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ABSTRACT

Human African  trypanosomiasis  (HAT) is  a  public  health  problem in  sub-Saharan Africa,  with

approximately 10,000 cases being reported per year. The Macrophage Migration Inhibitory Factor

(MIF)  which  is  encoded  by  a  functionally  polymorphic  gene is  important  in  both  innate  and

adaptive immune responses, and has been implicated in affecting the outcome and processes of

several inflammatory conditions. A recent study in mice to that effect showed that MIF deficient

and anti-MIF antibody treated mice showed lowered inflammatory responses,  liver damage and

anaemia  than  the  wild  type  mice  when  experimentally  challenged  with  Trypanosomes.  These

findings could mean that the transcript levels and/or polymorphisms in this gene can possibly affect

individual risk to trypanosomiasis. This is especially of interest because there have been reports of

spontaneous  recovery  i.e  self-cure/resistance  in  some  HAT cases  in  West  Africa.  Prior  to  this

discovery the general paradigm was that trypanosomiasis is fatal if left untreated. 

The aim of this  study was to gain insights into how human  genetic variation in forms of non-

synonymous SNPs affects the MIF structure and function and possibly HAT susceptibility. NsSNPs

in the  mif  gene were obtained from dbSNP.  Through homology modeling, SNP prediction tools,

protein interface analysis, alanine scanning, changes in free energy of folding, protein interactions

calculator (PIC), and molecular dynamics simulations,  SNP effects on the protein structure and

function were studied. The study cohort comprised of human genome sequence data from 50 North

Western Uganda Lugbara endemic individuals of whom 20 were cases (previous HAT patients) and

30 were controls (HAT free individuals).

None of the 26 nsSNPs retrieved from dbSNP (July 2015) were present in the mif gene region in the

study cohort. Out of the eight variants called in the mif coding region there was only one missense

variant  rs36065127  whose  clinical  significance  is  unknown.  It  was  not  possible  to  test  for

association of this variant with HAT due to its low global MAF that was less than 0.05. 

Alanine scanning provided a fast and computationally cheap means of quickly assessing nsSNPs of

importance.  NsSNPs that were interface residues were more likely to be hotspots (important in

protein stability). Assessment of possible compensatory mutations using PIC analysis showed that

some nsSNP sites were interacting with others, but this requires further experimentation. Analysis

of changes in free energy using FOLDX was not enough to predict which nsSNPs would adversely

affect protein structure, function and kinetics. The MD simulations were unfortunately too short to

glean any meaningful  inferences.  This  was the first  genetic  study carried out  on the people of

Lugbara ethnicity from North Western Uganda. 
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CHAPTER ONE 

LITERATURE REVIEW

1.1 Chapter Overview

The purpose of this chapter is to introduce Human African Trypanosomiasis (HAT) and the role of

the Macrophage Migration Inhibitory Factor  (MIF) in  the pathology of  the disease.  As will  be

discussed in this chapter, MIF has been implicated in playing a role of several diseases however the

main focus will be on African Trypanosomiasis. This chapter will also attempt to make a case for

why MIF is a valid target for the study.

1.2 Human African Trypanosomiasis (HAT)

African  trypanosomes  are  devastating  human and animal  pathogens  that  cause  trypanosomiasis

which  result  in  significant  human  and  livestock  mortality,  morbidity  and  limits  economic

development  in  sub-Saharan  Africa.  The  disease  is  caused  by  extracellular  hemo-flagellated

protozoans  called  Trypanosomes  and  transmitted  by  the  tsetse  fly  (Glossina species)  to  its

mammalian hosts. In humans the disease is commonly called sleeping sickness or Human African

Trypanosomiasis (HAT), and in livestock the disease, it is called Nagana [1–3].

HAT is caused by two subspecies of the Trypanosoma brucei genus namely;  Trypanosoma brucei

rhodesiense that  causes  an acute form of the diseases and  Trypanosoma brucei  gambiense that

causes a chronic form of the disease. Trypanosoma brucei brucei, a member of the same genus, is

not human infective but is of veterinary importance because it causes Nagana in cattle. 

Uganda is the only country with foci of both forms of HAT, where they pose extensive problems

due to the risk of geographical overlapping as the acute form of the disease is spreading northwards

[4]. This is likely to have an impact on control and treatment strategies.

Reports of new HAT cases per year have dropped below 10,000 but it continues to be a public

health concern. There are several reports of recent HAT cases in endemic regions such as Angola,

Chad, Southern Sudan, with Central African Republic and the Democratic Republic of Congo being

the most  severely affected.  It  serves  to  note that  Central  African Republic  and the Democratic

Republic of Congo are currently conflict regions. Due to this conflict there is limited access to

health facilities especially in the rural areas which leads to the number of new HAT cases being

severely under-reported [5, 6]. 
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1.2.1 HAT Life Cycle

The  genus  T.  brucei belongs  to  the  family  Trypanosomatidae,  which  covers  a  large  group  of

unicellular protozoan parasitic organisms, under the order of Kinetoplastida. It is a spindle-shaped

cell (20 to 30 by 1.5 to 3.5 μm) with a single flagellum that emerges from the posterior  end as

shown  in  Figure  1.1.  There  are  two  observed  main  stages  in  the  trypanosome  life  cycle:

trypomastigote  and  epimastigote.  The  blood  stream  trypomastigote  form  is  observed  in  the

mammalian blood and tissue fluids. While the epimastigote form is observed in the gut of tsetse fly

vector (Glossina spp.) and its salivary glands [2, 7, 8].

When an infected tsetse fly (genus Glossina) has a blood meal, it injects metacyclic trypomastigote

into the sub-dermal tissue of the mammalian host. The parasites then form a chancre and via the

lymphatic system pass into the bloodstream. Once inside the bloodstream of the mammalian host

the parasites transform into bloodstream slender and stumpy forms as shown in Figure 1.1. During

this stage the parasites are carried to several sites all over the body, eventually entering other body

fluids  such  as  lymph  and  spinal  fluid  replicating  by  binary  fission.  The  trypanosome  is  an

extracellular hemo-flagellate so when a tsetse fly bites an infected mammalian host to feed, the

parasites are taken in the blood meal and make their way to the insect's mid-gut. Here the parasites

transform into procyclic forms and rapidly multiply by binary fission. The procyclic forms then

migrate  to  the  tsetse  fly  salivary  glands  where  they  transform  into  epimastigotes  where  they

multiply by binary fission. The epimastigotes eventually transform into metacyclic trypomastigotes

as shown in step eight of Figure 1.1 which are the infective stage of the insect parasites to the

mammalian host. The entire insect stage of the parasite takes about 3 weeks [8]. While cattle and

wild game animals play a more significant role as reservoirs of T. b. rhodesiense, humans are the

main reservoir for T. b. gambiense [2, 9]. 
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1.2.2 Pathogenesis

HAT clinical pathogenesis is divided into two stages, namely the early hemo-lymphatic stage where

the parasites have not yet crossed the blood-brain barrier, followed by the meningo-encephalitic

stage where the parasites cross the blood brain barrier and invade the central nervous system (CNS)

finally settling in the cerebrospinal fluid (CSF) [10].

The African trypanosome is an extracellular parasite and in the early hemo-lymphatic stages in the

mammalian host can be found in blood, lymph and tissue fluids. During this stage the parasite is

constantly exposed to the host's immune system. To survive the trypanosome is covered with a

dense  coat  of  approximately  107 variant  surface  glycoproteins  (VSGs)  attached  to  the  plasma

membrane by glycophosphatidylinositol (GPI) anchors. The VSG coat protects the parasite from

immune attack by constantly switching as such hiding the parasite from the host's immune attacks,

this  process  is  called  antigenic  variation  [2,  11].  The host  is  capable of  mounting an effective

immune response often eradicating some parasites. However there are still other parasites whose

VSG  coats  it  can  not  recognise.  These  parasites  form the  next  wave  of  infection  prolonging

infection and transmission to other hosts by the tsetse fly vector [2, 12]. The symptoms of this stage

3
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host and the tsetse fly.



include fever,  general malaise, joint pains and a chancre associated with the site of the tsetse fly

bite. When the parasites cross the blood brain barrier several neurological symptoms are observed

typical  of  the  meningo-encephalitic  stage.  These  include  tremors,  general  motor  weaknesses,

irritability, confusion, poor coordination, and aggressive behaviour. Disruption of the body's natural

circadian sleep/wake rhythm is a key defining feature of the later stages of the meningo-encephalitic

stage hence the name 'sleeping sickness'. The general consensus was death follows if no treatment is

given. But this is no longer true given that there are cases of spontaneous parasite clearing in some

West African individuals [13–17]. 

Studies have shown that the major cause of pathogenicity in trypano-susceptible animals such as

bovine to be anaemia, which is the leading cause of death due to the disease [18]. It is postulated

that breeds such as the N'Dama and West African Shorthorns cattle are able to survive infection

(mitigate morbidity)  by controlling the  development  of  anaemia.  Murine  studies  suggest  that  a

strong pro-inflammatory (type 1) immune response is necessary for the initial control of the growth

of trypanosomes, this involves classically activated myeloid cells in particular macrophages (M1). A

very  strong  inflammatory  response  especially  if  prolonged  leads  anaemia  and  increased

pathogenicity. The over stimulation and subsequent activation of myeloid cells has been suggested

to be the cause of extra-vascular destruction of red blood cells (RBCs) by the host's spleen and liver

M1 cells [18–20] resulting in the characteristic trypanosomiasis associated anaemia which is similar

to anaemia of chronic disease (ACD) that is common in chronic infections and sterile inflammations

[21, 22]. Pathogenic features of the uncontrolled anaemia and M1 cell over stimulation include

cachexia and liver injury. 

1.2.3 Current Treatment Strategies

There are currently no effective vaccine remedies for HAT, as this is made difficult by antigenic

variation.  The  current  treatment  strategy  is  chemotherapies  however  the  drugs  are  few,  toxic,

limited in effectiveness, difficult to administer and prone to emerging resistance  [3, 23–28]. The

current drugs for HAT treatment are: melarsoprol, pentamidine, nifurtimox–eflornithine, suramin,

and eflornithine (World Health Organisation’s list of essential medicines in 2009). 

Anti-disease approaches such as the use of IL-10 which is an anti-inflammatory cytokine to mitigate

the  pathogenic  features  gives  hope  to  therapies  aimed  at  modulating  the  host's  pro-  and  anti-

inflammatory signals during the disease state which could help in the reduction of tissue injury

[29]. Other anti-disease approaches include the use GPI-anchor of the VSG which has been shown

to  have M1-activating  potential  to  treat  animals  where  it  showed reduction  in  trypanosomiasis

associated liver damage, cachexia, anaemia and prolonged host survival. This was as a result of

modulation of the myeloid cell activation state (M1 to M2 or vice-versa) [30].
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1.3 Macrophage Migration Inhibitory Factor (MIF)

In humans the single mif gene lies on chromosome 22q11.2 [31–34]. It is composed of three exons

of 205, 173, and 183 bp and two introns of 189 and 95 bp [31, 32, 35, 36] and is regulated by two

polymorphic sites in the promoter region [33, 37]. 

The  gene codes for a 12.5kDa polypeptide, consisting of 115 amino acids forming a homotrimer

[38, 39]. Each monomer (Figure 1.2) is made up of two anti-parallel alpha-helices that are packed

against  a  four  stranded  beta-sheet.  In  total  three  beta-sheets,  and  six  alpha  helices  form  the

homotrimer, that appears in the form of a circular protein with an anterior traversing channel in its

center. At the N-terminus of each monomer there's a proline residue [40] which is important in the

keto-enole tautomerisation of pyruvoyl moiety [41, 42]. The active form of the protein as revealed

by its crystal structure, shows a 37.5kDa homotrimer [38] as shown in Figure 1.2.

MIF is  expressed in many cells  including; macrophages,  monocytes,  2 vascular smooth muscle

cells, and cardiomyocytes [43–46]. MIF by means of a CD74 extracellular domain binds to cells in

order to initiate ERK-1/2 activation [18, 47]. Once secreted it can activate T-cells and macrophages
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prepared by PyMOL. It is colored by chain.



to produce pro-inflammatory cytokines such as interleukin- (IL-) 1β, tumor necrosis factor alpha

(TNF-α), IL-2, IL-6, IL-8, IL-12 and interferon gamma (IFN-γ) [18, 43, 48, 49]. As such it plays a

major role in innate and adaptive immune responses [18, 43].

1.3.1 Human MIF as a drug target for HAT

MIF is a cytokine that is important in both innate and adaptive immunity [18, 19, 43, 50] and is a

key  player  in  the  induction  of  systematic  inflammation  and  has  been  implicated  in  many

inflammatory diseases  [18, 51, 52]. Its major role in inflammation reactions is the recruitment of

myeloid cells to inflammation sites [18, 53]. This is achieved by inducing the differentiation toward

M1 cells  that  secrete  TNF  [18,  54],  anti-inflammatory actions  of  glucocorticoids  [55,  56] and

suppression of p53-dependent apoptosis of inflammatory cells [37]. 

While there are no studies directly linking MIF to HAT, there are murine studies that have shown

that in MIF-knock out mice there is an overall reduction in the production of monocyte/macrophage

derived pro-inflammatory cytokines such as IL-1b, IL-12, and TNF-a. This shows that MIF plays a

role as a mediator of the inflammation cascade which is a key feature in trypanosomiasis-associated

associated pathology [18, 57, 58]. MIF deficient mice featured limited anaemia, increased iron bio-

availability,  improved erythropoiesis  and a  marked reduction  in  RBC clearance  during  chronic

stages of infection [18, 58, 59] when the mice were experimentally challenged with Trypanosoma

brucei brucei.  Serves to note the same is not true when  MIF deficient mice are experimentally

challenged with  Trypanosoma cruzi where they showed enhanced susceptibility, higher morbidity

(severe heart and skeletal muscle immuno-pathology) and mortality [60, 61].

