination chemistry of rhenium is characterized by a variety of metal cores, 

particularly in oxidation states +I and +V, such as the mono-oxo [Re
V
O]

3+ 
[5], cis- and 
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trans-dioxo [Re
V
O2]

+ 
[6,7],  dinuclear oxobridged [Re

V
2O3]

4+ 
[8], nitrido [Re

V
N]

2+ 
[9], 

imido [Re
V
NR]

3+ 
[10], amido [Re

V
NHR]

4+ 
[11] and the facial tricarbonyl core fac-

[Re
I
(CO)3]

+ 
[12].  

 

1.2  Aim and Motivation of Study 

 

Rhenium(I) complexes containing the tricarbonyl core have the advantage of being 

kinetically and thermodynamically inert. This chemically robust core possesses ideal 

properties, such as a low-spin d
6
 electron configuration and a high stability in aqueous 

solutions, making it ideal for radiopharmaceutical applications. However, even though 

rhenium(I) complexes fulfill the conditions for therapeutic applications, their 

effectiveness is restricted either by high toxicity or by the development of drug resistance 

of tumour cells to chemotherapeutic agents [13]. Therefore, further development of 

rhenium(I) complexes containing biologically relevant ligands is vital for the discovery 

of new therapeutic agents of reduced cytotoxicity and enhanced susceptibility towards 

cancer cells. 

 

Rhenium(V) complexes are predominantly unstable in aqueous systems and readily 

undergo reduction [to Re(III) or Re(IV)], or easily convert back to perrhenate by in vivo 

oxidation. This limitation can be overcome with the use of aromatic ligands having a 

large steric bulk which provides shielding of the metal centre and can potentially induce 

the metal core to be less prone to oxidation. In addition, coordination of aromatic 

multidentate ligands to rhenium can result in the formation of chelate rings which render 

additional stability to the metal complex [14].  

 

The design of novel chelating systems is of great importance in the development of target 

specific radiopharmaceuticals. In this study the reactions of rhenium precursors 

containing the fac-[Re
I
(CO)3]

+
 and [Re

V
O]

3+
 cores with various aromatic and 

heterocyclic ligands (Figure 1.1) were investigated. By investigating the coordination 

chemistry of various chelators towards rhenium, the chemical properties (e.g. charge, 

size, lipophilicity, etc.) of the resultant complexes can be fine-tuned. 
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X
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N

N
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O
N
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N
H
C

X

X

N

Y X

N X

N

(CH2)n

Y

(CH2)n

X, Y = NH2, SH, OH

(a) (b) (c)

(d) (e)

X = substituted aromatic ring

X = S, O, NH
Y = substituted aromatic ring

X = S, O, NH
Y = S, O
n = 1, 2

 

Figure 1.1: Ligands used in study: (a) bidentate aromatic derivatives, (b) 4-aminoanti- 

pyrine, (c) derivatives of 4-aminoantipyrine, (d) heterocyclic derivatives, (e) alkyl 

bridged heterocyclics. 

 

Bidentate ligands containing an aromatic backbone (Figure 1.1(a)) are able to coordinate 

as neutral, monoanionic or dianionic chelates resulting in the formation of rigid rhenium 

complexes [15,16]. The systematic variation of the donor atoms situated at the ortho 

positions on the aromatic ring, results in the formation of metal complexes with different 

structural configurations. The results obtained from the study of various bidentate 

rhenium complexes would lead to a greater understanding of the coordination capabilities 

of the fac-[Re
I
(CO)3]

+
 and [Re

V
O]

3+
 cores. These bidentate ligands are capable of being 

derivatized to incorporate amine and carboxylic acid fragments which are able to act as a 

bifunctional chelator to the metal centre. Thus the development of rhenium complexes 

containing this class of ligand systems has synthetic significance in radiopharmacy.  
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The considerable research interest in 4-aminoantipyrine (Figure 1.1(b)) and its 

derivatives results from their potential biological activities [17]. 4-Aminoantipyrine is a 

pyrazolone derivative and has been extensively used as an antipyretic, analgesic and anti-

inflammatory agent [18]. The derivatization of 4-aminoantipyrine through Schiff base 

formation to produce multidentate ligand systems (Figure 1.1(c)), provides a variety of 

donor atoms, flexibility and multidenticity to the metal centre [19]. Coordination of 

multidentate, 4-aminoantipyrine Schiff base ligands to rhenium can result in several 

chelate rings being formed which may be useful in the stabilization of rhenium 

complexes. It is thought that the discovery of rhenium complexes containing 4-

aminoantipyrine and derivatives thereof would have promise in radiopharmaceutical 

applications.  

 

Benzothiazoles, benzimidazoles and benzoxazoles (Figure 1.1(d)) and their metal 

complexes are relevant in a number of medicinal applications and have shown to possess 

anticancer, antimicrobial, anti-inflammatory and antioxidant activities [20]. In particular, 

a derivative of benzothiazole, 2-(4’-methylaminophenyl)-6-hydroxy benzothiazole (also 

known as Pittsburg Compound B; PIB) have proved to be a promising compound for the 

in vivo visualization of amyloid plaques in patients with Alzheimer’s disease [21]. 

Benzothiazoles and the related oxazoles and imidazoles (Figure 1.1(e)) have the ideal 

combination of donor/functional groups for metal coordination and are attractive ligands 

for derivatization, which will assist in enhancing the biological effects of these 

compounds [22]. The complexation of this class of ligand systems to rhenium is of 

interest towards the discovery of potential radiopharmaceuticals which target specific 

biological receptors. 

 

Thus the main aims of this study were: 

 To study the reactions of bidentate aromatic derivatives towards the fac-

[Re
I
(CO)3]

+
 and [Re

V
O]

3+
 cores. 

 To investigate the coordination modes of 4-aminoantipyrine and derivatives 

towards rhenium. 
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 To design, synthesize and characterize a variety of 1,3-benzothiazole, 

benzimidazole and benzoxazole derivatives, and to study their coordination 

behaviour towards rhenium(I) and (V). 

 

1.3  Applications of Rhenium 

 

1.3.1    Rhenium radiopharmaceuticals 

 

(a) Rhenium radionuclides 

 

Rhenium occurs naturally as a combination of the two non-radioactive isotopes 
185

Re and 

187
 Re with abundances of 37.4% and 62.6% respectively. The radionuclides 

186
Re and 

188
Re are of interest in nuclear medicine [3]. 

186
Re is a reactor-produced radionuclide, 

formed by the irradiation of 
185

Re with neutrons by the nuclear reaction 
185

Re + n → 

186
Re. The specific activity is from low to medium and it is impossible to achieve a 

carrier-free product. 
188

Re can be obtained either from the nuclear reaction 
187

Re + n → 

188
Re, or from the 

188
W/

188
Re generator. The generator-created 

188
Re has an exceptionally 

superior specific activity and is carrier-free [1]. 

 

The similar chemistry between technetium and rhenium facilitates the development of 

186/188
Re in nuclear medicine [23]. While technetium has found extensive use in 

diagnostic nuclear medicine [24], 
186/188

Re has been found to be suitable for use in 

radiotherapy [1,25]. This is due to the nuclear properties tabulated in Table 1.1 [26]. 

 

Both β
-
 emitters possess optimum energies and half-lives which allow an effective energy 

transfer to cancer tissue [27]. The photon emission of the rhenium radionuclides are 

similar to that of technetium which allows the rhenium radiopharmaceuticals 

biodistribution to be monitored by the same gamma-ray camera. 
186

Re can be used for 

small tumours due to its tissue range of 5 mm and 
188

Re, with a larger 11 mm range, can 

be used for larger tumours [3]. 
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Table 1.1: Properties of the rhenium radionuclides. 

Isotope 
Half-life 

(h ) 

Decay mode* 

(%) 

βmax 

(MeV) 

Eγ 

(keV) 

Tissue range 

(mm) 

186
Re 90 

β
-
 (92), 

EC (8) 
1.07 137 5 

188
Re 17 β

-
 (100) 2.12 155 11 

* β- = beta emission, EC = electron capture 

 

(b) Design approach to rhenium radiopharmaceuticals 

  

Earlier rhenium radiopharmaceuticals were designed analogous to its group VII congener 

technetium through the “match-pair” approach. For example, Tc-HEDP and Re-HEDP 

(HEDP = 1-hydroxyethylidene-1,1-diphosphonate) (Figure 1.2) are both excellent bone 

seekers with Re-HEDP used for pain relief from bone metastases [28]. However, this 

approach failed due to subtle differences in the chemistry of rhenium and technetium, 

since rhenium is more easily oxidized, which means that in vivo oxidation to [ReO4]
-
 is 

common [3]. 

 

PO

OH

C

OH

P

CH3

OH OH

OH

O

 

Figure 1.2: Structure of HEDP. 

 

Modern radiopharmaceutical design approaches have focused on the use of a biologically 

active molecule (BAM) which has a high affinity for a receptor site. There are three 

approaches towards the design of rhenium radiopharmaceuticals [1]: 
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 The first generation “metal design” in which the biodistribution and targeting 

capability of the nuclear agent depends on their lipophilicity, size and charge; 

 

 The integrated approach which involves the manipulation of the metal complex 

structure to suit the topology of the BAM for successful tagging of it; 

 

 The bifunctional approach which makes use of a high affinity receptor compound 

as the targeting biomolecule, a bifunctional chelator for attachment of the receptor 

compound and coordination of the radiometal, and a linker to manipulate the 

biodistribution, absorption and metabolism of the radiopharmaceutical. 

 

Recently, dual-modality molecular probes has been developed which combines multiple 

molecular imaging techniques [29]. The dinuclear Re(I)/Tc(I) complex, 

[Re(CO)3(bipy){(4-PyrIDA)Tc(CO)3}] (bipy = bipyridine, 4-PyrIDA = 2,2'-[(pyridin-4-

ylmethyl)imino]diacetic acid) (Figure 1.3) incorporates the nuclear features of Tc(I) with 

the fluorescence properties of Re(I) and has potential for use as a radioimaging and 

optical imaging agent [30]. It is thought that the combination of two or more detection 

techniques could enhance visualization of biological materials and provide greater 

reliability of collected data. 

 

Re

CO

CO

CO
N

N N

N
O

O
M

OC

OC

CO

O

O

M = 99mTc
 

Figure 1.3: Structure of fac-[Re(CO)3(bipy){(4-PyrIDA)Tc(CO)3}]. 
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(c) Applications of rhenium radiopharmaceuticals 

 

Clinical studies have shown that although 
186

Re-HEDP is effective for the relief of pain 

associated with metastatic bone cancer, it causes unnecessary radiation to occur in the 

bone marrow. This led to the development of 
186

Re-labelled biphosphonate derivatives 

based on the concept of bifunctional radiopharmaceuticals, such as 
186

Re-MAMA-HBP 

(Figure 1.4). This radiopharmaceutical has been proved to have a higher affinity for bone 

than 
186

Re-HEDP [23,31]. 

 

Re

S S

NN

O

O

H
N

O

P

PO

O

OH

OH

OH

OH

OH

 

Figure 1.4: Structure of Re-MAMA-HBP. 

 

Studies have shown that 
188

Re-SOCTA-trastuzumab (Figure 1.5) could be a suitable 

radioimmunoagent for breast cancer treatment. The trastuzumab antibody is labeled with 

188
Re through the use of a N2S2 ligand SOCTA, which is a useful bifunctional chelator for 

protein conjugation [32]. 

 

Re

O

NN

S S

O

H2
C C

O

H
N trastuzumab

 

Figure 1.5: Structure of 
188

Re-SOCTA-trastuzumab.  
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A facile synthetic approach has been developed for a tridentate bifunctional chelator 

offering a primary amine or a carboxylic acid group for modification of peptides and 

proteins for labeling with the fac-[M(CO)3]
+
 core (M = Tc, Re). The corresponding 

99m
Tc 

complex, [
99m

Tc(APPA)(CO)3] (APPA = [(5-amino-pentyl)-pyridin-2-yl-methylamino]-

acetic acid) (Figure 1.6) showed good clearance characteristics from all organs and 

tissues which are of importance for potential use in radiopharmacy [33].  

 

M = Re / Tc

M

N

CO

CO

CON

O

H2N

O

 

Figure 1.6: Structure of fac-[M(APPA)(CO)3]. 

 

(d) Potential therapeutic agents for Alzheimer’s disease  

 

The extracellular deposition of amyloid β plaques are thought to be the key contribution 

to the parthenogenesis and progression of Alzheimer’s disease (AD). Non-invasive 

imaging and quantification of amyloid β deposition in living human brain has been made 

possible by the recent advancement of amyloid β plaque targeting radiotracers [34]. 

Aminophenyl-benzothiazole derivatives are known to have possible applications as tracer 

agents for the in vivo visualization of amyloid plaques in AD patients. Thus far, the most 

favourable and clinically relevant outcomes have been observed with the 
11

C 

radiolabelled Pittsburg Compound B (
11

C-PIB) (Figure 1.7). It has been shown that 
11

C-

PIB has substantial uptake in beta-amyloid plaques in neuronal tissue and generates 

images via Positron Emission Tomography (PET) [21].  
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S

N

HO

N

H

11CH3  

Figure 1.7: Structure of 
11

C-PIB. 

 

Thus far a series of neutral complexes of rhenium-2-phenylbenzothiazoles (Figure 1.8) 

were developed and has shown to have good binding affinity to aggregated amyloid β 

fibres. It is believed that the corresponding 
99m

Tc analogues would hold great potential 

for imaging amyloid β deposition with Single-Photon Emission Computed Tomography 

(SPECT) [34].  

 

R

N

S

N N

NS

Re

O

R = OH or OCH3  

Figure 1.8: Structure of rhenium-2-phenylbenzothiazoles. 

 

1.3.2   Electrochemistry 

 

The redox properties of radiopharmaceuticals have a significant influence on their 

biological activity. Biodistribution studies of rhenium agents have shown that there is a 

link between the redox reactivity and the rate of clearance of a therapeutic agent from a 

specific organ [35]. In addition, a study of the redox behaviour of rhenium complexes 

provides an indication of the radiopharmaceuticals specificity towards particular organs 

and determines its resistance towards in vivo oxidation [36]. The redox properties of the 

complexes can be manipulated by changing the rhenium core used, the oxidation state of 

the metal and by varying the donor properties of the coordinated ligand [35]. 
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For example, it has been shown that electrochemical techniques can be employed in the 

evaluation of the protein binding capacity of cationic rhenium complexes. The trans-

[ReO2(en)2]
+
 (en = 1,2 ethanediamine) cation interacts with the plasmatic protein albumin 

at neutral pH, due to the functional groups in the protein being mostly negatively 

charged. This method provides insight to the mechanism of the protein interaction, which 

would prove invaluable in the understanding of the biodistribution and activity of 

potential radiopharmaceuticals [37]. 

 

1.3.3   Photochemistry 

 

The reactions of [Re(CO)5X] (X = Cl, Br) with bidentate diimine ligands like 1,10-

phenanthroline and 2,2'-bipyridine, result in the substitution of two carbonyl ligands 

forming stable fac-[Re(CO)3(diimine)X] complexes. It was found that the fac-

[Re(CO)3(diimine)X] complexes exhibited remarkable photochemical properties [38]. 

The diimine ligand can be modified to allow the systematic tuning of the electronic 

characteristics of the Re(I) complexes [39]. 

 

For example, the photochemical behaviours of fac-[Re(CO)3(MebpyTTF)X] 

(MebpyTTF = 4,5-bis(methyloxycarbonyl)-4′,5′-(4′-methyl-2,2′-dipyrid-4-ylethylenedi-

thio)tetrathiafulvalene; X = Cl, Br) (Figure 1.9) were extensively studied [40]. 

Photoexcitation of the complexes in CH2Cl2 at 460 nm resulted in intense luminescence 

at room temperature, with emission maxima between 600 and 620 nm. These emissions 

were ascribed to the metal to ligand charge transfer (MLCT) excited state. 

 

The exceptional photochemical characteristics of diimine rhenium(I) tricarbonyl 

complexes has brought about their various applications as sensors, light emitting 

materials, non-linear optical materials and as photoluminescent  metal-based probes for 

the study of DNA binding [41]. This has provided huge impetus for the discovery of 

novel rhenium(I) complexes containing diimine chelates. 

 

http://en.wikipedia.org/wiki/2,2%27-bipyridine
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X = Cl, Br
 

Figure 1.9: Structure of fac-[Re(CO)3(MebpyTTF)X]. 

 

 

1.4.  The General Chemistry of Rhenium(I) 

 

Rhenium(I) has a d
6
 electronic configuration in an octahedral field and complexes in this 

oxidation state display kinetic and thermodynamic stability [27]. Monodentate ligands 

such as phosphines, diphosphines, isonitriles, nitrosyls and carbonyls are required to 

stabilize rhenium in oxidation state +I. 

 

1.4.1   Rhenium(I) tricarbonyl core, fac-[Re(CO)3]
+ 

 

Alberto and coworkers first reported the one step synthesis of the rhenium(I) complex 

[Re(H2O)3(CO)3]
+
, by direct reduction of perrhenate with sodium borohydride in aqueous 

solution in the presence of carbon monoxide [12]. This complex serves as a synthon for 

the formation of fac-[Re(CO)3]
+
 complexes since the labile solvent molecules are easily 

replaced by a variety of functional groups, including amines, thioethers, imines, thiols, 

carboxylates and phosphines [27].  

 

The fac-[M(CO)3]
+
 (M = Tc, Re) moiety has been found to be of value due to its 

favourable properties [12,27,42]: 
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 The fac-[M(CO)3]
+
 precursor complexes can be readily prepared in high yield 

from the permetalates in aqueous-based kit formulations. 

 The small size of the [M(CO)3]
+
 core allows flexibility in the labeling of various 

molecular weight biomolecules. 

 The fac-[M(CO)3]
+ 

core has a large affinity for a variety of donor atoms due to the 

fact that the stability of these complexes is purely kinetic.  

 Potential radiopharmaceuticals containing the fac-[M(CO)3]
+
 moiety have a high 

stability in water compared to radiopharmaceuticals containing the 

oxorhenium(V) core which is prone to oxidation by water. 

 

1.4.2  Coordination chemistry of rhenium(I) 

 

(a)   Rhenium(I) complexes with NN-donor ligands 

 

A novel Re(I) diimine complex was designed by introducing the carrier-transporting 

carbazole moiety (Figure 1.10) into the diimine ligand. The single crystal X-ray 

diffraction results for the fac-[Re(CO)3(cpb)Cl] complex (cpb = N-(4-carbazolylphenyl)-

2,2’-dipyridylamine) displays a distorted octahedral geometry with the N-Re-N bond 

angle much less than 90˚ due to the steric requirement of the bidentate coordination of the 

cpb ligand. The photoluminescent properties of the complex in the solid state were found 

to be superior to that of the corresponding diimine complex without the functional 

carbazole group [43]. 

 

Re

CO

CO

Cl

CON

N

NN

 

Figure 1.10: Structure of fac-[Re(CO)3(cpb)Cl]. 
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The “2+1” fac-[Re(CO)3(phen)(app)](BF4) complex (Figure 1.11) (phen = 1,10-

phenanthroline, app = 3-amino-N-phthalimido-pyridine) was formed from the reaction of 

[Re(CO)3(phen)(CH3CN)](BF4)] and app in chloroform. The lipophilic planar 

phthalimide moiety coordinates through the pyridyl nitrogen, while the phen unit acts as a 

neutral bidentate chelate. Photophysical analysis of this compound showed that the 

complex has useful emission properties and, in addition, the phthalimide unit provides a 

useful basis for biological application in confocal fluorescent microscopy [44]. 

 

N

O

O
N

Re

CO

CO

CO

N

N

BF4

 

Figure 1.11: Structure of fac-[Re(CO)3(phen)(app)](BF4). 

 

(b) Rhenium(I) complexes with heterocyclic ligands 

 

The reaction of [Re(CO)5Br] with 2,6-bis(1’-methylbenzimidazol-2’-yl)pyridine (btmbip) 

formed the stable octahedral complex fac-[Re(CO)3(btmbip)Br] (Figure 1.12). The 

btmbip acts as a neutral bidentate chelate with coordination through the pyridyl nitrogen 

and the imidazoyl nitrogen [45].  

 

N
N

N
N

N

Br

CO

Re

CO
OC

 

Figure 1.12: Structure of fac-[Re(CO)3(btmbip)Br]. 
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Coordination of the heterocyclic ligand 2,3-bis(methylthio)pyrrolo[1,2-a]benzimidazol-1-

one (mpbo) with fac-[Re(CO)3(THF)2Br] in refluxing toluene gave the fac-

[Re(CO)3(mpbo)Br] (Figure 1.13) complex. The ancillary heterocyclic mpbo ligand 

exhibits an N,S chelation mode with the ketonic oxygen and methyl sulfur on the exterior 

pyrrol-1-one ring remaining uncoordinated [46]. 

 

N
N

O

SMe
S
Me

Re

CO

OC

OC

Br

 

Figure 1.13: Structure of fac-[Re(CO)3(mpbo)Br]. 

 

 

(c) Rhenium(I) complexes with nitrogen, oxygen and/or sulfur donor ligands 

 

Complexes of fac-[Re(CO)3L]
+
 (where L is a facially coordinating tridentate ligand) are 

stable in aqueous media and there is a possibility for such compounds to be of use in 

nuclear medicine. The coordinated tridentate ligand can serve as a bifunctional chelator 

for the labeling of bioactive molecules [26]. An example of this is the 4-(benzimidazol-2-

yl)-3-thiabutanoic acid (Hbtb) ligand which acts as a NSO tridentate chelate towards the 

fac-[Re(CO)3Br3]
2-

 precursor by replacing the bromide atoms.  

 

Re

CO

COOC

H
N

N

S

O

O

 

Figure 1.14: Structure of fac-[Re(CO)3(btb)]. 



 

Chapter 1  Introduction 

Nelson Mandela Metropolitan University                                                                                                16 
 

The tridentate ligand coordinates through the pyridine nitrogen of the benzimidazole, the 

thioether sulfur and the carboxylate oxygen, forming the neutral lipophillic fac-

[Re(CO)3(btb)] complex (Figure 1.14). The NH group of the benzimidazole moiety can 

be modified to serve as an anchoring point for the bridging of a receptor targeting 

molecule of biological interest [47]. 

 

Dimeric [Re(CO)3(NX)]2 (NX = 8-thioquinoline or 8-hydroxyquinoline) complexes were 

isolated from the reaction of [Re(CO)5Cl] and the substituted quinoline ligands. The 

dimeric rhenium molecules consists of two fac-[Re(CO)3(NX)] sub-units connected via 

sulfur or oxygen atoms of 8-thioquinoline and 8-hydroxyquinoline respectively. Upon 

further reaction in a strongly coordinating solvent (pyridine), the [Re(CO)3(NX)]2 

complexes underwent dissociative solvolysis to produce the fac-[Re(CO)3(NX)(py)] 

complexes (Scheme 1.1) [48]. 

 

Re

CO

CO
CON

X

N

X

Re

CO

OC

OC
pyridine Re

CO

CO
CON

X

N

X = S or O
 

Scheme 1.1: Formation of fac-[Re(CO)3(NX)(py)] from [Re(CO)3(NX)]2. 

 

1.5 The General Chemistry of Rhenium(V) 

 

The oxidation state +V of rhenium has the largest number of structurally characterized 

complexes for this metal. This is due to the easily accessibility of rhenium(V) via the 

reduction of [ReO4]
-
 with reducing agents (e.g. SnCl2) and by the coordination of the 

central metal atom with a large variety of donor atoms. Rhenium(V) complexes generally 

exhibits an octahedral geometry with a diamagnetic d
2
 configuration. The common cores 
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for rhenium in oxidation state +V are the oxo, imido and amido, with the former 

dominating the coordination chemistry of rhenium. 

 

1.5.1  Rhenium(V) oxo core, [ReO]
3+ 

 

The oxorhenium(V) complexes predominates and undergoes various reactions such as 

given below. 

 

(a)   Oxidation 

 

Oxorhenium(V) complexes are oxidized by strong oxidants which usually result in the 

formation of perrhenate. The oxo-hydrazido [Re
VII

OCl(NNMePh)(PPh3)2]
2+

 cationic 

complex was formed by the oxidation of trans-[Re
V
OCl3(PPh3)2] with an excess of the 

unsymmetrically disubstituted organohydrazine MePhNNH2 in boiling methanol by the 

following reaction [49]: 

 

trans-[ReOCl3(PPh3)2] + MePhNNH2           [ReOCl(NNMePh)(PPh3)2]
2+ 

 + 2Cl
-
 + H2O 

 

(b)   Reduction 

 

The common route to rhenium(III) complexes is the reduction of monooxorhenium(V) by 

triphenylphosphine via the removal of the terminal oxide, as shown by the following 

reaction [50]: 

 

trans-[ReOCl3(PPh3)2] + CNC(CH3)3 + PPh3         [ReCl3(CNC(CH3)3)(PPh3)2] + OPPh3 

 

(c)   Disproportionation 

 

Oxorhenium(V) complexes can also undergo disproportionation to Re(IV)/Re(III) and 

Re(VII). The disproportionation of rhenium(V) to rhenium(III) and rhenium(VII) was 

noted in the reaction [51]: 
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trans-[ReOCl3(PPh3)2]   +   phen     [ReCl2(phen)(PPh3)2]
+
   +   [ReO4]

- 

 

(d)   Ligand Substitution 

 

Ligand substitution is readily affected in the cold or by gentle warming in a suitable 

solvent. An example is shown in the following reactions where different solvents produce 

different products [52]: 

      fac-[ReOCl3(Dppen)]  +  OPPh3  +  SMe2 

 

fac-[ReOCl3(OPPh3)(SMe2)]  +  Dppen               

                                                         

     fac-[ReOCl2(OEt)(Dppen)] + OPPh3  + SMe2 + HCl 

 

1.5.2  Rhenium(V) imido core, [ReNR]
3+ 

 

The dianionic ligand [NR]
2-

 is isoelectronic with the oxo ligand and is also able to 

stabilize metals in their high oxidation states [53]. The organoimido core, M = N – R, is 

of synthetic value in radiopharmacology since different organic substituents can be 

included into a stable nitrogen core. The biological properties can then be adjusted by 

variation of the imido core’s R substituent [54]. The bonding between the metal and 

imido ligands consists of one sigma and two pi bonds, and it can adopt different 

geometries as shown in Figure 1.9. 

 

M N R M N

R

A B
 

Figure 1.15: Representations of the bonding in imido complexes. 

 

When the imido ligand is bonded to the metal in a linear fashion (structure A in Figure 

1.15), the bond can be regarded as a triple bond and the N-atom considered to be sp 

EtOH 

THF 
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hybridized. The bent imido (structure B) results in a double bond between the metal and 

the nitrogen atom with the lone pair centered on a sp
2
 hybridized nitrogen [55]. 

 

It was previously shown that the imido moiety can be obtained from oxo complexes 

through the use of a condensation reaction with aniline derivatives [10]: 

 

trans-[ReOCl3(PPh3)2] + 1,2-(NH2)2C6H4                        [Re(NC6H4-2-NH2)Cl3(PPh3)2] 

 

In addition, the nitrido core can also produce imido rhenium(V) complexes through 

alkylation or acylation with carbanions and anhydrides [56]:  

 

[Re(N)Cl4]
-
    +   CPh3

+
                              [Re(NCPh3)Cl4] 

 

Ligand substitution reactions with the [Re(NPh)Cl3(PPh3)2] and [Re(NMe)Cl3(PPh3)2]  

precursors have also been shown to be a versatile method to produce imido complexes 

with different ligands attached to the rhenium(V) imido core [55]. 

 

 

1.5.3  Coordination chemistry of rhenium(V) 

 

(a)   Rhenium(V) complexes with heterocyclic ligands 

 

The tridentate NNO ligand Hbp
 
(N-(2-hydroxybenzyl)-2-picolylamine) was used to 

generate [ReO(bp)Cl2] (Scheme 1.2) from (n-Bu4N)[ReOCl4]. The deprotonated Schiff 

base binds in a facially tridentate fashion with the phenoxide oxygen atom occupying the 

trans position to the oxo group. The tetradentate ONNO donating ligand H2bbp (N
1
,N

2
-

bis(2-hydroxybenzyl)-2-picolylamine) reacted with (n-Bu4N)[ReOCl4] to form the 

monochloro complex [ReO(bbp)Cl] (Scheme 1.2). The pyridyl nitrogen, amine nitrogen 

and one phenoxide oxygen of the doubly deprotonated bbp
2-

 moiety coordinated 

meridonally, with the other phenoxide oxygen being trans to the terminal oxo group [58]. 
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Scheme 1.2: Reaction pathway for the formation of [ReO(bp)Cl2] and [ReO(bbp)Cl]. 

 

The reaction of trans-[ReOBr3(PPh3)2] with bis(3,5-dimethylpyrazol-1-yl)methane 

(bdmpzm) in ethanol produced the cationic dioxorhenium(V) trans-[ReO2(bdmpzm)2]
+
 

complex salt (Figure 1.16). The two bidentate bdmpzm ligands coordinated through the 

nitrogens of the pyrazole rings to form 6 membered chelate rings [6]. 

 

NN

N
N

N N

N
N

Re

O

O

+

 

Figure 1.16: Structure of [ReO2(bdmpzm)2]
+
. 

 

(b)  Rhenium(V) complexes with nitrogen, oxygen and sulfur donor ligands 

 

The mixed-ligand Re(V) complex (Figure 1.17) containing the tridentate 

thiocarbamoylbenzamide (H2tcb) and the bidentate N,N’-dialkyl-N’-benzoylthioureato 
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(HR2btu) ligands was formed upon reaction of (n-Bu4N)[ReOCl4] with H2tcb and HR2btu 

in the presence of a supporting base triethylamine. The benzoylic oxygen of the R2btu
-
 

ligand occupies the position trans to the rhenium oxo moiety and the tridenate tcb
2-

 is 

coordinated meridionally [59]. 

 

Re

N S

O

HN

N N
Et

Et

O

O

N

N

S

Ph

Ph

 

Figure 1.17: Structure of  [ReO(R2btu)(tcb)]. 

 

The neutral [ReO(mcg)(bipy)] complex (H3mcg =2-mercaptoethyl-N-glycine, bipy = 

2,2’-bipyridine) (Figure 1.18) was formed from trans-[ReOCl3(PPh3)2] upon treatment 

with a mixture of H3mcg and bipy in methanol. This ‘3+2’ complex consists of a neutral 

bidentate NN chelate as well as a SNO tridentate trianionic ligand leading to the stable 

oxorhenium complex [60]. 
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O NS
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Figure 1.18: Structure of [ReO(mcg)(bipy)]. 
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Chapter 2 

 

Experimental 

 

2.1 Handling of Rhenium 

 

Rhenium occurs naturally with two non-radioactive isotopes, 
185

Re and 
187

Re, with a 

natural abundance of 37.4 % and 62.6 % respectively. The radioactive isotopes 
186

Re and 

188
Re are generated from the non-radioactive isotopes 

185
Re and 

187
Re respectively. The 

non-radioactive isotopes were used in this study and no special precautions were taken in 

the handling of rhenium.
 

 

2.2  Materials 

 

2.2.1  Precursor compounds 

 

(a) Ammonium perrhenate 

 

The ammonium perrhentate (NH4)[ReO4] was obtained from Sigma-Aldrich in +99 % 

purity and required no further purification. 

 

(b) Rheniumpentacarbonyl halide
 

 

The rheniumpentacarbonyl halides [Re(CO)5X] (X = Cl or Br), were obtained from 

Sigma-Aldrich in 98 % purity and were used without further purification. 
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(c) trans-[ReOCl3(PPh3)2] [1] 

 

To a mixture of 0.9 g of (NH4)[ReO4] in 3 cm
3
 of conc. hydrochloric acid was added 5.0 

g of triphenylphosphine in 50 cm
3
 glacial acetic acid under nitrogen. A bright green 

precipitate formed, which was filtered, washed with glacial acetic acid and diethyl ether, 

and dried under vacuum. Yield  = 95 %. Anal. Calcd. for C36H30P2OCl3Re (mol. wt. = 

833.09 g/mol) (%): C, 51.90; H, 3.63; Cl, 12.95. Found: C, 51.92; H, 3.61; Cl, 12.87. 

 

(d) trans-[ReOBr3(PPh3)2] [1] 

 

To a solution of 1.0 g of (NH4)[ReO4] in 3 cm
3
 conc. hydrobromic acid was added 5.0 g 

of triphenylphosphine in 50 cm
3
 glacial acetic acid under nitrogen. A yellow precipitate 

formed, which was filtered, washed with glacial acetic acid and diethyl ether, and dried 

under vacuum. Yield = 90 %. Anal. Calcd. for C36H30P2OBr3Re (mol. wt. = 966.49 

g/mol) (%): C, 44.74; H, 3.13; Br, 24.80. Found: C, 44.40; H, 3.11; Br, 24.20. 

 

(e) trans-[ReOI2(OEt)(PPh3)2]  

 

A mass of 5.0 g of triphenylphosphine in 30 cm
3
 ethanol was added to 1.0 g of 

(NH4)[ReO4] in 5 cm
3
 hydroiodic acid (56%), and the mixture was heated under reflux 

for 15 minutes. The solution was allowed to cool to room temperature, and the resultant 

green precipitate was filtered, washed with ethanol and diethyl ether, and dried under 

vacuum. Yield = 85 %. Anal. Calcd. for C38H35I2O2P2Re (mol.wt. = 1142.8 g/mol) (%): 

C, 44.50; H, 3.43; I, 24.75. Found: C, 44.72; H, 3.91; I, 25.17. 

 

 (f) cis-[ReO2I(PPh3)2] [2] 

 

A mixture of 1.0 g of trans-[ReOI2(OEt)(PPh3)2] in 50 cm
3
 of acetone and 2 cm

3
 of water 

was stirred at ambient temperature for an hour. The purple crystalline product which 

formed was filtered, washed with acetone and diethyl ether and dried under vacuum. 
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Yield = 80 %. Anal. Calcd. for C36H30IO2P2Re (mol.wt. = 869.68 g/mol) (%): C, 49.72; 

H, 3.48; I, 14.59. Found: C, 49.72; H, 3.46; I, 14.41. 

 

(g) trans-[ReO2(py)4]Cl [3] 

 

A mixture of 3 cm
3
 pyridine and 0.5 cm

3
 water was added to a solution of 0.50 g of trans-

[ReOCl3(PPh3)2] in 10 cm
3
 of acetone. The resultant mixture was refluxed for 90 minutes 

and then cooled in ice water for 30 minutes, to give an orange precipitate which was 

washed with toluene (2 x 3 cm
3
) and diethyl ether (3 x 2 cm

3
), and dried under vacuum. 

Yield = 90 %. Anal. Calcd. for C20H20ClN4O2Re (mol.wt. = 570.06 g/mol) (%): C, 42.14; 

H, 3.54; Cl, 14.16; N, 9.83. Found: C, 42.72; H, 3.46; Cl, 14.41; N, 9.87. 

 

2.2.2  General laboratory chemicals 

 

All solvents used were of analytical grade, and were purified by standard methods [4]. 

All common laboratory chemicals were of analytical grade and were used without further 

purification. 

 

The following chemicals were commercially obtained and used as received: 

4-Aminoantipyrine Aldrich (98.5 %) 

2-Aminobenzaldehyde Aldrich  

Salicylaldehyde Fluka (> 98.5 %) 

2,6-Pyridinedicarboxaldehyde Aldrich (97 %) 

2-Mercaptobenzoic acid Aldrich (97 %) 

2-Aminothiophenol Aldrich (99 %) 

Phthalaldehyde Fluka (≥ 98.5 %) 

3,3'-Thiodipropionic acid Aldrich (97 %) 

2-Aminophenol Aldrich (99 %) 
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2.3 Instrumentation 

 

The 
1
H NMR spectra were obtained at 300 K using a Bruker Avance III 400 MHz 

spectrometer. Deuterated dimethyl sulfoxide or deuterated chloroform was used as the 

solvent and the peak positions were obtained relative to SiMe4. The infrared spectra were 

recorded on Bruker Tensor 27 FT-IR spectrophotometer in the 4000-200 cm
-1 

range.  

 

The paramagnetism was measured by the Evans’ method using a Bruker Avance III 400 

MHz spectrometer and a 5 mm Wilmad NMR tube in CDCl3. Diamagnetic corrections 

were calculated from Pascal constants [5].  

 

UV-Vis spectra were obtained using a Perkin-Elmer 330 spectrophotometer. The 

extinction coefficients (ε) are given in dm
3
mol

-1
cm

-1
. Emission spectra were recorded at 

room temperature with a Perkin-Elmer LS45 Flourescence Spectrometer. 

 

1,2-Diaminobenzene Aldrich (98 %) 

Benzene-1,2-dithiol Fluka (≥ 95 %) 

Glyoxal (40% solution) Riedel de Haën 

4-Amino-2-hydroxybenzoic acid Aldrich (99 %) 

Neocuproine hydrate Aldrich (99 %) 

Selenium dioxide Fluka (≥ 98 %) 

Diglycolic acid Aldrich (98 %) 

Carbon disulfide Holpro Analytics 

Methyl iodide Fluka (≥ 99 %) 

2-Mercaptophenol Aldrich (95 %) 

2-Amino-benzothiazole Aldrich (97 %) 
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Melting points were determined using an Electrothermal 9100 melting point apparatus 

with a benzoic acid standard used as a melting point test. The elemental analyses for 

carbon, hydrogen, nitrogen and sulfur were carried out on a Vario EL cube (Elementar 

Analysensysteme GmbH) instrument.  

 

An Oxford Xcalibur, Nonius Kappa CCD or a Bruker Kappa Apex II diffractometer in 

the conventional ω-2θ scan mode and monochromatic Mo-Kα radiation (λ = 0.71073 Å) 

was used for the X-ray crystallographic analysis.  

 

Conductivity measurements were carried out at 293K on a Phillips PW 9509 digital 

conductometer. The measurements were compared to the expected ranges of the different 

electrolyte types [Table 2.1] [6]. 

 

Table 2.1: Expected conductivity values (ohm
-1

cm
2
mole

-1
) at 10

-3 
M. 

 

Solvent 

Electrolyte type 

1:1 2:1 

Acetonitrile 120 - 160 220 - 300 

Dimethylformamide 65 - 90 130 - 170 

Methanol 80 - 115 160 - 220 

 

The cyclic voltammetry (CV) studies were carried out using a Bas Episilon Version 

1.30.64 system. A three electrode system was used which consisted of a platinum wire as 

the auxillary electrode, a glassy carbon working electrode and a non-aqueous Ag/AgNO3 

reference electrode in acetonitrile. Measurements were done in CH2Cl2, DMF or CH3CN 

solutions with 0.1 M tetrabutylammonium perchlorate (TBAP) as supporting electrolyte. 

Before each run the sample solutions were first deoxygenated by bubbling nitrogen 

through the sample solutions. Under these conditions, ferrocene displays a reversible one 

electron process (Figure 2.1) with ΔE = 105 mV and Ic/Ia ~ 1 for the Fe(II)/Fe(III) couple. 
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Figure 2.1: Cyclic voltammogram of ferrocene in the -0.7  to 0.6 V potential range at a 

scan rate of 50 mV/s. 
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Chapter 3 

 

Coordination Modes of 4-Aminoantipyrine and its 

Schiff Base Derivatives towards Rhenium 

 

3.1 Introduction 

 

Pyrazolones is a class of organic compounds that have been studied extensively due to 

their pharmaceutical properties. Pyrazolone is a five-membered lactam ring which 

contains two nitrogen atoms and a ketone group in the same molecule (refer to Scheme 

3.1), and it is an active moiety in pharmacological activity, such as anti-inflammatory 

agents [1], for the treatment of arthritis [2] and as analgesics [3]. Anticancer activity has 

also been reported [4]. Pyrazolones have also found applications outside the 

pharmaceutical field, such as in solvent extraction of metal ions [5], for analytical 

purposes [6] and as ligands in complexes with catalytic activity [7]. 

 

3

N2

N
1

5

4

O

 

Scheme 3.1: Skeletal structure and numbering system for the pyrazolone ring. 

 

From a coordination chemistry viewpoint, the only atoms available for coordination are 

the nitrogen atoms of the pyrazole ring and the oxygen atom of the carbonyl group (see 

Scheme 3.1). If the nitrogens are blocked by substitution, such as in antipyrine (Scheme 

3.2), coordination can only be achieved through the oxygen atom. 
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N

N
O

R1

R2

R3 R4

   R1 = Ph, R2 = R3 = Me, R4 = H: antipyrine

   R1 = Ph, R2 = R3 = Me, R4 = NH2: H2pap

 

Scheme 3.2: Derivatives of pyrazole. 

 

Transition metal complexes of 4-amino-2,3-dimethyl-1-phenyl-5-pyrazoline (4-

aminoantipyrine, H2pap) and its derivatives have been extensively studied due to their 

wide applications in the biological and therapeutical fields [8, 9]. Most of this research 

was done on the 3d transition metals, and in all of these H2pap coordinated as a neutral 

ligand: as a bidentate in [M(H2pap)2X2] (M = Co, Ni; X
-
 = Cl

-
, NO3

-
, SCN

-
) or as a 

monodentate through the neutral amino nitrogen in [M(H2pap)4]Br2 (M = Co, Ni) [10]. 

 

In this chapter, the coordination behaviour of 4-aminoantipyrine (H2pap) and its Schiff 

base derivatives (Scheme 3.3) with the oxorhenium(V) and tricarbonyl rhenium(I) cores 

are reported. The reactions of trans-[ReOX3(PPh3)2] (X = Cl, Br) with H2pap were 

studied, and the complexes cis-[ReX2(pap)(H2pap)(PPh3)](ReO4) (X = Cl (1), Br (2)) 

were isolated. The ligand pap is coordinated monodentately through the doubly 

deprotonated amino nitrogen as an imide, and H2pap is coordinated bidentately via the 

neutral amino nitrogen and neutral ketonic oxygen. The reactions of trans-

[ReOBr3(PPh3)2] and cis-[ReO2I(PPh3)2] with 4-(2-aminobenzylideneamino)-1,2-

dihydro-2,3-dimethyl-1-phenylpyrazol-5-one (H2nap) and 4-(2-hydroxybenzylidene 

amino)-1,2-dihydro-2,3-dimethyl-1-phenylpyrazol-5-one (Hoap) are also reported. The 

complexes cis-[Re(nap)Br2(PPh3)]Br (3), [ReO(OEt)(Hnap)(PPh3)]I (4) and 

[ReO(OMe)(oap)(PPh3)]I (5) were isolated and structurally characterized. The reactions 

of the Schiff base derivatives 1,2-(diimino-4’-antipyrinyl)ethane (dae) and 2,6-bis(4-

amino-1,2-dihydro-2,3-dimethyl-1-phenylpyrazol-5-one)pyridine (bap) with [Re(CO)5X] 

(X = Br or Cl) produced fac-[Re(CO)3(dae)Cl] (6)  and fac-[Re(CO)3(bap)Br] (7) 

respectively. 
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Scheme 3.3: Reaction pathway for the formation of Schiff base derivatives of 4-

aminoantipyrine. 
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3.2 Experimental 

 

3.2.1  Synthesis of (4Z)-4-(2-aminobenzylideneamino)-1,2-dihydro-2,3-

dimethyl-1-phenylpyrazol-5-one (H2nap) 

 

A solution of 0.840 g of 4-aminoantipyrine (4.13 mmol) in 20 cm
3
 of methanol was 

added dropwise to a solution of 0.505 g of 2-aminobenzaldehyde (4.17 mmol) in 30 cm
3
 

of toluene, which was kept at –18 °C (with a sludge bath of liquid nitrogen/1,2-

dichlorobenzene). The reaction mixture was allowed to warm to room temperature, and 

then heated under refluxed for three hours. On cooling the solution to room temperature, 

a yellow precipitate separated which was removed by filtration and dried under vacuum. 

