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ABSTRACT 

 

The chemical analysis of feed samples can be time consuming and expensive. The 

use of near infrared reflectance (NIR) spectroscopy was evaluated in a range of studies as 

a rapid technique to predict the chemical constituents in feedstuffs and compound ostrich 

feeds. The prediction of accurate results by NIR spectroscopy relies heavily upon 

obtaining a calibration set which represents the variation in the main population, accurate 

laboratory analyses and the application of the best mathematical procedures.  

This research project was designed to meet five objectives: 

The first objective was to determine the feasibility of using near infrared reflectance 

(NIR) spectroscopy to predict dry matter, ash, crude protein, crude fibre, oil content, and 

fatty acids such as palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1) and 

linoleic acid (C18:2) in sunflower seed meal.  

The second objective was to develop calibration models to predict the dry matter, 

crude protein and oil content in milled canola seed, compared to whole canola seeds.  

The third objective was to investigate the feasibility of using NIR spectroscopy to 

predict the dry matter, ash, crude protein, crude fibre and oil content in milled lupin seeds, 

compared to whole lupin seeds.  

The fourth objective was to describe the development of near infrared reflectance 

(NIR) spectroscopy calibration equations for the prediction of chemical composition and 

amino acid content from different populations of alfalfa hay (Medicago sativa L.). 

The last objective was to determine the potential of NIR spectroscopy to predict the 

dry matter, ash, crude protein, crude fibre, ether extract, acid detergent fibre (ADF), neutral 

detergent fibre (NDF), calcium, phosphorus, in vitro organic matter digestibility (IVOMD) 

and amino acids such as lysine, methionine, threonine and arginine in compound ostrich 

feed samples. 

The results of this study indicate that NIR spectroscopy calibrations in sunflower 

seed meal are only applicable in sunflower breeding programmes for a fast screening as it 

was not suitable for prediction purposes. Screening of sunflower seeds by NIR 

spectroscopy represents a rapid, simple and cost effective alternative that is a great utility 

for users who need to analyse a large number of samples.  

Calibrations developed for crude protein and oil content in milled canola seeds 

proved to be better than calibrations for whole canola seeds. Although the results indicated 
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that calibrations were better for milled canola seeds, it indicated values that were typical of 

equations suitable for screening purposes to select samples for more detailed chemical 

analysis.  

According to calibration statistics obtained for crude protein, crude fibre and oil 

content in whole lupin seeds, there is no need to grind the seeds to scan the meal as 

similarly accurate results were obtained by analysing whole seeds. Screening of whole 

lupin seeds by NIR spectroscopy represents a rapid, simple and cost effective alternative 

that may be of great utility for users who need to analyse a large number of samples with 

no sample preparation. 

The calibration and validation statistics obtained in the study to test the potential of 

NIR spectroscopy to predict the chemical composition and amino acid contents in alfalfa 

hay, showed the accuracy was too low for routine analysis, although NIR spectroscopy 

could be used as a screening tool. Further research needs to be done to improve the 

accuracy of the NIR spectroscopy analysis, including more samples from different cultivars 

and years. 

In the study to examine the possibility of using NIR spectroscopy to predict the 

chemical composition of compound ostrich feeds, the results indicated that NIR 

spectroscopy is a suitable tool for a rapid and reliable prediction of the crude protein, crude 

fibre, ether extract, IVOMD, ADF and NDF in compound ostrich feeds. Calibrations can be 

improved for amino acids if a larger sample pool is used to develop the calibrations. 

These studies indicated that NIR spectroscopy can be a rapid and successful tool for 

the prediction of the nutritive value up to certain amino acid contents of feedstuffs and 

compound ostrich feeds. 

 
 

 

 

 

 

  



x 
 

ACRONYM GUIDE 

 

ADF  Acid detergent fibre 

AME  Apparent metabolisable energy 

AOAC  Association of Official Analytical Chemists 

Ca  Calcium 

CP  Crude protein 

CV  Coefficient of variability or variation  

DM  Dry matter 

EE  Ether extract 

FAME  Fatty acid methyl esters 

GC   Gas chromatograph  

GE   Gross energy 

HCl  Hydrochloric acid 

HPLC   High pressure liquid chromatography 

IVOMD In vitro organic matter digestibility 

MLR  Multiple linear regression  

MPLS  Modified partial least square regression  

MSC  Multiplicative scatter correction 

n  Amount 

N   Normality 

NDF  Neutral detergent fibre 

NFC   Non fibre carbohydrates  

NIRS  Near infrared reflectance spectroscopy 

Nm  Nanometers 

NMR  Nuclear magnetic resonance  

P  Phosphorus 

PCA  Principal component analysis 

PLS  Partial least square 

RMSD  Root mean square deviation of differences  

RMSEP Root mean square error of prediction  

RPD  Ratio of SEP to SD 

rpm  Rotations per minute 
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SD   Standard deviation 

SEC   Standard error of calibration  

SECV  Standard error of cross validation 

SEP  Standard error of prediction or standard error of performance 

SET  Standard error of a single test or precision 

SNV   Standard normal variate  

TDN  Total digestible nutrients 

TLC  Thin-layer chromatography 

TTE   True test error 
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CHAPTER 1 

 

LITERATURE REVIEW 

 

General introduction 

The composition of diets for production animals is becoming increasingly important 

for several reasons. The feed industry, for example, requires rapid and accurate 

information regarding the nutritive value of feedstuffs, as such information is needed to 

negotiate the proper price for a feedstuff and to correctly include this feedstuff in a 

complete diet. Moreover, the nutritional requirement of the animal needs to be met with the 

lowest feed cost and such information is needed rapidly in order for routine evaluation of 

the feedstuffs to be possible (van Kempen, 1996). The intensive farming of livestock also 

requires constant monitoring of diet composition to ensure consistent levels of milk or meat 

production. Additionally, selection or breeding for nutritive value is now considered an 

important factor by major forage-plant breeders and there is often the need to test a very 

large number of lines (Deaville & Flinn, 2000). Although the traditional wet chemistry 

analysis does provide valuable information regarding feed quality, it is time consuming and 

expensive. Moreover, animal production is facing new challenges, including the need to 

formulate diets that not only offer the maximum differential between feed costs and 

product sales, but which also reduce the negative impact on the environment.  

The nutritive value of animal feeds has traditionally been expressed in energy and 

protein values, obtained from wet chemical analysis and from metabolic trials using 

animals for which the feed is intended. Research has been done to develop equations to 

predict in vivo data based on chemical analysis. Although this approach is a reasonable 

compromise between simplicity and accuracy of prediction, it is relatively time consuming 

(Givens & Deaville, 1999), expensive, and can only be conducted at scientific institutes.  

Currently, many feed mills use near infrared reflectance (NIR) spectroscopy instruments to 

predict protein, moisture, fat and ash contents of feedstuffs to obtain the required 

information regarding nutritive quality of a diet and for quality control purposes. The NIR 

spectroscopy technology is used for monitoring the nutritional profile of a feedstuff which 

allows the detection of outliers that requires additional analyses and animal nutritionists 

can apply the information to reformulate diets (van Kempen, 1996).  
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 NIR spectroscopy is a long-established, and now mature, technology. The first 

application of NIRS was developed by Norris & Hart (1965) by predicting the moisture 

content in grains and seeds with little sample preparation. The technology uses simple 

sample preparation methods such as drying and grinding. It is a very rapid technique as 

measurements can be done in seconds once the sample is prepared and is an 

inexpensive technique (Dryden, 2003). Since no reagents are required, the technique 

avoids the additional costs of organic and other chemical waste disposal, and there are 

few, if any, hazards associated with the technique, because no toxic or corrosive reagents 

are used (Mark et al., 2002). 

The prediction of accurate results by NIR spectroscopy relies heavily upon obtaining 

a calibration set which represents the variation in the main population, accurate laboratory 

analyses and the application of the best mathematical procedures, although a large 

number of samples is needed to set up an accurate calibration (Aufrère et al., 1996). 

