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SUMMARY 

 

Field studies were conducted at Lincoln University of Missouri (USA) and Hokkaido 

University (Japan) to:  (i) study the relationships between greenhouse gases emissions and 

soil properties, (ii) assess the influence of agricultural practices on greenhouse gas fluxes and 

soil properties and (iii) improve the quantification of greenhouse gases from soil in 

agricultural fields using geospatial technologies. Results showed that besides soil temperature 

(T), soil thermal properties such as thermal conductivity (K),  resistivity (R) and diffusivity 

(D) and soil pore spaces indices such as the pore tortuosity factor  () and the relative gas 

diffusion coefficient (Ds/Do) are controlling factors for greenhouse gases emissions. Soil 

thermal properties correlated with greenhouse gases emissions when soil temperature could 

not. The study has found that predicted Ds/Do and  correlate with greenhouse gas fluxes 

even when the air-filled porosity and the total porosity from which they are predicted did not. 

We have also showed that Ds/Do and  can be predicted quickly from routine measurements 

of soil water and air and existing diffusivity models found in the literature. Agricultural 

practices do seriously impact greenhouse gases emissions as showed by the effect of 

mechanized tillage operations on soil physical properties and greenhouse gas fluxes in a corn 

and soybean fields. In fact, our results showed that tractor compaction increased soil 

resistance to penetration, water, bulk density and pore tortuosity while reducing air-filled 

porosity, total pore space and the soil gas diffusion coefficient. Changes in soil properties 

resulted in increased CO2, NO and N2O emissions. Finally, our results also confirmed that 

greenhouse gas fluxes vary tremendously in space and time. As estimates of greenhouse gas 

emissions are influenced by the data processing approach, differences between the different 

calculation approaches leads to uncertainty. Thus, techniques for developing better estimates 
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are needed. We have showed that Geographic Information Systems (GIS), Global Positioning 

System (GPS), computer mapping and geo-statistics are technologies that can be used to 

better understand systems containing large amounts of spatial and temporal variability. Our 

GIS-based approach for quantifying CO2, CH4 and N2O fluxes from soil in agricultural fields 

showed that estimating (extrapolating) total greenhouse gas fluxes using the “standard” 

approach – multiplying the average flux value by the total field area – results in biased 

predictions of field total greenhouse gases emissions. In contrast, the GIS-based approach we 

developed produces an interpolated map portraying the spatial distribution of gas fluxes 

across the field from point measurements and later process the interpolated map produced to 

determine flux zones. Furthermore, processing, classification and modeling enables the 

computation of field total fluxes as the sum of fluxes in different zones, therefore taking into 

account the spatial variability of greenhouse gas fluxes. 
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PART I. INTRODUCTION AND LITERATURE REVIEW 

 

CHAP 1. Introduction 

1.1. Atmospheric concentration of CO2, CH4 and N2O 

The atmospheric concentration of CO2, CH4 and N2O is ever increasing (IPPC, 2001) and a 

good deal of research has been done to estimate emissions of these greenhouse gases from 

soils. Although numerous measurements have been made, emissions from soils still show 

variability based on a number of controlling factors (Robertson et al., 2000). In fact, 

differences in soil types, moisture, temperature, season, crop type, fertilization, and other 

agricultural practices all play a part in emissions from soils. Within a particular soil type, 

static and dynamic soil properties may affect greenhouse gas emissions, but the relationship 

between these soil properties and greenhouse gas emissions is still poorly understood. In 

addition, data available to estimate anthropogenic greenhouse gas emissions are generally of 

a lower quality (IPPC, 1996). This is the case for data on greenhouse gas emissions and 

removals from agricultural fields, which are often estimated with large ranges of uncertainty. 

One of the causes of this problem is the fact that estimates of greenhouse gas emissions from 

agricultural soils are often based on few point measurements. The mean value obtained from 

few sampled points is used to compute global budgets and models.  There is therefore a need 

for approaches to improve the estimation of greenhouse gas emissions at field scale so that 

the models of emission response to climate change at a global scale can also be improved. 

Such approaches could also be used to improve methods to measure, monitor and predict 

changes in soil properties (Robert et al., 1991). Geographic Information Systems (GIS) and 

Global Positioning System (GPS), Computer mapping and Geostatistics are technologies that 

have been used to manage soil and nutrients (Robert et al., 1991; Mulla, 1991). GPS enables 

equipment operators to quickly obtain positioning information while a GIS is essentially a 
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database for managing these geographic data. The goals of this work are  (i) to improve our 

understanding on the relationship between static and dynamic soil variables and greenhouse 

gas fluxes from soil in various land use types and  (ii) to improve methods to measure, 

monitor, quantify and predict greenhouse gas fluxes from soils. Specific objectives of this 

study were to:  (i) study the relationships between greenhouse gases emissions and soil 

properties, (ii) assess the influence of agricultural practices on greenhouse gas fluxes and soil 

properties and (iii) improve the quantification of greenhouse gases from soil in agricultural 

fields using geospatial technologies.   

 

1.2. Greenhouse gas fluxes from agricultural soils 

1.2.1. Carbon dioxide (CO2) 

Soil represents about 80% of the carbon stocks in terrestrial ecosystems, ranging from 50% in 

tropical forests to 95% in tundra (IPCC 2001). The global impact of soil carbon loss due to 

agriculture is therefore considerable.  Recent estimates suggest that 50-100 Gt C (CAST, 

2004; Smith, 2004) have been lost from soils in the past few hundred years, although higher 

estimates range to 142 Gt C (Lal, 1999). Conversion of natural ecosystems to agriculture 

releases substantial CO2 to the atmosphere.  The release of CO2 from cleared vegetation that 

is burned or left to decompose is one of the most well-documented and important sources of 

the atmospheric CO2 increase.  Historically, land clearing (biomass burning) has been a major 

contributor to atmospheric CO2 loading; today it still accounts for about 25% (1.6 Gt C y-1) of 

the total global CO2 loading, which includes another 6.3 Gt C y-1 from fossil fuel use and 

cement production (IPCC 2001). Forests and savannahs newly cultivated usually lose a 

substantial fraction of their original carbon content in the decades following initial 

cultivation.  This occurs for a number of reasons: reduced plant residue inputs, tillage-

induced soil disturbance, erosion, and the creation of more favorable conditions for microbial 
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decomposition (CAST, 2004).  Generally soil carbon contents stabilize at 40-60% of original 

pre-cultivation values; the new equilibrium state is a function of climate, soil-mainly soil 

physical and chemical properties, and agronomic management factors such as tillage, crop 

types and cover, and residue management (Robertson and Paul, 2000).  Soils can also gain 

carbon.  The soil carbon balance is the net difference between carbon inputs from plant roots 

and aboveground litter (that remaining after harvest or fire), and carbon loss from microbial 

respiration and erosion. In agricultural systems, manure and compost can represent additional 

inputs. Because erosion repositions carbon in the landscape rather than converts it to CO2, 

erosion is not in itself a source of greenhouse Gas Warming potential (GWP).  Microbial 

respiration, on the other hand, is a major source of GWP – where respiration is slowed, as in 

no-till systems, carbon can accumulate at slow but significant rates to some new equilibrium 

(Paustian et al., 1997). Estimates of historic soil C loss provide a reference point for carbon 

sequestration potentials.  Models suggest that 60-80% of the soil carbon lost as CO2 could be 

regained under no-till conditions over a period of 50 years (IPCC, 1996); if this is the case, 

then as much as 60-85 Gt C could be regained by agricultural soils at a rate of about 1.1 to 

1.7 Gt C y-1.  In soils of the United States Midwest, the median rate of annual carbon gain 

under no-till is 30 gC m-2 (Franzleubbers and Stuedemann, 2002), which is equivalent to a 

GWPof-110gCO2-equivalents m-2 y-1. 

 

1.2.2. Nitrous oxide (N2O)  

Nitrous oxide is produced during nitrification and denitrification in agricultural soils.  During 

nitrification ammonium is converted to nitrite (NO2
-) and then to nitrate (NO3

-) by aerobic 

autotrophic bacteria collectively known as nitrifiers; N2O is a minor byproduct.  

Denitrification is a soil microbial process in which nitrate is converted to dinitrogen gas (N2) 

by heterotrophic, facultatively anaerobic bacteria collectively known as denitrifiers; N2O is a 
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requisite intermediate that under some environmental conditions and for some denitrifier taxa 

is the end product (Cavigelli and Robertson, 2000). Nitrification occurs whenever soil 

ammonium is available and environmental conditions such as temperature and moisture are 

favorable for nitrifiers activity, which in many agronomic situations prevail most of the time 

(Robertson et al., 2000).  Denitrification occurs whenever soil carbon and nitrate are available 

and oxygen is in short supply – denitrifiers can use nitrate rather than oxygen as a terminal 

electron acceptor if oxygen is unavailable (Robertson, 1993; Robertson and Grace, 2004). 

This occurs in wet soils when diffusion of oxygen to microsites is slowed by saturated 

conditions, and inside soil aggregates in even well-drained soils.  In the center of aggregates 

oxygen demand is often greater than can be provided by diffusion through the aggregate from 

the surrounding soil atmosphere. Nitrous oxide can also be produced from livestock waste, 

though only when stored under relatively aerobic conditions such as in compost heaps.  

Under anaerobic conditions, as in waste lagoons, nitrification is inhibited by lack of oxygen 

and denitrification by the consequent lack of nitrate; further, any nitrate that is available tends 

to be denitrified all the way to N2 rather than stop at N2O (CAST, 2004) due to the low 

availability of electron acceptors. Of all the sources of GWP in agricultural systems, none are 

more poorly quantified than N2O production. This is mainly because of the difficulty with 

which N2O fluxes are measured.  Unlike for CO2 and CH4, N2O flux is not suited to 

micrometeorological measurement (Holland et al., 1997); rather fluxes must be measured 

using small chambers placed on the soil surface for 1-2 hour intervals.  High temporal and 

spatial variability means that many chambers must be deployed simultaneously at weekly or 

more frequent intervals in a given cropping system; sampling and analysis costs are thus 

high.  However, for the few cropping systems for which we have reliable N2O fluxes, N2O 

loss is frequently the major source of GWP.  Robertson et al. (2000), for example, found for a 

9-year measurement campaign in several annual and perennial cropping systems in Michigan 
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that N2O was the single greatest source of GWP in all four of their annual crop systems, 

ranging from 50 to 60 g CO2-equivalents m-2 y-1.  IPPC methodology assumes that 1.25% of 

nitrogen inputs to most cropping systems is subsequently emitted as N2O-N; if true, then for 

every 100 kg N ha-1 applied as fertilizer, about 1.25 kg N will be emitted as N2O, for a GWP 

(over a 100-year time horizon) of 58 g CO2-equivalents m-2 y-1. Soil nitrogen availability 

appears to be the single best predictor of N2O flux in most terrestrial ecosystems including 

agricultural fields.  Any activity or process that acts to keep available soil nitrogen low 

should thus lead to smaller N2O flux.  Plant demand for nitrogen is therefore one of the most 

important determinants of N2O flux, and more precise application of N-fertilizer — to 

maximize plant uptake of added N both spatially and temporally — may be one of the best 

means available for mitigating current N2O fluxes from agriculture. 

 

1.2.3. Methane (CH4)  

Methane is produced by anaerobic bacteria in soil, animal waste, and ruminant stomachs, and 

agricultural sources of methane are a significant fraction of the global methane budget. About 

15% of the 598 Tg global CH4 flux is from lowland rice systems, and another 15% is from 

enteric fermentation during livestock digestion (Hein et al., 1997; IPCC 2001).  Because 

methanogenesis is a strictly anaerobic process, under normal conditions upland cropping 

systems are not a direct source of methane, and methane flux in paddy rice can be partly 

mitigated through water level and residue management and cultivar selection (Mosier et al., 

1998a and b). Methane is also consumed, but by a different class of soil bacteria called 

methanotrophs, and methane consumption in soils is a small but significant part of the global 

methane budget, comparable in magnitude to the annual atmospheric increase in methane.  In 

rice paddies and wetlands the total methane flux is the net difference between 

methanogenesis in submerged anaerobic horizons and methane consumption at or above the 
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soil-water interface.  In upland soils including field crops the net flux appears to be largely a 

function of methane consumption.  Agricultural conversion tends to reduce natural rates of 

methane consumption in soils by a factor of 5-10 (Bronson and Mosier, 1993; Smith et al., 

2000), and at our current state of knowledge there is no known way to restore consumption 

other than allowing natural revegetation. Consumption rates are not much affected by 

fertilization, organic management, or tillage. By reducing a natural source of mitigation, 

agriculture thus creates an indirect source of GWP. Robertson et al. (2000) found for a U.S. 

Midwest landscape that the GWP of methane oxidation in old-growth forest was -25 g CO2-

equivalents m-2 y-1; for various cropping systems on the same soil type they found GWPs 

ranging from -4 to -6 g CO2-equivalents m-2 y-1.  Similar changes have been documented for 

a variety of soil and climates (e.g. Smith et al., 2000), including tropical (Keller and Reiners, 

1994). 

 

1.3. Soil properties 

1.3.1. Soil thermal properties 

Soil heat is one of the most important factors controlling the intensity of biophysical, 

biochemical and microbiological processes taking place in soil (Ghidhyal and Triparti, 1987; 

Schilfgaarde, 1974; Brady, 1984). The rate of mineralization of organic matter (Hoyt and 

Hargrove, 1986; Bristow, 1988; Fortin and Pierce, 1991), the physical process of diffusion 

and viscous flow (Liu and Dane, 1993), the germination of seed (Xie et al., 1993), the growth 

and activity of roots in terms of water and nutrients absorption (Glinski and Lipiec, 1990) and 

respiration (Xie et al., 1993; Egley, 1986) are strongly dependent on the heat energy that a 

soil contains. The amount of heat absorbed by a soil is primarily determined by the quantity 

of effective radiation reaching the earth (Brady, 1984) while its movement in the profile is 

dependent on soil thermal properties. De Vries (1953) described heat movement as an 
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apparent increase of thermal conductivity of soil which is the sum of normal conductivity and 

that due to vapor movement. Knowledge of thermal properties is therefore necessary to 

adequately predict the transport, flow and escape of greenhouse gases from soils. 

Unfortunately, research work on the relationship between soil heat and greenhouse gases 

emissions inexistent is restricted to soil temperature. Studies relating soil thermal diffusivity, 

conductivity and resistivity are almost inexistent. Furthermore, measurements of soil thermal 

properties are rarely done (Kluitenberg et al., 1993; Bristow et al., 1994).  

 

1.3.2. Soil pore space indices 

Greenhouse gases produced in soils move through the soil air-filled pore space before their 

emissions to the atmosphere. The probability for their consumption increases as impediments 

to their movement increase. The exchange of gas between the soil surface and the adjacent 

atmosphere can occur by means of two mechanisms: diffusion and advection. Diffusive gas 

transport depends primarily on the total volume and the tortuosity of continuous air-filled 

pore space. Advective gas transport is affected by gaseous permeability which, in turn, is 

dependent on total porosity, pore size distribution, and tortuosity of continuous air-filled pore 

space (Hillel, 1982).  It is well documented that gaseous diffusion is the principal process 

involved in the exchange between the soil and the atmosphere (Taylor, 1949; Troeh et al., 1982). 

Gaseous diffusion and its variations with soil type and soil air-filled porosity typically control 

soil aeration  (Buckingham, 1904; Taylor, 1949), fumigant emissions (Brown and Rolston, 

1980), volatilization of volatile organic chemicals from industrially polluted soils (Petersen et al, 

1996), and soil uptake and emissions of greenhouse gases such as methane (Kruse et al., 1996). 

Soil pore structural indices are therefore a key factor in determining greenhouse gas soil 

fluxes, because they are related to the redox potential in the soil, to soil moisture content (and 

hence microbial activity), the residence time in soil pores of greenhouse gases produced in 
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the soil, and the ability for the atmosphere to supply methane to methanotrophs. Static and 

dynamic soil properties both affect the water, gases and solutes that pass through and over 

soils. Unfortunately, most of the studies investigating the relationship between soil properties 

and greehnouse gas fluxes have focussed on static soil variables influencing gas production 

rather than dynamic ones which control gases escape to the atmosphere. In the case of N2O 

for example, Van Den Pol-Van Dusselaer (1998), Velthof et al. (1996) and Ambus and 

Christensen (1995) reported a poor relationship between emssions and static soil variables. In 

these studies, static soil variables were NO3
- and NH4

+ which have been cited among those  

operating at microbial level and influence N2O production rather than its escape to the 

atmosphere (Firestone and Davidson, 1989).  Kiese et al. (2003) could not relate N2O fluxes 

to NO3
- and NH4

+.  Linn and Doran (1984) found a significant relationship between the 

percentage of pore space filled with water (WFPS) and CO2 and N2O production. Davidson 

(1991), Firestone and Davidson (1989) suggested the Hole-in-the Pipe (HIP) conceptual model 

which relate the sum of NO+N2O emissions to NO3
- and NH4

+ (indices of availability of N), 

and the ratio NO:N2O to WFPS (water content). While these empirical relationships have 

worked in various conditions of studies (Davidson et al., 2000), in order to fully understand the 

effect of soil variables on greenhouses gases, it is important to consider also variables affecting 

the movement of gases in soils such as pore structural indices. In fact, only little work has 

focused on the relationship the soil gas diffusion and greenhouse gases emissions. Among the 

few investigators, Nkongolo et al. (2008) found a relationship between CO2 and CH4 emissions 

and pore structural indices in both a Japanese and Costa Rican forests. Born et al. (1990) and 

Dorr et al. (1993) stated that the most important factor controlling CH4 fluxes (in non wetland 

soils) is gas transport resistance in soils. Kruse et al. (1996) reported a significant relation 

between methane emission and gas diffusion coefficient. Ball et al (1997) reported a relationship 

between N2O fluxes and air permeability, the soil gas diffusion coefficient and tortuosity. Hu et 
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al. (2001) found a significant relationship between the soil gas diffusion coefficient and CH4 

fluxes. 

 

1.4. Experimental  plan 

1.4.1. Justification for integrating research work in USA and Japan 

The results of field experiments conducted in both United States of America and Japan are 

analyzed and integrated in this thesis. The justifications for integrating these studies are : (i) 

to  add confidence to our studies as replication helps provide assurance that the results are 

correct,  (ii) to increase our understanding on whether the same parameters  control gas fluxes 

in similar land use types in both countries and (iii) to investigate whether gas fluxes exhibit 

the same patterns in both countries.  In fact, the development of a same approach to quantify 

greenhouse gas fluxes or the identification of same parameters controlling greenhouse gas 

fluxes in different environment or different countries is sought in building global models for 

controlling gases emissions. This thesis therefore provides data that can be used to improve, 

parameterize, and test existing global models of CO2, N2O and CH4 fluxes and allow 

measurements to be extrapolated to different management scenarios and larger spatial scales.  

 

1.4.2. Experimental sites in USA 

1.4.2.1. George Washington Carver farm 

This farm is located at 2 miles from the main campus of Lincoln University. Its coordinates 

are 38o31’45”N and 92o08’07”W. The soil type of the site is a Freedom Silt-Loam (Aquic 

Hapludalfs). In 2006, the total rainfall during the sampling period (June through November) 

was 310 mm and an average temperature of 27oC.  The area has experienced a drought during 

the spring and summer months of 2006. The study area was 1.42 ha area dominated by 

Brome grass (Brumus inermis). Brome grass is a cool season grass that is very popular in the 
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production of hay. The sampling chambers were arranged in a rectangular grid of 30 m by 35 

m. The experiment was started in 2003 when twenty chambers were permanently inserted in 

the soil of this pasture at a first site. Soil air samples for determination of CO2, CH4 and N2O 

concentrations were collected every two weeks a year later in 2004, 2005 and 2006 at this 

first site before the study was moved to second site in 2007 and where data are still being 

collected (2007, 2008 and 2009). The results discussed in this thesis focuses on site 1 and 

mainly on data collected in 2006 even though an account is also given for the 2004 and 2005 

sampling periods.  

 

1.4.2.2. Freeman farm 

Freeman farm is located 15 miles west of the main campus of Lincoln University. The 

geographic coordinates of this site are 38°34′53″N and 92°08′07″W. The soil type is Waldron 

silty-clay (Aeric Fluvaquent).  Corn and soybean are the crops planted at this farm. The 

tillage practiced on corn and soybean fields is chisel plowing and harrowing up to 15 cm soil 

depth at the beginning of the planting season (May). The corn experimental site consisted of 

16 plots of equal size (91 m x 12 m) with a 12 m buffer strip between and within plots, so 

each plot stands separately, with 2 gas chambers per plot for a total of 32 gas sampling 

chamber. Bulk fertilizer application supplying NPK, consisting of Urea, DAP (Diammonium 

phosphate), and Potash was applied to the corn field in May, prior to planting. These fertilizer 

treatments (N1, N2, N3, and N4 represented 0, 60, 120, and 180 lb/acre of urea respectively) 

and supplied 26.32 (N1), 93.58 (N2), 160.84 (N3) and 228.10 (N4) kg N ha-1 from urea and 

DAP, while the DAP and Potash supplied 67.26 kg P2O5 ha-1 and 89.68 kg K2O ha-1 

respectively. An additional amount of nitrogen (N) is supplied from DAP, consequently, 

treatment N1 corresponds to 26.33 kg N ha-1, but without any urea applied. The soybean field 

was adjacent to corn and was not fertilized.  
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1.4.3. Experimental sites in Japan 

1. 4.3.1. Livestock farm, Faculty of Agriculture, Hokkaido University in Shizunai 

The first experiment was conducted at the Livestock Farm, Faculty of Agriculture, Hokkaido 

University in Shizunai. Shizunai is located at 42o25.9'N and 14o25.9'E. The annual average 

temperature is 7oC, and the average temperature is 20oC in August and -5oC in February. 

Annual mean precipitation is 1,200 mm. Snow covers the land from late November to middle 

of March. The soil of this area is derived from Tarumae (B) volcanic ash, and is classified as 

Aquic Humic Udivitrand (USDA soil taxonomy). In situ measurements were conducted along 

a 2000 m transect extending from a forest, grassland, pasture and cornfield soils in August 

2000. Mapple (Aceraceae rubrum) and oak (Fagaceae quercus) predominates in the forest. 

Forest floor was covered by Sasa nipponica Makino et Shibata. The grassland site was 

derived from a converted forest in 1965 (Hu et al., 2001). Phleum pratense L. and Trifolium 

pratense were the dominant grasses. Chemical fertilizers were applied annually in the middle 

of May. During the experimental year, N, 68, P, 58, K, 38 kg ha-1 fertilizers were applied. 

Cattle grazed 8 times from May to October during the observation. The cornfield had been 

used for growing corn for more than 30 years. Corn (Zea mays L.) is usually sowed in May 

and harvested in September. Fertilizers consisting of N, 120, P, 48; and K, 58 kg ha-1 are 

applied at sowing time, and farm manure (N, 64 kg ha-1)  incorporated into the soil during the 

previous year. 

1. 4.3.2. Hokkaido University Experimental farm in Sapporo 

The second study was conducted at Hokkaido University Experimental Farm in Sapporo, 

Hokkaido, Japan (43o 11’ N, 141o 30’ E), from early June to late December 2001. Sapporo, 

Japan's third largest city enjoys a mild climate with a year-round average temperature of 

9.1°C. The average temperature was -3.5°C in January and 20.3°C in July 2001. The soil of 
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the experimental site is classified as Typic Fluvaquents (Soil Taxonomy), Eutric Fluvisols 

(FAO). The physical and chemical properties of different horizons were reported by Hayashi 

and Hatano (1999). Soil texture consists of 25.4% sand, 47.0% silt and 27.6% clay. The 

saturated hydraulic conductivity is 2.99 x 10-5cm s-1. The carbon and nitrogen contents were 

2.1% and 0.16 %, respectively. Field preparation began in April and in May, two plots of 30 

m long by 20 m width were isolated in fields cropped to corn (Zea mays) and soybean 

(Glucine max). These fields were established maintained by the Crop Production Laboratory, 

Faculty of Agriculture, Hokkaido University. The corn field was fertilized with N, 130; P2O5, 

180; K2O, 100; and MgO, 40 kg ha-1 while soybean received N, 32; P2O5, 100; K2O, 80; and 

MgO, 24 kg ha-1. In June 2001, plots interrows in both soybean and corn fields were 

compacted by 1, 2, 3 and 4 cycles (1 cycle = 2 passes) with a 2.4 tons Fordson Major tractor 

(as during regular tillage operations). The ridges of crop rows were not compacted. 

Immediately after tractor compaction, soil penetration resistance (SPR) was measured to a 

depth of 100 cm and soil samples were taken in both interrows and ridges. A second 

measurement of SPR, sampling for soil properties and greenhouse gas fluxes was conducted 

three weeks later in August 2001. 