Yield = 87 %, m.p. = 168 °C. Anal. Calcd. (%) for C18H18N4O: C, 70.6; H, 5.9; N, 18.3. 

Found: C, 70.5; H, 6.1; N, 18.4. IR (νmax/cm
–1

): ν(N-H) 3039(m), 3050(m); ν(C=O) 

1646(s); ν(C=N) 1612(s). 
1
H NMR (295K, ppm): 9.62 (s, 1H, H(7)); 7.52 (t, 2H, H(15), 

H(17)); 7.36 (m, 3H, H(14), H(16), H(18)); 7.23 (s, 2H, NH2); 7.18 (d, 1H, H(2)); 7.09 (t, 

1H, H(3)); 6.73 (d, 1H, H(5)); 6.57 (t, 1H, H(4)); 3.11 (s, 3H, C(12)H3); 2.36 (s, 3H, 

C(11)H3). 
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Figure 3.1: Structure of H2nap. 
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Figure 3.2: 
1
H NMR spectrum of H2nap in the range 6.50-9.80 ppm. 

 

3.2.2 Synthesis of (4Z)-4-(2-hydroxybenzylideneamino)-1,2-dihydro-2,3-

dimethyl-1-phenylpyrazol-5-one (Hoap) 

 

A mass of 3.038 g of 4-aminoantipyrine (149 mmol) and 1.776 g of salicylaldehyde (145 

mmol) were dissolved in 50 cm
3
 of methanol. The resultant solution was heated to reflux 

under nitrogen for three hours to give a yellow solution, which was cooled to room 

temperature and filtered. The filtrate was placed in a cold room (0 °C) overnight to 

produce yellow crystals, which was collected by filtration and dried under vacuum. Yield 

= 96 %, m.p. = 199 °C. Anal. Calcd. (%) for C18H17N3O2: C, 70.3; H, 5.6; N, 13.7. 

Found: C, 70.3; H, 5.5; N, 13.7. IR (νmax/cm
–1

): ν(C=O) 1653(s); ν(C=N) 1594(s). 
1
H 

NMR (295K, ppm): 9.68 (s, 1H, H(7)); 7.54 (t, 2H, H(15), H(17)); 7.45 (d, 1H, H(16)); 

7.38 (m, 3H, H(14), H(18), H(5)); 7.30 (t, 1H, H(3)); 6.91 (m, 2H, H(2), H(4)); 3.19 (s, 

3H, C(12)H3); 2.47 (s, 1H, OH); 2.39 (s, 3H, C(11)H3). UV-Vis (CH2Cl2, λmax (ε, M
-1

cm
-

1
)): 305 (13815), 320 (16964), 350 (27711), 366 (23155). 
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Figure 3.3: Structure of Hoap. 

 

3.2.3  Synthesis of 1,2-(diimino-4’-antipyrinyl)ethane (dae) 

 

A mixture of glyoxal (0.20 g, 3.44 mmol) and 4-aminoantipyrine (1.40 g, 6.88 mmol) 

was dissolved in 50 cm
3
 of ethanol and heated under reflux for 3 hours. The solution was 

allowed to cool to room temperature and the resultant yellow precipitate was collected by 

filtration and washed with acetone. Yield = 87 %, m.p. > 300 °C. Anal. Calcd. (%) for 

C24H24N6O2: C, 67.3; H, 5.7; N, 19.6. Found: C, 67.4; H, 5.8; N, 19.3. IR (νmax/cm
–1

): 

ν(C=O) 1649; ν(C=N) 1578. 
1
H NMR (295K, ppm): 9.22 (s, 2H, H(1), H(2)); 7.46 (t, 4H, 

H(10), H(12), H(21), H(23)); 7.43-7.50 (m, 6H, H(9), H(11), H(13), H(20), H(22), 

H(24)); 3.21 (s, 6H, C(7)H3, C(18)H3); 2.42 (s, 6H, C(6)H3, C(17)H3). UV-Vis (CH2Cl2, 

λmax (ε, M
-1

cm
-1

)): 378 (60800), 400 (50000). 
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Figure 3.4: Structure of dae. 

 

 

Figure 3.5: IR spectrum of dae in the 400-1900 cm
-1

 range. 
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Figure 3.6: 
1
H NMR spectrum of dae in the 7.0-9.3 ppm range. 

 

3.2.4  Synthesis of 2,6-bis(4-amino-1,2-dihydro-2,3-dimethyl-1-phenyl- 

pyrazol-5-one)pyridine (bap) 

 

A solution of 0.067 g (5.0 mmol) of 2,6-pyridinedicarbaldehyde in 20 cm
3
of methanol 

was added dropwise to a solution of 2.00 g (9.8 mmol) of 4-aminoantipyrine in 30 cm
3
 of 

methanol. The solution was allowed to boil under reflux under nitrogen. After three hours 

the solution was cooled to room temperature and a yellow precipitate was filtered off and 

dried under vacuum. The product was recrystallized from methanol to produce yellow 

crystals. Yield = 78 %, m.p. = 262 °C. Anal. Calcd. (%) for C29H27N7O2: C, 68.9; H, 5.4; 

N, 19.4. Found: C, 68.7; H, 5.5; N, 19.1.  IR (νmax/cm
-1

): ν(C=O) 1639(s); ν(C=N) 

1581(m). 
1
H NMR (295K, ppm): 9.57 (s, 2H, H(1), H(7)); 8.09 (d, 2H, H(3), H(5)); 7.94 

(t, 1H, H(4)); 7.54 (t, 4H, H(15), H(17), H(26), H(28)); 7.35-7.43 (m, 6H, H(14), H(16), 

H(18), H(25), H(27), H(29)); 3.25 (s, 6H, C(12)H3, C(23)H3); 2.48 (s, 6H, C(11)H3, 

C(22)H3). UV-Vis (CH2Cl2, λmax (ε, M
-1

cm
-1

)): 355 (61400). 
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Figure 3.7: Structure of bap. 

 

3.2.5  Synthesis of [ReX2(pap)(H2pap)(PPh3)](ReO4) (X = Cl (1), Br (2)) 

 

Trans-[ReOX3(PPh3)2] (120 μmol) and H2pap (55 mg, 270 μmol) were dissolved in dry 

ethanol, and the mixture was heated under reflux for two hours. After heating was 

stopped, the resulting green solution was allowed to cool to room temperature. For 

compound 1, a green precipitate was collected by filtration. It was washed with diethyl 

ether, dried under vacuum, and recrystallized from a 1:2 (v/v) ethanol/dichloromethane 

mixture to give green needles. For 2, no precipitate formed. However, the slow 

evaporation of the mother liquor over a period of two days gave green crystals, which 

were suitable for X-ray diffraction analysis. 

Analysis of 1: Yield = 71 %, m.p. > 300˚C. Anal. Calcd. (%): C, 40.9; H, 3.4; N, 7.2. 

Found: C, 41.0; H, 3.4; N, 7.3. IR (νmax/cm
-1

): ν(NH2) 3060(w); ν(C=O) 1655(s), 

1614(m); ν(Re-N) 528(m); ν(Re=N) 1070(m); ν(Re-O) 428(m); ν(Re
VII

=O) 907(s). 
1
H 

NMR (295K, ppm): 7.60-7.90 (m, 15H, PPh3); 7.58 (d, 2H, H(11), H(18)); 7.55 (t, 4H, 

H(8), H(10), H(19), H(21)); 7.50 (d, 2H, H(7), H(22)); 7.46 (dd, 2H, H(9), H(20)); 2.21 
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(s, 3H, C(15)H3); 2.55 (s, 3H, C(4)H3); 3.25 (s, 3H, C(16)H3); 3.61 (s, 3H, C(5)H3). 

Conductivity (10
-3 

M, DMF): 69 ohm
-1

cm
2
mol

-1
. UV-Vis (MeOH, λmax (ε, M

-1
cm

-1
)): 374 

(11798). 

Analysis of 2: Yield = 68 %, m.p. > 300˚C. Anal. Calcd. (%): C, 38.0; H, 3.10; N, 6.7. 

Found: C, 38.2; H, 3.3; N, 6.6. IR (νmax/cm
-1

): ν(NH2) 3054(w); ν(C=O) 1666(s), 

1608(m); ν(Re-N) 511(m); ν(Re=N) 1074(m); ν(Re-O) 398(m); ν(Re
VII

=O) 910(s).  
1
H 

NMR (295K, ppm): 7.62-7.89 (m, 15H, PPh3); 7.59 (d, 2H, H(11), H(18)); 7.56 (t, 4H, 

H(8), H(10), H(19), H(21)); 7.50 (d, 2H, H(7), H(22)); 7.46 (dd, 2H, H(9), H(20)); 2.23 

(s, 3H, C(15)H3);  2.58 (s, 3H, C(4)H3); 3.29 (s, 3H, C(16)H3); 3.68 (s, 3H, C(5)H3). 

Conductivity (10
-3 

M, DMF): 71 ohm
-1

cm
2
mol

-1
. UV-Vis (MeOH, λmax (ε, M

-1
cm

-1
)): 374 

(13174). 

 

3.2.6   Synthesis of cis-[Re(nap)Br2(PPh3)]Br (3) 

 

Solid trans-[ReOBr3(PPh3)2] of mass 105 mg (109 μmol) was added to a solution of 67 

mg of H2nap (219 μmol) in 20 cm
3 

ethanol, and the mixture was heated under reflux for 3 

h. After cooling to room temperature, the solution was filtered and the filtrate was 

allowed to evaporate slowly at room temperature. After two days brown crystals were 

collected. Yield = 52 %, m.p. = 192 °C. Anal. Calc. (%): C, 43.6; H, 3.2; N, 5.6. Found: 

C, 43.8; H, 3.4; N, 5.6. IR (νmax/cm
-1

): ν(C=O) 1593(m); ν(C=N) 1575(s); ν(Re=N) 

1095(m); ν(Re-O) 512(m); ν(Re-N) 440(m). 
1
H NMR (295K, ppm): 9.64 (s, 1H, H(7)); 

7.50-7.70 (m, 24H, PPh3, H(2), H(3), H(4), H(5), H(14), H(15), H(16), H(17), H(18)); 

3.18 (s, 3H, C(12)H3); 2.32 (s, 3H, C(11)H3). Conductivity (10
-3 

M, DMF): 83 ohm
-

1
cm

2
mol

-1
. UV-Vis (MeOH, λmax (ε, M

-1
cm

-1
)): 313 (10450), 370 (5110). 

 

3.2.7 Synthesis of [ReO(OEt)(Hnap)(PPh3)]I (4) 

 

A mass 104 mg of cis-[ReO2I(PPh3)2] (120 μmol) and 72 mg of H2nap (235 μmol) were 

dissolved in 20 cm
3
 ethanol, and the mixture was heated under reflux for 3 h. After 

cooling to room temperature, the solution was filtered and the filtrate was left to 

evaporate at room temperature. After 3 days red crystals were collected. Yield = 61 %, 
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m.p. = 183 °C. Anal. Calc. (%) for 4.½EtOH.½H2O: C, 48.1; H, 4.2; N, 6.6. Found: C, 

48.2; H, 4.4; N, 6.8. IR (νmax/cm
-1

): ν(N-H) 3049(w); ν(C=O) 1600(s); ν(C=N) 1578(s); 

ν(Re=O) 940(m); δ(OCH2) 907(s); ν(Re-O) 510(m); ν(Re-NH) 440(m). 
1
H NMR (295K, 

ppm): 9.62 (s, 1H, H(12)); 7.50-7.70 (m, 6H, H(2), H(3), H(5), H(6), H(15), H(18)); 

7.35-7.48 (m, 15H, PPh3); 7.22-7.32 (m, 3H, H(4), H(16), H(17)); 3.18 (s, 3H, C(11)H3); 

2.68 (t, 2H, C(37)H2); 2.34 (s, 3H, C(10)H3); 2.35 (d, 3H, C(38)H3). Conductivity (10
-3 

M, MeOH): 116 ohm
-1

cm
2
mol

-1
. UV-Vis (MeOH, λmax (ε, M

-1
cm

-1
)): 317 (13250), 370 

(12300), 491(420). 

 

3.2.8 Synthesis of [ReO(OMe)(oap)(PPh3)]I (5) 

 

A mixture of cis-[ReO2I(PPh3)2] (102 mg, 117 μmol) and Hoap (73 mg, 237 μmol) in 20 

cm
3
 of methanol was heated under reflux for 2 h. After cooling to room temperature, the 

solution was filtered, and the filtrate was evaporated slowly, yielding brown crystals after 

3 days. Recrystallization from MeOH/CH2Cl2 produced brown crystals suitable for X-ray 

diffraction analysis. Yield = 58 %, m.p. = 179 °C. Anal. Calc. (%) for 5.CH2Cl2: C, 45.0; 

H, 3.6; N, 4.1. Found: C, 44.8; H, 3.8; N 4.4. IR (νmax/cm
-1

): ν(C=O) 1599(s); ν(C=N) 

1569(s); ν(Re=O) 940(s); ν(Re-O) 530(m), 510(m).
1
H NMR (295K, ppm): 9.10 (s, 1H, 

H(7)); 7.92 (d, 1H, H(2)); 7.74-7.88 (m, 4H, H(3), H(4), H(152), H(172)); 7.69 (d, 2H, 

H(142), H(182)); 7.42-7.66 (m, 15H, PPh3); 7.04 (t, 1H, H(162)); 6.75 (d, 1H, H(5)); 3.63 

(s, 3H, C(122)H3); 2.94 (s, 3H, C(37)H3); 2.86 (s, 3H, C(11)H3). Conductivity (10
-3 

M, 

MeOH): 106 ohm
-1

cm
2
mol

-1
. UV-Vis (MeOH, λmax (ε, M

-1
cm

-1
)): 316 (12400), 370 

(12250), 481(350). 

 

3.2.9 Synthesis of fac-[Re(CO)3(bap)Br] (6) 

 

A mass of 249 mg (493 μmol) of bap and 100 mg (246 μmol) of fac-[Re(CO)5Br] were 

dissolved in 20 cm
3
 of toluene. The solution was heated with stirring under nitrogen for 

three hours. The red solution was allowed to cool to room temperature and the resultant 

orange precipitate was filtered and washed with diethyl ether. Orange crystals were 

obtained by recrystallization from dichloromethane. Yield = 63 %, m.p. = 278-280 °C. 
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Anal. Calcd. (%) for C32H27BrN7O5Re : C, 44.9; H, 3.2; H, 11.5.  Found:  C, 44.6; H, 3.3; 

N, 11.3.  IR (νmax/cm
-1

): ν(CO)fac 2020(vs), 1920(vs), 1902(vs); ν(C=O) 1658(s); ν(C=N) 

1586(m); ν(Re-N) 456(m), 475(m). 
1
H NMR (295K, ppm): 10.14 (s, 1H, H(7)); 9.33 (s, 

1H, H(6)); 8.32 (m, 2H, Ph); 8.10 (d, 2H, H(2), H(4)); 7.95 (t, 1H, H(3)); 7.55 (m, 3H, 

Ph); 7.37 (m, 5H, Ph); 3.24 (s, 3H, C(15)H3); 3.22 (s, 3H, C(25)H3); 2.58 (s, 3H, 

C(14)H3); 2.54 (s, 3H, C(24)H3). Conductivity (10
-3

M, CH3CN): 5 ohm
-1

cm
2
mol

-1
. UV-

Vis (CH3CN, λmax (ε, M
-1

cm
-1

)): 371 (140800),  446 (82140).   

 

3.2.10 Synthesis of fac-[Re(CO)3(dae)Cl] (7) 

 

A solution of 173 mg (404 μmol) of dae was dissolved in 10 cm
3
 of methanol. To this 

was added 101 mg (277 μmol) of fac-[Re(CO)5Cl] in 10 cm
3
 of methanol. The combined 

solution was heated to refluxed under nitrogen for two hours. The resultant deep red 

solution was allowed to cool and the red precipitate which formed was washed with 

diethyl ether. Red crystals were obtained by the slow evaporation of the mother liquor 

which were filtered and dried under vacuum. Yield = 69 %, m.p. = 231 °C. Anal. Calcd. 

(%) for 7.H2O: C, 43.1; H, 3.5; N, 11.2.  Found: C, 43.0; H, 3.7; N, 10.9.  IR (νmax/cm
-1

): 

ν(CO)fac 2017(vs), 1905(vs); ν(C=O) 1654(s); ν(C=N) 1562(s); ν(Re-N) 467(m).  
1
H 

NMR (295K, ppm): 8.88 (s, 2H, H(1), H(2)); 7.32-7.64 (m, 10H, Ph); 3.28 (s, 6H, 

C(15)H3, C(35)H3); 2.32 (s, 6H, C(14)H3, C(34)H3). Conductivity (10
-3 

M, CH3CN): 21 

ohm
-1

cm
2
mol

-1
. UV-Vis (CH3CN, λmax (ε, M

-1
 cm

-1
)): 385 (15020), 402(sh) (14320), 510 

(9410). 

 

3.2.11  X-ray Crystallography 

 

X-ray diffraction studies were performed at 200(2) K using a Nonius Kappa CCD (for 

Hoap, H2nap, 1, 2 an 3), an Oxford Xcalibur (for 4 and 5) and a Bruker Kappa Apex II 

(for 6 and 7) diffractometers with graphite monochromated Mo Kα radiation (λ = 

0.71073 Å). The structures were solved by direct methods applying SIR97 [11] and 

refined by least-squares procedures using SHELXL-97 [12]. All non-hydrogen atoms 

were refined anisotropically, and the hydrogen atoms were calculated in idealized 
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geometrical positions. The data were corrected by a numerical absorption correction [13] 

after optimizing the crystal shape with XShape [14]. In 3, the Br
–
 counter-ion is highly 

disordered, with a lot of remaining electron density present around it which could not be 

described properly. However, connectivity and other general features of the structure 

were confidently determined, and the molecular positional parameters of the atoms in the 

‘inner core’ are well defined. In 4, the hydrogen atoms in the water molecule have not 

been considered in the refinement, with all the other hydrogens constrained. In 5, a split 

model has been applied to describe the disorder in N(2), N(3), C(13)–C(18). Crystal and 

structure refinement data are given in Tables 3.5-3.9 with selected bond distances and 

angles in Tables 3.10-3.17. Complete data are stored on the CD pasted onto the back of 

this thesis. 

 

3.3 Results and Discussion 

 

3.3.1  Synthesis and characterization of Hoap 

 

The reaction of 4-aminoantipyrine and salicylaldehyde in methanol produced the 

potentially tridentate Schiff base ligand Hoap. Crystals of the compound were obtained 

from a methanol solution of Haop left at 0˚C overnight. It is soluble in dichloromethane 

and insoluble in alcohols and acetonitrile. 

 

Two absorptions at 1653 and 1594 cm
-1

are observed in the IR spectrum of Hoap (Figure 

3.8) due to the ketone [ν(C=O)] and imine [ν(C=N)] stretching frequencies respectively. 

The 
1
H NMR spectrum (Figure 3.9) shows the signal of the imine proton as a one-proton 

singlet at 9.68 ppm. Five signals appear in the aromatic region in the form of a triplet, 

doublet, multiplet, triplet and triplet integrating for two, one, three, one and two protons 

respectively. Two singlets for the methyl protons of the pyrazole ring are found at 2.39 

and 3.19 ppm. The OH protons’ signal appears as a broad singlet at 2.47 ppm.  
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Figure 3.8: IR spectrum of Hoap. 

 

 

Figure 3.9: 
1
H NMR spectrum of Hoap in the 6.5-9.7 ppm range. 

 

An ORTEP view of the asymmetric unit of Hoap is shown in Figure 3.10. It consists of a 

nitrogen-bonded phenyl ring, a five-membered pyrazole ring and a phenol ring. The 

phenol and pyrazole rings are almost coplanar with a dihedral angel of 5.82˚, while the 
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nitrogen-bonded phenyl ring has a dihedral angle of 48.22˚ with the phenol ring. The 

nitrogen-bonded phenyl moiety adopts a staggered conformation relative to the pyrazole 

ring, with the least-squares planes intersecting at an angle of 43.09˚ (Figure 3.12). 

 

 

Figure 3.10: An ORTEP view of ligand Hoap showing 50% probability displacement 

ellipsoids and the atom labeling. 

 

The N(3)-C(12) bond length of 1.286(2) Å is indicative of an imine double bond with the 

N(3)-C(12)-C(13) = 121.2(1)˚ and C(8)-N(3)-C(12) = 122.1(1)˚ bond angles close to the 

expected 120˚ angle for sp
2
 hybridized atoms. The C-O bond distances of C(7)-O(1) 

[1.235(2) Å] and C(14)-O(2) [1.359(2) Å] are typical of C=O and C-OH bonds 

respectively, and correspond to similar compounds in the literature [15,16]. The 

delocalization of π electrons in the aromatic rings is evident in the bond lengths of the 

C(1)-C(6) [average = 1.385(2) Å] phenyl and the C(13)-C(18) [average = 1.389(2) Å] 

phenol rings. The C(8)-C(9) [1.358(2) Å] bond length in the 5-membered pyrazole  ring 

is considerably shorter than the C(7)-C(8) [1.445(2) Å] bond, and can be regarded as a 

double bond while the latter is considered to be single. Intramolecular hydrogen-bonding 

is found within the molecule between the phenol hydrogen [O(2)-H(2)] and the imine 

nitrogen atom [N(3)] (Figure 3.11). Adjacent molecules are connected through 

intermolecular bonds involving the ketonic oxygen atom (Table 3.1). 
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Table 3.1: Hydrogen-bond distances (Å) and angles (˚) in Hoap. 

D-H•••A D-H H•••A D•••A D-H•••A 

O(2)-H(2)•••N(3) 0.84 1.87 2.612(2) 146 

C(10)-H(10B)•••O(1) 0.98 2.46 3.193(2) 131 

C(11)-H(11A)•••O(1) 0.98 2.46 3.433(2) 175 

C(12)-H(12)•••O(1) 0.95 2.40 3.079(2) 128 

 

 

 

Figure 3.11: Packing diagram in the unit cell of Hoap showing the  

intramolecular hydrogen-bonds. 

 

3.3.2  Synthesis and characterization of bap 

 

The potentially tridentate Schiff base ligand bap was isolated by the condensation 

reaction of 2,6-pyridinedicarbaldehyde with two mole equivalents of 4-aminoantipyrine. 

Yellow crystals were obtained by recrystallization from a CH2Cl2:MeOH (1:1) solution. 

The ligand is soluble in acetonitrile and dichloromethane, but is insoluble in alcohols. 
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The infrared spectrum for the bap ligand shows the C=N stretching frequency as a 

medium intensity peak at 1581 cm
-1

. The strong peak at 1639 cm
-1

 is ascribed to ν(C=O). 

The 
1
H NMR spectrum of bap (Figure 3.12) emphasizes the symmetry within the 

molecule. The nine protons of one half of the molecule are magnetically equivalent to the 

corresponding nine protons of the other half of the molecule. The imine protons appear 

clearly as a two-proton singlet at 9.57 ppm. The three protons on the pyridine ring can be 

seen as a two-proton doublet (8.09 ppm) and a one-proton triplet (7.94 ppm). The phenyl 

protons appear as a four-proton triplet (7.52 ppm) and a six-proton multiplet (7.35-7.43 

ppm). The four methyl groups are displayed as two separate six-proton singlets. 

 

 

Figure 3.12: 
1
H NMR spectrum of bap in the 7.20-9.70 ppm range. 

 

Ligand bap is a symmetric diimine containing a central pyridine ring joined, at the ortho 

positions, to two antipyrine moieties through imine bonds (Figure 3.13). A 

dichloromethane solvent of crystallization is present in the structure. The two halves of 

the molecule are identical and this discussion will therefore focus on one half of the bap 

molecule. The molecule adopts an (E)-configuration about the N(3)-C(12) bonds. The 

five membered pyrazole rings lie practically in the same plane as the central pyridine ring 

with dihedral angles of 12.04˚. The nitrogen-bonded phenyl moieties are however 

staggered relative to the pyrazole rings with planes forming dihedral angles of 44.92˚. 
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Figure 3.13: An ORTEP view of bap showing 50% probability displacement ellipsoids 

and the atom labeling. 

 

The C(12)-N(3) bond distance of 1.281(2) Å is typical for imine double bonds [15-17]. 

Further evidence of the double C=N bond can be seen in the bond angle around N(3) 

[C(8)-N(3)-C(12) = 122.8(2)˚] which is characteristic of sp
2
 hybridized atoms. The C(7)-

O(1) bond length of 1.230(2) Å shows that it is a double bond. The C-C bond lengths in 

the phenyl ring C(1)-C(6) [average = 1.383 Å] indicates that the π electron density is 

delocalized in this aromatic system. Intermolecular hydrogen-bonding is present between 

a pyridyl nitrogen and a phenyl hydrogen of neighbouring molecules. The ketonic oxygen 

is extensively involved in intermolecular hydrogen bonds with a methyl group [C(11)-

H(11B)•••O(1)] and the imine hydrogen [C(12)-H(12)•••O(1)] of adjacent molecules, as 

well as the two protons of the dichloromethane solvent of crystallization [C(16)-

H(16A)•••O(1), C(16)-H(16B) •••O(1)] (Table 3.2). 
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Table 3.2: Hydrogen-bond distances (Å) and angles (˚) in bap. 

D-H•••A D-H H•••A D•••A D-H•••A 

C(6)-H(6)•••N(4) 0.95 2.55 3.496(3) 177 

C(11)-H(11B)•••O(1) 0.98 2. 50 3.369(2) 147 

C(12)-H(12)•••O(1) 0.95 2.44 3.090(2) 126 

C(16)-H(16A)•••O(1) 0.99 2.44 3.084(3) 122 

C(16)-H(16B)•••O(1) 0.99 2.44 3.084(3) 122 

 

 

3.3.3  Synthesis and characterization of [ReX2(pap)(H2pap)(PPh3)](ReO4)  

  (X = Cl (1), Br (2)) 

 

Exactly the same experimental conditions were used for the synthesis of the two 

complexes [ReX2(pap)(H2pap)(PPh3)](ReO4) (X = Cl (1), Br (2)) from the reactions of 

trans-[ReOX3(PPh3)2] with H2pap in a 1:2 molar ratio in ethanol. The reactions are 

described by the equation: 

 

[ReOX3(PPh3)2]  +  2H2pap               [ReX2(pap)(H2pap)(PPh3)]
+
  +  PPh3  +  X

-
   +  H2O 

 

Heating was necessary to form and isolate the products, and no products with sensible 

analysis could be isolated for heating periods of less than an hour. For 1, a precipitate 

formed on cooling the reaction solution down to room temperature, but for 2 no solid 

residue was precipitated, and crystals were only obtained by slow evaporation of the 

mother liquor.  

 

The elemental analyses of the complex salts are in good agreement with their 

formulations. There is no solvent of crystallization. The infrared spectra (Figure 3.14) 

display the Re=N stretching frequencies as medium intensity peaks around 1070 cm
-1

, 

similar to those observed in other rhenium(V)-imido complexes [18-19]. Each complex 

displays two peaks that can be ascribed to ν(C=O): one close to the value of ν(C=O) in 

the free ligand H2pap (at 1676 cm
-1

), and another around 1610 cm
-1

. The former value is 
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assigned to the uncoordinated CO entity of pap, with the latter value ascribed to the 

coordinated group of H2pap. Only one weak absorption was observed for ν(NH2) (at 3060 

cm
-1

 (1) and 3054 cm
-1

 (2)), and the presence of the perrhenate is supported by a strong 

peak around 910 cm
-1

 [ν(Re
VII

=O)]. The conductivity values indicate that the complexes 

are 1:1 electrolytes in DMF. 

 

 

Figure 3.14: IR spectra of 1 and 2 in the 260-1760 cm
-1

 region. 

 

The diamagnetism of 1 and 2 is indicated by the sharp well-resolved peaks in their proton 

NMR spectra, which occur at their expected positions. There are no paramagnetic shifts. 

The products are stable in air, and for days in solution. They dissolve in polar solvents 

(DMF, DMSO, acetonitrile, dichloromethane, and chloroform) to give green solutions. 

 

As can be expected, the 
1
H NMR spectra of 1 and 2 are similar (Figure 3.15). The protons 

of the PPh3 give rise to a multiplet of signals in the range 7.60-7.90 ppm, which integrate 

for 15 protons. The signals of the ten protons on the two phenyl rings of pap and H2pap 

occur as a two-proton doublet (around 7.59 ppm), a four-proton triplet around 7.56 ppm 

(assigned to the four meta protons), a two-proton doublet at 7.50 ppm, and a two-proton 
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doublet of doublets at 7.46 ppm (assigned to the para protons). The four methyl groups in 

each complex are clearly distinguishable as three proton signals. The UV-Vis spectra of 

both complexes 1 and 2 show an intense band 374 nm (with different extinction 

coefficients). This band is ascribed to a combination of the ligand-to-metal charge 

transfer transitions [pπ(N
2-

) → d*π(Re)] and the [pπ(X
-
) → d*π(Re)] (Figure 3.16). 

 

 

Figure 3.15: 
1
H NMR spectrum for the aromatic region of 2. 

 

Crystals for X-ray crystallographic studies were obtained from an 

ethanol/dichloromethane mixture (for 1), and from the mother liquor (for 2). Perspective 

views of the complexes 1 and 2 are given in Figures 3.17 and 3.18 respectively. Both 

complexes display a distorted octahedral geometry around the central rhenium atom, and 

are mirror images of each other. Figure 3.19 shows a superimposition of 1 and 2 with the 

angle between the C(17)C(18)C(19)C(20)C(22) planes of the phenyl rings attached to 

N(5) being 6.26˚. The bond parameters of the two complexes (see Table 3.12) are for all 

purposes the same (except for the halide) if the standard deviations are taken into 

account. This discussion will therefore focus on both 1 and 2 collectively, and will use 

the average bond angles and lengths of the two compounds. 
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Figure 3.16: UV-Vis spectra of 1 and 2. 

 

 

Figure 3.17: An ORTEP view of 1 showing 50% probability displacement ellipsoids and 

the atom labeling. Hydrogen atoms and the perrhenate counter-ion were omitted for 

clarity. 
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The distortion from ideal octahedral geometry is mainly the result of the cis angles N(4)-

Re-X(1) = 100.7 (4)˚, N(4)-Re-X(2) = 103.2(3)˚, N(4)-Re-N(1) = 89.0(5)˚ and N(4)-Re-

P(1) = 90.5(3)˚. The effect is that the rhenium atom is lifted out of the mean equatorial 

plane PX2N(1) by 0.15 Å. The bite angle N(1)-Re-O(1) = 79.5(4)˚, and the X(1)-Re-X(2) 

angles are close to orthogonality [88.2(2)˚]. 

 

 

Figure 3.18: An ORTEP view of 2 showing 50% probability displacement ellipsoids and 

the atom labeling. Hydrogen atoms and the perrhenate counter-ion were omitted for 

clarity. 

 

Pap acts as a dianionic monodentate chelate, with coordination through the doubly 

deprotonated imido nitrogen N(4) only. The ketonic oxygen O(2) is not coordinated. The 

average Re-N(4)-C(13) bond angle of 168.9(9)˚ illustrates an unusual significant 

deviation from linearity of the coordination mode of the triply bonded imido unit, and the 

Re-N(4) distance of 1.73(1) Å falls well within the range [1.72(1)-1.75(1) Å] normally 

found in octahedral rhenium(V)-phenylimido complexes [20-21]. The intraligand pap 

bond distances show that O(2)-C(12) [1.21(2) Å] and N(6)-C(14) [1.34(2) Å] are double 
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bonds, with all the others in the pyrazole ring single. The non-planarity of the pyrazole 

ring is reflected in the torsion angles N(6)-N(5)-C(12)-C(13) = -7(2)˚ and N(5)-N(6)-

C(14)-C(13) = -5(2)˚. 

 

The H2pap ligand acts as a neutral bidentate chelate, with coordination through the 

neutral amino nitrogen N(1)H2 and the ketonic oxygen O(1). The N(4)-Re-O(1) bond 

angle [164.5(4)˚] deviates considerably from linearity due to the restrictions imposed by 

the bite angle of the five-membered metalloring. The Re-N(1) bond length of 2.19(1) Å is 

typical of rhenium(V)-amino bond distances, which normally occur in the range 2.15(1)-

2.23(1) Å [21-24]. The Re-O(1) bond length of 2.11(9) Å is considerably longer than 

those found for Re-O (phenolate, alcoholate) distances, which typically occur in the 

1.96(2)-2.01(2) Å range [18-20, 25, 26].  

 

The O(1)-C(1) bond length of 1.31(2) Å shows that it is still a double bond, and also 

shows the lengthening of this double bond brought about by coordination to the metal 

when compared with the uncoordinated O(2)-C(12) length [1.21(2) Å]. Again the N(3)-

C(3) bond is double [1.33(2) Å]. The Re-X(2) bond lengths are longer than the Re-X(1) 

ones, due to the larger trans effect of the phosphorus atom when compared to the amino 

nitrogen N(1). In 1, hydrogen-bonds exist between N(1)H(1A) and O(2) and between 

N(1)H(1B) and O(6), and in 2 there is only one hydrogen-bond [N(1)H(1A)•••O(6); 

Table 3.1].  

 

Table 3.3: Hydrogen-bond distances (Å) and angles (˚) in 1 and 2. 

 D-H•••A D-H H•••A D•••A D-H•••A 

1 N(1)H(1A)•••O(2) 0.92 2.57 3.35(2) 143 

 N(1)H(1B)•••O(6) 0.92 2.14 2.89(2) 138 

2 N(1)H(1A)•••O(6) 0.92 2.13 2.92(2) 143 
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Figure 3.19: Superimposition of the structures of 1 and 2. 

 

3.3.4  Synthesis and characterization of cis-[Re(nap)Br2(PPh3)]Br (3) 

 

The reaction of a twofold molar excess of H2nap with trans-[ReOBr3(PPh3)2] in ethanol 

led to the formation of the six-coordinate rhenium(V) complex salt 3, according to the 

equation: 

 

[ReOBr3(PPh3)2] + H2nap                    [Re(nap)Br2(PPh3)]Br + H2O + PPh3 

 

The product is stable in air and in solution, and is soluble in a wide variety of polar 

solvents. It is a 1:1 electrolyte in DMF. 

 

In the infrared spectrum of 3 (Figure 3.20) a peak of medium intensity at 1095 cm
–1

 is 

assigned to the Re=N stretching frequency, with ν(C=O) and ν(C=N) of the coordinated 

nap at 1593 and 1575 cm
–1

, respectively. There is no band in the 890-1020 cm
–1

 region 

that can be ascribed to ν(Re=O). The 
1
H NMR spectrum of 3 shows a one-proton signal 

at 9.64 ppm due to the methine proton (H(7)). The aromatic region is characterized by a 

multiplet which integrates for the 24 protons of the three triphenylphosphine rings and 

the phenyl rings of the nap moiety. The methyl signals appear as two singlets at 3.18 and 
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2.32 ppm, each integrating for three protons. The electronic spectrum of 3 shows an 

absorption band at 313 nm due to the intraligand charge transfer bands of the coordinated 

nap
2- 

moiety. A transition is found at 370 nm due to the [pπ(N
2-

) → d*π(Re)] and the 

[pπ(Br
-
) → d*π(Re)]  ligand-to-metal charge transfer transitions. 

 

 

Figure 3.20: IR spectra of H2nap and 3 in the 400-1800 cm
-1

 region. 

 

An ORTEP perspective view of the complex cation is shown in Figure 3.21. Due to the 

disorder of the bromide counter-ion, the structure could not be properly refined. The 

connectivity and other general features of the structure, however, were confidently 

determined, and the molecular positional parameters of the atoms in the ‘inner core’ are 

well defined. The rhenium atom is at the centre of a distorted octahedron. The nap ligand 

acts as a dianionic tridentate ligand with coordination through the doubly deprotonated 

imido nitrogen N(1), the imino nitrogen N(2), and the ketonic oxygen O(1). The basal 

plane can be defined by the three donor atoms of the nap chelate [N(1), N(2) and O(1)] 

and Br(1), with P(1) and Br(2) in trans axial positions. The distortion is mainly the result 

of a non-linear N(1)=Re-O(1) axis of 160.3(4)°, accomplished by Br(1)-Re-N(2) and 

Br(2)-Re-P(1) angles of 170.3(3)° and 171.53(9)°, respectively. 
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Figure 3.21: An ORTEP view of complex 3 showing 50% probability displacement 

ellipsoids and the atom labeling. Hydrogen atoms and the bromide counter-ion  

were omitted for clarity. 

 

The bite angles of nap are N(1)-Re-N(2) = 81.4(4)° and N(2)-Re-O(1) = 79.7(4)°. The 

nap ligand acts as a tridentate dianionic moiety, with N(1) coordinated as a negatively 

charged imido nitrogen. The Re-N(1) bond length of 1.72(1) Å is considerably shorter 

than the values found for Re(V)-NH and Re(V)-NH2 bonds [1.91(1)-2.01(1) Å and 

2.15(1)-2.23(1) Å, respectively] [24, 27, 28]. The Re-N(1)-C(1) bond angle of 148(1)° 

indicates a significant deviation from linearity of the coordination mode of the 

phenylimido unit with a reduction in bond order of the Re=N(1) bond. The Re-N(2) 

length [2.15(1) Å] is typical of Re(V)-N(imine) bonds [27]. The O(1)-C(8) bond length 

of 1.27(2) Å indicates a double bond, with the Re-O(1) length of 2.098(8) Å. The C(7)-

N(2)-C(9) bond angle of 124(1)° is close to the ideal of 120° for a sp
2
 hybridized nitrogen 

atom, with the N(2)-C(7) bond double at 1.27(2) Å. The crystal lattice of 3 is stabilized 

by π-π stacking (Figure 3.22). The centroid to centroid distance between the C(1)-C(6) 

aromatic rings of adjacent molecules of 3 is 3.640 Å.  
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Figure 3.22: A perspective view of 3, showing the π-π interactions. 

 

3.3.5  Synthesis and characterization of [ReO(OEt)(Hnap)(PPh3)]I (4) and 

  [ReO(OMe)(oap)(PPh3)]I (5) 

 

These complex salts were prepared by the reaction of cis-[ReO2I(PPh3)2] with a twofold 

molar excess of H2nap and Hoap, according to the equation 

 

[ReO2I(PPh3)2] + H2nap/Hoap   +   EtOH/MeOH                 4/5   +    H2O   +   PPh3 

 

Complexes 4 and 5 are air stable and 1:1 electrolytes in methanol. Both complexes are 

soluble in a wide range of polar solvents, including alcohols, acetonitrile and 

dichloromethane. A single peak at 940 cm
–1

 in both the infrared spectra of 4 and 5 

(Figure 3.23) is assigned to the Re=O stretching vibrations, with ν(C=O) and ν(C=N) at 

1600/1599 cm
–1

 and 1578/1569 cm
–1

, respectively. The presence of the ethoxide is shown 

by an intense peak at 907 cm
–1

, which corresponds to the ethoxy bending mode.  
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Figure 3.23: Overlay IR spectra of 4 and 5. 

 

In the 
1
H NMR spectra of 4 and 5 (Figures 3.24 and 3.25), the protons of the methane 

groups appear as singlets at 9.62 and 9.10 ppm respectively. The aromatic region of 4 

consists of three separate multiplets integrating for the protons of the aromatic rings of 

the ligand and the protons of the triphenylphosphine rings. For 5, the triphenylphosphine 

protons appear in the aromatic region as a multiplet in the 7.42-7.66 ppm range. The 

remainder of the aromatic region is characterized by a doublet (7.92 ppm), multiplet 

(7.74-7.88 ppm), doublet (7.69 ppm), triplet (7.04 ppm) and a doublet (6.75 ppm) 

ascribed to the aromatic protons of the coordinated Hnap moiety. The methyl protons’ 

signals of 4 are found at 2.35 and 3.18 ppm as two singlets while the signals of the 

coordinated ethoxide appear as a two-proton triplet (2.68 ppm) and a three-proton doublet 

(2.34 ppm) for the ethyl and methyl protons respectively.  For 5, three separate three-

proton singlets are found at 3.63 ppm, 2.94 ppm and 2.85 ppm due to the methyl groups 

of the pyrazole ring and the coordinated methoxide.  
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Figure 3.24: 
1
H NMR spectrum of 4 in the 7.20-9.70 ppm region. 

 

The electronic spectra of 4 and 5 (Figure 3.26) in methanol show two intense absorptions 

at about 315 and 370 nm, with a weaker one at around 485 nm. With reference to 

previous studies [29] the band at highest energy is ascribed to a ligand-to-metal charge 

transfer transition [pπ(O
2–

) → dπ*(Re)], and the one at 370 nm to the pπ(O(1)) → dπ*(Re) 

[dπ* = dxz,dyz]. The weak absorption at lowest energy is probably due to a (dxy)
2 

→ 

(dxy)
1
(dπ*)

1
 transition. 

 

 

Figure 3.25: 
1
H NMR spectrum for the aromatic region of 5. 
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Figure 3.26: Overlay UV-Vis spectra of 4 and 5. 

 

The asymmetric unit of 4 contains half molecules of ethanol and water of crystallization. 

The coordinated Hnap ligand acts as a monoanionic tridentate chelate with coordination 

through the singly deprotonated amino nitrogen N(4), imino nitrogen N(3) and ketonic 

oxygen O(1). The molecular structure (Figure 3.27) shows a distorted octahedral 

geometry around the Re(V) atom, with the equatorial plane formed by the 

P(1)O(1)N(3)N(4) donor set, and the oxo O(2) and O(3) in trans axial positions. The 

trans angles O(2)-Re-O(3) [165.0(2)°] and O(1)-Re-N(4) [169.4(2)] contribute 

significantly to the distortion, with P(1)-Re-N(3) equal to 174.9(2)°. 

