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Abstract

The high sensitivities of modern radio telescopes will enable the detection of very 
faint astrophysical sources in the distant Universe. However, these high sensi
tivities also imply that calibration artefacts, which were below the noise for less 
sensitive instruments, will emerge above the noise and may limit the dynamic range 
capabilities of these instruments. Detecting faint emission will require detection 
thresholds close to the noise and this may cause some of the artefacts to be incor
rectly detected as real emission. The current approach is to manually remove the 
artefacts, or set high detection thresholds in order to avoid them. The former will 
not be possible given the large quantities of data that these instruments will pro
duce, and the latter results in very shallow and incomplete catalogues. This work 
uses the negative detection method developed by Serra et al. (2012) to distinguish 
artefacts from astrophysical emission in radio images. We also present a technique 
that automates the identification of sources subject to severe direction-dependent 
(DD) effects and thus allows them to be flagged for DD calibration. The nega
tive detection approach is shown to provide high reliability and high completeness 
catalogues for simulated data, as well as a JVLA observation of the 3C147 field 
(Mitra et al., 2015) . We also show that our technique correctly identifies sources 
that require DD calibration for datasets from the KAT-7, LOFAR, JVLA and 
GMRT instruments.
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Introduction

The objective of this dissertation is to come up with a method to distinguish 
artefact emission from astrophysical emission in images. Currently, to avoid false 
detections, we manually have to fine-tune miscellaneous source finding parameters 
until we find models with better completeness and no (or fewer) artefacts.

The large data rates of the new radio telescopes such as the upcoming Square 
Kilometre Array (SKA; Dewdney et al., 2013) and its precursors and pathfinders; 
the Jansky Very Large Array (JVLA in the US; Napier, 2006) , Low-Frequency 
Array (LOFAR in the Netherlands; van Haarlem et al., 2013) , Australian Square 
Kilometre Pathfinder (ASKAP; DeBoer et al., 2009, Johnston et al., 2008) , and 
the MeerKAT in South Africa (Jonas, 2009) , require that calibration procedures 
become highly automated. For example, the sampling rate for the entire LOFAR 
at 200 MHz is 13 Tbits/s of raw data (van Haarlem et al., 2013) . One of the major 
steps to automating calibration is the ability to generate accurate and complete 
sky models without the need to inspect the data.

Additionally, these telescopes are extremely sensitive and subject to complex 
direction-dependent effects (DDEs). The complexities of the DDEs make them 
difficult to model, therefore resulting in large systematic errors. The high sensi
tivities cause these systematic errors to emerge significantly above the noise and 
therefore increases the chance of them being misclassified as astrophysical emission 
during source finding. Another common practice to avoid artefacts, which is not 
always successful, is setting source finding thresholds very high. However, even 
though this may avoid false detections, it normally reduces the completeness of 
the resulting catalogues, this, in turn, compromises the full scientific potential of 
these instruments.

To address this problem we developed an algorithm that uses detection features 
such as peak flux, integrated flux, size, and local noise to classify them into false
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Introduction 2

or true detections. This algorithm implements and extends the technique known 
as the Negative detections Method, first developed and implemented in a similar 
context by Serra et al. (2012) . Instead of spectral line data as in Serra, we devel
oped this algorithm for continuum data, in particular, the upcoming continuum 
surveys such as MIGHTEE with the MeerKAT, Evolutionary Map of the Universe 
(EMU) with ASKAP, Westerbork Observations of the Deep APERTIF Northern 
Sky (WOGAN) with the upgraded Westerbork Radio Telescope (WSRT), Giant 
Metrewave Radio Telescope (GMRT) surveys, JVLA and LOFAR surveys (Norris 
et al., 2013) .

As a result of the first approach, we were able to come up with a technique to 
identify sources subject to extreme DDEs. This technique is tested on the datasets 
from the KAT-7 instrument, the JVLA, the GMRT and LOFAR.

The dissertation is structured as follows:

Chapter 1 introduces the reader to basic radio interferometry and the measure
ment equation. It also describes the concept of calibration using the measurement 
equation and ways in which artefacts arise in images. This is followed by a brief 
description of the techniques implemented by source finders, and conditions that 
lead to misclassification of artefacts as astrophysical emission.

Chapter 2 describes the negative detection method used to distinguish artefacts 
from astrophysical emission, and further describes the algorithm that we have 
developed to carry out this task. The analyses are based on the JVLA simulated 
data and the JVLA observation of the 3C147 field.

Chapter 3 describes the algorithm that automates the identification of sources 
that require direction-dependent (DD) calibration solutions. The algorithm is 
tested on LOFAR, JVLA, KAT-7 and GMRT datasets. This is followed by the 
general conclusion as well as the future work. Appendix A provides the detailed 
implementation of the software package we developed in this work.



Chapter 1

Background

This chapter aims to provide the reader with the tools necessary to understand the 
research conducted in this dissertation. First, we briefly describe the electromag
netic waves associated with astrophysical sources, followed by an introduction to 
radio telescopes, radio interferometry, and the form of measurements made by an 
interferometer. Further, we discuss the different types of propagation effects that 
affect the interferometric measurements and a mathematical formulation known 
as the Radio Interferometer Measurement Equation (RIME) used to infer and 
represent these effects. The process of correcting for the propagation effects is 
known as calibration. Since there exist no perfect calibration, there are always 
systematic errors induced during the process, which then build up as artefacts 
in images. When going deeper in an image, these artefacts surfaces significantly 
above the noise and are usually on the same flux level as the faint astrophysical 
sources, therefore making it difficult to differentiate. Later in this chapter, we 
describe source finding techniques and the difficulties encountered in the presence 
of artefacts. Lastly, we provide a detailed description of our objective, the scope 
of this thesis and the work done previously in a similar study.

1.1 Electromagnetic Waves

The propagation of the electromagnetic waves (EM) in free space is governed by 
following Maxwell’s wave equation (derived from Maxwell’s equations);

d1 2E
~d¥

1 V 2E  =  0
v 2

(1.1)

3



Chapter 1. Background 4

where
c

(1.2)

and V 2 is the Laplacian operator, E  is the electric field, /a is the permittivity 
of the medium and £o is permeability of the medium. For propagation in free 
space; a ^  ao, £ ^  £o, and v =  c (Wilson et al., 2012) . A similar wave equation 
expression holds for the magnetic field, B . Equation 1.1 is a homogeneous (i.e 
free of currents and charges) linear partial differential equation of second order 
(Wilson et al., 2012) , thus, comprises of a large set of solutions, of which some 
are not solutions to Maxwell’s equations (Burke and Graham-Smith, 2002) . Thus, 
some simplifying assumptions must be made. One of the important things to note 
is that for a solution to satisfy both the wave equation and Maxwell’s equations 
it must satisfy the dispersion relation given by Eq. 1.3.

u2 |k|2c2
a£

(1.3)

where k is a wave vector, c is speed of light in the vacuum and u is the angular 
frequency.

First, if we assume monochromatic harmonic waves then the solution takes the 
form:

E (r, t) =  E (r )e -1wt (1.4)

where r  is the position vector, E  is a complex amplitude and t is time. Since 
astronomical objects are at large distances from the observer on Earth, incoming 
waves can be approximated as planar. This implies that E (r ) varies only in one 
direction. Note that the direction of k specifies the direction of the propagation 
of the waves and is always perpendicular to both the electric field and magnetic 
field; also these two fields are always perpendicular to each other. If we let the 
direction of the propagation be along k =  kZ, then the plane wave solution is

E (z) =  Eoe'kI, (1.5)

and the full solution becomes

E (z,t) =  E„e’(kz-" t) (1.6)
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where E o is the constant amplitude vector which contains the phase information, 
e1̂ , where 0 is the phase (Burke and Graham-Smith, 2002) .

If the direction of the electric field is defined along a unit vector a which lies in 
the x, y-plane, then Eq. 1.6 can be written as

E(z, t) =  (xEx +  Eyy)el(fcz-wt), (1.7)

where amplitudes Ex and Ey are E^e1̂  and E°e*^y, respectively. Let’s consider 
the physical quantity of the wave by taking the real part of the Eq. 1.7;

E (z,t) =  (xEx +  Ey y )el(fcz-wt)} ,

=  (xEx +  yE y) cos(kz — ut),

=  xEo cos(kz — ut +  0x) +  yEyo cos(kz — ut +  0y). (1.8)

If the phases are equal, 0x =  0y =  0, then we have linearly polarised waves of 
amplitude |Eo| =  ^ (E£)2 +  (E °)2 and polarisation angle 0 =  tan- ^ . For a 
situation whereby the waves are out of phase by ± n /2  and Ex =  Ey =  Eo, the 
resulting waves will be right or left circularly polarised as shown below;

E(z, t) =  xEx cos(kz — ut) +  yEy cos(kz — ut +  n/2)

=  xEo cos(kz — ut) +  yEo sin(kz — ut). (1.9)

For the general values of the phases and amplitudes, the resulting polarisation 
mode is elliptical, thus making linear and circular polarisation special forms of 
polarisation. Electromagnetic waves from astronomical sources can be unpolarised 
or polarised.

1.2 Radio Telescopes

Radio telescopes are instruments designed to measure the EM radiation emitted 
at frequencies within the radio spectrum. A typical radio telescope consists of 
an antenna and a receiver. The different antennas include parabolic dish anten
nas, loop antennas, vertical antennas, dipole antennas, and much more, some still 
under development. To illustrate how the different parts of the radio telescope 
work, we consider the MeerKAT parabolic dish antenna shown on Fig 1.1. This
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particular antenna layout is called the Offset Gregorian antenna. The incident

F igure 1.1: A Cassegrain radio telescope. Image Credit: SKA SA Public 1

waves (dotted line) are reflected off the surface of the large parabolic dish (13.5 
m) and redirected towards the secondary reflector (3.8 m), and are then focused 
in the feed horn. Inside the feed horn are the two orthogonal receptor components 
with each component sensitive to its corresponding polarisation component of the 
electric field (Hamaker et al., 1996) . Thus, feeds are generally designed to mea
sure the linear polarisation (denoted by X , Y ) or circular polarisation (denoted 
as R, L for right and left circular polarisation; Hamaker et al., 1996, Kemball and 
Martinsek, 2005) . For the MeerKAT, in particular, the feed horns are part of the 
receivers but note that receivers and feeds can be built separately. The purpose of 
the receivers is to capture the radiation and convert it to electrical voltages and 
then amplify it.

Telescopes are generally characterised according to two quantities, namely resolu
tion and sensitivity. For a radio telescope, the sensitivity is defined as the faintest 
flux emission detectable, and is given mathematically by the following radiometer 
equation (Wrobel and Walker, 1999) ;

2kTsys
Aeff V A tA v ’

(1.10)

where k is the Boltzmann constant, Tsys is system noise temperature, Aeff is the 
dish effective area, At is the integration time and A v is the bandwidth. The
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system noise temperature is given as;

Tsys =  Ta +  Tr , (1.11)

where TA is the antenna temperature and TR is the receiver temperature. The 
receiver noise temperature is usually reduced by cryogenically cooling the system. 
The antenna temperature comprises of the following;

TA =  TCMB +  Tobject +  TRFI +  TATM +  ' ' ' , (1.12)

where TCMB is the noise temperature from the cosmic microwave background, 
Tobject is the noise temperature from astronomical objects, TRFI is the radio fre
quency interference (RFI) from man-made radio signals such as cell phones, satel
lites, etc and Tatm is the atmospheric noise.