The NIR spectroscopy technique is not only a rapid method, but also has other 

advantages over conventional chemical techniques, for instance, it is a physical, non-

destructive method, which requires minimal or no sample preparation because samples 

can be presented directly to the instrument without any pre-treatment (González-Martín et 

al., 2006a; Pasquini, 2003). Moreover, in contrast to traditional chemical analysis, it is non-

polluting, as no hazardous chemicals are required, and no waste products are produced, 

and can be carried out during a short period of time (Aufrère et al., 1996). A further 

advantage is that it can be performed regardless of the presentation of the feed (pellets, 

granules, grain, meal) and of the physiological stage of the animals (lactation, growth, 

maintenance, etc.) to which the feed is being fed (González-Martín et al., 2006a). 

Furthermore, it is a multi-analytical technique which allows for several chemical 

parameters to be predicted simultaneously and is simple to use and operate, once the NIR 

spectroscopy is calibrated (Smith & Flinn, 1991). 

The main disadvantages are the need for high-precision and expensive 

spectroscopic instruments and it is dependent on time-consuming and labour-intensive 

calibration procedures and complicated data treatment. There can also be difficulties in the 

transfer of calibrations between instruments (Givens & Deaville, 1999; Smith & Flinn, 

1991).   

 As conventional chemical techniques to determine the nutritive composition of feeds 

are expensive, time-consuming and sometimes hazardous, plant breeders, farmers and 
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animal nutritionists are in need of a reliable, precise, fast and cost-effective method to 

evaluate the nutritive value of pastures (Smith & Flinn, 1991). By making use of NIR 

spectroscopy, the results are made available in a matter of seconds. NIR spectroscopy is 

thus an invaluable tool to estimate the nutritive value of feeds (Givens & Deaville, 1999). 

 

Study problem 

In recent years, the livestock industry has had to cope with unpredictable crop yields, 

as well as an increased competition for raw materials from the bio-fuel industry. As a 

result, there has been an increase in the cost of feed ingredients and more industrial by-

products have become available. At the same time, there are increasing demands for 

animal production to become more sustainable, for example, by decreasing excessive 

production while producing more food for a growing world population. To add to these 

problems, food prices have come under increasing pressure from the retail sector. These 

factors have all exerted pressure on the animal production sector to implement more 

professional and accurate practices (Graham et al., 2013). 

As feed costs are responsible for 50 - 80% of the total variable costs of animal 

production, nutrition is an area of major concern. The main aim for nutritionists is to 

provide the animal with the correct amount of nutrients required for each production phase. 

Both surplus, as well as a deficit in nutrients, is translated into economic losses through 

higher feed costs or lower performance, respectively. Thus, it is important for the 

nutritionist and purchaser to have accurate information on the nutritional value of all 

available ingredients.  Regular analysis of feed ingredients and feeds need to confirm that 

the nutrient content of feed is according to the formulation and should be a key part of a 

quality control system (Graham et al., 2013). 

Nutritionists have traditionally used conventional chemical analysis to determine the 

nutrient composition of raw materials and feeds. Unfortunately, most of these techniques 

are time-consuming and expensive, which limit the amount of samples that can be 

analysed and creates a delay between sampling and the production of results (Graham et 

al., 2013).  

In recent years, the demand has increased for the analysis of nutrient composition of 

feeds and quality control has been met by adaptation of various techniques. One of these 

techniques that were found to be suitable for the measurement of a large amount of 

constituents, is based on the interaction of the sample with NIR spectroscopy radiation. A 
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beam transmitted or reflected by a sample contains information on the properties of the 

sample. A large number of food components have absorption peaks in the near infrared 

spectral region of 1100 - 2500 nm; therefore, this region is particularly useful for the 

determination of the composition of feed products. A beam transmitted or reflected by the 

sample is measured through the near infrared spectral range and the resulting spectra or 

their transformed curves are used to derive the composition of the sample (Kaffka et al., 

1982).   

The development of the NIR spectroscopy technology during the last two decades 

has opened new perspectives to meet the demands to evaluate the quantitative and 

qualitative components of a wide range of organic materials (de Boever et al., 1995). NIR 

spectroscopy has other advantages over chemical techniques, in that it is a non-

destructive method which requires only a very small sample. Several analyses can be 

carried out simultaneously once calibrations are established (Smith & Flinn, 1991). 

NIR spectroscopy technology, which is based on analysis of animal feeds and feed 

ingredients, can rapidly and economically provide objective nutritional information on the 

diet of livestock, their likely productivity of ingredients, and processes for animal feed 

manufacturing. It allows for easy and comprehensive application of established nutritional 

science to the nutrition and management of livestock. This in turn improves the efficiency 

and productivity of livestock for food. Because a wide range of nutritional analyses can be 

conducted simultaneously with one instrument and a desktop computer, NIR spectroscopy 

can greatly reduce the capital investment, training and operational costs required for 

nutritional analysis and decision support (Dixon & Coates, 2010). 

 

Background 

About near infrared reflectance spectroscopy 

NIR spectroscopy was introduced as a potential analytical tool for agricultural 

products by Karl Norris, an instrumentation engineer for USDA-ARS in Beltsville, 

Maryland, USA. The NIR spectroscopy technique has been used since 1965 (Norris & 

Hart, 1965) to analyse chemical constituents, such as crude protein and other organic 

compounds, in animal feeds, and a huge advantage is that it is a rapid, non-destructive 

and non-polluting technique. However, NIR spectral information cannot be used to 

determine the concentrations of constituents directly, because of the way in which near 

infrared radiation passes into, through and is reflected from the sample. The concentration 
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of the constituents that needs to be measured, has to be predicted by developing 

equations based on reference data. The chemical constituents or other characteristics of 

the sample are predicted from calibration equations, which are derived from correlations 

that have been developed between spectra and reference data. It is also important to 

apply appropriate mathematical techniques (e.g. smoothing and derivatisation) to the NIR 

spectroscopy data and to ensure the samples that are analysed are uniform in particle size 

and water content (Dryden, 2003). 

NIR spectroscopy predicts crude protein contents with great precision when 

calibration equations are properly developed. Other constituents are predicted with less 

accuracy, although the standard errors of prediction are similar to the standard errors of 

duplicate laboratory determinations. NIR spectroscopy predictions are used with great 

precision with both concentrate and forage foods. NIR spectroscopy information is derived 

from the interactions of near infrared radiation with chemical bonds between non-mineral 

elements and therefore does not always predict feed mineral contents with great precision 

(Givens & Deaville, 1999).  

Different models and several trademarks of NIR spectroscopy instruments are 

available for different needs. Suggested criteria to decide which one to choose, should 

include the range of intended applications and the software available for the specific 

applications. For poultry and animal feeds in general, a relatively large number of 

ingredients and wide variety of applications for different constituents is needed. For this 

reason the hardware and software should be carefully selected. The range of wavelengths 

frequently used in agricultural applications is 1100 – 2500 nm (Ruiz, 2001).  

 

Theory and operation 

The NIR spectroscopy technique is based on the absorption of electro-magnetic 

radiation in the near infrared region (1100 – 2500 nm) by specific chemical bonds in the 

sample. A computerized optical device is used to collect this information for a set of 

samples of known composition. The derived relationship is then used to analyse similar 

samples of unknown composition (Smith & Flinn, 1991). Infrared is the region of the 

electromagnetic spectrum located after the visible region in the direction of longer 

wavelengths. Near infrared owns its name for being the “near” section of the infrared 

region to the visible region. Spectroscopy specialists divide the infrared region into near, 



6 
 

middle and far infrared. For practical purposes, near infrared comprise wavelengths 

between 800 and 2500 nm (Ruiz, 2001).   

NIR spectroscopy technology is based on the absorbance of light energy of a given 

frequency by molecules, having a permanent dipole, which vibrate at the same frequency. 

The difference between the incident light and light reflected from the surface of the sample 

is analogous to the familiar Beer-Lambert concept of absorbance/transmittance (Panford 

et al., 1988). The primary advantage of the NIR region is that absorbances are lower than 

in neighbouring regions and generally obey the Beer-Lambert law, i.e., absorbances 

increase linearly with concentration. This is because NIR absorptions are generally 10-100 

times weaker in intensity than the fundamental mid-infrared absorption bands. The 

weakness of the absorptions is a benefit, providing direct analysis of samples without 

dilution or the requirement of short optical path lengths or dispersion in non-absorbing 

matrices used in traditional sampling techniques in UV/VIS and mid-infrared 

spectroscopies (Williams, 2012). 