 

The N(3)-Re-N(4) bite angle [90.2(2)°], being part of a six-membered metallocycle, is 

considerably larger than the O(1)-Re-N(3) one [80.4(2)°]. The Re=O(2) distance of 

1.646(5) Å is shorter than for similar trans oxo-ethoxorhenium(V) complexes [average = 

1.691(2) Å] [30]. The Re-O(3) ethoxo bond [1.877(4) Å] is similar to related bonds [31], 

but is substantially less than 2.04 Å, which is considered to be representative of a Re(V)-

O single bond [26]. Partial multiple bonding in Re-O(3) is consistent with the large Re-

O(3)-C(37) angle of 145.0(5)°. The O(3)-C(37) length of 1.41(1) Å is normal for a single 
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bond. The Re-N(4) [1.979(6) Å] and Re-N(3) [2.155(5) Å] bond lengths are typical for 

the coordination of amido and imino nitrogen atoms, respectively [26, 27]. The Re-O(1) 

[2.209(4) Å] and O(1)-C(7) [1.278(8) Å] lengths illustrate the rare coordination of a 

ketonic oxygen to rhenium(V).  

 

 

Figure 3.27: An ORTEP view of 4 showing 50% probability displacement ellipsoids and 

the atom labeling. Hydrogen atoms were omitted for clarity. 

 

The structure of 5 (Figure 3.28) is very similar to that of 4. The rhenium atom is 

displaced from the least-squares P(1)O(1)N(1)O(2) plane towards the oxo oxygen atom 

O(3) by 0.133˚. This displacement is the result of the non-orthogonal angles O(3)-Re-

P(1) = 91.7(2)°, O(3)-Re-O(1) = 98.8(2)°, O(3)-Re-N(1) = 96.3(2)° and O(3)-Re-O(2) = 
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87.5(3)°. This distortion results in a non-linear O(3)-Re-O(4) axis of 168.5(2)°, with the 

Re=O(3) distance [1.702(6) Å] significantly longer than in 4. The Re-O(4) length and Re-

O(4)-C(37) angle are 1.886(5) Å and 147.1(5)°, respectively, which are very similar to 

those values in 4. In the tridentate oap chelate, O(1) is monoanionic [Re-O(1) = 1.985(5) 

Å], N(1) is an imino nitrogen [Re-N(1) = 2.130(5) Å, C(7)-N(1)-C(9) = 126.5(6)°], and 

O(2) is a neutral ketonic oxygen [C(8)-O(2) = 1.27(1) Å, Re-O(2) = 2.171(7) Å]. The 

O(1)-Re-N(1) bite angle [92.3(2)°] is larger than the corresponding angle in complex 4 

[90.2(2)°], with the N(1)-Re-O(2) angle [80.5(2)°] identical to that found in 4. 

 

 

Figure 3.28: An ORTEP view of 5 showing 50% probability displacement ellipsoids and 

the atom labeling. Hydrogen atoms and the iodide counter-ion were omitted  

for clarity. 
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In complexes 1, 2, 3, 4 and 5, the rhenium(V) is coordinated to a neutral ketonic oxygen. 

This coordination is unusual and no bonding distance values could be found in literature 

for comparison. Complexes of rhenium(V) with N,O-donor ligands are common in the 

literature. These ligands are mostly of the Schiff base type and these complexes contain 

mainly the [ReO]
3+

 core. Bidentate N,O-donor Schiff bases (HNO), containing an imine 

nitrogen and a phenolic oxygen, always produce complexes of the [ReOX2(NO)PPh3] or 

[ReOX(NO)2] types, with a phenolate oxygen atom trans to the oxo group in distorted 

octahedral geometries [32-33]. 

 

 

3.3.7  Synthesis and characterization of fac-[Re(CO)3(dae)Cl] (6) 

 

The compound fac-[Re(CO)3(dae)Cl] (6) was formed by the reaction of [Re(CO)5Cl] 

with a 1.5 molar excess of dae in refluxing toluene under nitrogen. 

 

[Re(CO)5Cl]      +        dae                      fac-[Re(CO)3(dae)Cl]   + 2CO 

 

Complex 6 is stable in air, diamagnetic and a non-electrolyte (ΛM = 21 ohm
-1

cm
2
mol

-1
) in 

acetonitrile. It is soluble in alcohols, dichloromethane, acetonitrile and dimethylsulfoxide. 

Diimine fac-[Re(CO)3]
+
 complexes has been widely studied [34] due to their superior 

photophysical properties. It is thought that the bidentate diimine coordination of the dae 

ligand could possibly exhibit photochemical behaviour, while the pyrazole moiety of dae 

provides potential biological acitivity. 

 

The infrared spectrum of 6 (Figure 3.29) contains a sharp intense band at 2017 cm
-1

, and 

a broad strong band at 1905 cm
-1

, typical of ν(C≡O) of the fac-[Re(CO)3]
+
 unit. The 

medium intensity band at 467 cm
-1

 is assigned to ν(Re-N(1)) and ν(Re-N(2)). The peaks 

at 1654 and 1562 cm
-1

 are due to ν(C=O) and ν(C=N) of the coordinated Schiff base 

ligand. The 
1
H NMR spectrum of 6 (Figure 3.30) displays the magnetic equivalence of 

the protons which emphasizes the symmetry of the complex. The two methine protons of 

the symmetrically coordinated dae ligand appear as a singlet at 8.88 ppm. The aromatic 
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region contains a multiplet in the 7.32-7.64 ppm region integrating for the ten aromatic 

protons of dae.  Two six-proton singlets are found at 2.32 and 3.28 ppm for the four 

methyl groups of the pyrazole unit. 

 

 

Figure 3.29: IR spectrum of 6. 

 

 

Figure 3.30: 
1
H NMR spectrum for the aromatic region of 6. 
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The electronic spectrum of 6 (Figure 3.31) in acetonitrile shows two intra-ligand charge 

transfer processes (π → π
*
) as a sharp band at 385 nm and a shoulder at 402 nm. These 

bands are similar to those found in the spectrum of the free dae ligand (378 and 400 nm) 

(Figure 3.31). The metal-to-ligand charge transfer band dπ(Re) → π
*
(N-N) is found at 

510 nm and is typical of rhenium complexes containing NN donor ligands [35]. 

 

 

Figure 3.31: Overlay UV-Vis spectra of dae and 6. 

 

The X-ray structure analysis of 6 reveals that the rhenium atom adopts a distorted 

octahedral geometry and is coordinated to three carbonyl donors in a facial orientation, 

the two imino nitrogen atoms N(1) and N(2), and a chloride (Figure 3.32).  The two Re-N 

bond lengths are similar [average of 2.178(2) Å] and are typical of Re(I)-Nimine bonds 

[36]. The distortion from octahedral ideality is mainly the result of the trans angles N(2)-

Re-C(90) =169.4(1)˚, N(1)-Re-C(92) =174.7(1)˚ and Cl-Re-C(91) = 178.2(1)˚. These 

distortions are the result of constraints caused by the bidentate coordination of the dae 

ligand with a bite angle of N(1)-Re-N(2) = 74.08(8)˚. 
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Figure 3.32: An ORTEP view of complex 6 showing 50% probability displacement 

ellipsoids and the atom labeling. Hydrogen atoms were omitted for clarity. 

 

The N(1)-C(1) [1.292(4) Å] bond is double and the N(1)C(1)C(2)N(2) torsion angle is 

5.0(4)˚. The two five-membered heterocyclic rings form a dihedral angle of 81.02˚ with 

one another. The nitrogen bonded phenyl rings adopt staggered conformations relative to 

their respective parent heterocycles, with the least-square planes intersecting at angles of 

52.22 and 74.02˚. 

 

 

3.3.6  Synthesis and characterization of fac-[Re(CO)3(bap)Br] (7) 

 

The reaction of [Re(CO)5Br] with a two molar excess of the potentially tridentate bap 

ligand led to the formation of fac-[Re(CO)3(bap)Br] in which the bap coordinated 

bidentately through a pyridyl and imino nitrogen.  

 

[Re(CO)5Br]      +      bap  fac-[Re(CO)3(bap)Br]       +      2CO 

 

Complex 7 is stable for days in solution and for months in air as a solid. The small molar 

conductivity value (ΛM = 21 ohm
-1

cm
2
mol

-1
) indicates that it is a non-electrolyte in 
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acetonitrile and is therefore neutral. The elemental analysis confirms the predicted 

formulation of 7. The complex is partially soluble in alcohols but soluble in other polar 

solvents such as acetonitrile, dimethylformamide, dichloromethane and 

dimethylsulfoxide. 

 

The infrared spectrum of 7 (Figure 3.33) is dominated by three intense bands at 1902, 

1920 and 2020 cm
-1

, which is characteristic of the ν(C≡O) of the fac-[Re(CO)3]
+
 core. 

The imine stretching frequency ν(C=N) appears as a medium intensity peak at 1586 cm
-1

 

while a sharp peak at 1658 cm
-1

 is attributed to ν(C=O) of the pyrazole unit. The two 

stretching frequencies at 456 and 475 cm
-1

 are assigned to the ν(Re-N(1)) and ν(Re-N(2)). 

 

 

Figure 3.33: Overlay IR spectra of bap and 7 in the 400-2300 cm
-1

 range. 

 

In contrast to the free ligand bap, the proton spectrum of 7 does not display magnetic 

equivalence, indicating that 7 is unsymmetrical as a result of the bidentate coordination of 

bap in 7. The 
1
H NMR spectrum of 7 (Figure 3.34) shows two singlets at 10.14 and 9.33 

ppm due to the methine protons. The aromatic region integrates for the 13 protons of the 
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pyridine and phenyl rings. Four singlets integrating for three protons each are found in 

the 2.50-3.50 ppm region and are assigned to the four methyl groups of the pyrazole 

rings. 

 

 

Figure 3.34: Overlay 
1
H NMR spectra of bap (blue) and 7 (red) in the 7.28-8.62 ppm 

region. 

 

The UV-Vis spectrum of 7 (Figure 3.35) shows an intraligand (π → π
*
) transition at 371 

nm which is at a lower energy relative to the free bap ligand (355 nm). The absorption at 

446 nm is due to the metal-to-ligand charge transfer, dπ(Re) → π*(N-N), and is more 

intense than that of complex 6. This is expected since 7 has a more conjugated system. 

The photoexcitation of 6 and 7 at room temperature in acetonitrile does not show any 

detectable emissions.  

 

The X-ray crystallographic data of 7 confirms that the complex contains the robust fac-

[Re(CO)3]
+
 core in a distorted octahedral environment around the rhenium(I) centre 

(Figure 3.36). The bap ligand is coordinated bidentatly through the pyridyl nitrogen N(1) 

and the imine nitrogen N(2) with N(3) uncoordinated. The Re-C bond distances [average 

= 2.028(8) Å] fall in the range observed [1.900(2)-1.928(2) Å] for similar complexes [37-

41]. The Re-N(2) [2.206(5) Å] is shorter than the Re-N(1) [2.227(5) Å] and are typical of 

Re-Npyridine and Re-Nimine bonds [39-41].  
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Figure 3.35: Overlay UV-Vis spectra for the aromatic region of bap and 7. 

 

The small bite angle of bap [N(1)-Re-N(2) = 75.1(2)˚] contributes considerably to the 

distortion from octahedral geometry, with the average trans angle being 171.4(3)˚. The 

N(1)C(1)C(6)N(2) torsion angle is small [-1.4(9)˚]. The differences in the two C=N bond 

lengths emphasizes the effect of the coordination of the imine group with the N(2)-C(6) 

bond [1.288(8) Å] noticeably shorter than the N(3)-C(7) bond [1.305(8) Å]. As with the 

free ligand bap, complex 7 contains intramolecular hydrogen-bonding between the 

ketonic oxygens [O(1) and O(2)] and the imine hydrogens [C(6)-H(6) and C(7)-H(7)] 

(Figure 3.37). Intermolecular hydrogen-bonding exists between ketonic oxygens and the 

hydrogens of the methyl groups (Table 3.4). 

 

Table 3.4: Hydrogen-bond distances (Å) and angles (˚) in 7. 

D-H•••A D-H H•••A D•••A D-H•••A 

C(6)-H(6)•••O(1) 0.95 2.39 2.914(10) 115 

C(7)-H(7)•••O(2) 0.95 2.34 2.998(8) 138 

C(14)-H(14A)•••O(1) 0.98 2.38 3.337(9) 143 

C(15)-H(15C)•••O(1) 0.98 2.45 3.417(9) 143 
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Figure 3.36: An ORTEP view of complex 7 showing 50% probability displacement 

ellipsoids and the atom labeling. Hydrogen atoms were omitted for clarity. 

 

 

Figure 3.37: Packing diagram in the unit cell of 7 showing the  

intramolecular hydrogen-bonds. 

 

The cyclic voltammetric properties of 6 and 7 were examined in CH2Cl2. For complex 6 

an oxidation peak is observed at 0.997 V, ascribed to the Re(I)/Re(II) redox couple. 

There is no cathode counter peak associated with this oxidative wave indicating that the 
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process is irreversible. Complex 7 shows similar redox behaviour with an irreversible 

oxidation peak observed at 1.07 V. The oxidation potentials of the two complexes are 

similar and occur well within the range observed [0.80-1.30 V] for Re(I) based oxidation 

processes (Re(I)/Re(II)) under similar conditions [42-46]. Complex 6 has a slightly less 

positive potential for its oxidation than complex 7, indicating that 6 undergoes oxidation 

more readily. This is expected taking the π donating abilities of ligands dae and bap into 

account. Ligand dae is more electron donating, resulting in an electron-rich rhenium(I) 

centre for 6, and therefore the oxidation capability increases. 
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Table 3.5: Crystal and structure refinement data for Hoap and bap 

 Hoap bap 

Chemical formula C18H17N3O2 C29H27N7O2.CH2Cl2  

Formula weight 307.35   590.50   

Crystal system Monoclinic   Monoclinic 

Space group P21/n         P2/c 

a (Å) 7.4868(5)     9.2167(4)    

b (Å) 7.4777(4)   10.6724(5) 

c (Å) 27.283(2)   14.7564(8) 

β (˚) 95.516(6)            91.642(5) 

Volume (Å
3
) 1520.3(2)   1450.9(1)   

Z 4 2 

Density (Calcd.) (gcm
-3

) 1.343   1.352   

Absorption coefficient (mm
-1

) 0.090   0.265   

F (000) 648 616 

Crystal size (mm) 0.05 x 0.13 x 0.43 0.10 x 0.20 x 0.48   

θ range 4.2-26.3   4.4-26.4   

Index ranges   h -9/9 -11/9 

                       k -5/ 9 -8/13 

                       l -32/34   -11/18   

Reflections measured 6896 5981 

Independent/observed reflections 3082/1682 2946/1801 

Data/parameters 3082/211   2946/189   

Goodness-of-fit on F
2 

0.80 1.00   

Final R indices [I > 2 σ(I)]  0.0384  

(wR2 = 0.0800) 

 0.0455  

(wR2 = 0.1220) 

Largest diff. peak/hole (eÅ
-3

) 0.19/-0.19 0.44/-0.48 
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Table 3.6: Crystal and structure refinement data for 1 and 2. 

 1 2 

Chemical formula C40H39N6O6PCl2Re2 C40H39N6O6PBr2Re2 

Formula weight 1174.07 1262.97 

Crystal system Monoclinic Monoclinic 

Space group P21 P21 

a (Å) 11.2622(6) 11.5145(6) 

b (Å) 11.3572(8) 11.5330(5) 

c (Å) 17.8115(9) 17.5492(9) 

β (˚) 105.220(3) 105.322(2) 

Volume (Å
3
) 2198.3(2) 2247.6(2) 

Z 2 2 

Density (Calcd.) (gcm
-3

) 1.774 1.866 

Absorption coefficient (mm
-1

) 5.710 7.244 

F (000) 1136 1208 

Crystal size (mm) 0.01 x 0.10 x 0.12 0.02 x 0.07 x 0.15 

θ range 3.2-25.4 3.2-25.4 

Index ranges   h -13/13 -13/13 

                       k -13/13 -13/13 

                       l -21/21 -21/20 

Reflections measured 30594 26769 

Independent/observed reflections 8049/5546 8072/6487 

Data/parameters 8049/498 8072/514 

Goodness-of-fit on F
2 

1.04 1.04 

Final R indices [I > 2 σ(I)] 0.0489 

 (wR2 = 0.1186) 

0.0545 

(wR2 = 0.1314) 

Largest diff. peak/hole (eÅ
-3

) -1.48/1.31 -2.47/1.27 
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Table 3.7: Crystal and structure refinement data for 3. 

                3 

Chemical formula C36H31N4Br3OPRe 

Formula weight 992.60 

Crystal system Monoclinic 

Space group P21/c 

a (Å) 18.4849(5) 

b (Å) 15.7325(5) 

c (Å) 13.6918(4) 

β (˚) 102.563(2) 

Volume (Å
3
) 3886.4(2) 

Z 4 

Density (Calcd.) (gcm
-3

) 1.562 

Absorption coefficient (mm
-1

) 5.255 

F (000) 1778 

θ range 3.2–25.4 

Index ranges   h –22/22 

                       k –18/17 

                       l –16/16 

Reflections measured 23596 

Independent/observed reflections 7096/5723 

Data/parameters 7096/415 

Goodness-of-fit on F
2 

1.954 

Final R indices [I > 2 σ(I)] 0.2476 

(wR2 = 0.0802) 
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Table 3.8: Crystal and structure refinement data for 4 and 5. 

 4 5 

Chemical formula C38H37IN4O3PRe.½EtOH.½H2O C38H36Cl2IN3O4PRe 

Formula weight 973.85 1013.70   

Crystal system Monoclinic Triclinic   

Space group P21/n P-1           

a (Å) 18.1552(7) 8.9777(2)    

b (Å) 10.5717(5) 14.8943(5)    

c (Å) 20.1771(6) 16.3963(5)   

α (˚)  65.274(3) 

β (˚) 96.620(5) 87.686(2)     

γ (˚)  74.037(2)   

Volume (Å
3
) 3846.8(3) 1907.7(1)   

Z 4 2 

Density (Calcd.) (gcm
-3

) 1.682 1.765   

Absorption coefficient (mm
-1

) 4.047 4.219   

F (000) 1908 988 

Crystal size (mm) 0.12 × 0.11 × 0.03 0.04 x 0.11 x 0.22 

θ range 4.2-26.3 4.2-26.4   

Index ranges   h -16/22 -11/11 

                       k -13/11 -18/18 

                       l -22/25 -20/20 

Reflections measured 18454 27595 

Independent/observed reflections 7764/3976 7727/6249 

Data/parameters 7764/453 7727/419   

Goodness-of-fit on F
2 

0.80 1.09   

Final R indices [I > 2 σ(I)] 0.0420 

(wR2 = 0.0833) 

0.0496 

(wR2 = 0.1049) 

Largest diff. peak/hole (eÅ
-3

) 1.50/-0.99 2.13/-1.80 

 

 



 

Chapter 3  4-Aminoantipyrine 

 

Nelson Mandela Metropolitan University            82 
 

Table 3.9: Crystal and structure refinement data for 6 and 7. 

 6 7 

Chemical formula C27H24ClN6O5Re.H2O   C32H27Br N7O5Re   

Formula weight 752.20   855.72   

Crystal system Monoclinic   Monoclinic 

Space group P21/c         P21/c 

a (Å) 15.3940(3)    14.284(2) 

b (Å) 10.5480(2)    14.580(2) 

c (Å) 20.9820(4)   17.233(3) 

β (˚) 122.544(1) 109.020(6) 

Volume (Å
3
) 2872.00(10)   3393.0(9)   

Z 4 4 

Density (Calcd.) (gcm
-3

) 1.740   1.675   

Absorption coefficient (mm
-1

) 4.376   4.808   

F (000) 1480 1672 

θ range 2.3-28.3  2.5-28.2   

Index ranges   h -20/20 -18/13 

                       k -11/14 -18/19 

                       l -27/27 -22/22   

Reflections measured 26124 31694 

Independent/observed reflections 7050/6474 8311/6494 

Data/parameters 7050/381   8311/415   

Goodness-of-fit on F
2 

1.26   1.04 

Final R indices [I > 2 σ(I)] 0.0199  

(wR2 = 0.0475) 

 0.0439  

(wR2 = 0.1307) 

Largest diff. peak/hole (eÅ
-3

) 1.35/-1.02 2.70/-2.53 
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Table 3.10: Selected bond lengths (Å) and angles (˚) for Hoap. 

Bond lengths 

O(1)-C(7) 1.235(2)       C(15)-C(16) 1.379(3) 

O(2)-C(14) 1.359(2)       C(13)-C(14) 1.402(2) 

N(1)-N(2) 1.411(2)       C(17)-C(18) 1.381(2) 

N(1)-C(7) 1.398(2)       N(1)-C(1) 1.426(2)      

N(2)-C(9) 1.368(2)       N(2)-C(11) 1.471(2)      

N(3)-C(12) 1.286(2)       C(1)-C(2) 1.383(2)      

N(3)-C(8) 1.397(2)       C(1)-C(6) 1.387(2 

C(7)-C(8) 1.445(2)       C(2)-C(3) 1.387(2)      

C(8)-C(9) 1.358(2)       C(3)-C(4) 1.382(2)      

C(12)-C(13) 1.453(2)       C(4)-C(5) 1.382(2)      

C(16)-C(17) 1.380(3)  C(5)-C(6) 1.387(2)      

C(14)-C(15) 1.393(2)  C(9)-C(10) 1.485(2)      

Bond angles 

N(2)-N(1)-C(7) 109.9(1)     N(1)-C(7)-C(8)        104.5(1)    

N(1)-N(2)-C(9) 106.1(1)     C(7)-C(8)-C(9)        108.2(1)    

C(8)-N(3)-C(12) 122.1(1)     C(8)-C(9)-C(10)       127.7(2)    

O(1)-C(7)-C(8) 132.0(2)     N(3)-C(12)-C(13)       121.2(1)    
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Table 3.11: Selected bond lengths (Å) and angles (˚) for bap. 

Bond lengths 

O(1)-C(7)          1.230(2)  C(9)-N(2) 1.359(2)      

C(12)-C(13)         1.471(3)  C(8)-N(3) 1.389(2) 

N(1)-N(2)          1.406(2)       C(13)-C(14) 1.390(3) 

N(1)-C(7)          1.404(2)       C(14)-C(15) 1.378(2) 

N(3)-C(12)        1.281(2)       N(4)-C(13) 1.350(2)      

N(3)-C(8)          1.389(2)       C(1)-C(2) 1.383(3) 

C(7)-C(8)          1.445(3)       C(2)-C(3) 1.383(3)      

C(8)-C(9)          1.368(3)       C(3)-C(4) 1.380(4)      

N(1)-C(1) 1.430(2)       C(4)-C(5) 1.383(3)      

N(2)-C(11) 1.457(3)       C(5)-C(6) 1.379(3)      

C(9)-C(10) 1.488(3)  C(6)-C(1) 1.387(3)      

Bond angles 

N(2)-N(1)-C(7) 109.7(1)     N(3)-C(8)-C(7) 130.0(2)    

C(8)-N(3)-C(12) 122.8(2)     C(8)-C(9)-C(10) 128.5(1)    

O(1)-C(7)-N(1) 124.3(2)     N(3)-C(12)-C(13) 118.6(2)    

O(1)-C(7)-C(8) 131.5(2)     N(3)-C(8)-C(9) 121.8(2) 

 

 

 

 

 

 

 

 

 

 



 

Chapter 3  4-Aminoantipyrine 

 

Nelson Mandela Metropolitan University            85 
 

Table 3.12: Selected bond lengths (Å) and angles (˚) for 1 and 2. 

Bond lengths 

 1 2   1 2 

Re-X(1) 2.381(3) 2.522(1)  N(4)-C(13) 1.36(2) 1.35(2) 

Re-X(2) 2.410(3) 2.555(1)  C(1)-O(1) 1.32(2) 1.29(2) 

Re-N(1) 2.189(9) 2.19(1)  N(1)-C(2) 1.40(2) 1.42(2) 

Re-O(1) 2.121(9) 2.102(9)  N(2)-N(3) 1.43(2) 1.39(2) 

Re-N(4)  1.73(1) 1.736(1)  N(5)-N(6) 1.41(2) 1.39(2) 

Re-P(1) 2.408(3) 2.410(4)  C(1)-C(2) 1.41(2) 1.38(2) 

O(2)-C(12)  1.21(2) 1.20(2)  N(3)-C(3) 1.32(2) 1.35(2) 

Bond angles 

 1 2   1 2 

O(1)-Re-N(4) 164.5(4) 165.1(4)  N(4)-Re-P(1) 90.5(3) 90.5(3) 

N(1)-Re-X(1) 168.0(3) 168.2(3)  Re-N(4)-C(13) 167.8(9) 170.3(9) 

P(1)-Re-X(2) 166.0(1) 166.72(9)  X(1)-Re-X(2) 88.3(2) 88.04(5) 

P(2)-Re-X(1) 89.7(2) 89.9(8)  N(1)-Re-O(1) 79.7(4) 79.2(4) 

N(4)-Re-X(1) 101.1(4) 100.3(3)  C(1)-N(2)-C(6) 130(1) 129(1) 

N(4)-Re-X(2) 103.5(3) 102.8(3)  Re-N(1)-C(2) 109.8(7) 108.8(8) 

N(4)-Re-N(1) 88.5(5) 89.4(5)  Re-O(1)-C(1) 110.5(8) 111.7(8) 
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Table 3.13: Selected bond lengths (Å) and angles (˚) for 3. 

Bond lengths 

Re-N(1) 1.72(1)  Re-N(2) 2.15(1) 

Re-Br(1) 2.505(2)  Re-P(1) 2.422(3) 

Re-O(1) 2.098(8)  C(7)-N(2) 1.27(2) 

Re-Br(2) 2.560(1)  C(8)-O(1) 1.27(2) 

Bond angles 

N(1)-Re-O(1) 160.3(4)  P(1)-Re-Br(2) 171.53(9) 

C(7)-N(2)-C(9) 124(1)  N(1)-Re-Br(1) 107.9(3)    

N(1)-Re-N(2) 81.4(4)  N(2)-Re-Br(1) 170.3(3) 

N(2)-Re-O(1) 79.7(4)  Re-N(1)-C(1) 148(1) 
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Table 3.14: Selected bond lengths (Å) and angles (˚) for 4. 

Bond lengths 

Re-O(1) 2.209(4)  N(3)-C(8) 1.397(8)      

Re-O(2) 1.646(5)  C(8)-C(9) 1.38(1) 

Re-O(3) 1.877(4)  C(7)-C(8) 1.422(9) 

Re-N(3) 2.155(5)  C(7)-N(1) 1.333(8)      

Re-N(4) 1.979(5)  N(1)-N(2) 1.384(8)      

Re-P(1) 2.454(6)  N(2)-C(9) 1.364(9)      

O(1)-C(7) 1.276(8)  N(4)-C(14) 1.363(9)      

C(12)-N(3) 1.296(7)  O(3)-C(37) 1.41(1)      

Bond angles 

O(2)-Re-O(3) 165.0(2)  O(2)-Re-O(1) 84.9(2)  

O(1)-Re-N(4) 169.4(2)  O(2)-Re-N(3) 91.8(2) 

O(1)-Re-N(3) 80.4(2)  O(2)-Re-P(1) 93.2(1) 

N(3)-Re-N(4) 90.2(2)  O(2)-Re-N(4) 100.3(2) 

P(1)-Re-N(3) 174.9(2)  O(1)-Re-P(1) 99.1(1) 

C(8)-N(3)-C(12) 126.6(6)  O(3)-Re-N(3) 87.2(2)    
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Table 3.15: Selected bond lengths (Å) and angles (˚) for 5. 

Bond lengths 

Re-O(3)  1.702(6)  C(8)-N(22) 1.21(2) 

Re-O(4) 1.886(5)  N(22)-N(32) 1.41(3) 

Re-O(1) 1.985(5)   N(32)-C(10) 1.59(3) 

Re-O(2) 2.171(7)  C(10)-C(9) 1.39(1) 

Re-P(1) 2.454(2)  N(1)-C(9) 1.40(1) 

Re-N(1) 2.130(5)  C(1)-O(1) 1.35(9) 

N(1)-C(7) 1.296(8)  C(6)-C(7) 1.44(1) 

C(8)-O(2) 1.27(1)  O(4)-C(37) 1.39(1) 

Bond angles 

O(3)-Re-O(4) 168.5(2)  O(3)-Re-O(2) 87.5(3) 

O(1)-Re-O(2) 170.9(2)  O(3)-Re-P(1)  91.7(2) 

C(7)-N(1)-C(9) 126.5(6)  O(3)-Re-N(1) 96.3(2) 

Re-O(4)-C(37) 147.1(5)  O(1)-ReO(4) 92.5(2) 

O(1)-Re-N(1) 92.3(2)   O(3)-Re-O(1) 98.8(2) 

N(1)-Re-O(2) 80.5(2)  O(4)-Re-N(1) 85.1(2) 

O(3)-Re-O(1) 98.8(2)  O(2)-Re-O(4) 81.5(2) 
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Table 3.16: Selected bond lengths (Å) and angles (˚) for 6. 

Bond lengths 

Re(1)-Cl(1) 2.4741(8)       N(2)-C(32) 1.407(3) 

Re(1)-N(1) 2.173(2)       N(1)-C(12) 1.401(3) 

Re(1)-N(2) 2.182(2)       C(31)-C(32) 1.437(5) 

Re(1)-C(90)         1.918(3)       C(32)-C(33) 1.373(4) 

Re(1)-C(91)         1.906(3)       C(12)-C(13) 1.369(3) 

Re(1)-C(92)         1.922(3)       C(12)-C(11) 1.442(3) 

N(1)-C(1)          1.292(4)       C(91)-O(91) 1.145(4) 

N(2)-C(2)          1.303(3)       C(92)-O(92) 1.148(4) 

C(2)-N(1) 1.443(4)  C(90)-O(90) 1.147(4) 

Bond angles 

Cl(1)-Re(1)-N(1) 81.98(6)     C(32)-N(2)-C(2) 116.7(2) 

Cl(1)-Re(1)-C(91) 178.2(1)     C(1)-N(1)-C(12) 120.0(2) 

N(1)-Re(1)-C(92)  174.7(1)  N(2)-C(2)-C(1) 117.4(2) 

N(2)-Re(1)-C(90) 169.4(1)     C(91)-Re(1)-N(2) 94.0(1) 

N(1)-Re(1)-N(2)          74.08(8)  C(91)-Re(1)-N(1) 96.6(1) 

Cl(1)-Re(1)-N(2)          84.63(7)     N(2)-Re(1)-C(92) 101.8(1) 

N(1)-C(1)-C(2)          116.7(2)  N(1)-Re(1)-C(91) 96.6(1) 
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Table 3.17: Selected bond lengths (Å) and angles (˚) for 7. 

Bond lengths 

Re(1)-Br(1) 2.612(1)       N(2)-C(12) 1.404(9) 

Re(1)-N(1) 2.227(5)     C(12)-C(11) 1.44(1) 

Re(1)-N(2) 2.206(5)     C(11)-O(1) 1.234(7) 

Re(1)-C(50) 1.911(8)       C(11)-N(5) 1.393(9) 

Re(1)-C(51)         1.936(7)  N(5)-N(4) 1.404(7) 

Re(1)-C(52)       2.24(1)       N(4)-C(13) 1.38(1) 

N(2)-C(6)        1.288(8)  C(13)-C(12) 1.383(8) 

N(3)-C(7)         1.305(8)  C(21)-O(2) 1.236(8) 

Bond angles 

N(1)-Re(1)-N(2) 75.1(2)     Br(1)-Re(1)-N(1)         83.6(1)    

Br(1)-Re(1)-C(52) 172.1(2)   Br(1)-Re(1)-N(2)         84.3(1)    

N(1)-Re(1)-C(50) 170.2(3)  C(50)-Re(1)-C(51)          87.0(3) 

N(2)-Re(1)-C(51) 171.9(2)     N(2)-Re(1)-C(50) 96.2(3) 

Br(1)-Re(1)-C(50) 91.2(2)     N(1)-Re(1)-C(51) 101.0(2) 

Br(1)-Re(1)-C(51)        88.3(2)  C(51)-Re(1)-C(52) 94.1(4) 

N(2)-C(6)-C(1)        119.7(6)  C(50)-Re(1)-C(52) 96.5(3) 
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Chapter 4 

 

Coordination of Bidentate Aniline Derivatives to 

the fac-[Re(CO)3]
+
 core 

 

4.1 Introduction 

 

The nuclear properties of the 
99m

Tc and 
186/188

Re isotopes have made them ideal for 

application as diagnostic and therapeutic radiopharmaceuticals respectively [1]. Initially 

most research efforts were focussed on the [M
V
O]

3+
 core (M = Tc, Re), since it could 

easily be obtained from the permetalate, but since the discovery of the cardiac imaging 

agent [
99m

Tc(MIBI)6]
+
 (MIBI = 2-methoxy-2-methylpropylisocyanide) [2] and the easy 

preparation of the synthons [M(CO)3(H2O)3]
+
 and [M(CO)3X3]

2-
 (X = Cl, Br), the 

research efforts have shifted to the +I oxidation state [3]. Studies on these synthons have 

illustrated a high substitution lability of the three halides and water molecules, with a 

concomitant stability of the three carbonyl ligands [4]. It was therefore not surprising that 

tridentate chelates with a combination of oxygen, sulfur, nitrogen and phosphorus donor 

atoms were initially investigated as possible ligands for the [M(CO)3]
+
 core [5]. 

 

Derivatives of aniline have received considerable interest in coordination chemistry due 

to their chelating abilities [6-8]. Aniline derivatives are also employed in the formation of 

Schiff bases through condensation reactions with aldehydes or ketones. These ligand 

systems are suitable for the study of the coordination chemistry of rhenium since they are 

able to provide a variety of donor atoms, stability and multidenticity towards the metal 

centre [9]. Furthermore, it has been shown that Schiff bases of aniline and their 

corresponding metal complexes possess potent biological activity. For example, the 

Schiff base H2L (H2L = (2E)-2-(2-((E)-(2-hydroxyphenylimino)methyl) 
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benzylideneamino)phenol and its metal complexes exhibited promising antifungal 

activity and proved to be promising antimicrobial agents for application in the medicinal 

and pharmaceutical field [10].  

 

This chapter focuses on the synthesis and structural characterization of the rhenium(I) 

complexes formed by the reaction of [Re(CO)5Br] and the potentially bi- and tridentate 

ligands containing an aromatic backbone (Scheme 4.1). 

 

X

Y

H
C

SMe

N

X

X                  Y            Abbv 

NH2                 NH2         Hpda  

NH2             OH          Hno   

SH               OH          Hsop

NH2                                Htpn             

OH                              Hons

 

Scheme 4.1: Structures of ligands used. 

 

4.2 Experimental 

 

4.2.1 Synthesis of 2-[(2-methylthio)benzylideneimino]phenol (Hons) 

 

2-(Methylthio)benzaldehyde (0.31 g, 0.95 mmol) in 20 cm
3
 of methanol was added to 2-

aminophenol (0.10 g, 0.92 mmol) in 30 cm
3
 of methanol. The yellow solution was heated 

at reflux temperature under nitrogen for 4 hours. The solvent was removed under vacuum 

to produce a yellow precipitate, which was dried under vacuum. Yield = 60 %, m.p. = 63-

65 ˚C. Anal. Calcd. (%) for C14H13NOS: C, 69.1; H, 5.4; N, 5.8; S, 13.2. Found: C, 69.1; 
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H, 5.3; N, 5.8; S, 13.2. IR (νmax/cm
-1

): ν(O-H) 3373; ν(C=N) 1628. 
1
H NMR (295K, 

ppm): 9.35 (d, 1H, H(9)); 9.28 (s, 1H, H(5)); 7.81 (t, 1H, H(7)); 7.74 (d, 1H, H(1)); 7.62 

(t, 1H, H(3)); 7.49 (d, 1H, H(6)); 7.42 (t, 1H, H(8)); 7.26 (d, 1H, H(4)); 7.18 (t, 1H, 

H(2)); 2.77 (s, 3H, CH3). 

 

3

2

1

4 H
C

5

N

S
8

7

6

HO

CH3

9

 

Figure 4.1: Structure of Hons. 

 

 

Figure 4.2: 
1
H NMR spectrum illustrating the aromatic region of Hons. 

 

4.2.2   Synthesis of N-(2-(methylthio)benzylidene)benzene-1,2-diamine (Htpn) 

 

1,2-Diaminobenzene (1.00 g, 9.24 mmol) and 2-(methylthio)benzaldehyde (1.40 g, 9.24 

mmol) were dissolved in 50 cm
3
 of methanol and refluxed for 5 hours under nitrogen. 

After cooling the resultant orange solution to room temperature, the solvent was removed 

under vacuum to form an orange precipitate which was dried under vacuum. Yield = 77 

%, m.p. = 67 ˚C. Anal. Calcd. (%) for C14H13N2S: C, 69.4; H, 5.8; N, 11.6; S, 13.2. 
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Found: C, 68.2; H, 5.7; N, 11.2; S, 14.1. IR (νmax/cm
-1

): ν(NH2) 3051; ν(C=N) 1627. 
1
H 

NMR (295K, ppm): 8.87 (s, 1H, H(5)); 7.11 (d, 1H, H(9)); 7.07 (t, 1H, H(7)); 6.88 (d, 

1H, H(1)); 6.83 (t, 1H, H(3)); 6.64 (d, 1H, H(6)); 6.59 (d, 1H, H(4)); 6.54 (t, 1H, H(8)); 

6.42 (t, 1H, H(2)).  UV-Vis (MeOH, λmax (ε, M
-1

cm
-1

)): 360 (8580). 

 

3

2

1

4 H
C

5

N

S
8

7

6

H2N

CH3

9

 

Figure 4.3: Structure of Htpn. 

 

 

Figure 4.4: 
1
H NMR spectrum of the aromatic region of Htpn. 

 

4.2.3  Synthesis of fac-[Re(CO)3(κ
1
-Hpda)(κ

2
-Hpda)]Br (1) 

 

A mass of 60 mg (556 μmol) of 1,2-diaminobenzene (Hpda) was added to 100 mg (246 

μmol) of [Re(CO)5Br] in 20 cm
3
 of toluene. The mixture was heated under reflux in a 

nitrogen atmosphere for two hours. The solution was left to cool to room temperature, 

after which the resultant white precipitate was collected by filtration. The filtrate was left 

to evaporate slowly at room temperature producing lavender crystals. Yield = 57 %, m.p. 

= 252 ˚C. Anal. Calcd. (%) for C15H16N4O3BrRe: C, 31.8; H, 2.8; N, 9.9. Found: C, 31.8; 
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H, 3.0; N, 9.7. IR (νmax/cm
-1

): ν(NH2) 3104(m), 3169(m), 3194(m), 3245(m); ν(C≡O) 

2031(s), 1925(s), 1880(s); ν(Re-N) 528(m), 513(m), 484(m). 
1
H NMR (295K, ppm): 

7.14-7.34 (m, 4H, H(3), H(4), H(5), H(6)); 6.48 (d, 1H, H(12)); 6.17 (m, 3H, H(9), H(10), 

H(11)). UV-Vis (MeOH, λmax (ε, M
-1

cm
-1

)): 538 (2567), 631 (760). Conductivity (10
-3 

M, 

MeOH): 126 ohm
-1

cm
2
mol

-1
.  

 

4.2.4 Synthesis of [Re2(CO)7(spo)2] (2) 

 

2-Mercaptophenol (Hspo) (70 mg, 559 μmol) was dissolved in 10 cm
3
 of toluene, and 

added to fac-[Re(CO)5Br] (100 mg, 246 μmol) in 10 cm
3
 of toluene. The mixture was 

heated under reflux for 90 min. The resultant light brown solution was left to cool to 

room temperature. Beige crystals were obtained from the slow evaporation of the mother 

liquor. Yield = 62 %, m.p. = 155 ˚C. Anal. Calcd. (%) for C19H10O9S2Re2: C, 27.9; H, 

1.2; S, 7.8. Found: C, 27.8; H, 1.5; S, 8.2. IR (νmax/cm
-1

): ν(C≡O) 2016(s), 1932(s), 

1914(s), 1887(s); ν(Re-O) 472; ν(Re-S) 357. 
1
H NMR (295K, ppm): 7.76 (d, 2H, H(16), 

H(26)); 7.33 (d, 2H, H(13), H(23)); 7.15 (t, 2H, H(15), H(25)); 6.96 (t, 2H, H(14), 

H(24)). Conductivity (10
-3

 M, CH3OH) = 33 ohm
-1

cm
2
 mol

-1
.  

 

4.2.5  Synthesis of fac-[Re(CO)3(ons)(Hno)] (3) 

 

A mixture of Hons (194 mg, 329 μmol) and fac-[Re(CO)5Br] (103 mg, 255 μmol) was 

heated under reflux in 20 cm
3
 of toluene for 90 min. The resultant green solution was 

cooled to room temperature and the precipitate which formed was filtered, washed with 

diethyl ether and dried under vacuum. Orange crystals were obtained by the slow 

evaporation of the mother liquor. Yield = 37 %, m.p. = 172-175 ˚C. Anal. Calcd. (%) for 

ReC23H19N2O5S.C7H8: C, 50.5; H, 3.8; N, 3.9; S, 4.5. Found: C, 50.4; H, 3.8; N, 4.0; S, 

4.5. IR (νmax/cm
-1

): ν(N-H) 3414, 3471; ν(C≡O)fac 2021(s), 1905(s); ν(C=N) 1601; ν(Re-

N) 490, 474; ν(Re-O) 394. 
1
H NMR (295K, ppm): 10.02 (s, 1H, H(11)); 9.65 (s, br, 1H, 

OH); 9.41 (d, 1H, H(9)); 7.74 (t, 1H, H(8)); 7.46-7.60 (m, 2H, H(7), H(6)); 7.38 (d, 1H, 

H(17)); 7.05-7.30 (m, 3H, H(14), H(15), H(16)); 6.46-6.88 (m, 4H, H(20), H(21), H(22), 
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H(23)); 3.50 (s, br, 1H, NH); 2.23 (s, 3H, CH3). UV-Vis (MeOH, λmax (ε, M
-1

cm
-1

)): 426 

(3190). Conductivity (MeOH, 10
-3 

M): 41 ohm
-1

cm
2
mol

-1
. 

 

4.2.6  Synthesis of  fac-[Re(CO)3(Htpn)Br] (4) 

 

A mass of 122 mg (503 μmol) of Htpn dissolved in 10 cm
3
 of toluene was added to 101 

mg (249 μmol) of fac-[Re(CO)5Br] in 10 cm
3
 of toluene. The solution was heated under 

nitrogen for 3 hours with stirring. The resultant orange solution was left at room 

temperature overnight after which yellow crystals formed. The product was filtered and 

dried under vacuum. Yield = 66 %, m.p. = 195-197 ˚C. Anal. Calcd. (%) for 

C17H14N2O3SBrRe: C, 34.5; H, 2.4; N, 4.7; S, 5.4. Found: C, 34.6; H, 2.6; N, 4.9; S, 5.8. 