Functional polymorphisms in the  mif  gene, for example in the promoter have been linked with

autoimmune diseases such as scleroderma [62], tuberculosis [63], rheumatic arthritis [64], juvenile

inflammatory  arthritis  [65],  and  systemic  lupus  erythematosus  (SLE)  [66].  There  are  several

polymorphisms that have been reported in the human  mif  gene such as a single G/C nucleotide

polymorphism at  position  -173 (rs755622),  and a  CATT tetra-nucleotide  repeat  (position  -794,

rs5844572) both of which have been shown to interfere with the transcriptional activity of the MIF

promoter  [64].  Other  SNPs  reported  include  position  +254  (rs2096525),  and  position  +656

(rs2070766) which are located in introns [67, 68]. 

This data suggests that MIF could possibly promote the most prominent pathological features of

trypanosomiasis in an experimental setting (liver and spleen injury). This has implications in human

subjects especially now that there have been reports of spontaneous recovery i.e self-cure/resistance

in some cases in West Africa [13–17, 69]. 
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1.4 Project Motivation

HAT continues  to  affect  millions  of  people  in  Africa,  and  the  drugs  available  are  few,  toxic,

ineffective, and associated with resistance [24, 28]. Further vaccine options are not very promising

[21]. There is an urgent need for new and innovative approaches to tackle this neglected disease.

Understanding individual  risk to trypanosomiasis  is crucial to control  and prevention strategies,

especially in endemic regions. Host  genetics studies are a key starting point and this study is one

such attempt.

1.5 Knowledge Gap

To date there is no study that has been carried out to show the association of MIF polymorphisms

with HAT susceptibility in a human African endemic population from North Western Uganda. This

study will  also contribute in furthering the understanding the effects  of non-synonymous single

nucleotide  polymorphisms  on the structure  and function  of  the  MIF protein  which is  currently

lacking. 

1.6 Problem Statement

Trypanosomiasis is a neglected tropical disease of public health concern that affects up-to 10,000

people per year [70]. The drugs available for treatment are few and unfortunately rather toxic and

reports of rising drug resistance are also of concern [24, 28]. Reports of spontaneous recovery or

human trypano-tolerance gives us drive to investigate host related  genetic factors that are key to

understanding this  observed phenomenon  [13–17].  Recent  murine studies have shown that  MIF

plays an important role in Trypanosome pathogenicity [58]. There is a need to map how nsSNPs in

the human mif gene affect the structure and function of the MIF protein. This information on host

genetics  can  help  us  further  understand  HAT  epidemiology,  pathology  and  possibly  help  in

identifying new drug and anti-disease targets. 

1.7 Broad Objective

To identify host genetic factors in the mif gene, that could play a role in African Trypanosomiasis

susceptibility

1.8 Specific Objectives

• Determine which nsSNPs are relevant in the structure and function of the MIF protein

• Determine which nsSNPs in the mif gene might be associated with HAT susceptibility

1.9 Research Hypothesis

Polymorphisms in the mif gene in form of nsSNPs affect the MIF protein structure, function, and as
a result HAT susceptibility. 
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CHAPTER TWO

CANDIDATE GENE ASSOCIATION STUDY

2.1 Chapter Overview

In this chapter we will discuss how the samples were obtained for the study cohort, sequenced, and

the variant caller pipeline used to generate the variant call file (VCF) that contains the SNPs called

from the samples.  We also discuss  how VCF files  were  generated  for  use  in  the checking for

population stratification, annotation, prioritisation of nsSNPs, and for carrying out the candidate

association study.

2.2 Introduction

2.2.1 Variant Calling 

Getting an accurate and true picture of variations from NGS data analyses can be difficult given that

true variation has to be carefully separated from various machine Artefact, such as false variants due

to  sequencing  errors.  When  searching  for  mutations  Next  Generation  Sequencing  (NGS)  is  a

powerful  tool.  However  there  are  many  technical  challenges  involved  in  getting  an  accurate

representation of sequence variation and eventually turning the raw genome sequence data into

information with biological  meaning.  Several  steps,  techniques,  and capabilities  are required to

ensure a complete accurate analysis of NGS data in order to gain information on variation and to

handle  the  large  amounts  of  data  [71–73].  This  usually  involves  aligning  the  raw  reads  to  a

reference human genome, followed by identifying variants such as short insertions and deletions

(indels) or single nucleotide variants (SNVs) that may be of interest for the phenotype under study

[74]. 

2.2.1.1 Quality Control of Raw reads 

In this study, the initial steps involved pre-processing of raw reads which involved, adaptor 

trimming, quality trimming using, the removal of very short reads, and de-duplication using 

Trimmomatic [75]. 

2.2.1.2 Alignment 

This step, which is considered to be the most important and computationally demanding involves

the mapping of the reads to a reference genome [76, 77]. In this step a number of errors that are

likely to be passed down to subsequent steps in Variant calling make it very important. Case in
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point, because it involves the aligning of each read independently to the reference genome there is a

tendency  for  reads  spanning  indels  to  be  misaligned  as  there  is  no  reference.  Errors  such  as

Misaligned reads and unreliable base quality scores lead to artefacts  that can lead to unreliable

variant calls and, errors in genotyping [78–80]. As sequencing technologies evolve, many alignment

programs have been developed to map each read to its  corresponding location in  the reference

genome, some of these include; Novoalign (www.novocraft.com), Bowtie [76], BWA [81], SOAP

[82], and MAQ [83, 84]. 

Bowtie 

Bowtie [76] operates based on an index built with the Burrows-Wheeler Transformation [85, 86]. Its

popularity as an aligner is mainly because it is fast, and has a small memory usage footprint (for

example for an entire human genome it uses approximately 1.3 Gigabytes) [87]. However its speed

comes at a cost in terms of accuracy. It has been shown to fail to align reads with valid mappings

more so when configured for maximum speeds. It also does not guarantee the highest quality read

mapping where no exact matches exist [82]. 

Bwa 

Burrows-Wheeler Aligner (BWA) [77, 88] also uses the Burrows Wheeler Transformation [85, 86].

Where it differs is that it provides an added advantage in the form of a meaningful quality score that

can be used to discard any mappings that are not very well supported [87]. Bwa and Bowtie utilise

an FM-index method that uses a back-tracking strategy in their search for matches that are inexact. 

Novoalign 

Novoalign by Novocraft (http://www.novocraft.com/) builds an index with a hash table and utilizes

an  alignment  scoring  system based on the  Needleman-Wunsch algorithm.  It  has  emerged as  a

popular aligner because of its accuracy and it allows up to eight mismatches per read for single end

mappings [87]. Comparison of these aligners on real and simulated data reveals that the alignment

programs perform similarly well for reads that have relatively good quality or were pre-processed to

trim off any low quality bases  [82]. However Novoalign is shown to be more sensitive to any

improvement of data quality. 

2.2.1.3 Artefact Removal 

Artefact removal involves the use of the GATK IndelRealigner [89] which entails local alignment

around indels,  base quality score recalibration (GATKBQSR), variant calling (GATK haplotype

caller) [90, 91] and finally statistical filtering (GATK variant quality score recalibration). 

Local realignment 

Alignment algorithms align each read independently to a reference genome which often results in

errors in alignment around reads spanning indels. These alignment artefacts in the form of wrongly
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mapped SNPs, insertions and deletions confounded further by sequencing errors eventually result in

false  positive  variant  detection  (more  so  in  apparent  heterozygous  positions)  [92].  The  local

realignment  process  is  designed  to  locally  realign  reads  in-order  to  minimise  the  number  of

mismatching bases across all reads thus reducing the amount of false positive variants. The GATK

IndelRealigner  [93] serves  to  transform regions  of  misalignment due to  indels  into clean reads

composed of consensus indels thus minimising the number of false positive variants. It utilises the

full alignment context to determine if the appropriate alternate references (indels) exist.

2.2.1.4 Base Quality Score Recalibration 

Understanding  systematic  sequencing  errors  (SSE)  and  sequence  platform  biases  which  are

problematic at high sequence depths is important in dealing with whole genome data [94, 95]. The

causes of SSE are many, not well understood, and batch run specific, and compensating for them is

necessary [96]. GATK BQSR [89, 93, 96] carries out a recalibration of quality scores for bases in

reads  in-order  to  make  them  more  accurate  (closer  to  actual  probability  of  mismatching  the

reference genome). The tool also tries to correct for variations in quality in a read group, machine

cycle, base quality score, dinucleotide and sequence context, providing more accurate, and more

widely dispersed quality scores. The system works on BAM files coming from several sequencing

platforms (SOLiD, Pacific Biosciences, Illumina, 454, Complete Genomics etc). Improvements in

GATK 2.0 also allow for recalibration of unknown base insertion and base deletion quality scores

(http://gatkforums.broadinstitute.org/discussion/44/base-quality- score-recalibration-bqsr). 

2.2.1.5 Calling of Variants 

Processing data through next generation sequence pipelines to the point of high quality variant calls 

still remains a challenge  [97] and the performance of many pipelines boils down to the kind of

calling strategy and variant callers used [73]. Variant calling is broken down into two basic steps:

genotype assignment and variant identification. 

GATK UnifiedGenotyper 

GATK UnifiedGenotyper [93] is a Bayesian caller that uses a Bayesian genotype likelihood model

to simultaneously estimate the most likely allele frequency and genotypes in a population of N

samples, producing a genotype for each sample. It separately calls indels and SNPs by considering

each  variant  locus  independently  (GATK  documentation,

https://www.broadinstitute.org/gatk/gatkdocs/). GATK recommends the use of its HaplotypeCaller

for calling variants but where it is not possible to do so, for example in instances when dealing with 

a  large  number  of  samples,  pooled  samples,  or  working  with  non-diploid  organisms  the

UnifiedGenotyper is recommended. 
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GATK HaplotypeCaller 

GATK HaplotypeCaller [93], is a more developed Bayesian haplotype caller derived from GATK,

which is  able to  provide local  assembly in  regions  spanning variants.  It  calls  SNPs and indels

simultaneously via local de-novo assembly of haplotypes in an active region i.e re- maps 

and  reassembles  reads  in  that  region  (GATK  documentation,

https://www.broadinstitute.org/gatk/gatkdocs/)  making  it  more  accurate  at  calling  traditionally

difficult regions (for example different types of variants in close proximity) and indels. 

2.2.2 Principal Component Analysis (PCA)

Population stratification results from systemic ancestry differences. It influences allele frequencies

between cases and controls in association studies as such it is a major confounding factor often

leading to spurious associations [98]. PCA refers to a statistical method that utilises an orthogonal

transformation to convert the observations to linearly uncorrelated variables also known as principal

components.  This  method  is  useful  in  the  detection  of  population  stratification.  SNPRelate  a

Bioconductor package was used for carrying out the PCA in this study. its main advantage being

that it utilises the Genomic Data Structure (GDS) data format. This format is efficient because it

reduces the data to integers with two bits which accelerates computing speed [99].

2.2.3 Variant Annotation

Variant  annotation  refers  to  the  process  by  which  functional  information  is  assigned  to  DNA

variants.  This  includes  information  such  as  frequency,  measures  of  conservation,  variant  type

(missense or indels for example), predictions of the possible effects of the variant and function

[100–103]. 

2.2.4 Candidate Gene Association Study

There are two main research approaches for population based genetic association studies, both of

which are based on genotyping of Single Nucleotide Polymorphisms (SNPs) namely; Candidate

Gene Association Studies (CGAS) and Genome-Wide Association Studies (GWAS) [104].

CGAS involves an a priori hypothesis that specific genes are associated with disease susceptibility

or risk, and is a deductive approach. In this regard it differs from GWAS where association analyses

are conducted without prior hypotheses and cover the entire genome [105]. The biggest impediment

in CGAS is the selection of suitable candidate  genes as this requires knowledge of the biological

pathway of the  genes that might be suitable potential candidate  genes  [106]. However there is a

growing  number  of  bioinformatics  resources  available  to  assist  in  pathway  selection  and

prioritization of putative disease related genes [107–109]. Coupled with the identification of novel

candidate genes for diseases this can be an iterative process [104]. 
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CGAS  represents  a  cost-effective  approach  for  well  defined  disease  questions.  However  like

GWAS, it has limited power to detect all associations between susceptibility genes and the disease.

It is also prone to poor reproducibility of results. That is why it is important that CGAS studies be

repeated with different cohorts (different data sets) to determine if the findings are reproducible.

Every year next generation sequencing technologies are improving, evolving and dropping in cost

allowing for more cost effective approaches to high throughput sequencing of human genomes,

which is essential for furthering life sciences research [110]. This is most true in the study of entire

human genomes to understand the role of variation in human diseases and human genetic diversity

[111–114]. NGS also presents an attractive technology for CGAS.

2.3 Chapter Objectives

The objectives of this chapter are as follows:

• To detect any population stratification within the sample cohort

• To annotate the variants in the MIF coding region and prioritise nsSNPs

• To carry out an association study of the nsSNPs with HAT 

2.4 Methodology

During this study I was involved in the initial sample collection, processing, DNA extraction, and

quantification.  The samples were sequenced at the University of Liverpool.  Variant calling was

done  by  the  Trypanogen  project  bioinformatician  Harry  Noyes  and  the  files  shipped  to  the

University of Cape Town on hard disk while others were downloaded directly onto their cluster. The

VCF files  were used to  carry out  a  Principal  Component  Analysis  (PCA) to detect  population

stratification. This was followed by variant annotation and a candidate gene association study.  