 

1. 4.3.3. Farmer field in Mikassa, Hokkaido 

The third study was conducted in a 140 by 140 m upland farmer field yearly cropped to onion 

(Allium cepa L.) in Mikassa, Hokkaido, Japan (43°14’N, 141°50’E). The annual average 

temperature in Mikassa is 7.2°C and the average annual rainfall is 1204 mm. The soil of the 

experimental site is classified as fine, mesic, mollic Fluvaquent. Soil texture consists of a 

silty or heavy clay from the Ap layer (0-28 cm) down to the C horizon (48-100+ cm). The 

groundwater table lays at 70-80 cm depth throughout the growing season (Hu et al., 2001). 

Surface drains were installed at 80-100 cm depth at 12 m intervals and were connected to the 
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same effluent exit, draining about 0.95 ha (125 by 76 m) for monitoring nitrate leaching. 

Fertilizer nitrogen (322 kg N ha-1) was applied at the end of April, shortly before 

transplanting. Onion was harvested during the second and third week of September. In June 

1999, the field was sampled for N2O emissions and soil physical and chemical properties, 

using a 100 by 100 m grid at 10 m spacing for a total of 100 sampling locations. A year later 

in September 2000, the same field was again sampled for N2O and soil chemical and physical 

properties, using a 60 by 60 m grid at 10 m spacing for a total of 36 locations.  
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PART II.   RELATIONSHIPS BETWEEN GREENHOUSE GASES EMISSIONS 

AND SOIL PROPERTIES IN AGRICULTURAL FIELDS  

 

Chap. 2. Greenhouse gas fluxes and soil thermal properties in a pasture in central 

Missouri1  

 

2.1 Abstract 

Fluctuations of both greenhouse gases emissions and soil controlling factors occur at short 

spatial and temporal scales, however results are often reported for larger scales studies. We 

monitored CO2, CH4, and N2O fluxes and soil thermal properties from 2004 to 2006 in a 

pasture at Lincoln University, and conducted a month-to-month assessment of trends in 

fluxes and soil thermal properties in 2006 data.  Soil air samples for determination of CO2, 

CH4 and N2O concentrations were collected from static and vented chambers. Air samples 

were analyzed within 2 hours with a gas chromatograph with an electron capture detector. 

Soil temperature (T), thermal conductivity (K), resistivity (R) and thermal diffusivity (D) 

were directly measured using a KD2 probe. Soil samples were also taken for measurements 

of soil chemical and physical properties. Results showed that, overall, the pasture acted as a 

sink in 2004, a source in 2005 and again a sink of CH4 in 2006. CO2 and CH4 were highest, 

but N2O as well as T, K and D were lowest in 2004. Only K was correlated with CO2 in 2004 

while T correlated with both N2O (r = 0.76, p = 0.0001) and CO2 (r = 0.88, p = 0.0001) in 

2005. In 2006, all gas fluxes were significantly correlated with T, K, R when the data for the 

entire year was combined and averaged. However, an-in depth examination of 2006 data 

revealed the existence of month to month shifts, lack of correlation and differing spatial 

structures. For instance, T could not correlate with any of the gases in June, July and August, 

but only in September. These results call for further investigations to elucidate the 
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inconsistencies in the relationship between soil properties and gas fluxes across sampling 

periods. K and R offer a promise as potential controlling factors for greenhouse gas fluxes in 

this pasture. 

 

Keywords: greenhouse gases, soil thermal properties, fluxes 

 

2.2 Introduction 

Soil and its use contribute greatly to the enhanced warming of the earth’s surface and lower 

atmosphere as a result of increased emissions of greenhouse gases into the atmosphere by 

human activities such as agriculture (Dobbie and Smith, 2003). In soil, these greenhouse 

gases are mainly emitted through microbiological processes and their flux variations are 

regulated by processes that control microbial activities (Kang et al., 2003; Kang et al., 2000), 

such as soil temperature (Brito et al., 2009; Almagro et al., 2009), soil water content (Rover et 

al., 1999, Dobbie and Smith , 2003), depth to the water table (Huttunen et al., 2003), root 

activities (Raich and Tufekgcioglu, 2000), decomposition of organic matter (Epron et al., 

2006; Xu and Qi, 2001), availability of substrate (Smith,  2000), soil N dynamics and C and 

N availabilities (Turner et al., 2008; Davidson et al., 2000; Mutegi et al., 2009; Le Mer and  

Roger, 2001; Raich and Tufekgcioglu, 2000; Saiz et al., 2006). Both greenhouse gas fluxes 

and their controlling factors also exhibit tremendous variability across ecosystems and this 

variability poses a serious problem in estimating N2O, CH4 and N2O fluxes at larger scales 

(Nkongolo et al., 2009 (ab); 

___________________________________________________________________________ 
1This chapter is based on a paper published in the Journal of Environmental Sciences 
(Elsevier) –Authors: Nkongolo et al. (2010). doi: 10.1016/S1001-0742(09)60214-X 
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Raich et al., 1990, Stoyan et al.,  2000) and in assessing the relationship between soil 

properties and N2O, CH4 and N2O fluxes (Nkongolo et al., 2008 (ab), Johnson et al.,  2007 

and Paro et al., 2007). Among soil properties, the relationship between soil temperature and 

greenhouse gas fluxes has received more attention. However, in many studies soil 

temperature has been correlated or not correlated with greenhouse gas fluxes (Smith et al., 

2003). Other soil properties such as thermal properties have not received due attention. 

However, these properties control the movement of heat in the soil therefore affect directly 

the escape of greenhouse gases from these soils (Hopmans et al., 2002). Scientists have 

documented the importance of soil thermal properties as early as the 19th century (Forbes, 

1849). Soil thermal properties influence the partitioning of energy at the ground surface and 

are related to soil temperature and the transfer of heat and water across the ground surface 

(Ochsner et al., 2001). Fluctuations of both greenhouse gas fluxes and soil controlling occur 

at short temporal and spatial scales, but results of studies are often reported for larger scales 

(several years). In fact, across shorter temporal and spatial scales, abrupt changes in 

greenhouse gases emissions may occur in response to a change in a soil controlling factor or 

any other event (Curtin et al., 2000; Duiker and Lal, 2000). The first objective of this study 

was to assess the fluctuations of CO2, CH4, and N2O emissions and soil thermal properties in 

a pasture in central Missouri. A second objective was to investigate the relationship between 

soil thermal properties and greenhouse gas fluxes in this pasture. 

 

2.3  Materials and methods 

2.3.1 Study area  

The experiment was conducted on a pasture at George Washington Carver farm at Lincoln 

University in Jefferson City, Missouri. The experiment was started in 2003 when twenty 
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chambers were permanently inserted in the soil of pasture at a first site. Soil air samples for 

determination of CO2, CH4 and N2O concentrations were collected every two weeks a year 

later in 2004, 2005 and 2006 at this first site before the study was moved to second site in 

2007 and where data are still being collected (2007, 2008 and 2009). This study focuses on 

site 1 and mainly on data collected in 2006 even though an account is also given for 2004 and 

2005 sampling period.  

 

 
 
 
 
 
 
 
 
                                                     
 
 
 
                                    
 
 
 
                        Figure 2.1. Experimental field 
 
 

The geographical coordinates of the site are 38o31’45”N and 92o08’07”W. The soil type of 

this site is a Freedom Silt-Loam (Aquic Hapludalfs). The total rainfall from June through 

November was 310 mm with an average temperature of 27oC.  This area has experienced a 

drought during the spring and summer months of 2006. The study area was 1.42 ha area 

dominated by Brome grass (Brumus inermis). Brome grass is a cool season grass that is very 

popular in the production of hay. The sampling chambers were arranged in a rectangular grid 

of 30 m by 35 m (Fig. 2.1) and air samples were collected from June to December. 
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2.3.2 Soil air sampling and gas measurement 

Twenty cylindrical polyvinylchloride (PVC) chambers of 0.30 m long and 0.20 m in diameter 

were permanently inserted into the soil to a depth of 0.05 m since summer of 2003. The 

design of the sampling chamber is a modified version of Hutchinson and Mosier (Hutchinson 

and Mosier, 1981) and is illustrated in Figure 2.2.  

 
 
 
 
 
 
 
                                                           
 
 
 
                                           
 
                                            Figure 2.2. Soil air sampling chamber 
 
 

The chambers were constructed with two ventilation holes on the sides.  They had circular 

tops made from Plexiglas and containing two additional holes. One of the holes was covered 

by a stopper for the extraction of gases and while the other served for ventilation. Installation 

of these chambers permanently since 2003 kept soil undisturbed. In order to maintain an air 

tight seal, a groove was put on the bottom of the lid so that it would fit securely onto the 

sampling chamber. During sampling time the groove was filled with Dow-Corning high 

vacuum grease for sealing purpose.  Soil air samples for gas analysis were collected as 

follows; (1) an air sample was collected at 2 m from the soil and above the chamber,  (2) the 

two chamber ventilation holes were sealed off by rubber stoppers, (3) the greased (to seal the 

chamber) chamber tops were put on, (4) the chamber was allowed to fill up with air for thirty 

minutes and; (5) the air samples were collected with a 50 ml syringe and put in to a 200 ml 

Tedlar bag for storage. Analysis of CO2, CH4, and N2O from soil air samples were conducted 

Soil surface

Stoppered
Ventillation Hole

Permanent 
vent

Sampling port

Top of chamber

Stoppered
Ventillation Hole
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at Lincoln University’s Dickinson Research Laboratory within two hours after samples 

collection. The concentration of each greenhouse gas was measured using a Gas 

Chromatograph with an electron capture detector.  The data was then transferred into an 

Excel data sheet where the gas fluxes were calculated.  A positive value represents gas 

emission from the soil, while a negative value represents gas uptake. Fluxes were calculated 

using the equation (Ginting et al., 2003): 

 

 

 

where, F is the gas production rate;  is the gas density (kg m-3) under standard conditions; V 

(m3) and A (m2) are the volume and area of the chamber; C/t is the ratio of change in the 

gas concentration inside the chamber (10-6 m3m-3h-1); T is the absolute temperature; and  is 

the transfer coefficient (12/44 for CO2, 12/16 for CH4 and 28/44 for N2O). 

 

2.3.3 Soil physical properties 

Soil samples were taken at each chamber location using a soil sampling probe at 0.10 m 

depth.  The soil fresh weights were measured and then the soil samples were put into an oven 

to be dried at 105oC for seventy two hours.   After drying to constant weight, soil physical 

properties were calculated as follows; (1) Bulk density (b = Ms|Vt), where b (kg/m3) is the 

bulk density, Ms (kg) is the mass of dry solids determined after drying the soil sample to 

constant weight at 105oC and Vt (m3) is the total volume of soil; (2) Total pore space [TPS = 

Vw +Va/Vt = 1- (b /2.65 kg m-3)], where TPS (m3 m-3) is the total space of soil filled with 

fluid (air and water), b (kg/m3) is the soil particle density; (3) Gravimetric water content (g 

= Mt-Ms/Ms), where, g (kg/kg-1) is the gravimetric water content or mass of water present in 

each unit mass of dry soil;  (4) Volumetric water content (v = Mt-Ms/Vt) where v (m
3 m-3) 

 *)273(***
Tt

C
A
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is volumetric water content or the volume of water present in a unit volume of soil and  (5) 

Air filled porosity (a = TPS-v), where a (m
3 m-3) is air filled porosity or the portion of the 

pore space filled with air. (7) Water-filled pore space (WFPS =  (v /TPS)*100). 

 

2.3.4 Soil chemical properties 

At each chamber location soil samples were taken at 0.1 m depth with a sampling probes for 

analyses of soil chemical properties.  These samples were sent to the Soil and Testing Lab at 

the University of Missouri-Columbia for the chemical analysis (regular analysis). The 

properties studied were soil pH, organic matter (OM), phosphorus (P), calcium (Ca), 

magnesium (Mg), potassium (K), cation exchange capacity (CEC), sulfate (SO4-
2), iron (Fe), 

electrical conductivity (EC), nitrate (NO3
-), ammonium (NH4

+), and total nitrogen (TN). 

 

2.3.5 Soil thermal properties 

The soil thermal properties were measured inside each chamber or on its neighborhood with a 

Decagon KD2 thermal properties meter at 0.06 m depth. The KD2 thermal meter uses three 

sensors to measure thermal diffusivity (D), thermal conductivity (K), thermal resistivity (R) 

as well and soil temperature.  KD2 takes measurements at one second intervals during a 

ninety second measurement cycle by using the transient line heat source method.  The soil 

thermal properties were measured during every sampling date.  

 

2.3.6 Mapping and statistical analysis 

Statistix 9.0 was used to calculate simple statistics, Pearson correlation matrix and to run a 

linear regression analysis for CO2, N2O, and CH4 and the soil properties.  GS+ 5.1 software 

was used to fit data to semivariogram models and produce maps portraying the spatial 

distribution of greenhouse gas fluxes across the pasture. 
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2.4 Results 

2.4.1 Soil physical properties 

The summary of simple statistics for soil physical properties measured in 2006 is showed in 

Table 2.1.  

Table 2.1. Summary of simple statistics for soil physical properties in pasture in 2006 

 
a     
(m3 m-3) 

b 
(kg m-3) 

Ds/Do              
(m2 s-1 m-2 s) 

g 
(kg kg-1) 

v 
(m3 m-3) 

              
(m m-1) 

WFPS 
(%) 

TPS    
(m3 m-3) 

Mean 0.26 1.23 0.07 0.22 0.27 3.89 51.16 0.53 
SD 0.04 0.07 0.02 0.01 0.01 0.53 4.31 0.03 
Variance 0.00 0.01 0.00 0.00 0.00 0.28 18.57 0.00 
C.V. 13.76 5.80 28.32 4.39 4.30 13.58 8.42 5.03 
Minimum 0.21 1.06 0.04 0.21 0.25 2.86 41.80 0.50 
Median 0.26 1.24 0.07 0.22 0.27 3.84 50.99 0.53 
Maximum 0.35 1.33 0.12 0.24 0.30 4.80 58.51 0.60 
Skew 0.51 -0.78 0.96 0.24 0.50 0.27 0.03 0.78 
Kurtosis 0.55 0.41 1.45 -0.84 0.01 -0.28 0.13 0.41 
a = air-filled porosity, b = bulk density, Ds/Do = relative gas diffusion coefficient, g = gravimetric 
water content, v = volumetric water content,  = pore tortuosity factor, WFPS = water-filled pore 
space, TPS = total pore space. 
 
Soil physical properties in 2004 and 2005 are not showed. At the time of sampling, the soil of 

this pasture had an average air filled porosity of 0.26 m3 m-3. The soil bulk density was 1.23 

kg/m3. Soil water was at an adequate level for plant growth as reflected by an average 

gravimetric water content of 0.22 kg/kg and a volumetric water content value of 0.27 m3 m-3. 

The pore tortuosity factor was 3.89 m m-1 while the relative gas diffusion coefficient was 

0.07. Only 51.16% of the total pore space was filled with water. Overall, soil physical 

properties were in the range of normally reported data with very low variability (highest CV 

= 28.32). The distribution of these soil properties also approached normality as showed by 

means and medians which are equal.  
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2.4.2 Soil chemical properties and nutrients 

The summary of simple statistics for soil chemical properties and nutrients measured in 2006 

is showed in Table 2.2.  

 
Table 2.2. Summary of simple statistics for soil chemical properties in pasture in 2006. 
 pH EC NO3

- NH4
+ P K Ca Mg SO4

-2 OM 
  (mg kg-1) (mg kg-1) (mg kg-1) (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1) (mg kg-1) (g kg-1) 
Mean 4.76 0.16 1.74 6.64 54.32 258.30 2610.70 340.83 3.55 17.00 
SD 0.15 0.06 2.11 15.05 23.68 95.82 1356.90 276.19 0.77 2.88 
C.V. 3.05 40.27 120.89 226.75 43.59 37.10 51.97 81.03 21.65 16.91 
Min. 4.60 0.10 0.30 1.00 14.56 91.84 1403.40 110.88 1.70 12.00 
Med. 4.75 0.15 1.00 2.53 48.72 286.72 1939.80 220.08 3.75 17.00 
Max. 5.00 0.30 7.30 62.61 92.96 388.64 5637.00 991.20 4.60 23.00 
Skew 0.28 0.59 2.13 3.52 -0.02 -0.18 1.21 1.43 -0.90 0.47 
Kurt. -1.26 -0.58 2.83 10.62 -0.85 -1.24 -0.04 0.61 0.22 0.04 
CEC = cations exchange capacity, EC = electrical conductivity, OM = organic matter.  
 
Soil chemical properties in 2004 and 2005 were omitted. The average pH of this pasture was 

4.75, implying that the soil was acidic.  The sum of N-indices (NO3
-+ NH4

+) was 8.34 mg kg-

1 and an average organic matter (OM) of 17 mg kg-1. The cation exchange capacity was 12.18 

meq/100g. The pasture contained more Ca (2610.70 mg kg-1) as compared to major nutrients 

such as K (258.30 mg kg-1) or secondary nutrients such as Mg (340.83 mg kg-1). The 

distribution of soil pH, Acidity, EC, SO4
-2, Fe and OM approached normality as showed by 

their mean values closer or equal to their respective medians. Soil chemical properties and 

nutrients showed a range of variability with coefficient of variation (CV) ranging from 3.05 

for soil pH to 226.75% for NH4
+. Overall, indices of N-availability (NO3

- and NH4
+) showed 

the highest variability with highest CV.  NO3
-and NH4

+ also had the highest skew and kurtosis 

values.  

 

2.4.3 Soil thermal properties 

The summary of simple statistics for soil temperature (T), thermal conductivity (K), 

resistivity (R), and diffusivity (D) measured in 2004, 2005 and 2006 are shown in Table 2.3.  
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Table 2. 3.  Summary of simple statistics for soil thermal properties in 2004, 2005 and 2006  

Simple  
Stat. 

T  
(oC) 

K  
(w/m/c) 

D  
(mm2/s) 

R  
(moc/w) 

 2004 2005 2006 2004 2005 2006 2004 2005 2006 2004 2005 2006 
Mean 22.77 14.05 20.03 0.85 0.48 1.10 0.19 0.14 0.47 1.52 2.30 3.63 

SD 3.80 11.42 6.01 0.29 0.14 0.5 0.05 0.03 0.58 1.38 0.77 1.59 

CV 16.71 81.25 30.01 34.75 29.35 45.99 27.11 20.11 126.68 90.95 33.38 43.87 
Min 17.80 2.30 7.40 0.14 0.27 0.15 0.09 0.10 0.2 0.74 1.32 0.65 

Max 30.70 28.40 26.17 1.35 0.75 2.11 0.34 0.22 4.86 7.34 3.76 8.80 

Skew 0.26 0.02 -0.88 -0.52 0.03 0.01 0.62 1.61 7.34 3.35 0.71 0.76 
Kurt. -1.27 -1.97 -0.80 0.15 -0.87 -0.96 1.00 2.93 53.03 10.44 -0.92 0.50 

T= soil temperature, K= soil thermal conductivity, D= soil thermal diffusivity, R= soil thermal resistivity   
 
The mean soil temperature was highest in 2006 as compared to 2004 and 2005. In addition, 

soil thermal K, R and D were highest in 2006 as compared to either 2004 or 2005. 

Coefficients of variation (CV) for soil thermal properties ranged from 16.71 to 126.68% with 

the lowest CV observed for soil temperature in 2004, and the highest for thermal diffusivity 

(D) in 2006. A month to month assessment of soil thermal properties in 2006 revealed that 

the mean of all four months was 20.03oC, with a minimum temperature of 7.40oC and a 

maximum of 26.16oC.  Soil temperature increased by 5 units from June (20.55 °C) to July 

(25.52 °C), then decreased about one unit in August (23.78 °C)  and finally decrease sharply 

about 14 units in September (10.42°C). The mean of soil thermal conductivity, resistivity, 

and diffusivity for all four months were 1.01wm-1 c-1;  3.63 mocw-1;  and 0.45 mm2s-1, 

respectively.  Results showed that soil thermal properties had high monthly variability with 

coefficients of variation (CV) ranging from 24.36 to 137.89%.  The decrease in soil 

temperature decreased from June to July seems to have an impact on soil thermal 

conductivity (K) and thermal resistivity (R) which decreased also during the same period. 

However, in opposition to June-July trend, the decrease in soil temperature (T) in August was 

accompanied by an increase in soil thermal conductivity (K), resistivity (R) and diffusivity 

(D).  However this trend did not continue in September as showed in the analysis of the 

spatial distribution of soil thermal properties across the pasture. 
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2.4.4 Greenhouse gas fluxes 
 
The summary of simple statistics for the greenhouse gas fluxes in 2004, 2005 and 2006 is 
showed in Table 2.4.  
 
Table 2.4.  Summary of simple statistics for greenhouse gas fluxes in 2004, 2005 and 2006 
Simple 
Stat. 

N2O 
 (g N-N2O /m2/h) 

CO2 

(mg C-CO2 /m
2/h) 

CH4  
(g C-CH4 /m

2/h) 
 2004 2005 2006 2004 2005 2006 2004 2005 2006 
Mean 16.31 9.49 31.81 178.61 137.74 84.94 -32.16 16.74 -17.43 
SD 21.58 11.90 37.22 77.49 107.27 60.21 14.32 34.36 62.29 
CV 132.31 125.40 116.99 43.39 77.88 70.88 44.55 205.34 357.23 
Min -14.56 -10.34 -21.8 17.25 6.05 2.14 -59.26 -38.37 -133.14 
Max 96.04 33.94 254.69 275.28 336.67 348.02 -1.79 119.61 93.22 
Skew 1.87 0.09 3.41 -0.73 0.26 1.56 0.20 1.17 -0.52 
Kurt 4.59 -0.72 16.32 -0.65 -1.28 3.56 -0.75 2.01 -0.92 

N2O= Nitrous Oxide, CO2= Carbon Dioxide, CH4= Methane 
 
On average, there was more nitrous oxide emitted in 2006 (31.81 mg N-N2O-N/m2h) as 

compared to either 2004 (16.31 g N-N2O-N/m2h) or 2005 (9.49 g N-N2O-N/m2h). Carbon 

dioxide (CO2) emissions decreased from 178.61 to 84.94 94 mg C-CO2 /m2h for 2004 to 

2006, respectively. Methane (CH4) fluxes shifted from uptake in 2004 (-32.16 g CH4-C 

/m2h) to emissions in 2005 (16.74 g CH4-C /m2h) and again to uptake in 2006 (-17.43 g 

CH4-C /m2h). However, the minimum fluxes for both N2O and CH4 were all negative in 

2004, 2005 and 2006, suggesting that there was uptake of these two gases in the soil. As for 

soil thermal properties, N2O, CO2, and CH4 also showed strong variability across the pasture 

with coefficients of variation (CV) ranging from 43.39 to 357.23 % for CO2 in 2004 and CH4 

in 2006, respectively. A month to month assessment of the data 2006 revealed that N2O, CH4 

and CO2 fluxes changed significantly from month to month as showed by the analysis of the 

spatial distribution of greenhouse gas fluxes across the pasture below. 
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2.4.5 Variogram models for soil thermal properties and greenhouse gas fluxes in 2006 

Table 2.5 shows the summary of variogram models to which soil temperature (T), thermal 

conductivity (K), thermal resistivity (R) and thermal diffusivity (D) responded in June and 

July 2006. Data for August and September is discussed, but omitted for clarity reasons.   

 
Table 2.5. Variogram model parameters for soil thermal properties in June and July 2006 
   June     July   
Properties T K R D T K R 
Model Spherical Spherical Spherical Gaussian Spherical Spherical Linear 
Co 0.0001 0.0000 0.0001 0.0001 0.0000 0.0000 0.0066 
Co + C 0.3000 0.0054 0.1600 0.0014 0.0177 0.0051 0.0566 
Ao 0.0010 0.0000 0.0005 0.0022 0.0005 0.0005 0.0010 
R2 0.9000 0.9700 0.9750 0.8670 0.8360 0.9740 0.9390 
RSS 0.0090 0.0000 0.0006 0.0000 0.0001 0.0000 28.9000 

Co= Nugget, Co + C= Sill, Ao= Range, R2= Regression Coefficient, RSS= Residual Sum of Squares,  T= soil 
temperature, K= Thermal conductivity, R= Thermal resistivity, and D=  thermal diffusivity 
 
GS+ GeoStatistics for the Environmental Sciences software, version 5.0 was used to fit data 

to models. The criterion for model selection was maximum R2, except in cases where another 

model was obviously more appropriate based on visual examination of the semivariogram. 