The resolution, on the other hand, is defined as the minimum angular separation 
resolvable by the telescope, and defined mathematically as;

0 «  D , (1.13)

where A is the wavelength of the radiation and D is the diameter of the telescope. 
Obtaining high resolution with single dish has been one the challenging aspects to 
radio astronomy due to its longer wavelengths. Quantitatively, an optical telescope 
of 10m diameter and 550nm observational wavelength achieves a resolution of 
~  0.01 arcseconds. To obtain the same resolution with a radio telescope operating 
at 21cm wavelength requires a dish of diameter ~  4000km, which is not practically 
possible. Over the years, larger radio telescopes were built, and the current largest 
telescopes are the 100m Green Bank Telescope (steerable dish, USA), Effelsberg 
(100m steerable dish, Germany) and a Arecibo (305m non-steerable dish, Puerto 
Rico; Wijnholds et al., 2010) . Large steerable dishes are difficult to build and are 
most often subject to gravitational pull and thermal expansion which results in a 
high level of pointing errors, tracking inaccuracy and surface deformation.
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1.3 Radio Interferometry

Radio interferometry is a technique used in radio astronomy to combine signals 
from more than one telescopes into a single signal using the principles of inter
ferometry (Wilson et al., 2012) . The resolution in this case is given by A/Bmax, 
where Bmax is the maximum baseline (where baseline means the projected dis
tances between a pair of telescopes). Baselines can be made as large as possible 
by placing the telescopes at different locations on Earth or even in space, therefore 
increasing the resolution. The sensitivity, on the other hand, depends on the total 
effective area of the dishes as seen in Eq. 1.10. Thus, in order to improve the 
sensitivity one requires a large number of telescopes, large bandwidths and inte
gration times as well as low noise receivers. For an interferometer, the radiometer 
equation becomes;

a =  , (1.14)
y/2N(N -  1)AvAt ’

where SEFD is the system equivalent flux density expressed as 2kTsys/A ef f , and
N is the number of antennas.

1.3.1 Interferometric Measurements

Figure 1.2 is a simple two-element interferometer consisting of antenna p and q 
pointing in the direction s towards an astrophysical source. As in section 1.1, 
consider a quasi-monochromatic source situated in the far-field of the telescope 
such that planar waves assumption holds. Thus, if z denotes the direction of 
the propagation, then the electric field vector, e, in the direction x, y-plane can 
be represented as column vector of two complex numbers (Clark, 1980, Smirnov, 
2011a) ;

e =  eeyx . (1.15)

Further, let us assume that the instrument is perfect and that the observed sky 
is small enough that atmospheric variations are negligible. Since the antennas 
are located at different positions, the signal from an object not situated directly 
overhead (zenith) reaches the antennas at different times. As shown in Fig. 1.2, 
the incoming signal reaches antenna q before antenna p, due to the additional 
travel path length, crg, along the direction p. To ensure that the signals from the 
antennas meet coherently, we introduce the instrumental delay, Tj, in the signal
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F igure 1.2: An interferometer consisting of two antennas, namely antenna p 
and q. This interferometer is observing a distant astrophysical source (in the 
far-field) radiating an electric field denoted by a complex vector e. crg is the 
additional pathlength travelled by signal to antenna p. On its arrival it induces 
the electrical voltages vp and vq at the antenna feeds. The K , G and E are the 

phase delay, instrumental gains and primary beam, respectively.

from q to try and match it with the signal from antenna p. If we present the phase 
delays using a scalar 2 x 2 Jones matrix (Jones, 1941) , K , and assume the linear 
relationship between the phase delays and the electric field (to be explain later), 
then the induced voltages take the form (Smirnov, 2011a)

v Va
V b

K  e; K
0

0 e^ ’
(1.16)

where the subscript a and b denote feeds polarisation orthogonal components.

This implies the respective voltages in each antenna are vp = ( Vp“) =K p e  and 
vq =  (V9“) =  Kq e, where Kp =  e-lWT« and Kq =  e-lWTi. The voltages are then
cross-correlated (multiplied and time averaged) to obtain the complex visibilities,



Chapter 1. Background 10

Vpq as follows

Vpq =  (vP v f )

=  (Kp e (Kq e )H )

=  (Kp (e e H) K„«}  (1.17)

where superscript H is a Hermitian transpose. A Hermitian transpose, also known 
as conjugate transpose, is equivalent to taking the transpose of an m by n ma
trix consisting of complex entries and then taking its complex conjugate. Thus, 
an interferometer measures the coherence of the signals (electric field) from two 
separate antennas (Clark, 1980) . Since K  is both scalar and diagonal it commutes 
with everything which means Eq. 1.17 can be written as;

Vpq =  ( ( e e H) KpKqH)

=  ( (e e H) e -w" (T*-T<))

=  ( ( e e H) e -w (b • ‘ /c-T i)V (1.18)

where b is the baseline vector. From here onwards I will be using K  as in Eq. 
1.17 and not the explicit one in Eq. 1.18. The latter was meant to give a reader 
a picture of what phase delays are.

Assuming that K  is constant across the averaging interval it can be taken out of 
the brackets in Eq. 1.17, and (e e H) is given as (Smirnov, 2011a) ;

(e e H) (exeX) (eyeX)
(exe*y) (eye*y)

(1.19)

( e e H)

Assuming linear feeds, Eq. 1.19 can be written in terms of Stokes parameters 
(IQUV ) as follows;

=  (  I  +  Q U +  iV N 
=  VU -  iV I -  Q,

where I  =  (exe*x) +  (eye*) is total intensity, U =
(exe*x) +  (eye*) specifies linear polarisation, and V 
circular polarisation. This implies that for a telescope with linear feeds, if one 
measures intensities in U and Q then the incoming electric field is linearly po
larised in its origin, or if intensity measurements are found in V then the field is 
circularly polarised. But since the feeds are not perfect, they tend to experience

. (1.20)

(exe*) +  (eyex) and Q =  
= (exey) -  (eye*x) specifies
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polarization leakages whereby the Stokes intensities leak into each other (Asad 
et al., 2015) . However, in this dissertation, we only concern ourselves with Stokes 
I.

Equation 1.20 is equivalent to the brightness distribution, B (Sault et al., 1996) . 
Thus, Eq. 1.17 becomes;

Vpq =  Kp B KqH. (1.21)

1.3.2 Radio Interferometer Measurement Equation

The Radio Interferometer Measurement Equation (RIME) is a mathematical for
mulation used in radio interferometry to model all the distortions endured by a 
signal throughout its path (Hamaker et al., 1996, Smirnov, 2011a) . We briefly 
describe the RIME with the intention of showing how calibration problems can be 
addressed using this equation. For an in-depth description and a full derivation 
refer to Smirnov (2011a) and references therein.

In the previous section, we only considered phase delay effects, but generally, 
the signal undergoes a series of transformations due to the medium in which it 
propagates. We can represent all effects along the signal path by the Jones matrix 
J  -  the phase delays are also contained in this term. Therefore, the visibility 
equation can be rewritten as follows;

Vpq =  Jp B JH , (1.22)

where Jp and Jq represents all the propagation effects in the direction of the 
antenna p and q, respectively.

Note that the linearity assumption between the propagation effects J  and e (hence 
B) is valid only in the case where Js are independent of the frequency (Hamaker 
et al., 1996) . Real life situations diverge from this assumption, for example, the 
phase delays themselves are frequency-dependent. However, we usually subdivide 
the large frequency band into small bands (known as subbands or coherency band
width; Hamaker et al., 1996) . The idea behind this is that the bandwidth defining 
the subband is small enough that all transformations occurring within this band 
are comparable. This similar approach allows us to drop the time dependence of 
the electric field and only consider it as electric field vector as in the beginning of 
this section (Hamaker et al., 1996) .
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These Js can be decomposed into multiple propagation effects as shown below

J Jn J  (n-1) . . .  J 1 (1.23)

and the order, n, corresponds to the order in which they act upon the incoming 
signal. That is, J 1 occurred earlier on the signal path while J n occurred last. 
Substituting Eq. 1.27 into Eq. 1.22 we find what is known as the onion form of 
RIME;

Vpq pn J p2 J pi B J H Hq1 q2 . . . J H
qm , (1.24)

where n and m need not be equal. That is to say, the effects acting on the signal 
in the direction of antenna p and q can be different (Smirnov, 2011a) .

For an observation of a single point source situated at the pointing centre (not 
at zenith), the effects present are those from the instrument itself, and the phase 
delays. If we represent the instrumental errors by a Jones matrix G  -this term 
incorporates all the effects associated with the instrument such as electronic gains 
and bandpass gains, then J  for antenna p is

J  p =  Gp Kp . (1.25)

Equation 1.22 becomes;

Vpq =  Gp (Kp B K f )  G f

=  Gp Xp, G f  , (1.26)

where X^q (=  Kp B K f ) is the sky coherency or model visibilities. Now, instead of 
a single source at the pointing centre, consider N number of sources in the observed 
field. The signal from each of these sources will arrive at different times at the 
antennas, thus, making K  dependent on the direction of sources. The instrumental 
effects, on the other hand, are the same for all the sources and are generally referred 
to as direction-independent effects (DIE). Other source-dependent effects are; the 
primary beam and the ionosphere. The primary beam determines the sensitivity of 
the instrument and is directional -  the maximum sensitivity is at the beam centre 
(pointing centre) and decreases with the distance from the centre. For longer 
observations, the instrument tracks sources across the sky, thus making the beam 
response time-dependent. The ionosphere becomes significant at low frequencies, 
wide-field observations, and large arrays. LOFAR is an example of an instrument
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that is limited by the ionospheric effects. These direction-dependent effects can 
be collectively represented by a term E , then Eq. 1.25 becomes

J sp GpK spE  sp , (1.27)

where s is a source in question. The phase delay is usually treated as a separate 
entity, thus it is not contained in E. Thus, for a field with N sources, the model 
visibilities are N

Vp, =  Gp (  Y ,  E spXspq Efq) G f , (1.28)
s

where Xspq is the source coherency defined as K spBsK f  (Smirnov, 2011a,b ,c) . 
Equation 1.28 can be written in terms of the sky coherency as in Eq. 1.26 except 
that the sky coherency becomes N E spXspq E f , which is the sum of coherencies
of N sources (Smirnov, 2011b) .

1.3.3 Calibration

Calibration is the process of estimating and correcting for instrumental and atmo
spheric effects embedded in the signal during its propagation towards the interfer
ometer (Grobler et al., 2014). In RIME terms, calibration is a method of finding 
G  and E  that minimises the difference between the measured visibilities and the 
modelled visibilities. Suppose that the interferometer measures the visibilities 
Vpqe“s (Grobler et al., 2014) , defined in Eq. 1.29.

V ™  =  GpXpq G f  +  npq (1.29)

where Gs are the unknown gains and npq is the random complex noise with Gaus
sian distribution of zero mean and standard deviation (root mean square, rms) a 
representing the thermal noise (Cornwell and Fomalont, 1999, Kemball and Mar- 
tinsek, 2005) . We try to formulate the modelled visibilities to correct for the 
present effects. The instrumental gains are always incorporated into the model 
but depending on the type of observation, the primary beam and the ionosphere 
can be ignored or included. For example, for the case of small field of views, the 
primary beam and ionospheric variations are small enough to be ignored. Suppose 
this was our case, then our model would take the form;

Vpqod =  GpMpq Gf . (1.30)



Chapter 1. Background 14

where Mpq are the visibilities generated from the sky model (Grobler et al., 2014) . 

Calibration is a x 2 minimization process where

X2 Epq
Y
pq

/mens 
pq

/mens 
pq

Vmod
Vpq 11

GpMpq G f  ||. (1.31)

Most often, the estimated gains (Gp and G f ) are considered good enough when

pq -  Vmod npq 11 pq (1.32)

But generally there are systematic errors, epq, that adds to the noise on the right 
side of Eq. 1.32 which then restricts the depth of the calibration.

1.3.4 Errors During Calibration

Systematic errors result from the imperfect calibration which is usually due to poor 
knowledge of the instrument and the observed sky. For example, an observation 
carried out using different antennas, results in beams which may differ in shape 
and sizes thus making it difficult to model accurately. Also, observation carried out 
using large arrays (e.g VLBI, LOFAR with international stations) experiences large 
clock offsets which may lead to significant phase errors. For the latter case, another 
problematic effect is the ionosphere which may vary significantly across the field of 
view, thus presenting a more complex structure to model to detail. The direction- 
dependent effects are generally poorly known due to their complexity such as 
beam rotations, time-dependent beam shape and extreme ionospheric fluctuations. 
The accuracy of the sky model generated is also important. Any omitted or 
poorly modelled source induces errors during calibration. This includes both over- 
and under-estimation of flux. These systematic errors manifest themselves as 
calibration artefacts in images (Smirnov, 2011b,c) .