2.4.1 Sample Collection

Ugandan subjects from the West Nile region of the Arua district of Lugbara ethnicity were recruited

at government run health centres with the help of clinicians and community health volunteers. 20

cases were identified by means of treatment  cards,  and hospital/clinic records of diagnosis  and

treatment for HAT. 30 Controls were recruited as matched pairs of the cases in terms of age, sex,

ethnicity  and  how  close  they  stayed  to  their  paired  cases.  Exclusion  criteria  applied  to  any

individuals below the age of 18 or any individuals where it was not possible to obtain consent or

blood  samples.  Venous  blood  was  then  drawn  from  them  by  vene-puncture  and  collected  in

EDTA/heparin  vacutainer  tubes  (BD).  Buffy coats  were then  prepared in  field  laboratories  and

stored in liquid nitrogen in preparation for DNA extraction that was carried out at the Molecular

Biology Laboratory, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere

University,  Kampala,  Uganda.  The DNA was quantified using  a QubitTM (Life  Technologies),
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using a broad range DNA dye (Life Technologies). The samples were then shipped to the University

of Liverpool, United Kingdom for whole genome sequencing using Illumina HiSeq. All participants

in this study were required to provide informed consent using a consent form administered in their

local language (Lugbara) that was approved by local authorities as well  as by the local ethical

committee (Uganda National Council for Science and Technology).

2.4.2 Variant Calling Pipeline

Samples  were sequenced on a HiSeq 2500 machine,  and processed  using  the analysis  pipeline

displayed in Figure 2.1. 

2.4.3 Data Retrieval

The raw sequence reads were passed through a similar variant calling pipeline shown in Figure 2.1

by Harry Noyes (Trypanogen Project Bioinformatician) at the University of Liverpool. The files

were transferred in two batches to the Computational Biology (CBIO) group, University of Cape

Town, Hex cluster (http://hex.uct.ac.za). 

For this study two VCF files were needed, one for carrying out the preliminary PCA and another for

the candidate  gene association study. The chromosome 1 (Chr1) and MIF coding regions in both
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batches were isolated using Vcftools.  The Genome Reference Consortium Human Build 37 patch

release 13 (GRCh37.p13) was used for getting the locations of the MIF coding region and Chr1.

The MIF and Chr1 vcf-subsets were isolated using Vcftools-subset [115], the pseudo-code is shown

below. 

For variants in the MIF coding region:  

/vcftools_0.1.13/bin/vcftools --gzvcf ../trypanogen/TrypanogenBatch1.vcf.gz 

--chr 22 --from-bp 24236565 --to-bp 24237409 --recode --recode-INFO-all 

/vcftools_0.1.13/bin/vcftools  --gzvcf  ../trypanogen/TrypanogenBatch2.vcf.gz

--chr 22 --from-bp 24236565 --to-bp 24237409 --recode --recode-INFO-all 

For variants in the Chr1 region: 

/vcftools_0.1.13/bin/vcftools –gzvcf ../trypanogen/TrypanogenBatch1.vcf.gz --chr

1 --from-bp 1000000 --to-bp 2000000 --recode –recode-INFO-all

vcftools_0.1.13/bin/vcftools –gzvcf ../trypanogen/TrypanogenBatch2.vcf.gz --chr 

1 --from-bp 1000000 --to-bp 2000000 --recode --recode-INFO-all

The  two  seperate  batches  were  then  combined  using  GATK  CombineVariants  [93] using  the

pseudo-code below. 

java  -jar  /GenomeAnalysisTK.jar  -T  CombineVariants  -R

../bundle/b37/human_g1k_v37_decoy.fasta  --variant  ../OUT/vcfsubset_batch1.vcf

--variant ../OUT/vcfsubset_batch2.vcf -o ../OUT/merged.vcf -genotypeMergeOptions

UNIQUIFY

The merged files still contained samples from other cohorts, to isolate samples only specific to the

Uganda cohort under study, the sample identities were acquired from the list using bash scripting.

The sample list was used in Vcftools to create the final vcf files that only contained the study

cohort. 

To create the sample identity list:

cat Trypanogen_merged.vcf | head -n 1000 | grep "CHROM" | tr "\t" "\n" | grep 

".UGA." > sample_ID_Uganda_cohort_only.txt 

To create the final vcf files with only the samples in the Uganda cohort sample list:

cat Trypanogen_merged.vcf | ../vcftools_0.1.13/bin/vcf-subset -c 

sample_ID_Uganda_cohort_only.txt > merged_UGA_only.vcf
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In total there were 20 cases and 30 controls. Two vcf files were created one with variants in the MIF

coding region that contained eight variants and another with 12950 variants in Chr1. 

2.4.3 Principal Component Analysis (PCA)

The PCA was run using SNPRelate in R as shown in Appendix 1. The first step involved setting the

working  directory  and  loading  the  R  packages:  gdsfmt  and SNPRelate.  This  was  followed  by

reading in the VCF file. The VCF file was then converted to GDS format, and the output written to

the same directory. The GDS file was then read in and used to run the PCA, before the results were

plotted the sample identities and population codes were read into the data-frame which was then

used to plot the PCA. 

2.4.4 Annotation

The MIF vcf-subset VCF was uploaded to the Variant Effect Predictor specifically on the grch37

website (http://grch37.ensembl.org/Homo_sapiens/Tools/VEP) and the results downloaded as CSV

files that were imported into excel for further analysis [116].

2.4.5 Candidate Association Study 

To run the candidate gene association study, the first step was converting the MIF vcf-subset VCF

into the PED format and in the process filtering for rare variants using Plink [117]. The pseudo code

is shown below:

../bin/plink  --vcf  MIF_vcfsubset_UGA_only.vcf  --maf  0.05  --recode  --make-bed

--out MIF_vcfsubset_UGA_only

The '.ped' and '.map' files generated were then used to carry out a Fisher's exact text using the Plink

'--assoc' command to compare the frequency of the variants in the cases (former HAT patients) and

controls (paired controls, who have never suffered from HAT but live in the same endemic areas).

The pseudo code is shown below: 

../bin/plink --ped  MIF_vcfsubset_UGA_only.ped --map TMIF_vcfsubset_UGA_only.map

--maf 0.05 --assoc

2.5 Results and Discussion

2.5.1 PCA

VCFS from 50 samples, 20 cases and 30 controls, were used in a principal component analysis.

Analysis of the first two principal components of 12950 SNPs located on chromosome 1 revealed
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that there was no obvious population stratification detected as shown in Figure 2.2.

From the plot in Figure 2.2 there aren't any significant clusters indicative of differences in ethnicity

between the cases and controls. The sample cohort in this study was obtained from individuals of

the Lugbara ethnicity of Northern Uganda. Using a questionnaire tool care was taken to ascertain

ancestry. For example, language spoken by contemporary ancestors such as fathers, mothers and

grand parents of the individuals were used as indicators of ethnicity. Pairing of cases with controls

that had no blood relations also ensured that relatedness was avoided. Population stratification is of

importance because it leads to spurious association if not properly corrected for [118].

2.5.2 Variant Annotation

The SNPs associated with the MIF gene were annotated using the Variant Effect Predictor. Figure

2.3 shows that there were a total of eight variants identified in the MIF coding region, with only a

single  one  being  a  missense  variant  (rs36065127,  located  on  Chr  22:  24237348).  Most  of  the

variants were intronic or non-coding, however,  since the study was interested in functional and

structural impact, we focussed on the missense variant.
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This  rs36065127  variant  overlaps  10  transcripts,  one  regulatory  feature  and  has  2599  sample

genotypes.  The ancestral  allele  for  rs3606512 is  'G'  with 'A'  and 'T'  as  alternative  alleles.  The

Variant  Effect  Predictor  tool  was  used  to  draw  pie  charts  representing  the  rs3606512  allelic

frequencies in the different 1000 genomes populations. Figure 2.4 shows the allelic frequencies for

rs3606512 in the main 1000 genomes populations. The overall allelic frequency for the total 1000

genomes was 2% for allele T, 0% for allele A, and 98% for allele G. The European, East Asian and

South Asian populations had no instances of allele T. Only the African and African American had

instances of allele T (6% and 1 % respectively).

Figure  2.5  shows the  allelic  frequencies  for  the  variant  in  African  sub-populations.  Where  the

highest frequency for the T allele was in the Esan in Nigeria and Mandinka in The Gambia (11%

and 8% respectively). Both Nigeria and Gambia have had reported cases of HAT. The variant's low

T allelic frequency in other main continental populations is likely due to the fact that the sampled

population for this study is of African origin and likely subject to different selection pressures.
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2.5.3 Candidate Gene Association Studies 

The rs36065127 variant however had a low global minor allele frequency (MAF) of 0.0166 which

as a result ended up in it being filtered out during the initial Plink [117] filtering steps. Rare variants

with  MAF of  less  than  0.05  are  removed  before  any association  study is  carried  out.  This  is

considered good practice which is in line with the 'common disease common variant' hypothesis

[119]. While recent empirical evidence shows that rare variants may play a role in complex diseases

[120–122] without a bigger sample size or family-based samples any associations generated at this

point would likely be spurious. The rs36065127 variant had a frequency of 0.05 in the cases and

0.033 in the controls, with an odds ratio of 1.526 but these results are likely spurious given the

sample size and the low minor allele frequency of the variant.

2.6 Conclusion 

The sample cohort composed of 20 cases and 30 controls showed no population stratification. A

total of eight variants were called in the MIF coding region. Only one missense variant was called,

namely  rs36065127 (clinical significance unknown).  Testing for association of this  variant with

HAT was  not  possible  due its  low global  MAF of  0.0166.  However  this  can  be  remedied  by

studying a larger sample size. It is interesting to note that only one of the nsSNPs present in the MIF

coding region from dbSNP [123] at the time of sampling appeared in this small sample. This gives

more reason for additional African populations not yet sequenced to be sampled as this will broaden

our view of variation. 

This  is  the  first  genetic  study carried  out  on people  of  Lugbara  ethnicity  from North  Western

Uganda. The uniqueness of this population is evidenced by the fact that only one of the nsSNPs

isolated from dbSNP at the time of querying the database was present in this population.
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Barbados, ASW-Americans of African Ancestry in SW USA, ESN- Esan in Nigeria, LWK-Luhya in

Webuye, Kenya, MAG-Mandinka in The Gambia, MSL- Mende Sierra Leone, and YRI- Yoruba in

Ibadan, Nigeria.



CHAPTER THREE 

PROTEIN STRUCTURE ANALYSIS

3.1 Chapter Overview

The purpose of this chapter was to investigate the effects of nsSNPs that were retrieved from dbSNP

on the MIF protein structure and function. This was done through a combination of several methods

and approaches. The final goal was to understand the effects of each of the nsSNPs on the structure

and function of the MIF protein. This involved the use of in silico SNP effect prediction tools such

as MutPred, SNPAnalyser and Polyphen. This was followed by Alanine scanning to identify which

nsSNP sites  were  potential  hotspots.  A PyMOL script  and Protein  Interaction  Calculator  (PIC)

analysis were used to predict interface residues. PIC analysis was used to also identify any nsSNPs

that may be subject to compensatory mutations. Homology modelling was used to generate MIF

protein mutants that contained single, double or triple chain mutations to study how each of them

affected the overall protein structure and stability. This was further assessed using calculation of

changes in energy by FOLDX and YASARA, and eventually a 1ns molecular dynamics simulation. 

3.2 Introduction

3.2.1 In silico non-model based prediction of nsSNP effects

Single nucleotide polymorphisms (SNPs) are the most frequent type of genetic variation in humans,

and play a crucial role in human diseases and other phenotypic traits. They account for over 85% of

mutations associated with specific disease [124]. They are capable of affecting protein function for

example in extreme cases by introducing stop codons, which result in truncated proteins that are

unable  to  function.  In  other  cases  they result  in  single  amino acid  substitutions  within  protein

sequences that may affect the structure of protein, stability, folding and their ability to bind ligands

or catalyse reactions. 

As the data collected from sequencing technologies increases so have the amount of novel SNPs

being discovered  [125, 126], and so have the computational approaches to analyse the effects of

these SNPs on protein structure and function  [127, 128].  About 300,000 novel single nucleotide

variants (SNVs) are generated by every newly sequenced genome [129]. Predicting the effects of

the nsSNPs on the translated protein structure and function is still a largely unsolved problem. This

is an important issue because nsSNPs can influence chemo-therapeutics especially in the era of

personalised  medicine  [130,  131].  SNP effect  prediction  programs typically  classify nsSNPs as
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either deleterious or of no consequence/neutral. Some tools use conservation based measures [102].

Others  use a  combination  of  both conservation  based methods  as  well  as structural  features  in

conjunction with machine-learning approaches such as support-vector machines or neural networks

[100, 132–134]. The following freely available web-servers based tools were used in this study to

analyse the nsSNPs and predict whether they would be benign or deleterious: Polyphen 2.0 [100],

nsSNPAnalyser  [135] and Mutpred  [136].  In  regard to  how the tools  function,  nsSNPAnalyser

[135] extracts evolutionary and structural information from a query nsSNP and relies on a Random

Forest machine learning approach to predict nsSNP effects. Mutpred [137] and Polyphen 2.0 [100]

are probabilistic  machine  learning classifiers.  Unlike Polyphen 2.0 or nsSNPAnalyser  that  give

categories  such as probably damaging, benign, neutral or disease, Mutpred returns its results in

form of probability known as the MutPred score (that is a figure between 0 and 1). A score > 0.5 is

considered as harmful while a score > 0.75 is considered harmful but with a high confidence in the

prediction. 

3.2.2 Hotspot Prediction Using Alanine Scanning by FOLDX

This refers to the study of relative free energy change (ΔΔG) that occurs when individual residues

are mutated to alanine. To predict potential hot spot residues, Alanine scanning was done on each

nsSNP  position  in  the  MIF  structure  using  a  FOLDX  [138] plug-in  in  the  YASARA  [139,

140] graphical interface program. FOLDX is an empirical force field formulated by analysing a

thousand point  mutations from eighty two protein-protein complexes.  In the calculation of free

energy it accounts for several thermodynamic terms known to be of importance to protein stability.

These  include:  solvation  effects,  Van  der  Waal's  interactions,  water  bridges,  hydrogen  bonds,

electrostatic and entropy effects for the backbone and the side-chain. This allows for the prediction

of hotspot residues, that is to say residues most likely to affect the general stability of the structure

[141]. 