Neither an active lag distance nor a lag interval was set. Default values given by the program 

were used. Soil temperature (T) and soil thermal conductivity (K) data fitted to spherical 

variogram models in June and July and to linear models in August and September.  Soil 

thermal resistivity (R) fitted to a spherical model in June and August and a linear model in 

July and September. Diffusivity (D) fitted to a Gaussian model in June, a linear model in 

August and an exponential variogram model in September.  The ranges of spatial dependence 

for T and K increased when the data fitted to linear variogram models. However, no specific 

trend was observed for the range of spatial dependence for either R or D. Overall, the  R2 

values for field measured soil T, K, R and D ranged from 0.80 to 0.99, suggesting the 

presence of moderate to highly developed spatial structure. Table 2.6 shows the summary of 

variogram models to which CO2, CH4 and N2O responded for June and July 2006. Data for 

August and September is discussed but not shown.  
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Table 2.6. Variogram model parameters for greenhouse gases emissions in June and July 
2006 

 
 
As for soil thermal properties, greenhouse gas fluxes responded to several variogram models. 

Except in August when the data responded to a spherical model, CO2 was fitted to a linear 

variogram model in June, July and September.  CH4 fluxes responded solely to a spherical 

variogram in June, July, August and September. N2O shifted from an exponential variogram 

in June, to a spherical model in July and finally a linear variogram model for August and 

September.  The spatial structure was highly developed for CO2 data as showed by R2 values 

above 0.90 at each sampling period. The same trend was found for CH4 throughout this 

experiment, except in July when the spatial structure was moderately developed (R2 = 0.60). 

Similarly to its variogram models, the R2 values for N2O also shifted low to high and low to 

high in June to July and August to September, respectively. 

 

2.4.6 Spatial distribution of soil thermal properties and greenhouse gas fluxes in 2006 

Figures 2.3 to 2.6 show the spatial distribution of soil thermal properties across the pasture 

from June to September 2006. In June, soil temperature was high in the north central and low 

in central and southern region of the pasture.  Soil thermal resistivity was high in the north 

and low in the central and southern region of the pasture and soil thermal conductivity was 

high in the central eastern region and lowest in the central northeastern region. These trends 

stayed generally the same through the month of July. However, in August, the trends 

changed. High soil temperature shifted to the southeast of the pasture. Similarly, high soil  

   June    July   
Properties CO2 CH4 N2O CO2 CH4 N2O 
Model Linear Spherical Exponential Linear Spherical Spherical 
Co 10.0000 465.0000 0.0100 0.0100 0.3500 16.0000 
Co + C 4116.0000 2397.0000 16.5400 30.9800 20.6700 394.8000 
Ao 0.0010 0.0008 0.0001 0.0014 0.0005 0.0018 
R2 0.9290 0.9840 0.5970 0.9920 0.6550 0.9840 
RSS 1089.0000 11833.0000 108.0000 5.4400 123.0000 1244.0000
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T_June

21.70
21.57
21.44
21.31
21.18
21.05
20.92
20.79
20.67
20.54
20.41
20.28
20.15
20.02
19.89

T_July

26.10
26.02
25.94
25.87
25.79
25.71
25.64
25.56
25.48
25.40
25.33
25.25
25.17
25.09
25.02

T_Aug

24.78
24.67
24.56
24.44
24.33
24.22
24.11
24.00
23.88
23.77
23.66
23.55
23.44
23.32
23.21

 

T_Sept

11.71
11.46
11.21
10.96
10.71
10.46
10.21
9.96
9.71
9.46
9.21
8.96
8.71
8.46
8.21

Figure 2.3. Soil temperature (T) in a pasture from June to September 2006 
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R_June

8.12
7.67
7.23
6.79
6.35
5.91
5.47
5.03
4.59
4.15
3.71
3.26
2.82
2.38
1.94

 

 

R_July

4.38
4.24
4.11
3.97
3.84
3.70
3.57
3.43
3.30
3.16
3.03
2.89
2.75
2.62
2.48

 

R _Aug

6.98
6.63
6.28
5.93
5.58
5.23
4.88
4.53
4.18
3.83
3.48
3.13
2.78
2.43
2.08

 

 

R_Sept

5.68
5.40
5.12
4.84
4.56
4.28
4.00
3.72
3.44
3.16
2.88
2.59
2.31
2.03
1.75

 
Figure 2.4. Soil thermal resistivity (R) from June to September 2006 
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K_June

1.91
1.85
1.79
1.73
1.67
1.61
1.55
1.49
1.43
1.37
1.31
1.25
1.19
1.13
1.07

 

K_July

1.42
1.37
1.32
1.27
1.21
1.16
1.11
1.06
1.01
0.96
0.90
0.85
0.80
0.75
0.70

 

K_Aug

1.97
1.89
1.82
1.74
1.66
1.58
1.50
1.42
1.34
1.26
1.18
1.11
1.03
0.95
0.87

 

 

K_Sept

0.75
0.72
0.68
0.65
0.61
0.58
0.54
0.51
0.47
0.44
0.40
0.37
0.33
0.30
0.26

 
Figure 2.5. Soil thermal conductivity (K) from June to September 2006 
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D_June

0.50
0.49
0.47
0.46
0.44
0.43
0.42
0.40
0.39
0.38
0.36
0.35
0.34
0.32
0.31

 

 

D_Aug

3.88
3.65
3.41
3.18
2.95
2.71
2.48
2.24
2.01
1.77
1.54
1.30
1.07
0.83
0.60

 

 

D_Sept

0.53
0.51
0.49
0.47
0.45
0.43
0.41
0.39
0.37
0.36
0.34
0.32
0.30
0.28
0.26

 
Figure 2.6.  Soil thermal diffusivity (D) from June to September 2006 
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CO2_June

314.02
299.68
285.34
271.01
256.67
242.33
228.00
213.66
199.32
184.98
170.65
156.31
141.97
127.64
113.30

 

CO2_July

93.34
90.06
86.79
83.51
80.24
76.96
73.69
70.41
67.13
63.86
60.58
57.31
54.03
50.76
47.48

 

CO2_Aug

109.17
105.43
101.70
97.96
94.23
90.49
86.76
83.02
79.29
75.55
71.82
68.08
64.35
60.61
56.88

 

CO2 _Sept

68.67
64.33
59.99
55.65
51.31
46.97
42.63
38.29
33.95
29.61
25.27
20.93
16.59
12.25
7.91

 
 

Figure 2.7. Carbon dioxide (CO2) emissions from soil in a pasture from June to September 2006 
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CH4_June

82.62
72.75
62.87
52.99
43.12
33.24
23.37
13.49
3.62
-6.26
-16.14
-26.01
-35.89
-45.76
-55.64

 

CH4_July

31.57
27.35
23.13
18.90
14.68
10.46
6.24
2.02
-2.20
-6.42
-10.65
-14.87
-19.09
-23.31
-27.53

 

CH4_Aug

45.55
43.79
42.02
40.26
38.50
36.73
34.97
33.20
31.44
29.68
27.91
26.15
24.39
22.62
20.86

 

 

CH4_Sept

-89.96
-92.58
-95.20
-97.81
-100.43
-103.05
-105.67
-108.28
-110.90
-113.52
-116.13
-118.75
-121.37
-123.99
-126.60

 
Figure 2.8. Methane (CH4) emissions from soil in a pasture from June to September 2006 
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N2O_June

84.27
79.14
74.00
68.87
63.74
58.61
53.47
48.34
43.21
38.08
32.94
27.81
22.68
17.54
12.41

 

N2O_July

216.45
203.10
189.75
176.40
163.06
149.71
136.36
123.02
109.67
96.32
82.97
69.63
56.28
42.93
29.59

 

N2O_Aug

55.92
53.86
51.80
49.74
47.68
45.62
43.55
41.49
39.43
37.37
35.31
33.25
31.19
29.12
27.06

 

 

N2O_Sept

16.73
14.44
12.16
9.87
7.58
5.30
3.01
0.73
-1.56
-3.84
-6.13
-8.41
-10.70
-12.99
-15.27

 
Figure 2.9. Nitrous oxide (N2O) emissions from soil in a pasture from June to September 2006 
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thermal resistivity was found in the central region while high values of soil thermal 

conductivity shifted slightly to the south but for the most part stayed the same. For September 

the soil temperature and soil resistivity were very similar to the spatial distribution in August.  

Figures 2.7 to 2.9 show the spatial distribution of greenhouse gas fluxes across the pasture 

from June through September 2006. Maps portrayed three zones of distribution for 

greenhouse gas fluxes. In June, CO2 emissions were low in the north and high in the 

southwest region of the pasture.  This spatial pattern shifted to high in the east and low in the 

south during the month of July. In August the CO2 fluxes shifted from the east to the north.   

However, in September, CO2 showed high emissions in the north, low emissions in the south 

just as it did in June. CH4 uptake was higher in the east and southwest region of the pasture 

and low in the north and east region for the month of June.  This shifted to high in the central 

region and low in the north and south region.  In August and September emissions changed to 

high emissions in the southeast and the low emission stayed relatively the same. N2O was 

high in the central region of the pasture and low in the south in June.  The trend shifted to 

high in the northeast in July. This trend stayed through out August. The high emissions in the 

north shifted to the east during the month of September. These shifts in emissions pattern 

over the months makes it difficult to predict with accuracy the distribution of gas fluxes. 

Shifts in greenhouse gases seem to agree with shifts in soil thermal properties.  

 

2.4.7 Correlation between greenhouse gas fluxes and soil thermal properties in 2006   

The monthly linear correlation matrices between greenhouse gas fluxes and soil thermal 

properties from June to September 2006 are showed in Table 2.7 (a, b, c and d). In June 

(Table 27.a), only three significant correlations were found: CO2 emissions was negatively 

correlated with soil thermal diffusivity (D) was negatively while N2O positively correlated 

with soil thermal conductivity (K) and negatively correlated with soil thermal resistivity (R).  
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In July (Table 27.b), only one significant correlation was found between CO2 and soil thermal 

conductivity (K). In addition, CO2 and N2O significantly correlated among themselves (p = 

0.0037; r = 0.62).  In August (Table 27.c), there was no correlation between greenhouse gas 

fluxes and soil thermal properties, but CO2 and N2O significantly correlated among 

themselves again (p = 0.035; r = 0.47).  

Table 2.7. Correlation matrices (r values) between greenhouse gas fluxes and  
soil thermal properties in a pasture,  
 (a) June 2006      
 CO2 CH4 N2O T K R 
CH4 0.14ns      
N2O 0.22ns -0.10ns     
T 0.06ns -0.29ns -0.03ns    
K -0.28ns 0.34ns -0.48* -0.13ns   
R 0.24ns -0.07ns 0.55* -0.07ns -0.83****  
D -0.52* 0.18ns -0.28ns -0.43ns 0.68*** -0.53* 

(b) July 2006 
 CO2 CH4 N2O T K 
CH4 -0.26ns     
N2O 0.62** 0.15ns    
T 0.34ns 0.02ns 0.27ns   
K 0.52* 0.03ns 0.21ns 0.15ns  
R -0.42ns -0.01ns -0.17ns -0.25ns -0.38ns 

(c) August 2006 
 CO2 CH4 N2O T K R 
CH4 -0.26ns      
N2O 0.47* -0.23ns     
T -0.42ns 0.06ns -0.29ns    
K 0.31ns 0.02ns -0.14ns -0.31ns   
R 0.21ns 0.01ns 0.19ns -0.22ns 0.14ns  
D 0.02ns 0.01ns 0.09ns -0.24ns 0.04ns -0.68** 

(d)September 2006 
 CO2 CH4 N2O T K R 
CH4 -0.09ns      
N2O 0.49* 0.38ns     
T 0.56* 0.01ns 0.52*    
K 0.49* -0.02ns 0.49* 0.62**   
R -0.36ns 0.01ns -0.59** -0.68*** -0.88***  
D 0.38ns -0.13ns 0.49* 0.57** 0.89*** -0.82*** 

ns = no significant, *, **, ***, **** = significantly different at 0.5, 0.01, 0.001  
and 0.0001 probability levels  
 
In September (Table 2.7d), several significant correlations were found between gas fluxes 

and soil thermal properties: CO2 was positively correlated with soil temperature (T) and soil 



 

36 
 

thermal conductivity (K). N2O positively correlated with soil temperature (T) and soil 

thermal conductivity (K), thermal diffusivity (D) and negatively correlated with soil thermal 

resistivity (R). In addition, CO2 and N2O significantly correlated among themselves (p = 0.01; 

r = 0.49).  

All greenhouse gas fluxes and soil thermal properties (except thermal diffusivity, D) 

significantly correlated when the data was averaged for the entire sampling period as 

discussed below. In addition, CO2, CH4 and N2O also correlated among themselves. 

Correlation coefficient also increased and ranged from 0.25 to 0.89 for the relationship 

between gas fluxes and soil thermal properties and from 0.52 to 0.69 for greenhouse gas 

fluxes among themselves. Finally, only positive correlations were observed when data was 

pulled together and averaged. The correlation matrix between soil thermal properties and gas 

fluxes for the entire year for 2006 is showed in Table 2.8. Data for 2005 and 2004 are 

discussed but not showed.  

Table 2.8.  Correlation matrix (r values) between  greenhouse gas fluxes and soil thermal 
properties from June to September 2006 (combined data) 
 CO2 CH4 N2O T K R 
CH4 0.61****      
N2O 0.52**** 0.69****     
T 0.54**** 0.89**** 0.78****    
K 0.62**** 0.76**** 0.47**** 0.71****   
R 0.29* 0.45*** 0.54**** 0.47**** 0.13ns  
D -0.03ns 0.10ns 0.12ns 0.12ns 0.09ns -0.29* 
 
Fitted regression lines for the relationships between greenhouse gases emissions and soil 

thermal properties (T, K and R) in 2006 are showed in Figures 2.10, 2.11 and 2.12 for CO2, 

CH4 and N2O, respectively. In 2006, the highest significant correlation between gas fluxes 

themselves was that between CH4 uptake and N2O emissions (r = 0.69, p = 0.0001) and the 

highest correlation between gas fluxes and soil thermal properties was between CO2 and T. In 

2005, CO2 and N2O also significantly correlated (p = 0.75; r = 0.0001) while N2O correlated 

with soil temperature (p = 0.0001, r = 0.75).  
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Figure 2.10. Fitted linear regression lines between CO2 emissions (Y axis)  and soil temperature 
(T), thermal conductivity (K) and thermal resistivity (R) 
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Figure 2.11. Fitted linear regression lines between CH4 fluxes (Y axis) and soil temperature (T), 
thermal conductivity (K) and thermal resistivity (R) 
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Figure 2.12. Fitted linear regression lines between N2O fluxes (Y axis) and soil temperature 
(T), thermal conductivity (K) and thermal resistivity (R) 
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2.5 Discussion 

2.5.1 Soil physical and chemical properties 

Soil physical properties had very low variability. Similar results were also obtained by 

Johnson et al (2007) who previously conducted a study in the same pasture. The air-filled 

porosity and water content were at adequate level. In fact, it has been suggested that a 

minimum air content above 0.10 m3/m3 was sufficient to stimulate plant growth and 

microbial activities in soil (Verdonck and Demeyer, 2004). Soil organic matter in this pasture 

was also at adequate level. In fact, Buyanovski and Wagner (1985) reported that for Missouri 

soils, the mean annual mineralization of soil organic matter is about 2%, which is consistent 

with the results of this study. 

 

2.5.2 Soil thermal properties and greenhouse gas fluxes 

Soil thermal properties had very high monthly variability with coefficients of variation (CV) 

ranging from 24.36 to 137.89%. These results agree with those of Paro et al. (2008) who 

reported that CO2 was linearly correlated with soil thermal conductivity (K), thermal 

resistivity (R), soil temperature (T) and and thermal diffusicity (D) whereas N2O linearly 

correlated with R and T.  Johnson et al. (2007) also found that CO2 linearly correlated with K 

and T, CH4 correlated with K and R while N2O correlated with R. Similarly to soil thermal 

properties, N2O, CO2, and CH4 also showed strong variability across the pasture with high 

coefficients of variation. In fact, the  spatial variability of  greenhouse gases emissions such 

as CO2 flux has been characterized in several studies (Davidson et al., 2002; Rayment and 

Jarvis, 2000; Rochette et al., 1991), and coefficients of variation in the range of 25 to 500 % 

have been reported. The fluxes changed significantly from month to month and year to year 

as did soil temperature.  Changes in greenhouse gas fluxes, for example CO2 emissions, have 

been reported to follow seasonal temperature trends (Anderson, 1973; Buyanovsky et al., 
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1985; Franzluebbers et al., 2002; Rochette et al., 1991;  Raich and Tufekcioglu, 2000;). It was 

found that the pasture released more CO2 during the months that received more rainfall.  

Similar trends were reported in Hatano and Lipiec (2004).  Negative fluxes of N2O were 

observed in 2004, 2005 and 2006. This behavior is unusual as in most studies, soils have been 

reported a source of N2O (Ball et al., 2000, Matson et al., 1990). However, several studies 

where soils have acted occasionally as sinks have also been reported. Using a 

micrometeorological method, Maggiotto and  Wagner-Riddle (2001) measured N2O, NO and 

NOx fluxes from ryegrass field fertilized with three different mineral fertilizers. They found 

that NO2 fluxes were always negative (–6 ng N m-2 s-1), but decreased to –2 ng N m-2s-1 when 

snow was present on the soil surface. They suggested that the form of inorganic N applied 

has an effect on NO+ N2O emissions but not on NO2 fluxes. Glatzel and Stahr (2001) 

examined the effect of fertilization on the exchange of N2O and CH4 in the soil–plant system 

of meadow agroecosystems in southern Germany. Using closed chamber method, they we 

regularly determined the gas fluxes  and associated environmental parameters. They found 

that N2O fluxes at the unfertilized and fertilized plots were small, generally between 50 and –

20 ug N m–2 h–1. They identified some incidents of N2O uptake. They concluded that 

apparently, rapid N mineralization and uptake in the densely rooted topsoil prevents N losses 

and the inhibition of CH4 oxidation.  

 

2.5.3 Correlations between greenhouse gas fluxes and soil thermal properties 

CO2 consistently correlated with N2O during two of the three years of this study and during 

three of four months in 2006 investigation. Although N2O and CO2 emissions are different 

processes in soil, these significant correlations confirm that some common factors controlled 

N2O and CO2 emissions in this pasture. In fact, both N2O and CO2 were significantly 

correlated with soil temperature (T) and soil thermal conductivity (K) in years and months 
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when these two gases correlated. The correlation between gases has also been reported by 

Konda et al. (2005),  Xiu-jun et al., (2001) and Xiu-jun et al., (2000). Soil temperature (T) 

could not be correlated with any of the gases in 2004, but correlated with two in 2005 and 

with all gases in 2006. A month to month examination of the 2006 data revealed that during 

three months successively (June, July and August) out of the four months study, soil 

temperature (T) could not act as a controlling factors for CO2, CH4 and N2O fluxes.  

However, sporadic correlations between soil K, R or D were found when soil temperature 

could not act as controlling factor for with gas fluxes. Several authors have suggested that 

consistent correlations between soil controlling factors and greenhouse gases have mainly 

been observed in controlled environments (Hatano and Lipiec, 2004; Pilegaard et al., 2006; 

Schindlbacher et al., 2004) with conflicting results in field environments (Janssens et al., 

2001). In a study assessing the spatial variability of soil properties and gases emissions in 

southern Ohio (USA), Jacinthe and Lal (2006) found stronger and statistically significant 

relationships between gas emissions and soil properties in July 2003. However, in May 2004, 

this trend changed and they observed only few statistically significant relationships. Paro et al 

(2007) studied the spatial variability of soil thermal properties and CO2, CH4 and N2O 

emissions in central Missouri. They reported a significant correlation between soil 

temperature and CO2 and N2O emissions, but no correlation with CH4. However, Johnson et 

al. (2007) conducted a similar study in a pasture in central Missouri, but could not relate CO2 

and N2O to soil temperature. In opposite, only CH4 was related to soil temperature. Jones et 

al. (2007) studied the influence of organic and mineral N fertilizer on N2O emissions from a 

temperate grassland in Scotland. They investigated the influence of environmental conditions 

on N2O emissions by a series of single and multiple regression analysis but could not find a 

relationship between soil moisture and N2O.   
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2.6 Conclusion 

We monitored CO2, CH4, and N2O fluxes and soil thermal properties from 2004 to 2006 in a 

pasture at Lincoln University of Missouri and conducted a month-to-month assessment of 

trends in fluxes and soil thermal properties in 2006 data. Our results showed that the pasture 

acted as a sink in 2004, a source in 2005 and again a sink of CH4 in 2006. CO2, CH4, and 

N2O and soil thermal properties shifted from month to month and year to year, exhibiting 

various trends. CO2, CH4, and N2O correlated among themselves with a consistent correlation 

between N2O and CO2. Soil temperature (T) and thermal properties (K, R, D) acted as 

controlling factors for CO2, CH4, and N2O, but not consistently. Studies in various 

ecosystems and conditions are therefore still needed to increase our understanding of 

greenhouse gases fluctuations and potential soil controlling factors. 
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Chap. 3.  Diffusivity models and greenhouse gas fluxes from a forest, pasture, grassland 

and corn field in northern Hokkaido2 

 

3.1 Abstract 

Information on the most influential factors determining gas flux from soils is needed in 

predictive models for greenhouse gases emissions. An intensive soil and air sampling was 

conducted along a 2000 m transect extending from a forest, pasture, grassland and a corn 

field in Shizunai, Hokkaido (Japan), measured CO2, CH4, N2O and NO fluxes and calculated  

soil bulk density (b), air-filled porosity (a) and total porosity (). Using diffusivity models 

based on either a alone or on a combination of a and , two pore space indices were 

predicted: the relative gas diffusion coefficient (Ds/Do) and the pore tortuosity factor ().  

Finally, the relationship between Ds/Do and   and CO2, CH4, N2O and NO fluxes was 

studied. Results showed that the grassland had the highest b while a and  were highest in 

the forest. CO2, CH4, N2O and NO fluxes were highest in the grassland while N2O dominated 

in the cornfield. On average, Ds/Do was higher for models based on a alone as compared to 

those based on a combination of a and . An opposite trend was observed for .  Few 

correlations existed between a, , b and gas fluxes, however, Ds/Do and  significantly 

correlated with CO2, and CH4 and N2O even when gas fluxes could not correlated with either 

a or . Furthermore, coefficients of correlation between Ds/Do and  and gas fluxes were 

higher than those betweena or and fluxes and ranged from 0.20 to 0.80. Inclusion of Ds/Do 

and  in predictive models may improve our understanding of the dynamics of greenhouse 

gas fluxes from soils. Ds/Do and  can be easily and quickly obtained from routine soil air and 

water measurement and existing diffusivity models. 

Key Words: Gas diffusion coefficient, greenhouse gas fluxes, pore space indices  
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3.2 Introduction 

Greenhouse gases produced in soils move through the air-filled pore space before their 

emission to the atmosphere. The probability for their consumption increases as impediments 

to their movement increase. The exchange of gas between the soil surface and the adjacent 

atmosphere can occur by means of two mechanisms: diffusion and advection. Diffusive gas 

transport depends primarily on the total volume and the tortuosity of continuous air-filled 

pore space. Advective gas transport is affected by gaseous permeability which, in turn, is 

dependent on total porosity, pore size distribution, and tortuosity of continuous air-filled pore 

space (Hillel, 2004). It is well documented that gaseous diffusion is the principal process 

involved in the exchange between the soil and the atmosphere (Taylor, 1949; Troeh et al.,1982). 

Gaseous diffusion and its variations with soil type and soil air-filled porosity typically control 

soil aeration  (Buckingham, 1904; Taylor, 1949), fumigant emissions (Brown and Rolston, 

1980), volatilization of volatile organic chemicals from industrially polluted soils (Petersen et 

al., 1996) and soil uptake and emissions of greenhouse gases (Kosugi et al., 2007; Smith et al., 

2000). However, in comparison to other soil parameters such soil temperature  and moisture 

(Almagro et al., 2009; Smith et al., 2000; Cook and Orchard,  2008;  Dilustro et al., 2006; Zhou 

et al., 2006; Davidson et al., 2000), indices of N availability (NO3
- and NH4

+) (Turner et al., 

2008; Davidson et al., 2000; Mutegi et al., 2009; Xiu-jun et al., 2001; Carno and Ineson, 1999; 

Mühlher and Hiscock, 1997; Vermoesen et al., 1996 and Whalen, 2000),  only few authors 

have focused on soil gas diffusion coefficient and the pore tortuosity factor as potential 

controlling factors for greenhouse gases emissions 

_____________________________________________________________________________ 
2This chapter is based on a paper published in Pedosphere (Elsevier) –Authors Nkongolo et al 
(2010). doi:10.1016/S1002-0160(10)60065-3   
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Among these few studies, Kruse et al. (1996) reported a significant relation between methane 

emission and gas diffusion coefficient. Ball et al. (1997) reported a relationship between N2O 

fluxes and air permeability, the soil gas diffusion coefficient and the tortuosity factor. Hu et al. 