IR (νmax/cm
-1

): ν(NH2) 3064(m); ν(C≡O) 2033(s), 1923(s), 1896(s); ν(C=N) 1583; ν(Re-

S) 354(m). 
1
H NMR (295K, ppm): 9.36 (s, 1H, H(11)); 7.89–7.33 (m, 5H, H(7), H(10), 

H(14), H(16), H(17)); 7.11 (t, 1H, H(8)); 6.72 (t, 1H, H(15)); 6.55 (t, 1H, H(9)); 3.08 (s, 

3H, SCH3). UV-Vis (MeOH, λmax (ε, M
-1

cm
-1

)): 313 (8190), 433 (3680). Conductivity 

(MeOH, 10
-3 

M): 75 ohm
-1

cm
2
mol

-1
. 

 

4.2.7 X-ray Crystallography 

 

X-ray diffraction studies of 1, 3.C7H8  and 4 were performed at 200(2) K using a Nonius 

Kappa CCD diffractometer with graphite monochromated Mo Kα radiation (λ = 0.71072 

Å). Crystals of 2 were studied with a Bruker Kappa Apex II diffractometer.  The 

structures were solved by direct methods applying SIR97 [11] and refined by least-

squares procedures using SHELXL-97 [12]. All non-hydrogen atoms were refined 

anisotropically, and the hydrogen atoms were calculated in idealized geometrical 

positions. In complex 1, the monodentate Hpda ligand is disordered, and a split model 

was applied with a sof ratio of 0.7:0.3. The non-hydrogen atoms of the main part were 

refined anisotropically, and those of the minor part isotropically. The data were corrected 

by a numerical absorption correction [13] after optimizing the crystal shape with XShape 

[14]. Crystal and structure refinement data are given in Tables 4.5, 4.6, 4.7 and 4.8 for 1, 
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2, 3 and 4 respectively, with selected bond distances and angles in Tables 4.9, 4.10, 4.11 

and 4.12.  

 

 

4.3 Results and Discussion 

 

4.3.1   Synthesis and characterization of fac-[Re(CO)3(κ
1
-Hpda)(κ

2
-

Hpda)]Br (1) 

 

The reaction of fac-[Re(CO)5Br] with two equivalents of Hpda in refluxing toluene 

resulted in the formation of [Re(CO)3(κ
1
-Hpda)(κ

2
-Hpda)]Br (1). Two carbonyls and the 

bromide of [Re(CO)5Br] were substituted by two Hpda units, with one Hpda chelating 

bidentately and the second acting as a neutral monodentate ligand. 

 

[Re(CO)5Br]     +     2Hpda               [Re(CO)3(κ
1
-Hpda)(κ

2
-Hpda)]Br     +     2CO 

 

Compound 1 is a 1:1 electrolyte in methanol (ΛM = 126 ohm
-1

cm
2
mol

-1
). The light 

lavender solid is soluble in alcohols and when left to stand for a few days in solution, a 

deep purple solution forms. The complex is stable for months in the solid state and only 

for days in solution. 

 

Characteristic of the fac-[Re(CO)3]
+
 core, the IR spectrum exhibits three strong ν(C≡O) 

stretches at 1880, 1925 and 2031 cm
-1

. The N-H stretches appear as four medium 

intensity peaks in the 3100-3250 cm
-1

 range. The absorptions at 484, 513 and 528 cm
-1

 

are assigned to the Re-N stretching mode. The aromatic region of the 
1
H NMR spectrum 

of 1 displays the signals due to the eight protons of the two coordinated 1,2-

diaminobenzene (Hpda) moieties. These signals appear as two multiplets and a doublet, 

and it is clear from the spectrum that the two Hpda units are not magnetically equivalent. 

This is to be expected since the two ligands coordinate differently, resulting in the 

protons being present in different magnetic environments. 
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The electronic absorption and emission spectra of 1 is shown in Figure 4.5. Two bands 

are visible on the UV-Vis spectrum: an intense absorption at 538 nm and a less intense 

absorption at 631 nm, which appears as a shoulder. These are due to the metal-to-ligand 

charge transfer (MLCT) dπ(Re) → π*(L) transition. Upon excitation (λex = 450 nm) of a 

methanolic solution of 1, a broad emission band was observed at 526 nm. It is thought 

that this emission results from ligand-centred π* → π relaxations. 

 

 

Figure 4.5: Absorption (blue) and emission (red) spectra of 1. 

 

A perspective view of the asymmetric unit of 1 is shown in Figure 4.6. The X-ray results 

show that the rhenium(I) complex cation contains the chemically robust fac-[Re(CO)3]
+
 

core in a distorted octahedral geometry. The rhenium(I) is coordinated to three carbonyl 

donors in a facial orientation, to the two amino nitrogen atoms N(1) and N(2) of one 

Hpda ligand, and to one nitrogen atom N(3) of a second Hpda. The amino group N(4)H2 

is uncoordinated. The Re-C bond distances [average of 1.905(4) Å] fall in the range 

observed [1.900(2)-1.928(2) Å] for similar complexes [15, 16]. The two Re-N bond 

lengths of the bidentate ligand is similar [average of 2.218(3) Å], and noticeably shorter 
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than the Re-N(3) length [2.256(3) Å]. However, all three lengths are typical for Re-

N(amino) bonds [16, 17]. 

 

The distortion from octahedral ideality is mainly the result of the trans angles, with N(1)-

Re-C(13) = 176.3(1)°, N(2)-Re-C(14) = 171.6(1)° and N(3)-Re-C(15) = 178.1(2)°. These 

distortions are the result of the constraints imposed by the bidentate ligand, which forms 

a five-membered [N(1)-Re-N(2) = 76.8(1)°] metalloring. This argument is manifested in 

the larger (closer to linearity) bond angle between the trans monodentate ligand/donor 

C(15)O and N(3)H2. The average C-Re-C bond angle is 88.6(2)°. 

 

 

Figure 4.6: ORTEP view of 1 showing 50% probability displacement ellipsoids and the 

atom labeling. 

 

A comparison of the N(4)-C(8) bond length [1.41(2) Å] with the longer N(3)-C(7) one 

[1.501(9) Å] clearly shows the effect of coordination on this type of bond. The bromide 

counter-ion is involved in a series of hydrogen-bonds in the lattice (see Table 4.1). The 

formation of [Re(CO)3(κ
1
-Hpda)(κ

2
-Hpda)]Br (1) is surprising since neutral bidentate 

nitrogen-donor ligands usually form neutral complexes of the type [Re(CO)3(NN)Br] [17-

20]. The preparation of cationic Re(I) complexes (containing the [Re(CO)3]
+
 core) under 

mild conditions by the simple ligand substitution of [Re(CO)5X] (X = Cl, Br) is unusual. 
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For example, the reaction of 2,2’:6’,2’’-terpyridine (terpy) with [Re(CO)5Cl] led to the 

formation of [Re(CO)3(σ
2
-terpy)Cl]. Only by drastic action (by refluxing with silver 

perchlorate in acetonitrile overnight) could the cationic complex [Re(CO)3(σ
2
-

terpy)(CH3CN)]
+
 be formed [20]. [Re(CO)3(κ

1
-Hpda)(κ

2
-Hpda)]Br (1) is an unusual 

example of a ‘2+1’ compound with the [Re(CO)3]
+
 core prepared in an one-pot 

procedure. A similar example is the complex [Re(CO)3(phen)(pyridine)]
+
, which was 

synthesized under harsh conditions in a two-step process [21].  

 

Table 4.1: Hydrogen-bond distances (Å) and angles (˚) in 1. 

D-H•••A D-H H•••A D•••A D-H•••A 

N(1)H(1A)•••Br(1) 0.92 2.64 3.529(3) 163 

N(1)H(1B)•••Br(1) 0.92 2.53 3.422(3) 164 

N(2)H(2A)•••Br(1) 0.92 2.66 3.495(3) 151 

N(2)H(2A)•••O(1) 0.92 2.58 2.893(4) 100 

N(2)H(2B)•••O(1) 0.92 2.39 2.893(4) 115 

N(3)H(3A)•••Br(1) 0.92 2.60 3.506(3) 167 

N(3)H(3A)•••N(4) 0.92 2.48 2.827(6) 103 

N(3)H(3B)•••Br(1) 0.92 2.52 3.428(3) 168 

 

 

4.3.2  Synthesis and characterization of [Re2(CO)7(spo)2] (2)  

 

The neutral dimeric complex [Re2(CO)7(spo)2] (2) was formed by the reaction of 2-

mercaptophenol (Hspo) with [Re(CO)5Br]. The sulfur atom of each spo ligand 

deprotonated, forming a double bridge between the metal centres. 

 

2[Re(CO)5Br]    +    2Hspo   [Re2(CO)7(spo)2]    +    3CO    +    2HBr 
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The reaction solution produced no precipitate and brown crystals of 2 were obtained by 

the slow evaporation of the mother liquor. Complex 2 is only partially soluble in 

dichloromethane and acetonitrile, but completely soluble in alcohols. It is stable for 

months in the solid state and for weeks in solution.  

 

Complex 2 is dimeric with one rhenium coordinated to three carbonyls and the other to 

four carbonyls. As a result, the three strong stretching frequencies, typical of the fac-

[Re(CO)3]
+
 core, are not detected in the IR spectrum of 2 (Figure 4.7). Instead four strong 

carbonyl stretching frequencies [ν(C≡O)] in the 1880-2020 cm
-1

 region are observed. The 

peaks at 472 and 357 cm
-1

 are assigned to ν(Re-O) and ν(Re-S) respectively.  

 

 

Figure 4.7: IR spectrum of 2. 

 

The aromatic region of the 
1
H NMR spectrum of 2 (Figure 4.8) consists of four two-

proton signals (two doublets and two triplets). These signals are ascribed to the eight 

protons on the phenyl rings of the spo ligands, and show that the corresponding protons 
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on the two aromatic rings are magnetically equivalent. This is surprising considering that 

the two spo ligands are not coordinated in the same manner, and indicates that the 

magnetic nature of the phenyl rings are not affected by the unsymmetrical nature of the 

dimeric complex.  The UV-Vis spectrum of complex 2 revealed no observable 

transitions, and the excitation of dilute ethanol solutions of 2 at various excitation 

wavelengths produced no emission transitions. 

 

 

Figure 4.8: 
1
H NMR spectrum of the aromatic region for 2. 

 

The structure of 2 is shown in Figure 4.9. The dimeric molecule has a rhombic (μ-S)2Re2 

unit at the centre. Each sulfido-bridge is symmetrical, with unequal Re-S distances of 

2.488(1) [Re(1)-S(11)], 2.522(1) [Re(1)-S(21)], 2.527(1) [Re(2)-S(11)] and 2.516(1) Å 

[Re(2)-S(21)]. The Re-Re distance across the rhombus is 3.8038(3) Å, implying no Re-

Re bonding. The dimer consists of two different halves. Each rhenium is in a distorted 

octahedral environment. Re(1) is coordinated to the carbon atoms of three carbonyls, the 

two charged sulfur atoms S(11) and S(21), and the phenolic oxygen O(12). The Re(1)-

O(12) bond length of 2.220(5) Å intimates that this oxygen is neutral, and thus 

protonated. The length of a rhenium(I)-phenoxy bond falls in the expected range of 

2.120(8)–2.152(9) Å [22]. The bite angle of the bidentate ligand is 77.0(1)° [S(11)-Re(1)-

O(12)], leading to trans angles in the range 168.9(2)–174.4(2)°. 
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Figure 4.9: ORTEP view of 2 showing 50% probability displacement ellipsoids and the 

atom labeling. 

 

In the second half of the molecule, Re(2) is bonded to four carbonylic carbons and the 

two sulfido bridging atoms. The O(22)H group is not coordinated. The Re(2)-C(4) and 

Re(2)-C(7) bond lengths are practically identical, as are Re(2)-C(5) and Re(2)-C(6). The 

difference between the C(22)-O(22) [1.377(8) Å] and C(12)-O(12) [1.397(8) Å] lengths 

are small. The C(4)-Re(2)-C(6) [90.4(3)°], C(4)-Re(2)-C(5) [91.5(3)°] and C(4)-Re(2)-

C(7) [90.5(3)°] are close to orthogonality. The hydroxyl hydrogen O(12)H(12) is 

involved in intermolecular hydrogen-bonding between the sulfur atom S(21) and the 

oxygen atom O(22) of an adjacent molecule (Table 4.2). A third hydrogen-bond exists in 

the asymmetric unit between O(22)H(22)•••O(1) (Figure 4.10). 



 

Chapter 4  Bidentate Aniline Derivatives 

Nelson Mandela Metropolitan University                                                                                             104 
 

 

Figure 4.10: Packing diagram in the unit cell of 2 showing the hydrogen-bonds. 

 

Table 4.2: Hydrogen-bond distances (Å) and angles (˚) in 2. 

D-H•••A D-H H•••A D•••A D-H•••A 

O(12)H(12)•••S(21) 0.84 2.56 3.273(4) 144 

O(12)H(12)•••O(22) 0.84 2.15 2.767(7) 130 

O(22)H(22)•••O(1) 0.84 2.32 2.976(8) 135 

 

The potentially bidentate ligand Hspo provides somewhat of a dilemma for the 

[Re(CO)3]
+
 core, since both the OH and SH groups can be deprotonated. However, in the 

complex [Re2(CO)7(spo)2] only the mercapto sulfur atoms are deprotonated. The different 

coordination behaviour of the two spo ligands is surprising, since bidentate coordination 

of both would have led to the symmetrical complex [Re(CO)3(spo)]2, with sulfide 
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bridges. A second possibility would be to form the symmetrical dimer [Re(CO)4(spo)]2, 

with sulfide bridges and free OH groups. This anomalous behaviour cannot be explained. 

Interestingly, with tropolone (Htrp) the anionic monomer [Re(CO)3(trp)Br]
-
 was isolated 

[23].  

 

4.3.3 Synthesis and characterization of fac-[Re(CO)3(ons)(Hno)] (3) 

 

The compound fac-[Re(CO)3(ons)(Hno)] (3) was prepared by the reaction of 

[Re(CO)5Br] with two-fold molar excess of Hons in refluxing toluene under nitrogen.  

 

[Re(CO)5Br]  +  2Hons  +  H2O           [Re(CO)3(ons)(Hno)]  +  2CO  +  HBr  +  mbt 

 

The decomposition of a molecule of Hons to form a coordinated 2-aminophenol (Hno) 

and free 2-(methylthio)benzaldehyde (mtb) was surprising since all precautions were 

taken to exclude water from the reaction mixture. Also, the preferred affinity of the fac-

[Re(CO)3]
+
 core for an amino nitrogen, rather than the chelated methylthiolic sulfur atom, 

is surprising. All our efforts to synthesize fac-[Re(CO)3(ons)], with ons coordinated as a 

tridentate ONS-donor chelate, were unsuccessful. The synthesis of 3 was also attempted 

by the reaction of [Re(CO)5Br] with equimolar quantities of Hons and Hno in toluene. 

However, only the complex fac-[Re
I
(CO)3(no)(Hno)] was isolated from the reaction 

mixture. Complex 3 is stable in air and is a non-electrolyte in methanol. It is soluble in a 

wide variety of solvents like methanol, DMF, DMSO, acetonitrile and acetone. 

 

The infrared spectrum of 3 (Figure 4.11) is characterized by intense bands at 1905 and 

2021 cm
-1

, typical of ν(C=O) of the fac-[Re(CO)3]
+
 unit. The two medium intensity bands 

at 474 and 490 cm
-1

 are assigned to ν(Re-N(2)) and ν(Re-N(1)) respectively, and the 

medium intensity band at 394 cm
-1

 is attributed to ν(Re-O(4)). The ν(C=N) of the Schiff 

base is found at 1601 cm
-1

 and is at a lower frequency relative to that of the free Hons 

ligand, which occurs at 1628 cm
-1

. The two peaks at 3414 and 3471 cm
-1

 are due to ν(N-

H) of the amino nitrogen N(2).  
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The imine proton of the ons ligand appears at 10.02 ppm in the 
1
H NMR spectrum of 3. 

The other protons of the ons chelate appear in the 7.00-7.80 ppm range as a triplet, 

multiplet, doublet and multiplet integrating for one, two, one and three protons 

respectively (Figure 4.12). The multiplet in the 6.46-6.88 ppm region are assigned to the 

four protons of the Hno ligand. The broad singlets at 9.65 and 3.50 ppm are due to the 

phenolate and amino protons respectively. The protons of the methylthiol group appears 

as a singlet at 2.23 ppm and integrates for three protons. 

 

 

Figure 4.11: IR spectra of Hons and 3.  

 

 

Figure 4.12: 
1
H NMR spectrum of the aromatic region of 3. 
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The UV-Vis spectrum of 3 (Figure 4.13) in methanol shows a metal-to-ligand charge 

transfer band at 426 nm with an extinction coefficient of 3190 M
-1

cm
-1

. The emission 

spectrum (λex = 435 nm) of a methanol solution of 3 revealed an intense metal-centred 

transition at 537 nm (Figure 4.13) at room temperature, characteristic of MLCT 

emissions of fac-[Re(CO)3]
+
 complexes [24]. 

 

 

Figure 4.13: Absorption (blue) and emission (red) spectra of 3. 

 

A perspective view of the asymmetric unit is shown in Figure 4.14. It contains a molecule 

of [Re(CO)3(ons)(Hno)], and a toluene molecule of crystallization. The X-ray results 

show that the rhenium(I) complex contains the chemically robust fac-[Re(CO)3]
+
 core 

and a distorted octahedral geometry. The rhenium(I) is coordinated to three carbonyl 

donors in a facial orientation, to the imino nitrogen N(1), the amino nitrogen N(2) and the 

phenolate oxygen O(4). The phenolic oxygen O(5)H and thioether sulfur S(1) are 

uncoordinated. The Re-CO bond distances [average of 1.907(6) Å, Table 4.11] fall in the 

range observed [1.900(2)-1.928(2) Å] for similar complexes [15, 25]. The Re-N(2) bond 
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length of 2.248(4) Å is typical for Re-N(amino) bonds [16, 17]. The Re-N(1) bond 

distance of 2.204(4) Å, the bond length of N(1)-C(11) of 1.299(6) Å (a double bond), and 

the C(11)-N(1)-C(12) bond angle of 119.3(4)° leave no doubt that N(1) is an sp
2
-

hybridized imino-coordinated nitrogen. 

 

 

Figure 4.14: ORTEP view of complex 3 showing 50% probability displacement 

ellipsoids and the atom labeling. Hydrogen atoms and the solvent of crystallization were 

omitted for clarity. 

 

The trans angles [C(1)-Re-N(1) = 170.0(2)˚, C(2)-Re-O(4) = 172.2(2)˚, and C(3)-Re-

N(2) = 176.3(2)˚] results in the distortion from octahedral ideality of the complex. These 

distortions are due to the small bite angle [N(1)-Re-O(4) = 76.5(1)˚] formed by the five-

membered chelate ring of the bidentate ligand, ons. The average C-Re-C bond angle of 
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88.6(2)˚ is close to orthogonality. The sp
3
-hybridization of the uncoordinated thioether 

sulfur atom S(1) is reflected in the C(4)-S(1)-C(5) bond angle of 103.4(3)˚. A comparison 

of the O(5)-C(19) bond length [1.346(6) Å] with the shorter O(4)-C(13) distance 

[1.337(6) Å] clearly shows the effect of coordination on this type of bond. The dihedral 

angle between the two phenyl rings of ons is 60.5˚. The average C-C distance in the three 

phenyl rings C(5)-C(10), C(12)-C(17) and C(18)-C(23) is 1.380(9), 1.383(9)  and  

1.385(9) Å respectively. There are two hydrogen-bonds in the unit cell: N(2)H•••O(5) 

(intramolecular) and O(5)H•••O(4) (intermolecular) [Table 4.3; Figure 4.15].  

 

 

Figure 4.15: A perspective view of 3 showing the hydrogen-bonding. 

 

Table 4.3: Hydrogen-bond distances (Å) and angles (˚) in 3. 

D-H•••A D-H H•••A D•••A D-H•••A 

N(2)-H(2B)•••O(5) 

O(5)-H(5)•••O(4) 

0.92 

0.84 

2.24 

1.79 

2.639(5) 

2.598(5) 

105 

161 
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4.3.4  Synthesis and characterization of fac-[Re(CO)3(Htpn)Br] (4) 

 

The reaction of the potentially tridentate ligand Htpn with [Re(CO)5Br] in refluxing 

toluene gave the complex [Re(CO)3(Htpn)Br] (4), with Htpn coordinating as a neutral 

bidentate chelate. 

 

[Re(CO)5Br]  + Htpn   [Re(CO)3(Htpn)Br] + 2CO 

 

Complex 4 is air stable and a non-electrolyte in methanol. The complex is soluble in a 

variety of solvents, including alcohols, dichloromethane and acetonitrile. 

 

The IR spectrum of 4 (Figure 4.17) contains sharp intense peaks at 1896, 1923 and 2023 

cm
-1

, typical of ν(C≡O) of the fac-[Re(CO)3]
+
 unit [26]. The peak at 1583 cm

-1
 is due to 

the ν(C=N) of the Schiff base and is at a lower frequency relative to that of the free ligand 

which is found at 1627 cm
-1

. The medium intensity peak at 354 cm
-1

 is due to the Re-S 

stretch. The diamagnetism of 4 is evident from its 
1
H NMR spectrum. The methine 

proton C(11)H occurs at 9.36 ppm and is shifted downfield relative to the imine proton of 

the free ligand (at 8.87 ppm). The aromatic protons’ signals appear as a multiplet and 

three triplets in the 6.50-7.90 ppm region. A three-proton singlet at 3.08 ppm is ascribed 

to the methylthiol protons. 

 

An intense band is found at 313 nm in the electronic spectrum of 4 (Figure 4.18). This 

band is due to the intraligand transition of the coordinated Htpn ligand, and is at a lower 

wavelength relative to the free ligand which appears as an intense band at 360 nm. A 

metal-to-ligand charge transfer band (MLCT) is observed at 433 nm for 4. Excitation of 4 

in methanol at room temperature with a λex = 450 nm, resulted in a broad MLCT 

emission centred at 544 nm (Figure 4.22).  The rhenium centre of complexes 3 and 4 are 

coordinated to different ligands (a NO-donor ligand in 3 and a NS-donor ligand in 4), and 

therefore different metal-ligand interactions are found in the two complexes which 

account for complex 4 having a higher MLCT emission energy compared to 3. 
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Figure 4.17: IR spectra of ligand Htpn and complex 4.  

 

 

Figure 4.18: Overlay UV-Vis spectra of ligand Htpn (blue) and complex 4 (red) and 

emission spectrum of complex 4 (green dotted line). 
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The X-ray results shows that the bidentate ligand Htpn is coordinated via the imino 

nitrogen, N(1) and the thioethereal sulfur S(1) to the metal, which resides in a distorted 

octahedral environment (Figure 4.19). The Re-N(1) bond length of 2.202(2) Å is typical 

of rhenium(I)-imine bonds [18], and the Re-S(1) length of 2.4684(8) Å is in the range 

observed for similar bonds [27]. The N(1)-C(11) distance exhibits double bond character, 

with a length of 1.287(4) Å, and the angle C(11)-N(1)-C(12) [114.3(2)°] is slightly 

smaller than would be expected around a sp
2
-hybridized nitrogen atom. The smaller bite 

angle of Htpn [N(1)-Re-S(1) = 86.78(7)°] results in larger trans angles [175.2(1)–

177.0(1)°], when compared to the previous complexes in the study. 

 

 

Figure 4.19: ORTEP view of 4 showing 50% probability displacement ellipsoids and the 

atom labeling. Hydrogen atoms were omitted for clarity. 
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One of the hydrogen atoms of the free amino group [N(2)H(2B)] is involved in two 

hydrogen-bonds to Br(1) and N(1) (Table 4.4, Figure 4.20). These interactions may be 

responsible for the remarkable value of -0.2(4)° for the N(1)-C(12)-C(13)-N(2) torsion 

angle. Whereas in complex 4 the potentially tridentate N2S-donor ligand Htpn 

coordinates as a bidentate NS-donor (with a free amino group), the very similar NSO-

donor ligand Hons coordinates as a NO-donor (via the imino nitrogen and deprotonated 

oxygen with a free methylthio group) in the complex [Re(CO)3(ons)(Hno)] (3). 

Complexes with the fac-[Re(CO)3]
+
 core have been well studied with potentially 

tridentate ligands, which commonly contain N, O and S donor atoms from amine [28], 

pyridyl [29], carboxyl [30] or thioether [31] groups in octahedral complexes of the type 

[Re(CO)3L]X (X = Cl, Br, PF6). Conclusions have been made that nitrogen donor ligands 

are preferred by the [Re(CO)3]
+
 core above sulfur donor ligands, which is in contradiction 

with the results found in complex 4 [29, 31]. 

 

 

Figure 4.20: Intramolecular hydrogen-bonding in 4. 
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Table 4.4: Hydrogen-bond distances (Å) and angles (˚) in 4. 

D-H•••A D-H H•••A D•••A D-H•••A 

N(2)H(2B)•••Br(1) 0.88 2.59 3.457(2) 167 

N(2)H(2B)•••N(1) 0.88 2.56 2.868(3) 101 

 

 

The electrochemical processes of the complexes were studied via cyclic voltammetry and 

the results are summarized in Table 4.5. Compound 1 revealed an irreversible oxidation 

peak at 1.09 V. This process is ascribed to the Re(I)/Re(II) redox couple. The cyclic 

voltammograms of 2 and 3 displayed no redox processes in the region scanned (-1.50 to 

1.50 V). An irreversible oxidation process was observed at 1.17 V for complex 4 

corresponding to the Re(I)/Re(II) redox process. This oxidation peak is more positive 

than that of complex 1, signifying that 1 undergoes oxidation more readily. As mentioned 

in Chapter 3, this effect is due to the π donating properties of the coordinated ligand. The  

nitrogen donor ligands (Hpda) of 1 is more electron donating than the Htpn ligand of 4, 

resulting in 1 having an electron rich metal centre, which causes 1 to undergo oxidation 

more readily. 

 

Table 4.5: Cyclic voltammetry redox potentials. 

Compound Solvent Oxidation 

  Epa (V) 

1 CH2Cl2 1.09 

2 CH3CN - 

3 CH2Cl2 - 

4 CH2Cl2 1.17 
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Table 4.5: Crystal and structure refinement data for 1. 

Chemical formula C15H16N4O3BrRe  

Formula weight 566.42   

Crystal system Triclinic 

Space group P-1           

a (Å) 8.3815(2)    

b (Å) 10.5477(2) 

c (Å) 10.8571(3)   

α (˚) 108.126(2) 

β (˚) 92.235(2) 

γ (˚) 105.478(2) 

Volume (Å
3
) 871.28(4)   

Z 2 

Density (Calcd.) (gcm
-3

) 2.151 

Absorption coefficient (mm
-1

) 9.287 

F (000) 532 

Crystal size (mm) 0.03 x 0.04 x 0.24   

θ range 3.2-27.5   

Index ranges   h -10/10 

                       k -13/13 

                       l -14/14   

Reflections measured 18983 

Independent/observed reflections 3971/3587 

Data/parameters 3971/222   

Goodness-of-fit on F
2 

1.06   

Final R indices [I > 2 σ(I)] 0.0213  

(wR2 = 0.0452) 

Largest diff. peak/hole (eÅ
-3

) 0.92/-0.71 
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Table 4.6: Crystal and structure refinement data for 2. 

Chemical formula C19H10O9S2Re2  

Formula weight 818.83   

Crystal system Monoclinic 

Space group P2/n          

a (Å) 12.5117(5) 

b (Å) 9.1612(3) 

c (Å) 18.9629(8) 

β (˚) 94.910(1) 

Volume (Å
3
) 2165.6(1) 

Z 4 

Density (Calcd.) (gcm
-3

) 2.511 

Absorption coefficient (mm
-1

) 11.411 

F (000) 1512 

θ range 2.9-28.3 

Index ranges   h -16/16 

                       k -7/12 

                       l -25/25 

Reflections measured 20003 

Independent/observed reflections 5316 5012 

Data/parameters 5316/289   

Goodness-of-fit on F
2 

1.13 

Final R indices [I > 2 σ(I)] 0.0432  

(wR2 = 0.1112) 

Largest diff. peak/hole (eÅ
-3

)  3.20/-4.19 
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Table 4.7: Crystal and structure refinement data for 3. 

Chemical formula 

Formula weight 

C30H27N2O5SRe 

713.82 

Crystal system Monoclinic 

Space group P21/c 

a (Å) 10.1391(4) 

b (Å) 13.0964(5) 

c (Å) 21.6913(8) 

α (˚) 90 

β (˚) 98.970(4) 

γ (˚) 90 

Volume (Å
3
) 2845.1(2) 

Z 4 

Density (Calcd.) (g.cm
-1

) 1.666 

Absorption coefficient (mm
-1

) 4.386 

F(000) 1408 

Crystal size (mm) 0.08 x 0.10 x 0.16 

θ range 4.2-26.3 

Index ranges       h -12/7 

                            k -16/8 

                            l -26/25 

Reflections measured 12385 

Independent/observed reflection 5763/3887 

Data/parameters 5763/320 

Goodness-of-fit on F
2
 0.89 

Final R indices (I > 2 σ(I)] 0.0318 

(wR2=0.0685) 

Largest diff. peak/hole (eÅ
-3

) 0.94/-0.72 
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Table 4.8: Crystal and structure refinement data for 4. 

Chemical formula C17H14N2O3SBrRe 

Formula weight 592.48   

Crystal system Monoclinic 

Space group P21/c 

a (Å) 7.0339(1) 

b (Å) 19.7023(3) 

c (Å) 12.8887(2) 

β (˚) 94.3615(8) 

Volume (Å
3
) 1781.00(5) 

Z 4 

Density (Calcd.) (gcm
-3

) 2.210   

Absorption coefficient (mm
-1

) 9.202 

F (000) 1120 

Crystal size (mm) 0.05 x 0.07 x 0.31   

θ range 3.2-27.5   

Index ranges   h -9/9 

                       k -25/25 

                       l -16/16 

Reflections measured 46334 

Independent/observed reflections 4076 

Data/parameters 4076/227   

Goodness-of-fit on F
2 

1.06 

Final R indices [I > 2 σ(I)] 0.0193  

(wR2 = 0.0458) 

Largest diff. peak/hole (eÅ
-3

) 0.87/-1.04 
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Table 4.9: Selected bond lengths (Å) and angles (˚) for 1. 

Bond lengths 

Re–C(13) 1.906(4)  N(2)-C(2) 1.450(5) 

Re–N(1) 2.211(3)  N(1)–C(1) 1.456(5) 

Re–C(14) 1.906(4)  N(3)–C(7) 1.501(9) 

Re–N(2) 2.224(3)  N(4)–C(8) 1.41(2) 

Re–C(15) 1.904(4)  O(1)–C(13) 1.162(5) 

Re–N(3) 2.256(3)  O(3)-C(15) 1.156(5) 

Bond angles 

N(1)–Re–N(2) 76.8(1)  N(1)–Re–C(15) 93.4(1) 

N(1)–Re–C(13) 176.3(1)  N(2)–Re–C(13) 99.7(1) 

Re–N(3)–C(7) 115.8(2)  N(3)–Re–C(13) 92.1(1) 

N(2)–Re–C(14) 171.6(1)  C(13)–Re–C(14) 88.5(2) 

C(13)–Re–C(15) 87.9(2)  C(14)–Re–C(15) 89.4(2) 

N(3)–Re–C(15) 178.1(2)  N(1)–Re–N(3) 86.6(1) 

N(1)–Re–C(14) 95.0(1)  N(2)–Re–N(3) 85.1(1) 
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Table 4.10: Selected bond lengths (Å) and angles (˚) for 2. 

Bond lengths 

Re(1)–S(11) 2.488(1)  O(12)–C(12) 1.397(8) 

Re(1)–S(21) 2.522(1)  O(22)–C(22) 1.377(8) 

Re(2)–S(11) 2.527(1)  Re(1)–C(1) 1.912(6) 

Re(2)–S(21) 2.516(1)  Re(2)–C(4) 1.931(6) 

Re(1)–O(12) 2.220(5)  Re(2)–C(5) 2.003(7) 

Re(1)–C(2) 1.895(6)  Re(2)–C(6) 2.007(7) 

R(1)-C(3) 1.948(6)  Re(2)-C(7) 1.932(7) 

Bond angles 

Re(1)–S(11)–Re(2) 98.65(5)  S(21)–Re(1)–C(1) 168.9(2) 

S(11)–Re(1)–S(21) 81.63(4)  C(5)–Re(2)–C(6) 178.0(3) 

Re(1)–S(21)–Re(2) 98.06(5)  S(11)–Re(1)– C(3) 172.7(2) 

S(11)–Re(2)–S(21) 80.98(4)  S(11)–Re(2)–C(4) 175.4(2) 

S(11)-Re(1)-O(12) 77.0(1)  C(4)-Re(2)-C(5) 91.5(3) 

C(2)-Re(1)-O(12) 174.4(2)  C(4)-Re(2)-C(7) 90.5(3) 

C(4)-Re(2)-C(6) 90.4(3)  S(11)-Re(2)-C(6) 90.6(2) 
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Table 4.11: Selected bond lengths (Å) and angles (˚) for 3. 

Bond lengths 

Re-C(1) 1.910(5)  Re-N(1) 2.204(4) 

Re-C(2) 1.908(5)  Re-N(2) 2.248(4) 

Re-C(3) 1.899(6)  Re-O(4) 2.107(4) 

S(1)-C(5) 1.773(6)  N(1)-C(11) 1.299(6) 

O(4)-C(13) 1.337(6)  O(5)-C(19) 1.346(6) 

N(2)-C(18) 1.426(7)  S(1)-C(4) 1.790(5) 

Bond angles 

C(1)-Re-N(1) 170.0(2)  C(1)-Re-C(2) 88.2(2) 

C(2)-Re-O(4) 172.2(2)  C(1)-Re-C(3) 88.8(2) 

C(3)-Re-N(2) 176.3(2)  C(2)-Re-C(3) 89.9(2) 

N(1)-Re-O(4) 76.5(1)  C(11)-N(1)-C(12) 119.3(4) 

C(4)-S(1)-C(5) 103.4(3)  N(2)-Re-N(1) 82.5(1) 

N(2)-Re-O(4) 79.5(1)  C(11)-N(1)-Re 128.4(4) 

N(2)-Re-C(2) 101.3(2)  N(2)-Re-C(1) 93.9(2) 

O(4)-Re-C(3) 97.7(2)  N(1)-Re-C(3) 94.4(2) 
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Table 4.12: Selected bond lengths (Å) and angles (˚) for 4. 

Bond lengths 

Re–Br(1) 2.626(3)  Re–C(3) 1.911(3) 

Re–C(1) 1.934(3)  N(1)–C(11) 1.287(4) 

Re–N(1) 2.202(2)  S(1)-C(4) 1.810(4) 

Re–C(2) 1.924(3)  S(1)-C(5) 1.782(3) 

Re–S(1) 2.468(8)  N(2)-C(13) 1.361(4) 

Bond angles 

N(1)–Re–C(2) 177.0(1)  Br(1)–Re–C(1) 93.0(1) 

Br(1)–Re–S(1) 85.31(2)  C(11)–N(1)–C(12) 114.3(2) 

S(1)–Re–C(1) 175.7(1)  Br(1)–Re–C(2) 93.8(1) 

Br(1)–Re–N(1) 83.35(6)  C(4)–S(1)–C(5) 99.7(2) 

Br(1)–Re–C(3) 175.2(1)  C(2)–Re–C(3) 90.9(1) 

N(1)-Re-S(1) 86.78(7)  N(1)-Re-S(1) 86.78(7) 

 



 

Chapter 5  Bidentate Benzenethiol Derivatives 

 

Nelson Mandela Metropolitan University                                                                                             126 
 

Chapter 5 

 

Isolation of tris(bidentate) Complexes of 

Rhenium(III) from the cis-[ReO2]
+
 Core and 

Benzenethiol Derivatives 

 

5.1 Introduction 

 

It has been well established that the potentially bidentate ligands in Scheme 5.1 are redox 

non-innocent when coordinated to transition metals [1].  For example, 2-aminothiophenol 

(Scheme 5.2) can coordinate as a NS-donor chelate as the 2-aminothiophenolate (1-) 

anion (Hatp
-
), as the 2-amidothiophenolate (2-) anion (atp

2-
), or as the 2-

iminothiobenzosemiquinonato (1-) ion (ibsq
-
) [1]. Surprisingly, the benzosemiquinonato 

 -radical form of these ligands has been found to be quite common as a ligand.  It was 

shown that high quality X-ray crystallographic data can allow the assignment of the three 

different forms of 2-aminothiophenol (Hatp
-
, atp

2-
 and ibsq

-
) in metal complexes [2].  

 

X

Y

 X             Y               

NH2         SH      H2atp 

OH          SH      H2otp   

SH           SH      H2tdt    

OH          OH      H2cat   

NH2        OH      H2nap
 

Scheme 5.1: Non-innocent bidentate ligands. 
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NH2

SH

NH2

S

NH

S

NH

S

-H+
-H+ -e-

H2atp Hatp-
atp2- ibsq-

Scheme 5.2: Redox and protonation levels of 2-aminothiophenol. 

 

Due to the favourable nuclear properties of the 
99m

Tc and 
186/188

Re radionuclides for 

application in nuclear medicine, many studies of these metals with the bidentate ligands 

in Scheme 5.1 were initiated [3]. Several of the complexes isolated were of the 

tris(bidentate) type, in which the bidentate ligands have not been identified as the 

benzosemiquinonate radical anions.  For example, with catechol (H2cat) the complex 

[Re
VI

(cat)3] was isolated, in which the bidentate chelates cat
2-

 are in the catecholato, 

rather than the semiquinone, form [4].  This was also the case with the dithiolate (tdt
2-

) 

complexes [Re
VI

(tdt)3] and [Re
V
(tdt)3]

-
, and in the amidothiophenolate (atp

2-
) complex 

[Re
VI

(atp)3] [5]. In most of these tris(bidentate) complexes, the rhenium lies in a distorted 

trigonal prism environment. Preference of this geometry above the octahedral geometry is 

not common in six-coordinate complexes. The trigonal prismatic coordination geometry 

is, however, generally encountered in metal ions with few electrons in the d-orbitals, with 

non-bulky ligands coordinated to the metal [6]. The trigonal twist angle θ (Figure 5.1) is 

used to structurally describe the coordination geometry of a structure (θ = 0˚ for a perfect 

trigonal prism and θ = 60˚ for an ideal octahedron) [7].  

 

The reactions of the rhenium(V) complex cis-[ReO2I(PPh3)2] with 2-aminothiophenol 

(H2atp), benzene-1,2-dithiol (H2tdt) and 2-hydroxybenzenethiol (H2otp) led to the 

formation of the rhenium(III) compounds [Re(Hatp)(ibsq)2].OPPh3 (1), 

[Re(sbsq)3].OPPh3 (2) and [Re(obsq)3].OPPh3 (3) (ibsq = 2-iminothiobenzosemi- 

quinonate, sbsq = 1,2-dithiobenzosemiquinonate, obsq = 2-hydroxothiobenzosemi- 

quinonate) respectively. The reactions were conducted in boiling methanol in the 

presence of air. In all three cases the metal has been reduced from oxidation state +V to 

+III by the reduction of the oxo species by oxidative dissociation of triphenylphosphine 

to form triphenylphosphine oxide.  



 

Chapter 5  Bidentate Benzenethiol Derivatives 

 

Nelson Mandela Metropolitan University                                                                                             128 
 

Re

Trigonal Prismatic                                                                             Octahedral

 θ = 0˚ 
 θ = 60˚ 

 θ 

Re

 θ 

 

Figure 5.1: Twist angle for trigonal prismatic and octahedral geometries. 

 

5.2 Experimental 

 

5.2.1 Syntheses of [Re(Hatp)(ibsq)2].OPPh3 (1), [Re(sbsq)3].OPPh3 (2) and 

[Re(obsq)3].OPPh3 (3) 

 

The relevant benzenethiol derivative {H2atp (1), H2tdt (2) or H2otp (3) (345 μmol)} was 

dissolved in 10 cm
3
 of methanol and added to cis-[ReO2I(PPh3)2] (100 mg, 115 μmol) in 

10 cm
3
 of methanol. The mixture was heated at reflux for three hours in air. The resultant 

green solution was allowed to cool to room temperature and filtered. Green crystals were 

obtained from the slow evaporation of the filtrate.  

Analysis of 1: Yield = 66 %, m.p. = 245 °C. Anal. Calcd. (%) for 

C18H16N3ReS3.C18H15OP: C, 51.8; H, 3.7; N, 5.0; S, 11.5. Found: C, 51.3; H, 3.6; N, 4.8; 

S, 11.7. μeff = 1.69 BM. IR (νmax/cm
–1

): ν(N-H) 3208w, 3183w; ν(C=C) 1537m; ν(P=O) 

1118s; ν(C-S) 1088s; ν(P-C) 720s; ν(Re-N) 572m, 537m; ν(Re-S) 319m. 
1
H NMR (295K, 

ppm): 7.62 (m, 15H, OPPh3); 7.37 (t, 1H, H(25)); 7.13 (t, 2H, H(14), H(34)); 7.06 (d, 2H, 

H(13), H(33)); 6.98 (d, 1H, H(23)); 6.90 (t, 1H, H(24)); 6.79 (d, 2H, H(16), H(36)); 6.77 

(d, 1H, H(26)); 6.52 (t, 2H, H(15), H(35)); 3.57 (s, br, 2H, N(2)H2). Conductivity (10
-3 

M, 
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MeOH):  20 ohm
-1

cm
2
mol

-1
. UV-Vis (MeOH, λmax (ε, M

-1
cm

-1
)): 311 (6950), 364 

(10500), 458sh (2300), 594 (7750), 681 (6950). 

Analysis of 2: Yield = 78 %, m.p. = 86 °C. Anal. Calcd. (%) for C18H12ReS6.C18H15OP: 

C, 48.9; H, 3.1; S, 21.7. Found: C, 49.0; H, 3.3; S, 20.9. μeff = 1.78 BM. IR (νmax/cm
–1

): 

ν(C=C) 1436; ν(P=O) 1113s; ν(C-S) 1096; ν(P-C) 685s; ν(Re-S) 348m. 
1
H NMR (295K, 

ppm): 7.85-7.94 (m, 6H, H(14), H(15), H(24), H(25), H(34), H(35)); 7.71-7.82 (m, 15H, 

OPPh3); 6.96-7.04 (m, 6H, H(13), H(16), H(23), H(26), H(33), H(36)). Conductivity (10
-3 

M, DMF): 12 ohm
-1

cm
2
mol

-1
. UV-Vis (CH2Cl2, λmax (ε, M

-1
cm

-1
)): 309 (17370), 440 

(2850), 429 (3090), 723 (1590). 