3.2.3 Protein Interface Calculator (PIC) Analysis

Compensatory mutations refer to mutations that occur to correct a loss in fitness. For example if a

nsSNP has a deleterious effect, it can be corrected by another mutation to lessen its effect [142]. In

this study Protein Interactions Calculator (PIC) analysis [143] was used to identify nsSNP sites that

had weak or  strong interactions  with  other  nsSNP sites.  These  interactions  included:  hydrogen

bonds,  disulphide  bonds,  ionic interactions,  aromatic-aromatic  interactions,  cation-n interactions

and aromatic sulphur interactions for example between proteins in the complex. 

3.2.4 Homology Modelling of MIF Mutants

Homology modelling, also known as comparative modelling or template based modelling refers to
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the use of a known protein 3D structure (preferably of high resolution e.g 1 Å or so) to predict an

unknown protein structure basing on its protein sequence  in silico, in a manner that is accurate

enough  and  comparable  to  results  that  were  achieved  experimentally  [144–146].  It  generally

consists of four main steps  [147]: (a) Template identification; (b)Multiple sequence alignment to

identify true homologs and alignment of the target sequence with the template sequence; (c) model

building and refinement; and (d) validation/assessment of the structures [147]. It is especially useful

in instances where protein structures by X-ray crystallography or Nuclear Magnetic resonance are

unavailable.  Protein  mutation  studies  are  often  expensive,  time consuming and laborious.  This

technique offers a means of carrying out high through-put mutation studies cheaply and quickly,

aiding  in  studies  on  protein  structure,  function,  and  rational  drug  discovery/design  [148–151].

MODELLER [152] is used for homology modelling and involves the use of an alignment composed

of a sequence with a known structure and sequence of protein with no structure.  MODELLER

creates a structure by automatically calculating a model containing all non-hydrogen atoms, with

satisfaction of spatial restraints [153]. MODELLER also has the capability to perform tasks such as

de  novo modelling  of  loops,  loop  refinement,  multiple  alignments,  clustering,  structural

comparisons and querying sequence databases [147, 154]. 

3.2.5 Changes in Free energy 

One of the most important characteristics that can be related to a protein's function and structure is

its folding free energy. It is therefore one of the means the effects of an amino acid point mutation

can be  assessed  [155–157].  In  this  study FOLDX (an empirical  forcefield)  was used to  assess

changes in free energy of folding [158]. FOLDX was calibrated using experimental mutational free

energy  changes  from  a  collection  of  more  than  1000  point  mutations,  covering  XX  proteins

[159] and  yielded  a  correlation  of  0.81  with  a  standard  deviation  of  0.46  kcal/mol  between

calculated and experimental ΔΔGs in its current release. To get the most out of FOLDX it is advised

to compare relative energies, i.e compare known structures as its absolute energies are not precise

(http://FOLDX.crg.es/examples.jsp). It is also worth noting that FOLDX assumes a fixed back bone

as  a  result  it  does  not  accurately predict  ΔΔG values  that  may result  in  other  conformational

changes likely to affect  the protein function  [160].  In spite of this  FOLDX is still  suitable for

evaluating changes in stability due to point mutations in protein structures [159, 161, 162].

3.2.6 Protein Interface Network Analysis

Understanding interactions within protein structures and complexes is essential to elucidating their

assembly, stability and function. Network analysis of loss and gain of protein interface residues,

was  done  using  a  PyMOL  [163] script  available  at

21

http://FOLDX.crg.es/examples.jsp


http://www.PyMOLwiki.org/index.php/InterfaceResidues shared  under  the  'GNU  Free

Documentation License 1.2'. This is important because even though free energy changes maybe

negligible  a  nsSNP  can  adversely  affect  protein  function  by  changing  it’s  protein  interface

interaction network which can change a protein’s function and kinetics [164].

3.2.7 Molecular Dynamics Simulations

Molecular Dynamics (MD) simulations have also been used in the analysis of the effects of nsSNPs

on protein  function  and structure,  this  allows  for  further  understanding on how a  single  point

mutation can affect the overall protein structure. This is done by subjecting the mutated protein to

long  MD  simulations  with  in  order  to  study the  time  evolution  and  time  averaged  values  of

structural properties in functionally important regions [165, 166].

3.3 Chapter Objectives

The objectives of this chapter are as follows:

• To determine effects of nsSNPs using web based nsSNP analysis tools

• To determine which nsSNP sites are hotspots

• To determine if any nsSNPs are under compensatory mutation

• To investigate the effects of the nsSNPs on the protein interface of MIF mutants

• To investigate changes in energy due to single, double, and triple chain mutations

3.4 Methodology

The overall methodology followed in this Chapter is summarised as a work flow shown in Figure

3.1. 
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Figure 3.1: Protein structure analysis work-flow

http://www.pymolwiki.org/index.php/InterfaceResidues


3.4.1 Data Retrieval

For this study, 26 nsSNPs were retrieved from dbSNP [123] as of July 2015. The identified SNPs,

then, were validated by 1000 Genome project [167]. Further PyMOL script (see Appendix 1) is used

to determine the position of each SNP in the secondary structure prediction.

3.4.2 nsSNP Analysis Via Web-servers

The MIF 3DJH [39] crystal structure was uploaded to the following freely available web-servers:

MutPred  (http://mutpred.mutdb.org/),  Polyphen  2.0  (http://  gene  tics.bwh.harvard.edu/pph2/),  and

nsSNPAnalyser (http://snpanalyzer.uthsc.edu/). This was followed by the amino acid substitutions

that were submitted individually or in lists where a substitution was denoted as A#Y (where A was

the original  amino acid, # the position and B the mutated amino acid) to the web-servers. The

results were then imported into excel spreadsheets for further analysis. 

3.4.3 Hotspot Prediction Using Alanine Scanning and Protein Interface Prediction

Computational  alanine  scanning mutagenesis  was  carried  out  using  YASARA  [139] utilizing  a

FOLDX plug-in [138, 140] in order to identify potential hot spots of protein-protein interaction. It

involved  uploading  the  MIF  wild  type  PDB  structure  (3DJH),  followed  by  alanine  scanning

calculation  of  the  relative  free  energy change  (ΔΔG) that  occurs  when  individual  residues  are

mutated to alanine. Default settings were: Temperature 298K, pH 7.0, ionic strength 0.05M and Van

der Waals design 2. Any residues giving rise to ≥1.5 kcal/mol were identified as potential hot spots

[168].

A PyMOL script available at http://www.PyMOLwiki.org/index.php/InterfaceResidues shared under

the 'GNU Free Documentation License 1.2' was used to identify interface residues between the three

MIF monomers. The script found interface residues between the monomer chains by taking the area

of the complex then splitting it into two pieces (one for each chain) and calculating the chain-only

surface area finally taking the difference between the complex based areas and the chain only based

areas. When the value is greater than the supplied cut off, it is called an interface residue. The MIF

wild-type structure was loaded into PyMOL followed by the following pseudo code in the PyMOL

terminal:

interfaceResidue complexName[, cA=firstChainName[, cB=secondChainName[, 

cutoff=dAsaCutoff[, selName=selectionNameToReturn ]]]]

where, 

complexName- The name of the complex. cA and cB must be within in this complex 

cA- The name of the first chain to investigate 

cB- The name of the 2nd chain to investigate 
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cutoff- The dASA cut-off, in square Angstroms 

selName- Name of the selection to return.

This was followed by iteration of the selection name to get the residues present in the specified

protein interface. From this list a Python script was used to pull out the nsSNP sites in-order to

determine  which  were  interface  residues  and  which  weren't  depending  on  the  specific  chain

interface. 

3.4.4 Protein Interface Calculator (PIC) Analysis

The native MIF structure was submitted to the Protein Interactions Calculator (PIC) web-based

server  for  intra-protein  interaction  function (http://pic.mbu.iisc.ernet.in/)  [143].  Default  settings

were used. This was done to identify the interactions around nsSNPs with other nsSNPs or residues.

3.4.5 Homology Modelling of MIF Mutants

3.4.5.1 Template Identification 

The MIF coding sequence was retrieved from NCBI RefSeq (NC_000022.11)  [169] and used to

query Protein Data Bank [170]. 

3.4.5.2 Target-Template,  Alignment, Model Building and Model Evaluation

A Python script (Appendix 2) was used to create protein sequences containing one or more of the

amino acid substitutions as a result of the nsSNPs. Another Python script (Appendix 3) was used to

to align these mutated sequences to the 3DJH protein sequence using MUSCLE [171], and create

the PIR format alignment files. Lastly another Python script (Appendix 4) was used to carry out

homology modelling using MODELLER  [152] on the in-house cluster. The script generated 100

models per run and from those selected the one with best DOPE-Z score  [153]. Evaluation and

validation  of  the  structures  were  done  using  manual  inspection  in  PyMOL (overlapping  the

structures) and by using PROCHECK [172].

3.4.6 Changes in Free Energy 

The mutant PDB structures created by homology modelling were loaded into YASARA followed by

the repair object command in FOLDX [139, 140, 156]. This command results in minimisation of the

protein structure by rearranging amino acid side chains in order lower the free energy of the protein.

It is an important step before free energy calculations using FOLDX. This was followed by the

stability of object command that calculates the difference in free energy between the folded and

unfolded state of the protein structure (a lower energy structure is generally considered to be more

stable).
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3.4.7 Protein Interface Network Analysis 

A PyMOL script available at  http://www.pymolwiki.org/index.php/InterfaceResidues shared under

the 'GNU Free Documentation License 1.2' (described earlier in section 3.4.4) was used to identify

interface residues between the three MIF monomers in the triple mutant MIF structures. A Python

script was then used to compare the interface residues in the mutants to those in the native MIF

structure in order to identify new or lost interface residues. 

3.4.8 Molecular Dynamics Simulations

GROMACS (Groningen  Machine  for  Chemical  Simulations)  [173] was  used  to  run  Molecular

Dynamics 1000ps simulations for six nsSNPs predicted to be deleterious by all three predictors and

three nsSNPs predicted to be inconsequential or not likely to cause an effect by all three predictors.

The molecular dynamics simulations were run using in-house scripts and the '.mdp' parameter files

were acquired from the GROMACS manual (http://manual.gromacs.org/online/mdp.html). The MD

work flow is summarised in the Figure 3.2 below and a sample of the bash script used to submit the

MD jobs on the RUBi cluster available in Appendix 5. 

Using consensus from the predicting programs Table 3.3, three predicted non-consequential nsSNPs

(rs200394994,rs201060788 and rs376184469) and six predicted deleterious nsSNPs (rs11548056,

rs199714772, rs200005486, rs200500959, rs202066662,and rs372052137) were selected for this

assay. Analyses were carried out using GROMACS 4.5.7 software package using the amber03 force

field,  changes in RMSD and Rg between native and mutant proteins were the main subject  of

interest [173]. 
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Figure 3.2: Summary of MD work-flow
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3.5 Results and Discussion

3.5.1 nsSNP List

Table 3.1 shows a list of 26 nsSNPs that were retrieved from dbSNP [123] as of July 2015 and

shown to be located within the  mif  gene. Of these 10 (38%) were not validated, while 16 (62%)

were validated.  To date there are several  databases to get  useful  information on nsSNPs, these

include : Online Mendelian Inheritance in Man (OMIM) database, the UniProt/Swiss-Prot database,

the Human Genome Variation database (HGVbase), the Human Gene Mutation Database (HGMD),

and single nucleotide polymorphism database (dbSNP). In this study we mainly focused on dbSNP

because it’s comprehensive, receives the largest number of submissions (open submission policy),

has NCBI genomic information, gives the validation status for each SNP, and is the primary source

for  many  of  the  other  curated  SNP  databases.  Of  the  nsSNPs  validated  by  1000  Genomes

[167] rs139210892, rs1803976 and rs182012324 had a global minor allele frequency (MAF) of

0.0004. The remaining three namely rs201631604, rs201862457, rs372575900 had a global MAF of

0.0002. The purpose of the global MAF is to help in distinguishing between common and rare

variants. The nsSNPs in the database as the one found in the CGAS cohort are all rare variants as

their global MAFs are less than 0.05.
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Table 3.1: List of nsSNPs in the mif gene showing their secondary structure prediction using PyMOL, validation status and location

SNP_ID Amino acid mutation Structural Prediction (Pymol) Status Location in GRCh37.p13 Primary Assembly

rs1049829 L59F Sheet Validated (by cluster) 24237025

rs11548056 I68T Loop Validated (by cluster) 24237053

rs11548059 P44Q Loop Validated (by cluster) 24236981

rs139210892 T113I Loop Validated (by 1000G,by cluster,by frequency) 24237283

rs1803976 N106S Loop Validated (by 1000G,by frequency) 24237262

rs182012324 S75F Helix Validated (by 1000G,by cluster,by frequency) 24237074

rs199714772 V15M Loop Not Validated (No info) 24236704

rs201742529 P92S Helix Not Validated (No info) 24237124

rs199774339 P92R Helix Not Validated (No info) 24237125

rs199980863 P35L Helix Not Validated (No info) 24236765

rs202066662 H41Y Sheet Not Validated (No info) 24236971

rs200005486 H41P Sheet Validated (by cluster) 24236972

rs200286358 Y99C Sheet Validated (by cluster) 24237241

rs200329745 A115V Loop Not Validated (No info) 24237289

rs200394994 A71T Helix Validated (by cluster) 24237061

rs200500959 P2R Loop Validated (by cluster) 24236666

rs200995600 T24S Helix Validated (by cluster) 24236731

rs201060788 E86K Helix Not Validated (No info) 24237106

rs201307782 S64G Sheet Not Validated (No info) 24237040

rs201631604 P34T Loop Validated (by 1000G,by cluster) 24236761

rs372052137 I97T Sheet Not Validated (No info) 24237235

rs201792625 I97V Sheet Not Validated (No info) 24237234

rs201862457 P16Q Loop Validated (by 1000G,by cluster) 24236708

rs201465617 I5M Sheet Validated (by cluster) 24236676

rs372575900 M48L Sheet Validated (by 1000G,by cluster) 24236992

rs376184469 R87H Helix Validated (by cluster) 24237110



3.5.2 MIF Crystal Structures

A total of five structures were retrieved that were free of any structural mutations as shown in Table

3.2. The crystal structure utilized in this study, 3DJH [39] was selected because of its high sequence

identity, supporting publication, and high resolution. 