(2001) found a significant relationship between the soil gas diffusion coefficient and CH4 fluxes. 

Nkongolo et al. (2008) found similar relationships in an onion, corn and soybean fields in Japan. 

Measurements of the gas diffusion coefficient, and subsequent calculation of the pore tortuosity 

factor are tedious, expensive and time consuming. This fact may have contributed to fewer 

studies on the relationship between the soil gas diffusion coefficient and other soil processes. 

However, the gas diffusion coefficient and the pore torotuosity factor can be predicted from 

easily measurable soil properties such as air-filled porosity using either Penman (1940), 

Buckingham (1904), Marshal (1957) or Moldrup et al., (2000) models. Models predicting the 

gas diffusion coefficient and the pore tortuosity factor as a function of both air-filled porosity 

and total porosity (Jin and Jury, 1996; Millington, 1959; Moldrup, 1997; Sallam et al., 1984, 

Moldrup, 2005) are also available. Finally, predictive models using a few or several points of the 

moisture release curve alone (Moldrup et al., 1996 and Moldrup et al., 2000) or in combination 

with the saturated hydraulic conductivity (Allaire et al., 1996; Nkongolo and Caron, 1999;  

Nkongolo et al., 2000; Caron and Nkongolo, 2004) have been suggested for mineral as well as 

organic soils but all these models are not usually tested.  The first objective of this study was to 

predict pore space indices from routine measurements of soil air and water contents and existing 

diffusivity models. A second objective was to assess the relationships between these pore 

space indices and greenhouse gases emissions.  
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3.3 Materials and methods 

3.3.1 Experimental setup 

The experiment was conducted at the Livestock Farm, Faculty of Agriculture, Hokkaido 

University in Shizunai. Shizunai is located at 42o25.9'N and 14o25.9'E. The annual average 

temperature is 7oC, and the average temperature is 20oC in August and -5oC in February. 

Annual mean precipitation is 1,200mm. Snow covers the land from late November to middle 

of March. The soil of this area is derived from Tarumae (B) volcanic ash, and is classified as 

Aquic Humic Udivitrand (USDA soil taxonomy). In situ measurements were conducted along 

a 2000m transect extending from a forest, grassland, pasture and cornfield soils in August 

2000 (Fig. 1). Mapple (Aceraceae rubrum) and oak (Fagaceae quercus) predominates in the 

forest. Forest floor was covered by Sasa nipponica Makino et Shibata. The grassland and 

pasture sites were derived from a converted forest in 1965 (Hu et al., 2001). Phleum pratense 

L. and Trifolium pratense were the dominant grasses. The pasture is used for cattle grazing 

while the grassland is cut for hay. Chemical fertilizers are applied annually in the middle of 

May. During the experimental year, N, 68, P, 58, K, 38 kg ha-1 fertilizers were used. Cattle 

grazed 8 times from May to October during the observation. The cornfield had been used for 

growing corn for more than 30 years. Corn (Zea mays L.) was sowed on May 15 and 

harvested on September 28, 2000. Fertilizers consisting of N, 120, P, 48; and K, 58 kg ha-1 

were applied at sowing time, and farm manure (N, 64 kg ha-1) was applied during the 

previous year.  
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                       Figure 3.1. Sampling transect in Shizunai, northern Hokkaido (Japan) 
 
 

3.3.2 Soil sampling and physical properties measurements  

Soil samples were collected with a 5 cm diameter and a 5 cm height cylinder and brought to 

the laboratory for analysis. Soil fresh weights were measured then soil samples were oven 

dried at 105oC for 72 hours until constant weight. Soil bulk density (b),  total porosity (), 

volumetric (v) and gravimetric (g) water contents, air-filled porosity (a) and water filled 

pore space (WFPS)  were later calculated as described in Nkongolo et al. (2007 a and b).   

 

3.3.3 Soil air sampling for CO2, CH4, NO and N2O fluxes measurements  

CO2, CH4, NO and N2O emissions from the soil surface were measured using a closed-

chamber technique (Rolston, 1986). The chambers were circular with steel frames. The top of 

each chamber had a gas sampling tube and a bag to control air pressure inside the chamber. 

The height and diameter of the chamber were 0.35 m and 0.30 m respectively. At each 
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sampling time, 6 chambers were installed into the soil and kept for 20 minutes, and then 

samples of the enclosed atmosphere were withdrawn by a 50 ml syringe and transferred into a 

1L Tedlar ® Bag. The air temperature inside the chamber was recorded using a digital 

thermometer. Ambient air between 0 and 2 m from the soil surface was collected and its 

mean concentration was used as a background concentration for calculation of gas fluxes. 

These operations were repeated successively as we moved along the 2000 m transect. Few 

hours after air and samples collection, a gas chromatography with electron capture detector 

was used for N2O and CH4 analyses. NO flux was analyzed by chemo-iluminescence with a 

nitrogen oxide analyzer (Kimoto, Model 265 P) and an infra-red analyzer was used for CO2. 

Fluxes were calculated according to Ginting et al. (2003): 

 

 *))/273(*)/(*)/(* TTCAVF                     [21] 

 

Where, F is the gas production rate;  is the gas density (mg m-3) under standard conditions; 

V (m3) and A (m2) are the volume and bottom area of the chamber;  C/t is the ratio of 

change in the gas concentration inside the chamber (10-6 m3 m-3 h-1); T is the absolute 

temperature; and  is the transfer coefficient (12/44 for CO2, 12/16 for CH4, 14/30 for NO 

and 28/44 for N2O). A positive value indicates gas emission from the soil, while a negative 

value indicates gas uptake. The detectable limits were 0.1 mg C m-2 h-1 for CO2, 0.01 g C m-

2 h-1  for CH4 and  0.1 g N m-2 h-1 for NO and N2O. Soil temperature was measured at 5 cm 

and 10 cm from the top soil layer, using a digital thermometer.  

 

3.3.4 Measurements of the gas diffusion coefficient 

The experimental procedure followed was the same as that described in Caron and Nkongolo 

(2004). It consisted in measuring the concentration of N2 diffusing through the substrate cores 
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in a gas diffusion chamber. The gas diffusion apparatus, constructed in plexiglass, was based 

on the design suggested by Rolston (1986) and adapted by Xu et al. (1992). Two rubber O-

rings, one at the top of the base plate in a slot around the opening and the other immediately 

underneath the soil core, were used for sealing purposes. A tank of compressed gas 

containing a mixture of 80% Ar and 20% N2 was used to fill the diffusion chamber and to 

establish the initial gas concentration of the diffusion experiment. A gas chromatograph was 

used to analyze the concentration of N2 in the diffusion chamber. The room temperature 

during the experiment varied from 21 to 23°C with a mean value of 22°C. A 5-mL gas sample 

was taken with a 6-mL syringe at 0, 3, 10, 20, 30, 40, 50, 60, 75, and 90 min after the start of 

the experiment. The gas sample was injected directly into the gas chromatograph. Then, from 

N2 concentration in the chamber C, a plot of ln[(C – Cs/(C0 – Cs)] vs. time was drawn, where 

Cs is the gas concentration in the atmosphere and C0 the initial concentration within the 

chamber. A linear regression was run from those data points within the linear part of the plot. 

As the slope of this line corresponded to –Ds
2/ a,

 the value of Ds was calculated from the 

value of α found in Table 46-1 from Rolston (1986) and the  a obtained on the cores.  

 

3.3.5 Prediction of the gas diffusion coefficient and the pore tortuosity factor  

The relative gas diffusion coefficient (Ds/Do) and the pore tortuosity factor () were predicted 

using diffusivity models found in the literature as described below. 

 

Theoretical background 

The general equation for the diffusion of one gas into a reference gas is given by Fick’s first law 

and  is stated in Crank (1956). In soils, this equation will overestimate the flux of gas  because 

the gas must diffuse over a greater distance to get from one point to another and also because  

the cross- sectional area available for flow is reduced by solid and liquid barriers. Consequently, 
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gas diffusion in the soil is calculated by modifying the diffusion flux in the air by a gas tortuosity 

factor producing the flux equation (Jury et al., 1996): 

 

   xC  /
o

Dqx  =  xC  /
s

D       [1] 

 

where Ds=.Do is the soil gas diffusion coefficient and =.a, where  a is the air-filled porosity,  

 is the pore effectiveness, and   = 1/ with   being the pore tortuosity factor.  The effective 

diffusivity of a gas through the soil, Ds, can therefore be related to its diffusivity in the air, Do , 

where the pore space within the medium is air-filled, by the relation (Reible and Shair, 1982; 

King and Smith, 1987): 

 

   af.Ds .Do =   oDfa ./        [2] 

 

Several models found in the literature predict Ds/Do as either a function of air-filled porosity (a) 

alone : 

 afDoDs 66.0/   (Penman, 1940)     [3] 

 5.1/ faDoDs   (Marshall, 1957)     [4] 

 2/ faDoDs   (Buckingham, 1904)      [5] 

 

  
100100

100 04.02/ 3
aa ffDoDs  (Moldrup et al., 2000)    [6] 

or as a quotient of air-filled porosity over total porosity (): 

  21.3 //  faDoDs    (Sallam et al., 1984)   [7] 

  233.3 //  faDoDs    (Millington, 1959)   [8] 
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  3/22 //  faDoDs  (Jin and Jury, 1996)      [9] 

    m)/3(12/66.0  faf
D
D

a
o

s (Moldrup et al.,1997)                [10] 

By comparing equations [3 -10] to [2], the pore tortuosity factor can be predicted as a 

function of either air-filled porosity alone: 

  66.0/1   (Penman, 1940)     [11] 

  5.0/1 fa   (Marshall, 1957)     [12] 

 

  fa/1   (Buckingham, 1904)     [13] 

 

    04.02/1 2
100  fa   (Moldrup et al., 2000)      [14] 

or as a quotient of total porosity () over air-filled porosity: 

  1.22 / fa  (Sallam et al., 1984]      [15] 

  33.22 / fa  (Millington, 1959)         [16] 

  fa/3/2  (Jin and Jury, 1996)         [17] 

  3/)12(66.0/3
12

mfa

m



   (Moldrup et al., 1997)   [18] 

 

 

To compare gas diffusivity models, the root mean square error (RMSE) of prediction was 

used for best overall fit compared with chamber measured data: 

RMSE = 


n

i

n
1

2

id/1                     [19] 

where di is the difference between the model predicted and the chamber measured value of 

Ds/Do and n is the number of measurements. The bias was used to evaluate model 
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overestimation (positive bias) or underestimation (negative bias) of chamber measured Ds/Do 

(Moldrup et al., 2003): 

 

bias = 


n

i

n
1

id/1                     [20] 

3.4 Results and discussion 

3.4.1 Soil physical properties 

The forest site had the highest air-filled porosity and total porosity, but the lowest bulk 

density  and water filled pore space which was highest in the corn field. Chamber measured 

gas diffusion coefficient was also highest in the forest (Table 4.3) while volumetric water 

content was nearly constant over sites. Overall, coefficients of variation were lower total 

porosity (4.64 to 21.10%), followed by bulk density (10.23 to 40.83%), but higher for other 

soil physical properties (11.08 to 72%). Except for water filled pore space in the forest, 

grassland and pasture, all median values were close to their means, implying that the 

distribution for these properties approached normality. Overall, soil physical properties were 

in the range of normally reported data. 
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Table 3.1. Summary of simple statistics for soil physical properties measured along a transect 
extending from a forest, pasture, grassland and corn field in Shizunai, northern  Hokkaido 
(Japan). 

Simple statistics Soil Physical Properties 
Mean SD CV Median Skew 

 
Forest (n = 54)      
a (m

3 m-3) 0.22 0.09 40.60 0.21 0.31 
b ( kg m-3) 0.57 0.23 40.83 0.51 0.88 
v  (m

3 m-3) 0.52 0.10 19.09 0.51 0.39 
 (m3 m-3) 0.73 0.13 18.35 0.73 -0.79 
WFPS (%) 71.23 22.17 37.98 65.41 -0.67 
 
Pasture (n= 27) 
a (m

3 m-3) 0.12 0.07 58.15 0.09 1.36 
b ( kg m-3) 0.80 0.25 31.70 0.81 -0.29 
v  (m

3 m-3) 0.56 0.15 27.50 0.54 -0.06 
 (m3 m-3) 0.67 0.14 21.10 0.66 0.07 
WFPS (%) 83.58 31.72 50.02 78.32 -0.79 
 
Grassland (n = 11) 
a (m

3 m-3) 0.10 0.05 54.61 0.09 1.24 
b ( kg m-3) 0.89 0.19 21.59 0.89 -0.36 
v  (m

3 m-3) 0.55 0.10 17.42 0.54 0.53 
 (m3 m-3) 0.66 0.10 14.81 0.63 -0.26 
WFPS (%) 83.33 37.89 72.39 80.62 -0.20 
 
Cornfield (n = 8) 
a (m

3 m-3) 0.14 0.06 46.27 0.11 1.22 
b ( kg m-3) 0.76 0.08 10.23 0.76 0.24 
v  (m

3 m-3) 0.56 0.07 12.29 0.57 -0.19 
 (m3 m-3) 0.69 0.03 4.64 0.69 0.54 
WFPS (%) 81.16 8.91 11.08 83.83 -1.14 
 
All (n = 101) 
a (m

3 m-3) 0.14 0.08 59.21 0.11 1.03 
b ( kg m-3) 0.75 0.26 34.20 0.75 -0.08 
v  (m

3 m-3) 0.54 0.13 23.63 0.53 0.12 
 (m3 m-3) 0.69 0.13 19.20 0.69 -0.15 
WFPS (%) 78.26 29.59 47.95 74.60 -0.74 

SD = standard deviation, CV = coefficient of variation, Skew = skewness coefficient. a = air 
filled porosity, b = soil bulk density; v  = volumetric water content, = total porosity, 
WFPS = water filled pore space 
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3.4.2 Greenhouse gas fluxes 

CH4 fluxes over the 2000 m transect showed a net source in the pasture whereas the forest, 

grassland and corn field portions constituted sinks (Table 3.2). In addition, CH4 uptake in the 

grassland and corn field was less than in the forest. It has been reported that CH4 uptake in 

aerobic soils, as in the case of this study, depends on several environmental parameters 

(Boeckx and Van Cleemput, 1998; Ullah et al., 2008). In general, two main factors are 

responsible for the differences in CH4 uptake capacity between soil ecosystems: (1) soil 

disturbance caused by cultivation of soils, and (2) fertilization with NH4
+ containing 

fertilizers. Mosier et al. (1991) suggested that methane oxidation occurs in certain soil units 

or niches. Disturbance of the original soil structure by cultivation may reduce the probability 

of biological, chemical and physical parameters that define these ecological niches for 

methanotrophs (Hutsh, 1998). In this study, the grassland site was derived from a converted 

forest in 1965 while the corn field (converted from the same forest) has been used for 

growing corn for more than 30 years. As our results suggested, other studies also found that 

conversion of forests or native grasslands to agricultural fields reduces the CH4 uptake rate 

(Johnson et al., 2007). These reductions can be as high as 60% (Dobbie et al., 1996) as found 

in this study. In addition, it has been reported that nitrogen fertilizer reduces CH4 uptake (Li 

and Kelliher, 2007; Price et al., 2004). In this study, nitrogen fertilizers were applied to the 

corn field (120 kg N ha-1) and grassland (68 kg ha-1). However, it has also been reported that 

N application caused no change to soil CH4 oxidation rates in a number of field studies 

(Yamulki et al., 1999; Kammann et al., 2001) while it decreased or increased rates in other 

studies ( Kruger and Frenzel, 2003; Reay and Nedwell, 2004).  The grassland emitted more 

CO2 (218.04 mg C-CO2 m
-2h-1) than the forest, pasture and corn field which had similar level 

of CO2 emissions with forest (128.21 mg C-CO2 m-2h-1). Similar results were observed by 
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Shrestha et al. (2009) who monitored greenhouse gas fluxes from post-reclamation land uses 

(forest, hay, and pasture) and found that the CO2,
 CH4, and N2O  

 
Table 3.2. Summary of simple statistics for methane (CH4), carbon dioxide (CO2), nitric 
oxide (NO) and nitrous oxide (N2O) fluxes measured along a 2 km transect in Shizunai: 
forest, pasture grassland and corn field. 

Simple statistics Greenhouse Gas Type 
Mean SD CV Median Skew 

Forest (n = 54) 
CH4 (g C-CH4 m

-2 h-1) -50.00 60.0 108.76 -60.0 1.55 
CO2 (mg C-CO2 m

-2 h-1) 128.21 44.05 34.35 124.35 0.56 
NO (g N-NO m-2 h-1) 5.87 12.48 212.74 1.95 2.84 
N2O (g N-N2O m-2 h-1) 2.03 0.37 18.62 2.20 -0.65 
 
Pasture (n = 27) 
CH4 (g C-CH4 m

-2 h-1) 420.00 1090 261.29 -50.0 2.98 
CO2 (mg C-CO2 m

-2 h-1) 142.94 51.34 35.92 150.15 -0.38 
NO (g N-NO m-2 h-1) 3.83      4.68 122.36 2.60 2.35 
N2O (g N-N2O m-2 h-1) 63.43 155.00 244.39 23.00 5.45 
 
Grassland (n = 11) 
CH4 (g C-CH4 m

-2 h-1) -20.00 0.00 0.00 -20.0 -0.22 
CO2 (mg C-CO2 m

-2 h-1) 218.04 37.41 17.16 152.30 -0.33 
NO (g N-NO m-2 h-1) 8.80 11.89 135.10 3.80 1.034 
N2O (g N-N2O m-2 h-1) 34.11 33.56 98.38 30.60 1.11 
 
Corn field (n = 8) 
CH4 (g C-CH4 m

-2 h-1) -20.00 10.0 34.64 -20.0 0.71 
CO2 (mg C-CO2 m

-2 h-1) 124.86 26.91 21.55 129.60 -0.14 
NO (g N-NO m-2 h-1) 5.68 7.72 135.90 0.90 1.04 
N2O (g N-N2O m-2 h-1) 253.28 262.80 103.76 126.05 0.92 
 
All (n = 101) 
CH4 (g C-CH4 m

-2 h-1) 190.00 820 420.90 -20.0 4.38 
CO2 (mg C-CO2 m

-2 h-1) 146.17 53.29 36.46 145.80 0.07 
NO (g N-NO m-2 h-1) 4.86 7.85 161.63 2.20 3.29 
N2O (g N-N2O m-2 h-1) 81.94 172.44 210.44 26.00 3.87 

CH4= methane, CO2 = carbone dioxide, NO = nitric oxide, N2O = nitrous oxide. SD = 
standard deviation, CV = coefficient of variation, Skew = skewness coefficient 
 
fluxes were consistently high in the pasture and hay as compared to the forest. Nitric oxide 

(NO) fluxes were also higher in the grassland while N2O fluxes dominated in corn field 

where nitrogen fertilizer (120 kg N ha-1) was applied. These results are consistent with those 

of previous researchers. In fact, agronomic use of chemical fertilizers has been correlated 
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with high rates of N2O emissions (Eichmer, 1990; Veldkamp and Keller, 1997; Veldkamp et 

al., 1998; Williams et al., 1992; Hao et al., 2001). The forest had 17, 31 and 125 times less 

N2O fluxes as compared to grassland, pasture and corn field, respectively.  There was a 

strong variability in fluxes as showed by high coefficients of variation (C.V.). CH4 and N2O 

had CV values of over 200% in the pasture while NO varied mostly in the forest. CO2 had 

moderate CV not exceeding 40%. The distribution of CO2 along the transect approached 

normality in the forest, pasture and corn field as showed by medians close to their respective 

means and lower skew values.  

 

3.4.3 Relative gas diffusion coefficient 

The relative gas diffusion coefficient (Ds/Do) showed different trends depending on whether 

it was predicted from models based either on air-filled porosity alone or on a combination of 

air-filled and total porosity (Table 3.3). For models based on air-filled porosity alone, three 

specific trends were observed: (i) in the forest, the mean Ds/Do value from chamber  

measurement (0.0118 m s m-1 s-1)  was higher to that predicted from Buckingham (0.054), 

Marshall (0.106) and Moldrup (0.038) models; (ii) in the grassland, the mean Ds/Do value 

from chamber measurement was lower to that predicted from models and (iii) for the pasture 

and corn field: the mean Ds/Do value from chamber measurement was higher for Buckingham 

and Moldrup models, but lower to that predicted from Marshall model.  These trends were 

also confirmed by biases values which showed that in the forest, Ds/Do was underestimated 

by Buckingham (-0.0071), Marshall (-0.0608) and Moldrup (-0.0071) models. 
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Table 3.3. Summary of simple statistics for chamber-measured and predicted relative gas  
diffusion coefficient (Ds/Do, m

2s-1 m-2 s) in a forest, pasture, grassland and cornfield in 
Shizunai.  
  Chamber  

measured 
Models based on air-filled 
porosity 

Models based on air-filled 
porosity  and total pore space 

Simple 
Statistics 

Chamber 
(Eperim.) 

Marsh. 
(1959) 

Buck. 
 (1904)

Mold. 
 (2000) 

Sall. 
 (1984) 

Jin 
(1996) 

Mill. 
 (1959) 

Mean 0.118 0.106 0.054 0.038 0.022 0.064 0.016 
SD 0.108 0.061 0.040 0.036 0.020 0.044 0.016 
Min 0.001 0.016 0.004 0.003 0.001 0.007 0.000 
Med 0.096 0.093 0.042 0.026 0.016 0.051 0.011 
Max 0.412 0.262 0.168 0.154 0.093 0.191 0.076 

F
or

es
t 

Skew 1.250 0.906 1.310 1.802 1.841 1.217 2.001 

         
Mean 0.005 0.035 0.011 0.006 0.003 0.016 0.002 
SD 0.007 0.029 0.015 0.009 0.005 0.016 0.003 
Min 0.001 0.010 0.000 0.000 0.000 0.002 0.000 
Med 0.003 0.030 0.010 0.000 0.002 0.012 0.001 
Max 0.022 0.110 0.050 0.030 0.017 0.062 0.012 

G
ra

ss
la

nd
 

Skew 2.299 1.650 1.655 1.570 2.063 1.804 2.115 

         
Mean 0.035 0.044 0.018 0.012 0.008 0.024 0.006 
SD 0.056 0.040 0.022 0.017 0.026 0.033 0.020 
Min 0.002 0.007 0.001 0.002 0.000 0.002 0.000 
Med 0.016 0.029 0.009 0.005 0.001 0.012 0.001 
Max 0.290 0.221 0.134 0.113 0.188 0.217 0.149 

P
as

tu
re

 

Skew 3.129 2.298 2.996 3.829 4.905 3.645 4.972 

         
Mean 0.031 0.053 0.022 0.014 0.014 0.007 0.005 
SD 0.039 0.036 0.020 0.014 0.014 0.010 0.008 
Min 0.003 0.025 0.007 0.005 0.005 0.001 0.001 
Med 0.018 0.036 0.016 0.009 0.009 0.003 0.002 
Max 0.121 0.137 0.070 0.048 0.048 0.033 0.024 

C
or

n 
F

ie
ld

 

Skew 1.796 1.590 1.673 1.792 1.792 1.769 1.792 
Marsh= Marshall, Buck = Buckingham, Mold = Moldrup et al, Sall = Sallam et al, Jin = Jin 
and Jury and Mill = Millington models. SD = standard deviation, CV = coefficient of 
variation, Skew = skewness coefficient 
 
Similarly, Ds/Do was overestimated in the grassland as showed by biases values of 0.0500, 

0.0500 and 0.0548 for Marshall, Buckingham and Moldrup models, respectively. In the 

pasture (bias = 0.0141) and cornfield (bias =0.0218), Ds/Do was overestimated by Marshall 

only, but underestimated by Buckingham and Moldrup models. The Marshall model gave the 

lowest RMSE (0.0583) when all that data was combined (n = 101), but when the data is 

examined in each land use type, it was found that the lowest RMSE were obtained with the 
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Marshall (0.0794), Moldrup (0.0041), Buckingham (0.00500) and Buckingham (0.00200) in 

the forest, grassland, pasture and cornfield, respectively. For models based on a combination 

of air-filled porosity and total porosity, the mean Ds/Do value from chamber measurement 

was lowest to that predicted by models in all land use type, except for Jin & Jury model in the 

grassland.  Similarly, all models based on a combination of air-filled porosity and total 

porosity underestimated Ds/Do (negative bias), except Jin & Jury model in grassland which 

overestimated Ds/Do (positive bias). The lowest RMSE was obtained with Jin & Jury for all 

land use type, except in the grassland where both Sallam and Millington models gave the 

lowest RMSE. Significant correlations were observed between chamber measured Ds/Do and 

Ds/Do obtained from models. Coefficient of correlation were higher and ranged from 0.69 to 

0.71 for models based on air-filled porosity alone while they were lower and ranged from 

0.45 to 0.67 for models based on a combination of air-filled porosity and total pore space.   