Analysis of 3: Yield = 63 %, m.p. = 209 °C. Anal. Calcd. (%) for 

C18H12O3ReS3.C18H15OP: C, 51.7; H, 3.3; S, 11.5. Found: C, 51.5; H, 3.3; S, 11.9. μeff = 

1.70 BM. IR (νmax/cm
–1

): ν(C=C) 1436s; ν(P=O) 1114s; ν(C-S) 1066; ν(P-C) 741s; ν(Re-

O) 458m; ν(Re-S) 307m. 
1
H NMR (295K, ppm): 7.86-7.95 (m, 3H, OPPh3); 7.72-7.82 

(m, 12H, OPPh3); 7.55 (d, 3H, H(13), H(23), H(33)), 7.30 (d, 3H, H(16), H(26), H(36)); 

6.87 (t, 3H, H(14), H(24), H(34)); 6.75 (t, 3H, H(15), H(25), H(35)). Conductivity (10
-3 

M, MeOH): 16 ohm
-1

cm
2
mol

-1
. UV-Vis (MeOH, λmax (ε, M

-1
cm

-1
)): 316 (3150), 386 

(2500), 614 (1550), 748 (960). 

 

5.2.2  X-ray Crystallography 

 

X-ray diffraction studies of 1.CH3OH, 2 and 3.CH3OH were performed at 200 K using a 

Bruker Kappa Apex II diffractometer with graphite monochromated Mo Kα radiation (λ 

= 0.71073 Å). APEX-II was used for data collection and SAINT for cell refinement and 

data reduction [8]. The structures were solved by direct methods using SHELXS-97 [9] 

or SIR97 [10], and refined by least-squares procedures using SHELXL-97 [9] with 

SHELXLE [11] as a graphical interface. All non-hydrogen atoms were refined 

anisotropically, and the hydrogen atoms were calculated in idealised geometrical 

positions. Data were corrected for absorption effects by the numerical method using 

SADABS [8]. 

 



 

Chapter 5  Bidentate Benzenethiol Derivatives 

 

Nelson Mandela Metropolitan University                                                                                             130 
 

5.3 Results and Discussion 

 

5.3.1  Synthesis and characterization of [Re(Hatp)(ibsq)2].OPPh3 (1) 

 

The reaction of cis-[ReO2I(PPh3)2] with 2-aminothiophenol (H2atp) in methanol in the 

presence of air led to the formation of [Re(Hatp)(ibsq)2].OPPh3. The elemental analysis 

and X-ray crystallography indicated that OPPh3 co-crystalizes with the complex. The 

formation of OPPh3 intimates that the metal was reduced by PPh3 to the +III oxidation 

state. This would necessitate the ligands to either be in the 2-aminothiophenolato form 

Hatp
-
, or the 2-iminothiobenzosemiquinonato form ibsq

-
. However, from the 

spectroscopic and crystallographic data the product was formulated as the rhenium(III) 

compound [Re(Hatp)(ibsq)2].OPPh3 (1).  The reaction is described by the equation: 

 

 [ReO2I(PPh3)2] + 3H2atp + ½O2              [Re(Hatp)(ibsq)2].OPPh3 + PPh3 + HI + 2H2O 

 

Complex 1 is soluble in a number of different solvents such as acetonitrile, acetone, 

alcohols, DMSO, chloroform and DMF. The complex is a non-electrolyte in methanol 

and therefore neutral. It is stable for months in both the solid state and solution. The 

complex is paramagnetic at ambient temperature, with a magnetic moment of 1.69 BM.  

This value is low for two unpaired electrons (due to spin-orbit coupling), but it agrees 

well with those of mononuclear octahedral rhenium(III) complexes [μeff = 1.5-2.1 BM] 

[12, 13].   

 

Although complex 1 is paramagnetic, the 
1
H NMR spectrum displays sharp signals 

(Figure 5.2). A broad singlet at 3.57 ppm is assigned to the two amino protons on N(2). 

The presence of OPPh3 is established by a 15 proton multiplet centered at 7.62 ppm.  In 

the region 6.43-7.40 ppm a total of eight signals are observed.  Two two-proton doublets 

[at 7.06  and 6.79 ppm] and two two-proton triplets [at 7.13 and 6.52 ppm] are the result 

of the four phenyl protons on the two coordinated ibsq chelates, with the four aromatic 

protons on the Hatp moiety giving rise to two one-proton triplets [at 7.37 and 6.90 ppm] 

and two one-proton doublets [at 6.98 and 6.77 ppm]. The NH resonances are not 
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observed, possibly due to the broadening of the nitrogen quadrupole exacerbated by the 

unpaired electron spin. 

 

 

Figure 5.2: 
1
H NMR spectrum of 1. 

 

The IR spectrum of 1 (Figure 5.3) shows no intense peaks in the 890-1020 cm
-1

 region, 

suggesting the absence of the Re=O entity. The medium intensity peaks at 537 and 572 

cm
-1

 are due to ν(Re-N), with the Re-S stretch at 319 cm
-1

. The peaks at 1118 cm
-1

 

[ν(P=O)] and 720 cm
-1

 [ν(P-C)] are further evidence of the presence of the uncoordinated 

triphenylphosphine oxide in the crystal lattice. The electronic absorption data for 1 is 

complex with a large number of transitions, and the interpretation is not straightforward 

(Figure 5.4). The main feature of the spectrum is two intense bands at 594 nm (ε7750 

M.cm
-1

) and 681 nm (ε6950 M.cm
-1

). Bands in this region are characteristic of the 

presence of benzosemiquinonate (1-) π-radical ligands coordinated to a rhenium ion [3, 

5]. The band of highest energy (311 nm) is due to the intra-ligand transitions (π → π*) of 

the coordinated Hatp and ibsq ligands and is at a lower wavelength relative to the free 2-

aminothiophenol (344 nm). Ligand-to-metal charge transitions [pπ(S
-
) → d*π(Re)] occur 

at 364 and 458 nm. 
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Figure 5.3: IR spectrum of complex 1. 

 

 

Figure 5.4: UV-Vis spectra of complex 1 and 2-aminothiophenol (H2atp). 
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The molecular structure of 1 was obtained to a high precision by X-ray crystallography 

(Figure 5.5).  The neutral molecule of 1 adopts a trigonal prismatic geometry around the 

rhenium center.  The average twist angle between the upper and lower triangular faces (θ 

= 3.26˚) is small and indicates that the geometry is close to that of a perfect trigonal 

prism. It is interesting to note that the three chelate ring fold angles of 1 are different 

(Figure 5.6). Two are small in value (α’ = 9.88˚ and α’’ = 1.14˚), with the third being 

markedly larger (α’’’ = 35.54˚). This distortion is brought about by the geometrical 

differences which exist between the ibsq and Hatp chelates. 

 

 

Figure 5.5: An ORTEP view of 1 showing 50% probability displacement ellipsoids and 

the atom labeling. The methanol solvent of crystallization was omitted for clarity. 

 

The geometrical details of the three NS-coordinated ligands show that two of them are 

equivalent, and different from the third one. Two of the chelates have similar bite angles 

[S(1)-Re-N(1) = 79.57(8)˚ and S(3)-Re-N(3) = 78.66(7)˚], and are markedly different 
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from the angle S(2)-Re-N(2) [76.80(7)˚]. The two Re-S(1) [2.315(1) Å] and Re-S(3) 

[2.313(1) Å] bond lengths are practically identical, with the Re-S(2) length [2.406(1) Å] 

significantly different. These bond distances fall in the range [2.29(1)-2.54(1) Å] 

typically observed for thiolate sulfur bonds to rhenium [14]. The two bond lengths Re-

N(1) [1.975(2) Å] and Re-N(3) [1.973(3) Å] are significantly different from the Re-N(2) 

bond [2.158(3) Å], with the latter typical of rhenium-amino nitrogen distances [15]. 

However, it is the intraligand bonding parameters which show that the oxidation levels of 

the ibsq ligands are above that of the 2-aminothiophenolate ligand (Hatp). The C-S 

[average 1.734(3) Å] and C-N [average 1.371(4) Å] bond lengths in the ibsq ligands 

display double bond character and are considerably shorter than the corresponding 

distances in Hatp [S(2)-C(21) = 1.762(4) Å, N(2)-C(22) = 1.447(4) Å]. Also, the phenyl 

rings in the ibsq ligands display distortions which are typical of quinoid type structures, 

i.e. two shorter and four longer C=C bond lengths.  

 

 θ  

Re

S1

S3S2

9.88o

1.41o
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N
H2
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S

S

S

Re

Figure 5.6: Twist angle (θ) and chelate ring fold angles (α) of 1. 

 

In previous studies, it was also experimentally possible to distinguish between the 

electronic structures of Hatp
-
 and ibsq

-
 [1, 2, 16].  In general, Hatp

-
 has a C-N bond 

length of ~1.46 Å and a C-S distance of ~1.76 Å.  In contrast, in the semiquinone form 

ibsq
-
, respective C-N and C-S lengths of ~1.36 and ~1.72 Å are typically observed. In 

addition, it has been shown in earlier studies that the reaction of 2-aminothiophenol with 

trans-[ReOCl3(PPh3)2] in benzene led to the isolation of the oxo-free rhenium(V) 

θ = 3.26 ˚ 
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complex [ReCl(PPh3)(atp)2] [17]. In this complex the average bite angle of the chelates is 

78.8(1)˚, the Re-S bonds are identical [2.297(1) Å] and the average Re-NH bond length is 

1.977(4) Å.  

 

The oxygen atom O(1) of the OPPh3 molecule is involved in hydrogen-bonding contacts 

N-H···O(1) to the amine/imine protons of the three chelates (Figure 5.7, Table 5.1), with 

the result that the P(1)=O(1) bond distance of 1.503(2) Å is slightly longer than in free 

OPPh3 [18]. The methanol solvent of crystallization is involved in three intermolecular 

hydrogen-bonds. The hydroxyl hydrogen O(90)H(90) of the methanol forms 

intermolecular bonds with the sulfur atoms S(2) and S(3), while the hydroxyl oxygen 

O(90) interacts with the protons of the amino nitrogen N(2)H(721). 

 

 

Figure 5.7: Perspective view of 1 showing the hydrogen-bonds. 
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Table 5.1: Hydrogen-bond distances (Å) and angles (˚) in 1. 

D-H•••A D-H H•••A D•••A D-H•••A 

N(1)H(71)•••O(1) 0.81 2.40 3.124(4) 150 

N(2)H(722)•••O(1) 0.88 1.98 2.831(3) 163 

N(3)H(73)•••O(1) 0.78 2.26 2.982(3) 155 

N(2)H(721)•••O(90) 0.88 2.07 2.887(5) 155 

O(90)H(90)•••S(2) 0.84 2.84 3.595(5) 150 

O(90)H(90)•••S(3) 0.84 2.79 3.442(5) 135 

 

The cyclic and square-wave voltammograms of 1 are shown in Figure 5.8. Two redox 

couples (B and C) are present together with an irreversible cathodic peak (A). The 

square-wave voltammogram confirms that only these three processes occur in the 

potential region scanned (-1.500 to 0.400 V). The electrochemical data for the three 

processes are summarized in Table 5.2. 

 

 

Figure 5.8: Cyclic voltammogram (red line) of 1 in CH2Cl2 (at a scan rate of 100 mV/s) 

and square-wave voltammogram (blue line). 
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Table 5.2: Electrochemical data (potential in V, current in μA) of 1, scan rate 100 mV/s. 

Process Epc ic Epa ia E1/2 ia/ic ΔEp Assignment 

A -1.290 4.23 - - - - - ibsq
-
/atp

2-
 

B -0.306 4.91 -0.397 8.14 -0.352 1.66 0.091 ibsq
-
/atp

2-
 

C -0.038 5.09 0.080 5.79 0.022 1.14 0.118 Re(III)/Re(IV) 

 

The peak-to-peak separations for processes B and C were found to be 0.091 and 0.118 V 

respectively, suggesting that they are quasi-reversible. The quasi-reversibility of the two 

redox processes is further established by the ratios between the anodic and cathodic 

currents which are greater than one for processes B and C. The peak-to-peak separations 

are comparable to that of the ferrocene redox couple (ΔE = 0.105 V) indicating that B and 

C take place via a one electron charge transfer. The reduction wave at Epc = -1.290 V (A) 

is assigned to the redox processes occurring within one coordinated ligand ibsq
-
/atp

2-
 

(L
•
/L), with the quasi-reversible wave at E1/2 = -0.352 V (B) due to an identical process 

for a second ibsq
-
 ligand. The quasi-reversible wave at E1/2 = 0.022 V (C) is ascribed to 

the Re(III)/Re(IV) redox couple and is at a similar value to those observed for 

rhenium(III) complexes in the literature [13]. These processes are described by the 

following equation: 

 

[Re
IV

(Hatp)(ibsq)2]
+
                    [Re

III
(Hatp)(ibsq)2]

0
                    [Re

III
(Hatp)(atp)(ibsq)]

-
 

 

   

                        [Re
III

(Hatp)(atp)2]
2-

 

 

The cyclic voltamograms of 1 were obtained at different scan rates ranging from 50-500 

mV/s. The E1/2 values remain constant with increasing scan rates. The Randles-Sevcik 

equation [19] can be used to determine whether the main mass transport of a compound 

to the electrode surface is controlled by a diffusion step and is given by the following 

expression: 

i = (2.69x10
5
)n

3/2
AD

1/2
Cν

1/2 

+e-

-e-

+e--e-

+e-

-e-
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were i is the peak current (in amperes), A is the electrode area (in cm
3
), D is the diffusion 

coefficient (in cm
2
/s), C is the concentration( in mol/cm

3
) and ν is the sweep rate (in V/s). 

A plot of peak current (i) against the square-root of the scan rate (ν
1/2

) for each of the 

processes produced linear curves (Figure 5.9). This dependence of the peak currents on 

the square-root of the scan rate suggests that all the processes are diffusion controlled. 

 

  

Figure 5.9: Plots of peak current (i) vs. the square root of the scan rate (v
1/2

) for the 

different processes. 

 

5.3.2  Synthesis and characterization of [Re(sbsq)3].OPPh3 (2) 

 

The reaction of cis-[ReO2I(PPh3)2] with three equivalents of benzene-1,2-dithiol (H2tdt) 

in air resulted in the formation of [Re(sbsq)3].OPPh3 (2) in which the metal has been 

reduced to the +III oxidation state. The oxidation state is confirmed by the magnetic 

moment of 1.78 BM. The three chelates are equivalent as indicated by spectroscopic and 

X-ray crystallographic data, which implies that the ligand is coordinated as a 

monoanionic bidentate chelate. The ligands are therefore present in the complex in the 

dithiobenzosemiquinonato (1-) π-radical form (sbsq
-
). 
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2[ReO2I(PPh3)2]  +  6H2tdt  +  
3
/2O2              2[Re(sbsq)3].OPPh3  +  2PPh3  +  5H2O  +  2HI

 

 

Complex 2 is soluble only in methanol, dichloromethane and DMF. It is stable in solution 

for days and for months in the solid state. The microanalytical data are in good agreement 

with the calculated values. 

 

The aromatic region of the 
1
H NMR spectrum of 2 (Figure 5.10) is characterized by three 

multiplets. The multiplet which appears in the 7.71-7.82 ppm region is assigned to the 

fifteen protons of the triphenylphosphine oxide. The remaining two multiplets correspond 

to the protons of the three aromatic sbsq moieties. The IR spectrum of 2 (Figure 5.11) 

confirms the presence of the triphenylphosphine oxide compound in the formulation of 2, 

with the peaks at 1113 and 685 cm
-1

 assigned to the P=O and P-C stretching frequencies 

respectively. The Re-S stretch is found at 348 cm
-1

.  

 

The electronic spectrum of 2 displays a high intensity band at 309 nm. This band is due to 

a ligand-to-ligand charge transfer transition occurring in the coordinated sbsq moieties. 

The band at 440 nm is assigned as ligand-to-metal charge transitions with a d-d transition 

occurring at 723 nm. 

 

 

Figure 5.10: 
1
H NMR spectrum of 2. 



 

Chapter 5  Bidentate Benzenethiol Derivatives 

 

Nelson Mandela Metropolitan University                                                                                             140 
 

 

Figure 5.11: IR spectrum of complex 2. 

 

Complex 2 has a distorted trigonal prismatic ReS6 polyhedron with a central Re(III) ion 

(Figure 5.12). The distortion from ideal trigonal prismatic geometry can be seen in the 

twist angle of θ = 25.60˚ (Figure 5.13), which indicates that the geometry is an 

intermediate between trigonal prismatic (θ = 0˚) and octahedral (θ = 60˚). The geometric 

parameters of the three bidentate chelates show that they are equivalent. The six Re-S 

bond lengths are similar, with an average length of 2.342(2) Å. In contrast to complex 1, 

all three fold angles (Figure 5.13) are small with an average value of 7.67˚. 

 

The three bidentate chelates form similar bite angles of 83.41(5)˚ [S(1)-Re-S(2)], 

82.43(5)˚ [S(5)-Re-S(6)] and 82.87(5)˚ [S(3)-Re-S(4)]. In each ligand, one C-S [S(2)-

C(12) = 1.742(6) Å, S(4)-C(22) = 1.736(6) Å, S(6)-C(32) = 1.732(5) Å] bond length 

displays double bond character and is shorter than the second C-S [S(1)-C(11) = 1.745(6) 

Å, S(3)-C(21) = 1.750(6) Å and S(5)-C(31) = 1.743(5) Å] bond distance. These C-S bond 

lengths indicates that each ligand is coordinated as a dithiobenzosemiquinonate (1-) 

radical bidentate chelate. The C-S bond lengths are, however, slightly longer than the 
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literature values [short C-S ~1.72 Å and long C-S ~1.74 Å] for benzene-1,2-dithiol 

coordinated in the dithiobenzosemiquinonato (1-) radical form [2].  

 

 

Figure 5.12: An ORTEP view of 2 showing 50% probability displacement ellipsoids and 

the atom labeling. Hydrogen atoms were omitted for clarity. 
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Figure 5.13: Twist angle (θ) and chelate ring fold angles (α) of 2. 
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The cyclic and square wave voltammograms of 2 (Figure 5.14) displays two redox 

processes, A and B as well as a slight shoulder at -0.900 V. The electrochemical data for 

the two processes are summarized in Table 5.3. 

 

 

Figure 5.14: Cyclic voltammogram (red line) of 2 in CH2Cl2 at a scan rate of 100 mV/s 

and square-wave voltammogram (blue line). 

 

Table 5.3: Electrochemical data (potential in V, current in μA) of 2, scan rate 100 mV/s. 

Process Epc ic Epa ia E1/2 ia/ic ΔEp Assignment 

A -1.300 40.54 - - - - - sbsq
-
/tdt

2-
 

B 0.103 3.88 0.181 5.30 0.142 1.37 0.078 Re(III)/Re(IV) 

 

The peak-to-peak separations for process B was found to be 0.078 V with the ratio 

between the anodic and cathodic peak currents less than one, indicating that the process is 

quasi-reversible. A reductive wave (A), due to an intraligand redox process (sbsq
-
/tdt

2-
) 
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occurs at -1.300 V. The quasi-reversible redox wave at 0.142 V (B) is assigned to the 

Re(III)/Re(IV) redox couple. These processes occur as follows: 

 

[Re
IV

(sbsq)3]
+
                            [Re

III
(sbsq)3]

0
                          [Re

III
(sbsq)2(tdt)]

-
 

 

Cyclic voltammograms of 2 were generated at different scan rates ranging from 50-500 

mV/s. The E1/2 values remain constant with increasing scan rate. A plot of peak current 

(i) against the square-root of the scan rate (ν
1/2

) for each of the processes produced linear 

curves (Figure 5.15). This dependence of the peak currents on the square-root of the scan 

rate suggests that processes A and B are diffusion controlled.  

 

 

Figure 5.15: Plots of current (i) vs. the square root of the scan rate (v
1/2

) for the different 

processes. 
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5.3.3  Synthesis and characterization of [Re(obsq)3].OPPh3 (3) 

 

The compound [Re(obsq)3].OPPh3 (3) was formed by the reaction of cis-[ReO2I(PPh3)2] 

with 2-hydroxybenzenethiol (H2otp) in air. Similar to complexes 1 and 2, the metal in 3 

has been reduced to the +III state by PPh3. The oxidation state is verified by the magnetic 

moment of 1.70 BM. The spectroscopic and X-ray crystallographic data indicates that the 

three chelates are equivalent, implying that the charge on the ligands must be 

monoanionic.  This conclusion would therefore mean that the ligands can only be present 

in the complex in the benzosemiquinonato (1-) π-radical form obsq
-
. 

 

2ReO2I(PPh3)2  +  6H2otp  +  
3
/2O2               2[Re(obsq)3].OPPh3  +  2PPh3  +  5H2O  +  2HI 

 

Complex 3 is soluble in methanol and dichloromethane, producing intense green 

solutions. The complex is stable for weeks in solution and for months in the solid state. 

The low conductivity value (ΛM = 16 ohm
-1

cm
2
mol

-1
) indicates that it is a non-electrolyte 

in methanol. 

 

The 
1
H NMR spectrum of 3 is shown in Figure 5.16. The signals of the 15 protons of the 

triphenylphosphine oxide appear as two multiplets in the 7.72-7.95 ppm region. In 

addition, there are four other three-proton signals in the aromatic region: two doublets at 

7.30 and 7.55 ppm and two triplets at 6.75 and 6.87 ppm. These signals are ascribed to 

the 12 aromatic protons of the phenyl rings of the three coordinated ligands, implying 

that the corresponding protons on the three aromatic rings are magnetically equivalent. 

 

The infra-red spectrum of 3 (Figure 5.17) contains medium intensity peaks at 307 and 

458 cm
-1

 due to the ν(Re-S) and ν(Re-O) respectively. The P=O and P-C stretches occur 

at 1114 and 741 cm
-1

 respectively. An intra-ligand transition (π → π*) of the coordinated 

ligand is observed at 316 nm on the UV-Vis spectrum of 3 (Figure 5.18), and is at a lower 

energy compared to the free 2-hydroxybenzenethiol ligand (295 nm). The band at 386 nm 

is assigned to a ligand-to-metal charge transition and d-d transitions occur at 614 and 748 

nm. 
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Figure 5.16: 
1
H NMR spectrum of the aromatic region for 3. 

 

 

Figure 5.17: IR spectrum of complex 3. 

 

30 

40 

50 

60 

70 

80 

90 

400 600 800 1000 1200 1400 1600 

%
 T

ra
n
sm

it
ta

n
ce

 

Wavenumber (cm-1) 



 

Chapter 5  Bidentate Benzenethiol Derivatives 

 

Nelson Mandela Metropolitan University                                                                                             146 
 

 
Figure 5.18: UV-Vis spectra of complex 3 and 2-hydroxybenzenethiol. 

 

The crystal structure of [Re(obsq)3].OPPh3 (3) was determined by X-ray crystallography. 

The rhenium resides in the center of a distorted trigonal prism (Figure 5.19). The twist 

angle (θ = 24.24˚) is similar to that of complex 2 and indicates that the geometry is 

between trigonal prismatic and octahedral (Figure 5.20). The fold angles are small with 

an average value of 2.44˚. 

 

The geometric parameters of the three chelates show that they are equivalent. The bite 

angles of the ligands are nearly identical [S(11)-Re-O(12) = 80.52(6)˚, S(21)-Re-O(22) = 

80.96(7)˚, S(31)-Re-O(32) = 80.37(7)˚]. The corresponding Re-S and corresponding Re-

O bond lengths are similar, with average lengths of 2.3076(9) Å and 1.996(2) Å 

respectively. The C-S and C-O bond lengths [average of 1.751(4) Å and 1.339(4) Å 

respectively] are longer than previously found for H2otp in the benzosemiquinonato 

radical form obsq
-
, with average C-S and C-O distances of ~1.72 Å and ~1.30 Å 

respectively [2].  These results therefore intimate that the C-X bond lengths cannot solely 

be used as an indicator of the oxidation level of these ligands. 
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Figure 5.19: An ORTEP view of 3 showing 50% probability displacement ellipsoids and 

the atom labeling. Hydrogen atoms and the methanol solvent of crystallization are 

omitted for clarity. 
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Figure 5.20: Twist angle (θ) and chelate ring fold angles (α) of 3. 

θ = 24.24 ˚ 
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The cyclic voltammogram (CV) and the square-wave (SW) voltammogram of complex 3 

are shown in Figure 5.21. The CV displays two redox couples A and B and the 

electrochemical data for the two processes are summarized in Table 5.4. The SW 

voltammogram confirms that only these two processes occurs in the potential region 

scanned (-1.500 to 0.400 V). 

 

For processes A and B, the peak-to-peak separation was found to be 0.101 and 0.100 V 

respectively, suggesting that they are one electron quasi-reversible processes. The peak 

current ratios for the two processes A and B are 0.67 and 1.31 respectively, further 

indicating quasi-reversibility. The quasi-reversible wave (A) at the more negative 

potential value of -1.280 V corresponds to the redox processes occurring within one of 

the ligands, obsq
-
/otp

2-
 (L

•
/L). The quasi-reversible redox wave (B) occurring at 0.126 V 

is assigned to the Re(III)/Re(IV) couple. The two redox process observed for complex 3 

are described by the following equation: 

 

[Re
IV

(obsq)3]
+
                            [Re

III
(obsq)3]

0
                          [Re

III
(obsq)2(otp)]

-
        

 

The CV behaviour of 3 was determined at various scan rates (Figure 5.22). The E1/2 

values remains constant with increasing scan rate. The dependence of the currents on the 

square-root of the scan rate (50-500 mV/s) for the redox processes (shown in Figure 5.23) 

suggests that all the processes are diffusion controlled.  

 

Table 5.4: Electrochemical data (potential in V, current in μA) of 3, scan rate 150 mV/s. 

Process Epc ic Epa ia E1/2 ia/ic ΔEp Assignment 

A -1.330 24.80 -1.229 16.61 -1.280 0.67 0.101 obsq
-
/otp

2-
 

B 0.076 20.72 0.176 27.04 0.126 1.31 0.100 Re(III)/Re(IV) 

 

+e-

-e-

+e-

-e-
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Figure 5.21: Cyclic voltammogram (red line) of 3 in CH2Cl2 at a scan rate of 150 mV/s 

and square-wave voltammogram (blue line). 

 

 

Figure 5.22: Cyclic voltammograms of 3 at varying scan rates (50-500 mV). The arrow 

indicates increasing scan rate. 
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Figure 5.23: Plots of current (i) vs. the square root of the scan rate (v
1/2

) for the different 

processes. 

 

The E1/2 values for the Re(III)/Re(IV) redox couple of the three complexes are 

summarized in Table 5.5. It can be seen that the E1/2 value for the Re(III)/Re(IV) redox 

couple of complex 1 is smaller positive compared to complexes 2 and 3. This indicates 

that 1 undergoes oxidation more readily, which is expected since the nitrogen atoms on 

the ibsq
-
 ligands has a more electron donating effect in comparison to that of the sulfur 

and oxygen atoms of the sbsq
-
 and obsq

-
 ligands of complexes 2 and 3 respectively. 

 

Table 5.5: Comparison of the Re(III)/Re(IV) redox couple of 1, 2 and 3. 

Complex Donor Atoms E1/2 (V) 

1 S,N 0.022 

2 S,S 0.142 

3 S,O 0.126 
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Table 5.6: Crystal and structure refinement data for 1. 

Chemical formula C18H16N3S3Re.C18H15OP.CH3OH 

Formula weight 867.07   

Crystal system Monoclinic 

Space group C2/c 

a (Å) 22.181(5) 

b (Å) 14.617(5) 

c (Å) 24.452(5) 

β (˚) 115.620(5) 

Volume (Å
3
) 7148(3) 

Z 8 

Density (Calcd.) (gcm
-3

) 1.611 

Absorption coefficient (mm
-1

) 3.657 

F (000) 3456 

θ range 1.9-28.3   

Index ranges   h -29/27 

                       k -19/19 

                       l -32/32 

Reflections measured 33827 

Independent/observed reflections 8902/7717 

Data/parameters 8902/442 

Goodness-of-fit on F
2 

1.01 

Final R indices [I > 2 σ(I)] 0.0234 

(wR2 = 0.0540) 

Largest diff. peak/hole (eÅ
-3

) 1.90/-1.22 

 

 

 

 

 

 



 

Chapter 5  Bidentate Benzenethiol Derivatives 

 

Nelson Mandela Metropolitan University                                                                                             154 
 

Table 5.7: Crystal and structure refinement data for 2. 

Chemical formula C18H12ReS6.C18H15OP   

Formula weight 885.18   

Crystal system Monoclinic 

Space group P21/c 

a (Å) 13.6500(3) 

b (Å) 12.0640(3)    

c (Å) 24.6300(5)   

β (˚) 122.050(1) 

Volume (Å
3
) 3437.7(1)   

Z 4 

Density (Calcd.) (gcm
-3

) 1.710   

Absorption coefficient (mm
-1

) 3.975   

F (000) 1748 

θ range 1.8-28.0 

Index ranges   h -17/17 

                       k -15/12 

                       l -32/32 

Reflections measured 32604 

Independent/observed reflections 8223/6006 

Data/parameters 8223/406   

Goodness-of-fit on F
2 

1.01 

Final R indices [I > 2 σ(I)] 0.0399  

(wR2 = 0.0842) 

Largest diff. peak/hole (eÅ
-3

) 2.72/1.29 
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Table 5.8: Crystal and structure refinement data for 3. 

Chemical formula C18H12O3S3Re.C18H15OP.CH3OH 

Formula weight 869.01 

Crystal system Monoclinic 

Space group P21/c 

a (Å) 9.9165(2) 

b (Å) 12.8811(2) 

c (Å) 27.3005(5) 

β (˚) 98.6913(6) 

Volume (Å
3
) 3447.2(1) 

Z 4 

Density (Calcd.) (gcm
-3

) 1.674 

Absorption coefficient (mm
-1

) 3.796 

F (000) 1724 

θ range 2.6-28.3 

Index ranges   h -11/13 

                       k -17/15 

                       l -36/34 

Reflections measured 33936 

Independent/observed reflections 8554/6750 

Data/parameters 8554/414 

Goodness-of-fit on F
2 

0.96 

Final R indices [I > 2 σ(I)] 0.0295 

(wR2 = 0.0692) 

Largest diff. peak/hole (eÅ
-3

) 1.18/-0.93 
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Table 5.9: Selected bond lengths (Å) and angles (˚) for 1. 

Bond lengths 

Re(1)-S(1)        2.315(1)       N(1)-C(12)         1.369(4)      

Re(1)-S(2)        2.406(1)       N(2)-C(22)         1.447(4)      

Re(1)-S(3)        2.313(1)       N(3)-C(32)         1.372(4)      

Re(1)-N(1)          1.975(2)       S(1)-C(11)         1.738(3)      

Re(1)-N(2)                2.158(3)       S(2)-C(21)         1.762(4)      

Re(1)-N(3)          1.973(3)       S(3)-C(31)         1.732(3)      

Bond angles 

S(1)-Re(1)-N(1)          79.57(8)     S(1)-Re(1)-S(3)          84.14(3)    

S(2)-Re(1)-N(2)          76.80(7)     N(1)-Re(1)-N(2)         80.6(1)    

S(3) -Re(1)-N(3)          78.66(7)     N(1) -Re(1)-N(3)         87.0(1)    

S(1)-Re(1)-S(2)          86.79(3)     S(2)-Re(1)-N(1)         133.64(7)    
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Table 5.10: Selected bond lengths (Å) and angles (˚) for 2. 

Bond lengths 

Re(1)-S(1)         2.334(2)       S(1)-C(11)        1.745(6)      

Re(1)-S(2)         2.340(2)       S(2)-C(12)        1.742(6)      

Re(1)-S(3)         2.343(2)       S(3)-C(21)         1.750(6)      

Re(1)-S(4)         2.337(2)       S(4)-C(22)         1.736(6)      

Re(1)-S(5)         2.339(1)       S(5)-C(31)        1.743(5)      

Re(1)-S(6)         2.357(2)       S(6)-C(32)        1.732(5)      

Bond angles 

S(1)-Re(1)-S(2)         83.41(5)  S(2)-Re(1)-S(3)         119.63(5) 

S(5)-Re(1)-S(6)         82.43(5)  S(2)-Re(1)-S(6)         80.27(5) 

S(3)-Re(1)-S(4)         82.87(5)  S(3)-Re(1)-S(6)         155.18(6) 

S(1)-Re(1)-S(4)         152.53(5)  S(4)-Re(1)-S(5)         114.45(5) 

S(1)-Re(1)-S(5)        86.35(5)     S(2)-Re(1)-S(4)        84.30(5) 
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Table 5.11: Selected bond lengths (Å) and angles (˚) for 3. 

Bond lengths 

Re(1)-S(11)        2.3018(8)       S(11)-C11)         1.758(3)      

Re(1)-S(21)        2.3048(9)       S(21)-C21)         1.747(4)      

Re(1)-S(31)       2.3162(8)       S(31)-C31)         1.748(3)      

Re(1)-O(12)         1.989(2)       O(12)-C12)         1.343(4)      

Re(1)-O(22)         2.001(2)       O(22)-C22)         1.337(4)      

Re(1)-O(32)         1.999(2)       O(32)-C32)        1.338(4)      

Bond angles 

S(11)-Re(1)-O(12)         80.52(6)     S(11)-Re(1)-S(31)         86.90(3)    

S(11)-Re(1)-O(22)       118.43(6)     O(12)-Re(1)-O(22)         81.52(9)    

S(11)-Re(1)-O(32)        152.02(7)     O(12)-Re(1)-O(32)         83.02(9)    

S(11)-Re(1)-S(21)         88.66(3)     O(22)-Re(1)-O(32)         80.97(9)    

S(21)-Re(1)-O(22) 80.96(7)  S(31)-Re(1)-O(32) 80.37(7) 
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Chapter 6 

 

Coordination of Bidentate Heterocyclic 

Derivatives to the [ReO]
3+

 core 

 
6.1 Introduction 

 

The chemistry of rhenium is of great interest due to its diverse applications as 

radiopharmaceuticals [1-4] and as oxidation catalysts [5-8]. Of significant research 

interest is the +V oxidation state, which is readily accessible from the reduction of 

[ReO4]
-
. Rhenium(V) complexes are however unstable and readily undergo reduction or 

are easily converted back to perrhenate by in vivo oxidation. Therefore, of particular 

research interest is the coordination of aromatic ligands to rhenium which can provide 

stability, a variety of donor atoms and multidenticity to the metal centre [9].  

 

Oxazoline and benzoxazole derivatives have proven to be versatile ligands in the 

coordination chemistry of transition metals [10]. Most of the studies based on this class 

of heterocyclic compounds incorporated a combination of soft and hard donor groups and 

were able to coordinate as bidentate chelates to the metal centre. Oxorhenium(V) 

complexes containing bidentate heterocyclic ligands have been well researched. For 

example, the reaction of the bidentate heterocyclic ligands 2-(2’-hydroxyphenyl)-2-

oxazoline (Hoz) and 2-(2’-hydroxyphenyl)-2-benzoxazole (Hhbo) with (n-

Bu4N)[ReOBr4] afforded [ReOBr(oz)2].H2O and [ReOBr(hbo)2] respectively [11]. In 

both complexes the two bidentate ligands form six-membered chelate rings, with one 

ligand coordinated in the equatorial plane relative to the axial Re=O group (Figure 6.1). 

The second ligand has a phenolate oxygen atom coordinated trans to the Re=O bond with 

the oxazole nitrogen coordinated equatorially relative to the Re=O moiety. It has also 

been shown that the benzoxazole derivative 2-(2-pyridyl)benzoxazole (pbb) reacts with 

trans-[ReOCl3(PPh3)2] in benzene to produce [ReOCl3(pbb)] [12]. This ligand 
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coordinates as a neutral bidentate chelator, with the pyridine nitrogen atom coordinated 

trans to the Re=O moiety (Figure 6.1). These bidentate benzoxazole ligands incorporated 

suitable donor atoms for coordination to rhenium, thereby stabilizing the oxorhenium(V) 

core. 
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Br
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N
O

O

NO
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Br
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N
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NO

H20
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Cl
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(a) (b)

(c)

Figure 6.1: Coordination modes of (a) [ReOBr(oz)2].H2O, (b) [ReOBr(hbo)2] and  

(c) [ReOCl3(ppb)]. 

 

This chapter highlights the use of bidentate benzoxazole ligands as chelating agents to the 

rhenium(V) core (Scheme 6.1). The reaction of the mixed crystal [3-(benzoxazol-2-

yl)pyridin-2-ol:2-hydroxy-N-(2-hydroxyphenyl)pyridine-3-carboxamide] (Hbop.Hppc) 
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with trans-[ReOCl3(PPh3)2] in methanol led to the rhenium(III) complex, 

[ReCl2(bop)(PPh3)2] (1). When 5-amino-2-(benzoxazol-2-yl)phenol (Habo) was reacted 

with cis-[ReO2I(PPh3)2] the complex salt [ReO(abo)I(PPh3)2]ReO4 (2) formed. In 1 and 2 

the ligands coordinated as monoanionic N,O chelates through an oxazole nitrogen atom 

and a phenolate oxygen atom. 

 

N

O

X

HO

Y

trans-[ReOCl3(PPh3)2] cis-[ReO2I(PPh3)2]

X = N, Y = H   (Hbop) X = C, Y = NH2   (Habo)

[ReCl2(bop)(PPh3)2] [ReO(abo)I(PPh3)2]ReO4

 

Scheme 6.1: Reaction pathway for the synthesis of [ReCl2(bop)(PPh3)2] (1) and 

[ReO(abo)I(PPh3)2]ReO4 (2). 

 

 

6.2 Experimental 

 

6.2.1 Synthesis of [3-(benzoxazol-2-yl)pyridin-2-ol:2-hydroxy-N-(2-

hydroxyphenyl)pyridine-3-carboxamide] (Hbop.Hppc) 

 

A mixture of 2.00 g of 2-hydroxy-nicotinic acid (14.4 mmol) and 1.57 g of 2-

aminophenol  (14.4 mmol) was added to hot polyphosphoric acid (50 cm
3
). The stirred 

solution was heated to 220 ˚C for four hours. The reaction solution was cooled to room 

temperature and poured into a 10% aqueous potassium carbonate solution. The 

precipitate which formed was filtered and dried under vacuum. The recrystallization from 

a 1:1 (v/v) ethanol/water mixture produced beige crystals. Yield = 96 %, m.p. = 232 ˚C. 
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Anal. Calcd. (%) for C12H10N2O3.C12H8N2O2: C, 65.2; H, 4.1; N, 12.7. Found: C, 66.4; H, 

3.7; N, 12.9. IR (νmax/cm
-1

): ν(O-H) 3097, 3044; ν(N-H) 2993;  ν(C=N) 1673; ν(C=O) 

1655. 
1
H NMR (295K, ppm): 12.26 (s, br, 2H, 2 x OH); 8.36 (d, 2H, H(1), H(4)); 7.68-

7.84 (m, 6H, H(5), H(6), H(7), H(12), H(13), H(14)); 7.35-7.47 (m, 4H, H(8), H(9), 

H(10), H(11)); 6.44 (t, 2H, H(2), H(3)); 3.35 (s, br, 1H, OH). UV-Vis (DMF, λmax (ε, M
-

1
cm

-1
)): 359 (16127). 
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Figure 6.2: Structure and numbering scheme of [Hbop.Hppc]. 

 

 

6.2.2   Synthesis of 5-amino-2-(benzoxazol-2-yl)phenol (Habo) 

 

A mixture of 2.00 g (13.0 mmol) of 4-amino-2-hydroxybenzoic acid and 1.43 g (13.1 

mmol) of 2-aminophenol was added to 50 cm
3
 of polyphosphoric acid. The solution was 

stirred at 200˚C for five hours, after which it was allowed to cool to room temperature. A 

brown precipitate formed when the solution was added to a 10 % potassium carbonate 

solution. The precipitate was filtered, washed with water and dried under vacuum. Yield 

= 78 %, m.p. = 182 ˚C. Anal. Calcd. (%) for C13H10N2O2: C, 69.0; H, 4.5; N, 12.4. 

Found: C, 70.2; H, 4.1; N, 12.8. IR (νmax/cm
-1

): ν(N-H) 3448; ν(O-H) 3358; ν(C=N) 1603. 

1
H NMR (295K, ppm): 7.73 (d, 1H, H(4)); 7.67 (d, 1H, H(1)); 7.51 (s, br, 1H, OH); 7.26-

7.42 (m, 3H, H(2), H(3), H(5)); 6.31 (d, 1H, H(6)); 6.21 (s, 1H, H(7)); 3.95 (s, br, 2H, 

NH2). UV-Vis (CH3OH, λmax (ε, M
-1

cm
-1

)): 335 (20880). 
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Figure 6.3: Structure and numbering scheme of Habo. 

 

 

Figure 6.4: 
1
H NMR spectrum of the aromatic region of Habo. 

 

 

6.2.3  Synthesis of [ReCl2(bop)(PPh3)2] (1) 

 

Trans-[ReOCl3(PPh3)2] (105 mg, 120 μmol) and [Hbop.Hppc] (100 mg, 226 μmol) were 

added to methanol (20 cm
3
), and the mixture was heated under reflux overnight. The 

resultant brown solution was allowed to cool to room temperature, and filtered. Brown 

crystals were grown by the slow evaporation of the mother liquor at room temperature. 

Yield = 56 %, m.p. = 163 ˚C. Anal. Calcd. (%) for C48H37Cl2N2O2P2Re.3H2O: C, 55.1; H, 

4.1; N, 2.7. Found: C, 55.8; H, 4.3; N, 3.0. IR (νmax/cm
-1

): ν(C=N) 1600; ν(Re-N) 500; 

ν(Re-O) 424; ν(Re-Cl) 324. 
1
H NMR (295K, ppm): 8.34 (t, 1H, C(24)H); 8.17 (t, 2H, 

C(14)H, C(15)H); 7.54-7.66 (m, 30H, 2 x PPh3); 7.37-7.46 (m, 4H, C(13)H, C(16)H, 

C(23)H, C(25)H). Conductivity (10
-3 

M, DMF): 37 ohm
-1

cm
2
mol

-1
. UV-Vis (DMF, λmax 

(ε, M
-1

cm
-1

)): 343 (22500), 454 (5300), 569 (1500).  
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6.2.4  Synthesis of [ReO(abo)I(PPh3)2]ReO4 (2) 

 

A mass of 56 mg (248 μmol) of Habo was added to 104 mg (120 μmol) of cis-

[ReO2I(PPh3)2] in 20 cm
3
 of methanol. The mixture was heated under reflux for three 

hours. The resultant solution was left to cool to room temperature and filtered. The 

mother liquor was left to evaporate slowly at room temperature producing brown crystals 

suitable for XRD analysis. Yield = 54 %, m.p. = 69 ˚C. Anal. Calcd. (%) for 

C49H39IN2O3P2Re.CH3OH.ReO4: C, 49.8; H, 3.6; N, 2.3. Found: C, 48.8; H, 3.8; N, 1.8. 

IR (νmax/cm
-1

): ν(C=N) 1603; ν(Re=O) 959; ν(Re-N) 507; ν(Re-O) 486; ν(Re-I) 288. 
1
H 

NMR (295K, ppm): 7.53-7.68 (m, 30H, 2 x PPh3); 7.42-7.52 (m, 2H, C(13)H, C(23)H); 

7.35-7.41 (m, 5H, C(14)H, C(15)H, C(16)H, C(25)H, C(26)H); 3.82 (s, br, 2H, NH2). 