1.3.5 Calibration Artefacts

Calibration artefacts can be categorised into two: (1) those that are due to in
complete sky models and (2) those that due to DDEs or incorrect instrumental
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modelling. The former are generally very faint and act as real sources in images, 
an example of these are ghost sources (see Bos (1985) , Grobler et al. (2014)). The 
latter can be very bright and significant in images, and hence more problematic.

Usually, the goal of calibration is to reach the noise and any source below the noise 
is ignored. But as described above, calibration artefacts add to the noise, thus, 
defining a new limit to calibration. For less sensitive instruments dominated by 
DIEs, thermal noise tends to be higher than calibration artefacts. However, for 
more sensitive instruments also dominated by DIEs, calibration artefacts tend to 
emerge above the noise level. In the latter, any of the two can be the limiting factor 
depending on which one is significant. Moreover, for the deepest observations with 
an extremely sensitive instrument such as the SKA and its precursors, dominated 
by DDEs, calibration artefacts are expected to emerge significantly above the noise 
associating themselves with bright sources in the images and therefore, limiting 
the sensitivity and the dynamic range of the observation. The dynamic range 
(DR) is defined as the maximum flux in an image divided by the noise in the 
image (Wilson et al., 2012) . Calibration artefacts increases the value of the noise 
thus affecting the overall DR.

1.3.6 Calibration Methods

Calibration approaches can be loosely grouped into generations as per Noordam 
and Smirnov (2010) : first (1GC), second (2GC) and third (3GC).

1.3.6.1 F irst-G eneration Calibration (1G C )

First generation calibration uses known calibrator sources. These sources have 
known fluxes, shapes, positions or spectra and are preferably point sources. Usu
ally, the observations are carried in such a way that the observational time is 
shared between the target field and calibrator field. The calibrator field is used 
to derive the calibration solutions. Then these solutions are the transferred to the 
target field (Wilson et al., 2012) . The images obtained after 1GC are generally of 
low dynamic ranges (DRs) and can be improved using 2GC methods (Perley and 
Smirnov, 2013) .
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1.3.6.2 Second-G eneration C alibration (2G C )

Traditional self-calibration (Cornwell and Wilkinson, 1981) , in short selfcal, is a 
second-generation calibration. Selfcal allows one to solve for the antenna gains 
using a model derived from the target field itself. This model represents a subset 
of the observed sky which mostly consists of the brightest sources in the field 
derived from 1GC image or taken from pre-existing catalogues. Selfcal assumes 
that the primary beam effects E  are constant over time and the same across all 
antennas in a homogeneous array (Smirnov, 2011b) . This implies that the beam 
can be denoted as scalar E . Thus, the primary beam effects can be corrected for 
by multiplying the source brightness with the inverse E , which we normally refer 
to as the beam gain (bg). For Selfcal, Eq. 1.28 becomes;

N
mod H HVpq =  Gp Es Xspq Es G q

s
N

=  Gp ( Y E2 Xspq) G f
s

=  Gp Xpq G f , (1.33)

where Xpq =  ^  E / Xspq.

The following are the steps carried out in selfcal (Smirnov, 2011b,c) :

1. The initial sky model visibilities, Mpq, are derived from the 1GC image 
(Grobler et al., 2014) or taken from previous observations. This model con
tains some of the brightest sources in the observed field.

2. Using the above model the instrumental gains, G, are estimated through 
minimization.

3. The estimated gains are applied to the measured visibilities; Vpqrr =  G-1 Vmqe“sG f -1 , 
in order to correct for them. This is followed by the primary beam correc
tions. The term Vpqrr is generally referred to as the corrected visibilities. 4

4. The corrected residuals are obtained by subtracting the initial model from 
the corrected visibilities, |Vp°rr -  Mpq |, and then imaged. It should be noted 
that the residuals contain poorly and/or unmodelled sources, the noise and 
calibration artefacts.
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5. If the above residuals are unsatisfactory, that is if they are not noise-like, the 
above steps are repeated. The second sky model is created from the above 
corrected residuals and updated into the initial sky model. The gains are 
recomputed using the updated sky model and applied for correction.

1.3.6.3 Third-G eneration  Calibration (3G C )

Third-generation calibration comprises of new techniques and methods, some still 
under development, aimed at dealing with DDEs. The 2GC methods fall short for 
the calibration of the observation subject to DDEs; the reason for this that they 
assume that these effects are constant over time and across all receivers, which 
is not true particularly for modern instruments. Several 3GC methods already 
exist (e.g peeling, FACET, SPAM, Sagecal; Noordam, 2004, van Weeren et al., 
2016, Intema et al., 2009, Kazemi et al., 2011) , but of particular interest to us 
is the differential gains technique implemented MeqTrees package (Noordam and 
Smirnov, 2010) and first tested on WSRT data presented in Smirnov (2011c) . This 
method corrects for DDEs through Eq. 1.34.

N
Vp, =  Gp ( Y A E *p x *p, A E 5 )  G ,", (1.34)

s

where A E sp represents the differential gains (dE). Differential gain solutions are 
estimated and applied to sources subjected to DDEs in an image. Presently, these 
sources are identified manually by looking at an image and deciding whether they 
require these solutions based on the level of artefacts around them. The advantage 
of this approach is that it requires no physical information about the sources. 
According to Eq. 1.34 the dE are responsible for correcting all the DDEs but this 
leads to extremely large degrees of freedom making this process computationally 
expensive. However, if we have parametric model of the primary beam known prior 
then we can rewrite Eq. 1.34 to be Eq. 1.35 so that dE are only responsible for 
correcting other DDEs except the nominal beam gain. This reduces the amount of 
computation required to solve for dE solutions and also reduces source suppression 
(Smirnov, 2011b,c) .

N
Vp, =  Gp (  Y AEsp Es Xsp, E , AE"q) G " . (1.35)
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1.3.7 Imaging

Imaging is a process of determining intensity distribution of the sources from the 
measured visibilities. This is achieved by taking the inverse Fourier transformation 
of the visibilities as follows;

B(l,m ) =  FT[V (u,v)] (1.36)

where l, m are coordinates in the tangent plane of the sky and u, v are the coor
dinates of the projected baseline of the interferometer expressed in units of wave
length. Each baseline vector u, v corresponds to a single component of the source 
brightness distribution. As the Earth rotates this baseline vector traces out an arc 
with each point giving a sample of the measured visibility. The superposition of 
these arcs (or ellipses) results into what is called u, v coverage of an instrument 
(Cornwell, 2008, Wilson et al., 2012) . The true brightness distribution of source 
can be recovered if the u, v coverage is completely filled with data points. How
ever, in real life, only discrete data points depending on the array configuration 
are sampled. This is a result of the finite number of antennas and time available 
for the observation. Thus the measured visibility is merely the sample of the true 
visibility VT

Vm (u, v) =  Vt (u, v)S(u, v) (1.37)

where S(u,v) represents the sampling function of the u, v. Equation 1.36 then 
becomes;

Bd (l,m ) =  FT[VT (u ,v)S(u,v)] (1.38)

where BD(l,m ) is the dirty image. The convolution theorem states that the mul
tiplication of Fourier transforms of two functions in one domain is equal to the 
convolution of these functions defined in the inverse domain 2;

Bd (l,m ) =  B(l,m ) * P(l,m ) (1.39)

where P(l,m ) =  FT[S(u,v)] is the dirty beam or the point spread function (PSF) 
of the instrument. Therefore, to obtain the true source brightness, the dirty beam 
must be deconvolved from the dirty image. The dirty image is dominated by the 
PSF sidelobes. These sidelobes result from the gaps in the u, v coverage and the 
fact that the u, v coverage has a finite extent (Briggs et al., 1999) . Deconvolution

2http://www.cv.nrao.edu/course/astr534/FourierTransforms.html

http://www.cv.nrao.edu/course/astr534/FourierTransforms.html
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is technique used to remove these sidelobes (i.e remove the PSF signature) from 
the resulting image. Popular algorithms that carry out deconvolution are Hogbom 
(Hogbom, 1974) , Clark (Clark, 1980) and Cotton-Schwab (Schwab, 1984) , collec
tively known as CLEAN algorithms. These are best suited for point sources but are 
less optimum for extended structures in an image. The deconvolution algorithms 
made to take care of extended sources are M u lti-sca le  CLEAN (Cornwell, 2008) 
and Maximum Entropy Method (Weir, 1992, Bontekoe et al., 1994) .

1.4 Source Finding Algorithms

Source finding algorithms find and group pixels in an image that are considered to 
belong to astronomical objects. Most source finders follow some of the following 
steps: (i) background estimation and subtraction, (ii) source identification, (iii) 
source characterization and measurement and (iv) cataloguing (Hancock et al., 
2012, Huynh et al., 2012) .

1.4.1 Background Estimation

Any flux contribution in an image which is not astrophysical in origin is considered 
as background noise. The estimation of this flux is known as background estima
tion. This task is easier to carry out for a background that comprises of only 
thermal noise in which a single value can be used to characterise the noise level 
in the image (Masias et al., 2012) . However, this process becomes complex and 
difficult for backgrounds with large noise variations, artefact structures or classi
cal confusion (Masias et al., 2012) . The latter is attributed to deeper observations 
with a resolution too poor to separate the individual sources thus causing less 
noisy free space between sources (Wilson et al., 2012) . The large noise variations 
are normally addressed by estimating the background in sub-regions of the image 
and using the obtained estimations to derive the single optimum background esti
mate (Hancock et al., 2012, Huynh et al., 2012) . Whilst in the presence of artefact 
structures, the image is first reprocessed using a filter in order to remove these 
structures before making an estimate (Hancock et al., 2012, Masias et al., 2012) .
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1.4.2 Source Identification and Characterization

Source identification can be done using two approaches: (i) thresholding (com
monly used) and (ii) the local peak search (not discussed) (Masias et al., 2012) . 
Thresholding is a process that involves grouping neighbouring pixels with inten
sity, I , above Ith =  cabackgrourad into what is called islands, where c E N (Hancock 
et al., 2012, Masias et al., 2012) . The local peak search on the other hand, searches 
for connected pixels with peak values above some Ipeafc and is known to work well 
for point sources and poorer for complex sources (see Masias et al. (2012) and ref
erences therein for further description). The former process is followed by source 
characterization in which each island is fitted with an appropriate model, for ex
ample the elliptical or circular Gaussian are generally used for compact sources. A 
given island may consist of more than one Gaussian (or model) depending on the 
threshold used for model fitting (Hancock et al., 2012) . Nevertheless, sources are 
formed by grouping the Gaussian components that fall within an island. This can 
be further constrained by grouping only those that fall within the size of the point 
spread function (PSF) of the observation. This is particularly important when 
bigger islands are formed. For example, the PyBDSM (Mohan and Rafferty, 2015) 
source finder only considers a group of Gaussians to correspond to a single source 
if no pixel between a pair of Gaussians has a value less than the island threshold, 
and if the distance between the centre of the Gaussians is less than half the sum of 
their widths (full width half maximums). At this stage source properties i.e fitted 
parameters such as total flux, sizes, peak flux, and errors in each measurement are 
catalogued (Hancock et al., 2012) .

1.4.3 Threshold Setting

The purpose of using a threshold is to separate pixels that belong to astronomical 
objects from those that belong to the background (Hancock et al., 2012, Hopkins 
et al., 2002, Masias et al., 2012) . Background estimation is thus crucial in setting 
a source finding threshold. The threshold is generally set to be a factor above 
background noise. For example, PyBDSM (Mohan and Rafferty, 2015) performs 
source identification based on two thresholds; the threshold for forming islands, 
thresh_isl, and the threshold for a model fitting, thresh_pix. An island is 
formed in regions with flux > mean +  thresh_isl x rms and model fitting is
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done in islands with peak flux > mean +  thresh_pix x rms, where the rms is the 
estimated noise of the image (Mohan and Rafferty, 2015) .