The corresponding graphs for these relationships are showed in Figure 3.2 for models based 

on air-filled porosity alone (Buckingham, Marshall and Moldrup models). However, among 

these models, the correlation with chamber measured Ds/Do were highest for Ds/Do predicted 

by Marshall (p = 0.00001, r = 0.71) and Buckingham (p = 0.00001, r = 0.709) models. The 

relationship between chamber measured and predicted Ds/Do values from models based on 

air-filled porosity alone is showed in Figure 3.2. 
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Figure 3.2. Relationship between chamber measured and predicted Ds/Do values from models 
based on air-filled porosity alone (all transect data combined) 
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3.4.4 Pore tortuosity factor 

As for the gas diffusion coefficient, the magnitude of the pore tortuosity factor () depended 

on whether it was predicted from models based on air-filled porosity alone and on a 

combination of air-filled porosity and total porosity (Table 3.4)  

 
Table 3.4. Summary of simple statistics for the pore tortuosity factor (, m m-1) in a forest, 
pasture, grassland and corn field in Shizunai.  
 () calculated from models based on 

Air-filled porosity alone 
() calculated from models based on 
Air-filled porosity  and Total porosity 

 Mars. 
(1959) 

Buck. 
(1904) 

Mold. 
(2000) 

Sall. 
(1984) 

Jin 
 (1996) 

Mill. 
 (1959) 

Mean 2.32 5.70 22.31 35.69 4.43 9.54 
SD 0.57 3.09 22.07 40.30 1.99 10.93 
Min 0.57 2.44 4.39 5.39 1.99 1.48 
Med 2.19 4.80 14.52 20.82 3.80 5.84 
Max 3.99 15.90 93.65 167.26 9.68 50.47 

F
or

es
t 

Skew 0.29 1.83 1.92 1.99 1.38 2.35 

        
Mean 3.46 12.61 120.09 234.24 9.53 36.48 
SD 0.80 5.69 158.21 338.37 4.88 25.82 
Min 0.80 4.40 13.25 18.63 3.69 4.74 
Med 3.36 11.30 86.47 158.83 7.62 28.30 
Max 5.08 25.86 600.31 1268.43 22.38 100.17 

G
ra

ss
la

nd
 

Skew -0.64 0.89 2.18 2.21 1.47 1.24 

        
Mean 3.28 11.43 96.25 181.51 8.63 31.72 
SD 0.84 5.72 106.76 218.23 4.36 25.14 
Min 0.84 2.73 1.95 2.45 1.69 1.85 
Med 3.26 10.60 69.60 123.01 8.28 25.26 
Max 5.31 28.24 467.79 1008.64 21.15 110.91 

P
as

tu
re

 

Skew -0.11 0.87 2.00 2.15 0.88 1.23 

        
Mean 2.88 8.53 48.32 81.86 6.66 18.19 
SD 0.50 2.75 28.28 51.12 2.17 9.52 
Min 0.50 2.75 8.06 10.94 2.17 3.51 
Med 2.79 7.81 37.04 59.42 6.17 14.36 
Max 3.40 11.55 93.62 163.73 9.41 29.43 

C
or

n 
F

ie
ld

 

Skew -1.42 -0.41 0.34 0.37 -0.34 0.02 
SD = standard deviation, Min = minimum, Max = maximum, Med = median, Skew = 
skewness. Marsh= Marshall, Buck = Buckingham, Mold = Moldrup et al, Sall = Sallam et al, 
Jin = Jin and Jury and Mill = Millington models 
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Models based on air-filled porosity alone gave  values ranging from 2.32 to 120.09 m m-1. 

For these models, Marshall gave the lowest pore tortuosity values, ranging from 2.32 to 3.46 

m m-1.  Pore tortuosity factor () values from models based on a combination of air-filled 

porosity and total porosity where a twice as much those from models based on air-filled 

porosity alone and ranged from 4.43 to 234.24 m m-1. Jin & Jury model gave moderate 

tortuosity values between 4.43 and 9.53 m m-1. For land use types, the forest had the lowest 

pore tortuosity values (2.32 to 35.69), followed by cornfield (2.88 to 81.86), pasture (3.28 to 

181.51) and finally grassland (3.46 to 234.24 m m-1).  

3.4.5 Correlation between greenhouse gas fluxes and pore structural indices 

Overall, CO2 and CH4 were the two greenhouse gases which mostly correlated with pore 

space indices in the forest (Table 3.5). In addition, there were more significant correlations in 

the forest, followed by the grassland, cornfield and few in the pasture. In the forest, both CO2 

and CH4 were significantly correlated with chamber measured and models predicted Ds/Do. 

CO2 was positively, but CH4 negatively correlated with Ds/Do, regardless of the method of 

measurement.  Ds/Do based on a air-filled porosity alone explained 29 to 31% of the 

variability in CO2 emissions in the forest while Ds/Do from models based on both air-filled 

porosity and total pore space explained 33 to 35% of the variability in forest CO2 emissions. 

Similarly to Ds/Do, both CO2 and CH4 also significantly correlated with the pore tortuosity 

factor ().  CO2 was negatively correlated, but CH4 positively with , regardless of the 

approach of calculation used.  Overall,  explained 15 to 25% of variability in CO2 emissions 

while it explained 41 to 59% of CH4 uptake in the forest.  CO2 and CH4 were correlated with 

model predicted Ds/Do in the corn field and pasture (p = 0.10). The pore tortuosity factor () 

also correlated with CO2. 
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Table 3.5.  Linear regression analysis (Y =Yo + aX) between pore space indices (Ds/Do and  
) and greenhouse gas fluxes (CO2 and CH4)  in Shizunai forest 
 X Yo a F P r  R2 

DsDo_Marsh 83.80 499.82 10.90 0.0030 0.56 0.31 
DsDo _Buck. 93.74 699.21 10.52 0.0035 0.55 0.31 
DsDo _Mold.  100.74 807.92 9.57 0.0050 0.53 0.29 
DsDo _Sall. 96.42 1684.41 12.65 0.0016 0.59 0.35 
DsDo _Jin 87.99 681.19 12.00 0.0020 0.58 0.33 
DsDo _Mill. 98.39 2158.33 12.74 0.0016 0.59 0.35 
Chamber    -0.054 0.0013 11.66 0.0026 0.59 0.35 
       

_Marsh 217.45 -38.01 7.85 0.0099 -0.50 0.25 

_Buck. 165.60 -6.41 6.37 0.018 -0.46 0.21 

_Mold.  143.59 -1.56 4.52 0.0439 -0.40 0.16 

_Sall. 145.14 -0.75 4.17 0.0524 -0.45 0.15 

_Jin 172.74 -9.85 6.14 0.0207 -0.45 0.20 

_Mill. 143.16 -0.41 4.08 0.0546 -0.38 0.15 
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a 64.19 308.14 10.88 0.0030 0.56 0.31 
 X Yo a F P r  R2 

DsDo_Marsh 0.004 -0.520 9.77 0.0049 -0.56 0.307 
DsDo _Buck. -0.013 -0.690 7.20 0.0136 -0.50 0.25 
DsDo _Mold.  -0.026 -0.649 4.76 0.0400 -0.42 0.18 
DsDo _Sall. -0.030 -0.977 3.36 0.0802 -0.36 0.14 
DsDo _Jin -0.011 -0.628 6.91 0.0154 -0.49 0.24 
DsDo _Mill. -0.032 -1.198 3.31 0.0824 -0.36 0.13 
       

_Marsh -0.224 0.076 28.72 0.00001 0.75 0.57 

_Buck. -0.129 0.014 31.43 0.00001 0.77 0.59   

_Mold.  -0.087 0.004 31.09 0.00001 0.77 0.59 

_Sall. -0.085 0.002 12.79 0.00170 0.61 0.37 

_Jin -0.130 0.018 15.53 0.00070 0.64 0.42 

_Mill. -0.082 0.001 15.03 0.00080 0.64 0.41 

a 0.039 -0.414 13.43 0.0173 -0.67 0.38  

b -0.140 0.154 12.67 0.0090 0.62 0.37 
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 0.143 -0.26 12.53 0.0039 -0.60 0.36 

Ds/Do= relative gas diffusion coefficient,  = pore tortuosity factor. Marsh= Marshall, Buck = 
Buckingham, Mold = Moldrup et al, Sall = Sallam et al, Jin = Jin and Jury and Mill = 
Millington models 

 
 
grassland (p = 0.10) and corn field. In the corn field,  calculated from all models based on 

air-filled porosity alone significantly correlated with CO2 in the cornfield (p = 0.05, r = -
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0.76). Our results agree with those previously reported  by Kruse et al. (1996); Ball et al. 

(1997),  Hu et al. (2001) and Nkongolo et al. (2008) that pore structural indices control 

greenhouse gas fluxes from soils. In the forest, air-filled porosity (a) significantly correlated 

with CO2 (p = 0.003, r = 0.56) and CH4 (p = 0.017, = -0.62) while total porosity () could 

correlated only with CH4 (p = 0.0039, r = -0.60). However, correlation between pore space 

indices and greenhouse gas fluxes were stronger than those between either air-filled porosity 

or total porosity and gas fluxes. For example, Table 3.5 shows that the pore tortuosity factor 

() predicted from air-filled porosity  (a) alone using Marshall, Buckingham and Moldrup 

models explained 57, 59 and  59%  (r2 values) of the variability in CH4 uptake in the forest. 

However, a or  could explain only 36 or 38% of this variability, respectively.  

 
3.5 Conclusion 

Identification of parameters controlling soil fluxes are needed for predictive greenhouse gas 

fluxes models. While several soil properties have been studied, discrepancies in their 

potential to act as controlling factors across ecosystems still exist and call for more research. 

Soil pore space indices such as the gas diffusion coefficient and the pore tortuosity factor 

have been recognized  as potential soil controlling factors for greenhouse gases such as 

methane. However, measurement of soil gas diffusion is tedious and time consuming. This 

study has showed that the soil gas diffusion coefficient can be estimated quickly from routine 

measurements of soil water and air and existing diffusivity models.  The study has found that 

predicted pore structural indices: the relative gas diffusion coefficient and the pore tortuosity 

factor relate to greenhouse gas fluxes even when the air-filled porosity and the total porosity 

from which they are calculated do not relate to gas fluxes. Buckingham and Moldrup models 

were particularly significant in this study. Inclusion of these pore structural indices in 

predictive models may certainly improve our understanding of greenhouse gas fluxes 

dynamics. 
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PART III.  INFLUENCE OF AGRICULTURAL PRACTICES ON GREENHOUSE 

GAS FLUXES AND SOIL PROPERTIES 

 

Chap 4. Effect of mechanized tillage operations on soil physical properties and 

greenhouse gas fluxes in two agricultural fields3 

 

4.1 Abstract  

Soil management practices may affect greenhouse gases emissions and exacerbate global 

warming. We studied the short-term effect of mechanized tillage operations on soil properties 

and CO2, CH4, NO and N2O fluxes in a corn and soybean fields. The study was conducted 

from June to December 2001 at Hokkaido University in Sapporo (Japan). The soil of the 

experimental site is classified as Eutric Fluvisols (FAO). Two plots of 20 m long by 30 m 

width each were isolated in fields planted to corn (Zea mays) and soybean (Glucine max). 

Plot interrows were compacted by 1, 2, 3 and 4 cycles a tractor. Soil and air samples were 

collected for measuring CO2, CH4, NO and N2O fluxes and other soil properties. Results 

showed that soil volumetric water content (v), bulk density (b), the pore tortuosity factor () 

and soil penetration resistance (SPR) increased while air-filled porosity (a), total pore space 

(TPS) and the soil gas diffusion coefficient (Ds/Do) decreased linearly with increasing tractor 

cycle in both corn (p< 0.0001) and soybean (p< 0.01) fields. In corn field, CO2 (p< 0.0011), 

NO (p< 0.0257) and N2O (p< 0.0116) fluxes increased quadratically with increasing tractor 

cycle. In soybean field, CO2 and CH4 fluxes increased while N2O and NO fluxes decreased 

linearly with increasing tractor cycle. CO2 (r=0.45, p<0.003) and N2O (r= 0.45, p<0.003) 

fluxes were significantly correlated with soil penetration resistance in corn and soybean field, 

respectively. Increasing tractor cycle deteriorated soil physical properties and increased 

greenhouse gas fluxes. More studies are needed to determine if these effects are permanent or 

only temporary on both soil and gas fluxes.  

 

Key Words: Gas fluxes, soil properties, tillage operations 
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4.2  Introduction 

Global atmospheric concentrations of carbon dioxide (CO2), methane (CH4) and nitrous oxide 

(N2O) have increased markedly as a result of human activities since 1750 and now far exceed 

pre-industrial values determined from ice cores spanning many thousands of years. The 

increase in carbon dioxide concentration is due primarily to fossil fuel use and land-use 

change, while methane and nitrous oxide increases are primarily caused by agriculture (IPCC, 

2007). Agricultural practices such as tillage have been shown to change emissions of N2O and 

the consumption of patterns of CH4 in agricultural soils (Teepe et al.,  2004). Tractor traffic 

during tillage operations is one of the practices that influence the exchange of CO2, CH4, NO 

and N2O between the soil and the atmosphere as during such traffic, depending on the 

moisture level,  soil compaction increases (Meek, 1994; Rollerson, 1990). In fact, compaction 

packs the primary soil particles (sand, silt, clay) and soil aggregates closer together and 

dramatically alter the balance between solids, air-filled and water-filled pore space (Albrook, 

1986; Bruand and Cousin, 1995). By increasing the portion of water-filled pores, compaction 

makes the soil prone to denitrification and therefore increases N2O losses (Ball et al., 2000; 

Douglas and Crawford 1993). There are numerous studies on the effects of soil compaction 

on soil properties (Greene and Stuart, 1985; Rollerson, 1990 and Meek, 1994). However, less 

work has been reported on the effect of tractor compaction on gas fluxes. Among these few 

studies, Flessa et al. (2002) quantified N2O and CH4 fluxes for ridges, uncompacted interrows 

and tractor-compacted interrows from potato (Solanum tuberosum) fields. They found that 

N2O emissions were highest 

___________________________________________________________________________ 
3This chapter is based on a paper published in the Research Journal of Environmental 
Sciences—Authors: Nkongolo et al (2008), doi: 10.3923/rjes.2008.68.80 
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for the tractor compacted soil. However, the major fraction of the total CH4 uptake (+86%) 

occurred on the ridges. Ruser et al. (1998) observed that the gaseous fluxes of N2O and CH4 

fluxes from potato field were strongly affected by ridge-till practices; this produced areas 

with increased (ridges) and strongly reduced (tractor-compacted interrows) soil porosity. 

Hansen et al. (1993) compared tractor-compacted and uncompacted soils. They found that 

N2O emissions (approximately 35%) increased due to soil compaction. Tractor “trips” during 

farming operations affect soil properties which lead to greenhouse emissions. Unfortunately 

the magnitude of these emissions is not still well quantified as many of these studies are 

conducted either at the beginning, middle or end of the growing season. However, in order to 

accurately predict the total emissions from agricultural systems, contribution at each stage of 

farming operations  should be known. The objective of this study was therefore to assess the 

short-term (at early stage of field operations) effect of tractor induced compaction on soil 

properties and gas fluxes in a corn and a soybean fields of northern Hokkaido.  

 

4.3 Materials and methods 

4.3.1 Experimental site 

This study was conducted at Hokkaido University Experimental Farm in Sapporo, Hokkaido, 

Japan (43o 11’ N, 141o 30’ E), from early June to late December 2001. Sapporo, Japan's third 

largest city enjoys a mild climate with a year-round average temperature of 9.1°C. The 

average temperature was -3.5°C in January and 20.3°C in July 2001. The soil of the 

experimental site is classified as Typic Fluvaquents (Soil Taxonomy), Eutric Fluvisols 

(FAO). The physical and chemical properties of different horizons were reported by Hayashi 

and Hatano (1999). Soil texture consists of 25.4% sand, 47.0% silt and 27.6% clay. The 

saturated hydraulic conductivity is 2.99 x 10-5cm s-1. The carbon and nitrogen contents were 
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2.1% and 0.16 %, respectively. Field preparation began in April and in May, two plots of 30 

m long by 20 m width were isolated in fields cropped to corn (Zea mays) and soybean 

(Glucine max). These fields were established maintained by the Crop Production Laboratory, 

Faculty of Agriculture, Hokkaido University. The corn field was fertilized with N, 130; P2O5, 

180; K2O, 100; and MgO, 40 kg ha-1 while soybean received N, 32; P2O5, 100; K2O, 80; and 

MgO, 24 kg ha-1. In June 2001, plots interrows in both soybean and corn fields were 

compacted by 1, 2, 3 and 4 cycles (1 cycle = 2 passes) with a 2.4 tons Fordson Major tractor 

(as during regular tillage operations) as showed in Figure 4.1.  The ridges of crop rows were 

not compacted. Immediately after tractor compaction, soil penetration resistance (SPR) was 

measured to a depth of 100 cm and soil samples were taken in both interrows and ridges. A 

second measurement of SPR, sampling for soil properties and greenhouse gas fluxes was 

conducted three weeks later in August 2001. 

 

4.3.2. Measurement of soil chemical  properties 

Soil samples were taken at each sampling locations immediately after measurements of 

greenhouse gases emissions, for analyses of chemical properties. Soil samples were collected 

to a depth of 5cm from the soil surface with a 5.1 cm height and 5 cm diameter aluminum 

cylinder. The properties studied were soil pH (H2O and KCl), electrical conductivity (EC), 

nitrite (NO2
-),  
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Figure 4.1. Experimental site, showing gas sampling chamber, compacted-non compacted 
 interrows and ridges 
 
nitrate (NO3

-) and ammonium (NH4
+).  For analyses of NO2

- and NO3
-, 10g of field moist soil 

sample was extracted by 50 ml of deionized water (1:5 = soil : water) and concentrations of 

the above anions were determined by ion exchange chromatography. This extract was also 

used to measure pH (H2O) and EC. For NH4
+ determination, 7 g of field moist sample was 

extracted using 70 ml of 2M KCl. pH (KCl) was measured using this extract and soil NH4
+ 

was determined by colorimetry with indophenol-blue. 

 

4.3.3 Measurements of soil physical properties 

For soil physical properties, soil cores (3 replicates for each of the 5 tractor cycles) were 

taken in each of corn and soybean fields to a depth of 5cm from the soil surface with a 5 cm 

diameter and a 5.1 cm height cylinder (volume = 100 cm3). Cores fresh weights were first 

measured then their bottom covered with a filter paper. The filter paper was strongly held 

with rubbed elastic. Cores without their top covers were thereafter transferred onto a tension 

table. The top of the tension table was covered with a plastic paper to prevent evaporation. 

Cores were saturated for comparison purpose between calculated total pore space (TPS) to 

that determined as core volumetric water content at saturation. However, in this report only 
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TPS values calculated were used. After 72 hours of saturation, cores fresh weights were again 

measured. They were then transferred into an oven to be dried at 105oC for 72 hours. Soil 

bulk density (b), total pore space (TPS), volumetric water content (v), air-filled porosity 

(a), relative gas diffusion coefficient (Ds/Do) and the pore tortuosity factor () were later 

calculated as follows: 

 

Bulk density (b) 

b=Ms/Vt          [1]    

where,  b (kg m-3) is the soil bulk density, Ms (kg) is the mass of dry solids determined after 

drying the soil sample to constant weight at 105oC and Vt (m3) is the total volume of soil, and 

thus Vt is the volume of cylinder. 

 

  VsVwVaVt          [2]    

Where, Vs (m
3) is the volume of soil solids, Vw (m3) is the volume of water and Va  (m

3) is 

the volume of the air fractions successively.   

 

Total pore space (TPS) 

 TPS = (Vw+Va)/Vt      [3]   

Where, TPS (m3 m-3) is the total pore space or the total space of soil filled with fluid (air + 

water).   

 

Gravimetric water content (g):  g=(Mt-Ms)/Ms      [4]    

where, g (kg soil water  kg-1 soil) is the gravimetric water content or mass of water present in 

each unit mass of the dry soil, Mt (kg) is the weight of the moist soil sample as taken from 

the field.  
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Volumetric water content (v): v = [(Mt-Ms).w]/Vt     [5]   

where, v (m
3 soil water m-3 soil) is volumetric water content or the volume of water present 

in a unit volume of the sample. w is the density of water taken as equals to 1000 kg m-3.   

 

Air-filled porosity (a): a=TPS-v         [6]    

 

where a (m
3 soil air m-3 soil) is air-filled porosity or the portion of the pore space filled with 

air (air space).  

 

Relative gas diffusivity (Ds/Do) 

Relative gas diffusivity was calculated using  Buckingham (1904) equation: 

 

Ds/Do =(a)
2             [7] 

where, Ds/Do(m
2 s-1. m-2 s) is the relative gas diffusion coefficient, Ds is the gas diffusion 

coefficient in the soil (m3 soil air m-1 soil s-1), Do is the gas diffusion coefficient in free air 

(m2 air s-1).   

 

Pore tortuosity () 

The pore tortuosity factor was calculated by comparing Reible and Shair (1982).  

 = 1/a          [8] 

where,  (m m-1) is the pore tortuosity factor. 

 

Water filled pore space (WFPS) 
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WFPS =(v/TPS) x 100        [9] 

where, WFPS (%) is the percentage of the total pore space filled with water. 

 

4.3.4 Gas sampling for CO2, CH4, NO and N2O flux measurements  

CO2, CH4, NO and N2O emissions from tractor-compacted interrows and non-compacted 

ridges were measured using a closed-chamber technique. This technique has also been used 

by Tokuda and Hayatsu (2000) and Tokuda and Hayatsu (2004). The chambers were circular 

with steel frames. The top of each chamber had a gas sampling tube and a bag to control air 

pressure inside the chamber. The height and diameter of the chamber were 0.35m and 0.30m, 

respectively. At each sampling time, 3 chambers (each chamber corresponding to a replicate) 

spaced 10 m were installed in the soil in the interrow or ridge and kept for 20 minutes, and 

then samples of the enclosed atmosphere were withdrawn by a 50 ml syringe and transferred 

into a 1L Tedlar ® Bag with non-sorbant walls. A total of 30 samples (3 replicates x 5 tractor 

cycles x 2 fields) were taken in both corn and soybean fields.  The air temperature inside the 

chambers was recorded using a digital thermometer. Ambient air between 0 and 2 m from the 

soil surface was collected and its mean concentration was used as a background concentration 

for calculation of gas fluxes. Immediately after sampling, a gas chromatography with an 

electron capture detector and FID used for N2O and and CH4 analyses, respectively. NO flux 

was analyzed by chemo-iluminescence with a nitrogen oxide analyzer (Kimoto, Model 265 

P) and an infra-red analyzer was used for CO2. Fluxes were calculated using the equation: 

 

 *)273(***
Tt

C
A
VF


                       [10] 

Where, F is the gas production rate;  is the gas density (mg m-3) under standard conditions; 

V (m3) and A (m2) are the volume and bottom area of the chamber; C/t is the ratio of 

change in the gas concentration inside the chamber; T is the absolute temperature; and  is 
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the transfer coefficient (12/44 for CO2, 12/16 for CH4, 14/30 for NO and 28/44 for N2O). A 

positive value indicates gas emission from the soil, while a negative value indicates gas 

uptake. The detectable limits were 0.1 mg C m-2 h-1 for CO2,  0.01g C m-2 h-1  for CH4 and  

0.1 g N m-2 h-1 for NO and N2O. Soil temperature was measured at 5 cm and 10 cm from the 

top soil layer, using a digital thermometer. Statistix 8.0 statistical package was used to 

calculate summary of simple statistics, analysis of variance, polynomial contrasts, correlation 

matrix and linear regression. 

 

4.4 Results 

4.4.1 Effect of tractor cycle on soil chemical properties 

Soil chemical properties as affected by tractor load and cycle are showed in Tables 4.1 and 

4.2 for corn and soybean, respectively. At 5% probability level, tractor load and cycle did not 

affect any of the soil chemical properties studied. In magnitude, values of chemical properties 

observed in ridges were similar to those found in tractor-compacted interrows, except for 

NO3
-which tended to increase with tractor cycles (for corn field mainly). 