When a sample is irradiated with light, according to energy conservation law, 

fractions are reflected, transmitted, and absorbed, all summing to 1.0. The proportions 

depend on the light wavelength and sample properties (composition and thickness among 

others). Beer’s law, well-known in molecular spectroscopy, defines the correlation of the 

concentration of constituents with its absorbance at specific wavelengths. Beer’s law is not 

directly applicable in NIR spectroscopy because of several restrictive assumptions: no 

correlation between multiple absorbers, homogenous samples, negligible light scattering, 

and constant path length. Notwithstanding this, Beer’s law implication is still held by NIR 

spectroscopy analysis (Agelet & Hurburgh, Jr., 2010). 

NIR spectra are formed of overtones and combination bands. Overtones are electron 

excitations to higher energy levels, which occur at multiples of the mid-infrared (MIR) 

fundamental frequencies. The study of spectroscopy involves the interaction between 

electromagnetic radiation and matter as a function of wavelength. Electromagnetic 

radiation is absorbed by chemical bonds when the energy of a light photon is equal to the 

energy difference between two vibrational and rotational states of a chemical bond. Energy 

and wavelength are equivalent to each other and can be converted from the one to the 

other. Thus, the wavelengths of absorbed radiation are unique for each molecule; intensity 

of absorption is proportional to the concentration of molecules and therefore can be 

interpreted to understand the composition of a substance. The initial absorptions by 

http://www.pdkprojects.com/
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organic molecules are in the infrared region. They are the fundamentals that result in 

narrow absorption peaks and can be directly interpreted to determine the composition of a 

substance (Walker & Tolleson, 2010). 

The NIR spectra are treated mathematically to ‘extract' the information from the 

sample. All biological substances contain thousands of C-H, O-H and N-H molecular 

bonds. Therefore, the exposure to near infrared radiation of biological samples, such as 

feed ingredients, results in a complex spectrum which contains qualitative and quantitative 

information about the physical and chemical composition of that sample. Moreover, every 

biological substance has a unique NIR spectrum. If two biological samples have the exact 

same spectrum, it can be assumed that they have the exact physical and chemical 

composition. If spectra are different, then the samples are different either physically or 

chemically or both (Ruiz, 2001).  

The NIR spectroscopy technique is applied to organic compound bonds which are 

the primary constituents of the organic molecules of which feeds consist. The bonds are 

rich in O-H bonds (such as moisture, carbohydrates and fat), C-H bonds (such as organic 

compounds, petroleum derivatives) and N-H bonds (such as proteins, amino acids). The 

absorption of NIR radiation by organic molecules is due to overtone and combination 

bands primarily of O-H, C-H, N-H and C=O groups whose fundamental molecular 

stretching and bonding absorb in the mid-infrared region (Williams, 2012).  

Peaks in the log (1/R) spectrum represent the harmonics, overtones and 

combinations which arise from the primary absorption in the mid-infrared spectrum 

(Coleman & Murray, 1993). Overtones represent whole integer multiples of the much 

stronger fundamental absorption frequencies found in the mid-infrared region (2500 - 

50000 nm). Combinations arise from the sharing of NIR spectroscopy energy between two 

or more fundamental absorptions. Special sample preparation is not necessary when 

using NIR spectroscopy, because NIR radiation has more energy than the mid-infrared 

region where fundamentals are located and longer path lengths are possible. However, 

overtones and combinations create complex NIR spectra with broad absorption bands that 

are composed of multiple narrow, overlapping absorptions. NIR spectra are much more 

complex than they appear and were not useful until the advent of high-speed computers 

and multivariate algorithms to convert complex spectra to useful information. Even so, the 

NIR spectrum contains a tremendous amount of information and should provide some 
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fundamental understanding of the digestion process (Walker & Tolleson, 2010; Coleman & 

Murray, 1993). 

There are no necessary chemical or physical relationships between the constituent 

under consideration and the wavelengths which may be selected to predict it. The way NIR 

spectroscopy instruments operate is by statistically correlating NIR signals at several 

wavelengths with the compound intended to be predicted. Reflectance in the near infrared 

spectrum represents the chemical structure of the sample (Purnomoadi et al., 1996).  

 

Transmittance vs. reflectance 

NIR spectra can be measured as transmittance or reflectance. The reflectance mode 

is based on reflecting near infrared radiation from the surface of the sample to the detector 

and by transmittance the near infrared radiation passes through the sample. The samples 

need to be milled to a uniform surface when measurement is taking place in reflectance 

mode and for transmittance very little or no sample preparation is necessary. For that 

reason transmittance is a faster method and more reproducible than reflectance, but 

transmittance is less sensitive than reflectance (Ruiz, 2001).   

Light energy directed at an uneven or granular surface is either specularly or diffusely 

reflected. Specular reflectance is reflected directly from the surface and contains no 

information relative to chemical bonds. Other portions of the spectra are absorbed by the 

molecular bonds in the sample before the remaining energy is reflected back to the 

detector. The radiation that enters the sample and is reflected back is termed “diffuse 

reflection” because it becomes diffused by random reflections, refractions and scatter at 

further interfaces inside the sample. This reflected energy is affected by particle size of the 

sample, and the observed spectrum contains information about both the chemical and 

physical nature of the sample. The nature of diffuse reflectance allows multiple 

constituents and physical properties to be determined from a single diffusely reflected 

spectrum (Walker & Tolleson, 2010). 

 

Advantages and disadvantages 

There are various advantages to using NIR spectroscopy instruments; for instance, 

the technique is capable of providing rapid analysis which is nearly instantaneous in 

measurement. Furthermore, modern NIR spectroscopy instruments can perform multiple 

scans and average them in less than a minute and sometimes in less than a second 
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(Mark, 2012). The operation of NIR spectroscopy instruments are also straightforward and 

completely safe to operate and avoid the need for the use of chemical reagents that are 

harsh, toxic, corrosive and expensive. Moreover, since no reagents are required, no extra 

expenses are involved for solvent waste disposal and there are minimal, if any, hazards 

associated with NIR spectroscopy techniques. NIR spectroscopy methods can also reduce 

the costs of testing. For routine chemical analysis, the cost of NIR spectroscopy was 

calculated at about one-third of the cost of traditional wet chemistry analysis. Additionally, 

the analysis of constituents requires little or no sample preparation and several more 

analysis per day can be performed, as no associated reagent preparation steps or sample 

preparation steps are required (Ruiz, 2001; Mark et al., 2002). The NIR spectroscopy 

method also offers wide flexibility in sample presentation, as it is capable of analysing 

large and inhomogeneous samples which reduces sampling error (Williams, 2012; Mark, 

2012). 

The performance of reference analysis is of utmost importance, since the accuracy of 

the calibration, and in particular its subsequent monitoring, depends largely on that of the 

reference testing. The reference data must be paired with the correct optical data, as it can 

be one of the most consistent reasons for outliers (Williams, 2001). NIR spectroscopy 

predictions provide analysis with the same accuracy and reproducibility as traditional wet 

chemistry analysis, but are often limited by the accuracy of the method used to provide 

values with which to compare the NIR spectra. However, it does not require any drainage 

or fume exhausts, and the installation is uncomplicated. Routine analysis can be done by 

staff with minimal training or technical expertise (Dixon & Coates, 2010). Samples are 

analysed rapidly without destroying them which makes it suitable to analyse live material 

which can still be used for other purposes, rather than being discarded. Multiple 

components of each sample can also be determined from a single measurement of a 

sample’s spectrum.  Both the composition and functional properties can be measured and 

pure compounds can positively be identified if a library of compounds is developed. 