There is, however, a statistical way of estimating the threshold using the False De
tection Rate (FDR). It was first implemented in a source-finding task by Hopkins 
et al. (2002) . False detection rate evaluates the intensity distribution of all pixels 
in an image and compares these to an image containing only noise (Hopkins et al., 
2002) . This method sets a threshold that limits the false detections depending on 
the statistics of the noise distribution (Huynh et al., 2012, Miller et al., 2001) .

1.4.4 Completeness and Reliability

The performance of a source finder is determined by its completeness and reliability 
(Hopkins et al., 2015) . Completeness is the fraction of sources in an image detected 
by the source finder tool and is defined by Eq. 1.40.

C =  —  (1.40)
n

where nr is number of real sources and n is the total number of sources present in 
the image (Westerlund et al., 2012) .

The reliability refers to the fraction of sources detected by the source finder that 
are actually real and is given by Eq. 1.41.

R =  —  (1.41)
nt

where nt is the total number of detections both real and spurious (false positives) 
(Hopkins et al., 2015, Westerlund et al., 2012) . The reliability can be used in two 
different ways depending on the context. First, it can be used as a single value to 
characterise the entire source catalogue (Serra et al., 2012) as defined in Eq. 1.41. 
It can also be used to characterise the individual sources in the catalogue as in 
Serra et al. (2012) . The latter reliability is obtained from density estimations as 
will be discussed in Chapter 2.

Ideally, a good source finder should have a high completeness and reliability. How
ever, in reality, there is usually a trade-off between these two quantities. That is, 
one may choose to detect more sources (real emission) in the image while intro
ducing more background noise (false detections), or one may choose to avoid the
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background noise at the expense of overlooking other real emission. A review of 
the performance of the existing source finders is presented in Hancock et al. (2012) , 
Hopkins et al. (2015) , Huynh et al. (2012) .

1.5 Problem Statement

Calibration artefacts limit the depth of the source catalogues and images. These 
artefacts are in some cases brighter than some of the astrophysical emission in 
an image and thus may be classified incorrectly as real emission during source 
extraction. The optimum source finding threshold which avoids false emission is 
set manually. Most of the time this threshold is very high and causes some of the 
real emission to be overlooked. This leads to shallow and incomplete sky models 
which impact on the calibration gain estimation. This is typically addressed by 
iteratively improving the sky model through successive applications of calibration, 
imaging and source finding i.e multiple selfcal iterations. However, this is both 
computationally expensive and time-consuming.

A second problem is to determine which sources are subject to severe DD effects 
without manual inspection of the image. These sources need to be identified 
robustly so that one can perform DD calibration on them.

1.6 Previous Work

There has been work done in distinguishing astrophysical emission from spurious 
emission. Serra et al. (2012) used the negative detection method for spectral 
line observations. This work showed that spurious emission, in particular the 
noise artefacts can be reliably excluded from source catalogues by studying their 
distributions in a well-known parameter space. The parameters used were the peak 
flux, integrated flux and the number of voxels. This algorithm is implemented in 
a source finding tool called SoFiA (Serra et al., 2015) . They tested this method 
on an image cube containing noise and 137 neutral hydrogen (HI) input sources 
and found a total of 303 detections, and out of these 41 were selected as reliable 
sources. However, 40 of the detections were classified accurately as true emission 
while a single noise artefact was misidentified as true. Further, they implemented
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their method in an image cube containing radio frequency interference (RFI) and 
found promising results. Thus, they concluded that their method may be able to 
work for extreme cases consisting of imaging or calibration artefacts and also that 
the classification can be improved by increasing the parameter space.

1.7 Objectives of the Dissertation

Given the challenges and practical limitations to robust source-artefact discrimi
nation, we aim to develop an algorithm that:

• distinguishes astrophysical sources from the spurious emission in an image, 
and

• identifies sources that require DD calibration.

An additional goal is to obtain deeper and high fidelity sky models in the initial 
selfcal iterations. That is to say that the sky models must contain a large subset of 
the actual sources (high completeness) without any false emission (high reliability).

We use a similar approach as Serra et al. (2012) to distinguish spurious emission 
from astrophysical emission. Following the recommendations in Serra’s paper, we 
extend his work to distinguish astrophysical emission from calibration artefacts in 
an increased parameter space. However, our algorithm is specifically developed 
for continuum observations.
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Source-Artefact Discrimination

From the previous chapter, we have learnt about the problem of calibration arte
facts in radio images and how they may limit the dynamic range of the modern 
instruments. This chapter describes the algorithm used to distinguish astrophysi- 
cal sources from calibration artefacts, as well as its application to simulated data 
and a JVLA observation. Note that the figures used from section 2.1 to section 
2.4.2 are generic examples to illustrate the key concepts of the algorithm. It should 
also be noted that the algorithm at the time of writing was developed and tested 
in Stokes I (total intensity) images, and therefore, the images presented in this 
work are mainly in this intensity. As we mentioned before, this work is focused on 
continuum data, specifically continuum survey fields (its applicability may extend 
beyond this) whereby a variety of source morphologies (resolved and unresolved) 
are present. An unresolved source is a source with an angular size larger than 
the instrument’s angular resolution, and a resolved source has the angular size 
smaller than the angular resolution. For this work, one does not assume any par
ticular source morphology, thus, the image can comprise of unresolved (point) and 
resolved (extended) sources.

2.1 Source Extraction

Before going into the details of the algorithm, there are two key terms that we 
need to explain. These are the positive and negative detections. Figure 2.1 shows 
an example of an interferometric image. This image is a cut-out from a larger map 
depicting an off-axis source that is subject to severe DDEs due to the primary beam

24
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rotation. The left side shows the original (or positive) image (restored image) 
obtained directly from CLEAN 1 and the left image is the inverted (or negative) 
image obtained by multiplying the original image by -1. Source extraction is 
performed on each of these images independently using the available source finding 
tools. We refer to the detections obtained from the positive image as positive 
detections and those from the negative image as negative detections.

F igure 2.1: Left panel: the original image obtained using the CLEAN algorithm. 
Right panel: the inverted image obtained by multiplying the original image by 

-1. These images are represented in total intensity (Stokes I ).

2.2 Negative Detection Method

We developed an algorithm that implements the negative detection method (NDM) 
to classify positive detections into astrophysical emission and artefact emission. 
This method hinges on the following assumptions as per Serra et al. (2012) :

1. Astrophysical emission has positive total (integrated) flux.

2. There exists a parameter space in which astrophysical emission and artefact 
emission occupy distinct regions.

3. Instrumental noise is symmetric about zero in the image plane.

1The restored image is obtained after deconvolving the dirty beam from the true brightnesses, 
and adding the resulting point source components reconvolved with an ideal PSF (clean beam) 
to the residual noise (Hogbom, 1974).
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For our case, we assume that calibration artefacts are quasi-symmetric about zero 
in an image plane. The reason for this is that calibration artefacts are generally 
coupled to the level of the PSF sidelobes. These sidelobes have negative/positive 
vaguely symmetric structure. The new generation of radio telescopes have very 
good u, v coverages, even for snapshot observations, which results in lower level of 
sidelobes, and therefore artefacts. But even though this is the case, the sensitivities 
of the these instruments make the artefacts significant above the noise. Unlike the 
noise peaks, calibration artefacts are elongated, and are never isolated, but are 
always associated with strong sources in the image. The latter is the case because 
DDEs are multiplicative in the image plane thus, prominent around strong sources 
(Smirnov, 2011b) .

2.2.1 Visualisation of the Assumptions

The purpose of this section is to provide supporting figures for the above assump
tions. The detections used were extracted from the JVLA simulated image (see 
section 2.5 for details on simulations).

Figure 2.2 shows an example of the distribution of the positive detections in the 
parameter space defined by three different source parameters (or features); X , 
Y  and Z . For clarification purposes, note that X , Y, Z refers to some abstract 
example source parameters and not conventional spatial coordinates. Specifically, 
X , Y  and Z  are the local variance, peak flux and total flux (see section 2.4.2) 
respectively. Since this is simulated data, we have good knowledge of what is real 
(shown in blue) and what is false (shown in red).
From these plots, it can be seen that the distribution of the positive detections 
can be categorized into two distinct classes of distributions; a class that describes 
the spurious emission and another that describes astrophysical emission. The 
separation is more apparent in the parameter spaces defined by X  & Y  and X  
& Z . The parameter space defined by Y  and Z  shows one of the challenges of 
classification when the distributions are not distinct across the parameter space. 
The key point is that for some well-chosen features, it is possible to separate the 
astrophysical emission from the artefact emission.

Figure 2.3 shows the distribution of positive detections and negative detections. 
The negative detections appear to occupy a more similar parameter space as the
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spurious emission from the positive image. This shows that the distribution of the 
spurious emission in the positive and negative image is quasi-symmetric.

F igure 2.2: The distribution of positive detections. These detections were 
obtained from the JVLA simulated image. It can be seen that the distributions 
of the astrophysical emission and spurious emission form two distinct classes. 
The distinction is more apparent in the parameter spaces defined by X  & Z 
and X  & Y . The parameter space defined by Y and Z shows that in some cases 

the distributions may become indistinct.

•  • •  Spurious
■ ■■ Astrophysical
•  • •  Negative

X

•  • •  Spurious
■ ■■ Astrophysical
•  • •  Negative

X

•  • •  Spurious
■ ■■ Astrophysical
•  • •  Negative

Y

F igure 2.3: The distribution of positive detections and negative detections. 
The negative detections occupy similar regions of the parameter space as the

spurious emission.

2.3 Density Estimations

From the stated assumptions, we let astrophysical emission and spurious emission 
be defined by Class 1 (C1) and Class 2 (C2), respectively. Our goal is to use
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probability measures to quantify and hence classify positive detections as either 
belonging to C1 or C2. This will be achieved through density estimations. There 
are parametric and non-parametric ways of estimating density functions. Para
metric approaches assume the data to be drawn from some specific distribution 
and estimate the defining parameters of this distribution using the data. For ex
ample, if a normal distribution is assumed, the main task will be to estimate the 
mean and variance of this distribution from the data. Although this may simplify 
the problem and be less computationally intensive, this approach poses a subjec
tive model and therefore not optimum for complicated data structures (Duong, 
2004) . Non-parametric, on the other hand, allows the data itself to decide on the 
underlying distribution. Examples of non-parametric density estimators are the 
histogram and kernel density estimation (KDE, Duong, 2004) . In this work, we 
are using KDE to construct the density functions.

2.3.1 Kernel Density Estimation

Given a random sample (X i, X 2, ...,X n} drawn from a distribution with an un
known density f  (x), the kernel estimator is defined as

f(x ) — ynh i=1

x — Xj
h (2.1)

where n is sample size, K (■) is a kernel function (also known as the probability 
density function) which satisfies the following conditions

K  (x)dx =  1 (2.2)

and K (x) > 0 for all x € R, and h is a bandwidth also known as the smoothing 
parameter which determines the width of the kernel (Duong, 2004, Hasen, 2009) .

Figure 2.4 shows a univariate kernel density estimate obtained from the data, 
( —1, —0.8, —0.6, 0.5,1.2}, using a Gaussian kernel (see Eq. 2.3) with a bandwidth 
of 0.3517 (Duong, 2004) .

1 _1 (  x-Xi ̂

F (x -h) =  T i T  5 l ‘ J (2'1 * 3)

where i =  1,..., n and X j is the mean (data point).
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The kernel n-1h-1K  x—Xi is centred and evaluated at each data point (Xj) 
shown by the Gaussian dotted lines. The final kernel density estimator is obtained 
by summing the contributions from each data point and is represented with a solid 
line. This implies that the estimate, f  (x), becomes larger if observations are closer 
to X  and is smaller if there are fewer observations (Hasen, 2009) .