Conductivity (10
-3

 M, CH3OH): 93 ohm
-1

cm
2
mol

-1
. UV-Vis (CH3OH, λmax (ε, M

-1
cm

-1
)): 

336 (38970). 

 

 

6.2.5 X-ray Crystallography 

 

X-ray diffraction studies of [Hbop.Hppc], 1.3H2O and 2.CH3OH.2H2O were performed at 

200 K using a Bruker Kappa Apex II diffractometer with graphite monochromated Mo 

Kα radiation (λ = 0.71073 Å). APEX-II was used for data collection and SAINT for cell 

refinement and data reduction [13]. The structures were solved by direct methods using 

SHELXS-97 [14] or SIR97 [15], and refined by least-squares procedures using SHELXL-

97 [14] with SHELXLE [16] as a graphical interface. All non-hydrogen atoms were 

refined anisotropically, and the hydrogen atoms were calculated in idealised geometrical 

positions. Data were corrected for absorption effects by the numerical method using 

SADABS [13]. Crystal and structure refinement data are given in Tables 6.4, 6.5 and 6.6 

for [Hbop.Hppc], 1.3H2O and 2.CH3OH.2H2O respectively, with selected bond distances 

and angles in Tables 6.7, 6.8 and 6.9. 
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6.3 Results and Discussion 

 

6.3.1  Synthesis and characterization of [3-(benzoxazol-2-yl)pyridin-2-ol:2-

hydroxy-N-(2-hydroxyphenyl)pyridine-3-carboxamide] (Hbop.Hppc) 

 

In an attempt to isolate 3-(benzoxazole-2-yl)pyridin-2-ol (Hbop), equimolar amounts of 

2-hydroxy-nicotinic acid and 2-aminophenol was reacted in hot polyphosphoric acid 

(PPA). The X-ray crystallographic data indicated that a mixed crystal formed (Scheme 

6.2) which contains the benzoxazole molecule, 3-(benzoxazol-2-yl)pyridin-2-ol (Hbop) 

and the amide molecule, 2-hydroxy-N-(2-hydroxyphenyl)pyridine-3-carboxamide 

(Hppc). The compound is insoluble in most organic solvents, except DMF and 

dimethylsulfoxide.  

 

NH2

OH

+
NHO

O

HO

O

N

N

HO

NH N

OH

O

HO

PPA

(2) (2)

- 3H20

 

Scheme 6.2: Reaction pathway for the formation of [Hbop.Hppc]. 

 

The 
1
H NMR spectrum (Figure 6.5) displays the signals of the phenol protons as two 

broad singlets at 12.26 and 3.35 ppm. Four signals appear in the aromatic region in the 

form of a doublet (at 8.36 ppm), multiplet (between 7.68-7.84 ppm), multiplet (between 

7.35-7.47 ppm) and triplet (at 6.44 ppm) integrating for two, six, four and two protons 
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respectively. The IR spectrum (Figure 6.6) of [Hbop.Hppc] displays two peaks at 1673 

and 1655 cm
-1

 assigned to the imine [ν(C=N)] and ketone [ν(C=O)] stretching 

frequencies respectively. The peaks at 3044 and 3097 cm
-1

 is ascribed to the phenol [ν(O-

H)] stretching vibrations, with ν(N-H) at 2993 cm
-1

. 

 

 

Figure 6.5: 
1
H NMR spectrum of the aromatic region for [Hbop.Hppc]. 

 

 

Figure 6.6: IR spectrum of [Hbop.Hppc]. 
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The X-ray structure determination revealed that the asymmetric unit of the mixed crystal 

contains the 3-(benzoxazol-2-yl)pyridin-2-ol molecule (Hbop) and the 2-hydroxy-N-(2-

hydroxyphenyl)pyridine-3-carboxamide molecule (Hppc) (Figure 6.7). The pyridinol and 

oxazole rings of Hbop are practically co-planar, making a dihedral angle of 10.12˚ with 

each other. The C(1)-N(1) bond distance [1.2875(1) Å] is close to that of imine double 

bonds found in benzoxazoles [17, 18]. The C-C bond lengths in the phenyl ring C(11)-

C(16) [average = 1.3849(1) Å] shows that the π electron density is delocalized in the 

aromatic system. 

 

 

Figure 6.7: ORTEP view of [Hbop.Hppc] showing 50% probability displacement 

ellipsoids and the atom labeling. 

 

The Hppc molecule is essentially planar, with the least-squares planes defined by the ring 

atoms of the pyridinol moiety and the ring atoms of the phenol group enclosing an angle 

of 17.04˚. The N(3)-C(2) bond distance [1.3387(1) Å] is indicative of a C-N single bond 

[19], revealing that the nitrogen atom N(3) is in its protonated form. The O(4)-C(31) and 

O(5)-C(42) bond distances of 1.2473(1) Å and 1.3578(1) Å respectively are typical of C-



 

Chapter 6  Bidentate Heterocyclic Derivatives  

Nelson Mandela Metropolitan University                                                                                             168 
 

OH bonds [18, 20]. However, the C(2)-O(3) bond is shorter [1.2321(1) Å] and indicative 

of a double bond. 

 

The hydrogen of the amide nitrogen atom [N(3)H(3)] of Hppc is involved in two 

intramolecular hydrogen-bonds with the pyridinol oxygen [O(4)] and phenol oxygen 

[O(5)] (Figure 6.8). The Hppc molecule is connected through intermolecular hydrogen-

bonds to the Hbop molecule involving the phenol and pyridinol hydrogens [O(2)H(2), 

O(4)H(4) and O(5)H(5)] (Table 6.1). 

 

 

Figure 6.8: Packing diagram of [Hbop.Hppc], showing the intramolecular hydrogen-

bonds. 

 

Table 6.1: Hydrogen-bond distances (Å) and angles (˚) in [Hbop.Hppc]. 

D-H•••A D-H H•••A D•••A D-H•••A 

O(2)H(2)•••N(4) 0.8400      2.0500   2.8353(1)      156.00    

N(3)H(3)•••O(4) 0.7956 2.0091 2.6638(1)   139.38   

N(3)H(3)•••O(5) 0.7956 2.2069 2.6191(1)   112.72  

O(4)H(4)•••N(2) 0.8400      2.0300   2.8262(1)      157.00    

O(5)H(5)•••N(1) 0.8400      1.9300   2.7418(1)      163.00    
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6.3.2   Synthesis and characterization of [ReCl2(bop)(PPh3)2] (1) 

 

The mixed crystal [3-(benzoxazol-2-yl)pyridin-2-ol:2-hydroxy-N-(2-hydroxyphenyl) 

pyridine-3-carboxamide] (Hbop.Hppc) was reacted with trans-[ReOCl3(PPh3)2] in 

methanol. The X-ray crystallographic data indicates that the rhenium selectively 

coordinated to Hbop forming the rhenium(III) complex [ReCl2(bop)(PPh3)2] (1). The 

reduction of oxo-phosphine-rhenium(V) complexes to rhenium(III) is well known in the 

literature [21-24]. This is usually the result of a disproportionation reaction of the 

oxorhenium(V) complex to the rhenium(III) species and perrhenate [22, 23]. 

Alternatively, the change in oxidation state can come about by the reduction of the oxo 

species by dissociated triphenylphosphine to form OPPh3 [21]. In the formation of 1, no 

dissociation of PPh3 has occurred to produce free PPh3. The yield of complex 1 is also 

higher than 50%, indicating that it is not a product of a disproportionation reaction. The 

change in oxidation state is therefore the result of a complicated redox process which has 

occurred during the reaction. 

 

Prolonged heating was necessary for the product to form. Brown needles were obtained 

by the slow evaporation of the mother liquor. Complex 1 is soluble in various organic 

solvents like dichloromethane, DMF and acetone. The complex is a non-electrolyte in 

DMF (ΛM = 37 ohm
-1

cm
2
mol

-1
) and therefore neutral. It is stable for months in the solid 

state and for days in solution. 

 

A section of the aromatic region of the 
1
H NMR spectrum of 1 is shown in Figure 6.9. 

The signals of the protons of the bop moiety appear as a one-proton triplet (at 8.34 ppm), 

a two-proton triplet (at 8.17 ppm) and a four-proton multiplet (between 7.37-7.46 ppm). 

The multiplet in the 7.54-7.66 ppm region integrates for the thirty protons of the 

triphenylphosphine groups. The IR spectrum of 1 (Figure 6.10) shows the ν(C=N) of the 

benzoxazole group at 1600 cm
-1

 and is at a lower frequency compared to the free ligand 

(1673 cm
-1

). The medium intensity peaks at 424 and 500 cm
-1

 is ascribed to ν(Re-O) and 

ν(Re-N) respectively, and the medium intensity band at 324 cm
-1

 is attributed to ν(Re-Cl). 
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Figure 6.9: 
1
H NMR spectrum of 1 in the 8.0-8.5 ppm region.  

 

 

Figure 6.10: Overlay IR spectra of ligand [Hbop.Hppc] and 1. 
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The electronic spectrum of 1 (Figure 6.11) in DMF consists of an intense absorption at 

343 nm and two less intense bands at 454 and 569 nm. The intense band at 343 nm is 

ascribed to an intraligand transition of the coordinated ligand and is found at a higher 

energy relative to the free ligand (359 nm). The two low energy bands are ascribed to a 

ligand-to-metal charge transition (454 nm) and a d-d transition (569 nm). 

 

 

Figure 6.11: Overlay absorption spectra of ligand [Hbop.Hppc] and complex 1. 

 

The structure of 1 is shown in Figure 6.12. The rhenium(III) is six-coordinated and lies in 

a distorted octahedral geometry. The two phosphorus atoms are in trans axial positions 

with the basal plane defined by the two chloride atoms Cl(1) and Cl(2), the phenolate 

oxygen atom O(2) and the oxazole nitrogen N(1). Distortion from octahedral geometry is 

evident when observing the non-linear P(1)-Re-P(2) axis of 176.44(6)˚, with the trans 

angles N(1)-Re-Cl(1) = 168.5(1)˚ and O(2)-Re-Cl(2) = 177.6(1)˚ also deviating from 

linearity. 

 

0 

0.2 

0.4 

0.6 

0.8 

1 

300 350 400 450 500 550 600 650 

N
o
rm

al
iz

ed
 A

b
so

rb
an

ce
 

Wavelength (nm) 

Ligand 

Complex 1 

Ligand [Hbop.Hppc] 

Complex 1 



 

Chapter 6  Bidentate Heterocyclic Derivatives  

Nelson Mandela Metropolitan University                                                                                             172 
 

The rhenium is situated within the mean equatorial plane formed by ONCl2, with angles 

P(1)-Re-Cl(1) = 90.59(6)˚, P(1)-Re-Cl(2) = 89.56(6)˚, P(1)-Re-N(1) = 90.8(1)˚, and P(1)-

Re-O(2) = 89.9(1)˚ close to orthoganality. The ligand forms a six-membered chelate ring 

with a bite angle of O(2)-Re-N(1) = 85.8(2)˚. The pyridinolate and benzoxazole rings are 

almost coplanar forming a dihedral angle of 7.61˚. The bond angle C(1)-N(1)-C(12) = 

105.1(5)˚ is less than the ideal 120˚ angle for sp
2
 hybridized nitrogen atoms and is similar 

to the corresponding bond angle found in the free ligand [C(1)-N(1)-C(12) = 105.21(1)˚]. 

However, the bond angle Re-N(1)-C(1) = 122.5(4)˚ indicates that N(1) is an sp
2
 

hybridized nitrogen atom. 

 

 

Figure 6.12: ORTEP view of 1 showing 50% probability displacement ellipsoids and the 

atom labeling. Hydrogen atoms were omitted for clarity. 
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The Re-P bond lengths are similar [Re-P(1) = 2.482(2) Å and Re-P(2) = 2.492(2) Å] and 

fall within the range found for Re(III)-P bond distances [23, 25]. The two chlorides are in 

cis positions with Re-Cl bond lengths of 2.403(2) and 2.331(2) Å for Re-Cl(1) and Re-

Cl(2) respectively. The Re-O(2) bond distance [2.024(5) Å] is typical of rhenium(III)-

phenolate single bonds [26]. The Re-N(1) bond length of 2.152(5) Å is comparable to 

similar  bonds found in rhenium(III) complexes containing a coordinated benzoxazole 

nitrogen [27]. The structural data confirms that the rhenium is in the +III oxidation state 

with the bop chelate coordinated as a bidentate monoanionic chelate. Two intermolecular 

hydrogen-bonds exists in the molecule; C(23)H(23)•••O(1) and C(62)H(62)•••O(2) 

(Table 6.2). All other hydrogen-bonds in the molecule involve C-H bonds  

 

Table 6.2: Hydrogen-bond distances (Å) and angles (˚) in 1.  

D-H•••A D-H H•••A D•••A D-H•••A 

C(23)H(23)•••O(1) 0.9500      2.4100   2.738(9)      100.00    

C(62)H(62)•••O(2) 0.9500 2.3100 3.053(9)   134.00  

 

 

6.3.3   Synthesis and characterization of [ReO(abo)I(PPh3)2]ReO4 (2) 

 

The reaction of cis-[ReO2I(PPh3)2] with two molar equivalents of Habo in refluxing 

methanol gave the product [ReO(abo)I(PPh3)2]ReO4 (2). The ligand coordinates as a 

bidentate chelate through the phenolate oxygen and imine nitrogen. 

 

Compound 2 is diamagnetic and a 1:1 electrolyte in methanol. It is soluble in polar 

solvents and is stable for weeks in the solid state, and for days in solution.  

 

The infrared spectrum of 2 (Figure 6.13) is characterized by an intense peak at 959 cm
-1

 

due to the Re=O stretching frequency, and is within the range (890-1020 cm
-1

) found for 

this vibration [28]. The ν(C=N) of the coordinated abo ligand is observed at 1603 cm
-1
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and is at an identical position as the free ligand. The medium intensity peaks at 486 and 

507 cm
-1

 are assigned to the Re-O and Re-N stretches respectively.  

 

 

Figure 6.13: IR spectrum of 2. 

 

The 
1
H NMR spectrum (Figure 6.14) of 2 consists of three multiplets in the aromatic 

region. The multiplet in the 7.53-7.68 ppm region is ascribed to the thirty protons of the 

triphenylphosphine groups. The two multiplets in the 7.35-7.52 ppm region integrates for 

the seven protons of the aromatic rings of the abo chelate. The two-proton signal due to 

the amine protons appear as a broad singlet at 3.82 ppm. The UV-Vis spectrum of 2 

(Figure 6.15) displays a single intense absorption at 336 nm. This band is due to an 

intraligand transition occurring within the coordinated ligand. The free ligand Habo 

displays a similar absorption at 335 nm. For 2, no ligand-to-metal or d-d transitions were 

observed. 
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Figure 6.14: 
1
H NMR spectrum of the aromatic region for 2. 

 

 

Figure 6.15: Overlay absorption spectra of ligand Habo and compound 2. 
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The X-ray structure determination of 2 reveals that the rhenium atom lies at the centre of 

a distorted octahedron (Figure 6.16). The equatorial plane of the octahedron is formed by 

two phosphorus atoms in trans arrangement, an imino nitrogen atom N(1), and an iodide 

ion. The phenolate oxygen atom O(2) and the oxo group O(3) are in trans axial positions. 

Distortion from an ideal octahedral environment results in a non-linear O(2)-Re-O(3) axis 

of 168.6(3)˚ with the trans angles N(1)-Re-I(1) = 175.4(2)˚ and P(1)-Re-P(2) = 

170.89(7)˚, deviating considerably from linearity. 

 

 

Figure 6.16: ORTEP view of 2 showing 50% probability displacement ellipsoids and the 

atom labeling. Hydrogen atoms were omitted for clarity. 

 

The rhenium atom lies only slightly out of the mean equatorial plane by 0.015 Å towards 

P(2), with the angles P(2)-Re-I(1) = 91.04(5)˚, P(2)-Re-O(2) = 86.2(2)˚, P(2)-Re-N(1) = 

91.40(2)˚ and P(2)-Re-O(3) = 92.2(2)˚. The bite angle formed by the bop chelate [O(2)-

Re-N(1) = 81.6(2)˚] is smaller than the corresponding bite angle [85.8(2)˚] of the six-
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membered metallocycle  in complex 1. This difference in the bite angles of 1 and 2 are 

attributed to the presence of the doubly bonded oxo group and the bulky iodide ion 

coordinated to rhenium in 2. The aminophenol and benzoxazole rings of 2 do not lie in 

the same plane, and the least-squares planes defined by the ring atoms of these two 

moieties intersect at an angle of 14.38˚.  

 

The Re-P distances of Re-P(1) = 2.509(2) Å and Re-P(2) = 2.522(2) Å are similar to 

those found for oxorhenium(V) complexes in the literature [29]. The Re-N(1) bond 

length of 2.183(6) Å is slightly longer than the corresponding  Re-Noxazole distance in 1 

[Re-N(1) = 2.152(5) Å] due to the difference in oxidation state of the rhenium and the 

cationic nature of [ReO(abo)I(PPh3)2]
+
. The Re-O(3) bond length of  1.690(6) Å is 

typical of Re=O bond lengths found in octahedral monooxorhenium(V) complexes, 

which usually occurs in the 1.68-1.72 Å range [30, 31].  The Re-O(2) bond length of 

1.944(5) Å falls in the range [1.93-2.03 Å] observed for a phenolate oxygen coordinated 

trans to an oxo group in rhenium(V) complexes [30-32]. The structural information of 2 

indicates that the abo ligand acts as a bidentate monoanionic chelate. 

 

As with complex 1, the bond angle C(1)-N(1)-C(12) = 105.9˚ is smaller than expected for 

an sp
2
 hybridized nitrogen atom, but the bond angle Re-N(1)-C(1) = 125.4(2)˚ is close to 

120˚, suggesting that N(1) is an sp
2
 hybridized atom. The perrhenate counter-ion is 

involved in a series of intermolecular hydrogen-bonds (Table 6.3). The phenolate oxygen 

atom is involved in intramolecular hydrogen-bonding with two triphenylphosphine 

hydrogens H(46) and H(66). The oxygen atom O(3) forms intramolecular hydrogen-

bonds with the phenyl proton H(13) and the triphenylphosphine hydrogen H(56) (Figure 

6.17). 
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Table 6.3: Hydrogen-bond distances (Å) and angles (˚) in 2.  

D-H•••A D-H H•••A D•••A D-H•••A 

C(13)H(13)•••O(3) 0.9500      2.2800   2.922(11)      125.00    

C(46)H(46)•••O(2) 0.9500 2.4400 3.227(11)   140.00   

C(56)H(56)•••O(3) 0.9500 2.4200 3.099(11)   128.00  

C(66)H(66)•••O(2) 0.9500      2.4600   3.285(11)      145.00    

N(2)H(2A)•••O(51) 0.8800      2.1400   2.952(13)      153.00    

O(90)H(90)•••O(51) 0.8400      2.1400   2.828(17)      139.00    

C(66)H(66)•••O(2) 0.9500      2.4600   3.285(11)      145.00    

C(33)H(33)•••O(96) 0.9500      2.5200   3.408(17)      155.00    

C(35)H(35)•••O(50) 0.9500      2.5100   3.310(16)      141.00    

C(52)H(52)•••O(50) 0.9500      2.5900   3.151(14)      118.00    

C(65)H(65)•••O(52) 0.9500      2.4700   3.330(14)      151.00    

C(75)H(75)•••O(95) 0.9500      2.465700   3.35(2)      140.00    

C(85)H(85)•••O(52) 0.9500      2.5900   3.327(14)      135.00    
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Figure 6.17: A perspective view of 2 illustrating the intramolecular hydrogen-bonding 

and selected intermolecular hydrogen-bonds involving the perrhenate counter-ion. 
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Table 6.4: Crystal and structure refinement data for [Hbop.Hppc]. 

Chemical formula C12H10N2O3.C12H8N2O2  

Formula weight 442.42   

Crystal system Monoclinic 

Space group P21/c 

a (Å) 12.4695(5)    

b (Å) 10.7901(4)    

c (Å) 17.2574(5)   

β (˚) 117.153(2) 

Volume (Å
3
) 2066.0 (1)   

Z 4 

Density (Calcd.) (gcm
-3

) 1.422   

Absorption coefficient (mm
-1

) 0.102   

F (000) 920 

θ range 3.1-28.3   

Index ranges   h -16/16 

                       k -14/14 

                       l -22/23   

Reflections measured 19548 

Independent/observed reflections 5114/3633 

Data/parameters 5114/304   

Goodness-of-fit on F
2 

1.06   

Final R indices [I > 2 σ(I)] 0.0580  

(wR2 = 0.1712) 

Largest diff. peak/hole (eÅ
-3

) 0.54/-0.61 
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Table 6.5: Crystal and structure refinement data for 1. 

Chemical formula C48H37Cl2N2O2P2Re.3H2O   

Formula weight 1040.85   

Crystal system Monoclinic 

Space group P21/c 

a (Å) 16.400 (2) 

b (Å) 25.353(3) 

c (Å) 11.149(1) 

β (˚) 103.420(4) 

Volume (Å
3
) 4508.9(9) 

Z 4 

Density (Calcd.) (gcm
-3

) 1.533 

Absorption coefficient (mm
-1

) 2.932   

F (000) 2072 

θ range 3.1-28.4 

Index ranges   h -20/21 

                       k -33/33 

                       l -14/14   

Reflections measured 42839 

Independent/observed reflections 11213/6524 

Data/parameters 11213/541   

Goodness-of-fit on F
2 

0.95   

Final R indices [I > 2 σ(I)] 0.0526 

(wR2 = 0.1292) 

Largest diff. peak/hole (eÅ
-3

) 3.82/-2.53 
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Table 6.6: Crystal and structure refinement data for 2. 

Chemical formula C49H39IN2O7P2Re2.CH3OH.2H2O   

Formula weight 1393.13   

Crystal system Monoclinic 

Space group P21/c 

a (Å) 17.0430(6) 

b (Å) 15.4740(6) 

c (Å) 18.7360(7) 

β (˚) 99.198(2)  

Volume (Å
3
) 4877.6(3) 

Z 4 

Density (Calcd.) (gcm
-3

) 1.897   

Absorption coefficient (mm
-1

) 5.717   

F (000) 2680 

θ range 1.8-28.4 

Index ranges   h -22/22 

                       k -17/20 

                       l -25/24   

Reflections measured 44587 

Independent/observed reflections 12166/9789 

Data/parameters 12166/606  

Goodness-of-fit on F
2 

1.14 

Final R indices [I > 2 σ(I)] 0.0584 

(wR2 = 0.1258) 

Largest diff. peak/hole (eÅ
-3

) 3.52/-4.03 
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Table 6.7: Selected bond lengths (Å) and angles (˚) for [Hbop.Hppc]. 

Bond lengths 

O(3)-C(2) 1.2321(1)  N(3)-C(2) 1.3387(1)      

O(4)-C(31) 1.2473(1)       N(4)-C(35) 1.3498(1)      

O(5)-C(42) 1.3578(1)       N(4)-C(31) 1.3733(1)      

O(1)-C(1) 1.3747(1)       N(1)-C(1) 1.2875(1)      

O(1)-C(11) 1.3788(1)  N(1)-C(12) 1.3974(1) 

O(2)-C(21) 1.2352(1)       N(2)-C(25) 1.3496(1)      

N(3)-C(41) 1.4106(1)       N(2)-C(21) 1.3806(1)      

Bond angles 

O(2)-C(21)-C(22) 125.96(1)   O(3)-C(2)-N(3) 124.57(1)    

C(2)-N(3)-C(41) 128.08(1)     N(3)-C(2)-C(32) 115.26(1)    

C(31)-N(4)-C(35) 124.11(1)     O(4)-C(31)-C(32) 125.45(1)    

C(1)-N(1)-C(12) 105.21(1)     O(1)-C(1)-C(22) 116.27(1) 

C(21)-N(2)-C(25) 124.64(1)     N(1)-C(1)-C(22) 129.09(1) 
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Table 6.8: Selected bond lengths (Å) and angles (˚) for 1. 

 

 

 

 

 

 

 

 

Bond lengths 

Re(1)-Cl(1) 2.403(2)    N(1)-C(1) 1.345(9)       

Re(1)-Cl(2) 2.331(2)       N(2)-C(25) 1.34(1)      

Re(1)-P(1) 2.482(2)       N(2)-C(21) 1.365(9) 

Re(1)-P(2) 2.492(2)       N(1)-C(12) 1.408(9) 

Re(1)-O(2) 2.024(5)  C(1)-O(1) 1.347(8) 

Re(1)-N(1) 2.152(5)        C(11)-O(1) 1.388(8) 

O(2)-C(21) 1.294(8)   C(1)-C(22) 1.43(1) 

Bond angles 

Cl(1)-Re(1)-Cl(2) 94.92(6)  C(1)-N(1)-C(12) 105.1(5) 

P(1)-Re(1)-P(2) 176.44(6)  P(1)-Re-Cl(1) 90.59(6) 

O(2)-Re(1)-N(1) 85.8(2)  P(1)-Re-Cl(2) 89.56(6) 

N(1)-Re(1)-Cl(1) 168.5(1)     P(1)-Re-N(1) 90.8(1) 

O(2)-Re(1)-Cl(2) 177.6(1)  P(1)-Re-O(2) 89.9(1) 

Cl(1)-Re(1)-O(2) 82.8(1)  P(2)-Re-Cl(1) 90.75(6) 

Cl(2)-Re(1)-N(1) 96.5(1)     Re-N(1)-C(1) 122.5(4) 
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Table 6.9: Selected bond lengths (Å) and angles (˚) for 2. 

Bond lengths 

Re(1)-I(1) 2.7066(7)       O(2)-C(22) 1.348(9) 

Re(1)-P(1) 2.509(2)   N(1)-C(1) 1.32(1)      

Re(1)-P(2) 2.522(2)       C(24)-N(2) 1.35(1)      

Re(1)-O(2) 1.944(5)       N(1)-C(12) 1.32(1)      

Re(1)-O(3) 1.690(6)       C(1)-O(1) 1.350(9)      

Re(1)-N(1) 2.183(6)          C(21)-C(1) 1.43(1) 

Bond angles 

P(1)-Re(1)-P(2) 170.89(7)     I(1)-Re(1)-O(3) 96.7(2)    

I(1)-Re(1)-N(1) 175.4(2)     P(2)-Re-I(1) 91.04(5) 

O(2)-Re(1)-O(3) 168.6(3)     P(2)-Re-O(2) 86.2(2)    

O(2)-Re(1)-N(1) 81.6(2)     P(2)-Re-N(1) 91.4(2) 

O(3)-Re(1)-N(1) 87.1(3)     P(2)-Re-O(3) 92.2(2) 

I(1)-Re(1)-P(1) 88.46(5)     C(1)-N(1)-C(12) 105.9(6) 

P(1)-Re(1)-O(2) 84.7(2)  Re-N(1)-C(1) 125.4(5) 
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Chapter 7 

 

Rhenium Complexes with Multidentate 

Benzo(thiazole/imidazole) Ligands 

 
 

7.1 Introduction 

 

Interest in benzothiazoles (Figure 7.1(a)) has increased dramatically since the discovery 

that the compound 2-(4-aminophenyl)benzothiazole is active against a range of breast 

carcinoma cell lines in vitro [1]. It was found that manipulation of the substituents on the 

phenyl rings of the benzothiazole results in the alteration of the cytostatic activity against 

a series of ovarian, cervical, lung, colon and renal malignant cell lines [2]. Furthermore, it 

has been discovered that the compound 2-(4-methylaminophenyl)-6-

hydroxybenzothiazole (termed Pittsburg Compound B, Figure 7.2) has diagnostic 

applications for amyloid deposits in patients suffering from Alzheimer's disease [3]. 

Another analogue of heterocyclic compounds, benzimidazoles (Figure 7.1(b)), have 

received considerable interest due to their numerous biological applications and have 

shown to exhibit antifungal, antiviral, anticancer, antimitotic, anti-inflammatory and 

antiparasitic activities [4].  

 

N

S

N

H
N

(a) (b)

X X

X = chelating group

 

Figure 7.1: Structures of the (a) benzothiazole and the (b) benzimidazole moieties. 



 

Chapter 7  Multidentate Benzo(thiazole/imidazole) 

 

Nelson Mandela Metropolitan University                                                                                             189 
 

Derivatives of benzothiazoles and benzimidazoles are therefore an interesting class of 

ligands for transition metals, and especially for the synthesis of new rhenium and 

technetium radiopharmaceuticals for radiotherapy and tumour imaging, respectively. It 

was established that benzothiazole rhenium compounds may be useful for the in vivo 

diagnosis of Alzheimer's disease [5], while rhenium complexes containing benzimidazole 

derivatives exhibit optimal biological activities [6]. 

 

S

N

HO

N

H

11CH3  

Figure 7.2: Structure of 2-(4-methylaminophenyl)-6-hydroxybenzothiazole. 

 

The ligand system 2-(2-aminophenyl)benzothiazole (Habt) and 2-(2-hydroxyphenyl) 

benzothiazole (Hhpd) has previously been used as bidentate ligands in their reactions 

with [Re(CO)5Br] and trans-[ReOBr3(PPh3)2] respectively [7]. In the respective products 

fac-[Re(Habt)(CO)3Br] and cis-[ReOBr2(hpd)(PPh3)], Habt acts as a neutral bidentate 

NN-donor ligand, with hpd coordinated as a monoanionic NO-donor chelate. The 

reaction of a benzimidazole ligand, H2apb = 2-(2-aminophenyl)-1-benzimidazole, with 

trans-[ReO2(py)4]Cl led to the formation of the neutral oxorhenium(V) complex 

[ReO(Hapb)(apb)], containing two bidentate imido-coordinated benzimidazole ligands 

[8]. 

 

This chapter describes the synthesis of potentially tridentate benzothiazole and 

benzimidazole ligands (Scheme 7.1 and 7.2) and their coordination behaviour with the 

[ReO]
3+

 and fac-[Re(CO)3]
+
 moieties. The reaction of the potentially tridentate 

bis(benzimidazol-2-ylethyl)sulfide (btn) with trans-[ReOCl3(PPh3)2] led to the formation 

of the dioxo-bridged cationic complex salt, (μ-O)2[Re2O2(btn)2]I2 (1). From the reaction 

of the corresponding benzothiazole analogue, bis(benzothiazol-2-ylethyl)sulfide (bts) 

with [Re(CO)5Br], the neutral complex, fac-[Re(CO)3(bts)Br] (2) was obtained. The 

dimeric compound, (μ-dbt)2[Re(CO)3]2  (3) was isolated by reacting [Re(CO)5Cl] with 

Hdbt = 1,3-bis(benzothiazol-2-yl)thiourea. The neutral complex, (μ-mbt)2[Re(CO)3]2 (4) 
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was prepared by the heating of [Re(CO)5Cl] with a twofold molar excess of 1-

(benzothiazol-2-ylidene)-3-methylthiourea (Hmbt) in refluxing toluene. When Hmbt was 

reacted with trans-[ReOCl3(PPh3)2], the cationic complex salt, [ReCl2(bte)(PPh3)2]Cl (5) 

(bte = (benzothiazole-2-yl)-N-ethylidenemethanamine) was formed. The reaction of 2,2’-

(oxybis(methylene))bis(benzimidazole) (bmb) with [Re(CO)5Cl], resulted in the 

rhenium(I) complex salt (6), fac-[Re(CO)3(bmb)]
+
 with the tri-μ-

chlorohexacarbonyldirhenate, [Re2(CO)6Cl3]
-
 as the counter anion. A rhenium(I) 

complex, [Re(CO)3(btp)Cl] (7) was isolated from the reaction of the bidentate 2,9-

bis(benzothiazol-2-yl)-1,10-phenanthroline (btp) ligand and [Re(CO)5Cl]. 

 

NH2

X

(2)

S
O

HO

O

OH

X = NH2 X = SH

btn bts

bmb btp

NN

OO

O
OH

O

HO

O X = SHX = NH2

 

Scheme 7.1: Reaction pathway for the formation of bis(benzothiazole/benzimidazole) 

derivatives. 
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NH2CH3

Hmbt

mbc

 Scheme 7.2: Reaction pathway for the formation of 1,3-bis(benzothiazol-2-yl)thiourea 

(Hdbt) and 1-(benzothiazol-2-ylidene)-3-methylthiourea (Hmbt). 

 

 

7.2 Experimental 

 

7.2.1  Synthesis of bis(benzimidazol-2-ylethyl)sulfide (btn) 

 

A mixture of 0.84 g of 3,3'-thiodipropionic acid (4.72 mmol) and 1.00 g of 1,2-

diaminobenzene (9.25 mmol) was dissolved in 50 cm
3
 of 4 M HCl. The solution was 

heated under reflux for 24 hours, and then filtered while hot. The filtrate was placed in a 

cold room at 0 °C overnight, and the blue crystals which formed were collected by 

filtration and dried under vacuum. Yield = 82 %, m.p. = 137 °C. Anal. Calcd. (%) for 

C18H18N4S: C, 67.1; H, 5.6; N, 17.4; S, 9.9. Found: C, 65.9; H, 5.9; N, 17.0; S, 9.3. IR 

(νmax/cm
-1

): ν(N-H) 3403; ν(C=N) 1623. 
1
H NMR (295K, ppm): 7.81 (q, 4H, H(1), H(4), 

H(9), H(12)); 7.55 (q, 4H, H(2), H(3), H(10), H(11)); 3.57 (t, 4H, C(5)H2, C(8)H2); 3.29 

(t, 4H, C(6)H2, C(7)H2); 2.48 (s, 2H, NH(13), NH(14)). 
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Figure 7.3: Structure of btn. 

 

 

Figure 7.4: 
1
H NMR spectrum of btn in the 3.00-8.00 ppm region. 

 

 

7.2.2  Synthesis of bis(benzothiazol-2-ylethyl)sulfide (bts) 

 

A mixture of 1.00 g of 3,3'-thiodipropionic acid (5.62 mmol) and 1.40 g of 2-

aminothiophenol (11.20 mmol) was added to hot polyphosphoric acid. The solution was 

stirred at 220 °C for 4 hours. After cooling the reaction mixture to room temperature, it 

was poured into ice-cold water. A brown precipitate formed which was filtered and 

recrystallized from ethanol. Yield = 57 %, m.p. = 151 °C. Anal. Calcd. (%) for 

C18H16N2S3: C, 60.6; H, 4.5; N, 7.9; S, 27.0. Found: C, 62.1; H, 4.9; N, 7.2; S, 26.2. IR 

(νmax/cm
-1

): ν(C=N) 1517. 
1
H NMR (295K, ppm): 8.06 (d, 2H, H(1), H(9)); 7.96 (d, 2H, 

H(4), H(12)); 7.51 (t, 2H, H(2), H(10)); 7.42 (t, 2H, H(3), H(11)); 3.42 (t, 4H, C(5)H2, 

C(8)H2); 3.14 (t, 4H, C(6)H2, C(7)H2). 
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Figure 7.5: Structure of bts. 

 

 

7.2.3 Synthesis of methylbenzothiazol-2-ylidenecarbamodithioate (mbc) 

 

A mass of 3.00 g of 2-aminobenzothiazole (20 mmol) was dissolved in 50 cm
3
 of DMF in 

an ice-water bath. To this mixture an aqueous 20 M NaOH solution (3 cm
3
) was slowly 

added, and the solution was stirred for 30 min. Then, 2.4 cm
3
 of carbon disulfide was 

slowly added and the resultant yellow solution was stirred for a further 30 min. Aqueous 

20 M NaOH (3 cm
3
) was added dropwise and after 30 min, 2.84 g of methyl iodide (20 

mmol) was added to the solution which was stirred for a further two hours. The product 

was poured into 500 cm
3
 of water and neutralized with 2 M hydrochloric acid. A yellow 

precipitate formed and was filtered under vacuum, washed with water and recrystalized 

from ethanol to yield yellow crystals. Yield = 81 %, m.p. = 183 °C. Anal. Calcd. (%) for 

C9H8N2S3: C, 45.0; H, 3.4; N, 11.7; S, 40.0. Found: C, 44.0; H, 3.1; N, 11.2; S, 40.2. IR 

(νmax/cm
–1

): ν(N-H) 3172; ν(C=N) 1603; ν(C=S) 1210. 
1
H NMR (295K, ppm): 7.83 (d, 

1H, H(4)); 7.77 (d, 1H, H(1)); 7.55 (t, 1H, H(3)); 7.45 (t, 1H, H(2)); 5.38 (s, br, 1H, NH); 

2.75 (s, 3H, CH3). 
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Figure 7.6: Structure of mbc. 
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7.2.4  Synthesis of 1,3-bis(benzothiazol-2-yl)thiourea (Hdbt) 

 

A mixture of 1.00 g of 2-aminobenzothiazole (66 mmol) and 1.50 g of 

methylbenzothiazol-2-ylidenecarbamodithioate (63 mmol) was heated at 60 °C for three 

hours in a glass vial. The yellow solid was recrystallized from chloroform to produce a 

yellow powder. Yield = 48 %, m.p. = 255 °C. Anal. Calcd. (%) for C15H10N4O3: C, 52.6; 

H, 2.9; N, 16.4; S, 28.1. Found: C, 53.7; H, 2.8; N, 17.0; S, 27.2. IR (νmax/cm
–1

): ν(C=N) 

1644(s); ν(C=S) 1238. 
1
H NMR (295K, ppm): 7.94 (d, 2H, H(4), H(8)); 7.66 (d, 2H, 

H(1), H(5)); 7.45 (t, 2H, H(3), H(7)); 7.32 (t, 2H, H(2), H(6)); 3.38 (s, br, 2H, NH(9), 

NH(10)). UV-Vis (CH3CN, λmax (ε, M
-1

cm
-1

)): 325 (47700), 340 (39300), 359 (41100), 

375 (37100), 397sh (17400). 
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Figure 7.7: Structure of Hdbt. 

 

 

Figure 7.8: 
1
H NMR spectrum of Hdbt in the 6.90-8.25 ppm region. 
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7.2.5  Synthesis of 1-(benzothiazol-2-ylidene)-3-methylthiourea (Hmbt) 

 

An aqueous solution of NH2CH3 (40%, 0.430 cm
3
, 0.0063 mol) was added to a solution 

of methylbenzothiazol-2-ylidenecarbamodithioate (1.2 g, 0.0063 mol) in ethanol (40 cm
3
) 

at room temperature. The mixture was heated at reflux for 6 hours. The yellow solution 

was cooled to room temperature and light yellow crystals formed which was filtered and 

washed with ethanol. Yield = 68 %, m.p. = 216 °C. Anal. Calcd. (%) for C9H9N3S2: C, 

48.4; H, 4.1; N, 18.8; S, 28.7. Found: C, 49.3; H, 4.4; N, 18.6; S, 27.3. IR (νmax/cm
-1

): 

ν(N-H) 3176, 3044; ν(C=N) 1556; ν(C=S) 1214. 
1
H NMR (295K, ppm): 9.90 (s, br, 1H, 

N(5)H); 7.87 (d, 2H, H(1), H(4)); 7.64 (s, br, 1H, N(6)H); 7.39 (t, 1H, H(2)); 7.25 (t, 1H, 

H(3)); 3.34 (s, 3H, CH3).  
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Figure 7.9: Structure of Hmbt. 

 

 

7.2.6  Synthesis of 2,2’-(oxybis(methylene))bis(benzimidazole) (bmb) 

 

A mixture of 2.00 g (15 mmol) of diglycolic acid and 3.23 g (30 mmol) of 1,2-

diaminobenzene was added to 50 cm
3
 of hot polyphosphoric acid. The solution was 

stirred at 200 °C for 5 hours, after which it was allowed to cool to room temperature. The 

solution was slowly added to a 10 % aqueous potassium carbonate solution to produce a 

milky green precipitate which was filtered and dried under vacuum. Yield = 67 %, m.p. = 

212 °C. Anal. Calcd. (%) for C16H14N4O: C, 69.1; H, 5.1; N, 20.1. Found: C, 69.8; H, 4.7; 

N, 19.5. IR (νmax/cm
–1

): ν(C=N) 1628. 
1
H NMR (295K, ppm): 7.58 (q, 4H, H(1), H(4), 

H(7), H(10)); 7.22 (q, 4H, H(2), H(3), H(8), H(9)); 6.00 (s, br, 2H, NH(11), NH(12)); 

4.93 (s, 4H, C(5)H2, C(6)H2).  
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Figure 7.10: Structure of bmb. 

 

 
Figure 7.11: 

1
H NMR spectrum of bmb in the 5.20-7.70 ppm region. 

 

 

7.2.7  Synthesis of 1,10-phenanthroline-2,9-dicarbaldehyde (pdc) 

 

Neocruproine hydrate (3.00 g, 14.4 mmol) and selenium dioxide (11.29 g, 100.8 mmol) 

were dissolved in 210 cm
3
 of 1,4-dioxane. The solution was heated at reflux temperature 

for 3 hours after which a clear yellow solution formed. The solution was filtered while 

hot and upon cooling a light pink solid was obtained which was recrystallized from 

acetone/hexane. Yield = 88 %, m.p. =  242 °C. Anal. Calcd. (%) for C14H8N2O2: C, 71.2; 

H, 3.4; N, 11.9. Found: C, 73.1; H, 3.6; N, 12.7. IR (νmax/cm
–1

): ν(C=O) 1700s. 
1
H NMR 

(295K, ppm): 10.36 (s, 2H, H(1), H(8)); 8.82 (d, 2H, H(2), H(7)); 8.34 (d, 2H, H(3), 

H(6)); 8.30 (d, 2H, H(4), H(5)). 
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Figure 7.12: Structure of pdc. 

 

 
Figure 7.13: 

1
H NMR spectrum of pdc in the 8.10-10.60 ppm region. 

 

 
Figure 7.14: IR spectrum of pdc. 
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7.2.8  Synthesis of 2,9-bis(benzothiazol-2-yl)-1,10-phenanthroline (btp) 

 

A mixture of 1.00 g (4.23 mmol) of 1,10-phenanthroline-2,9-dicarbaldehyde and 1.05 g 

(8.40 mmol) of 2-aminothiophenol was added to 50 cm
3
 of polyphosphoric acid.  The 

solution was stirred for 5 hours at 200 °C, after which it was cooled to room temperature.  

A brown precipitate formed on the addition of a 10 % aqueous potassium carbonate 

solution. The precipitate was filtered and recrystallized from acetonitrile to produce 

brown crystals suitable for X-ray diffraction analysis. Yield = 70 %, m.p. = 290 °C. Anal. 