Furthermore, no consumables are required for NIR spectroscopy instruments, except 

lamps which need to be maintained. Samples can be analysed in the laboratory, in-line or 

in the field with portable instruments (Williams, 2012; Murray, 2010). To obtain the most 

accurate predictions by NIR spectroscopy, calibration models need to be developed on 

single feedstuffs. This requirement can only be met if a large number of samples are 

included in the database to include all possible variations (van Kempen, 1996). 
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Disadvantages of using the NIR spectroscopy technique are that the initial capital 

investment of the NIR spectroscopy instrument is high and software and the development 

of calibrations is time consuming (Ruiz, 2001). Moreover, sampling error can be caused by 

the lack of homogeneity in the materials being sampled. The variation differences between 

the samples are often the effective lower limit on the standard error of calibration (SEC) in 

an NIR spectroscopy calibration (Hruschka, 2001). Another inconvenience in NIR 

spectroscopy technology is the need to calibrate the instrument for each commodity and 

component of each type of sample to be analysed (Williams, 2001). 

One of the biggest drawbacks of NIR spectroscopy technology is that it is not a 

stand-alone technology. In order to gain the benefits of NIR spectroscopy technology, it is 

necessary to perform fairly complicated and intricate calibration procedures and 

considerable technical skills are required to develop and maintain calibration equations. A 

high level of technical expertise, knowledge and skills is needed to develop new 

calibrations or adapt existing calibration equations. Considerable training and experience 

are usually required to become an expert in chemometrics and the specialised software 

packages required. Calibration equations are usually quite specific for the product or 

material being measured; thus, they will usually need to be developed for regional 

situations. This usually requires analysis of both NIR spectroscopy and conventional 

chemistry of many hundreds of samples to be used to develop the calibration before 

analysis of unknown samples can commence (Dixon & Coates, 2010). 

Furthermore, the calibration procedure involves the measurement of the spectra of a 

large number of samples, followed by complex calculations that allow the computer 

program to determine the relationship between the spectra of the samples and their 

compositions. The calibration procedure is time consuming and very costly (Mark, 2012). A 

reduced set of samples must still be measured by wet chemistry techniques. The 

measurement of samples outside the range of the calibration samples will be invalid. Small 

calibration sample sizes can lead to overconfidence (Murray, 2010). 

Moreover, the accuracy of NIR spectroscopy is dependent upon the accuracy and 

precision of the reference methods, although the predictions can be more reproducible 

than the reference method. Separate calibrations are required for each constituent or 

functionality parameter. To ensure that calibrations remain reliable, the accuracy of 

calibrations should be monitored by periodical analysis of some of the samples being 

predicted by the reference method. It may be necessary to update calibrations several 
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times during the initial phases of use to incorporate samples representing new variances 

not encountered previously, until the calibrations have become highly robust (Williams, 

2012). 

 

Sample requirements for development of calibrations  

The database or library of spectra that is needed to develop calibrations should cover 

a wide range of variability for the constituents (Ruiz, 2001). A minimum of 50 samples, but 

preferably 200 or more samples that have been accurately analysed for the constituents or 

parameters of interest by traditional chemistry methods is needed. Samples should 

represent the full range of concentrations of the constituents of interest that need to be 

predicted in future samples by the calibration. Ideally, the highest values should be at least 

twice and preferably ten times the lowest values. Samples should represent the range of 

physical and chemical compositions anticipated in future samples to be predicted by the 

calibration. Samples should represent a range of environmental conditions, such as 

temperature. Samples should be chemically and physically unchanged between the time 

the constituents are scanned by NIR spectroscopy and analysed by conventional methods. 

Samples should be physically uniformly mixed so that the aliquots analysed by 

conventional method and those scanned by NIR spectroscopy are truly representative of 

one another. Ideally, the actual sample analysed by the conventional methods and 

scanned by NIR spectroscopy should be the same, but is not feasible in practice (Williams, 

2012). More robust calibrations may use a few hundred samples, for instance, instrument 

built-in calibrations for grain analysis. Calibrations of homogeneous mixtures may require 

smaller calibration sets than agriculture samples of high compositional complexity and 

heterogeneity, such as whole grains or forages (Agelet & Hurburgh, Jr., 2010).  

Accuracy in the determination of laboratory reference values for use in NIR 

spectroscopy calibration development has been accepted as a critical component of useful 

NIR spectroscopy technology. Conventional wisdom dictates that the accuracy of NIR 

spectroscopy predictions can only be as good as the laboratory reference values used for 

calibration (Coates, 2002) and comprehensive sample selection is essential, but the 

samples are not always available. A large amount of samples for calibration development 

is necessary, but is time consuming and expensive (Martens & Naes, 2001). The NIR 

spectroscopy technique is strictly correlative; therefore, the choice of calibration samples is 

critically important. The calibration samples should include all the variability in composition 
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(range of constituent values), particle size, sample treatment, etc., that might be 

encountered in any sample in practice to be measured (Kaffka et al., 1982). 

 

Calibration procedure and model validation 

NIR spectroscopy analysis depends on the development of mathematical 

relationships (calibration equations) between absorbances at various wavelengths in the 

NIR region and composition of reference samples determined by conventional procedures, 

such as wet chemistry. The NIR spectroscopy absorbance spectra of unknown samples 

are then used with these calibration equations to estimate constituents and functional 

properties (Dixon & Coates, 2010). Calibrations are statistical operations performed on 

spectral data to obtain an optimal statistical relationship between the spectral data and the 

reference data. The calibrations are the basis of predicting future, unknown samples in a 

rapid manner. In common with conventional spectrophotometric analysis, the calibration 

provides a simple linear regression relationship between spectral data and the 

concentration of a constituent (Williams, 2012). 

The calibration set should be selected in such a way that it covers the full variation in 

the sample, including differences in physical properties. Because the calibration range 

should be wider than the specified range, samples without amounts of the quantified 

substance out of specification should be included (Anonymous, 2003).  

The samples that are used for the calibration must represent the sample variation to 

be used for analysing the future samples. The range of the values of the constituents in 

the calibration sample set must equal or exceed the ranges of those constituents to be 

encountered in the future, when the analyser is put to routine use (Mark, 2012). 

NIR spectroscopy instruments determine protein and other constituents by 

measuring log (1/R) values that must be correlated to the values of the constituents as 

determined by wet chemistry analysis, which are termed a reference or standard method. 

To establish this correlation by using a set of samples of known composition, is termed 

calibration of an NIR spectroscopy method; whereas using the correlation to determine the 

amount of a constituent in a new sample is called an NIR spectroscopy determination or 

prediction. The correlation between the log (1/R) values and the reference method values, 

is expressed as an approximation and always involves some form of regression equation. 

The amount of radiation reflected from the sample is quantified as the reflectance (R) of 

the sample. The value is usually expressed as log (1/R), which gives higher values at 

http://www.pdkprojects.com/
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higher levels of absorbance (i.e. lower reflectance). There is an almost linear relationship 

between log (1/R) and the concentration of an absorbing component. The regression 

equation has regression constants (the Y-intercept and regression coefficients), 

independent variables, and one dependent variable (the reference method value). The 

independent variables are mathematical combinations of log (1/R) values at various 

wavelengths. These combinations can be so complicated that they are better thought of as 

a series of steps, thus the term data treatment can be used to mean any mathematical 

process that combines log (1/R) values with independent variables for use in a regression 

equation. Developing a calibration model involves testing different data treatments, data 

treatment constants, or sets of wavelengths. Calibration means finding the regression 

constants that go into the approximation once the form of the approximation, the data 

treatment constants, and the wavelengths have been decided upon (Hruschka, 2001). 

In order to estimate the functionality of the calibration model, predictions of an 

independent validation set must be evaluated in a process called validation (Malm et al., 

2012). An adequate validation of the calibration model is a crucial step to determine the 

suitability of the model to predict new samples, which is the whole purpose of developing 

NIR spectroscopy calibrations. Ideally, the best validation should be done with a number of 

samples that covers a range of samples which were not previously used for development 

of the calibration equation and which can be encountered in future predictions. Since 

independent validation may not always be possible, cross-validation can provide a basic 

assessment regarding calibration performance. The general idea of the method is to keep 

a single sample (full cross-validation) or a group of samples (k-fold cross-validation) apart 

and develop a calibration with the remaining samples. The developed calibration is 

validated with the excluded samples and the prediction values are recorded. This 

procedure is consecutively done until all samples have been predicted once. The final 

calibration model is not tested, but rather several sub-models developed with calibration 

data subsets. Any statistic reported from cross-validation cannot be directly compared or 

interpreted the same way as statistics from a real validation of the final model with new 

samples. Reporting cross-validation statistics is preferred over reporting calibration results 

alone (Agelet & Hurburgh, Jr., 2010). 