3.5.3 In silico Non-Model Based Prediction of NsSNP Effects

As  shown  in  Table  3.3  for  the  given  dataset  of  26  nsSNPs  there  was  ~62% concordance  in

prediction across all the three. In spite of the tremendous progress in developing fast and accurate

approaches that predict the effects of nsSNPs on protein function and structure there are still no

methods that are as good as wet-lab mutation analyses [174]. Instances where the predictions of the

tools did not agree could be likely to differences in their classification and analytical algorithms.

This could also be confounded further by training data set bias. 
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Table 3.2: MIF crystal structures obtained from the Protein Data Bank (PDB)
PDB ID Description Taxonomy Aligned Protein Aligned Residues Sequence Identity

3DJH Homo Sapiens 3 341 100%

3IJJ Homo Sapiens 3 341 100%

1GDO Homo Sapiens 3 341 100%

4F2K Homo Sapiens 3 341 100%

4K9G Homo Sapiens 3 341 100%

Macrophage Migration Inhibitory Factor 
(MIF) at 1.25 Å Resolution

Ternary Complex of Macrophage Migration 
Inhibitory Factor (MIF) Bound Both to 4-
hydroxyphenylpyruvate and to the Allosteric 
HUMAN MACROPHAGE MIGRATION 
INHIBITORY FACTOR (MIF)

Macrophage Migration Inhibitory Factor 
covalently complexed with 
phenethylisothiocyanate1.55 Å Crystal Structure of Macrophage 
Migration Inhibitory Factor bound to ISO-66 
and a related compound
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Table 3.3: List showing the predicted effects of nsSNPs on MIF using Polyphen2.0, Mutpred, and nsSNPAnalyser. Key: Yellow- where all three 

predict the same effects.
SNP_ID Polyphen Predicted Phenotype NsSNPAnalyser Predicted Phenotype MutPred probability of deleterious mutation

rs1049829  probably damaging Neutral 0.631

rs11548056  probably damaging Disease 0.895

rs11548059  probably damaging Neutral 0.612

rs139210892  probably damaging Disease 0.792

rs1803976  probably damaging Neutral 0.527

rs182012324             benign Disease 0.452

rs199714772  possibly damaging Disease 0.739

rs199774339  probably damaging Neutral 0.524

rs199980863             benign Neutral 0.474

rs200005486  probably damaging Disease 0.609

rs200286358             benign Disease 0.875

rs200329745  possibly damaging Neutral 0.655

rs200394994             benign Neutral 0.462

rs200500959  probably damaging Disease 0.840

rs200995600  possibly damaging Neutral 0.670

rs201060788             benign Neutral 0.527

rs201307782  probably damaging Disease 0.961

rs201631604  possibly damaging Disease 0.858

rs201742529  possibly damaging Neutral 0.390

rs201792625             benign Neutral 0.736

rs201862457  probably damaging Neutral 0.710

rs202066662  probably damaging Disease 0.537

rs201465617             benign Neutral 0.418

rs372575900             benign Neutral 0.725

rs376184469             benign Neutral 0.570

rs372052137  probably damaging Disease 0.736



3.5.4 Hotspot Prediction Using Alanine Scanning and Protein Interface Prediction

The result of mutating each residue (with the exception of Alanine or Glycine) was given in terms

of an energy difference (ΔΔG, in kcal mol−1) between the mutant and unmodified protein (wild

type), decomposed into the FOLDX energy terms, a cut off of ≥1.5 kcal/mol was used to determine

the potential hot spots and < 1.5 kcal/mol for non-potential hot spots  [168]. FOLDX mutates a

single residue at  a  time, as a  result  Figure 3.3 shows the effects  of that mutations in different

positions in the three chains of the MIF homotrimer.  As can be seen from the graph there was

variation in terms of the overall effect on the stability of the protein depending on which chain was

mutated. This was an indication that perhaps some of the nsSNP positions may not be symmetrical

or at protein-protein interfaces. 
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Figure 3.3: Bar-graph showing the results of Alanine Scanning of nsSNP positions on the MIF protein Structure



To further investigate, a PyMOL script was used to ascertain which of the nsSNP positions were at a

protein-protein interface in the native MIF protein. The results of these predictions are shown in

Table 3.4a and in combination with alanine scanning in Table 3.4b. As can be seen in Table 3.4

amino acid  positions  P44 and V15 which  correspond to  nsSNPs rs11548059 and rs199714772

respectively were only interface residues in only two out of the total three chains.

Table 3.4a: Summary of interface residue prediction using a PyMOL script. For each amino acid 

and position '[]' indicates in which chain the SNP site is.

Amino Acid Position Protein-Protein Interface nsSNPs Associated 
with site

Chain A and B Chain B and C Chain A and C

L59 L59[A] L59[B] L59[C] rs1049829

I68 I68[A] I68[B] I68[C] rs11548056

P44 P44[B] P44[C] - rs11548059

T113 I113[B] I113[C] I113[A] rs139210892

N106 N106[B] N106[C] N106[A] rs1803976

V15 - V15[C] V15[A] rs199714772
 

P92 P92[A] P92[B] P92[C] rs199774339, 
rs201742529

P35 P35[B] P35[C] P35[A] rs199980863

H41 H41[B] H41[C] H41[A] rs200005486, 
rs20206662

Y99 Y99[A] Y99[B] Y99[C] rs200286358

A115 A115[B] A115[C] A115[A] rs200329745

T24 T24[B] T24[C] T24[A] rs200995600

I5 I5[B] I5[C] I5[A] rs201465617

M48 M48[A] M48[B] M48[C] rs372575900

I97 I97[A] I97[B] I97[C] rs372052137, 
rs201792625
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Table 3.4b: Summary of results of alanine scanning and interface residue prediction.
SNP_ID Chain A ΔΔG(kcal/mol) Chain B ΔΔG(kcal/mol) Chain C ΔΔG(kcal/mol) Potential Hot Spot Interface Residue (Pymol)

rs1049829
4.11534 3.56665 4.05239 + +

rs11548056
1.9177 2.2887 2.43543 + +

rs11548059
2.40483 2.70859 2.27611 + +

rs139210892
-1.262 -0.535734 -0.428216 - +

rs1803976
-0.113836 0.730512 0.329332 - +

rs182012324
-0.635657 1.58745 2.57971 + -

rs199714772
2.45397 2.01942 2.34551 + +

rs199774339
1.79648 1.63505 1.78849 + +

rs199980863
2.36648 2.37635 2.05998 + +

rs200005486
1.9778 1.35613 1.62601 + +

rs200286358
4.19305 4.61283 5.13114 + +

rs200329745
2.04636E-12 5.45697E-12 4.09273E-12 - +

rs200394994
6.82121E-13 3.86535E-12 3.29692E-12 - -

rs200500959
1.98369 1.1054 1.69732 +  - 

rs200995600
0.556819 -0.336089 0.596481 - +

rs201060788
-0.242262 0.00394707 0.134711 - -

rs201307782
-0.188059 0.0543872 -0.241089 - -

rs201631604
1.28236 1.91272 2.07308 + -

rs201742529
1.79648 1.63505 1.78849 + +

rs201792625
3.79561 4.16264 4.06215 + +

rs201862457
2.27718 2.20669 2.24542 + -

rs202066662
1.9778 1.35613 1.62601 + +

rs201465617
2.48033 2.16714 2.09106 + +

rs372575900
2.56565 2.94069 2.72259 + +

rs376184469
1.31326 0.341132 0.563377 - -

rs372052137
3.79561 4.16264 4.06215 + +



To determine whether  the likelihood of  a nsSNP being a hot  spot from Alanine Scanning was

dependent on whether it was an interface residue the Fisher's exact test (since not all the expected

frequencies were greater than 5) was used. In R, a contingency table was used to structure the data

and carry out  the Fishers  exact  test.  Since the test  p-value  (0.1972) was greater  than 0.05 we

rejected the null hypothesis and concluded that these data provided sufficient evidence at the 5%

level of significance that there is a relationship between Alanine Scanning prediction results and

Interface prediction results. This was especially of importance because nsSNPs at protein interface

regions have been shown to interfere with ligand binding [175]. 

The Alanine scanning functionality in YASARA mutates one Alanine residue at a time. A script was

used to extract the ΔΔG (kcal mol−1) from each nsSNP position per chain as shown in Table 3.4. In

each instance the ΔΔG (kcal mol−1) was acquired for chain specific nsSNP sites. This was done

sequentially starting with chain A, then B and C. As can be seen in Table 3.4a there are specified

nsSNP sites that were not interface residues in those particular specified chains and this explains

why nsSNP sites  such  as  rs139210892,  rs1803976,  and  rs200995600 did  not  cause  significant

changes in  ΔΔG (kcal  mol−1).   A better  approach for  this  assay would be to  first  identify the

particular interface residues, and then individually mutate those residues to alanine and then acquire

ΔΔG (kcal mol−1). NsSNP sites such as rs200329745 did not show any change in energy because it

was already an alanine residue. NsSNP site rs182012324 (S75) is not an interface residue, however

it was a hotspot because from its structural prediction its located in the helix and serine residues are

known to stabilize bending angles in helices [176].

3.5.5 PIC Analysis 

The  MIF  wild  type  structure,  3DJH  was  uploaded  to  the  PIC  web-server

(http://pic.mbu.iisc.ernet.in/).  The  analysis  was  divided  into  intra-protein  interactions  i.e

interactions between residues within the same chain and protein-protein interactions i.e between

residues in different chains. 

3.5.5.1 Intra-Protein Interactions

There were 13 intra-protein Hydrophobic interactions within 5 Angstroms between nsSNP sites,

shown in Table 3.5a. 

34

http://pic.mbu.iisc.ernet.in/


Table 3.5a: MIF Intra-protein Hydrophobic interactions within 5 Angstroms

SNP ID Position Residue Chain SNP ID Position Residue Chain

rs199714772 15 VAL A rs201862457 16 PRO A

rs201631604 34 PRO A rs199980863 35 PRO A

rs11548056 68 ILE A rs200286358 99 TYR A

rs372052137,rs201792625 97 ILE A rs200286358 99 TYR A

rs199714772 130 VAL B rs11548059 159 PRO B

rs372575900 163 MET B rs1049829 174 LEU B

rs11548056 183 ILE B rs200286358 214 TYR B

rs372052137,rs201792625 212 ILE B rs200286358 214 TYR B

rs199714772 245 VAL C rs11548059 274 PRO C

rs201631604 264 PRO C rs199980863 265 PRO C

rs372575900 278 MET C rs1049829 289 LEU C

rs11548056 298 ILE C rs200286358 329 TYR C

rs201742529 327 ILE C rs200286358 329 TYR C

Hydrophobic contacts especially in interface residues are important indicators of thermal stability,

and along with hydrogen bonds play a significant role in protein stability [177]. Majority of the MIF

homotrimer hydrophobic interactions were intra-protein, with the exception of rs201631604 the rest

were sites located within protein interface regions.

There were 5 main chain-main chain hydrogen bonds between nsSNP sites identified and they are 

shown in Table 3.5b. 

Table 3.5b: Intra-protein Main chain-Main chain hydrogen bonds. Key: Dd-a = Distance between 

donor and acceptor, Dh-a = Distance between Hydrogen and acceptor, A(d-H-N) = Angle Between 

donor-H-N and A(a-O=C) = Angle between acceptor-O=C

SNP ID Acceptor
Position

Chain Residue Atom SNP ID Donor 
Position

Chain Residue Atom Dd-a Dh-a A(d-H-N) A(a-O=C)

rs182012324 75 A S N rs200394994 71 A A O 3.13 2.24 148.76 152.35

rs200329745 115 A A N rs139210892 113 A T O 3.49 3.39 87.83 68.09

rs182012324 190 B S N rs200394994 186 B A O 3.10 2.23 148.16 152.98

rs200329745 230 B A N rs139210892 228 B T O 3.49 3.50 81.02 69.02

rs182012324 305 C S N rs200394994 301 C A O 3.14 2.25 149.05 152.84

3.5.5.2 Protein-Protein Interactions

All nsSNP sites shown to be interacting in this analysis were interface residues and therefore likely

important in overall protein stability. There were 2 protein-protein Hydrophobic interactions within

5 Angstroms between nsSNP sites, shown in Table 3.6a. 
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Table 3.6a: MIF protein-protein Hydrophobic interactions within 5 Angstroms

SNP ID Position Residue Chain SNP ID Position Residue Chain

rs20146517 5 ILE A rs1049829 289 LEU C

rs1049829 174 LEU B rs20146517 235 ILE C

There were 2 main chain-main chain hydrogen bonds between nsSNP sites identified and they are

shown in Table 3.6b. 

Table 3.6b: Protein-protein Main chain-Main chain hydrogen bonds. Key: Dd-a = Distance 

between donor and acceptor, Dh-a = Distance between Hydrogen and acceptor, A(d-H-N) = Angle 

Between donor-H-N and A(a-O=C) = Angle between acceptor-O=C

SNP ID Acceptor
Position

Chain Residue Atom SNP ID Donor 
Position

Chain Residue Atom Dd-a Dh-a A(d-H-N) A(a-O=C)

rs200286358 214 B TYR N rs1803976 336 C ASN O 2.82 1.98 142.63 157.29

rs200286358 329 C TYR N rs1803976 106 A ASN O 2.89 1.99 151.38 146.72

There was also an instance of protein-protein Side chain-Side chain hydrogen bonds identified 

between acceptor position 156 nsSNP site for rs200005486) and donor position 48 (nsSNP sire for 

rs372575900) as shown in Table 3.6c.