F igure 2.4: Univariate kernel density estimation. The dotted normal lines are 
the individual kernels centred at each data point. The solid line is the density 
estimate obtained by taking a sum of the dotted lines kernels. Image Credit

Tarn Duong Duong (2004)

For a general case of a multi-dimensional data X j =  (X j1,X j2, . . .  ,X jd)T; i € N, 
the kernel density estimator is defined as

f (x )
1

n|H 12 K
X X  j

1
H  2

1 (2.4)

where K (■) is the d-dimensional kernel function, H  is a d x d bandwidth matrix 
and x  € Rd (Duong, 2004) .

Figure 2.5 illustrates the kernel density estimator of a 2-dimensional data using 
a 2-dimension Gaussian kernel. The left diagram depicts the individual kernels 
centred about each data point and the right depicts the estimated density obtained 
by summing up kernel contributions. Kernel density estimation works well for data 
with dimension less than 6. Higher dimension causes instabilities in the estimate 
(Duong, 2004, Scott, 1992) .
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F igure 2.5: Bivariate kernel density estimation. Left are the kernels centred 
at each data point. Right is the density estimate. Image Credit Tarn Duong

Duong (2004)

2.3.1.1 B andw idth Selection

The resulting kernel estimator is highly dependent on the choice of the smoothing 
parameter H  (Duong, 2004, Hasen, 2009) . A broad H  results in over-smoothing 
and hides the important features within the data (Hasen, 2009) . This increases 
the estimation bias. Meanwhile, a narrower H  under-smooth the data and thus, 
increases the estimation variance (Hasen, 2009) . A bandwidth can be chosen 
in such a way as to minimise the error between estimation bias and estimation 
variance. The measure of the error is referred to as the mean squared error (MSE), 
defined as (Hasen, 2009) :

MSE =  E f  (x) — f  (x ) )2

=  bias(f (x))2 +  Var(f (x)), (2.5)

where E is the expectation value, estimation bias is defined as bias(f(x)) =  
E f  (x) — f  (x) and estimation variance is Var =  E [f  (x) — E f  (x)] (Duong, 2004) . 
Scott (1992) , Bowman (1997) showed that for a Gaussian kernel with normally 
distributed data, the optimal bandwidth that minimizes the MSE is

u _ (  4 y/(d+4)
hj =  (d + 2) m /

(2.6)



Chapter 2. Source-Artefact Discrimination 31

where j  =  1 ,2 ,..., d; hj € H  , H  is a diagonal matrix with diagonal entries hj and 

is the standard deviation o f jth  random variable (Zhang et a l., 2004) . Figure 

2.6 shows a univariate example o f over- and under- smoothing, and bandwidth 

derived from MSE.

0.40 

0.35 

0.30 

0.25 

0.20 

0.15 

0.10 

0.05 

0.00

Figure 2.6: Plots derived using three different bandwidths. Left shows the 
over-smoothing (h =  1.0), middle plot is the under-smoothing (h =  0.05) and 

right is the plot for the bandwidth derived using MSE approximation.
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2.3.1.2 Density Function Im plem entation and Reliability Estimations

We used Gaussian kernels to estimate the densities for the positive and negative 

detections with bandwidth entries derived from Eq. 2.6. Figure 2.7 is an exam

ple o f the estimated density for the positive detections f P (x ) (red contours) and 

negative detections f N(x ) (blue contours) where x  € R 2. The plotted data points 

represent the positive detections. Note that from now onwards I will be referring 

to random variables X  as features or parameters. Finally, our goal is to evaluate 

the probability o f each data point in each density field. For example, if we con

sider a data point described by features (x ,y ) we com pute f P (x ,y ) and f N(x ,y ) 

which is the probability evaluated in the positive and negative density field, re

spectively. Depending on the resulting probability value we can thereafter classify 

it as either belong to C 1 or C2. For instance, since the density f P consists of 

contributions from astrophysical and artefact emission thus, if f P (x ,y ) 

then the detection in question is likely to be an artefact.

To properly quantify the above probabilities, we need to introduce a measure 

known as the reliability (Serra et a l., 2012) , which is distinct from the R  parameter 

in Eq. 1.41. If you recall, R  was initially defined as a reliability that categorises 

the entire catalogue but in this case the reliability will be used to quantify each



Chapter 2. Source-Artefact Discrimination 32

F igure 2.7: The density field estimated using Kernel Density Estimation 
(KDE). The f  P represents the density of the positive detections and f  N is 
the negative density field estimated using the negative detections. The dotted 
points represent the positive detections. This parameter space is defined by the

example parameters X  and Y .

detection in a catalogue. The reliability of a positive detection with features 
(x, y , ...) is defined as

r  =  / p (x ,y, •••) — / n (x ,y, •••) 
/ p (x ^  •••)

Let P  be a number density given as P  =  f P(x,y, •••)/n and N  =  f N(x ,y )/m , 
where n and m are length of data points of the positive and negative detections 
respectively. The reliability equation (Eq. 2.8) becomes

For the earlier example, when we had f P(x, y) ~  f N(x, y), this implied that R ~  0, 
while f P(x,y) > f N(x,y) implies R > 0.

2.4 The Algorithm

We developed a software tool called sourcery which computes these reliability 
estimates. This tool mainly adds some measurement of fidelity to the sources
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extracted by the source finder. The implementation of sourcery is described in 
Appendix A . This tool implements the following algorithm;

1. Takes in the image in FITS format.

2. Smooths the image.

3. Extracts sources from the image.

4. Optional: computes extra source parameters and assigns them to each de
tection.

5. Computes the reliabilities.

6. Selects sources that require DD calibration solutions (described in chapter

3) .

2.4.1 Smoothing

A key motivation for smoothing in sourcery is to de-noise the data. This is essen
tially filtering out the noise or large background variations, thus giving emphasis 
to astrophysical emission as well as some of the spurious emission (calibration 
artefacts).

We smooth the data using a Gaussian kernel at different scales in order to com
pensate for differing structures in the image. The small scales emphasise point 
sources and large scales emphasise extended emission. Currently, the employed 
scales are [0.1b, 2b, 5b, 10b, 20b, 40b] where b is the PSF size. We smooth the 
data at each kernel size and mask the pixels below a user specified threshold in 
each smoothed image. The masks are then added up to form a single mask image. 
The resultant mask is then applied to the actual image. Figure 2.8, 2.9 and 2.10 
show the unmasked (original image) and masked data at different thresholds to 
illustrate the above approach. Note that a masked image is used in sourcery dur
ing source finding to form islands while the actual image is used to do the model 
fitting. This is so that we avoid incorrect parameter estimations due to smoothing 
and masking.
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Figure 2.8: KAT-7 image of observed data.

Figure 2.9: KAT-7 as above. Smoothing was performed and pixels with values 
less than 1.6 x (image noise) were masked.
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Figure 2.10: KAT-7 as above. Masking pixels with values less than 5 x
(image noise).
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2.4.2 sourcery Source Parameters

The following source parameters are used in sourcery to estimate the density and 
then do the classification: source area, source integrated flux, source peak flux, 
correlation factor, local variance and number of nearby sources.

1. The source area is computed from the major and minor axis derived by a 
source finder. For point sources, these axis will be zero thus, since we are 
working in logarithmic space, we consider the PSF size as the minimum 
instead. The source area is computed in units of arcseconds.

2. The integrated flux and peak flux are taken as they are from source catalogue. 
These are in units of Jansky (Jy).

3. The local variance of a source is obtained by taking the standard deviation 
of a subset of pixels centred about the source in question. The size of the 
subset of pixels is chosen in terms of the PSF sizes, where the default value is 
10 PSFs. The choice is arbitrary. The local variance of a source surrounded 
by calibration artefacts should, in general, be larger than that of a source in 
a noise limited region. Another factor that results in high local variance is 
that of poorly modelled sources. To avoid biases from nearby sources or the 
smearing of poorly modelled sources, we compute the local variance using 
pixels in the inverted image only.

4. Correlation gives a measure of how two quantitative variables vary together 
(Gertman, Retrieved on 12 December 2015) . The correlation factor is ob
tained by correlating a given portion of the Point Spread Function (PSF) 
image with the local region centred on the source. Note that this portion 
must be a good representation of the PSF. Thus, correlating a main-lobe 
down to at least 5 side-lobes seemed reasonable. However, this is a user- 
controllable option with the default value 5.

5. The last parameter is the number of neighbouring sources (Source Near). 
This is obtained by counting the number of sources in a circle centred at 
a source and having a radius of c x b, where b is the PSF size and c is 
an optional parameter with default value 5. Sources situated in a vicinity 
dominated by calibration artefacts should have a larger number of neighbours 
(detections) while those that are situated in a noise-limited regions This 
parameter contributions is as that of the local variance.
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Turning back to the PSF correlation, since this parameter is not as intuitive, 
we further investigated how the PSF correlates with sources of different sizes. 
We simulated a JVLA observation with 11 sources of equal brightness (1Jy) but 
different sizes ranging from 4.5 arc-seconds to 50 arcseconds and thermal noise. 
Figure 2.11 shows the PSF correlation as a function of source size. From this plot, 
it can be observed that the correlation is higher for sources with similar sizes to the 
PSF and decreases for highly extended sources. In addition to this, we evaluated 
how the PSF correlates with calibration artefacts and the noise. We used the 
detections from the 3C147 image (see section 2.8) to observe this. We found that 
the noise correlates well with the PSF, similarly to extended sources. Calibration 
artefacts, on the other hand, correlate poorly with the PSF with values of order 
10-4 . Thus, the correlation is expected to be optimum for the case of calibration 
artefacts and astrophysical emission. Thus, we can then assume that any detection 
with higher R but poor correlation can be excluded. We will investigate the latter 
at the result sections.

F igure 2.11: Correlation of the PSF and simulated sources. These are taken 
from a noise + sources only JVLA simulation. The sources have the brightness 

of 1Jy and different sizes ranging from 5" x 4.5" to 50" x 45".

2.5 The Experimental Setup

The following sections describe the simulations that were carried out in order to 
test the performance of the above algorithm.
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2.5.1 Telescope Configurations

We simulated a JVLA observation using the C-configuration which consists of 26 
antennas and a maximum baseline of 3.4km. The configuration for the observation 
is shown in Table 2.1.

Table 2.1: Simulation Configurations.

Parameter Value
Central frequency 1.4 GHz
Frequency band L-band
Channel width 3 MHz

Number of Channels 40
Total observational bandwidth 120 MHz

Field of view 2 degrees
Phase centre coordinates Right ascension (RA) =  85 degrees 

Declination (Dec) =  49.5 degrees
Integration time 5 seconds
Synthesis time 2 hours

2.5.2 Sky Models

We generated artificial sources with random positions and sky brightnesses. The 
positions were uniformly random and fluxes followed a power-law distribution as 
shown in Fig. 2.12. The radio astronomical sources are known to have flux densi
ties and positions that follow the aforementioned distributions (Felli and Spencer, 
1989) .

2.5.3 The Tools

We used MeqTrees (Noordam and Smirnov, 2010) , for simulations. MeqTrees 
provides options to perform realistic simulations which include ionospheric effects, 
the parallactic rotation for alt-az mounts, primary beam effects such as pointing 
errors and sky rotation, feed errors and gain errors (G Jones).

Other important software packages used were simms 2 to create measurement sets 
(MS) by taking observational configurations shown in Table 2.1, t igger  3 for 2 3

2https://github.com/SpheMakh/simms
3https://github.com/ska-sa/tigger

https://github.com/SpheMakh/simms
https://github.com/ska-sa/tigger
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F igure 2.12: Left panel: is the distribution of the source positions (red plot 
is the declination and green plot is the right ascension). Right panel: represent 

the distribution of source’ brightnesses.

viewing, reading in and modifying the sky models, and wsclean (Offringa et al., 
2014) for imaging. These were incorporated into a pipeline using a framework 
known as pyxis 4. This pipeline simulates random skies, calibrates the visibilities, 
then images the corrected data and finally runs sourcery on the resulting image.

2.5.4 Visibility Simulation

For corrupting the visibilities, we included noise according to the radiometer for
mula presented in Eq. 1.14. The SEFD and the angular resolution of the JVLA 
for this configuration are represented in Table 2.1 and they are 420 Jy and 14 
arc-seconds, respectively.