 

4.4.2 Effect of tractor cycle on soil physical properties 

Tables 4.3 and 4.4 summarize the effect of tractor load and cycle on soil physical properties. 

The non compacted ridge had a very low bulk density, high aeration and high total pore 

space. Crop residues returned to the soil and sampling shortly after tillage can explain these 

values. All soil physical properties studied were significantly affected by tractor cycle. 

Volumetric water content (v), bulk density (b) and pore tortuosity () increased,  whereas 

air-filled porosity (a), total pore space (TPS) and the gas diffusion coefficient (Ds/Do) 

decreased linearly with increasing tractor cycle. In comparison to all compacted interrows, 

average ridge values for v, b and  were lower while those for a, TPS and Ds/Do were 
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higher. In addition, in magnitude, values of v, b, , a, TPS and Ds/Do were similar in both 

corn and soybean fields. However, for tractor-compacted interrows, average values of v, b 

and  were higher in corn while those for a, TPS and Ds/Do were higher in soybean field. 

Tables 4.5 and 4.6 show the effect of tractor load and number of cycle on soil resistance to 

penetration in July 2001 for corn and soybean, respectively.  Tractor cycle linearly increased 

soil resistance to penetration for both sampling dates and in both fields, but the effect was 

prevalent only in the top 20 cm of the soil profile. Below this depth, the relationship was no 

longer prevalent. In addition, in magnitude, values of soil resistance to penetration measured 

immediately after compaction treatments were as twice as high in comparison to those 

measured three weeks later. Finally, in comparison to tractor-compacted interrows, SPR 

values measured on the ridges were lower. 

 

4.4.3 Effect of tractor cycle on greenhouse gas fluxes 

The effect of tractor load and number of cycle on greenhouse gas fluxes is showed in Tables 

4.7 and 4.8 for corn and soybean fields, respectively. Except for CH4which failed to respond, 

all greenhouse gas fluxes were significantly affected by tractor load and cycle. In addition, 

except for N2O fluxes which increased linearly in the soybean field, all gas fluxes increased 

quadratically with increasing tractor cycle. In soybean field, CO2 and N2O fluxes measured in 

the ridges were lower than those obtained in tractor-compacted interrows. However, NO and 

CH4 fluxes were higher in the ridges than tractor-compacted interrows. There was no specific 

trend for the relationship between ridges and compacted interrows fluxes in the corn field, but 

after computing the average values for all tractor-compacted interrows and comparing them 

with ridge values, the same trend as in the soybean field was found. Among ridges, CO2 and 

N2O fluxes were higher in the corn as compared to soybean while NO fluxes dominated in 

soybean. A close examination of the means also reveal that in both fields, the highest CO2 



 

92 
 

and N2O fluxes were obtained after 2 and 4 cycles of interrows compaction, respectively. The 

highest fluxes for NO were obtained after 2 cycles in corn, but in the ridge for soybean. In 

cornfield, CH4 was consumed in both ridges and tractor-compacted interrows. However, in 

soybean field, CH4 was emitted in non-compacted ridges and consumed in tractor-compacted 

interrows. Finally, uptake of N2O (negative fluxes) was observed in non-compacted ridge of 

soybean field, indicating that denitrification was enhanced as a result of soil compaction. 

 

4.4.4 Correlation between soil physical properties and greenhouse gas fluxes 

Figure 4.2 shows the relationship between CO2 fluxes and soil penetration resistance (SPR) 

measured at 2.5 cm depth in the cornfield. CO2 fluxes were also significantly correlated with 

SPR measured at 5 cm (r = 0.58, p = 0.029) and 10 cm (r = 0.58, p = 0.044) depth. CH4 fluxes 

were only correlated with SPR measured at 15 cm depth (r = 0.62, p = 0.014). Figure 4.3 

shows the relationship between N2O fluxes and SPR measured at 2.5 cm depth for the 

soybean field. N2O fluxes were also significantly correlated with SPR measured at 15 cm (r = 

0.64, p = 0.011) and 20 cm (r = 0.52, p = 0.045) depth. CO2 was only correlated with SPR 

measured at 20 cm (r = 0.59, p = 0.021). In addition, among the gasses, NO was positively 

correlated with a (r = 0.68, p = 0.005), Ds/Do (r = 0.71, p = 0.003) and TPS (r = 0.70, p = 

0.004) and negatively correlated with b (r = -0.69, p = 0.0044), v (r = 0.67, p = 0.006), 

WFPS (r = -0.67, p = 0.0067) and with pore tortuosity in Figure 4.4. Other gases also 

correlated with other soil physical properties, but these correlations were most significant 

with NO. 
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Table 4.1. Soil chemical properties in a cornfield as affected by mechanical tillage operations in June 2001 
Tractor cycle pH(H2O) pH(KCl) EC 

(mS) 
NO2

- 

(mg N/kg soil) 
NO3

- 

(mg N/kg soil) 
NH4

+ 

(mg N/kg soil) 
Ridge (non compacted) 6.24 4.71 5.29 0.07 11.13 0.90 
1 Cycle compacted interrows 6.15 4.51 4.79 0.09 9.34 0.96 
2 Cycles compacted interrows 5.82 4.38 6.11 0.04 10.38 0.96 
3 Cycles compacted interrows 6.03 4.59 5.16 0.07 12.67 1.36 
4 Cycles compacted interrows 6.12 4.69 5.11 0.10 9.78 1.09 
       

ANALYSIS OF VARIANCE 
 

ns = non significantly different at LSD = 0.05 
 
 
Table 4.2. Soil chemical properties in a soybean field as affected by by mechanical tillage operations in June 2001 
Tractor cycle PH(H2O) pH Kcl) EC NO2

- NO3
- NH4

+ 
   (mS) (mg N/kg soil) (mg N/kg soil) (mg N/kg soil) 
Ridge (non compacted) 5.91 4.47 5.30 0.23 4.93 1.13 
1 Cycle compacted interrows 6.13 4.98 5.84 0.08 10.46 1.27 
2 Cycles compacted interrows 5.72 4.64 8.81 0.05 17.87 0.86 
3 Cycles compacted interrows 5.84 4.67 5.54 0.05 8.44 1.09 
4 Cycles compacted interrows 5.94 4.46 5.25 0.04 6.13 0.82 
       

ANALYSIS OF VARIANCE 
Replications ns ns ns ns ns ns 
Cycle (C) ns ns ns ns ns ns 

 
 
 
 
 

Replications ns ns ns ns ns ns 
Cycle (C) ns ns ns ns ns ns 
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Table 4.3.  Soil physical properties in a cornfield as affected by by mechanical tillage operations in June 2001 
v b a TPS Ds/Do  Tractor cycle 

m3 m-3 kg m-3 m3 m-3 m3 m-3 (m2 s-1m-2s m m-1 
Ridge (non compacted) 0.23 0.53 0.57 0.80 0.34 1.77 
1 Cycle compacted interrows 0.32 0.74 0.40 0.72 0.16 2.60 
2 Cycles compacted interrows 0.38 0.89 0.28 0.66 0.08 3.61 
3 Cycles compacted interrows 0.39 0.95 0.25 0.64 0.06 4.08 
4 Cycles compacted interrows 0.44 1.06 0.17 0.60 0.03 6.50 
       

ANALYSIS OF VARIANCE 
Replications ns ns ns ns ns ns 
Cycle **** **** **** **** **** *** 
Cycle linear **** **** **** **** **** **** 
Cycle quadratic * ns * ns ** ns 

 
Table 4.4. Soil physical properties in a soybean field as affected by mechanized tillage operations in June 2001 

v b a TPS Ds/Do  Tractor cycle 
(m3 cm-3) kg m-3 m3 m-3 m3 m-3 m2 s-1m-2s m m-1 

Ridge (non compacted) 0.23 0.52 0.57 0.80 0.34 1.79 
1 Cycle compacted interrows 0.29 0.73 0.43 0.73 0.19 2.34 
2 Cycles compacted interrows 0.32 0.81 0.37 0.69 0.14 2.74 
3 Cycles compacted interrows 0.33 0.86 0.35 0.68 0.13 2.90 
4 Cycles compacted interrows 0.38 0.98 0.26 0.63 0.07 4.30 
       

ANALYSIS OF VARIANCE 
Replications ns ns ns ns ns ns 
Cycle  * ** * ** * * 
Cycle linear ** *** ** *** ** ** 
Cycle quadratic ns ns ns ns ns ns 

a, b, c, d = significantly different at 5, 1, 0.1 and  0.01 %, respectively 
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Table 4.5. Soil  resistance to penetration in a corn field as affected by mechanized tillage operations in July 2001 
Depth 

Tractor  cycle 2.5 cm 5 cm 7.5 cm 10 cm 15 cm 20 cm 
Ridge (non compacted) 0.13 0.20 0.23 0.25 0.43 0.97 
1 Cycle compacted interrows 0.57 0.65 0.73 0.75 1.10 1.60 
2 Cycles compacted interrows 0.61 0.72 0.74 0.76 1.03 1.13 
3 Cycles compacted interrows 0.76 0.81 0.80 0.85 0.94 1.08 
4 Cycles compacted interrows 0.77 0.84 0.89 0.92 0.88 1.27 
       

ANALYSIS OF VARIANCE 
Replications ns ns ns * ** ** 
Cycle (C) **** **** **** **** **** ** 
Cycle linear *** **** *** **** *** ns 
Cycle quadratic * *** *** *** **** ns 

 
 
Table 4.6. Soil resistance to penetration (kg cm-2) in a soybean field as affected by mechanized tillage operations in July 2001 

Depth 
Tractor  cycle 2.5 cm 5 cm 7.5 cm 10 cm 15 cm 20 cm 
Ridge (non compacted) 0.11 0.11 0.16 0.22 0.68 1.25 
1 Cycle compacted interrows 0.58 0.66 0.70 0.64 0.60 1.27 
2 Cycles compacted interrows 0.98 1.03 0.94 0.93 1.02 0.94 
3 Cycles compacted interrows 0.90 1.01 1.02 0.98 1.27 1.52 
4 Cycles compacted interrows 0.99 1.03 1.02 0.93 1.19 1.38 
       

ANALYSIS OF VARIANCE 
Replications ns ** * ** * ** 
Cycle (C) **** **** **** **** **** * 
Cycle linear **** **** **** **** **** ns 
Cycle quadratic *** **** **** **** ns ns 
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Table 4.7. Greenhouse gas fluxes in a cornfield as affected by mechanized tillage operations in August 2001 
CO2 CH4 NO N2O Tractor cycle 

(mg CO2-C m-2 h-1) (g CH4-C m-2 h-1) (g NO-N m-2 h-1) (g N2O -N m-2 h-1) 
Ridge (non compacted) 66.55 -15.18 3.79 77.43 
1 Cycle compacted interrows 65.54 -27.05 2.17 68.85 
2 Cycles compacted interrows 85.47 -13.32 9.09 47.96 
3 Cycles compacted interrows 71.25 -27.27 1.05 77.61 
4 Cycles compacted interrows 69.28 -15.47 1.94 92.48 
LSD (0.05) 6.35 - 3.18 26.07 

ANALYSIS OF VARIANCE 
Replications ns ns ns ns 
Cycle (C) *** ns ** * 
Cycle linear ns ns ns ns 
Cycle quadratic *** ns * ** 

 
 
Table 4.8. Greenhouse gas fluxes in a soybean field as affected by mechanized tillage operations in August 2001 

CO2 CH4 NO N2O Tractor cycle 
(mg CO2-C m-2 h-1) (g CH4-C m-2 h-1) (g NO-N m-2 h-1) (g N2O -N m-2 h-1) 

Ridge (non compacted) 45.28 7.31 8.02 -16.35 
1 Cycle compacted interrows 62.98 -12.14 0.10 18.55 
2 Cycles compacted interrows 83.97 -5.62 1.06 60.75 
3 Cycles compacted interrows 73.97 -17.89 3.55 39.01 
4 Cycles compacted interrows 57.92 -8.36 2.52 73.25 
     

ANALYSIS OF VARIANCE 
Replications ns ns ns ns 
Cycle  * ns * ** 
Cycle linear ns ns ns *** 
Cycle quadratic ** ns ** ns 
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Figure 4. 2.   Relationship between Carbon dioxide (CO2) fluxes and soil penetration 
resistance in a cornfield 
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Figure 4.3.   Relationship between Nitrous oxide (N2O) fluxes and soil penetration resistance 
in soybean field 
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Fig. 4.4   Relationship between Nitrous oxide (NO) fluxes and the pore tortuosity factor in 
soybean field 
 
 

4.5 Discussion 

The average values for bulk density, volumetric water content and pore tortuosity were higher 

in tractor-compacted interrows as compared to rigdes. These results agree with those reported 

by Canqui et al (2004) who found that wheel traffic reduced Ksat by three times and increased 

bulk density by 6%. Our results are however opposed to those reported by Ginting and 

Eghball (2005) who found that wheel traffic had no significant effect on a specific soil 

physical property [(bulk density, soil moisture, and water filled porosity (WFP)] and N2O 

fluxes.  

The lack of difference in bulk density for example in Ginting and Eghball (2005) 

study could be due to their depth of soil bulk density measurements (20 cm) as compared to 

our depth of sampling (5 cm). In fact, it has been suggested that small depth increments might 

detect bulk density differences that would be obscured in a large depth increment samples 

(Unger, 1991). Logsdon and Cambardella (2000) indicated that changes in no-till bulk density 
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at the 0- to 12-cm depth was partially due to biopores from surface-feeding earthworms 

(Lumbricus terrestris L.) that were observed in the no-till field but not in the disk field.  The 

air-filled porosity, total pore space and the gas diffusion coefficient were higher in ridges as 

compared to tractor-compacted interrows.  

These results agree with those of Ruser et al. (1998) who reported that ridge-till 

practice produced areas with increased (ridges) and strongly reduced (interrow soil 

compacted by tractor traffic) soil porosity. The air-filled porosity and soil gas diffusion 

coefficient were lowest and soil penetration resistance of 0-10 cm depth highest in the 4 

cycles tractor-compacted interrows. This treatment also corresponded to the highest N2O 

fluxes in both corn and soybean fields. These results agree with those of Klemedtsson et al. 

(1988) who suggested that the highest N2O production should occur in the presence of low 

concentrations of O2, at the transition between aerobic and anaerobic conditions. Flessa et al. 

(2002) and Ruser et al. (1998) also found that soil compaction was an important factor for 

increased N2O emissions from ridge-tilled potato fields. Teepe et al (2004) reported that high 

N2O emissions which occurred after compaction were restricted to short periods at the sandy 

loam and silty clay loam sites whereas emissions at the silt site remained high throughout the 

entire growing season. Hansen et al. (1993) compared tractor-compacted and uncompacted 

soils and found increased N2O emissions (approximately 35%) due to soil compaction.  

However, emission rates reported by these authors are considerably higher as compared to 

flux rates measured in the present study. The higher N2O fluxes in these studies can be 

explained by the much stronger soil compaction (e.g., a bulk density of 1.56 g cm-3 for 

tractor-compacted soil) and greater WFPS (mean of 85% for tractor-compacted soil) in Ruser 

et al. (1998) for example. In our study, the highest bulk density observed for the 4 cycles 

tractor-compacted interrows was less than unity and the corresponding WFPS below 65%. In 

non-compacted ridges, even though the averages air-filled porosity and gas diffusion 
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coefficient were highest, denitirification could still happen, perhaps at a lower level in 

comparison to compacted soil. In fact, Rolston (1981) reported that in aerobic soils, 

anaerobiosis can still occur at microsites where consumption of oxygen exceeds the oxygen-

supply via diffusion. In addition, uptake of N2O (negative fluxes) was observed in the ridges 

of soybean. This behavior is unusual as in most studies, soils have been reported a source of 

N2O (Ball et al., 2000, Matson et al., 1990). However, several studies where soils have acted 

occasionally as sinks have also been reported. Donoso et al. (1993) found that in contrast 

with a significant emission in the rainy season, the soil of a scrub-grass savannah of 

Venezuela acted as a sink for N2O in the dry season. Cicerone et al. (1978) found a 

significant sink activity in wet grass-covered soil of Michigan.  Blackmer and Bremner 

(1976) found that cultivated soils of Iowa acted as sinks for atmospheric N2O at certain times 

during spring.  Ryder (1981) reported that the soil acts as both a source and sink for 

atmospheric N2O depending on soil condition and the amount of nitrogenous fertilizer 

applied, the sink activity was observed in conditions conducive to microbial reduction of N2O 

(i.e. very low nitrate in the soil). Matson and Vitousek (1987) suggested that even though the 

overall average fluxes measured in La Selva, Costa Rica were positive, under certain 

conditions uptake of N2O occurred in this tropical soil.  The mechanism by which soil acts as 

a sink for N2O is not known. It has been suggested that the net flux of N2O to the atmosphere 

results from its production by nitrifying and or denitrifying bacteria. N2O consumption is 

therefore likely due to the reduction of N2O to N2 (Donoso et al., 1993). It has also been 

reported that N2O production was somewhat higher and N2O uptake somewhat lower in the 

more disturbed communities and that N2-fixing cyanobacteria could both produce and 

consume N2O (http://gane.ceh.ac.uk/award3.shtml). In this study, N2O uptake was observed 

in soybean field. Soybean is a N2-fixing legume in symbiosis with bacteria living in its roots. 

Even though we did not investigate the nature of bacterial flora in our soil, it may be also 
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thought that soybean, through its bacterial symbiosis, contributed to this phenomenon. 

Another explanation may be a temporal N deficit in the soil. In fact, the soybean crop 

received a starter dose of N of 32 kg N. This amount might have been taken up by the 

soybean plants during early growth when the root nodules were not established and the 

rhizobium bacteria where not actively fixing N2. During such periods with low nitrate 

availability, the soil may consume atmospheric N2O. All soil physical properties studied were 

significantly correlated with either CO2, CH4, N2O or NO with correlation coefficients 

ranging from 0.30 to 0.70.  Correlation between soil physical properties and gas fluxes have 

also been reported by Ball et al (1997) who found significant relationships between N2O fluxes 

and air permeability, the soil gas diffusion coefficient and tortuosity. Hu et al. (2001) also 

reported a significant relationship between the soil gas diffusion coefficient and CH4 fluxes. 

 

4.6 Summary 

Tractor compaction increased soil resistance to penetration, water, bulk density and pore 

tortuosity while reducing air-filled porosity, total pore space and the soil gas diffusion 

coefficient. Changes in soil physical properties resulted in increased CO2, NO and N2O 

emissions. This work helped identify rarely measured soil physical properties such as Ds/Do 

and  which significantly influence soil gas exchange. More studies are needed to determine 

if these effects are permanent or only temporary on both soil and gas fluxes. 
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PART IV: QUANTIFICATION OF GREENHOUSE GASES FROM SOIL IN 

AGRICULTURAL FIELDS 

 

CHAP 5. Nitrous oxide (N2O) emissions from a Japanese lowland soil cropped to onion: 

I. Spatial and temporal variability of fluxes4 

5.1 Abstract 

Field studies were conducted to assess the spatial and temporal variability of nitrous oxide 

(N2O) emissions in an agricultural field cropped to onion in Mikassa, northern Hokkaido 

(Japan). N2O emissions measurements were conducted in 100 m by 100 m and 60 m by 60 m 

grids in 1999 and 2000, respectively with samples taken at 10 m spacing. Air samples for 

N2O determinations were collected using the closed-chamber technique. The chambers were 

circular with steel frames. The top of each chamber had a gas sampling tube and a bag to 

control air pressure inside. The height and diameter of the chamber were 0.35 m and 0.30 m, 

respectively. Air samples were stored in vial bottles for analysis with a gas chromatograph 

with electron capture detector within 24 h after sampling. GS+ 3.0 geostatistical software and 

statistix 8.0 were used for data analysis. Results showed that N2O emissions were highest in 

1999 as compared to 2000. N2O emissions were fitted to a linear variogram in 1999 and 

responded to a spherical variogram model in 2000. Positive first degree surface trends were 

also found for N2O emissions data in both years. However, the removal of these trends did 

not change variogram models, but significantly improved them by increasing the R2 and Q 

values. N2O emissions systematically varied with small zones of uptake (negative flux) 

across the field, suggesting the presence of hot spots. 

 

Keywords: Nitrous oxide emissions, spatial variability, lowland soil 
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5.2 Introduction 

The tropospheric concentration of nitrous oxide (N2O), a potent greenhouse gas also involved 

in the catalytic degradation of stratospheric ozone (Cicerone, 1987), has increased since the 

beginning of the Industrial Era, with a rate of 0.8 ppb per year during the 1990s (Dambreville 

et al., 2008). Nitrous oxide (N2O) is a trace gas that has received considerable attention 

because of its importance in atmospheric chemistry and its influence in controlling the global 

heat budget (IPCC, 2007). In fact, enrichment of the air with N2O (and chlorofluorocarbons) 

threatens depletion of the ozone (O3) layer in the stratosphere, thus allowing passage of more 

UV-B ultraviolet radiation and enhancing the incidence of skin cancer (Cicerone, 1987). 

Anthropegenic activities such as agriculture have been named among the major causes for the 

increase of this pollutant (Bouwman, 1996; Mosier et al., 1998, Duxubury, 1994). That is 

why it is important to quantify the importance of these activities on the soil-atmosphere 

exchange of trace gases in order to understand their changing atmospheric concentrations and 

to provide research-based information to local, regional, national and international policy 

makers. Unfortunately, the high degree of spatial variability of N2O (as well as other 

greenhouse gases) emissions and soil-controlling soil properties present a major challenge to 

accurately quantifying fluxes (Ball et al., 1997). In fact, N2O fluxes across geographic 

regions vary in response to major and repetitive differences in the soil environment (Matson 

et al., 1989; Robertson, 1993; Parkin, 1993). For example, at a micro-to-plot scale, N2O 

fluxes are controlled by the availability of soil water, labile C, and inorganic N. These factors 

are, in turn influenced by soil type and plant community type at the landscape scale. The 

distributions of soil types and plant communities are interrelated, and their variation in a 

region is again largely controlled by geomorphology, land use, and climate.  

 
___________________________________________________________________________ 
4This chapter is based on a paper published in the International Journal of Agricultural 
Research—Authors: Nkongolo et al (2009), doi: 10.3923/ijar.2009.17.28  
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Therefore, quantification of N2O flux rates from different sites, ecosystems, crops, climate 

and agricultural practices is necessary to improve the accuracy of N2O emissions inventories 

(Eichmer, 1990). The objective of this study was to assess the spatial and temporal variability 

of N2O emissions in a field cropped to onion. 

 

5.3 Materials and methods 

5.3.1 Study area 

Air and soil samples for determination of N2O emissions and soil properties, respectively, 

were collected in Mikassa, Hokkaido province (Fig. 5.1), but all analyses were done in the 

Laboratory of Soil Science at Hokkaido University in Sapporo. Sapporo is Japan's third 

largest city in area and is located on the western plains of Hokkaido, the northernmost island 

of Japan. Its geographical locations are 43°11'N, 141°30'E. Sapporo enjoys a mild climate 

with a year-round average temperature of 9.1°C. The average temperature in January was -

3.7°C, and in July, 20.3°C in 2000. More than sixty percent of surface area of Sapporo 

(primarily in the southwest) is mountainous, creating a concentration of urban activity 

focused around the Toyohira River, which runs through the city.  

 
                                                Figure 5.1. Hokkaido, Japan 
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5.3.2 Experimental field 

The study was conducted in a 140-m by 140-m upland field yearly cropped to onion (Allium 

cepa L.) in Mikassa, Hokkaido, Japan (43o14'N, 141o50'E). The experimental field is showed 

in Figure 5.2.  

 
                 Figure 5.2. Experimental fField in Mikassa, Hokkaido (Japan) 
 

The annual average temperature in Mikassa is 7.2oC and the average annual rainfall is 1204 

mm. The soil of the experimental site is classified as fine, mesic, mollic Fluvaquent. The 

physical and chemical properties of different horizons were reported elsewhere (Hu et al., 

2001). Soil texture consists of a silty or heavy clay from the Ap layer (0-28 cm) down to the 

C horizon (48-100+ cm).  The groundwater table lays at 70-80 cm depth throughout the 

growing season. Surface drains were installed at 80-100 cm depth at 12-m intervals and were 

connected to the same effluent exit, draining about 0.95 ha (125 m by 76 m) for monitoring 

nitrate leaching. Fertilizer nitrogen (322 kg N/ha) was applied at the end of April, shortly 

before transplanting. Onion was harvested during the second and third week of September. In 

June 1999, the field was sampled for N2O emissions and soil physical and chemical 

properties, using a 100-m by 100-m grid at 10-m spacing for a total of 100 sampling 

locations. A year later in September 2000, the same field was again sampled for N2O and soil 
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chemical and physical properties, using a 60-m by 60-m grid at 10-m spacing for a total of 36 

locations. Data collected in both 1999 and 2000 are analyzed in this paper. 