Table 3.6c: Protein-protein Side chain-Side chain hydrogen bonds. Key: Dd-a = Distance between 

donor and acceptor, Dh-a = Distance between Hydrogen and acceptor, A(d-H-N) = Angle Between 

donor-H-N and A(a-O=C) = Angle between acceptor-O=C

SNP ID Acceptor
Position

Chain Residue Atom SNP ID Donor 
Position

Chain Residue Atom Dd-a Dh-a A(d-H-N) A(a-O=C)

rs200005486 156 B HIS ND1 rs372575900 48 A MET SD 3.42 3.33 87.84 999.99

PIC  analysis  revealed  nsSNP sites  that  are  likely  subject  to  compensatory  mutations  but  this

requires experimental confirmation. This can be done by identifying possible compensatory nsSNPs

occurring within the same subjects, as this clustering is expected due to their importance in the

overall stability of the protein  [178]. Homology modelling can also be used to assess the overall

effect of the two compensating mutations within the same structure. This is of importance because

studies  have shown that  coding compensatory mutations  do not  occur  randomly over  the  gene

sequence  [142].  Compensatory  mutations  are  essential  for  improving  fitness  in  cases  where

mutations prove to be deleterious especially in critical regions such as hydrophobic cores, ligand

binding sites and enzyme active sites.
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3.5.6 Homology Modelling of MIF Mutants

100 models were generated for each nsSNP and in each instance the Python script would select the

one with the best DOPE-Z score. A total of 78 models were  generated, ranging from one chain

mutation, two chain mutations to three chain mutations in the homotrimer structure. Validations

were done using PROCHECK  [172] and I-TASER  [179]. The MIF 3DJH structure was of high

resolution  (1.25  Å)  and  the  mutants  only  had  a  few  point  mutations  (ranging  from  1  to  3)

introduced,  the  resulting  structures  were  of  good  quality  and  there  was  no  need  for  structure

refinement.

3.5.7 Changes in Free energy 

Most globular proteins are stable under physiological conditions, with their overall thermodynamic

stability (ΔG folding) in the range of −5 to −15 kcal/mol [160], however this value is normally not

considered absolute as it can have a large error [138]. Large positive values are however generally

considered indicative of problems with the protein architecture and it is advised that the structures

be scrutinised to check for any errors.  As can be seen in Figure 3.4, there were some unusually high

ΔΔG in some structures, but this can be explained due to a decrease in side hydrogen bonds in the

FOLDX  energy  terms.  The  extremely  high  values  included  structures  from:  rs199774339,

rs199980863,  rs200500959,  rs200995600,  rs201742529,  rs201862457,  rs202066662  and

rs372052137 (of which with the exception of rs200995600 were all  predicted hotspot  interface

residues). Extremely low values included: rs11548056, rs182012324 both of which are predicted

hot spot residues. However there was no clear distinction based on changes in free energy which

nsSNPs were likely to be deleterious or not. This is of consequence because changes in free energy

alone are not enough to predict changes in a proteins function and kinetics [164].
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Figure 3.4: Bar-chart showing the Changes in free energy of unfolding in the MIF mutant protein structures



3.5.8 Protein Interface Network Analysis 

This was done to further understand why the ΔΔGs were so large, and if changes in the protein

interface could be a factor. It was discovered through network analysis that given the close location

of the nsSNPs, that they were affecting similar interface residues some of which had been predicted

to be hot spots with alanine scanning, these include: PHE 4, ARG 94, PHE 119 and ARG 209, as

shown in Table 3.7. As can be seen in Table 3.7 rs201631604, did not change the interface residue

network, which correlates with its low ΔΔG value. Further studies in docking [180] are necessary to

further understand the impact of residues on function in ligand binding. This is important because

protein interface interaction networks affect a protein's function and kinetics [164].
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Table 3.7: List of Residues lost and Gained at the interface of Triple Chain MIF Mutants 

SNP ID Lost  Protein interface residues New Protein interface residues

rs1049829

rs11548056

rs11548059 GLY 82,ASP 216,PHE 19,ASP 275,GLN 274,VAL 130,GLN 159

rs139210892

rs1803976

rs182012324

rs199714772

rs199774339

rs199980863

rs200005486

rs200286358

rs200329745

rs200394994

rs200500959

rs200995600

rs201060788

rs201307782 ASP 45,CYS 175 ,ASP 331,PRO 232

rs201631604 VAL 130

rs201742529

rs201792625

rs201862457

rs202066662

rs201465617

rs372575900

rs376184469

rs372052137

CYS 60,PHE 4,ARG 209,ARG 94,ASP 101,PHE 119,ALA 230
PHE 59,ASP 45,PHE 174,SER 169,PRO 44,ASP 275,SER 284,PHE 289,CYS 175,ASP 
216,GLY 82,VAL 130

CYS 60,PHE 4,CYS 290,ARG 209,VAL 245,ARG 94,PHE 119
SER 54,CYS 175,PRO 44,THR 298,THR 183,PRO 232,THR 68,GLY 82,PRO 117,VAL 
130

ARG 94,GLY 197,PHE 4,CYS 290,GLY 312,ARG 209,PHE 344,ASP 
101,PHE 119

ARG 94,  ARG 209,  PHE 4,ALA 115,CYS 290,GLY 312,PHE 119
ASP 45,SER 169,PRO 44,ILE 113,ASP 331,CYS 175,PRO 232,ILE 343,SER 54,GLY 
82,PRO 117,ILE 228

ILE 68,ILE 183,PHE 4,VAL 15,CYS 290,ILE 298,ARG 209,ILE 235,VAL 
245,GLY 69,ARG 94,ASP 101,PHE 119 GLY 82, SER 336,PRO 44,SER 106,ASP 275,VAL 130,SER 221

ARG 94,ARG 209,PHE 4,CYS 290,ILE 235,PHE 119 SER 54,SER 169,PRO 44,CYS 175,GLY 82,VAL 130

 ARG 94, ARG 209,PHE 4,PHE 119 GLY 82,CYS 175,MET 15,PRO 44,ASP 331,SER 176,PRO 232,MET 245,MET 130

CYS 60,GLY 197,PHE 4,GLY 312,ARG 209,ARG 94,PHE 119,PHE 229 ARG 92,CYS 175,PRO 44,SER 284,ARG 322,ARG 207,ASP 216,PRO 232,VAL 130

ARG 94,GLY 197,PHE 4,ARG 209,PHE 119 ,SER 54, ,CYS 175, ,LEU 35,PRO 44,ASP 216,LEU 265,GLY 82,VAL 130,LEU 150

ASN 7,ASN 122,PHE 4,ASN 237,CYS 290,GLY 312,ARG 209,ILE 
235,VAL 245,CYS 60,GLY 69,ARG 94,ASP 101,PHE 119,ARG 127,PHE 
229

CYS 57,SER 169, PHE 19,PRO 41,ASP 331,ASP 216,PRO 271,GLY 82,VAL 130,PRO 
156

ARG 94,GLY 184,PHE 4,ARG 12,CYS 290,ARG 209,ASP 101,PHE 119 SER 54,SER 169,PRO 44,CYS 329,CYS 175,CYS 214,GLY 82,CYS 99,VAL 130

GLY 69,ARG 209,PHE 4,VAL 15,CYS 290,PHE 344,ARG 94,ASP 
101,PHE 119 ASP 45,VAL 345,PRO 44,VAL 115,GLY 82,VAL 130,VAL 230

CYS 60,GLY 197,PHE 4,CYS 290,ARG 209,ARG 94,PHE 229
ASP 45,SER 169,PRO 44,SER 284,ASP 331,CYS 175,PRO 232,SER 54,GLY 82,VAL 
130

CYS 60,GLY 197,PHE 4,ARG 209,VAL 245,PHE 344,ARG 94,PHE 119 ASP 45, ASP 216, PRO 44,SER 284,ASP 331,GLY 82,ARG 117,VAL 130

CYS 60,ARG 209,PHE 4,CYS 290,ARG 94,PHE 119
VAL 130,SER 169,SER 24,PRO 44,ASP 331,CYS 175,PRO 232,PHE 249,SER 254,SER 
139

CYS 60,ARG 209,PHE 4,CYS 290,GLY 312,ARG 94,ASP 101,PHE 
119,ARG 127 GLY 82,CYS 175,PRO 44,SER 284,PHE 234,VAL 130

CYS 60,ARG 209,PHE 4,CYS 290,VAL 245,ARG 94,ASP 101

CYS 60,GLY 197, PHE 4,CYS 290,ARG 209,ARG 94,ASP 101,PHE 119 GLY 82,SER 169,PRO 44,SER 322,SER 207,SER 92,VAL 130

ARG 94,  ARG 209,PHE 4,VAL 15,CYS 290,VAL 245,PHE 119,SER 136
,GLY 82 ,CYS 175 ,VAL 327,SER 176,VAL 212,PRO 232,VAL 97,PRO 117,VAL 
130,PHE 134

ARG 94,GLY 197,PHE 4,PHE 114,CYS 290,ARG 209,ASP 101,PHE 
119 ASP 45,ASP 216,PRO 44,ASP 275,ASP 331,GLY 82,VAL 130

CYS 60,GLY 184,VAL 15,VAL 43,CYS 290,GLY 197,ARG 209,ARG 
94,PHE 119

GLY 82,SER 169,TYR 41,PRO 44,ASP 331,CYS 175,ASP 216,PRO 232,TYR 271,VAL 
130,TYR 156

CYS 60,ARG 209,PHE 4,GLY 69,ARG 94,PHE 119,ALA 230
ASP 45,SER 169,MET 5,PRO 44,CYS 175,SER 176,ASP 216,PRO 232,MET 235,MET 
120

PHE 4,GLY 312,GLY 197,ARG 209,ARG 94,ASP 101,PHE 119
LEU 48,LEU 163,PRO 44,LEU 278,SER 284,SER 169,CYS 175,ASP 216,GLY 82,VAL 
130

CYS 60,ARG 209,PHE 4,CYS 290,GLY 312,ARG 94,PHE 119,ALA 230 VAL 130,PRO 232,PRO 44,ASP 331,PHE 249

ARG 94,GLY 197,PHE 4,CYS 290,GLY 312,ARG 209,ASP 101,PHE 119 GLY 82 ,VAL 158,PRO 2,PRO 44,THR 327,CYS 175,THR 212,PRO 232,THR 97,VAL 130



3.5.9 Molecular Dynamics Simulations

To gain a better insight into the effects of the nsSNPs on the stability and folding behaviour of the

MIF structure,  we performed 1000ps molecular dynamics simulations using three structures for

each nsSNP (single, double and triple chain mutations respectively). As shown in Figure 3.5, native

and mutant structures showed a similar patterns of deviation for the duration of the 1000ps run from

their starting structures with few exceptions, but this is confounded by the fact that this is a very

short run. The average backbone RMSD ranged from approximately 0.0125 to 0.16 (nm) during the

simulation, it is not possible to conclude when the structures would retain their maximum deviation

given the short length of the simulation run. Given that MIF is a homotrimer, symmetry plays a role

in  its  overall  stability  which  can  be  seen  as  some  nsSNP structures  such  as  rs20206662  and

rs200394994 varied more widely from the wild type structure in cases where there was a single

mutation as compared to a triple mutation, this requires further investigation. 
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Figure 3.5: Backbone RMSD of side chains of wild type and mutant structures during the 

simulation. 1a-Predicted non-consequential nsSNP modelled structures with single chain mutation, 

1b- Predicted deleterious nsSNP modelled structures with single chain mutation, 2a-Predicted non-

consequential nsSNP modelled structures with double chain mutation, 2b-Predicted deleterious 

nsSNP modelled structures with double chain mutation, 3a- Predicted non-consequential nsSNP 

modelled structures with triple chain mutation, and 3b-Predicted deleterious nsSNP modelled 

structures with triple chain mutation.



The radius of gyration which refers to the mass-weight root mean-square distance of a collection of

atoms from their common center of mass allowing for the analysis of the overall dimensions of the

protein. Radius of gyration plot for Cα atoms of the wild type and mutant protein versus time at

1000 ps is shown in Figure 3.6. The native MIF structure and Mutant structures all showed an Rg

value of ~1.86 nm at 0 ps, with the wild type MIF structure having an Rg value of ~1.87 nm at 1000 

ps, the mutant structures at 1000ps ranged from ~1.88 to ~1.90 as shown in Table 3.8a and Table

3.8b.
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Table 3.8a: Radius of Gyration Results for Non-deleterious nsSNP modelled Structures

SNP ID Number of Chain Mutations Radius of Gyration (nm)

0 (ps) 500 (ps) 1000 (ps)

rs200394994 Single 1.86 1.89 1.87 

Double 1.86 1.88 1.89

Triple 1.86 1.89 1.89 

rs201060788 Single 1.86 1.88 1.89

Double 1.86 1.88 1.88 

Triple 1.86 1.87 1.89 

rs376184469 Single 1.86 1.87 1.88 

Double 1.86 1.88 1.89

Triple 1.86 1.87 1.88

Table 3.8b: Radius of Gyration Results for deleterious nsSNP modelled Structures

SNP ID Number of Chain Mutations Radius of Gyration (nm)

0 (ps) 500 (ps) 1000 (ps)

rs11548056 Single 1.86 1.87 1.88

Double 1.86 1.88 1.87 

Triple 1.86 1.88 1.89

rs199714772 Single 1.86 1.88 1.88

Double 1.86 1.87 1.87 

Triple 1.86 1.89 1.89

rs200005486 Single 1.86 1.88 1.88

Double 1.86 1.87 1.87 

Triple 1.86 1.88 1.89

rs200500959 Single 1.86 1.87 1.88 

Double 1.86 1.89 1.89 

Triple 1.86 1.89 1.88 

rs202066662 Single 1.86 1.90 1.90 

Double 1.860 1.89 1.90

Triple 1.86 1.88 1.87 

rs372052137 Single 1.86 1.88 1.88 

Double 1.86 1.88 1.89 

Triple 1.86 1.87 1.86 
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Figure 3.6: Radius of gyration of wild type and mutant structures during the simulation. 1a-

Predicted non-consequential nsSNP modelled structures with single chain mutation, 1b- Predicted 

deleterious nsSNP modelled structures with single chain mutation, 2a-Predicted non-consequential 

nsSNP modelled structures with double chain mutation, 2b-Predicted deleterious nsSNP modelled 

structures with double chain mutation, 3a- Predicted non-consequential nsSNP modelled structures 

with triple chain mutation, and 3b-Predicted deleterious nsSNP modelled structures with triple 

chain mutation.