In order to develop calibration equations, the process must consist of the following 

steps: (i) collection of spectral data; (ii) pre-processing of spectral data to eliminate noises 

and baseline shift from the instrument and background; (iii) building a calibration equation 
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by using a set of samples with known analysed concentrations obtained by suitable 

reference methods; and (iv) validation of the models by making use of another 

independent set of samples not used in the calibration set (Cen & He, 2007). 

The principal steps to follow during the development of a quantitative model based 

on NIR spectroscopy, is illustrated in Figure 1. 

 

 

Figure 1 Principal steps in the development, evaluation, use and maintenance of a 

quantitative model based on NIR spectroscopy (Pasquini, 2003) 

 

 

The NIR spectroscopy standard was developed from 2007 to 2010 by more than 20 

NIR spectroscopy specialists and users, and was published in 2010 as International 

Organization for Standardization (ISO12099) - Guidelines for the application of near 

infrared spectroscopy (ISO12099, 2010). ISO12099 is a general standard that focuses on 

the validation of calibration models with independent test sets. The International Standard 

provides guidelines for determination of nutrient contents such as moisture, fat, crude 

protein, starch and crude fibre by NIR spectroscopy, as well as parameters such as the 

digestibility in animal feeding stuffs, cereals and milled cereal products. The standard 

Laboratory Level Computer level 

1. Selection of the calibration and validation 
set of samples (all physical/ chemical 
variability must be contemplated). 

2. Determination of the concentration/ 
property of interest using a reference 
method. 

3. Collection of NIR spectra (select the best 
mode of sample presentation and keep it 
constant for all samples in the future. 

4. Development and optimisation of the 
mathematical calibration model 
(selection of the multivariate technique 
and of the best number of variable, 
identification and elimination/ inclusion 
of outliers). 

5. Validation of the calibration model 
(external set of samples 
recommended). 

6. Application of the model in prediction of 
unknown samples. 

7. Maintenance of the model: tracing 
instrumental performance and inclusion 
of outliers for model upgrade. 
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includes any type of instrument which is based on diffuse reflectance or transmittance 

measurement covering the near infrared wavelength region of 770 - 2500 nm. The optical 

principle may be dispersive (e.g. grating monochromators); interferometric or non-thermal 

(e.g. light emitting diodes, laser diodes and lasers). The instrument should be provided 

with a diagnostic test system for testing photometric noise and reproducibility, 

wavelength/wave-number accuracy, and wavelength/wave-number precision (for scanning 

spectrophotometers) (Mӧller, 2013).  

In order to establish successful validations, it is important to have a wide range of 

representative samples which includes the following variations: (i) combinations and 

composition ranges of minimum and maximum sample components, (ii) seasonal, 

geographic and genetics effects on forages, feed raw materials and cereals, (iii) 

processing techniques and conditions, (iv) storage conditions, (v) sample and instrument 

temperature, and vi) variations between instruments (Mӧller, 2013). 

 

Useful statistics for evaluating NIR spectroscopy calibrations 

NIR spectra are complicated and their interpretation is not simple. Chemometrics is 

the field of extracting information from multivariate chemical or spectral data, using tools of 

statistics and mathematics.  In spectroscopy, the principal application of chemometrics is 

in the calibration. The variable that calibrations are developed for are referred to as 

constituents or an analyte. The concentration of the constituents is determined by a 

standard analytical procedure (Walker & Tolleson, 2010).  

Chemometric calibration demands the development of a calibration model, usually by 

applying one or other mathematical algorithm to the data for which the model is intended 

to be used (Mark, 2012). Several comprehensive software packages are available, which 

are dedicated to make use of NIR spectroscopic information and for the development of 

calibrations. Chemometrics applies statistical methods such as multiple linear regression 

(MLR), partial least squares (PLS) and principle component analysis (PCA) to the spectral 

data and correlates them with a physical property or other factor, which is directly 

determined rather than the analyte concentration itself. PCA and PLS can be considered 

standard calibration techniques for NIR spectroscopy equations. The main advantage of 

these techniques is to avoid co-linearity problems permitting to work with a number of 

variables that is greater than the number of samples. A comparison between these two 

techniques reveals similar results in terms of prediction performance, with no significant 
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difference being reported when both employ the optimised number of principal 

components (PC’s). PLS usually produces good models using a lower number of PC’s 

than its counterpart, PCR. All methods assume a linear relationship between the spectral 

data and the concentration or other property value to be determined. The primary method 

provides the data of the wet chemistry of the samples required to develop the calibration, 

although the actual measurement when a sample not used in the calibration set is 

scanned in the NIR spectroscopy instrument is a prediction based on the statistics of the 

data, not on the direct quantification of the analyte (Ruiz, 2001; Pasquini, 2003; Williams, 

2012). 

The program correlates special characteristics of the calibration samples with the 

respective reference data to derive the model. The model can then be applied to spectra of 

unknown samples to yield an analytical result (Mark, 2012). 

NIR spectroscopy instruments can be calibrated by relating spectra, which are 

obtained by using a set of known samples, to reference chemical data for the same set of 

samples. The chemical and physical properties of unknown samples of the same type of 

material can be used to predict the unknown samples by using the obtained calculation 

(Graham et al., 2013). The efficiency of NIR spectroscopy calibrations is usually evaluated 

by means of applied statistics. The efficiency of a regression equation for a set of 

calibration samples can be reported by including the following statistics: standard error of 

calibration (SEC), the coefficients of correlation (r), coefficients of determination (r2) and 

regression (b), the intercept (a) and bias, as well as the standard error of prediction (SEP), 

which is the standard deviation (SD) of the differences between NIR spectroscopy 

predicted values and reference values. The higher the value of r2 and the lower the SEP, 

the more effective is the calibration (Williams, 2001). 

Several terms are needed for the interpretation of statistical analysis of the results of 

NIR spectroscopy calibration equations. Unless all of them are understood and correctly 

interpreted, the operator may draw the wrong conclusions, which can lead to frustrating 

and sometimes costly discrepancies. To assess the quality of a calibration model, several 

standard statistical measures are useful to describe the performance of the developed 

models and for comparative studies of different models (Malm et al., 2012).  
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These statistics for interpretations of NIR spectroscopy for computing calibrations 

include: 

(i) The mean of the independent variable/spectral (log 1/R) data (X bar); the 

mean of the dependant variable/ reference data (Y bar) (where X is the value 

determined by conventional analytical methods and Y is the value predicted by 

NIR spectroscopy) 

(ii) The standard deviation (SD) of both the independent (SDx) and dependent 

(SDy) variables data for the samples used in calibration and validation 

monitoring 

(iii) The coefficient of variability or variation (CV) calculated from the SD and X bar  

(iv) The bias, i.e., the mean difference between X and Y data 

(v) The coefficient of correlation (r) between X and Y data  

(vi) The coefficient of determination (r2) 

(vii) The regression coefficient (b) and intercept (a) 

(viii) The distribution of differences between X and Y (in NIR spectroscopy it is 

usually referred to as predicted NIR spectroscopy values and reference 

values) 

(ix) The standard error of a single test (SET) or precision 

(x) The standard error of prediction or standard error of performance (SEP) 

(xi) The standard error of cross-validation (SECV) 

(xii) The root mean square deviation of differences (RMSD) 

(xiii) The true test error (TTE) 

(xiv) The ratio of the SEP to the SDy (RPD) 

(xv) The ratio of the range to the SDy (RER) (Williams, 2007). 

 

The development of a calibration model on NIR spectroscopy requires a data set with 

spectra and corresponding reference values measured analytically on a representative 

sample set. The spectroscopic data are designated by the letter X and the reference value 

by the letter Y (Malm et al., 2012). The coefficient of correlation (r) shows the degree to 

which two sets of data (X and Y data, e.g. the NIR spectroscopy predicted values and 

reference values) correlate with each other. Perfect correlation, with no differences at all 

between the two data sets, will result in an r-value of 1.000. In practice this is impossible, 

since a certain amount of error in either X or Y data (or both) is unavoidable. The X and Y 
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data may either be positively or negatively correlated. The coefficient of determination is 

given by r2. It shows the proportion of the variance in X data that can be explained by the 

variance in the Y data (Williams, 2007).  