Calcd. (%) for C26H14N4S2: C, 69.9; H, 3.2; N, 12.6; S, 14.4. Found: C, 68.8; H, 3.7; N, 

12.2; S, 15.2. IR (νmax/cm
–1

): ν(C=N) 1510. 
1
H NMR (295K, ppm): 8.77 (dd, 4H, H(5), 

H(6), H(9), H(10)); 8.35 (d, 2H, H(7), H(8)); 8.22 (d, 4H, H(1), H(4), H(11), H(14)); 7.66 

(t, 2H, H(2), H(13)); 7.60 (t, 2H, H(3), H(12)). UV-Vis (CH2Cl2, λmax (ε, M
-1

cm
-1

)): 305 

(23000), 351 (15600), 365 (15500), 378 (12700). 
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Figure 7.15: Structure of btp. 
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7.2.9 Synthesis of (μ-O)2[Re2O2(btn)2]I2 (1) 

 

A mixture of btn (75 mg, 233 μmol) and cis-[ReO2I(PPh3)2] (100 mg, 115 μmol) in 20 

cm
3
 of methanol was heated under reflux for 2 hours. After cooling to room temperature, 

a brown precipitate was removed by filtration. The slow evaporation of the mother liquor 

over two days produced brown crystals. Yield = 72 %, m.p. = 195 °C. Anal. Calcd. (%) 

C36H36N8O4S2I2Re2: C, 32.4; H, 2.7; N, 8.4; S, 4.8. Found: C, 32.6; H, 2.9; N, 8.3; S, 4.3. 

IR (νmax/cm
-1

): ν(N-H) 3050; ν(C=N) 1626; ν(Re=O) 940; ν(Re-O-Re) 692; ν(Re-N) 467; 

ν(Re-S) 429. 
1
H NMR (295K, ppm): 7.77-7.84 (m, 4H); 7.61-7.68 (m, 4H); 7.51-7.60 (m, 

8H); 3.72 (s, br, 4H, N(2)H, N(2
i
)H, N(4)H, N(4

i
)H); 3.50 (t, 8H, C(2)H2, C(2

i
)H2, 

C(11
i
)H2, C(11

i
)H2,); 3.21 (t, 8H, C(1)H2, C(1

i
)H2, C(10)H2, C(10

i
)H2). Conductivity (10

-3 

M, CH3CN): 256 ohm
-1

cm
2
mol

-1
. UV-Vis (CH3CN, λmax (ε, M

-1
cm

-1
)): 510 (860). 

 

 

7.2.10 Synthesis of fac-[Re(CO)3(bts)Br] (2) 

 

[Re(CO)5Br] (100 mg, 246 μmol) and bts (175 mg, 490 μmol) in 20 cm
3
 of toluene were 

heated under reflux for 3 hours under nitrogen. After cooling to room temperature, the 

reaction mixture was allowed to evaporate slowly at room temperature. After 2 days 

brown needles were collected. Yield = 66 %, m.p. = 182 °C. Anal. Calcd. (%) for 

C21H16N2O3S3BrRe: C, 35.7; H, 2.3; N, 4.0; S, 13.6. Found: C, 35.8; H, 2.5; N, 3.9; S, 

13.9. IR (νmax/cm
–1

): ν(C≡O) 2027, 1920, 1886; ν(Re-N) 475. 
1
H NMR (295K, ppm): 

8.55 (d, 1H, H(9)); 8.18 (d, 1H, H(12)); 8.07 (d, 1H, H(18)); 7.96 (d, 1H, H(21)); 7.73 (t, 

1H, H(10)); 7.61 (t, 1H, H(11)); 7.53 (t, 1H, H(19)); 7.44 (t, 1H, H(20)); 2.54 (m, 4H, 

C(5)H2, C(14)H2); 2.01 (m, 4H, C(4)H2, C(13)H2). Conductivity (10
-3 

M, MeOH): 39 

ohm
-1

cm
2
mol

-1
. UV-Vis (MeOH, λmax (ε, M

-1
cm

-1
)): 428 (170). 
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7.2.11 Synthesis of (μ-dbt)2[Re(CO)3]2 (3) 

 

A mass of 190 mg (555 μmol) of Hdbt was added to 105 mg (290 μmol) of [Re(CO)5Cl] 

in 20 cm
3
 of toluene, and the mixture was heated under reflux for 3 hours under nitrogen. 

After cooling to room temperature the solution was filtered, and the filtrate was left to 

evaporate slowly at room temperature over a period of 3 days. Yellow needles were 

collected, which were washed with diethyl ether and dried under vacuum. Yield = 65 %, 

m.p. = 262 °C. Anal. Calcd. (%) for C36H18N8O6Re2S6: C, 35.3; H, 1.5; N, 9.2. Found: C, 

35.2; H, 1.7; N, 9.0. IR (νmax/cm
-1

): ν(C≡O) 2017, 1909, 1873; ν(NH) 3169; ν(C=N) 

1633; ν(C-S) 751; ν(Re-N) 519, 498; ν(Re-S) 395. 
1
H NMR (295K, ppm): 8.27 (d, 2H); 

7.92 (t, 2H); 7.70 (d, 2H); 7.65 (d, 2H); 7.54 (t, 2H); 7.46 (t, 2H); 7.40 (t, 2H); 7.26 (d, 

2H); 3.34 (s, br, 2H, N(23)H, N(13)H). Conductivity (10
-3 

M, DMF): 16 ohm
-1

cm
2
mol

-1
. 

UV-Vis (DMF, λmax (ε, M
-1

cm
-1

)): 326 (7100), 357 (83700), 376 (78200), 396sh (50300).  

 

 

7.2.12 Synthesis of (μ-mbt)2[Re(CO)3]2 (4) 

 

A mixture of 117 mg (525 μmol) of Hmbt and 107 mg (296 μmol) of [Re(CO)5Cl] was 

dissolved in 20 cm
3
 of toluene. The solution was heated under reflux for 3 hours under 

nitrogen. After cooling to room temperature, a white precipitate was collected by 

filtration, washed with diethyl ether and dried under vacuum. Crystals suitable for X-ray 

diffraction studies were obtained by recrystallization from a methanol/dichloromethane 

(1:1 v/v) mixture. Yield: 71 %, m.p. = 291 °C. Anal. Calcd. (%) for 

C24H16N6O6Re2S4.2CH3OH: C, 29.8; H, 2.3; N, 8.0. Found: C, 29.5; H, 2.4; N, 7.7. IR 

(νmax/cm
-1

): ν(C≡O) 2018, 1894; ν(NH) 3069; ν(C=N) 1612; ν(C-S) 758; ν(Re-N) 519, 

532; ν(Re-S) 401. 
1
H NMR (295K, ppm): 9.78 (s, br, 1H, N(23)H); 9.18 (s, br, 1H, 

N(13)H); 7.98 (d, 1H, H(16)); 7.93 (d, 1H, H(13)); 7.87 (d, 1H, H(26)); 7.78 (d, 1H, 

H(15)); 7.56-7.67 (m, 2H, H(14), H(23)); 7.35-7.53 (m, 2H, H(24), H(25)); 3.12 (s, 3H, 

C(29)H3); 2.88 (s, 3H, C(19)H3). Conductivity (10
-3 

M, DMF): 4 ohm
-1

cm
2
mol

-1
. UV-Vis 

(DMF, λmax (ε, M
-1

cm
-1

)): 308 (41800), 378 (8900). 
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7.2.13   Synthesis of [ReCl2(bte)(PPh3)2]Cl (5) 

 

A mass of 51 mg (228 μmol) of Hmbt was added to 103 mg (124 μmol) of trans-

[ReOCl3(PPh3)2] in 20 cm
3
 of methanol. The mixture was heated under reflux for three 

hours after which the light brown solution was left to cool to room temperature and then 

filtered. The mother liquor was left to evaporate at room temperature to give brown 

crystals. Yield = 46 %, m.p. = 258 °C. Anal. Calcd. (%) for C46H40Cl3N2P2ReS: C, 54.8; 

H, 4.0; N, 10.6; S, 3.2. Found: C, 55.3; H, 4.6; N, 10.8; S, 2.8. IR (νmax/cm
-1

): ν(C=N) 

1584, 1491; ν(Re-N) 430, 395. 
1
H NMR (295K, ppm): 9.78 (s, 1H, C(3)H); 8.53 (d, 1H, 

H(12)); 8.19 (d, 1H, H(15)); 7.78-7.92 (m, 2H, H(13), H(14)); 7.10-7.69 (m, 30H, 2 x 

PPh3); 2.77 (s, 3H, CH3). Conductivity (10
-3

 M, DMF): 65 ohm
-1

cm
2
mol

-1
. UV-Vis 

(DMF, λmax (ε, M
-1

cm
-1

)): 310 (77500), 328sh (51200), 384 (7750). 

 

 

7.2.14 Synthesis of [Re(CO)3(bmb)][Re2(CO)6Cl3] (6) 

 

A mixture of [Re(CO)5Cl] (108 mg, 298 μmol) and bmb (155 mg, 557 μmol) was heated 

under reflux in 20 cm
3
 of toluene for three hours in a nitrogen atmosphere. The resultant 

light brown solution was cooled to room temperature, and the solution was left overnight 

to evaporate slowly at room temperature. Transparent crystals formed which was filtered 

and dried under vacuum. Yield = 63 %, m.p. = 222 °C. Anal. Calcd. (%) for 

C19H14N4O4Re.C6Cl3O6Re2: C, 21.1; H, 2.2; N, 4.7. Found: C, 20.6; H, 2.6; N, 4.7. IR 

(νmax/cm
–1

): ν(C≡O) 2120, 2020, 1998, 1965, 1930, 1887; ν(C=N) 1628; ν(Re-N) 483. 
1
H 

NMR (295K, ppm): 7.57 (q, 4H, H(13), H(16), H(23), H(26)); 7.21 (q, 4H, H(14), H(15), 

H(24), H(25)); 4.85 (s, 4H, C(1)H2, C(2)H2); 4.10 (s, br, 2H, N(4)H, N(2)H). 

Conductivity (10
-3 

M, DMF): 75 ohm
-1

cm
2
mol

-1
. UV-Vis (DMF, λmax (ε, M

-1
cm

-1
)): 324 

(8460), 359 (5420). 
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7.2.15 Synthesis of fac-[Re(CO)3(btp)Cl] (7) 

 

A mass of 245 mg (549 μmol) of btp was added to 109 mg (301 μmol) of [Re(CO)5Cl] in 

20 cm
3
 of toluene. The mixture was heated at reflux conditions for 3 hours under 

nitrogen. The resultant orange solution was cooled to room temperature then filtered. The 

precipitate was dissolved in CH2Cl2 and layered with hexane. Orange crystals were 

produced after three days. Yield = 66 %, m.p. > 300 °C. Anal. Calcd. (%) for 

C29H14ClN4O3ReS2: C, 46.3; H, 1.9; N, 7.4; S, 8.5.  Found: C, 46.2; H, 2.1; N, 7.1; S, 8.3. 

IR (νmax/cm
–1

): ν(C≡O) 2011, 1927, 1885; ν(C=N) 1579; ν(Re-N) 486. 
1
H NMR (295K, 

ppm): 9.22 (d, 2H, H(32), H(32
i
)); 8.58 (d, 2H, H(33), H(33

i
));  8.52 (s, 2H, H(36), 

H(36
i
));  8.39 (d, 2H, H(13), H(13

i
)); 8.26 (d, 2H, H(16), H(16

i
)); 7.73 (t, 2H, H(14), 

H(14
i
)); 7.65 (t, 2H, H(15), H(15

i
)). Conductivity (10

-3 
M, DMF): 26 ohm

-1
cm

2
mol

-1
. 

UV-Vis (DMF, λmax (ε, M
-1

cm
-1

)): 306 (28000), 328 (28050). 

 

 

7.2.16  X-ray Crystallography 

 

X-ray diffraction studies were performed at 200(2) K using a Nonius Kappa CCD (for 1), 

an Oxford Xcalibur (for 2) and a Bruker Kappa Apex II (for mbc, Hmbt, btp.CH3CN, 3, 

4.CH3OH, 5, 6 and 7) diffractometers with graphite monochromated Mo Kα radiation (λ 

= 0.71073 Å). SAINT was used for cell refinement and data reduction [9]. The structures 

were solved by direct methods using SHELXS-97 [10] or SIR97 [11], and refined by 

least-squares procedures using SHELXL-97 [10] with SHELXLE [12] as a graphical 

interface. All non-hydrogen atoms were refined anisotropically, and the hydrogen atoms 

were calculated in idealised geometrical positions. Data were corrected for absorption 

effects by the numerical method using SADABS [9]. 
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7.3 Results and Discussion 

 

7.3.1  Synthesis and characterization of methylbenzothiazol-2-

ylidenecarbamodithioate (mbc) 

 

The benzothiazole compound, methylbenzothiazol-2-ylidenecarbamodithioate (mbc), was 

formed via a two-step reaction from 2-aminobenzothiazole according to a literature 

method [13]. The reaction of carbon disulfide and 2-aminobenzothiazole in DMF in the 

presence of concentrated sodium hydroxide results in the formation of the 

dithiocarbonimidic acid derivative (Scheme 7.3). Alkylation of this product with methyl 

iodide, followed by acidification of the solution gave the compound mbc.  

 

This compound can act as a bidentate ligand for transition metals [14]. It can also be 

further derivatized by the substitution of the thiomethyl group to form thioureas and 

thiocarbamic esters [15]. Yellow crystals of the compound were obtained by 

recrystallization from ethanol. It is soluble in a variety of solvents including ethanol, 

dichloromethane, acetone, acetonitrile and DMF, and is insoluble in methanol and 

toluene. 

 

N

S

NH2

1. aq. NaOH/DMF
2. CS2

N

S
H
N C SNa

S

N
H

S

N C S

S

CH3

CH3I

mbc

Scheme 7.3: Reaction pathway for the formation of mbc. 

 

The IR spectrum of mbc (Figure 7.16) contains absorptions at 1603 and 1210 cm
-1

 due to 

the imine [ν(C=N)] and thiocarbonyl [ν(C=S)] stretching frequencies respectively. The 
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peak at 3172 cm
-1

 is due to the N-H stretch. The 
1
H NMR spectrum (Figure 7.17) 

displays four one-proton signals in the aromatic region. The two doublets appearing at 

7.77 and 7.83 ppm are ascribed to protons H(13) and H(16) of the benzothiazole ring (see 

Figure 7.18 for the atom labeling). The triplets at 7.45 and 7.55 ppm are due to protons 

H(14) and H(15). The proton of the amine group appears as a broad singlet at 5.38 ppm, 

and the singlet at 2.75 ppm integrates for the three protons of the thiomethyl moiety. 

 

 

Figure 7.16: IR spectrum of mbc. 

 

 

Figure 7.17: 
1
H NMR spectrum of mbc in the 7.32-7.96 ppm region. 
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An ORTEP perspective view of mbc is shown in Figure 7.18. It consists of a 

benzothiazole moiety and a dithiocarbamate group. The X-ray structure analysis reveals 

that the nitrogen of the benzothiazole moiety is in its protonated form with the C(1)-N(1) 

single bond of 1.340(2) Å slightly shorter than typical C-N single bonds found in 

protonated benzothiazole compounds [16]. The C(1)-N(2) bond distance [1.337(3) Å] is 

surprisingly longer than expected for a C-N double bonds [~1.28 Å] found in the 

literature [17].  

 

 

Figure 7.18: An ORTEP view of mbc showing 50% probability displacement ellipsoids 

and the atom labeling.  

 

The bond angle around N(2) [C(1)-N(2)-C(2) = 121.1(2)˚] is close to the expected 120˚ 

angle for a sp
2
 hybridized atom. The C(2)-S(2) [1.654(2) Å] bond length is considerably 

shorter than the C(2)-S(3) bond [1.764(2) Å], and can be considered as a double bond 

while the latter is regarded as single. The C-C bond lengths in the phenyl ring C(11)-

C(16) [average = 1.389(3) Å] show that the π electron density is delocalized in this 

aromatic ring.  

 

The molecular packing and intermolecular interactions in the crystal structure of mbc are 

shown in Figure 7.19. There are two intermolecular hydrogen-bonds in the packing of 

mbc: N(1)H(1)•••N(2) and C(13)H(13)•••S(3) (Table 7.1). Each mbc molecule (molecule 

A in Figure 7.20) is connected to four separate neighbouring mbc molecules. The four 

neighbouring mbc molecules are parallel to one another and orthogonal to molecule A. 
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The shortest distance between two parallel molecules is 3.414 Å, observed for the planes 

through the phenyl rings of neighbouring molecules.  

 

 
Figure 7.19: Molecular packing and intermolecular interactions in the crystal structure of 

mbc. 

 

Table 7.1: Hydrogen-bond distances (Å) and angles (˚) in mbc. 

D-H•••A D-H H•••A D•••A D-H•••A 

N(1)H(1)•••N(2) 0.81 2.28 3.056(2) 161 

C(13)H(13)•••S(3) 0.95 2.82 3.627(2) 144 

 

 

Figure 7.20: Intermolecular interactions between neighbouring mbc molecules. 

A 
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7.3.2  Synthesis and characterization of 1-(benzothiazol-2-ylidene)-3-

methylthiourea (Hmbt) 

 

The potentially bidentate ligand 1-(benzothiazol-2-ylidene)-3-methylthiourea (Hmbt) was 

synthesized according to a literature method [15] by the reaction of methylbenzothiazol-

2-ylidenecarbamodithioate (mbc) with an aqueous solution of methylamine in refluxing 

ethanol. Hmbt is soluble in dichloromethane and acetone, and insoluble in toluene, 

alcohols and acetonitrile. 

 

In the infrared spectrum of Hmbt two peaks are observed at 3176 and 3044 cm
-1

, due to 

ν(N-H) of the amino nitrogens N(2) and N(3) (see Figure 7.22 for the atom labeling). The 

imine [ν(C=N)] and thiocarbonyl [ν(C=S)] stretches appear as sharp peaks at 1556 and 

1214 cm
-1

 respectively. The amine protons, N(2)H and N(3)H, appear as broad singlets at 

7.64 and 9.90 ppm respectively in the 
1
H NMR spectrum of the compound (Figure 7.21). 

The signals of the four protons of the phenyl ring appear as a two-proton doublet (at 7.87 

ppm) and two one-proton triplets (at 7.25 and 7.39 ppm). The three-proton singlet at 3.34 

ppm is ascribed to the methyl protons. 

 

 

Figure 7.21: 
1
H NMR spectrum of Hmbt. 
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An ORTEP view of the asymmetric unit of Hmbt is shown in Figure 7.22. It consists of a 

benzothiazole component and a methylthiourea moiety. The C(1)-N(1)-C(16) = 109.8(1)˚ 

angle is significantly shorter than expected for sp
2
 hybridized atoms. The N(1)-C(1) bond 

length of 1.296(2) Å is indicative of an imine double bond [18]. The longer N(2)-C(2) 

and N(3)-C(2) bond lengths are similar [average = 1.35(2) Å], and can be regarded as 

single. The C(2)-S(2) bond length [1.685(1) Å] is typical of C=S bonds [19].  

 

The delocalization of π electrons in the aromatic ring is evident in the bond lengths of the 

C(11)-C(16) [average = 1.392(2) Å] phenyl ring. Hmbt contains intramolecular 

hydrogen-bonding between the imidazole nitrogen [N(1)] and the amine proton [N(3)-

H(3)] (Figure 6.23). Intermolecular hydrogen-bonding exists between the thiocarbonyl 

sulfur [S(2)] and the amine proton [N(2)-H(2)] of an adjacent molecule of Hmbt (Table 

7.2). 

 

 

Figure 7.22: An ORTEP view of Hmbt showing 50% probability displacement ellipsoids 

and the atom labeling.  

 

Table 7.2: Hydrogen-bond distances (Å) and angles (˚) in Hmbt. 

D-H•••A D-H H•••A D•••A D-H•••A 

N(2)H(2)•••S(2) 0.77 2.56 3.317(1) 165 

N(3)H(3)•••N(1) 0.86 1.98 2.690(2) 140 
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Figure 7.23: Molecular packing of Hmbt, showing the intra- and intermolecular 

hydrogen-bonding. 

 

 

7.3.3  Synthesis and characterization of 2,9-bis(benzothiazol-2-yl)-1,10-

phenanthroline (btp) 

 

The compound 2,9-bis(benzothiazol-2-yl)-1,10-phenanthroline (btp) was synthesized via 

a two-step reaction from neocruproine hydrate according to Scheme 7.4. The first step 

involves the oxidation of the methyl groups of neocruproine using selenium dioxide in 

1,4-dioxane to form the symmetrical dialdehyde, 1,10-phenanthroline-2,9-

dicarbaldehyde. The condensation reaction of 1,10-phenanthroline-2,9-dicarbaldehyde 

with two mole equivalents of 2-aminothiophenol produced 2,9-bis(benzothiazol-2-yl)-

1,10-phenanthroline (btp).  
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N N N N

O O

N N

N

S S

N

SeO2

dioxane

NH2

SH

PPA

btp

neocruproine

1,10-phenanthroline-2,9-dicarbaldehyde

 

Scheme 7.4: Reaction pathway for the formation of ligand btp. 

 

Brown crystals of btp were obtained by recrystallization from an acetonitrile solution of 

the product. The compound is a potentially tetradentate ligand containing the 1,10-

phenanthroline group and two benzothiazole moieties. The compound is insoluble in 

most organic solvents and only dissolves in dichloromethane and acetonitrile upon 

heating.  

 

The infrared spectrum of btp displays the C=N stretching frequency as a medium 

intensity peak at 1510 cm
-1

. The symmetry within the molecule is emphasized by the 
1
H 

NMR spectrum of btp. The signals of four phenanthroline protons appear as a doublet of 

doublets at 8.77 ppm. The two-proton doublet at 8.35 ppm is ascribed to the remaining 

two phenanthroline protons. The phenyl protons of the benzothiazole units appear further 

upfield as a four-proton doublet (at 8.22 ppm), and two two-proton triplets (at 7.60 and 

7.66 ppm). The electronic spectrum of btp in dichloromethane displays four high energy 
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bands in the 300-400 nm region. These bands are assigned to intraligand transitions 

occurring within the highly conjugated π system.  

 

The compound btp is symmetrical with a central 1,10-phenanthroline ring joined to two 

benzothiazole moieties (Figure 7.24). The molecule is close to planarity with the S(1) and 

S(2) thiazole rings forming a dihedral angle of 15.42˚ and dihedral angles of 9.37˚ and 

7.31˚ respectively with the central phenanthroline ring. The N(4)-C(20) [1.297(2) Å] and 

N(1)-C(7) [1.299(2) Å] bond lengths are similar and typical of C=N bonds found in 

benzothiazole compounds [18]. The phenanthroline C-N bond lengths are however longer 

than that of the benzothiazole C=N bond lengths [N(3)-C(19) = 1.327(2) Å, N(3)-C(13) = 

1.353(2) Å, N(2)-C(8) = 1.331 Å and N(2)-C(12) = 1.354(2) Å] due to the delocalization 

of the π electrons in the aromatic rings of the phenanthroline moiety. There is only one 

intermolecular hydrogen-bond, between the nitrogen atom of the acetonitrile molecule of 

crystallization and a phenanthroline proton [C(17)-H(17)•••N(5)] (Figure 7.24). 

 

 

Figure 7.24: An ORTEP view of btp showing 50% probability displacement ellipsoids 

and the atom labeling.  
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Figure 7.25: Perspective view of btp, showing the intermolecular hydrogen-bonding. 

 

 

7.3.4  Synthesis and characterization of (μ-O)2[Re2O2(btn)2]I2 (1) 

 

Compound 1 was prepared in good yield by heating bis(benzimidazol-2-ylethyl)sulfide 

(btn) and cis-[ReO2I(PPh3)2] in methanol for two hours. The slow evaporation of the 

mother liquor over two days led to the isolation of brown platelets. The synthesis of 1 is 

described by the following equation: 

 

2[ReO2I(PPh3)2]       +       2btn                  (μ-O)2[Re2O2(btn)2]I2       +       4PPh3 

 

The compound is stable in air for months and is a 2:1 electrolyte in acetonitrile (ΛM = 

256 ohm
-1

cm
2
mol

-1
). It is insoluble in alcohols and acetone and soluble in acetonitrile, 

dichloromethane, DMF and dimethylsulfoxide. 

 

The infra-red spectrum shows the presence of both terminal and bridging oxo groups 

(Figure 7.26). The band around 940 cm
-1

 is assigned to the terminal Re=O stretching 

vibration [20]. A strong absorption at about 692 cm
-1

 indicates the presence of bridging 

oxo groups in the solid state [20]. The medium intensity peak at 467 and 429 cm
-1

 is 

assigned to ν(Re-N) and ν(Re-S) respectively. The peak at 1626 cm
-1

 is due to ν(C=N) of 

the coordinated benzimidazole moieties. The proton NMR spectrum (Figure 7.27) of 1 is 

not informative, with three complicated multiplets in the 7.50-7.85 ppm region 
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integrating for the 16 aromatic protons of the two btn ligands. The signal of the four 

imidazole protons appears as a broad four-proton singlet at 3.72 ppm. The triplets at 3.21 

and 3.50 ppm each integrate for eight ethyl protons. The electronic spectrum of 1 displays 

a broad absorption band at 510 nm assigned to metal-to-ligand charge transfer transitions.  

 

 

Figure 7.26: IR spectra of ligand btn and compound 1. 

 

 

Figure 7.27: 
1
H NMR spectrum of 1. 
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The structure of 1 is shown in Figure 7.28. The dinuclear molecule is centrosymmetric, 

with a rhombic (μ-O)2Re2 unit at the centre. Each oxo-bridge is unsymmetrical, with 

unequal Re-O distances of 1.859(2) [Re(1)-O(2)] and 2.109(3) Å [Re(1)-O(2
i
)]. These 

distances fall in the range normally observed for oxo groups coordinated trans and cis 

respectively to an oxo group in oxorhenium(V) complexes [21-23], with O(2) being 

coordinated trans to the oxo group O(1), but cis to O(1
i
). The Re–Re distance across the 

rhombus is 3.129(1) Å, implying no Re-Re bonding.  

 

The asymmetric unit of 1 consists of half of the dimer (μ-O)2[Re2O2(btn)2]
2+

. Each 

rhenium is in a distorted octahedral environment. The basal plane is defined by the two 

bridging and terminal oxo groups and the sulfur atom S(1). The neutral imino nitrogen 

atoms N(1) and N(3) are coordinated in trans axial positions. Distortion from an ideal 

rhenium-centred octahedron results in a non-linear O(1)-Re-O(2) axis of 170.2(1)˚, and 

N(1)-Re-N(3) and S(1)-Re-O(2
i
) angles of 176.4(1)˚ and 170.39(7)˚ respectively. The 

O(1)-Re-N(1) [89.1(1)˚] and O(1)-Re-N(3) [89.8(1)˚] angles are remarkably close to 

orthogonality, with the O(1)-Re-S(1) [95.34(9)˚] and O(1)-Re-O(2
i
) [94.1(1)˚] angles 

very similar. Surprisingly, there is a considerable difference in the two bite angles of the 

tridentate ligand btn [N(1)-Re-S(1) = 85.62(9)˚; S(1)-Re-N(3) = 91.07(7)˚], which is 

consistent with the different Re-N bonding distances [Re-N(1) = 2.133(3) Å, Re-N(3) = 

2.106(3) Å]. This phenomenon is probably due to different non-bonding interactions of 

the hydrogen atoms bonded to C(1) and C(10), with one hydrogen on C(1) and one on 

C(10) interacting with O(2) and an iodide counter-ion respectively. The Re=O(1) bond 

length of 1.721(2) Å is longer than those normally found for a linear monooxo-bridged 

O=Re-O-Re=O framework [21], but falls in the observed range for similar compounds 

containing a bent bridge [22]. The five-membered imidazole rings around Re(1) are π-

stacked with the corresponding imidazole rings around Re(1
i
), with a distance of 3.326 Å 

between the imidazole ring centroids (Figure 7.29).  
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Figure 7.28: An ORTEP view of 1 showing 50% probability displacement ellipsoids and 

the atom labeling. Hydrogen atoms and the iodide counter-ions were omitted for clarity. 

 

A search of the literature has revealed that 1 is the first example of a complex cation 

containing the [(μ-O)2{Re2O2}]
2+

 core without a metal-metal bond. Bent dioxo-bridged 

oxorhenium(V) complexes are not new, but the few examples in the literature are all 

neutral [23]. Compound 1 would have been neutral if one of the nitrogen atoms N(2) or 

N(4) was deprotonated and coordinated to the metal. Deprotonation of an imidazole 

amino nitrogen of the bidentate chelate apb was observed in the neutral complex 

[ReO(Hapb)(apb)] (H2apb = 2-(2-aminophenyl)-1-benzimidazole) [8]. Studies of 

oxorhenium(V) with neutral tridentate ligands only, are rare in the literature. 

Interestingly, it was found that the reaction of the neutral tetradentate ligand tris(2-

pyridylmethyl)amine and its derivatives (tpa) with trans-[ReOCl3(PPh3)2] gave the 

products [(μ-O)2{Re2(tpa)2}](PF6)3, with the two rhenium atoms in the oxidation states 

+III and +IV [24].  
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Figure 7.29: Perspective view of 1 illustrating the π-π stacking between the imidazole 

rings. 

 

7.3.5  Synthesis and characterization of fac-[Re(CO)3(bts)Br] (2) 

 

The fac-[Re(CO)3(bts)Br] complex was prepared by the heating of [Re(CO)5Br] with two 

equivalents of bts in refluxing toluene under nitrogen. The reaction is described by the 

following equation: 

 

[Re(CO)5Br]      +      bts                   fac-[Re(CO)3(bts)Br]      +      2CO 

 

The complex is soluble in a variety of solvents including acetone, acetonitrile, 

dichloromethane, DMF and DMSO. It is stable for months in the solid state and only for 

days in solution and the low molar conductivity in methanol (ΛM = 39 ohm
-1

cm
2
mol

-1
) 

confirms that it is a non-electrolyte. 
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The dominant feature of the infrared spectrum of [Re(CO)3(bts)Br] (2) is the presence of 

three intense absorption bands at 1886, 1920 and 2027 cm
-1

 ascribed to the three 

carbonyls of 2 in the facial isomer arrangement (Figure 7.30). The 
1
H NMR spectra of 2 

(Figure 7.31) is characterized by eight individual one-proton signals (4 doublets and 4 

triplets) in the aromatic region due to the phenyl protons of the benzothiazole moieties. 

Unlike the free bts ligand, the proton spectrum of 2 does not display magnetic 

equivalence, demonstrating the unsymmetrical nature of 2 due to the bidentate 

coordination of bts in the complex. In addition, two four-proton multiplets are found 

around 2.00 ppm, ascribed to the ethyl protons. Complex 2 displays a broad low energy 

absorption band at 428 nm. Similar bands in this region have previously been assigned to 

metal-to-ligand charge transfer (MLCT) dπ (Re) → π* transitions [25]. 

 

 
Figure 7.30: IR spectrum of complex 2. 
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Figure 7.31: Overlay 
1
H NMR spectra of ligand bts (red) and complex 2 (blue). 

 

Brown needles of 2, suitable for X-ray crystallography, were obtained from the slow 

evaporation of the reaction mixture. The packing in the unit cell shows discrete, 

monomeric and neutral [Re(CO)3(bts)Br] units, with no intermolecular contacts shorter 

than the Van der Waals’ radii sum. The rhenium(I) atom lies in a distorted octahedral 

environment, with the bromide, thiazole imino nitrogen and sulfur donor atoms of bts in a 

facial arrangement, imposed by the fac-[Re(CO)3]
+
 core (Figure 7.32). The ligand bts 

therefore acts as a neutral bidentate chelate. The Re-C(carbonyl) bond distances 

[1.896(5)-1.960(5) Å] fall in the range observed [1.890(2)-1.928(2) Å] for similar 

complexes [26]. The Re-N(1) bond length of 2.222(3) Å is typical for Re-N(imino) bonds 

of coordinated thiazoles and imidazoles [27].  

 

The distortion from octahedral ideality mainly results from the trans angles, which fall in 

the range 175.1(1)-177.2(1)˚. These distortions are the result of the constraints imposed 

by the bidentate coordination of the ligand bts, which has a bite angle of 88.66(9)˚ [N(1)-

Re-S(1)]. The steric repulsion between the bromide and the equatorially coordinated 

sulfur atom [Br(1)-Re-S(1) = 93.24(3)˚] is substantially larger than between the bromide 

and the axial nitrogen [Br(1)-Re-N(1) = 86.96(8)˚]. The C(4)-S(1)-C(13) bond angle of 

101.7(2)˚ is markedly smaller than would be expected for a sp
3
 hybridized sulfur atom, 

with the Re-N(1)-C(8) angle of 123.7(3)˚ close to expectation for a sp
2
 hybridized imine 

nitrogen.  
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Figure 7.32: An ORTEP view of 2 showing 50% probability displacement ellipsoids and 

the atom labeling. Hydrogen atoms were omitted for clarity. 

 

Complex 2 is unique in the sense that it contains both a coordinated and a free 

benzothiazole group. This result may have implications in the design of rhenium(I) and 

technetium(I) radiopharmaceuticals, with the uncoordinated thiazole likely to have a 

different biological activity than the coordinated one. Coordination of bts as a tridentate 

chelate would have led to the formation of the complex salt fac-[Re(CO)3(bts)]Br.  

 

 

7.3.6  Synthesis and characterization of (μ-dbt)2[Re(CO)3]2 (3) 

 

The reaction of Hdbt with [Re(CO)5Cl] in toluene gave a yellow product of formulation 

(μ-dbt)2[Re(CO)3]2 in good yield. Each ligand in the dimeric molecule of 3 coordinates as 

a bidentate monoanionic chelate to one rhenium atom and monodentately to the second 

rhenium atom. 

 

2[Re(CO)5Cl]     +     2Hdbt                           (μ-dbt)2[Re(CO)3]2     +     2HCl     +     4CO 
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Complex 3 is soluble in dichloromethane, acetone and DMF and only partially soluble in 

alcohols, acetonitrile and toluene. It is stable for days in solution and for months in the 

solid state. 

 

The IR spectrum of 3 (Figure 7.33) displays three peaks at 1873, 1909 and 2017 cm
-1

 due 

to ν(C=O). The Re-N stretches are found at 498 and 519 cm
-1

. The peak at 395 cm
-1

 is 

due to the Re-S stretch. The ν(C=N) of the coordinated benzothiazole ligand is found at 

1633 cm
-1

 and is at a lower frequency relative to that of the free Hdbt ligand which 

occurs at 1644 cm
-1

. The 
1
H NMR spectrum of 3 (Figure 7.34) emphasizes the symmetry 

within the molecule. The aromatic region consists of four two-proton doublets and four 

two-proton triplets. A broad two-proton singlet is observed at 3.34 ppm due to the 

protons of the amine nitrogens.  

 

 
Figure 7.33: Overlay IR spectra of ligand Hdbt and complex 3. 
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Figure 7.34: 

1
H NMR spectrum of 3. 

 

The UV-Vis spectrum of 3 (Figure 7.35) in DMF displays several high energy bands in 

the 300-400 nm region. These bands are assigned to intraligand (π  π
*
) transitions of 

the coordinated dbt moeity and are similar to the bands observed for the free Hdbt ligand. 

No metal-to-ligand or d-d transitions were observed. The emission spectrum (λex = 350 

nm) of an ethanol solution of 3 at room temperature shows a broad band at 529 nm 

(Figure 7.34). This emission results from ligand-centred π* → π relaxations [28-30]. 

 

 
Figure 7.35: Overlay UV-Vis spectra of ligand Hdbt (blue) and complex 3 (red) and 

emission spectrum of complex 3 (green dashed line). 
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The structure of 3 is shown in Figure 7.36. The dimeric molecule consists of two fac-

[Re(CO)3]
+
 units bridged by two dbt chelates. Each dbt molecule acts as a tridentate 

ligand, with bidentate N,S-coordination to one Re(I) centre and monodentate 

coordination to the second metal via a benzothiazole nitrogen. Each Re(I) atom is at the 

centre of a distorted octahedron, and is coordinated to three carbonyls in a facial 

arrangement, two benzothiazole imino nitrogen atoms and a thiolic sulfur atom. The 

distortion from octahedral ideality around each metal centre is reduced considerably by 

the bite angles N(11)-Re(1)-S(12) = 81.9(2)˚ and N(21)-Re(2)-S(22) = 80.8(2)˚, brought 

about by the six-membered chelate rings, and the S(12)-Re(1)-N(24) [92.0(2)˚] and 

S(22)-Re(2)-N(14) [91.8(2)˚] angles.  

 

 

Figure 7.36: An ORTEP view of 3 showing 50% probability displacement ellipsoids and 

the atom labeling. Aromatic hydrogen atoms were omitted for clarity. 

 

Each dbt ligand is monoanionic, with a thiolate sulfur atom. The N(12)-C(108) [1.29(1) 

Å] and N(22)-C(208) [1.29(1) Å] bonds are double, the N(13)-C(108) [1.37(1) Å] and 

N(23)-C(208) [1.39(1) Å] bonds are single, and the S(12)-C(108) [1.735(8) Å] and S(22)-

C(208) [1.737(9) Å] bonds are single. The six Re-(carbonyl) bond distances fall in the 
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range 1.89(1)-1.92(1) Å and are similar to the Re-C bonds for similar complexes [26, 31]. 

The Re(1)-N(11) and Re(2)-N(21) bond lengths [2.225(6) Å average] are noticeably 

shorter than the Re(1)-N(24) and Re(2)-N(14) ones [2.253(7) Å average].  

 

 

7.3.7  Synthesis and characterization of (μ-mbt)2[Re(CO)3]2 (4) 

 

The neutral complex (μ-mbt)2[Re(CO)3]2 (4) was prepared by heating [Re(CO)5Cl] and a 

twofold molar excess of 1-(benzothiazol-2-ylidene)-3-methylthiourea (Hmbt) under 

reflux in toluene. The X-ray crystal structure of (μ-mbt)2[Re(CO)3]2 shows that bridging 

between the two metal centres occurs via the two thiolic sulfur atoms of the two mbt 

ligands. One mbt ligand is also coordinated via a benzothiazole nitrogen atom to a 

rhenium(I) atom, with the second mbt ligand attached to the metal via a thiourea imino 

nitrogen. 

 

2[Re(CO)5Cl]   +   2Hmbt                         (μ-mbt)2[Re(CO)3]2   +   4CO   +   2HCl 

 

Complex 4 is stable in air and a non-electrolyte in DMF. It is soluble in a variety of 

solvents including alcohols, DMF and dichloromethane and is insoluble in acetonitrile. 

 

The IR spectrum of 4 (Figure 7.37) displays two intense peaks in the carbonyl stretching 

region at 1894 cm
-1 

and 2018 cm
-1

. The presence of an imine entity (CH=N) in the 

complex is intimated by a strong peak at 1612 cm
-1

. Peaks at 758 and 401 cm
-1

 are 

indicative of ν(C-S) and ν(Re-S) respectively.  

 

The 
1
H NMR spectrum of 4 displays the signals of the nitrogen protons [N(13)H and 

N(23)H] of the coordinated mbt ligands as broad singlets at 9.78 and 9.18 ppm 

respectively. The aromatic protons of the mbt chelates appear in the 7.30-8.00 ppm 

region as four one-proton doublets and two two-proton multiplets. The two three-proton 

singlets at 2.88 and 3.12 ppm are ascribed to the methyl protons C(29)H3 and C(19)H3 

respectively. The electronic spectrum of 4 is dominated by an intense band at 308 nm 
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accompanied by a less intense shoulder at 378 nm. The excitation of an ethanol solution 

of 4 at various excitation wavelengths produced no emission transitions. 

 

 

Figure 7.37: IR spectrum of complex 4. 

 

Colourless crystals with the formulation of 4.2MeOH were obtained from the 

recrystallization with a 1:1 (v/v) methanol/dichloromethane mixture. The packing in the 

unit cell shows discrete, dimeric and neutral [Re(CO)3(mbt)]2 units. Each rhenium(I) 

atom lies in a distorted octahedral environment, with a nitrogen and two bridging thiolic 

sulfur atoms in a facial arrangement, imposed by the fac-[Re(CO)3]
+
 core (Figure 7.38). 

Both mbt ligands act as monoanionic tridentate ligands with coordination to the metals 

through a nitrogen and a bridging sulfur atom. However, different nitrogen atoms of the 

two chelates are used for coordination. The Re(I) is coordinated to the benzothiazole 

nitrogen N(11), forming a six-membered metallocycle, and Re(2) is bonded to the imine 

nitrogen N(22), giving a four-membered chelate ring.  
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Figure 7.38: An ORTEP view of 4 showing 50% probability displacement ellipsoids and 

the atom labeling. 

 

The dinuclear molecule is characterised by a rhombic (μ-S)2Re2 at the centre. Each 

sulfur-bridge is unsymmetrical, with unequal Re-S distances [Re(1)-S(12) = 2.481(2), 

Re(1)-S(22) = 2.572(3), Re(2)-S(12) = 2.516(2), Re(2)-S(22) = 2.550(2) Å]. These 

distances fall in the range normally observed for thiolic sulfur atoms coordinated to a 

fac‐[Re(CO)3]
+
 core [31]. The Re-Re distance across the rhombus is 3.785 Å, implying 

no Re-Re bonding. The Re-C(carbonyl) bond distances [1.90(1)-1.93(1) Å] fall in the 

range observed [1.890(2)-1.928(2) Å] for similar complexes [26, 31]. The Re-N bond 

lengths [Re(1)-N(11) = 2.205(9) Å, Re(2)-N(22) = 2.19(1) Å] are typical for Re(I)-

N(imino) bonds [27]. The distortion from octahedral ideality is more severe around Re(2) 

[trans angles S(12)-Re(2)-C(6) = 172.8(4)˚, N(22)-Re(2)-C(4) = 166.6(4)˚, S(22)-Re(2)-

C(5) = 167.9(3)˚] than around Re(1) [trans angles N(11)-Re(1)-C(3) = 175.0(4)˚; S(12)-

Re(1)-C(2) = 175.2(4)˚; S(22)-Re(1)-C(1) = 170.8(3)˚]. This is mainly the result of the 

constraints imposed by the smaller bite angle S(22)-Re(2)-N(22) of 65.1(3)˚ compared to 

N(11)-Re(1)-S(12) of 83.7(2)˚.  
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The packing of the molecules in the unit cell is complemented by intramolecular 

hydrogen-bonds [N(23)-H(23A)•••N(21) and C(29)-H(29C)•••S(22)] (Figure 7.39). The 

methanol solvent of crystallization is involved in three intermolecular hydrogen-bonds 

with a molecule of 4 (Table 7.3).   

 

 

Figure 7.39: Packing diagram in the unit cell of 4, showing the intramolecular hydrogen-

bonds (red dashed lines). 

 

Table 7.3: Hydrogen-bond distances (Å) and angles (˚) in 4. 

D-H•••A D-H H•••A D•••A D-H•••A 

N(23)H(23A)•••N(21) 0.88 2.04 2.70(1) 131 

C(29)H(29C)•••S(22) 0.98 2.66 3.14(2) 111 

N(13)H(13A)•••O(32) 0.88 1.98 2.84(2) 167 

C(32)H(32A)•••S(21) 0.98 2.87 3.81(2) 159 

C(32)H(32B)•••S(2) 0.98 2.51 3.44(2) 159 

 

The different coordination modes of the two mbt chelates in the structure are surprising 

and unusual. The formation of a four membered chelate ring is rare in the coordination 
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chemistry of transition metals, especially with the logical option available to Re(2) to 

coordinate to N(21), rather than N(22), in order to reduce angular strain and distortion 

around the metal. No similar examples could be found in the literature. The major 

difference in the coordination behaviour of the ligands mbt (in 4) and dbt (in 3) is that the 

thiolic sulfur atom does not act as a bridge between the two metal centres in the latter. 