Molecular  Dynamics  simulations  are  a  valuable  approach  in  determining  the  consequences  of

mutations on the overall protein structure and kinetics  [165, 166, 174, 181]. However to observe

more substantial trends in RMSD, Rg, RMSF, solvent accessibility surface area, as a result of point

mutations  it  is  necessary to  perform long simulation  runs,  1000ps  is  not  sufficient  to  draw in

conclusive findings. The molecular dynamics simulations were too short, for more information it is

necessary to perform longer runs, for example for 20ns.

3.6 Conclusion 

A total of 26 nsSNPs were retrieved from dbSNP (as of July 2015). Of these 10 (38%) were not

validated,  while  16  (62%)  were  validated.  Of  the  nsSNPs  validated  by  1000  Genomes

[167] rs139210892, rs1803976 and rs182012324 had a global minor allele frequency (MAF) of

0.0004. The remaining three namely rs201631604, rs201862457, rs372575900 had a global MAF of

0.0002. While these were technically rare variants, many were shown to be possibly deleterious to

the structure and function of MIF. Through consensus of the three SNP effect prediction tools, the

following nsSNPs were shown to be likely deleterious: rs11548056, rs139210892, rs199714772,

rs200005486,  rs200500959,  rs201307782,  rs201631604,  rs202066662,  and  rs372052137.  The

following  were  predicted  to  be  likely  benign:  rs199980863,  rs200394994,  rs201060788,

rs201792625,  rs201465617,  rs372575900,  and  rs376184469.  The  remaining  10  had  conflicting

predictions .i.e in some cases one tool predicted deleterious while the other two predicted no effect. 

Alanine scanning showed that some of the nsSNP sites were indeed hotspots and more likely to be

hotspots if they were interface residues. However it is worth noting that nsSNP site rs182012324

(S75) was not an interface residue,  but  was a  hotspot because the serine residue at  that  site is

important  in  the  helix  secondary  structure  [176].  Overall  alanine  scanning  provides  a

computationally cheap and quick way of scanning which sites in the native protein are likely to be

of importance in structural stability as such help in the selection of nsSNPs of importance. 

PIC analysis showed that some of the nsSNP sites were interacting with other's which could be a

basis for the detection of compensatory mutations but this requires further experimentation. Co-

occurance of the different nsSNPs within the same regions MIF regions of multiple individuals

would go a long way in shedding more light on this phenomenon. It serves to note that the PIC

analysis algorithm does have a few errors such as the assignment of acceptor and hydrogen bond

donor groups being interchanged in the main-chain peptide bond atoms. It's distance and bond angle

estimations are also prone to errors. 

Changes in free energy of folding using FOLDX alone were not enough to predict which nsSNPs
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would adversely affect MIF's function and kinetics. Rosetta has been shown to perform better than

FOLDX when it  comes to  assessing  changes  in  protein  stability due to  point  mutations  [157].

FOLDX was however used in this study because of its robustness.

Protein  interface  network  analysis  revealed  that  even  a  point  mutation  can  change  the  protein

interface  residue network,  and this  may not  be dependent  on whether  or  not  the  residue is  an

interface residue itself. This assay in conjunction with ligand-docking could help shed more light on

nsSNPs of importance. 

The molecular dynamics simulations were very too short for any meaningful inferences to be made

about  the  trends  in  RMSD,  Rg,  RMSF,  and  solvent  accessibility  surface  area.  However  from

looking at the RMSDs and Rgs of rs372052137 when compared between single, double or triple

chain mutations there is a slight difference. This brings a question relating to protein symmetry and

its effect on stability. 
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CHAPTER FOUR

CONCLUSIONS AND RECOMMENDATIONS

4.1 Conclusions

Out of  the  eight  variants  called in  the  mif  coding region there  was only one missense variant

rs36065127 (clinical  significance  unknown).  It  was  not  possible  to  test  for  association  of  this

variant with HAT due to its low global MAF that was less than 0.05. This study was the first genetic

study carried out  on the people of  Lugbara ethnicity from North Western Uganda.  The nsSNP

(rs36065127) though a rare variant has to be further characterised and it's role in the MIF protein

structure and function assessed. 

As sequencing technologies advance and the cost for sequencing drops, more and more data is

being generated on human variation [182]. This allows for better understanding of human variation

and how it affects disease states, susceptibility, prevention and control [183–185]. While the initial

hope of this study was to discover novel variants and then predict their impact on the MIF protein

function  and  structure,  it  has  become  evident  that  understanding  how  nsSNPs  affect  protein

structure and function in silico is an area in need of further development. No single published tool is

capable  of  accurately predicting  the  effects  of  nsSNPs on protein  function  and stability.  More

exhaustive methods such as docking followed by molecular dynamics are needed to have a more

accurate  picture  of  how  nsSNPs  and  point  mutations  affect  binding  residues,  and  interface

networks, however this takes time is computationally costly. There is need to come up with simple

fast algorithms that can do preliminary screening of the effects nsSNPs. 

4.2 Recommendations

To get a clearer picture of the effect of nsSNPs on protein structure, function, kinetics and overall

stability it is necessary to carry out further investigations. Ligand docking followed by longer MD

simulations will help to study how the nsSNP affect the interface residues, binding energy and the

protein's flexibility. While the use of FOLDX to asses the changes in free energy of folding was not

able  to  distinguish  between  deleterious  and  non-deleterious  nsSNPs,  more  sensitive  tools  like

Rosetta may better characterise the data. Further genomic studies are also needed to gain a better

insight into the phenomenon of compensatory mutations. The rs36065127 variant in spite of its low

minor allelic frequency requires further study especially with a bigger sample size, as it may only

appear rare simply because there aren't enough previously un-sequenced populations present in the

databases.
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APPENDICES

Appendix 1: R-code for Running a Principal Component Analysis Using SNPRelate

##Load the R packages: gdsfmt and SNPRelate 

library(gdsfmt) 

library(SNPRelate) 

##setting the working directoy 

getwd() 

setwd("/home/phillip/Desktop/Running_PCA/OUT") 

##Reading the vcf file into R 

vcf.fn <- "Trypanogen_merged_chr1_UO_only.vcf" 

##Converting VCF to GDS format 

snpgdsVCF2GDS(vcf.fn, "test.gds", method="biallelic.only") 

### To get a summary of the data (number of individuals and variants filtered) 

snpgdsSummary("test.gds") 

## Reading the the GDS file 

genofile <- snpgdsOpen("test.gds") 

## Running the PCA 

pca <- snpgdsPCA(genofile) 

pc.percent <- 100 * pca$eigenval[1:16]/sum(pca$eigenval) #first 16 PCA's 

###To get the sample ids 

sample.id <- read.gdsn(index.gdsn(genofile, "sample.id"))  

### Assigning the population codes 

pop_code <- scan("pop2.txt", what=character()) 

## Creating a Data Frame for the results 

tab <- data.frame(sample.id = pca$sample.id, 

  pop = factor(pop_code)[match(pca$sample.id, sample.id)], 

  EV1 = pca$eigenvect[,1],  # the first eigenvector 

  EV2 = pca$eigenvect[,2],  # the second eigenvector 

  stringsAsFactors = FALSE) 

## Plotting the results and generating a high resolution image 

png(filename ="Chr1_PCA_UO_trypanogen.png",width = 8, height = 5, units = 'in',
res=300) 

plot(tab$EV2, tab$EV1, col=as.integer(tab$pop), 

  xlab="eigenvector 2", ylab="eigenvector 1") 

legend("topright", legend=levels(tab$pop), pch="o", col=1:nlevels(tab$pop)) 

dev.off()  
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Appendix 2: Python Scripts for Introducing Point Mutations 

point_mutation.py

### this script takes a fasta file and a list of nsSNPs as the two arguments 

### the goal being for it to generate several fasta files with the introduced
mutations 

###-------------importing the data------------- 

import sys 

import textwrap 

import os 

import os.path 

from sys import argv 

filename=sys.argv[1] 

filename2=sys.argv[2] 

###----function for parsing fasta file--------- 

def read_fasta(filename): 

  name = None 

  name2seq = {} 

  for line in open(filename): 

    if line.startswith(">"): 

      if name: 

        name2seq[name]=seq 

      name=line[1:].rstrip() 

      seq="" 

    else: 

      seq+=line.rstrip() 

  name2seq[name]=seq 

  return name2seq 

###----function for parsing the nsSNP file--the format is a the wildtype amino
acid, then the position then the mutant amino acid 

def read_nsSNP_list(filename2): 

  f=open(filename2,"r") 

  lines = f.readlines() 

  f.close() 

  return lines 

###---- dictionary data structure for the fasta file-----

fasta_dic=read_fasta(filename) 

for key, value in fasta_dic.items() : 

  wild_type_seq = value #the variable wild_type_seq is the protein sequence 

  header = key 
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###----- building the dictionary data structure for the nsSNP_list----

lines=read_nsSNP_list(filename2) 

nsSNP_list_dic={} 

for i in range(len(lines)): 

  snp_ID = lines[i].split()[0] 

  mutation = lines[i].split()[1] 

  nsSNP_list_dic[snp_ID] = mutation 

SNP_ID_list=[] 

for key, value in nsSNP_list_dic.items(): 

  SNP_ID_list+= [key] #contains the SNP IDs 

###----data structure for mutated fasta sequences----- 

adjusted_mutation_position = 0 

mutants_dic={} 

seq_as_list=[] 

mutated_seq_list=[] 

for j in range(len(SNP_ID_list)): 

  mutation_position=int(nsSNP_list_dic[SNP_ID_list[j]][1:-1]) 

   adjusted_mutation_position = mutation_position - 1 

if nsSNP_list_dic[SNP_ID_list[j]][0]==wild_type_seq[adjusted_mutation_position]:

    seq_as_list = list(wild_type_seq) 

    seq_as_list[adjusted_mutation_position]=nsSNP_list_dic[SNP_ID_list[j]][-1] 

    mutated_seq_list = seq_as_list 

    mutants_dic[SNP_ID_list[j]]=''.join(mutated_seq_list) 

  else: 

   print('\nERROR could not find amino acid '+ (nsSNP_list_dic[SNP_ID_list[j]]
[0]) +' at position '+str(mutation_position) +' in the specified fasta file') 

####----writing out the new fasta files------- 

counter=0 

fasta_query=input("\nTo  write  the  new  mutant  fasta  files  in  the  current
directory Please Enter Y or hit ENTER to exit: ") 

if fasta_query.upper() == "Y": 

  #filename="mutated_fasta_files/" + SNP_ID_list[j] + '.fa' #so that they go to
that directory 

  file_name=None    

  while fasta_query!="":     

    for j in range(len(SNP_ID_list)): 

      file_name = SNP_ID_list[j] + '.fa' #generating the file names 

      if os.path.exists(file_name)==True: #to check if the file already exists
to prevent overwriting 

        print('\n****WARNING file directory already exists***') 
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      else: 

        fasta_file=open(file_name,'a')  

        fasta_file.writelines("\n".join(textwrap.wrap(">{0}|
{1}".format(header,SNP_ID_list[j])))) 

        fasta_file.writelines("\n"+"\n".join(textwrap.wrap(mutants_dic[SNP_ID_li
st[j]],70)).upper()) 

        fasta_file.writelines("\n") #trouble concatenating later, introduced to
help 

        fasta_file.close() 

        counter += 1  

    fasta_query=input("\nPress ENTER to exit: ")   

###-------------summary--------- 

os.system('clear')       

print('---------------------------------------------------------------------')
print('\nWildtype fasta file enterred \n{0} \n{1}'.format(header,wild_type_seq))
print('---------------------------------------------------------------------')
print('\n{0} mutant fasta files written to current directory'.format(counter)) 

print('---------------------------------------------------------------------')

Appendix 3: Python Scripts for carrying out Muscle Alignment and conversion to PIR format

muscle_alignment.py

import os 

import os.path 

fasta_mut_dir = "/home/phillip/Desktop/research_work/fasta_mut" 

structure_sequence  =
"/home/phillip/Desktop/research_work/fasta_sequences_templates/3DJH.fasta.txt" 

output_path = "/home/phillip/Desktop/research_work/alignment_files/fasta_format"

msa_output_path  =
"/home/phillip/Desktop/research_work/alignment_files/muscle_msa_output" 

list_dir = [] 

list_dir = os.listdir(fasta_mut_dir) 

list_dir2= [] 

list_dir2 = os.listdir(output_path) 

counter1=0 

counter2=0 

for i in range(len(list_dir)):  

  name = list_dir[i][0:-3] 

  fasta_file = fasta_mut_dir+"/"+name+".fa " 

  output_name = output_path + "/"+name + "_mfa_seq.fa"  

  os.system("cat "+ fasta_file + structure_sequence + " > " + output_name) 

  counter1+=1 
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for j in range(len(list_dir2)): 

  seqs_fa = output_path + "/" + list_dir2[j] 

  msa_output_name  =  msa_output_path  +  "/"+  list_dir2[j][0:-11]
+'_3djh_aligned.afa'  

  os.system('muscle -in ' + seqs_fa + ' -out ' + msa_output_name)    

  counter2+=1 

print(str(counter1) + " files concatenated and " + str(counter2) + " msa files
written  to
/home/phillip/Desktop/research_work/alignment_files/muscle_msa_output") 