 

 

Table 1 Guidelines for interpretation of r and r2 (Williams, 2001) 

r value r2 Interpretation 

Up to 0.50 Up to 0.25 Cannot be used in NIRS calibration 

0.51 - 0.70 0.26 - 0.49 Poor correlation.  Investigation is necessary 

0.71 - 0.80 0.50 - 0.64 Can be used for rough screening 

0.81 - 0.90 0.66 - 0.81 Can be used for screening and some approximate calibrations 

0.91 - 0.95 0.83 - 0.90 Can be used in most applications but with caution 

0.96 - 0.98 0.92 - 0.96 Can be used in most applications, including quality assurance 

0.99+ 0.98+ Excellent - can be used in any application 

 

 

The coefficient of correlation (r) is an indication of the closeness of fit between the 

NIR spectroscopy and reference values over the range of composition. A high r value with 

a low SEP and bias, together with a slope close to 1.0, indicates that the NIR spectroscopy 

results are accurate over the anticipated range and likely to remain so, provided that these 

statistics were based on a sufficient number of observations (Williams, 2001). 

The root mean square error of prediction (RMSEP) is a measure for the accuracy of 

the calibration. The RMSEP is the total error calculated as the square root of the average 

squared difference between reference values and the predicted values by a regression 

model when applied to a set of samples which are not included in the derivation of the 

model. It should be noted that RMSEP includes any bias in the predictions (Malm et al., 

2012). 

The standard error of calibration (SEC) is calculated by the results of prediction of the 

samples used in the actual development of the calibration and is obtained from the SD of 

differences between NIRS and reference samples used in the calibration sample set. The 

spectral signals at adjacent wavelengths are highly correlated with each other and if MLR 

is used the r and SEC statistics will progressively improve as more terms are added. This 

is called over-fitting of data (multi-collinearity) and can be misleading. If the validation 
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exercise indicates that r is low and the SEP is unacceptably high, the calibration set can 

be predicted and the individual data viewed. The SEC may indicate the presence of one or 

more gross outliers, the removal of which may bring about a significant improvement in the 

actual r and SEP values when the validation set is predicted. The SEP should theoretically 

always be higher than the SEC. Validation using a separate set of samples enables the 

operator to optimize the number of constants to use in the MLR equation (Williams, 2007).  

The SEC may be calculated as follows (Smith & Flinn, 1991): 

 

SEC = [Σ(Xi − Yi)2 / (N − p − 1)]0.5 

 

where: Xi = the value determined by conventional analytical methods of the 

calibration set 

Yi = the value predicted by NIRS of the calibration set 

N = number of samples of the calibration set 

p = number of terms in the equation 

 

The standard error of prediction (SEP), also termed standard error of performance, is 

the standard deviation of differences between NIRS predicted values and the associated 

reference values, after correction for bias. Unlike the root mean square of the differences 

(RMSEP), the SEP is independent of bias. The SEP should be calculated from the results 

obtained by predicting a set of samples that have not been used in development of the 

calibration. This sample set is usually termed the prediction set, or more often, the 

validation set. Ideally, the sample set used in validation of a calibration, should consist of 

samples of the same type that are not related to the calibration sample set. Often, the 

validation samples are part of a single population from which both the calibration and 

validation samples sets are compiled (Williams, 2007).  

In practice, the SEP may not always be higher than the SEC. For some applications, 

the precision of the NIRS instrument may be superior to that of the reference method. 

Sample selection for calibration and validation set may result in one or more of the 

calibration samples having a higher reference test error than any of those in the validation 

set, and the SEP may be slightly lower than the SEC. 
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The SEP is defined as (Smith & Flinn, 1991): 

 

SEP = [Σ(Xi − Yi)2 /(N − 1)]0.5 

 

where:  Xi = the value determined by conventional analytical methods for the 

validation set 

Yi = the value predicted by NIRS for the validation set 

bias = difference between overall means 

N = number of samples of the validation set 

 

The calibration set may contain one or more outliers, which will account for the SEP 

being somewhat lower than the SEC. These can be identified by displaying the correlation 

plot of the calibration sample set. If the SEP is much higher than the SEC (e.g., SEP is 

about two times higher than SEC), then there has either been a high degree of over-fitting, 

or there is a major error in at least one of the samples used in validation (Williams, 2007). 

The standard deviation (SD) is an expression of the variability, or variance in data. It is the 

square root of the variance (Williams, 2006). 

The RPD (ratio of prediction of deviation) can be defined as the ratio of the standard 

deviation of results of reference analysis and the standard error of performance of NIRS 

data (SD/SEP). The RPD relates the SEP to the SD and simplifies the interpretation of the 

SEP (Williams, 2001). The RPD is a simple statistic used to illustrate the efficiency of the 

calibration in terms of the original standard deviation of the percentages of the constituent 

in the series of samples as determined by wet chemistry reference methods, when 

analysed by NIR spectroscopy. It is calculated by dividing the SD of the reference values 

used in the validation (SD) by the SEP. When the value of the standard error of 

performance (SEP) approaches that of the standard deviation (SD), the calibration is not 

measuring/ predicting anything. Therefore, the higher the RPD value, the more efficient or 

better the calibration. Ideally, an RPD value of 10 or higher indicates a very good 

calibration, while values lower than 10 may reflect a poor calibration or too narrow a range 

in the constituent in the calibration samples. An RPD value of 10 indicates that the error of 

prediction by NIR spectroscopy is only one-tenth of the standard deviation for the 

reference result (Panford et al., 1988).   
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The RPD is defined as (Williams, 2001): 

 

RPD  =  SD 

SEP 

 

The efficiency of NIR spectroscopy predictions is determined by the size and 

consistency of deviations from analyses (SEP). If the SEP value is similar to the SDx, it 

means that the instrument is not predicting the reference values at all. The SEP should be 

much lower than the SDx, and ideally the RPD should be 5 or higher. As shown in Table 2, 

Williams (2001) provided ranges for the RPD values related to the calibration suitability: 

values greater than 3 are useful for screening, values higher than 5 indicate effective NIR 

spectroscopy predictions, values above 8 indicate that the calibration can be used for any 

application, while values below 2.3 indicate a poor calibration performance, with use for 

the prediction of new samples not advisable. The calibration equations that are developed 

must be validated against another data set in which reference values of the constituents 

have been determined. The samples used in the validation set are normally different from 

those which were used to develop the calibration equation, and are usually a smaller set 

than the calibration set. The predicted values will normally be different from the reference 

values (Dryden, 2003). Criteria have been provided by Williams (2001) to interpret the 

values for bias, SEP and correlation between predicted and reference values. It was 

recommended that the SEP should not be more than 3% of the mean reference value for 

the constituent. 

Errors in the reference values are a result of using different subsamples to perform 

the NIR spectroscopy predictions and reference values and from random and systematic 

errors in the reference methodology (Hruschka, 2001). Analytical methods should be 

standardised as much as possible to reduce random error.  The amount of error in the 

reference analysis can be expressed as the laboratory standard error (SEL).  

The SEL is defined as (Smith & Flinn, 1991): 

 

SEL = [Σ(X1– X2)
2 / N]0.5 

 

where:  X1 and X2 = the duplicate analyses for the sample 

N = number of samples  
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Table 2 Guidelines for interpretation of RPD (Williams, 2001) 

RPD value Classification Application 

0.0 - 2.3 Very poor Not recommended 

 2.4 - 3.0 Poor Very rough screening 

 3.1 - 4.9 Fair Screening 

 5.0 - 6.4 Good Quality control 

 6.5 - 8.0 Very good Process control 

 8.1+ Excellent Any application 

 

 

The correlation coefficient should not be below r = 0.60, as the calibration will not be 

accurate enough to be used to predict the values on NIR spectroscopy, because only 

three to four separate segments are statistically different. Once an NIR spectroscopy 

instrument is calibrated against a reference method, it can be used to determine the 

percentage of a constituent in different samples of the same type (called unknowns) or to 

measure some physical quantity of these samples. This NIR spectroscopy measurement 

should have a measurement error roughly equal to the SEC. However, the NIR 

spectroscopy measurement error may, in practice, be significantly larger than the SEC. 