 

5.3.3 Measurements of N2O emissions 

N2O emissions from the soil surface, which may have been produced in the root zone or in 

deeper horizons, were measured using a closed-chamber technique. The chambers were 

circular with steel frames. The top of each chamber had a gas sampling tube and a bag to 

control air pressure inside the chamber. The height and diameter of the chamber were 0.35 m 

and 0.30 m, respectively. At each sampling time, 6 chambers were installed into the soil and 

kept for 20 minutes, and then samples of the enclosed atmosphere were withdrawn by a 50 ml 

syringue and transferred into a 1L Tedlar ® Bag. Sampling was done in one day. The air 

temperature inside the chamber was recorded using a digital thermometer. Ambient air 

between 0 and 2 m from the soil surface was collected and its mean concentration was used 

as a background concentration for calculation of gas fluxes. A gas chromatography with 

electron capture detector (Shimadzu, model 14 C) was used for N2O analysis.   N2O fluxes 

were calculated using the equation:  

 

 *)273(***
Tt

C
A
VF


                            [1] 

 

Where, F is the gas production rate (g N2O-N m-2 h-1);  is the gas density (mg m-3) under 

standard conditions; V (m3) and A (m2) are the volume and bottom area of the chamber;  

C/t is the ratio of change in the gas concentration inside the chamber (10-6 m3 m-3 h-1); T is 

the absolute temperature; and  is the transfer coefficient (28/44 for N2O). A positive value 

indicates gas emission from the soil, while a negative value indicates gas uptake. The 
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detectable limit was 0.1 ug N m-2 h-1. Soil temperature was measured at 5 cm and 10 cm from 

the top soil layer, using a digital thermometer.  

 

5.3.4 Geostatistical and statistical analyses 

5.4.3.1 Data detrending 

Basic assumptions of regionalized variable studies are often overlooked or rarely verified by 

many researchers. This may introduce artifacts and confound the interpretation of results. 

Therefore it is important to conduct a thorough data analysis before and during geostatistical 

analysis to filter out site-specific potential problems (producing trends) related to the 

unknown regionalized variable (i.e. soil gas flux under investigation). We used the median 

polishing technique to clean (polish) our field data to satisfy the basic assumptions for the 

estimation of a semivariogram, that is, for second-order stationarity or the weaker intrinsic 

hypothesis. Second-order stationarity implies that the mathematical expectation E[Z(x)]= 

exists and does not depend upon the position x and that for each pair of regionalized variables 

[Z(x), Z(x+h)], the covariance exists and depends only upon the separation vector h. On the 

other hand, the weaker intrinsic hypothesis implies that the mathematical expectation 

E[Z(x)]= exists, and for all vectors h the increment [Z(x+h)-Z(x)] has a finite variance that 

does not depend on x (Journel and Huijbregts, 1978).  The methodology consisted in first 

determining whether there was a statistically significant linear or polynomial trend surface to 

the data.  The procedure consisted in solving either a linear or a second order trend surface 

equation. Using Mathcad 4.0 software,  the linear trend surface equation was developed and 

solved as follows: 

22110 XbXbbY           [2] 
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Where Y, the field measured gas flux or soil property is regarded as a linear function of some 

constant value (bo) related to the means of observation, plus an east-west (b1) coordinate 

component and a north-south (b2) component. Since this equation contains three unknowns, 

three normal equations were needed to find its solution 
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Solving this series of simultaneous equations with Mathcad software gave the coefficients of 

the best linear trend surface.  
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For the second-degree trend surface, the following equation was used: 

 

215
2
24

2
1322110 XXbXbXbXbXbbY        [5] 

The equation contains terms that are the squares of the two geographic coordinates (X1 for X 

and X2 for Y) and a cross product term X1X2. Because its contains six unknowns, six normal 

equations were developed. The solution of these equations gave the coefficients of the best 

fit:  
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When significant trend was found, the field data matrix was detrended as follows: 

ijijij RTD            [7] 

Where, Dij  is the original data matrix for points ij, Tij is the trend surface at points ij, and Rij 

is the matrix of residuals, i is the column and j the corresponding row. The subsequent 

geostatistical analysis was performed on the residual matrix.  The map developed by kriging 

using the results of the geostatistical analysis of the residual matrix was then added to the 

trend surface to determine the final maps of gas fluxes and soil properties.  The examination 

of the trend surface determined whether universal (with trend surface) or ordinary (no trend 

surface) kriging was to be performed.  

 

5.4.3.2 Variograms fitting 

Isotropic (direction independent) semivariance of data was calculated using GS+ geostatistical 

software (Gamma Design Software, 1993). Semivariance is defined in the following 

equation: 
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where,  is the semivariance for m data pairs separated by a distance of h, known as a lag, and 

Z is the value at positions xi and xi+h.  

 

5.3.4.3 Statistical analysis.  

Statistix 8.0 was used for computing summaries of simple of statistics and well as histograms. 

 

5.4. Results and discussion 

5.4.1. Summary of simple statistics for nitrous oxide emissions 

Histograms for N2O emissions and their transformation into logarithmic scale are showed in 

Figures 5.3 (a and b) and 5.4 (a and b) for 1999 and 2000, respectively.  

Figure 5.3. Histograms of N2O emissions in 1999: (a) original data, (b) log-transformed data  
 

  

Figure 5.4. Histograms of N2O emissions in 2000:(a) original data, (b) log-transformed data 
 

Descriptive statistics for nitrous oxide emissions in Mikassa in June 1999 and September 

2000 are given in Table 5.1.  
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Table 5.1. Summary of simple statistics for nitrous oxide  (N2O) emissions in Mikassa  
 1999 2000 
Simple 
statistics 

N2O 
(g N2O-Nm-2 h-1) 

Ln (N2O) 
(g N2O-Nm-2 h-1) 

N2O 
(g N2O-Nm-2 h-1) 

Ln (N2O) 
(g N2O-Nm-2 h-1) 

Mean 313.41 4.72 165.26 4.52 
SD 704.72 1.38 155.24 1.34 
CV 224.86 29.39 93.94 29.55 
Median 94.35 4.55 148.47 4.99 
Skew 5.85 0.29 1.78 0.99 
Overall, N2O emissions in June 1999 were highest as compared to values obtained in 

September 2000. The mean value of N2O emissions in June 1999 was almost two times 

higher as compared to that measured in September 2000. However, both means become 

statistically different when data are transformed into logarithmic scale.  The difference in 

N2O emissions between these two years of studies can be explained by several factors such as 

the month of sampling within each year: June 1999 versus September 2000; the number of 

samples collected each year:  100 samples  in 1999 versus 36 samples in 2000 and by soil 

properties such as soil temperature. With particular attention to soil temperature, during field 

sampling in June 1999, the average soil temperatures at 5 and 10 cm depth from the soil 

surface (our sampling depth) were 30.99 and 28.04oC, respectively (data not shown). 

However, in September 2000, the soil temperature at these two depths dropped to 17.53 and 

15.91, respectively. These results agree with those of  Hu et al. (2001) who also reported an 

increase in N2O emissions as a result of increasing soil temperature. In fact, soil temperature 

has been reported as one of the factors influencing the seasonal variability of nitrous oxide 

emissions. Weiss and Price (1980) suggested that N2O solubility generally increases as the 

solution temperature decreases, this implies that during fall and winter, the N2O emitted from 

soil could be lower than the actual N2O produced in the soil because part of the N2O stayed in 

the soil solution (Davidson and Swank, 1986; Burton and Beauchamp, 1994). As for the 

means, coefficients of variation (CV) were also highest in 1999 as compared to 2000, 

confirming that N2O emissions exhibited considerable spatial and temporal variability. In 

fact, temporal patterns in gaseous N losses have been described by various workers. These 
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patterns have differed according to ecosystem and geographic location (Lemke et al., 1998). 

In a denitrification study at a forest  site in Michigan, Groffman and Tiedje (1989) found that 

gaseous N fluxes were highest in early spring and late fall with negligible values recorded 

during summer. Van Kessel et al. (1993) found highest emissions of N2O during early spring 

and summer with fluxes declining to negligible levels in the late growing season and fall. 

Nyborg et al. (1997) reported high fluxes of N2O during spring thaw, but negligible flux 

during the following growing season at an agricultural site in Alberta. 

 

5.4.2 Trends surface trends analysis for nitrous oxide emissions 

Table 5.2. First degree surface trend analysis for N2O emissions in Mikassa (Japan) 
 1999 2000 
Analysis 
variable 

N2O 
(g N2O-Nm-2 h-1) 

Ln (N2O) 
(g N2O-Nm-2 h-1) 

N2O 
(g N2O-Nm-2 h-1) 

Ln (N2O) 
(g N2O-Nm-2 h-1) 

r 0.43 - 0.44 - 
F value* 10.99 - 3.97 - 
*Critical F value = 2.56 
 
There was a significant first degree trend analysis for N2O emissions measured in both years. 

However, the trend was more prevalent in 1999 in comparison to 2000 as showed by the 

higher probability value of 10.99 observed in 2000 data analysis. Log-transformed data did 

not, however, show any significant trend. 

 

5.4.3 Variogram models fitting for nitrous oxide emissions 

Isotropic semivariogram parameters for field measured N2O emissions and their detrended 

residuals are shown in Table 5.3 for both 1999 and 2000, respectively. Figures 5 (a and b) 

and 6 (a and b) show semivariogram models fitted to data in both years.  
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Table 5.3. Isotropic semivariogram parameters for N2O and their de-trended residuals 
 1999 2000 
 
Par. 

N2O 
(g N2O-N m-2 h-1) 

Residuals 
(g N2O-Nm-2 h-1) 

N2O 
(g N2O-Nm-2 h-1) 

Residuals 
(g N2O-Nm-2 h-1) 

Model LIN LIN SPH SPH 
Nugget 516.00 100.00 1.00 1.00 
Sill 1442.95 115390.51 1665 2873 
Range 61.32 61.32 16.48 24.97 
Q 0.64 0.99 0.99 1.00 
R2 0.68 0.94 0.45 0.90 
LIN = linear, SPH = spherical 
 
 
 
 
 

 
 Figure 5.5. Variogram of N2O emissions in 1999: (a) Original data, (b) De-trended  
 Residuals. 
 

 
 

 
Figure 5.6. Variogram of N2O emissions in 2000: (a) Original data, (b) De-trended residuals 
 

The criterion for model selection was maximum R2, except in cases where another model was 

obviously more appropriate based on visual examination of the semivariogram. Neither an 

active lag distance nor a lag interval was set. Default values given by the program were used. 
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A linear variogram was fitted to data in 1999 and a spherical model was more appropriate for 

N2O emissions data in 2000. This applies to both field measured data and detrended residuals. 

With isotropic models of field data, the ranges or limits of spatial dependency were 61.32 and 

16.48 m for 1999 and 2000, respectively. Detrended residuals for 1999 had the same limit of 

spatial dependency as field measured data. However, this situation changed in 2000 when the 

limit of spatial dependency for detrended residuals exceeded that of field measured data. In 

both cases, the limit of spatial dependency was lower than the sampling distance, which is 

usually accepted. The sill values for field measured N2O were lowest as compared to those 

obtained with detrended data. The Q value for field measured N2O fluxes in 1999 was 0.68 

and it approached unity (0.99) in 2000, suggesting a highly developed spatial structure for 

N2O fluxes in 2000 and a moderate development of spatial structure in 1999. Detrended 

residual Q values were also very high, showing highly developed spatial structure for both 

years. In opposite to the Q values trend the R2 for field measured  N2O fluxes were higher in 

1999 and lower in 2000. However, when data were detrended the R2 became high for both 

year, suggesting that removing the trend was useful in the analysis of this data. Figure 5.5 

shows the semivariograms of N2O fluxes in 1999 and 2000 for both original field data and 

detrended residuals.  

A linear variogram model was fitted to N2O fluxes in 2000 (Fig. 5.5, a and b) with an 

active lag distance of 100 m. As the figure clearly shows, multiple spatial scales seemed to be 

present in this isotropic variogam with evidence of a trend. After detrending the data, the 

isotropic variogram exhibited a linear trend with the same range, but with higher Q and R2 

and an improved fit.  For the 2000 (Fig. 5.6, a and b) data, a spherical trend was fitted to the 

data with an active lag of 60 m. After detrending the data, a better fit was obtained with not 

only increased Q and R2, but the range of spatial dependence also increased.  
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5.4.4 Mapping nitrous oxide emissions across the field  

Maps of N2O emissions distribution in an onion field in Mikassa in 1999 and 2000 with first 

degree trend surface and contoured residuals are shown in Figures 5.7 and 5.8 (a, b and c). 

Estimation of N2O emissions at unsampled locations was made using the geostatistical 

technique of kriging. A default grid spacing was used for interpolation purposes. After 

estimation of N2O emissions, isarithmic maps were produced with different contour levels. 

Maps showed that there is a systematic variability with spatial patterns of N2O emissions in 

the onion field. These patterns also differ for each year. In fact, Figure 5.7a shows that in 

1999, field measured N2O emissions were nearly homogenous across the onion field with 

spots of higher values in the western part of the onion field. A small zone of N2O uptake 

(negative flux) was also observed in the southwestern part of the onion field. However, maps 

produced after detrending the data (Fig. 5.7c) showed a different picture: several zones of 

N2O emissions spots with spots of higher values in northwest but also southern parts of the 

onion field. However, the small zone of uptake has moved in northwestern part of the onion 

field. Maps of N2O emissions in 2000 showed more variability. For field collected data, a 

large zone of higher N2O emissions was observed in northwestern, moved to the middle and 

extended to east and southern parts of the onion field. Two spots of N2O uptake were also 

found in the western part of the onion field. Detrending data did not change much of the 

variability of N2O emissions across the onion field in 2000. In fact, a large zone of higher 

N2O emissions is still observed in northern, middle and southern parts of the onion field. 

However, only one spot of uptake is found and concentrated in northwestern part of the onion 

field (Fig.5.8a). 
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Figure 5.7. N2O emissions in Mikassa in 1999: a) Contour maps, b) First degree trend surface 
and c) Contoured residuals from first degree trend. 
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Figure 5.8. N2O emissions in Mikassa in 2000: a) Contour maps,   b) First degree trend 
surface. c) Contoured residuals from first degree trend. 
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5.5 Conclusion 

This study was conducted to assess the spatial variability of N2O fluxes in a field cropped to 

onion. Results obtained showed that N2O emissions were highest in 1999 as compared to 

2000. They were fitted to a linear variogram in 1999 while they responded to a spherical 

variogram model in 2000. Positive first degree surface trends were also found in N2O 

emissions data in both years and the removal of these trends did not change variogram 

models, but significantly improved them by increasing the R2 and Q values. N2O emissions 

systematically varied with small zones of uptake (negative flux) across the field. This study is 

another confirmation of the tremendous spatial and temporal variability of N2O emissions. 

Variability of N2O emissions in space may be influenced by site-specific potential problems 

(producing trends) related to the unknown regionalized variable (i.e. soil property under 

investigation). Therefore, removal of a potential trend was used in this study to improve 

variogram fitting. However, the results showed that in many cases, the variogram fitted to 

data after trend removal had poor spatial structure and low R2. In some cases however, both 

the spatial structure and R2 improved. N2O emissions systematically varied with small zones 

of uptake (negative flux) across the field, suggesting the presence of hot spots. 
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Chap. 6. Improved quantification of CO2, CH4, and N2O fluxes from soil in agricultural 

fields in central Missouri5. 

 

6.1 Abstract 

As it is the case for soil chemical and physical properties, greenhouse gas fluxes also exhibit 

tremendous variability across fields. However, because of the cost of collecting numerous 

samples, measurements of fluxes across agricultural fields are often limited to few points. 

The average value of point measurements is later used to calculate the total flux for the 

sampled area This approach may result in an over or underestimation of the total flux. The 

objective of this study was to assess if geographic information systems (GIS) could improve 

the estimation of N2O, CH4 and CO2 total field fluxes from soil in agricultural fields in 

central Missouri. We sampled for N2O, CH4 and CO2 fluxes in a pasture, fitted variogram 

models to fluxes data, predicted fluxes at un-sampled locations by kriging or inverse distance 

weighing, produced fluxes maps and classified them according to fluxes distribution zones. 

Thereafter, we calculated a total flux (TF) by multiplying field minimum and maximum flux 

value for each gas by the total area sampled. Then, we also computed a GIS-based improved 

total field flux (ITFF) as the sum of “TF” for each flux distribution zone for each gas at each 

sampling period. Results showed that “TF” method over-estimated (up to 800%) the total 

minimum and maximum flux for N2O, CH4 and CO2 as compared to “ITFF”. Our approach 

provides in an improved quantification of greenhouse flux. The approach can be extended to 

other soil and environmental parameters. 

 

Keywords: Greenhouse gases, geographic information systems, fluxes 
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6.2 Introduction 

Globally, soil-atmosphere exchange of greenhouse gases is thought to contribute roughly 30, 

and 70% to the annual emissions of CH4 and N2O, respectively (Mosier, 1998). Agriculture 

contributes substantially to this budget (Boeckx and Cleemput, 2001). Unfortunately, the data 

available to estimate anthropogenic greenhouse gas emissions resulting from agricultural and 

land use activities are generally of a lower quality. This is the case for data on greenhouse gas 

emissions and removals from agricultural soils, which are often estimated with large ranges 

of uncertainty (IPCC, 2001). One of the causes of this problem is that estimates of 

greenhouse gas emissions from agricultural soils are often based on point measurements. 

Average values obtained from few sampled points are used to compute global budgets and 

models (Potter et al., 1996).  There is therefore a need for approaches for more precise 

estimation of greenhouse gas emissions at field scale so that the models of emission response 

to climate change at a global scale can be improved (IPCC, 2001). In this study, we attempted 

to improve the estimation of N2O, CH4 and CO2 emissions from a pasture using geographic 

information systems (GIS). GIS, often integrated with geostatistics, remote sensing (RS), 

cartography, global positioning systems (GPS) and other techniques, has become an 

indispensable tools in the assessment of the  study of soil chemical, physical and biological 

properties. Rogowski (1995) and Rogowski (1996) quantified soil variability to estimate 

position and spatial distribution of soil properties using GIS. Kenan (1998) used geographic 

information management systems (GIM) for managing soil nitrogen.  Shih-Hsien (1997) 

studied nitrate dynamics of small agricultural streams in western corn belt plains ecoregions 

and used GIS. Olivier and Webseter (1990) used kiriging as a method of interpolation for 

geographic information system. 

___________________________________________________________________________ 
5This chapter is based on a paper published in the Journal of Environmental Monitoring & 
Restoration –Authors: Nkongolo et al (2008), doi: 10.4029/2008jemrest5no117 
. 
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D'Itiri et al. (1985) investigated spatial and temporal changes in nitrate concentration of 

groundwater in Michigan using GIS. Halliday and Wolfe (1990) used GIS to assess the 

groundwater pollution potential of nitrogen fertilizers applied to a cropped area in Texas. 

Wylie et al. (1994) used GIS to predict spatial distribution of nitrogen leaching in Northern 

Colorado.  Mulla (1991) gave three steps to analyze detailed soil test P and K maps using 

techniques available in GIS. The first step in the GIS process was to specify a set of two test 

cutoff levels for both P and K. The second step was to compute the percent area on the 

fertility maps within each of the possible categories. These fertility categories represent all 

possible combinations of P and K soil test fertility cutoff combinations such as low P and low 

K, low P and moderate K, and low P and high K. The third step was to aggregate fertility 

categories together into a management zone that differs in fertilizer requirements. Each 

management zone ideally represents portions of the field that are relatively uniform in soil 

fertility status. This will enable fertilizer recommendation to be made for each zone. 

Verhagen (1997) generated fertilizer maps using simulation and identified three pattern types. 

Research concluded that since fertilizer pattern in the field was not changing, a temporal 

change overruled the spatial variation. Therefore, a single dose application of fertilizer cannot 

be adjusted according to expected production level. In addition, split applications of fertilizer 

should be a prerequisite for specific nitrogen management. Kristensen and Olesen (1997) 

analyzed aerial photography to map soil moisture content in the root zone by kriging, co-

kriging and inverse distance algorithms. Their observations indicated that even when they 

included soil texture, there was no improvement in prediction accuracy among the algorithms 

employed. Anderson and Yang (1996) conducted a study on site-specific farm management. 

They used ArcView to visualize and query spatial data and to generate statistics for each 

management zone, and to create charts. These researchers concluded that the integration of 

aerial photography, GPS and GIS provided an effective way to collect, process and analyze 
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information. In our approach, GPS, GIS, Computer Cartography and simulation of aerial 

photo were all used. The approach consisted in sampling several points for greenhouse gases 

and soil properties across the field as usually done, interpolating emissions and soil properties 

at un-sampled points using variography and kriging, mapping the entire field, classifying map 

zones and calculating their averages and finally displaying the classified maps. After 

classification, each zone's area was multiplied by the corresponding average flux value. The 

total flux for the field was calculated by the summation of all zone areas multiplied by their 

corresponding average fluxes. The objective of this study was to investigate how using 

geospatial technologies improve our estimation of emissions and soil properties.  

 

6.3 Materials and methods 

6.3.1 Study area 

The study was conducted simultaneously in corn and soybean fields, forest and a pasture at 

Lincoln University’s Freeman, Busby and Carver farms, respectively. However, only results 

for the pasture site are reported here. The experimental field is showed in Figure 6.1. The 

geographical coordinates of the experimental field were 38o31’45” N and 92o08’07” W.  The 

study area was a 1.42 ha area dominated by brome grass (Bromus tectorum L). Brome grass 

is a cool season, perennial and smooth bladed grass. It is drought resistant and prefers well 

drained soils of silt/clay basis. It is used for early pastures and haying. It is best suited at 6.0-

7.5 pH with some degree of salinity tolerance. The soil type of this site was an Elk Silt-Loam 

(Ultic hapludalts).  In 2007, this area received an annual precipitation of 990 mm.   
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                                                   Figure 6.1. Experimental field                    
 
The total rainfall from May through December was 310 mm with an average temperature of 

27oC.  This area has experienced a drought during the spring and summer months of 2006 

(Johnson et al., 2007).  

 

6.3.2 Air sampling and gas measurements 

Twenty cylindrical polyvinylchloride (PVC) chambers of 0.30 m long and 0.20 m in diameter 

were permanently inserted into the soil to a depth of 0.03 m since summer 2003. The design 

of the sampling chamber is a modified version of Hutchinson and Mosier (1981) and 

Robertson (1989) and is shown in Johnson et al., 2007. The chambers were constructed with 

two ventilation holes on the sides.  They had circular tops made from Plexiglas and 

containing two additional holes. One of the holes was covered by a stopper for the extraction 

of gases and while the other served for ventilation.   Installation of these chambers since 2003 

kept soil undisturbed. In order to maintain an air tight seal, a groove was put on the bottom of 

the lid so that it would fit securely onto the sampling chamber. During sampling time the 

groove was filled with Dow-Corning high vacuum grease.  Soil air samples for gas analysis 

were collected as follows; (1) the two chamber ventilation holes were sealed off by rubber 

stoppers, (2) the greased (to seal the chamber) chamber tops were put on, (3) the chamber 
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was allowed to fill up with air for thirty minutes and; (4) the air samples were collected with 

a 50 ml syringe and put in to a 200 ml Tedlar bag for storage. Analysis of CO2, CH4, and N2O 

from soil air samples was conducted at Lincoln University’s Dickinson Research Laboratory 

within two hours after samples collection.  The concentration of each greenhouse gas was 

measured using a Gas Chromatograph with an electron capture detector.  The data was then 

transferred into an Excel data sheet and fluxes were calculated according to Ginting et al., 

2003 and Hu et al., 2001: 

 

 

where, F is the gas production rate;  is the gas density (mg m-3) under standard conditions; V 

(m3) and A (m2) are the volume and bottom area of the chamber;  C/t is the ratio of change 

in the gas concentration inside the chamber (10-6 m3 m-3 h-1); T is the absolute temperature; 

and  is the transfer coefficient (12/44 for CO2, 12/16 for CH4 and 28/44 for N2O). A positive 

value indicates gas emission from the soil, while a negative value indicates gas uptake. The 

detectable limits were 0.1 mg C m-2 h-1 for CO2, 0.01 g C m-2 h-1 for CH4 and  0.1 g N m-2 

h-1 for N2O. Soil temperature was measured at 0.06 m from the top soil layer, using a KD2 

Theta probe.  