  

fasta_to_pir.py

#Script to convert fasta to .pir format for the modelling 

import os 

output_path_mut_1  =
"/home/phillip/Desktop/research_work/alignment_files/pir_format_1_mut" 

output_path_mut_2  =
"/home/phillip/Desktop/research_work/alignment_files/pir_format_2_mut" 

output_path_mut_3  =
"/home/phillip/Desktop/research_work/alignment_files/pir_format_3_mut" 

muscle_msa_path  =
"/home/phillip/Desktop/research_work/alignment_files/muscle_msa_output" 

wildtype_seq="""MPMFIVNTNVPRASVPDGFLSELTQQLAQATGKPPQYIAVHVVPDQLMAFGGSSEPCALCSLHS
IGKIGG AQNRSYSKLLCGLLAERLRISPDRVYINYYDMNAANVGWNNSTFA""" 

structure_x = """>P1;3DJH.pdb 

structureX:3DJH.pdb: 1 :A: 115:C:::2.00:0.25 

-PMFIVNTNVPRASVPDGFLSELTQQLAQATGKPPQYIAVHVVPDQLMAFGGSSEPCALCSLHSIGKIGGAQ 

NRSYSKLLCGLLAERLRISPDRVYINYYDMNAANVGWNNSTFA 

/ 

-PMFIVNTNVPRASVPDGFLSELTQQLAQATGKPPQYIAVHVVPDQLMAFGGSSEPCALCSLHSIGKIGGAQ 

NRSYSKLLCGLLAERLRISPDRVYINYYDMNAANVGWNNSTFA 

/ 

-PMFIVNTNVPRASVPDGFLSELTQQLAQATGKPPQYIAVHVVPDQLMAFGGSSEPCALCSLHSIGKIGGAQ 

NRSYSKLLCGLLAERLRISPDRVYINYYDMNAANVGWNNSTFA*""" 

###-------------importing the data------------------ 

def readfastamsa(filename): 

  f=open(filename,"r") 

  lines = f.readlines() 
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  f.close() 

  return lines 

#---------------loop ---------------------- 

list_dir = [] 

list_dir = os.listdir(muscle_msa_path) 

counter=0 

for i in range(len(list_dir)): 

  

  name = muscle_msa_path+"/"+list_dir[i] 

  name2 = list_dir[i][0:-17] 

  lines=readfastamsa(name)  

  file_name1 = output_path_mut_1+"/"+name2+"_1mut.pir" 

  file_name2 = output_path_mut_2+"/"+name2+"_2mut.pir" 

  file_name3 = output_path_mut_3+"/"+name2+"_3mut.pir" 

  one_mut_file=open(file_name1,'w')  

  one_mut_file.writelines(">P1;"+ name2) 

  one_mut_file.writelines("\nsequence:"+name2+":1:A:345:C::::") 

  one_mut_file.writelines("\n"+ (lines[1]+lines[2]).replace("\n","")) 

  one_mut_file.writelines("\n/"+"\n"+ wildtype_seq) 

  one_mut_file.writelines("\n/"+"\n"+ wildtype_seq + "*" ) 

  one_mut_file.writelines("\n"+ structure_x) 

  one_mut_file.close() 

  two_mut_file=open(file_name2,'w')  

  two_mut_file.writelines(">P1;"+ name2) 

  two_mut_file.writelines("\nsequence:"+name2+":1:A:345:C::::") 

  two_mut_file.writelines("\n"+ (lines[1]+lines[2]).replace("\n","")) 

  two_mut_file.writelines("\n/"+ "\n" + (lines[1]+lines[2]).replace("\n","")) 

  two_mut_file.writelines("\n/"+"\n"+ wildtype_seq + "*" ) 

  two_mut_file.writelines("\n"+ structure_x) 

  two_mut_file.close()

  three_mut_file=open(file_name3,'w')  

  three_mut_file.writelines(">P1;"+ name2) 

  three_mut_file.writelines("\nsequence:"+name2+":1:A:345:C::::") 

  three_mut_file.writelines("\n"+ (lines[1]+lines[2]).replace("\n","")) 

  three_mut_file.writelines("\n/"+ "\n"+ (lines[1]+lines[2]).replace("\n","")) 

  three_mut_file.writelines("\n/"+ "\n"+ (lines[1]+lines[2]).replace("\n","") +
"*" ) 

  three_mut_file.writelines("\n"+ structure_x) 
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  three_mut_file.close() 

  counter+=1 

print(str(counter*3)+" files written")   

  

Appendix 4: Python Script used for modelling MIF mutants

 Model.py

#This was the Python script used for modelling adapted from Sali labs

# Homology modelling by the automodel class 

from modeller import * 

from modeller.automodel import *   # Load the automodel class 

log.verbose()  # request verbose output 

env = environ() #  create  a  new  MODELLER
environment to build this model in 

import sys 

import os 

from sys import argv 

pir_file_name = sys.argv[1] 

sequence_name = sys.argv[2] 

top_models_dir = sys.argv[3] 

#top_models_dir = sys.argv[3] 

# directories for input atom files 

env.io.atom_files_directory = ['/jabba/JMS/users/phillip/modelling_tasks'] 

a = automodel(env, 

       alnfile = pir_file_name, #'1is8_1wur.pir',   #
alignment filename 

       knowns  = '3DJH.pdb', #('1IS8_A', '1WUR_A'),       # codes of the
templates 

     sequence = sequence_name, assess_methods=(assess.DOPE, assess.GA341))
#'Pfalciparum', assess_methods=(assess.DOPE, assess.GA341))       # code of the
target 

a.starting_model= 1    # index of the first model 

a.ending_model = 100    # index of the last model 

                  # (determines how many models to calculate) 

a.final_malign3d = True #  generate superimposed templatesand model (*_fit.pdb
files) 

a.md_level = None          # No refinement of model 

a.make()    # do the actual homology modelling 

# Get a list of all successfully built models from a.outputs 
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ok_models = [x for x in a.outputs if x['failure'] is None] 

# Rank the models by DOPE score 

key = 'DOPE score' 

if sys.version_info[:2] == (2,3): 

  # Python 2.3's sort doesn't have a 'key' argument 

  ok_models.sort(lambda a,b: cmp(a[key], b[key])) 

else: 

  ok_models.sort(key=lambda a: a[key]) 

  

# Get top model 

m = ok_models[0] 

print("Top model: {0} (DOPE score {1})".format(m['name'], m[key])) 

os.system("cp {0} {1}".format(m['name'], top_models_dir)) #copy the top model to

that file directory  

Modelling_job_submission.py

##the purpose of this script was to automate the modelling jobs on the RUBi
cluster

import os 

pir_path  =
"/jabba/JMS/users/phillip/modelling_tasks/pir_files/pir_format_1_mut/" 

model_script = "/jabba/JMS/users/phillip/modelling_tasks/scripts/model.py" 

output_path  =  "/jabba/JMS/users/phillip/modelling_tasks/output/mut1_run"  #run
job from here 

job_files_output_path = "/jabba/JMS/users/phillip/modelling_tasks/job_files" 

top_models_dir  =
"/jabba/JMS/users/phillip/modelling_tasks/output/top_mut_models_1_muts/" 

error_files_path = "/jabba/JMS/users/phillip/modelling_tasks/error_files" 

list_dir = [] 

list_dir = os.listdir(pir_path) 

for i in range(len(list_dir)): 

pir_filename = list_dir[i] 

sequence_name = list_dir[i][0:-9] 

jobname = job_files_output_path + "/"+ sequence_name + "1_mut" + ".job" 

jobtext = open(jobname,"w") 

jobtext.writelines("#!/bin/sh" + "\n") 

jobtext.writelines("#PBS -N Modelling" + str(i)+"\n") 

jobtext.writelines("#PBS -l nodes=1:ppn=1,walltime=99:00:00" + "\n") 

jobtext.writelines("#PBS -q opteron" + "\n") 
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jobtext.writelines("#PBS -e localhost:" + error_files_path + "\n") 

jobtext.writelines(". /software/nfs/Modules/default/init/sh" + "\n") 

jobtext.writelines("module load modeller/9.15"+"\n") 

#jobtext.writelines("#PBS -m abe" + "\n") 

jobtext.writelines("modpy.sh Python " + model_script + " " + pir_path +
pir_filename + " " + sequence_name + " " + top_models_dir + "\n") 

jobtext.writelines("\n") 

jobtext.writelines("\n") 

jobtext.close() 

os.system("qsub " + jobname ) 

 

Appendix 5 Bash Script used for running MD Simulations

 run_MD.sh (adapted from a tutorial available here http://www.biocode.it/tutorial-mds-8.php)

#!/bin/sh 

#PBS -N Energy_minimisation_phillip 

#PBS -S /bin/bash 

#PBS -q throughput 

#PBS -l nodes=1:ppn=1,walltime=99:00:00 

#PBS -d /jabba/JMS/users/phillip/energy_minimisation/ 

#PBS -e localhost:/jabba/JMS/users/phillip/modelling_tasks/error_files 

in_MIF=/jabba/JMS/users/phillip/modelling_tasks/output/MIF_remodelled 

out=/jabba/JMS/users/phillip/energy_minimisation/MIF_minimisation 

softwarePATH=/software/nfs/gromacs/4.5.7/bin/ 

umask 0037 

##step 1 file conversion 

$softwarePATH/pdb2gmx  -f  $in_MIF/MIF.B99990074.pdb  -o  $out/MIF_processed.gro
-water spce -ff amber03 

##step 2 creating a simulation box 

$softwarePATH/editconf -f MIF_processed.gro -o $out/MIF_newbox.gro -c -d 1.0 -bt
cubic 

##step 3 solvation 

$softwarePATH/genbox  -cp  MIF_newbox.gro  -cs  spc216  -o  MIF_solv.gro  -p
$out/topol.top 

 ##step 4 Neutralising the system 

$softwarePATH/grompp -f ions.mdp -c MIF_solv.gro -p topol.top -o ions.tpr 
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echo 13 | $softwarePATH/genion -s ions.tpr -o MIF_solv_ions.gro -p topol.top
-pname NA -nname CL -nn 1 #for amber03 forcefield" 

##step 5 Energy minimisation 

$softwarePATH/grompp -f minim.mdp -c MIF_solv_ions.gro -p topol.top -o em.tpr 

$softwarePATH/mdrun -v -deffnm em 

$softwarePATH/mdrun -v -s em.tpr -o em.trr -e em.edr -c em.gro -g em.log 

##step 6 running the evaluation 

echo 10 0 |$softwarePATH/g_energy -f em.edr -o potential.xvg 

## xmgrace potential.xvg 

##step 7 Equilibration 

$softwarePATH/grompp -f equilib-NVT.mdp -c em.gro -p topol.top -o eq.tpr 

$softwarePATH/mdrun -v -s eq.tpr -o eq.trr -e eq.edr -c eq.gro -g eq.log -cpo
eq.cpt #run takes about 40mins 

##step 8 

echo 15 0 | $softwarePATH/g_energy -f eq.edr -o temperature.xvg 

### xmgrace temperature.xvg 

## first simulation 100 ps MD run with the equilibration set to the pressure of
the  system under  the canonical  NPT ensamble  (Constant Number  of particles,
Pressure and Temperature) 

$softwarePATH/grompp -f equilib-NPT.mdp -c eq.gro -p topol.top -o eq.tpr 

$softwarePATH/mdrun -v -s eq.tpr -o eq.trr -e eq.edr -c eq.gro -g eq.log -cpi
eq.cpt -cpo eq.cpt 

#step 9 more evaluation 

echo 15 0 | $softwarePATH/g_energy -f eq.edr -o pressure.xvg 

##xmgrace pressure.xvg 

##step 10 Production dynamics 

###The system is finally ready. We can now release the position restraints and
start MD for data collection. The procedure is quite similar to the previous
step but, with an exception, the time necessary to obtain the final result will
be much longer now (almost 35 hours on a dual-processor AMD Opteron 2Ghz with
Linux CentOS). We want to run 1ns MD simulation in total but we spent 200ps for
the two previous equilibration steps. The "real" MD that we can use for data
collection will be 800ps. 

$softwarePATH/grompp -f md.mdp -c eq.gro -p topol.top -o md_01.tpr 

$softwarePATH/mdrun -v -s md_01.tpr -o md_01.trr -e md_01.edr -c md_01.gro -g
md_01.log -cpi eq2.cpt -cpo md_01.cpt -x md_01.xtc 

###We have a new file .xtc this time, what is this? Trajectory files (the
coordinates  over  time),  are  written  initially  by  mdrun  to  contain  atomic
positions, velocities, and forces. The type of data and the period with which
they are written are controlled with .mdp file options. Gromacs will write full-
precision portable-binary data in a format known as a .trr file and, optionally,
a reduced-precision format for positions only, known as an .xtc file, useful for
the analysis. 

 #step 11 analysis 

##To check if the simulation finished properly, the internal tool "gmxcheck"
allows you to verify if the simulation ran for the established time: 
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$softwarePATH/gmxcheck -f md_01.trr 

##The program "trjconv" is normaly used as the first post-processing tool in
order to correct a trajectory for periodicity, or to extract specific frames
from  a  trajectory  for  analysis.  Let's  say  to  the  program  to  generate  a
"corrected" trajectory file which can be .xtc or .pdb: 

echo 0 | $softwarePATH/trjconv -s md_01.tpr -f md_01.xtc -o md_01-trajectory.xtc
-pbc mol -ur compact 

echo 0 | $softwarePATH/trjconv -s md_01.tpr -f md_01.xtc -o md_01-trajectory.pdb
-pbc mol -ur compact 

###Calculate the Convergence of the System (RMSD) 

###We can now evaluate the structural stability of MD simulations using the Root
Mean Square Deviation (RMSD) as an indicator of convergence of the structure
towards an equilibrium state. Typing the following command: 

echo 4 4 | $softwarePATH/g_rms -s md_01.tpr -f md_01-trajectory.xtc -o rmsd.xvg
-tu ns 

###Calculate the Radius of Gyration of the Protein (Rg) 

##The  radius  of  gyration  of  the  protein  gives  an  indication  of  the  shape
(compactness) of the molecule at each time. If a protein is folded, it will
maintain a relatively steady value of Rg. If a protein unfolds, its Rg will
change over time. 

echo  4  |  $softwarePATH/g_gyrate  -s  md_01.tpr  -f  md_01-trajectory.xtc  -o
gyrate.xvg 
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