Comparison between NIR spectroscopy measurement and reference methods 

measurement on a new set of samples provides a basis for calculation of the true 

measurement error. This comparison is called the validation or verification of the 

calibration (Hruschka, 2001).   

The data obtained from NIR spectra contains background information and noises 

besides samples information. In order to obtain reliable, accurate and stable calibration 

models, it is very necessary to pre-process spectral data before modelling (Cen & He, 

2007) and it can often improve the calibration accuracy, as NIR spectra are affected by 

particle size, light scatter and path-length variation. Pre-processing methods include 

smoothing, standard normal variate (SNV) with, or without detrending (SNV-D), 

multiplicative scatter correction (MSC) and derivatization. Detrending removes the linear 

and quadratic curvature of each spectrum; SNV scales each spectrum to have a standard 

deviation of 1.0 and MSC expands or contracts each spectrum and shifts it up or down to 

look most like the target spectrum (usually the mean of file of spectra). First or second 

derivative mathematical treatments are most frequently employed (Deaville & Flinn, 2000). 
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Another pre-processing method includes the first and second derivative which is used to 

remove background and increase spectral resolution. The two algorithms to be used 

during derivatisation include direct differentiation and Savitzky-Golay. The algorithm used 

most often for differentiation is the Savitzky-Golay, where the data within a moving window 

are fitted by a polynomial of a given degree to generate a differential of a chosen degree 

(Cen & He, 2007). 

 

Use of NIR spectroscopy for the prediction of the nutrient composition in oilseeds 

Oilseed crops are grown primarily for the oil content in the seeds. The oil content of 

small grains (e.g. wheat) is only 1 - 2%, compared to that of oilseeds which range from 

about 20% for soybeans to over 40% for sunflower seeds and canola. The major world 

sources of edible seed oils are soybeans, sunflowers, canola, cotton and peanuts 

(Stefansson, 2013). 

The characteristic feature of oilseeds is the high content of oil, which is normally 

about 20% or higher. The residue of the oil pressing process is less important and 

contributes minimally to the value of an oilseed. Oilseeds are an important economical 

factor in the world trade of agricultural products. Knowledge of the oil content of the seeds 

is of key interest to the oil milling business because the monetary assessment in the trade 

of oilseeds is based on this value. The raw material price depends on its oil content 

(Matthäus & Brühl, 2001). 

The study and evaluation of the oil content of oilseeds are important criteria, 

especially for the oil milling trade. Standard methods for the determination of the oil 

content of oilseeds have been the direct solvent extraction method, used since about the 

1880’s. The method is very time consuming, involving the use of flammable solvents with 

extraction periods of 4 to 8 hours (Matthäus & Brühl, 2001). Moreover, a sample is 

destroyed, which is an inconvenience, particularly for plant breeders who often have only a 

few seeds available for planting and analysis. These serious drawbacks resulted in the 

development of wide-line nuclear magnetic resonance (NMR) and near infrared 

reflectance spectroscopy techniques (Robertson & Barton, 1984).  

The development of a rapid, accurate and robust instrumental method to evaluate the 

oil content in oilseeds is of major interest to growers, processors and oilseed breeders. 

NIR spectroscopy is routinely used for the prediction of oil content in canola crops 

(Greenwood et al., 1999). Pérez-Marín et al. (2004) compared different sample modes, 
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such as milled versus unmilled samples, in order to demonstrate that the analysis of 

unmilled samples is also possible, thus saving time by not having to mill samples, which is 

a time consuming process.  

The seed quality in oilseed crops is mainly determined by the fatty acid composition 

of the seed oil. This is commonly analyzed by gas chromatography (GC) of fatty acid 

methyl esters (Velasco et al., 1999). Conventional analytical methods for the determination 

of fatty acids involve the extraction of fat with diethyl ether or a mixture of chloroform and 

methanol, followed by conversion of the fatty acid to their methyl esters and analysis by 

capillary gas chromatography. This procedure is tedious and generates hazardous waste 

(Pla et al., 2007).  

An alternative approach is desired that is faster and more cost effective than GC, but 

also non-destructive and reliable (Velasco et al., 1999). NIR spectroscopy has been 

successfully applied as an alternative technique to gas chromatography for the analysis of 

fatty acids in a number of oilseed crops, such as whole canola seeds (Pallot et al., 1999), 

sunflower intact seeds, husked seeds, meal and oil (Pérez-Vich et al., 1998), Vernonia 

galamensis (Baye & Becker, 2004), safflower (Rudolphi et al., 2012) and Ethiopian 

mustard (Velasco et al., 1996). NIR spectroscopy is an accurate, fast and non-destructive 

technique which requires little or no sample preparation. Furthermore, NIRS requires no 

reagents and no waste is produced, as in the case of traditional chemical analysis (Pla et 

al., 2007).  

The NIR spectroscopy technique was investigated for the estimation of the relative 

concentration of the major fatty acids in whole canola seed samples, but results obtained 

were not accurate enough to enable the routine use of NIR spectroscopy. Although the 

results obtained in whole canola seed samples were not accurate enough to permit good 

predictions of fatty acid composition, it revealed that NIR spectroscopy can be used as a 

rapid and non-destructive screening technique for pre-selecting samples with extreme 

values to be confirmed with further GC analysis. This screening strategy is especially 

useful when several thousands of samples have to be analyzed (Daun et al., 1994). 

Sato et al. (1995) demonstrated that NIR spectroscopy can be applied successfully 

for the prediction of fatty acid concentration in husked sunflower seeds. Perez-Vich et al. 

(1998) found that predictions of intact sunflower seeds by NIR spectroscopy is a rapid and 

cost-effective tool for screening of oil content, palmitic acid, palmitoleic, stearic acid, oleic 

acid and linoleic acid in intact seeds, husked seeds, meal and sunflower oil. Results 



25 
 

obtained by Velasco et al. (1999) demonstrated that NIR spectroscopy predictions of 

intact, single achenes of sunflower for oleic acid and linoleic acid concentrations are 

accurate for screening sunflower achenes for oleic acid and linoleic acid. Furthermore, the 

above authors demonstrated that, although with lower accuracy, the concentrations of 

these fatty acids in the seed oil can also be estimated with a high degree of reliability by 

analysing bulk samples of intact sunflower achenes. 

Kaffka et al. (1982) investigated the possibility to determine the oil, protein, moisture 

and fibre content in sunflower seeds by NIR spectroscopy. They concluded that the NIR 

spectroscopy technique has the potential for use in rapid evaluation of sunflower seed 

quality, with correlation coefficients of 0.998 for fat, 0.993 for protein, 0.998 for moisture 

and 0.991 for fibre. 

Non-destructive NIR spectroscopy analysis will therefore enable rapid and reliable 

selection of materials with different nutritive value and composition of fatty acids in 

oilseeds such as sunflower seeds and canola seeds. 

 

Use of NIR spectroscopy for the prediction of forage quality 

The prediction of the nutritive value of pastures provides an opportunity for 

formulating a diet with a balance of nutrients which are able to meet the requirements of 

livestock feeds. The formulation of a balanced diet must be based on the nutritional 

requirements of the animal for the intended level of production, as well as on the basis of 

the composition of the potential feed composition. This information can be provided by 

agricultural professionals, but complex decision making is assisted by a ration balancing 

model (Corson et al., 1999). 

The nutrient composition of forage crops is related mainly to climatic conditions and 

stage of plant maturity and the determination of the nutritive value is important in many 

pasture experiments, animal feeding trials and extension services. Worldwide, the nutritive 

value of forages is often estimated by chemical or physical methods, and is expressed as 

the concentration of chemical constituents in plant tissue (Givens & Deaville, 1999).  