Since we are interested particularly in artefacts induced by primary beam rotation, 
we introduced the DDEs using the measured beams called holographic beams. 
These beams represent more realistic beams of the JVLA. 4

4https://github.com/ska-sa/pyxis/

https://github.com/ska-sa/pyxis/
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2.5.5 Visibility Calibration

We corrected for the above induced primary beam effects using primary beam mod
els derived from cassbeam. Cassbeam models beams for the Cassegrain antennas 
such as the VLA antennas, using the geometrical ray tracing method. This tech
nique is described in detail in: h ttp s ://g ith u b .com /ra tt-ru /cassb eam /b lob / 
m aster/doc/cassbeam .tex.

2.6 Algorithm Test Procedure

The input model, Q, used for simulations is compared with the output catalogue 
from sourcery, S . The catalogue S contains the reliability estimates. The posi
tions of the sources in S are cross-matched with those in Q. This dissertation uses 
four classes of detections to evaluate the performance of the algorithm and these 
are dependent on the choice of the reliability threshold, Rthr. The four classes are:

True detections, T, are the detections with R > Rthr, and exist in both Q and 
S. These detections are classified correctly as astrophysical sources.

False positives, FP, are the detections with R > Rthr but exist in S and not in 
Q. These are artefacts classified as sources.

False negatives, FN, are detections appearing in both S and Q but have R < 
Rthr. These are true sources falsely identified as artefacts.

False detections (true negatives), F, are detections with R < Rthr and that exist 
in S and not in Q. These detections are classified correctly as artefacts.

2.7 Simulated Data Classification Test

Figure 2.13 shows the image used to test the algorithm that does source-artefact 
discrimination. This image provides a good test case as it is dominated by calibra
tion artefacts. We extracted emission from this image using the PyBDSM (Mohan 
and Rafferty, 2015) source finder. And the corresponding source finding param
eters for island thresh_isl and model fitting thresh_pix were set to 1 and 2,

https://github.com/ratt-ru/cassbeam/blob/master/doc/cassbeam.tex
https://github.com/ratt-ru/cassbeam/blob/master/doc/cassbeam.tex
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respectively. The value of 2a was used to create a mask. Thus, any emission in 
the smoothed images with flux less than 2x the noise were masked (see section 
2.4.1) .

2.7.1 Increase of the Parameter Space

Here we want to investigate whether the increase in the number of parameters 
has improved the classification. The initial reliability thresholds of 60% and 80% 
are chosen arbitrarily and gave the detections presented using confusion matrices 
shown in Table 2.2.

RA (J2000)

F igure 2.13: Simulated JVLA image: 2 hours synthesis time and 120MHz
observational bandwidth.

Figure 2.14 contains the plots showing the distribution of the detections obtained 
using Rthr =  60%, as presented in Table 2.2.
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TABLE 2.2: Four classes of detections. Left: the reliability threshold 60%. 
Right: the reliability threshold 80%

Predictions 
True False

True
■+—*

False
158 32 
3 322

Predictions 
True False

True
■+—*

False
146 44 
0 325

Table 2.3 shows the detections found when using the parameter space defined by 
the source area, peak flux and total flux which is equivalent to the parameter space 
in Serra et al. (2012) . The only difference is that, in spectral line data the source 
size is defined as “source volume” (voxel) whereas in continuum data is defined in 
terms of surface area.

TABLE 2.3: The detections found using the parameter space defined by source 
area, peak flux and total flux. Left: reliability threshold is 60%. Right: the

reliability threshold is 80%.

Predictions 
True False

True
■+—*

False
128 62 
3 322

Predictions 
True False

True
■+—*

False
115 75 
0 325
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Log10(PSF Correlation)
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FIGURE 2.14: The distributions of the detections. T are the true detections, 
FP are the false positives, FN are the false negatives and F are false detections. 
Source area is in units of arcseconds. The labelled points represent the relia
bilities of the FP detections. The contours represent the negative density field 

derived from the negative detections.

2.7.2 Discussion of the Classification

The following are the analyses based on the above tables:

• It is observed that at Rthr =  60% three of the artefacts were classified as 
real, and were eliminated by setting a higher reliability threshold of 80%. 
However, a high threshold rendered twelve of the T detections to be classified 
incorrectly as artefacts.

• Table 2.2 contains a larger number of T detections than Table 2.3 at the 
respective reliability thresholds. In particular, at Rthr of 80% where there 
are no artefacts, the completeness increased from 60.5% to 76.8%. This 
shows that the increase in the number of well-defined parameters improves 
the completeness of the final models.

By studying the distributions of T, FN, FP and F detections across different 
parameter spaces, we observe that:

• The detections are indistinguishable in the parameter spaces defined by the 
combination of the source area, local variance and the number of neighbours. 
These parameter combinations contribute negatively to source-artefact dis
crimination.
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• A clear separation of the detections is observed in the parameter spaces 
defined by the local variance combined with other parameters, except the 
ones mentioned above.

• Using the source area, the PSF correlation and the number of neighbours 
combined with the peak flux and total flux, distinguishes the detections as 
well as the above parameter combinations, except that this classifies more 
real emission as artefacts.

Based on the above plots, it can be seen that the misclassified artefacts occupy 
unique positions in the parameter spaces defined by the PSF correlation. In Sec
tion 2.4.2 we showed that artefacts correlate poorly with the PSF. It is for this 
reason that we can choose to discard the detections with low correlation val
ues. The correlation values of the three false detections shown in Table 2.2 are 
2.35 x 10-4 , 1.95 x 10-4 and 9.48 x 10-4 . These correlation values are very low 
that these detections appear as outliers in the parameter space thus, giving rise 
to high reliabilities. After discarding poor correlation sources (c f < 0.0999, cho
sen arbitrarily), we obtained the minimum reliability of 10% which resulted in a 
total of 179 true detections, 11 false negatives, 0 false positives and the remaining 
detections are false.

2.7.3 Sourcery as a complementary tool to PyBDSM

The development of sourcery was intended to complement PyBDSM or other 
source finders, in general, by removing (or reducing the number of) falsely detected 
artefacts from the catalogues, while still retaining good enough completeness. To 
evaluate if this is actually the case, I simulated a total of 60 JVLA images with 
4 hours synthesis time, a single channel of width 128 MHz, a pointing centre at 0 
degrees right ascension and 40 degrees declination, and a field of view of 2 degrees. 
I generated the positions and fluxes of the sources, and corrupted and calibrated 
the visibilities similarly to the above simulations. Furthermore, I ran PyBDSM 
on each image using the default parameters (thresh_isl=3 and thresh_pix=5). 
Similarly, I used the same thresholds for sourcery except for the negative image 
where I’ve used thresh_isl=2  and thresh_pix=4. Figure 2.15 shows PyBDSM 
detections; T are the true detections, FP are the artefacts detected as real (false 
positives) and T at FP=0 are the true detections obtained after removing FP
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detections. PyBDSM detects sources based on their flux values. For example, if 
an image contains true sources with flux values between (2 , 0.5) Jy and artefacts 
with fluxes between (0.8, 0.5) Jy, then detecting sources down to (0.8, 0.5) Jy will 
also introduce artefacts. Therefore to obtain the blue bars in Fig. 2.15, I discarded 
all the detections with fluxes below the maximum flux of the FP detections.

Models Models

IZZI T
n ---------------T-------------- T-------------- T---------T-------------- T---------T---------T----  IZZI FP

1-0 IZZI T at FP=0

0.8 ■

0.6 -

m21 m22 m23 m24 m25 m2 6 m2 7 m2 8 m29 m30 
Models

IZZI T

Models

Figure 2.16 shows the detections obtained by PyBDSM and sourcery. I chose the 
reliability threshold of 50% and removed sources with c f  < 0.0999. From this 
plots, one can see that although we don’t recover all the sources with sourcery 
we still get models with better completeness than pybdsm at FP=0. Sources which 
are closer to the noise level are misclassified as false and including them means 
introducing noise peaks. Our parameter space is optimized to deal with calibration 
artefacts and not noise peaks. The false positive detections which are shown by 
black bars in Fig 2.16 are very bright noise peaks which can be eliminated by
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F igure 2.15: Detections with PyBDSM on 60 JVLA simulated images. T  are 
the true detections, FP are the false positives and T at FP=0 are the true 

detections obtained after removing the FP.

increasing the reliability thresholds or by finding parameters that can deal with 
noise peaks. In a nutshell, sourcery improves the reliability of the catalogues and 
completeness.

2.8 Test on Real Data

We tested sourcery on the 3C147 field image observed using JVLA (Perley and 
Smirnov, 2013) . The object 3C147 (J054 +  4951) is very compact (~  700mas) and 
is also the strongest radio source in its field with brightness of 22.82Jy at the L- 
band (Perley and Smirnov, 2013) . The observational configuration is presented in
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Models Models

Models Models

F igure 2.16: Detections obtained from both PyBDSM and Sourcery.

Table 2.4. The reliability threshold of 80% was used based on our experience with 
the simulations discussed above, and we further inspected (visually) the resulting 
catalogue to ensure that none of the spurious emission was included. However, 
we do know that with real data one may never be entirely certain as to whether 
a source is real or not. Thus, for this comparison we ensured that 80% reliability 
only included sources that were obvious. For comparison purposes, we have also 
masked all the detections that are less than 20 arc-minutes (size determined by 
eye) from the phase centre due to significant subtraction artefacts in the vicinity 
of 3C147 itself. Interestingly enough, two of the artefacts were removed through 
the use of cf0. This allowed the lowest Rthr to become 60%.

We compared catalogues obtained from images created at different stages of the
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Table 2.4: Observational Configuration for the 3C147 Field.

Parameter Value
Antenna configuration C-Config
Central Frequency 1.5 GHz
Channel width 3 MHz
No. of Channels 64
Total bandwidth 192 MHz
Frequency Range 1260 -1520 MHz
Synthesis Time 8 Hours
Integration time 1 sec
Polarisation 4
Calibrator source J0555 +  3948 (every 10 minutes)

3C147 calibration pipeline. This calibration pipeline was initially created by Perley 
and Smirnov (2013) and then later modified by Mitra et al. (2015) who introduced 
primary beam corrections via cassbeam (Brisken, 2003) . Below is the summary 
of what it entails (Perley and Smirnov, 2013) :

1. A prior full-polarisation model for 3C147 is used for G  calibration.

2. Source subtraction is performed to remove 3C147. The residuals are imaged 
and deconvolved, this is followed by source finding and the resulting detec
tions are corrected for the power beam and updated into the initial model.

3. The updated model is used to perform E , dE and G  calibration. The new 
residuals are imaged and deconvolved, and source finding is performed on 
the resulting residuals. The acquired model is beam corrected and added to 
the existing model. 4 5

4. Step 3 is repeated one more time to improve G, E  and dE solutions using the 
above updated model. At the end the residuals are imaged and deconvolved.

5. The final sky model is restored into the residual image.

This pipeline corrects for DDEs in two ways: (1) first it applies the primary 
beam corrections using the available parametric models (Brisken, 2003) followed 
by (2) the differential gains (to selected sources, Smirnov, 2011c) to correct for the 
remaining DD effects.
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2.8.1 Model Comparisons

We applied sourcery to images obtained at step 2 and 3. Let us refer to the 
resulting catalogues as Sini and Sfin, respectively. We call the models that were 
obtained by Mitra et al. (2015) in the respective steps Aini and Afin. Note that we 
combined multiple components that fell within the PSF size at 20% deviation into 
a single source component so that there is a one to one match when cross-matching 
different source catalogues 5.

Figure 2.17 shows the initial models Sini and Aini and Fig. 2.18 depicts the final 
models Sfin and A fin. The model Sini had 118 sources and Aini had 27 sources, 
and it was observed that all the sources in Aini were in Sini. On the other hand, 
the model Sfin had 192 detections and A fin had 168 detections. When comparing 
the final calibration models we found that 39 sources in Sfin were not found in 
A fin while 14 sources in A fin were not found in Sfin.