 

 

7.3.8  Synthesis and characterization of [ReCl2(bte)(PPh3)2]Cl (5) 

 

The coordination behaviour of 1-(benzothiazol-2-ylidene)-3-methylthiourea (Hmbt) with 

the [Re
V
O]

3+
 core was investigated by reacting a twofold molar excess of Hmbt with 

trans-[ReOCl3(PPh3)2] in ethanol. The reaction unexpectedly led to the formation of the 

rhenium(III) complex salt [ReCl2(bte)(PPh3)2]Cl (bte = (benzothiazole-2-yl)-N-

ethylidenemethanamine). The low reaction yield of the product seems to indicate that 5 

may be the result of a disproportionation reaction.  

 

The formation of bte from Hmbt is surprising and an explanation for a plausible reaction 

pathway would be highly speculative. However, it is thought that a methanol solvent 

molecule, as well as an oxygen atom (dissociated from the [Re
V
O]

3+
 starting material) 

could have played a role in the transformation of the Hmbt ligand to form bte. The bte 

ligand acts as a bidentate neutral chelate forming a five-membered chelate ring.  

 

Compound 5 is stable in air and in solution. It has poor solubility in most organic 

solvents and is only soluble in dichloromethane and DMF. It is a 1:1 electrolyte in DMF. 

The microanalytical data of 5 is in good agreement with its formulation.  

 

In the infrared spectrum of 5 (Figure 7.40), the benzothiazole and imine stretching 

frequencies [ν(C=N)] appear at 1491 and 1584 cm
-1 

respectively. There is no intense peak 

in the 890-1020 cm
-1

 region that can be ascribed to ν(Re=O). The medium intensity peaks 

at 393 and 430 cm
-1

 are assigned to the Re-N stretching frequencies. 
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Figure 7.40: IR spectrum of complex 5. 

 

The 
1
H NMR spectrum of 5 consists of poorly resolved peaks with paramagnetic shifts 

and line broadening of the signals. The signal furthest downfield at 9.78 ppm is assigned 

to the methine proton. The signals of the aromatic protons of the bte chelate occur as two 

one-proton doublets (at 8.19 and 8.53 ppm) and a two-proton multiplet (in the 7.78-7.92 

ppm region). The multiplet in the 7.10-7.69 ppm region integrates for the 30 protons of 

the two triphenylphosphines. The UV-Vis spectrum of 5 in DMF shows intraligand 

charge transfer bands at 310 and 328 nm. A ligand-to-metal charge transition is observed 

at 384 nm.  

 

The molecular structure of the complex cation of 5 is illustrated in Figure 7.41. The 

rhenium(III) atom lies at the centre of a distorted octahedron. The basal plane is defined 

by the two chloride atoms and two imino nitrogen atoms. The two phosphorus atoms are 

in trans axial positions.  Distortions from octahedral environment results in a non-linear 

P(1)-Re-P(2) axis of  176.87(8)˚, with the trans angles Cl(1)-Re-N(2) = 170.8(5)˚ and 

Cl(2)-Re-N(1) = 171.5(3)˚ also deviating from linearity. The rhenium atom lies 0.028 Å 

out of the mean equatorial plane towards P(2). The bte ligand forms a five-membered 

chelate ring with the N(1)-Re(1)-N(2) bite angle of 76.8(6)˚. The two chlorides are in cis 
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sites relative to each other [Cl(1)-Re-Cl(2) = 94.2(1)˚]. The Re-Cl bond distances are 

different [Re-Cl(1) = 2.435(3) Å and Re-Cl(2) = 2.341(3) Å] and within the range 

[2.34(2)-2.44(2) Å] found for rhenium complexes containing phoshine ligands [32]. 

 

 

Figure 7.41: An ORTEP view of 5 showing 50% probability displacement ellipsoids and 

the atom labeling. Aromatic hydrogens of the triphenylphoshine rings are omitted for 

clarity. 

 

The Re-N(2) = 2.09(1) Å bond length falls within the range observed [2.05-2.12 Å] for 

the Re-N(imine) bonds [33], while the Re-N(1) bond length is slightly longer at 2.149(9) 

Ǻ. The N(2)-C(3) bond length of 1.29(2) Å (a double bond) and the C(2)-N(2)-C(3) = 

120(1)˚ leave no doubt that N(2) is an sp
2
-hybridized imino coordinated nitrogen. The C-

C bond lengths in the C(11)-C(16) ring [average = 1.38(2) Å] are typical for aromatic 
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systems. All the hydrogen-bonds in the molecules involve C-H bonds, and as such will 

not be discussed. 

 

 

7.3.9  Synthesis and characterization of [Re(CO)3(bmb)][Re2(CO)6Cl3] (6) 

 

The reaction of the potentially tridentate ligand 2,2’-(oxybis(methylene)) 

bis(benzimidazole) (bmb) with [Re(CO)5Cl] in toluene under nitrogen produced 

[Re(CO)3(bmb)][Re2(CO)6Cl3] (6), as described by the equation: 

 

3[Re(CO)5Cl]     +     bmb                   [Re(CO)3(bmb)][Re2(CO)6Cl3]    +   6CO 

 

The complex salt 6 exhibits poor solubility in polar and non-polar organic solvents and 

only dissolves in DMF and dimethylsulfoxide upon heating. It is air stable, diamagnetic, 

and is a 1:1 electrolyte in DMF (ΛM = 75 ohm
-1

cm
2
mol

-1
). Transparent crystals of 6 were 

produced by allowing a toluene solution of the compound to slowly evaporate at room 

temperature. 

 

The infra-red spectrum of 6 displays peaks in the 1880-2130 cm
-1

 region due to ν(C=O) 

of the nine carbonyl groups present in the compound. The ν(C=N) peak observed at 1628 

cm
-1

 is at an identical position as that of the free ligand. The Re-N stretch occurs as a 

medium intensity peak at 483 cm
-1

. The 
1
H NMR spectrum of 6 displays two quartets at 

7.57 and 7.21 ppm integrating for four protons each (Figure 7.42). The ethyl protons 

[C(1)H3 and C(2)H3] appear as a singlet at 4.85 ppm and the broad two-proton singlet at 

4.10 ppm is due to the protons of the imidazole nitrogens N(2) and N(4). 

 

The electronic absorption and emission spectra of 6 is shown in Figure 7.43. Two bands 

are visible in the UV-Vis spectrum at 324 and 359 nm. These high energy bands are due 

to intraligand transitions occurring in the coordinated ligand. Upon excitation (λex = 300 

nm) of an ethanol solution of 6 at room temperature, an emission band was observed at 

375 nm due to ligand centred π* → π relaxations. 
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Figure 7.42: 
1
H NMR spectrum of 6. 

 

 
Figure 7.43: UV-Vis and emission spectra of 6. 

 

The X-ray results show that the tridentate bmb ligand is coordinated to the metal via two 

benzimidazole nitrogen atoms N(1) and N(3) and the ether oxygen O(1) (Figure 7.44). 

The rhenium atom lies in a distorted octahedral environment with the three carbonyl 

donors in a facial orientation. The distortion from an ideal octahedral geometry is due to 

the trans angles N(3)-Re(1)-C(50) = 172.7(2)˚, N(1)-Re(1)-C(52) = 169.8(2)˚ and O(1)-

Re(1)-C(51) = 174.6(1)˚ deviating from linearity. This deviation is caused by the 

constraints produced by the tridentate chelation of the bmb ligand which forms two 5-
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membered chelate rings with bite angles of N(1)-Re(1)-O(1) = 75.1(1)˚ and N(3)-Re(1)-

O(1) = 74.9(1)˚. In order for the ligand to be tridentately coordinated to the metal in a 

facial orientation, the two benzimidazole moieties twists towards one another, with the 

ligand folded at the central oxygen atom. The benzimidazole rings form a dihedral angle 

of 65.64˚ with each other (Figure 7.45). 

 

 

Figure 7.44: An ORTEP view of 6 showing 50% probability displacement ellipsoids and 

the atom labeling.  

 

The two Re(1)-N bond lengths are similar [average = 2.158(3) Å] and are typical of Re
I
-

N(imidazole) bonds [34], while the Re(1)-O bond length is longer [Re-O(1) = 2.266(3) Å]. 

Two Re(1)-C bond lengths are similar (Re(1)-C(50) = 1.933(4) Å, Re(1)-C(52) = 

1.929(4) Å) with the third being shorter (Re(1)-C(51) = 1.873(4) Å), due to the smaller 

trans effect of the oxygen O(1) atom compared to the nitrogen atoms N(1) and N(3). The 

C(1)-O(1)-C(2) bond angle of 114.3(3)˚ is larger than would be expected for a sp
3
 

hybridized oxygen atom. The Re-N(1)-C(11) and Re-N(3)-C(21) angles of 136.4(3)˚ and 

137.1(3)˚ respectively are larger than that expected for sp
2
 hybridized imine nitrogens. 
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Figure 7.45: Perspective view of [Re(bmb)(CO)3]
+ 

 depicting the intersection of the 

planes through the benzimidazole rings. 

 

Surprisingly, the [Re(bmb)(CO)3]
+ 

cation in the complex salt 6 is accompanied by the 

trichloro bridged [Re2Cl3(CO)6]
-
 as the counter-anion, instead of the expected chloride 

ion. The presence of the [Re2Cl3(CO)6]
-
 anion as a counter-ion to rhenium complexes is 

rare with only a few known examples in the literature. For example, the reaction of 

hexakis(3,5-dimethylpyrazolyl)cyclotriphosphazene [P3N3(3,5-Me2Pz)6] with 

[Re(CO)5Cl] in toluene led to the formation of fac-[Re(CO)3{P3N3(3,5-

Me2Pz)6}][Re2Cl3(CO)6] [35]. [Re(CO)5Cl] is known to undergo dimerization in aromatic 

solvents like hexamethylbenzene [C6Me6] resulting in [Re(CO)3(C6Me6)][Re2Cl3(CO)6] 

[36] being formed. The presence of [Re2Cl3(CO)6]
-
 as the counter-ion instead of chloride 

may therefore be attributed to the reaction being conducted in an aromatic solvent 

(toluene). All six Re-C(carbonyl) bond lengths [average = 1.898(5) Å] of [Re2Cl3(CO)6]
-
 

fall in the range observed for rhenium(I) complexes [26, 31]. 
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7.3.10  Synthesis and characterization of fac-[Re(CO)3(btp)Cl] (7) 

 

The 2,9-bis(benzothiazol-2-yl)-1,10-phenanthroline (btp) ligand contains the 1,10-

phenanthroline moiety which is ideal to coordinate as a NN-donor chelate to the Re(I) 

core, with the uncoordinated benzothiazole groups free to function as a possible 

biological agent. The reaction of btp with [Re(CO)5Cl] resulted in the ligand substitution 

of two carbonyls to produce fac-[Re(CO)3(btp)Cl], according to the following equation: 

 

[Re(CO)5Cl]         +         btp                  fac-[Re(CO)3(btp)Cl]         +         2CO 

 

Orange platelets of complex 7 were obtained by the slow diffusion of hexane into a 

dichloromethane solution of the compound. The complex is stable in air and is a non-

electrolyte in DMF. It has poor solubility in most organic solvents and is only soluble in 

ethanol, DMF and dimethylsulfoxide. 

 

The infrared spectrum of 7 is characterized by three intense peaks in the 1880-2020 cm
-1

 

region, typical of ν(C=O) of the fac-[Re(CO)3]
+
 unit. The strong peak at 1579 cm

-1
 is due 

to the ν(C=N) of the benzothiazole units and the medium intensity peak at 486 cm
-1

 is 

attributed to ν(Re-N). The aromatic region of the 
1
H NMR spectrum of 7 displays seven 

two-proton signals corresponding to the 14 protons of the coordinated btn ligand (Figure 

7.46). These signals show magnetic equivalence of the protons, emphasizing the 

symmetry of the complex. The signals of the six protons of the phenanthroline moiety 

appear as two doublets (at 8.58 and 9.22  ppm) and a singlet (at 8.52 ppm) and are shifted 

relative to the free ligand, implying that coordination occurs through the two 

phenanthroline nitrogen atoms only, with the benzothiazole groups remaining 

uncoordinated. The two two-proton doublets (at 8.26 and 8.39 ppm) and two two-proton 

triplets (at 7.73 and 7.65 ppm) are due to the eight protons of the two benzothiazole units. 
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Figure 7.46: Overlay 
1
H NMR spectra of ligand btp (red) and complex 7 (blue). 

 

The UV-Vis spectrum of 7 in DMF shows a broad intra-ligand charge transfer transition 

(π  π
*
) in the 300-400 nm region (Figure 7.47). This transition appears as four 

separate bands in the UV-Vis spectrum of the free ligand. The photoexcitation of an 

ethanol solution of 3 at room temperature (λex = 350 nm) gives rise to blue emissions 

(416 nm), which may be attributed to ligand-centred π*  π relaxations [28-30]. 

 

 

Figure 7.47: Overlay UV-Vis spectra of ligand btp (blue) and complex 7 (red) and 

emission spectrum of complex 7 (green dashed line). 
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A perspective view of the asymmetric unit of 7 is shown in Figure 7.48. The basal plane 

is defined by the phenanthroline nitrogens [N(2) and N(2
i
)] and two carbon atoms [C(90) 

and C(90
i
)]. The rhenium atom is lifted out of this plane by 0.13 Å towards Cl(1). 

Complex 7 is totally symmetric around the Cl(1)-Re-C(91) axis [Cl(1)-Re-C(91) = 

179.3(2)˚].  The two Re-N bonds are identical [2.212(3) Å], as are the two Re-C(90) 

bond lengths [1.910(5) Å]. The N(2)-Re-N(2
i
) bite angle equals 75.1(1)˚, with the trans 

angle N(2)-Re-C(90) = 169.9(2)˚. It is noticeable that the repulsion between Cl(1) and the 

two nitrogen atoms are more severe [Cl(1)-Re-N(2) = 81.06(9)˚] than with the carbon 

atoms C(90) [Cl(1)-Re-C(90) = 90.5(1)˚]. In the thiazole rings, the N(1)-C(1) bond is a 

distinct double bond [1.291(5) Å]. The two five-membered thiazole rings 

[C(1)N(1)C(12)C(11)S(1)] each form a dihedral angle of 42.64˚ with the 

C(31)C(32)C(33)C(34)C(35)N(2) plane of the phenanthroline ring. The least-square 

planes of the two thiazole rings intersect at an angle of 61.21˚. 

 

 

Figure 7.48: An ORTEP view of 7 showing 50% probability displacement ellipsoids and 

the atom labeling. 
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The packing of complex 7 in the unit cell is complemented by a network of intra- and 

intermolecular hydrogen-bonds and π-π stacking (Figure 7.50, Table 7.4). The chloride 

atom connects to two adjacent molecules via intermolecular bonds with the phenyl 

protons C(16)H(16). A second intermolecular hydrogen-bond exists between a carbonyl 

oxygen O(90) and a phenyl proton C(14)H(14). The sulfur atom S(1) of the benzothiazole 

moieties are involved in intramolecular hydrogen-bonds with the phenanthroline proton 

C(32)H(32). The phenanthroline rings are π-π stacked with centroid to centroid distances 

of 3.445 Å.  

 

 

Figure 7.50: Packing diagram of 7 in the unit cell illustrating hydrogen-bonds (red 

dashed lines) and π-π interactions (blue dashed lines). 

 

Table 7.4: Hydrogen-bond distances (Å) and angles (˚) in mbc. 

D-H•••A D-H H•••A D•••A D-H•••A 

C(16)H(16)•••Cl(1) 0.95 2.81 3.514(5) 132 

C(14)H(14)•••O(90) 0.95 2.56 3.259(7) 131 

C(32)H(32)•••S(1) 0.95 2.84 3.177(4) 102 
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The electrochemical processes of the rhenium(I) complexes were studied via cyclic 

voltammetry in the -1.50 to 1.50 V region. Complexes 2 and 7 revealed similar oxidation 

peaks at 1.35 and 1.32 V respectively. There is no cathode counter peak associated with 

these oxidative waves indicating that the processes are irreversible. The process is 

ascribed to the Re(I)/Re(II) redox couple and is slightly outside the range observed [0.80 

to 1.30 V] for Re(I) based oxidative processes under similar conditions [28, 30, 37]. For 

complex 3, the oxidative peak was observed at 1.06 V. The cyclic voltammograms of 4 

and 6 displayed no redox processes in the potential window scanned (1.50 to -1.50 V) 

under identical conditions. 
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Table 7.5: Crystal and structure refinement data for mbc. 

Chemical formula C9H8N2S3   

Formula weight 240.38   

Crystal system Monoclinic   

Space group P21/c         

a (Å) 10.6891(3)     

b (Å) 4.8085(1)    

c (Å) 22.2726(5)   

β (˚) 116.195(1)            

Volume (Å
3
) 1027.21(4)   

Z 4   

Density (Calcd.) (gcm
-3

) 1.554   

Absorption coefficient (mm
-1

) 0.679   

F (000) 496 

Crystal size (mm) 0.06 x 0.18 x 0.26   

θ range 2.1-28.3   

Index ranges   h -14/14 

                       k -6/4 

                       l -29/29 

Reflections measured 9757 

Independent/observed reflections 2566/2177 

Data/parameters 2566/132   

Goodness-of-fit on F
2 

1.06 

Final R indices [I > 2 σ(I)] 0.0330  

(wR2 =0.0958) 

Largest diff. peak/hole (eÅ
-3

) 0.58 /-0.30 
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Table 7.6: Crystal and structure refinement data for Hmbt. 

Chemical formula C9H9N3S2   

Formula weight 223.33   

Crystal system Monoclinic   

Space group C2/c 

a (Å) 15.6060(8) 

b (Å) 5.8282(3) 

c (Å) 22.510 (1) 

β (˚) 96.903(2) 

Volume (Å
3
) 2032.6(2) 

Z 8 

Density (Calcd.) (gcm
-3

) 1.460 

Absorption coefficient (mm
-1

) 0.485 

F (000) 928 

Crystal size (mm) 0.06 x 0.18 x 0.56   

θ range 2.6-28.3   

Index ranges   h -20/20 

                       k -7/5 

                       l -29/29 

Reflections measured 8754 

Independent/observed reflections 2497/1970 

Data/parameters 2497/136   

Goodness-of-fit on F
2 

1.04 

Final R indices [I > 2 σ(I)] 0.0314 

(wR2 = 0.0890) 

Largest diff. peak/hole (eÅ
-3

)  0.24/-0.26 
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Table 7.7: Crystal and structure refinement data for btp. 

Chemical formula C26H14N4S2.C2H3N   

Formula weight 487.61   

Crystal system Monoclinic  

Space group P21/c         

a (Å) 22.1345(6)     

b (Å) 4.9925(1)    

c (Å) 20.5273(5)   

β (˚) 90.767(1)            

Volume (Å
3
) 2268.20(9)   

Z 4   

Density (Calcd.) (gcm
-3

) 1.428   

Absorption coefficient (mm
-1

) 0.264   

F (000) 1008 

Crystal size (mm) 0.10 x 0.45 x 0.68   

θ range 2.2-28.3   

Index ranges   h -27/29 

                       k -6/6 

                       l 27/27   

Reflections measured 20787 

Independent/observed reflections 5582/4330 

Data/parameters 5582/317  

Goodness-of-fit on F
2 

1.03 

Final R indices [I > 2 σ(I)] 0.0429  

(wR2 = 0.1238) 

Largest diff. peak/hole (eÅ
-3

)  0.37/-0.27 
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Table 7.8: Crystal and structure refinement data for 1. 

Chemical formula C36H36N8O4I2S2Re2 

Formula weight 1335.08 

Crystal system Monoclinic 

Space group P21/c 

a (Å) 13.7528(4) 

b (Å) 11.3835(3) 

c (Å) 14.0391(3) 

β (˚) 118.451(2) 

Volume (Å
3
) 1932.43(9) 

Z 2 

Density (Calcd.) (gcm
-3

) 2.295 

Absorption coefficient (mm
-1

) 8.016 

F (000) 1256 

Crystal size (mm) 0.01 x 0.06 x 0.06   

θ range 3.3-27.6 

Index ranges   h -17/17 

                       k -14/14 

                       l -18/18 

Reflections measured 31213 

Independent/observed reflections 4452/3908 

Data/parameters 4452/244 

Goodness-of-fit on F
2 

1.09 

Final R indices [I > 2 σ(I)] 0.0231 

(wR2 = 0.0489) 

Largest diff. peak/hole (eÅ
-3

) 1.43 /-1.17 
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Table 7.9: Crystal and structure refinement data for 2. 

Chemical formula C21H16BrN2O3S3Re   

Formula weight 706.67 

Crystal system Monoclinic 

Space group P21/n 

a (Å) 7.4762(2) 

b (Å) 10.6438(3) 

c (Å) 28.180(1) 

β (˚) 92.975(3) 

Volume (Å
3
) 2239.4(1) 

Z 4 

Density (Calcd.) (gcm
-3

) 2.096 

Absorption coefficient (mm
-1

) 7.517 

F (000) 1352 

Crystal size (mm) 0.05 x 0.12 x 0.25 

θ range 4.3-26.3 

Index ranges   h -9/5 

                       k -13/12 

                       l -28/35 

Reflections measured 8858 

Independent/observed reflections 4524/3514 

Data/parameters 4524/280 

Goodness-of-fit on F
2 

0.88 

Final R indices [I > 2 σ(I)] 0.0270 

(wR2 = 0.0477) 

Largest diff. peak/hole (eÅ
-3

) 0.99/-0.96 
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Table 7.10: Crystal and structure refinement data for 3. 

Chemical formula C36H18N8O6S6Re2 

Formula weight 1223.43 

Crystal system Triclinic 

Space group P-1 

a (Å) 15.9808(3) 

b (Å) 17.3856(3) 

c (Å) 19.0582(4) 

α (˚) 76.456(1) 

β (˚) 89.527(1) 

γ (˚) 64.318(1) 

Volume (Å
3
) 4612.9 (2) 

Z 4 

Density (Calcd.) (gcm
-3

) 1.762 

Absorption coefficient (mm
-1

) 5.564 

F (000) 2336 

Crystal size (mm) 0.07 x 0.11 x 0.28 

θ range 1.1-28.4 

Index ranges   h -18/21 

                       k -23/23 

                       l -25/25   

Reflections measured 84106 

Independent/observed reflections 23007/17638 

Data/parameters 23007/1045 

Goodness-of-fit on F
2 

1.08 

Final R indices [I > 2 σ(I)] 0.0482 

(wR2 = 0.1644) 

Largest diff. peak/hole (eÅ
-3

) 7.50/-6.34 
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Table 7.11: Crystal and structure refinement data for 4. 

Chemical formula C24H16N6O6S4Re2.2CH3OH 

Formula weight 1049.21   

Crystal system Triclinic 

Space group P-1 

a (Å) 11.3173(5) 

b (Å) 12.2880(5) 

c (Å) 12.6402(5)   

α (˚) 79.325(2) 

β (˚) 74.109(2) 

γ (˚) 77.634(2) 

Volume (Å
3
) 1636.4(1) 

Z 2 

Density (Calcd.) (gcm
-3

) 2.129   

Absorption coefficient (mm
-1

) 7.702   

F (000) 1000 

Crystal size (mm) 0.08 x 0.16 x 0.29   

θ range 1.7-28.3   

Index ranges   h -14/14 

                       k -16/13 

                       l -15/16 

Reflections measured 26244 

Independent/observed reflections 7773/5683 

Data/parameters 7773/421   

Goodness-of-fit on F
2 

1.14 

Final R indices [I > 2 σ(I)] 0.0536  

(wR2 = 0.1382) 

Largest diff. peak/hole (eÅ
-3

) 5.91/-2.97 
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Table 7.12: Crystal and structure refinement data for 5. 

Chemical formula C46H40Cl2N2P2SClRe  

Formula weight 1007.37   

Crystal system Orthorhombic 

Space group Pbca 

a (Å) 10.554(5) 

b (Å) 22.945(5) 

c (Å) 37.314(5) 

Volume (Å
3
) 9036(5)   

Z 8 

Density (Calcd.) (gcm
-3

) 1.481   

Absorption coefficient (mm
-1

) 3.017   

F (000) 4016 

Crystal size (mm) 0.14 x 0.16 x 0.51   

θ range 2.2-28.3 

Index ranges   h -14/13 

                       k -30/30 

                       l -49/33   

Reflections measured 48227 

Independent/observed reflections 11227/7759 

Data/parameters 11227/473   

Goodness-of-fit on F
2 

1.12   

Final R indices [I > 2 σ(I)] 0.0735 

(wR2 = 0.2135) 

Largest diff. peak/hole (eÅ
-3

) 2.87/-1.89 
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Table 7.13: Crystal and structure refinement data for 6. 

Chemical formula C19H14N4O4Re.C6Cl3O6Re2 

Formula weight 1195.38 

Crystal system Triclinic 

Space group P-1 

a (Å) 9.1780(3) 

b (Å) 13.4840(5) 

c (Å) 14.4030(5) 

α (˚) 100.571(1) 

β (˚) 108.448(1) 

γ (˚) 107.189(1) 

Volume (Å
3
) 1538.1(1) 

Z 2 

Density (Calcd.) (gcm
-3

) 2.581 

Absorption coefficient (mm
-1

) 12.098 

F (000) 1096 

θ range 1.9-28.0   

Index ranges   h -11/12 

                       k -17/16 

                       l -19/19 

Reflections measured 26382 

Independent/observed reflections 7326/6878 

Data/parameters 7326/414 

Goodness-of-fit on F
2 

1.16 

Final R indices [I > 2 σ(I)] 0.0208 

(wR2 = 0.0531) 

Largest diff. peak/hole (eÅ
-3

) 0.86/-1.63 
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Table 7.14: Crystal and structure refinement data for 7. 

Chemical formula C29H14ClN4O3S2Re   

Formula weight 752.24 

Crystal system Monoclinic 

Space group C2/m 

a (Å) 17.8280(3) 

b (Å) 16.2170(3) 

c (Å) 10.7570(2) 

β (˚) 100.471(1) 

Volume (Å
3
) 3058.2 (1) 

Z 4 

Density (Calcd.) (gcm
-3

) 1.634 

Absorption coefficient (mm
-1

) 4.233 

F (000) 1456 

θ range 1.7-28.4 

Index ranges   h -21/23 

                       k -21/21 

                       l -14/14   

Reflections measured 24559 

Independent/observed reflections 3186/3186 

Data/parameters 3940/187 

Goodness-of-fit on F
2 

0.97 

Final R indices [I > 2 σ(I)] 0.0337 

(wR2 = 0.0713) 

Largest diff. peak/hole (eÅ
-3

) 1.40/-1.10 
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Table 7.15: Selected bond lengths (Å) and angles (˚) for mbc. 

Bond lengths 

S(1)-C(1)        1.75(2)       C(13)-C(14)         1.387(3) 

S(1)-C(11)         1.752(2)       C(14)-C(15)         1.396(3) 

S(2)-C(2)        1.654(2)       C(15)-C(16)        1.383(3) 

S(3)-C(2)          1.764(2)       S(3)-C(3)          1.781(2)      

C(11)-C(16)         1.389(3)    N(1)-C(1)          1.340(2)      

C(11)-C(12)         1.388(2)  N(2)-C(1)          1.337(3)      

C(12)-C(13)         1.392(3)  N(2)-C(2)          1.350(2)      

Bond angles 

C(2)-S(3)-C(3)        103.7(1)     N(1)-C(1)-N(2)        119.1(2)    

C(1)-N(2)-C(2)        121.1(2)     S(2)-C(2)-N(2)        129.1(2)    

S(1)-C(1)-N(1)        111.0(1)     S(2)-C(2)-S(3)        123.3(1)    

C(1)-N(1)-C(12)       115.8(2)     N(1)-C(12)-C(11)       111.6(2)    

C(1)-S(1)-C(11)         90.31(9)  S(1)-C(11)-C(12)       111.3(2)    
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Table 7.16: Selected bond lengths (Å) and angles (˚) for Hmbt. 

Bond lengths 

S(1)-C(1)        1.752 (2)       C(13)-C(14)         1.391(3) 

S(2)-C(2)        1.685(1)       C(14)-C(15)         1.382(2) 

N(1)-C(1)        1.296(2)       C(15)-C(16)         1.395(2) 

C(11)-C(16)         1.409(2)       N(2)-C(1)          1.373(2)      

C(11)-C(12)         1.388(2)  N(2)-C(2)        1.372 (2)      

C(12)-C(13)         1.384(3)  N(3)-C(2)        1.32(2)      

Bond angles 

C(1)-S(1)-C(11)         88.32(8)     S(1)-C(1)-N(1)        117.1(1)    

C(1)-N(1)-C(16)       109.8(1)     N(1)-C(1)-N(2)        125.7(1)    

C(1)-N(2)-C(2)        127.5(1)     N(2)-C(2)-N(3)        116.8(1)    

C(2)-N(3)-C(3)        123.1(1)     S(2)-C(2)-N(3)        123.5(1)    

S(1)-C(11)-C(16)       109.7(1)     N(1)-C(16)-C(11)       115.1(1) 
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Table 7.17: Selected bond lengths (Å) and angles (˚) for btp. 

Bond lengths 

N(3)-C(13) 1.353(2)       N(2)-C(12) 1.354(2)      

N(3)-C(19) 1.327(2)       N(2)-C(8) 1.331(2)      

N(4)-C(20) 1.297(2)       N(1)-C(7) 1.299(2)      

N(4)-C(21) 1.387(3)       N(1)-C(1) 1.382(2) 

S(2)-C(20) 1.747(2)       S(1)-C(7) 1.745(2)      

S(2)-C(22) 1.734(2)       S(1)-C(2) 1.735(2)      

C(20)-C(19) 1.471(3)  C(7)-C(8) 1.464(3)      

Bond angles 

N(3)-C(13)-C(12) 119.0(2)  N(2)-C(12)-C(13) 118.7(2) 

N(3)-C(19)-C(20) 116.5(2)  N(2)-C(8)-C(7) 116.2(2)    

C(20)-S(2)-C(22) 88.76(9)  C(2)-S(1)-C(7) 88.70(8)    

C(20)-N(4)-C(21) 110.1(2)     C(1)-N(1)-C(7) 110.3(2)    

C(13)-N(3)-C(19) 117.3(2)  C(8)-N(2)-C(12) 117.7(2) 

N(4)-C(21)-C(22) 115.4(2)  N(1)-C(1)-C(2) 115.3(2)    

S(2)-C(22)-C(21) 109.2(1)  S(1)-C(2)-C(1) 109.3(1) 
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Table 7.18: Selected bond lengths (Å) and angles (˚) for 1. 

Bond lengths 

Re(1)-S(1)        2.388(1)        Re(1)-O(2
i
)       2.109(3)      

Re(1)-O(1)          1.721(2)       S(1)-C(1)          1.819(4)      

Re(1)-O(2)          1.859(2)       S(1)-C(10)        1.821(4)      

Re(1)-N(1)          2.133(3)       N(1)-C(3)          1.333(5)      

Re(1)-N(3)                  2.106(3)                N(3)-C(12)         1.328(5)       

Bond angles 

S(1)-Re(1)-O(1)          95.34(9)     O(1)-Re(1)-N(3)         89.8(1)    

S(1)-Re(1)-O(2)          94.50(8)     S(1)-C(1)-C(2)         109.5(3) 

S(1)-Re(1)-N(1)          85.62(9)     N(1)-Re(1)-N(3)        176.4(1)   

S(1)-Re(1)-N(3)          91.07(7)     Re(1)-S(1)-C(1)        98.5(1)    

O(1)-Re(1)-O(2)        170.2(1)     Re(1)-S(1)-C(10)       110.3(1) 

O(1)-Re(1)-N(1)         89.1(1)     C(10)-C(11)-C(12)         114.2(3) 

S(1)-Re(1)-O(2
i
) 170.39(7)  O(1)-Re(1)-O(2

i
) 94.1(1) 
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Table 7.19: Selected bond lengths (Å) and angles (˚) for 2. 

Bond lengths 

Re(1)-Br(1) 2.6327(5)        Re(1)-C(3)    1.896(5)            

Re(1)-S(1)        2.491(1)       S(1)-C(4)          1.798(4)      

Re(1)-N(1)          2.222(3)       S(1)-C(13)         1.809(4)      

Re(1)-C(1)          1.922(5)       N(1)-C(6)     1.315(5) 

Re(1)-C(2)          1.960(5)       C(4)-C(5)          1.521(6) 

Bond angles 

S(1)-Re(1)-N(1)          88.66(9)     S(1)-Re(1)-C(1)        175.1(1)    

C(4)-S(1)-C(13)         101.7(2)     S(1)-Re(1)-C(2)         89.5(1) 

N(1)-Re(1)-C(3)       177.0(2)     C(6)-N(1)-C(8)          110.8(3) 

Br(1)-Re(1)-S(1)          93.24(3)  S(1)-C(4)-C(5)           113.4(3) 

Br(1)-Re(1)-N(1)          86.96(8)  Re(1)-N(1)-C(8)          123.7(3)    

Br(1)-Re(1)-C(2)        177.2(1)     C(4)-C(5)-C(6)          112.2(3) 
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Table 7.20: Selected bond lengths (Å) and angles (˚) for 3. 

Bond lengths 

Re(1)-S(12)         2.510(2)        Re(2)-N(21)         2.214(6)      

Re(1)-N(11)         2.235(6)       Re(2)-C(21)        1.92(1)      

Re(1)-N(24)         2.263(6)      Re(2)-C(22)        1.908(9)      

Re(1)-C(11)       1.89 (1)       Re(2)-C(23)        1.915(8)      

S(22)-C(208)        1.737(9)  S(12)-C(108)        1.735(8)      

Re(1)-C(12)        1.92(1)       N(12)-C(108)       1.29(1)      

Re(1)-C(13)         1.912(9)       N(13)-C(108)       1.37(1)      

Re(2)-S(22)         2.519(2)       N(22)-C(208)           1.29(1)      

Re(2)-N(14)         2.243(7)       N(23)-C(208)       1.39(1)      

Bond angles 

S(12)-Re(1)-N(11)        81.9(2)     S(22)-Re(2)-N(14)        91.8(2)    

S(12)-Re(1)-C(12)         177.8(3)     S(22)-Re(2)-N(21)        80.8(2)    

S(12)-Re(1)-C(13)          92.4(3)     S(22)-Re(2)-C(21)         179.0(2)    

N(11)-Re(1)-N(24)          86.7(2)     S(22)-Re(2)-C(23)          94.3(3) 

N(11)-Re(1)-C(13)         174.2(3)     N(14)-Re(2)-C(22)         178.1(3)    

N(24)-Re(1)-C(11)         178.7(3)     N(21)-Re(2)-C(23)         173.9(3)    

S(12)-Re(1)-N(24) 92.0(2)  N(14)-Re(2)-N(21) 86.0(2) 
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Table 7.21: Selected bond lengths (Å) and angles (˚) for 4. 

Bond lengths 

Re(1)-S(12)         2.481(2)       Re(2)-C(5)         1.92(1)      

Re(1)-S(22)         2.572(3)       Re(2)-C(6)         1.92(1)      

Re(1)-N(11)         2.205(9)       N(12)-C(18)        1.30(2) 

Re(1)-C(1)         1.92(1)       N(22)-C(28)        1.36(2) 

Re(1)-C(3)         1.92(1)       N(13)-C(18)        1.32(2) 

Re(2)-S(12)         2.516(2)  N(23)-C(28)        1.31(2) 

Re(2)-N(22)        2.19(1)       S(12)-C(18)        1.79(1) 

Re(2)-C(4)         1.93(1)       S(22)-C(28)        1.77(1) 

Bond angles 

S(12)-Re(1)-S(22)         81.74(8)  S(12)-Re(2)-S(22)         81.50(8)   

S(12)-Re(1)-N(11)          83.7(2)     C(17)-N(12)-C(18)        125(1) 

S(12)-Re(1)-C(1)           89.1(3)  S(12)-Re(2)-N(22)          78.3(3)    

S(12)-Re(1)-C(2)          175.2(4)    S(12)-Re(2)-C(5)           91.1(4)    

Re(1)-S(12)-Re(2)         98.45(9)  S(12)-Re(2)-C(6)          172.8(4)    

S(22)-Re(1)-C(1)          170.8(3)   S(22)-Re(2)-N(22)          65.1(3)    

Re(1)-S(22)-Re(2)         95.29(8)  S(22)-Re(2)-C(4)          101.5(4)    

S(22)-Re(1)-C(3)           92.8(3)     S(22)-Re(2)-C(5)          167.9(3)    

N(11)-Re(1)-C(2)           92.6(4)     N(22)-Re(2)-C(4)          166.6(4)    

N(11)-Re(1)-C(3)          175.0(4)      N(22)-Re(2)-C(6)           94.6(5)    
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Table 7.22: Selected bond lengths (Å) and angles (˚) for 5. 

Bond lengths 

Re(1)-Cl(1)         2.435(3)       N(2)-C(3)         1.29(2)      

Re(1)-Cl(2)         2.341(3)       C(1)-C(2)         1.32(2)      

Re(1)-P(1)          2.486(2)  C(11)-C(12) 1.40(2) 

Re(1)-P(2)          2.489(3)       C(12)-C(13) 1.38(2) 

Re(1)-N(1)          2.149(9)  C(13)-C(14) 1.37(2) 

Re(1)-N(2)         2.09(1)       C(14)-C(15) 1.38(3)      

N(2)-C(2)           1.42(2)  C(15)-C(16) 1.36(2)      

N(1)-C(1)         1.32(2)       C(11)-C(16) 1.37(2)      

Bond angles 

P(1)-Re(1)-P(2)        176.87(8)  Cl(2)-Re(1)-N(2)           94.6(5)    

N(1)-Re(1)-N(2)           76.8(6)     Cl(1)-Re(1)-N(1)           94.3(2) 

Cl(1)-Re(1)-Cl(2)        94.2(1)     N(2)-C(2)-C(1)         116(1) 

Cl(2)-Re(1)-N(1)          171.5(3)     C(2)-N(2)-C(3)         120(1) 

Cl(1)-Re(1)-N(2)          170.8(5)  C(1)-N(1)-C(11)         108.9(9) 
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Table 7.23: Selected bond lengths (Å) and angles (˚) for 6. 

Bond lengths 

Re(1)-O(1)         2.266(3)        O(1)-C(1)          1.455(5)      

Re(1)-N(1)          2.159(3)        O(1)-C(2)          1.456(5)      

Re(1)-N(3)          2.157(3)        N(4)-C(4)          1.339(6) 

Re(1)-C(50)         1.933(4)        N(3)-C(4)          1.322(6) 

Re(1)-C(51)         1.873(4)               N(2)-C(3)          1.345(6) 

Re(1)-C(52)         1.929(4)       N(1)-C(3)         1.319(5) 

Bond angles 

O(1)-Re(1)-N(1)          75.1(1)     N(1)-Re(1)-C(52)       169.8(2)    

O(1)-Re(1)-N(3)        74. 9(1)     N(3)-Re(1)-C(50)       172.7(2)    

O(1)-Re(1)-C(51)       174.6(1)     N(1)-C(3)-N(2)          112.3(3)    

O(1)-Re(1)-C(52)         95.2(2)     N(3)-C(4)-N(4)          112.6(4)    

N(1)-Re(1)-N(3)         80.6(1)     Re(1)-N(1)-C(11) 136.4(3) 

N(1)-Re(1)-C(51)       101.1(2)     Re(1)-N(3)-C(21) 137.1(3) 
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Table 7.24: Selected bond lengths (Å) and angles (˚) for 7. 

Bond lengths 

Re(1)-Cl(1)       2.479(1)       Re(1)-N(2
i
)        2.212(3)      

Re(1)-N(2)          2.212(3)       Re(1)-C(90
i
)      1.910(5)      

Re(1)-C(90)         1.910(5)       S(1)-C(1)          1.742(4)      

Re(1)-C(91)         1.916(6)       N(1)-C(1)          1.291(5)      

Bond angles 

Cl(1)-Re(1)-N(2)          81.06(9)     N(2)-Re(1)-C(90
i
)      98.3(2)    

Cl(1)-Re(1)-C(91)         179.3(2)     N(2
i
)-Re(1)-C(90

i
)     169.9(2)    

Cl(1)-Re(1)-N(2
i
)       81.06(9)     C(1)-S(1)-C(11)          88.7(2)        

N(2)-Re(1)-C(90)       169.9(2)     C(31)-N(2)-C(35)         117.4(3)    

N(2)-Re(1)-N(2a)      75.1(1)     S(1)-C(1)-N(1)          116.7(3)    

Cl(1)-Re(1)-C(90) 90.5(1)  Cl(1)-Re(1)-C(90
i
) 90.5(1) 
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Chapter 8 

 

Conclusion and Future Work  

 

This study presents the successful synthesis of a variety of rhenium complexes containing 

bidentate aromatic ligands and derivatives of heterocyclic ligands. The complexes were 

spectrally and structurally characterized. 

 

The biologically active compound 4-aminoantipyrine and its derivatives proved to be 

suitable ligands for coordination to rhenium. This work can be extended to include other 

derivatives of pyrazolone, which is an active moiety in pharmacological activity. For 

example, acyl pyrazolone compounds (Figure 8.1) has been extensively studied as 

chelating ligands towards main group and transition metals [1, 2]. However, very few 

rhenium complexes containing this class of ligands are known.  
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R1, R2, R3 = H or CH3

 

Figure 8.1: Structural drawing of acyl pyrazolone derivatives. 
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Chapters 4 and 5 report the reactions of bidentate aromatic ligands towards the fac-

[Re
I
(CO)3]

+
 and [Re

V
O]

3+
 cores. Novel rhenium complexes were isolated and found to 

have unusual structural and chemical properties. These bidentate ligands can be 

derivatized to incorporate amine and carboxylic acid fragments for potential use as a 

bifunctional chelator to the metal center. Therefore, the discovery of rhenium complexes 

incorporating this class of ligand systems has synthetic significance in radiopharmacy. 

 

A variety of 1,3-benzothiazole, benzimidazole and benzoxazole derivatives were 

synthesized and characterized in Chapters 6 and 7. These heterocyclic compounds were 

reacted with rhenium(I) and (V) precursors to produce novel complexes. This study can 

be expanded by synthesizing heterocyclic ligands from compounds like the bioactive 2,5-

diamino-1,3,4-thiadiazole (Figure 8.2), which contains more than two heteroatoms [3], 

and investigating the coordination chemistry of these derivatives towards rhenium. 

 

S

NN

H2N NH2

 

Figure 8.2: Structure of 2,5-diamino-1,3,4-thiadiazole. 
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