 

6.3.3 GIS and statistical analysis 

Statistix 8.0 was used to calculate summary of simple statistics for CO2, N2O, and CH4 and 

the soil properties. ArcGIS 9.2 and its Spatial Analyst Extension were used to produce 

interpolated maps using the Inverse Distance Weighing method (ID). GS+ 5.1 software was 

used to produce model semivariogram.  The model semivariogram uses a mathematical 

equation to describe the spatial variability defined by the experimental semivariogram. 

Isotropic (direction independent) semivariance of data was calculated using GS+ geostatistical 

 *)273(***
Tt

C
A
VF






 

133 
 

software (Gamma Design Software, 2007). Semivariance is defined in the following 

equation: 
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where,  is the semivariance for m data pairs separated by a distance of h, known as a lag, and 

Z is the value at positions xi and xi+h.  The schematic process from data collection to 

classification is showed below (Fig. 6.2). 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 6.2. A GIS-based approach for calculating an improved total field flux (ITFF) 

 

6.4 Results and discussion 

6.4.1 Fluctuations of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) 

Summaries of simple statistics for CO2 and CH4, and N2O emissions are presented in Tables 

6.1 and 6.2, respectively.  
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Table 6.1. Summary of simple statistics for carbon dioxide (CO2, mg C-CO2 m
2h-1) and methane 

(CH4, ug C-CH4 m
2h-1) measured in a pasture at Lincoln University Carver arm from June to 

December 2007 
 Jun. Jul. Aug. Sept. Oct. Nov. Dec. 

 CO2 CH4 CO2 CH4 CO2 CH4 CO2 CH4 CO2 CH4 CO2 CH4 CO2 CH4 

Mean 116 -88.1 148.1 43.9 127.4 -15.9 89.7 45.8 99.4 12.7 96.5 -88.9 45.3 52.9 

SD 35.0 92.3 29.3 71.8 28.4 33.8 24.4 69.2 38.6 36.1 27.6 50.9 20.5 82.9 

C.V. 30.2 104.8 19.8 163.7 22.3 212.8 27.2 151.3 38.9 284.1 28.6 57.2 45.2 156.8 

Min. 62.5 -197.8 81.5 -64.5 63.7 -63.8 40.3 -25.5 36.6 -37.7 14.9 -173.5 9.8 -60.6 

Med. 109 -108.9 147.5 46.3 131.7 -26.9 86.1 29.1 105.7 9.2 102.7 -105.7 52.6 18.9 

Max. 
176 199.7 204.2 193.9 180.7 78.3 

144.
3 

255.3 162.7 93.4 140.8 11.3 75.3 277.0 

Skew 0.3 1.6 -0.15 0.1 -0.3 1.2 0.6 1.9 -0.2 0.9 -1.1 0.5 -0.5 1.0 

Kurt. -1.3 2.7 -0.06 -0.8 0.0 1.4 0.5 2.9 -1.2 0.2 1.9 -0.8 -0.9 0.7 

 

 
 
Table 6.2. Summary of simple statistics for nitrous oxide (N2O, ug N-N2O m2h-1) measured in  
a pasture at Lincoln University Carver farm from June to December 2007 
 Jun.  Jul.  Aug. Sept. Oct. Nov. Dec. 
Mean 24.05 29.18 33.02 14.04 16.89 10.46 10.55 
SD 33.34 31.47 21.30 8.02 11.20 15.34 6.64 
C.V. 138.62 107.84 64.50 57.11 66.32 146.60 63.01 
Minimum -20.86 -6.26 5.49 -1.67 -14.89 -9.83 -1.89 
Median 16.21 18.11 31.33 13.42 16.27 6.97 11.51 
Maximum 104.25 112.50 89.24 29.33 32.46 63.01 21.94 
Skew 0.62 1.46 0.93 0.09 -0.84 2.09 -0.15 
Kurtosis -0.21 1.34 0.52 -0.21 1.35 5.02 -0.80 

 
Table 6.1 shows that CO2 emissions were higher from June to August, but decreased from  

September to December. Lower CO2 emissions in September to December were associated 

with higher variability as shown by a CV of 45% in December. Methane (CH4) fluxes 

fluctuated from uptake (negative fluxes) in June, August and November to emissions in the 

remaining months. While there was no specific trend for uptake, CH4 emissions followed an 

opposite trend to that observed for CO2 as they increased from July to December. In fact, the 

highest CH4 emissions were observed in December. As for CO2, higher values of N2O 

emissions were observed from June to August and lower values from September to December 

(Table 6.2). The trend observed for CO2 and N2O emissions was similar to that of soil 

thermal diffusivity  and soil temperature (data not shown). In fact, these two soil properties 

also drastically decreased in December. Variability in greenhouse gas fluxes has been 



 

135 
 

reported by researchers. Ambus and Christensen (1995) measured fluxes of N2O and CH4 

along a topogradient in a spruce forest (Picea abies L.), beech forest (Fagus silvatica L.), 

riparian grassland, coastal grassland, abandoned farmland, upland arable soil, and drained 

arable soil in Denmark. They found that spatial CVs in CH4 fluxes ranged between 166 and 

1787%.  

 

6.4.2 Variogram models for carbon dioxide (CO2), methane (CH4) and nitrous oxide 

(N2O) 

Isotropic variogram models for CH4, CO2 and N2O are shown in Figure 6.3 for June and 

November sampling periods only. 

 

Figure 6.3. Isotropic variograms of CH4, CO2 and N2O for June and November sampling 

 

Data from August to October is discussed but not shown for clarity reasons. A variogram 

describes the relationship between the variance of the difference between measurements and 

the distance of the corresponding sampling points from each other. Variogram parameters 

usually examined are: 1) the sill (Co+C) which describes where the variogram develops a flat 
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region, i.e. where the variance no longer increases; 2) the range (A0) or the distance between 

locations beyond which observations appear independent; 3) the nugget variance (Co) which 

represents variation not spatially dependent over the range examined and 4) the regression 

coefficient (R2) which provides an indication of how well the model fits the variogram data. 

When the data respond to a model, the information from the variogram model is used to 

estimate values at unsampled locations through a technique known as kriging. Interpolating 

values at unsampled locations enables the production of maps portraying the entire spatial 

distribution of the property being investigated.  In this study, methane (CH4) flux responded 

to a spherical variogram model in June and July, linear model in August and October, and 

finally to a Gaussian variogram model in November. All these models fitted CH4 data as 

shown by regression coefficients ranging from 0.94 to 0.99.  The ranges of spatial variability 

were also the same for the spherical variogram models in June and July (0.001 dd) and the 

linear models of August and October (0.002 dd) as shown in Figure 6.3 (for June and 

November only). We also calculated the proportion of spatial structure or C/(Co+C) which 

provides a measure of the proportion of sample variance (Co+C) that is explained by spatially 

structured variance (C). Calculated C/(Co+C) values ranged from 0.95 to 0.99 indicating a 

strong spatial structure. Carbon dioxide (CO2) emissions fitted to exponential variograms in 

June and November (Fig. 6.3), Gaussian model in July, and spherical models in August and 

November. Regression coefficients ranged from 0.76 to 0.99, indicating moderate (June and 

August) to strong (July, October and November) fit as can be visually noted in Figure 6.3. 

This is also confirmed by calculated values of C/(Co+C) which were 0.99 for July, October 

and November, but 0.92 in June and 0.95 in August; therefore, indicating moderately 

developed spatial structures. Except for June, the range of spatial variability (0.001dd) was 

the same for all other sampling periods. As for Carbon dioxide (CO2), nitrous oxide (N2O) 

emissions fitted to exponential data in June and October, but spherical variograms in July, 
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August and November (Figure 7.3). Regression coefficients ranged from 0.61 to 0.99 with 

the lowest fit in August and October. As previously discussed for CH4 and CO2, weaker 

spatial structure were exhibited in these two months with low R2.  Overall, none of CH4, CO2 

or N2O fitted to the same variogram model throughout this study (month to month). 

Variograms models varied from linear, exponential, spherical to Gaussian. However, for  

(A0) which was about 0.001 dd  with only 3 exceptions. This is an indication that the 

sampling distance used was appropriate. 

 

6.4.3 Mapping methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O) 

distribution 

Maps portraying the spatial distribution of methane (CH4), carbon dioxide (CO2) and nitrous 

oxide (N2O) fluxes are shown in Figure 6.4 for June and November only. Maps for July to 

October are omitted but discussed. Classified maps are shown in Figure 6.5.  CH4  fluctuated 

from uptake or consumption (negative fluxes) to emissions throughout the experiment. In 

June, CH4 was essentially consumed across the pasture with only two pockets of emissions in 

the northwest and southeast corners of the pasture plot. However, in July, an opposite trend 

was observed with about 70% of the pasture plot emitting methane. The largest zone of 

uptake was shifted to the west of the plot. This trend was similar to that observed in August 

but the uptake zone here was shifted in the middle of the plot. In October, there was no 

emission, but only CH4 uptake. Finally, in November (Fig. 6.4), the pasture plot emitted more 

CH4 than it kept into the soil.  
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    Figure 6.4. Interpolated  maps of CH4 (a1 and a2) CO2 (b1 and b2) and N2O (c1 and c2) 
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                                       Figure 6.5. Classified maps of CH4 (a), CO2 (b) and N2O (c) 
 
 
 
results are in agreement with those reported by other authors. In fact, Liebig et al. (2008) 

quantified the effects of tannin affected cattle urine, normal cattle urine, and NH4NO3 in 

solution on greenhouse gas flux in mixed-grass prairie in the northern great plains. They 
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found that methane uptake was prevalent throughout the study, as soil conditions were 

predominantly warm and dry. Van den Pol-van Dasselaar et al. (1995) studied the effects of 

soil moisture content and temperature on methane uptake by grasslands on sandy soils. They 

found that atmospheric CH4 uptake was highest at high soil temperatures and intermediate 

soil moisture contents. At soil moisture contents higher than 50% w/w), CH4 uptake was 

greatly reduced, probably due to the slow down of diffusive CH4 and O2 transport in the soil, 

which may have resulted in reduced CH4 oxidation and possibly some CH4 production. 

Ambus and Christensen (1995) reported that uptake, as well as emission of CH4 reached 

maximum rates when soils dried up, presumably because CH4 diffusion became 

unconstrained in a spruce forest (Picea abies L.), beech forest (Fagus silvatica L.), riparian 

grassland, coastal grassland, abandoned farmland, upland arable soil, and drained arable soil 

in Denmark. Mosier et al (1997) studied CH4 and N2O fluxes in the Colorado shortgrass 

steppe. They found that conversion of grassland to croplands typically decreased the soil 

consumption of atmospheric CH4 and increased the emission of N2O. Jonesa et al (2005) 

studied greenhouse from a managed grassland. They reported that CH4 emissions were only 

significantly increased for a short period following applications of cattle slurry. Cumulative 

total N2O flux from manure treatments was 25 times larger than that from mineral fertilizers. 

Finally, soil respiration from plots receiving manure was up to 1.6 times larger than CO2 

release from control plots and up to 1.7 times larger compared to inorganic treatments. 

Verchota et al (2008) evaluated the effect of leguminous fallows on methane (CH4), carbon 

dioxide (CO2), N oxides (N2O and NO) fluxes. They observed significantly higher CH4 

uptake during the dry season relative to wet season, indicating the importance of soil water 

content and gas transport on CH4 fluxes. Mosier and Delgado (1997) monitored methane and 

nitrous oxide fluxes in grasslands in western Porto Rico. They reported that CH4 uptake rates 

averaged 5.8 g CH4-C m-2 h-1 with no significant differences across sites. These uptake rates 
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were generally 10-fold lower than those reported for tropical forests. Fertilizer addition had a 

small negative affect on CH4 uptake in the Vertisol, tended to enhance CH4 uptake in the 

Ultisol and significantly decreased CH4 uptake in the Oxisol. These background emission 

rates were typically higher than those in temperate grasslands. Mosier et al. (1991) studied 

methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands. They found 

that nitrogen fertilization and cultivation both decreased CH4 uptake and increased N2O 

production, thereby contributing to the increasing atmospheric concentrations of these gases. 

Carbon dioxide (CO2) emissions (Fig. 6.4) varied greatly across the pasture with pockets high 

and low emissions. In June, CO2 emissions varied essentially from 62 to 119 mg CO2-C with 

pockets of higher emissions (158 mg CO2-C m2 h-1) distributed in the southern, middle and 

northern corner of the pasture. In July, two zones of CO2 emissions were observed: high 

emissions in the north and low emissions in the southern portion of the pasture. Although 

CO2 emissions continued to fluctuate from the remaining sampling period, emissions 

magnitude dropped tremendously. In fact, in June and July, the minimum emissions were 

62.55 and 81.55 mg, respectively while the maximum were 176.13 and 204.15 mg CO2-C 

m2h-1, respectively. However, from August to November, the minimum emissions dropped 

from 15 to nearly 10 mg CO2-C m2 h-1 while the maximum emissions also dropped to  from 

140 to 76 mg C-CO2m
2h-1). This sharp drop in emissions did not, however, affect their spatial 

distribution across the pasture. Two zones were still observed in August with higher 

emissions in the north and lower in the south and a few pockets of higher values. Our results 

agree with those reported by Johnson et al. (2007) who conducted a similar investigation on 

an adjacent site to this study. They found that the pasture released more CO2 during the 

months that received more rainfall.  The pasture soil acted as a source for carbon dioxide, a 

sink for methane, and a source for nitrous oxide.  These results are also in agreement with 

those reported by Nkongolo and Schmidt (2005, 2006) for work conducted on the same 
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pasture. In other ecosystems, similar trend was reported in Hatano and Lipiec (2004). 

Gregorich et al. (2006) studied emission of CO2, CH4 and N2O from lakeshore soils in an 

Antarctic dry valley. They reported that simultaneous emission of all three gases from the 

same site indicated that aerobic and anaerobic processes occurred in different layers or 

different parts of each soil profile. Furthermore, they found that the pattern of concentration 

with depth in the soil profile was not consistent across sites. Emission of N2O was low and 

highly variable while that of CO2 was high and was strongly related to soil temperature. 

Nitrous oxide (N2O) showed a similar behavior to methane (CH4) with emissions and uptake 

(negative fluxes). In June 2007 (Fig. 6.4), two main zones of emissions extending north to 

south of the pasture were observed with three pockets of negative fluxes (uptake).  In July, 

there was only emission while pockets of uptake continued to manifest during the remaining 

sampling period. Our results agree with several other studies where soils have been reported 

to act occasionally as sinks for N2O. In a study assessing the effect of mechanized tillage 

operations on soil physical properties and greenhouse  gas fluxes in two agricultural fields in 

Hokkaido (Japan), Nkongolo et al. (2008) found negative fluxes of N2O in a corn and 

soybean field.  Donoso et al. (1993) found that in contrast with a significant emission in the 

rainy season, the soil of a scrub-grass savannah of Venezuela acted as a sink for N2O in the 

dry season. Cicerone et al. (1978) found a significant sink activity in wet grass-covered soil 

of Michigan.  Blackmer and Bremner (1976) found that cultivated soils of Iowa acted as sinks 

for atmospheric N2O at certain times during spring.  Ryder (1981) reported that the soil acts 

as both a source and sink for atmospheric N2O depending on soil condition and the amount of 

nitrogenous fertilizer applied, the sink activity was observed in conditions conducive to 

microbial reduction of N2O (i.e. very low nitrate in the soil). Matson and Vitousek (1987) 

suggested that even though the overall average fluxes measured in La Selva, Costa Rica were 

positive, under certain conditions uptake of N2O occurred in these tropical soils.  The 
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mechanism by which soil acts as a sink for N2O is not known. It has been suggested that the 

net flux of N2O to the atmosphere results from its production by nitrifying and or denitrifying 

bacteria. N2O consumption is therefore likely due to the reduction of N2O to N2 (Donoso et 

al., 1993). It has also been reported that N2O production was somewhat higher and N2O 

uptake somewhat lower in the more disturbed communities and that N2-fixing cyanobacteria 

could both produce and consume N2O. Finally, Chapuis-Lardy et al. (2007) have provided an 

extensive review of soils as a sink of N2O. They further suggested that a contribution of 

various processes could explain the wide range of conditions found to allow N2O 

consumption, ranging from low to high temperatures, wet to dry soils, and fertilized to 

unfertilized plots. Generally, conditions interfering with N2O diffusion in the soil seem to 

enhance N2O consumption. However, the factors regulating N2O consumption are not yet 

well understood and merit further study 

 
6.4.4 Total flux for carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) 

Tables 6.3 to 6.5 present the summary of simple statistics and the analysis of variance (paired 

comparison) for the total flux of CO2, CH4 and N2O. For each gas and each sampling period, 

a total flux for the field was calculated for the lower end or total minimum field flux (min) 

and the higher end or total maximum field flux (max). Two methods of calculation were 

used: a traditional approach (TF) which consisted in multiplying the minimum and maximum 

field flux values by the total area of the field, and a GIS-based improved approach (ITFF) 

which was described in Fig.6.2. 
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Table 6. 3. Summary of simple statistics and Paired test for  CH4 fluxes in a 12800 m2 pasture 
field calculated by method 1 (TF) and Method 2 (ITFF)  
Simple statistics CH4 (ug C-CH4 m

2 h-1) 
 TF ITFF 
 Min Max Min Max 
Mean -1138.40 2027.60 -327.49 189.82 
SD 869.63 1265.90 783.18 788.66 
C.V. 76.39 62.44 239.15 415.48 
Min -2531.20 144.65 -1500.80 -938.94 
Median -816.38 2482.10 14.68 294.36 
Max -326.91 3545.10 368.41 1042.3 
Skew -0.83 -0.24 -0.69 -0.30 
Kurtosis -1.03 -1.34 -1.24 -1.43 
Paired T Test for Method 1 (TF) vs Method 2 (ITFF)  
Parameters 
 

Min flux 
(TF vs ITFF) 

Max flux 
(TF vs ITFF) 

Mean 810.96 -1,837.70 
St Dev 98.72 327.18 
Mean H0 810.96 -1,837.70 
Lower 95% CI     569.39 -2,638.30 
Upper 95% CI     1,052.50 -1,037.20 
T                   8.21 -5.62 
DF 6 6 
P 0.0002 0.0014 
 
 
Table 6. 4. Summary of simple statistics and Paired test for  CO2 fluxes in a 12800 m2 pasture 
field calculated by method 1 (TF) and Method 2 (ITFF)  
Simple statistics CO2 (mg C-CO2 m

2 h-1) 
 TF ITFF 
 Min Max Min Max 
Mean 565.72 1982.4 1194.90 1430.80 
SD 339.81 529.37 407.34 441.93 
C.V. 60.07 26.70 34.09 30.89 
Min 124.80 963.20 508.19 647.78 
Median 516.10 2082.8 1127.90 1396.50 
Max 1043.7 2613.3 1767.90 2029.30 
Skew -0.01 -0.92 -0.27 -0.47 
Kurtosis -1.30 0.11 -0.56 -0.34 
Paired T Test for Method 1 (TF) vs Method 2 (ITFF)  
Parameters 
 

Min flux 
(TF vs ITFF) 

Max flux 
(TF vs ITFF) 

Mean 629.18 551.55 
St Dev 60.09 47.42 
Mean H0 629.18 551.55 
Lower 95% CI     482.15 435.52 
Upper 95% CI     776.21 667.59 
T                   10.47 11.63 
DF 6 6 
P 0.00001 0.00001 
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Table 6.5. Summary of simple statistics and Paired test for  N2O  fluxes in a 12800 m2 pasture 
field calculated by method 1 (TF) and Method 2 (ITFF)  
Simple statistics N2O (ug N-N2Om2 h-1) 
 TF ITFF 
 Min Max Min Max 
Mean 340.93 847.09 184.42 -115.04 
SD 128.13 460.58 86.06 114.72 
C.V. 37.58 54.37 46.66 99.72 
Min 213.12 375.42 60.61 -267.01 
Median 268.91 806.53 168.54 -125.82 
Max 508.56 1440.0 331.25 70.27 
Skew 0.30 0.15 0.44 0.34 
Kurtosis -1.67 -1.68 -0.42 -0.92 
Paired T Test for Method 1 (TF) vs Method 2 (ITFF)  
Parameters 
 

Min flux 
(TF vs ITFF) 

Max flux 
(TF vs ITFF) 

Mean -156.51 962.12 
St Dev 29.21 176.35 
Mean H0 -156.51 962.12 
Lower 95% CI     -227.98 530.60 
Upper 95% CI     -85.03 1393.60 
T                   -5.36 5.46 
DF 6 6 
P 0.0017 0.0016 
 
This approach took into account the spatial variability of gas fluxes across the field. It 

calculated a “TF” for each classified “flux distribution zone” of the field and computed an 

“ITFF” as the sum of individual “TF”. Tables 6.3 to 6.6 show that the two methods were 

significantly different in their outputs of the minimum and maximum total flux field for CO2, 

CH4 and N2O in this 12,800 m2 pasture. The null hypothesis examined was that the mean of 

the differences was zero for both methods of calculation. The small p-values of 0.0002 and 

0.0014  for CH4 (Table 6.3); 0.00001 and 0.00001 for CO2 (Table 6.4) and 0.0017 and 0.0016 

for N2O (Table 6.5) suggest that the means of the differences were not zero, i.e., the two 

different methods of total minimum (min) and total maximum (max) flux calculation 

produced different values. In closely examining the total flux for CH4 (Table 6.3), it shows 

that CH4 calculated with the traditional approach (TF) was 3.4 (min) and 10 (max) times 

higher as compared to ITFF method. This resulted in a higher value (more than 300%) of the 

field total minimum CH4 uptake and maximum CH4 emission.  Table 6.4 also shows that the 
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total maximum CO2 emissions was more closer for both methods of calculation as CO2 max 

under TF as only 1.34 times higher as compared to the calculation with the GIS-based “ITFF” 

approach. However, a reverse situation was observed for CO2 min since the calculated value 

under “ ITFF” was 2 times that with the traditional “TF” approach. Finally, as for methane 

(CH4),  nitrous oxide (N2O) total flux for the pasture calculated by the traditional approach  

were  85 and 800% higher for the minimum and maximum values, respectively.   

 

6.5 Summary  

An attempt was made to improve the calculation of total gas flux using a GIS-based approach 

which took into account the spatial variability of gas fluxes across the sampled area. The 

traditional approach is to consider the field as homogenous and compute total flux by 

multiplying the average field flux by the field total area. Results indicate that there is an over-

estimation of total flux by the traditional approach. The GIS-based approach offers a 

promising tool  which needs to be investigated further. 
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Chap. 7 Summary and conclusion 

The objectives of this study were to investigate the relationships between greenhouse gases 

emissions and soil properties, assess the influence of agricultural practices on greenhouse gas 

fluxes and soil properties and to improve the quantification of greenhouse gases from soil in 

agricultural fields using geospatial technologies. Results showed that soil temperature is not the 

only factor controlling greenhouse gas fluxes from soil, but also soil thermal thermal properties 

and pore spaces indices. Greenhouse gas fluxes correlate with soil thermal properties even when 

there is no correlation with soil temperature. Similarly, soil pore space indices correlate with 

greenhouse gas fluxes even when the soil properties from which they are predicted do not 

correlated with gas fluxes. We showed that soil pore space indices can be predicted quickly from 

routine measurements of soil water and air and existing diffusivity models. Inclusion of these 

pore structural indices in predictive models may certainly improve our understanding of 

greenhouse gas fluxes dynamics. Our study also confirmed that agricultural practices can 

negatively affect soil properties which in turn results in increasing greenhouse gases emissions. 

Finally, our results confirmed that greenhouse gas fluxes are still subjected to tremendous 

variability in space and time, thus in the quantification of greenhouse gas fluxes, techniques 

taking into account this variability are needed. We have shown that geographic information 

systems (GIS), global positioning system (GPS), computer mapping and geostatistics are 

technologies that can be used to better understand systems containing large amounts of spatial 

and temporal variability. Our GIS-based approach for quantifying CO2, CH4 and N2O fluxes 

from soil in agricultural fields, pasture and forest showed that estimating (extrapolating) total 

greenhouse gas fluxes using the “standard” approach – multiplying the average flux value by the 

total field area – results in biased predictions of field total greenhouse gases emissions. In 
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contrast, the GIS-based approach we developed produces an interpolated map portraying the 

spatial distribution of gas fluxes across the field from point measurements and later process the 

interpolated map produced like a “satellite image”. Furthermore, processing, classification and 

modeling enables the computation of field total fluxes as the sum of fluxes in different zones, 

therefore taking into account the spatial variability of greenhouse gas fluxes. This approach is a 

promising tool that can also used for improving the quantification of other environmental 

parameters. 
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