PyBDSM

RA (J2000)

Sourcery

51m 48m 45m 42m 39m 5h36m
RA (J2000)

F igure 2.17: JVLA 3C147 field. Left: the initial model obtained when using 
a PyBDSM (Aini) and Right: the initial model, Sini, obtained using sou rcery . 
The sources in the sourcery model have reliabilities > 60%. The Aini model 
contains 27 sources and has a total of 47 sources when including those within 
20' from the phase centre. The Sini model contains 118 sources and has a total 

of 165 sources when the central region sources are included. 5

5PyBDSM does provide an option to obtain a catalogue in the form of a source list, with 
neighbouring components similarly merged, however, for purposes of calibration the Gaussian 
component list provides a more accurate model.
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RA (J2000)

F igure 2.18: JVLA 3C147 field. Left: the final model obtained when using 
PyBDSM (Afin) and Right: the final model, Sfin, obtained using sou rcery . The 
sources in the sourcery model have reliabilities > 80%. The Afin model con
tains 168 sources and has a total of 305 sources when including those within 20' 
from the phase centre. The Sfin model contains 192 sources and has a total of 

467 sources when the central region sources are included.

2.8.2 3C 147 Calibration Pipeline Implementation

In addition to checking the completeness of the catalogues, we further incorporated 
our algorithm into the 3C147 calibration pipeline. Previously, Mitra et al. (2015) 
had obtained a dynamic range (DR) of 3.27 million. They found the aforemen
tioned DR using 3 calibration steps. We find a DR of 3.118 million in 2 calibration 
steps and 3.145 million in 3 calibration steps when replacing the source finding 
steps of the pipeline with sourcery.

There are three approaches by which we estimated the noise: (1) by taking the 
standard deviation of the pixels in the noise-only regions, (2) by computing the 
mean absolute deviation (MAD) of the pixels in an image and (3) computing the 
negative noise. The negative noise is obtained by taking the standard deviation of 
the pixels in the inverted image. Figure 2.19 shows the noise estimate for the three 
methods. The negative noise and noise-only regions provided better estimates of 
the noise but we chose to use the former to compute the above DRs. Figure 2.20 
shows the difference in the final corrected residual images obtained when using 
PyBDSM and sourcery.
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10006-0.00004-0.00002 0.00000 0.00002 0.00004 0.00006 0.00008 0.00010 0.00012

MAD
— negative noise

Outside regions

a.
F igure 2.19: Three methods to estimate the noise in an image: median ab
solute deviation (MAD), standard deviation of the noise-only regions (outside 
regions) and the negative noise. The histogram is the 3C 147 image data (final

residuals).

2.8.3 Discussion

When comparing the models we observed that:

• Our initial model has better completeness compared to the initial model 
found by PyBDSM.

• The final model with sourcery has a higher completeness than the final 
model constructed with PyBDSM. However, there are sources that were en
tirely missed in one model but are in the other model. For instance, although 
Sfin was more complete than Afin, there were 14 sources in Afin that it over
looked. Some of the sources that were overlooked by sourcery were due to 
source exclusion that takes place when computing the local variance and PSF 
correlation. When computing these parameters a region around a source is 
selected and if this region happens to go beyond the boundary of the image 
a source is flagged from the catalogue and excluded from the reliability es
timations. Out of the 14 sources, 6 fell into this category. One way to deal 
with this problem is to increase the image size.

Typically, a complete calibration model implies better estimations of the instru
mental gains. Therefore, one would expect a far better DR with sourcery than
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F igure 2.21: The differences in the modelled fluxes. The PyBDSM model fluxes 
minus the sourcery fluxes. Only 18 sources from both models were used. These 
are the sources with a single Gaussian component. The Y-axis is in units of 
Jansky and the error-bars represent the measurement errors found during source

extraction.

PyBDSM. Instead, the DR with PyBDSM was slightly better than sourcery. By 
looking at the difference in the residuals it can be seen that sourcery model had 
accounted for more sources in the image than PyBDSM. Figure 2.21 shows the differ
ence in the fluxes for some sources (using only the sources with single components 
matching in both models -  this was to avoid dealing with multiple components) in 
sourcery and PyBDSM model. It can be seen that the flux difference of the sources 
is not significant and thus cannot be a responsible for lower DR.

When visually inspecting the residual (clean) images, we observed some regions 
are over- or under-subtracted. The degree of the subtraction couldn’t be deter
mined by eye, though we suspect that this may have some responsibility for the 
lower dynamic range. Poor subtraction is amongst many challenges in calibration. 
Source finders do not necessarily provide good models for all the detections. In 
some cases, the sources fluxes or shapes are underestimated or overestimated. Note 
that the completeness of the parameters and poor subtraction are out of the scope 
for this work, but are worth discussing given their importance to future calibra
tion. For example, consider an image composed of Gaussian sources and suppose 
we happen to fit an appropriate model to each of them. If somehow, we have 
overestimated or underestimated the fluxes or shapes, the resulting images will be
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comprised of over- or under-subtracted regions. In reality, images are composed of 
a wide range of source morphologies that are not Gaussian. Source finders includ
ing PyBDSM do offer an option to fit shapelets or wavelets to extended emissions, 
but these may only reduce the effect of poor subtraction. An alternative approach 
to improve source subtraction is to improve source modelling. We propose the use 
of optimisation methods such as Markov Chain Monte Carlo (MCMC) or Genetic 
Algorithms (GA) in which a variety of Gaussians, shapelets or wavelets are fit to a 
source and the best fit is obtained. An even better approach would be to develop 
algorithms that do the modelling in the visibilities.

The lower DR at the last step could also be due to incorrect parameter estimations 
due to inaccuracies in the images. Sourcery finds most of its sources at the early 
stages of the pipeline when the image is less accurate. Thus, the incorrectly 
modelled sources are carried over to the last calibration model. We reduced the 
dE smoothing both in time and frequency by 50% so that the inaccuracies in the 
model do not play a huge role in the calibration. This has slightly improved the 
DRs. We can improve our initial models by re-running sourcery on the final 
images. Thus, the final and complete catalogues would be found from rerunning 
sourcery after the final step.

The advantage of using sourcery in addition to PyBDSM is that it offers reliable 
models with better completeness at the early stages of the calibration, thus making 
for more efficient pipelines.



Chapter 3

The Identification of Sources that 
require DD Calibration

3.1 The Algorithm

Conventionally, sources that are subject to DD effects in an image are identified 
by eye. This work attempts to automate this process. The approach used here 
results from the knowledge acquired in the previous section. Hence, this task also 
uses the source parameters to classify the sources of interest. Sources that require 
DD calibration usually have the following properties:

1. They are the brighter sources in an image. Calibration artefacts are present 
around all the sources in an image, however, they are more prominent around 
bright sources and are usually hidden in the noise for the fainter sources. As 
explained in the previous chapter, calibration artefacts are multiplicative 
errors in the image domain and thus, become more significant around bright 
sources.

2. Because these sources are surrounded by calibration artefacts, they tend to 
have high local variance. The two scenarios that result in high local variance 
were discussed in Section 2.4.2.

3. As seen in Chapter 2, calibration artefacts correlate poorly with the PSF, 
unlike astrophysical sources of any size. Thus, the PSF correlation can be
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used to eliminate calibration artefacts, which may have high local variance, 
from the classification.

4. Due to the quasi-symmetric behaviour of calibration artefacts, it can be 
observed that these sources have a large number of negative detections in 
their immediate proximity.

Based on the stated characteristics, we came up with the algorithm described in 
Fig. 3.1 to identify sources that require DD calibration. The thresholds used in 
each step are user specified and are defined as follows:

• A high SNR source has SNR greater than c x SNR ĵ™, where c is a user 
specified factor and SNRmin is the minimum SNR in the source catalogue.

• A high local variance source has the local variance > d x a, where d is a user 
specified factor and a is the noise level of the image.

• The correlation can be any value between [0, 1], high values imply high levels 
of correlation. A source with high correlation has a correlation factor greater 
than c f , where c f  is a user specified value, c f  E [0,1].

• The number of negative detections can be any integer value, i. Thus, a 
source with a high number negative neighbours has i > M , where M  is a 
user specified number.

We made the PSF correlation optional so that the DD tagging does not depend on 
the availability of the PSF image. However, the inclusion of the PSF correlation 
may improve the classification.

3.1.1 Testing of the Algorithm

The algorithm was directly tested on four different real datasets: (i) the KAT-7, 
(ii) the JVLA, (iii) the Giant Metrewave Radio Telescope (GMRT) and (iv) the 
Low-Frequency Array (LOFAR). The algorithm classification was compared to 
that made by eye. Table 3.1 shows the thresholds used in each dataset. We have 
used default values except for the number of negative detections in the LOFAR 
image which we set higher to constrain the evaluation due to the unavailable PSF 
image and measurement set (MS).
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Table 3.1: Thresholds used for carrying out the source tagging for sources
that require DD calibration.

Thresholds KAT-7 JVLA GMRT LOFAR
SNR 40 40 40 40
Local variance 0.8 0.8 0.8 0.8
Correlation factor 0.4 0.4 0.4 None
No. of nearby negative detections 5 5 5 10

The source finding thresholds are similar to those used in Chapter 1, section 2.7. 
The island and model fitting thresholds were set to 1 and 2, respectively. The 
masking threshold was set to 2 for both the original image and the inverted image.

3.2 Classification Results

Figure 3.2 shows a KAT-7 field. The square highlights a source that was selected 
as requiring DD calibration.

Figure 3.3 shows the 3C147 field observed with the JVLA telescope (Mitra et al., 
2015, Perley and Smirnov, 2013) . The circled sources are those identified by our
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algorithm. Figure 3.4 shows the zoomed images of the sources circled in Fig. 3.3.

F igure 3.2: KAT-7 field. The indicated source was identified requiring DD 
calibration. Image credit: Ermias Kassaye (Rhodes University)

Figure 3.5 shows a GMRT observation. The circled sources shown in this image are 
those that require DD calibration solution as identified by the algorithm. Figure 
3.6 contains the zoomed images of these sources.

Figure 3.7 shows a LOFAR observation. Sources inside the squares are those that 
require DD calibration as identified by our algorithm. The top image represent 
the classification obtained using the settings in Table 3.1 and the bottom image 
shows the classification after setting the number of nearby negative detections to 
20. Figure 3.8 shows the zoomed images of these sources.
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F igure 3.3: JVLA field. The circled sources are those that require DD cali
bration solutions as identified by our algorithm. Image credit: Modhurita Mitra

(Rhodes University).
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F igure 3.4: JVLA observation. Zoomed images of sources requiring DD cali
bration as identified by our algorithm.
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F igure 3.5: GMRT field. The sources shown are those selected by our algo
rithm as sources that require DD calibration solutions. Image credit: Roger

Deane (Rhodes University).
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F igure 3.6: Sources that require DD calibration in the GMRT data
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F igure 3.7: LOFAR observation. Top panel: Squares centred about a source 
indicates a source or a region that require DD calibration solutions as classified 
by our algorithm, for parameter setting described in Table 3.1. Bottom panel: 
is the classification when the number of nearby negative detections is set to 20.

Image credit: Ian Heywood (CSIRO) 1
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F igure 3.8: The sources that require DD calibration in the LOFAR image.
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3.3 Classification on Simulated Data

In this section, I intend to give a comparison between a classification made by eye 
and that made by sourcery on JVLA simulated data. I have chosen 20 images 
from Chapter 2 at random. The confusion matrices are shown below. Note that, 
I refer to the classification made by eye as actual and the one made by sourcery 
as the predictions. I ran sourcery using similar settings as in Table 3.1.

Table 3.2: Actual classification made by eye compared the predictions made
by sou rcery .
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To quantify the performance of the classification I have used three terms named 
accuracy, miss rate (also known as false negative rate or FNR) and fall out rate 
(known as false positive rate or FPR). These terms are defined mathematically as;

accuracy 

and FPR

T -  F
T +  F +  FP +  FN ’ 

FP
FP  +  F '

FNR
FN

FN  +  T

The miss rate defines a rate at which the classifier misclassifies a true detection 
as false, while the fall out gives the rate at which false detections are classified as 
true. For this classification, we obtained the average accuracy, miss rate and fall 
out rate of 99.27%, 12.79% and 0.498%, respectively.

3.4 Discussion

With the exception of sources G1 and G4 in the GMRT dataset, which were 
falsely identified due to their proximity to a source dominated by DD effects, all 
the other sources in all the dataset were properly classified. This is also the case 
for the misclassification for simulated data.
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However, it can be seen from the top and bottom image of Fig. 3.7 that the 
classification is highly dependent on the choice of the number of negative detections 
threshold, M , with a higher threshold seemingly identifying the sources that are 
subject to extreme DD effects. Thus, the choice of M  and other thresholds could 
significantly affect the outcome of the classification. An example of this is the 
choice of source finding thresholds. The lower thresholds will result in a large 
number of detections and thus may misclassify sources similar to G1 and G4 
in the GMRT dataset, while the higher detection thresholds will result in fewer 
detections and therefore may overlook other sources of interest. This suggests that 
our current approach of deriving the thresholds, which is arbitrary, needs to be 
refined so that it overcomes situations similar to the one described above.

This algorithm has been shown to work well on all the datasets from different tele
scopes. This is because none of our assumptions depend on any specific telescope 
configurations.

The algorithm has automated the identification of sources that require DD calibra
tion. Thus it has eliminated the need to halt the calibration pipeline and visually 
inspect the image to select these sources.



Summary

This dissertation addresses two of the automation problems associated with clas
sification. First, we developed an algorithm, based on prior work by Serra et al. 
(2012) , that distinguishes spurious emission from astrophysical emission. We then 
implemented and tested a software tool called sourcery based on this algorithm. 
This was followed by an algorithm that identifies sources that are subject to ex
treme DD effects and thus require DD calibration.

For the first algorithm, we implemented the negative detection method which uses 
a probability measure known as the reliability to quantify and classify the above 
emissions into two distinct classes. Our focus was particularly on calibration arte
facts, thus, we reduced or removed (ideally) the noise peaks from the classification 
by smoothing the data and masking the peaks that were above a certain threshold. 
For the second algorithm, we used detection properties such as brightness, local 
variance, PSF correlation, and the number of nearby negative peaks, to identify 
astrophysical emission that produces calibration artefacts in images. The latter 
algorithm has been shown to work well for different datasets taken by KAT-7, 
GMRT, JVLA and LOFAR instruments.

The increase in the number of parameters has improved the classification just as 
Serra et al. (2012) initially postulated. The extra parameters are the local vari
ance, PSF correlation factor and the number of nearby sources (the previously 
used parameters were source area, peak flux and total flux). It was observed with 
simulated data that some of the parameter combinations contributed negatively 
to the classification. However, the increase in the number of parameters has al
lowed the approach to become robust in such a way that it reduced the rate of 
misclassification, thus increasing the completeness. The high completeness was 
also evident on the 3C147 field data and also for simulated data. Our algorithm 
obtained sky models that were better than those found using PyBDSM alone. For
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instance, our final model for the 3C147 field had a much higher completeness 
compared to PyBDSM final model with only 14 of which 6 were missed due to edge 
effects, i.e would have been found with a larger image size. Meanwhile, PyBDSM 
missed a total of 39 sources.

Using sourcery in the 3C147 calibration pipeline, we arrive at a final DR of 
3.145M, which is slightly less than the 3.27M obtained previously with PyBDSM. 
This is not a significant reduction, but still needs to be explained. Note that 
the PyBDSM-based pipeline contains multiple source detection steps (and is thus 
much slower), but effectively this means that fainter sources have their properties 
measured at a later stage of the pipeline, when the images are correct. The single
step sourcery-based pipeline detects most of the sources in one step, which means 
their measured parameters are potentially less accurate (since the image at this 
stage is less correct). We hypothesise that this what led to a slightly reduced DR. 
Note that to improve catalogue correctness, one could re-run the source finder on 
the final images. We also suggest the use of optimisation techniques such as MCMC 
and GA to perform source modelling. In any case, our algorithm has shown to 
provide high-completeness catalogues, and has also automated the identification 
of sources that requires DD calibration. Our algorithm working together with 
PyBDSM will be useful for pipelined calibration of future continuum observations.

In the future, one of the most important things would be to find a robust way of 
determining the thresholds. Particularly, a threshold for the number of negative 
peaks, thought to depend on the sensitivity of the telescope and the choice of 
source finding thresholds. Another threshold is that of the reliability. The latter 
needs to be tested on additional datasets other than that of the JVLA.

Ian Heywood proposed an alternative approach to source-artefact discrimination, 
which we did not explore in this work. His approach hinges on the fact that cal
ibration artefacts are to some extent due to the primary beam which scales with 
frequency, they too should scale and move in frequency. That is, as the beam gets 
smaller and narrower at higher frequencies, calibration artefacts should also move 
inward towards their parent astrophysical source 2 and vice versa. Meanwhile, 
the positions of the astrophysical sources are independent of the beam. Except 
that their signal-to-noise ratio are dependent on the frequency of the observation. 
Thus, their different behaviours in frequency can be used to distinguish them.

2An astrophysical source responsible for them (calibration artefacts).
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This method can be potentially very powerful for wide-band multi-frequency ob
servations.



Appendix A

Sourcery Implementation

The algorithms described in this thesis are implemented by the sourcery tool 
(h ttp s ://g ith u b .com /ra d io -a stro /sou rcery ). Sourcery is an open-source project 
hosted on github. The tool is freely available, and is already distributed as part of 
the rad io -astro  packaging scheme developed by Gijs Molenaar (UvA/Rhodes/SKA 
SA), and thus can be installed via pip.

Sourcery is written in Python. The entirety of the source code was developed by 
the author (with minor inputs from supervisors) as part of the present work, and 
should be considered an effective part of the submitted thesis (release 1.2.6 at time 
of writing).

Installation

There are two ways to install sourcery:
1. Direct build:

$ g it  clone h ttp s ://g ith u b .com /ra d io -a stro /sou rcery  
$ cd sourcery 
$ pip in s ta ll

2. Using Pip:

pip in s ta ll  sourcery
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Other Software Dependencies

To be able to run sourcery you need the following software packages:

numpy, pylab, m atplotlib , p y fits , scipy, tigger , pybdsm (LOFAR software) 
and astLib.
These are available in the standard Ubuntu repository and/or h ttps://lau nch pad. 
net/~radio-astro/+archive/ubuntu /m ain .

Requirements

The files needed to run sourcery are:
1. An image of your observation in FITS format (Non-optional)
2. PSF image in FITS format (Optional)

Commands to Run Sourcery

The following are the ways in which you can run sourcery:

1. You can specify everything on the terminal, for example:

$ sourcery - i  im age .fits  -p  p sf_ im a g e .fits  -od sunshine -p re f 
datalsm -ppix=2 —pisl=3

The above command runs sourcery on the image called image.fits (NB: if the 
image is not in your current working directory you need to specify a correct path 
to your image). We have specified a PSF image (psfJmage.fits) using -p and the 
out directory using -od. The latter ensures that all the files produced are directed 
into a directory called sunshine. You can also specify a prefix e.g in the above 
example all the generated files will have datalsm as a prefix. Furthermore, -ppix 
and -pisl are the source finding detection thresholds to be used for the positive 
image. To see other options in sourcery make use of the help command line:

$ sourcery -h

2. You can use Json config file (shown below) using the command:

https://launchpad.net/~radio-astro/+archive/ubuntu/main
https://launchpad.net/~radio-astro/+archive/ubuntu/main
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$ sourcery - j c  co n fig .js o n  

{
"imagename": " im a g e .fits " ,
"psfname" : "p s f_ im a g e .fits " , 
"p re fix "  : "datalsm ",
"outd ir" : "sunshine",
" r e l ia b i l i t y "  : {

"sourcefinder_name" : "pybdsm", 
"makeplots" : true,
"do_psf_corr" : true, 
"do_local_var" : fa ls e , 
"do_nearsources": fa ls e , 
"psf_corr_reg ion " : 5, 
"loca l_var_reg ion " : 10, 
"re l_ e x c l_ src "  : n u ll, 
"pos_smooth" : 2,
"neg_smooth" : 2,
" lo g le v e l"  : 0,
"th resh _ is l"  : 20,
"thresh_pix" : 25, 
"neg_thresh_isl" : 2, 
"neg_thresh_pix" : 3

} ,
"dd_tagging" : {

"enable": true,
"snr_thresh" : 40,
"loca l_th resh " : 0 .8 , 
"high_corr_thresh" : 0 .4 , 
"negdetec_region" : 10, 
"negatives_thresh" : 4, 
"phasecenter_excl_radius" : 100, 
" lo g le v e l"  : 0

} ,
"source_finder_opts": {
}
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Definitions o f  the Param eters in the Config File

The reliability estimations, reliability:
• m akeplots (boolean)- make reliability plots to show the distribution of the 
detections across the different parameter spaces.
• do_psf_corr (boolean) - add PSF correlation as a parameter.
• do_local_var (boolean) - add the local variance.
• do_nearsources (boolean) - add the number of nearby sources.
• psf_corr_region (float) - the size of the region to compute the correlation, in 
PSF sizes.
• locaLvar.region (float) - the size of the region to compute the local variance, 
in PSF sizes.
• rel_excl_src (list) - a list of regions (containing the detections) to remove from 
the reliability estimations, e.g [” 0.0,35,0.5” ] will remove sources within a radius 
0.5° from RA=0.0°, DEC=35°.
• pos_sm ooth (float) - a threshold to create a mask, e.g if 2 then all the pixels 
in smoothed image with value less than 2x rms are masked (rms is the noise of 
an image).
• neg_sm ooth (float) - similar to possmooth but applied to the inverted image.

• thresh_isl and thresh_pix (float) - the detection thresholds for forming island 
and model fitting (for the positive image).
• neg_thresh_isl and neg_thresh_pix (float) - similar to above thresholds but 
applied to the inverted image.

The selection of sources that require DD calibration, dddagging:
• snr_thresh, locaLthresh, high_corr_thresh and negatives_thresh (float) - 
are the thresholds for high signal-to-noise ratio, local variance, correlation factor 
and the number of nearby negative detections, respectively.
• negdetec_region (float)- the size of the region to count the number of nearby 
negative detections, in PSF sizes.
• phasecenter_excl_radius - the radius w.r.t to the phase centre to exclude from 
dd-tagging.

3. You can use both the terminal and config file. This is particularly, more efficient
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when working with multiple images. First you need to replace the following lines 
in the config file as shown below (and the rest can be left unchanged) and then 
run the command that follows:

{
"imagename": "<input FITS image>",
"psfname" : n u ll,
. . .  }

$ sourcery - i  im age .fits  -p  p sf_ im a g e .fits  - j c  co n fig .js o n

Provided you have more than one image say imageO.fits, imagel.fits and image2.fits 
and psf-imageO.fits, psf-imagel.fits and psf-image2.fits then you can specify these 
as:

$ sourcery - i  im a g e0 .fits ,im a g e1 .fits ,im a g e2 .fits  -p  p s f_ im age0 .fits , 
p s f_ im a g e1 .fits ,p s f_ im a g e2 .fits  - j c  co n fig .js o n

If the PSF image is common to all of the images, then you can specify it once 
and it will be used for all the images, otherwise the number PSFs must equal 
that of images provided and must be ordered accordingly. For a common PSF the 
command to use is:

$ sourcery - i  im a g e0 .fits ,im a g e1 .fits ,im a g e2 .fits  -p  p sf_ im age .fits  
- j c  co n fig .js o n

Parameters

The local variance, PSF correlation and the number of nearby sources are optional. 
And whether to include them into the reliability estimations is up to the user. On 
the terminal you can add them using -apsf, -alv, -dn (see the help command above) 
or in the config file set their options to true. Take note that the parameters source 
area, peak and total flux are not optional.
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