Improvements in crop and forage quality often entail screening of large numbers of 

samples, and this may limit the size of a plant breeding program. NIR spectroscopy 

appears to be an attractive alternative to routine chemical analysis, resulting in substantial 

improvements in the efficiency of the breeding process for some aspects of quality such as 

protein and digestibility (Garcia & Cozzolino, 2006). 
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Numerous studies have examined NIR spectroscopy for measurement of the 

composition and functional aspects of forages. NIR spectroscopy can be utilised to screen 

for a wide range of chemical components, e.g., dry matter (DM), ash, crude protein, acid 

detergent fibre (ADF), neutral detergent fibre (NDF). In forage research the most frequent 

applications are to analyse for the fibre, NDF and protein content in grasses, legumes and 

herbs. NIR spectroscopy applications are restricted by the capacity for accurate calibration 

and sample characteristics which are able to provide interpretable spectra (Corson et al., 

1999). 

Alfalfa (Medicago sativa L.) is one of the most important forages that are cultivated 

around the world, and the making of hay is the most important method of preservation.  

The feeding strategy based on alfalfa forage needs a fast and reliable determination of the 

chemical composition, which is dependent on the cultivar and many environmental factors. 

Traditionally, wet chemical analysis has been used to determine the nutritive value of 

forages, but these methods are time-consuming, expensive and sometimes hazardous 

chemicals are used (Brogna et al., 2009). NIR spectroscopy has become a widely 

recognized tool to determine the nutritive value of a wide range of forages (Shenk & 

Westerhaus, 1995). 

Reliable predictions of forage energy content are needed to formulate rations 

properly for lactating dairy cows and other ruminants (Lundberg et al., 2004). Since Norris 

et al. (1976) reported for the first time that NIR spectroscopy can be used to predict the 

nutritive value of forage species, NIR spectrosocpy hardware and calibration techniques 

have been improved and NIR spectroscopy is routinely used to measure feed quality in 

many parts of the world (Smith & Flinn, 1991).   

Garcia & Cozzolino (2006) reported that relatively high correlation coefficients (r2) 

and low SECV for DM (0.95; 0.70), ash (0.90; 0.99), crude protein (0.98; 0.98), ADF (0.95; 

2.0), NDF (0.86; 5.4) and IVOMD (0.90; 3.0) could be obtained in different forage plant 

species, but better calibration equations can be obtained if models are developed for 

single species. They reported that NIR spectroscopy calibration models indicated good 

correlations with all the chemical constituents which were analyzed (r2> 0.90), although the 

lowest r2 were obtained for NDF (r2 = 0.86). 
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Chemical composition of animal feed samples 

Compound feed mixes are composed of a wide variety of feed ingredients 

incorporated into a basic feed ration. Daily price fluctuations in commodities are the main 

reason for variances in feed ingredients used in diets. The feed ingredients most 

frequently used in the feed industry include cereals, such as wheat, barley, maize and 

oats. Protein sources include soya bean and rapeseed meals, meat meal and fishmeal. 

Roughage is provided by adding hay and other forage such as alfalfa (lucerne). Vitamin 

and mineral premixes and antibiotics are also included as additives. Due to variances in 

average particle size, particle size distribution and bulk density, the slopes of instrument 

response to composition show significant differences between commodities (Williams & 

Starkey, 1980). 

Traditional analytical methods are still being used for the analysis of animal feeds, 

although a few studies have been done with NIR spectroscopy calibrations on the feed 

composition of different complete animal feeds. Satisfactory results were obtained in rabbit 

feed by Xiccato et al. (1999), commercial pig feed mixes (Chen et al., 1987), complete 

poultry feeds by Valdes & Leeson (1992) and compound feeds for swine and ruminants 

(Aufrère et al., 1996). De Boever et al. (1995) obtained accurate calibrations to predict the 

moisture, crude protein, crude fat, crude fibre and energy content in compound feeds for 

cattle, but not accurate calibrations for the prediction of the ash content. Inorganic 

substances, which were added in the form of minerals and trace elements, do not absorb 

from the near infrared wavelength region. Pérez-Marín et al. (2004) developed NIR 

spectroscopy equations to predict the chemical and ingredient composition of compound 

feeding stuffs for different types of animals. Calibrations for the prediction of chemical 

composition in total mixed rations showed similar accuracy for the different modes of 

analysis assayed.  

Calibrations to predict the nutritive value of raw materials are more accurate than 

calibrations for compound feeds, as they are constituted of a large range of raw materials 

which may exhibit different spectral characteristics for apparently the same chemical 

component (Givens & Deaville, 1999).    

Studies done by de Boever et al. (1995) prove that the chemical composition and the 

energy value of complete feeds for cattle vary considerably because of the wide choice of 

raw materials and by-products and the variable needs for supplementing the basic diet. 

The farmer needs to know the quality of the concentrates he purchased, not only for 
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economic reasons, but also from a feed-technical and ecological viewpoint. To achieve the 

production potential of animals and to avoid unnecessary mineral losses to the 

environment, it is essential to adjust the nutrient supply to the individual requirements of 

the animals.  

In a study done by González-Martín et al. (2006a), it was found that NIR 

spectroscopy with a remote reflectance fibre-optic probe can be used as a quality control 

method in animal feeds and fodder for the determination of crude protein, ether extract, 

and crude fibre. The samples had different physical characteristics in the form of meal, 

tablets and granules, and were used in different stages of animal development for cattle, 

pigs, sheep, poultry and rabbits. 

Mentink et al. (2006) evaluated the use of NIR spectroscopy to predict the chemical 

and biological nutrients in total mixed rations. The study was conducted to evaluate 

technical aspects of currently available commercial programmes that evaluate nutrients in 

total mixed rations by making use of NIR spectroscopy.  Good results were obtained to 

predict the basic nutrients, such as crude protein, neutral detergent fibre (NDF), starch, 

non-fibre carbohydrates (NFC) and ether extract in total mixed rations. The development 

of NIR spectroscopy calibrations to predict these nutrients in total mixed rations can be 

used to monitor mixing of feeds and basic aspects of feed formulations. The authors could 

not obtain good calibrations to predict biological nutrients, such as in vitro NDF digestibility 

and the in situ protein fractions by NIR spectroscopy, which can be explained by reference 

method error in relationship to the range of nutrient values available.   Better NIR 

spectroscopy equations can be obtained if more accurate laboratory procedures or 

multiple laboratory replications can be used. 

Amino acids are important components in the composition of animal feeds and 

knowledge of their levels and control of these allows the nutritional value of feeds to be 

evaluated and enables determination of the correct amounts of them to be added to feeds. 

However, the chemical determination of amino acids by high pressure liquid 

chromatography (HPLC) is a long and time consuming analysis. It involves the hydrolysis 

of protein in the sample and analysis by means of an HPLC, which is an accurate method, 

but involves a complex, expensive instrument and a tedious process. Results indicated 

that amino acids, such as alanine, aspartic acid, glutamic acid, glycine, phenylalanine, 

valine, proline and tyrosine can successfully be determined by NIR spectroscopy with 

remote reflectance fibre-optic probe. The results obtained by NIR spectroscopy was 
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successfully applied on feed samples with different textures, such as blocks, tablets, 

granules and meal, which are used in different growth stages of the animal feeding 

programmes, such as lactation, growth and maintenance and are comparable with results 

obtained with the chemical ion-exchange HPLC method (González-Martín et al., 2006b).   

 

Conclusion 

NIR spectroscopy has had rapid usage growth since its first application in the 1960s 

in the grain industry. Since then, NIR spectroscopy applications have successfully been 

reported in the material science, food, environment, medicine, pharmaceutics, agriculture 

and archaeology (Agelet & Hurburgh, Jr., 2010).  NIR spectroscopy is widely used for 

rapid and economical measurement of feedstuff ingredients, forage foods and 

concentrates for both monogastric and ruminant animals. A wide range of nutritionally 

important constituents (e.g. proteins, fibres, starches and sugars) and related functional 

properties (e.g. digestibility and voluntary intake by the animal) of feedstuffs and forages 

can be measured from their absorption characteristics (Dryden, 2003).  

NIR spectroscopy technologies offer fast solutions for organic compound 

discrimination and quantification. With the instrumental market in constant growth and 

development, cheaper and yet more accurate instruments will probably offer opportunities 

to explore new applications and field of work. However, choosing a suitable instrument for 

an application involving the use of NIR spectroscopy is not even half of the requirement for 

its success. Sample selection, chemometric methods and validation are key factors that 

should not be overlooked (Agelet & Hurburgh, Jr., 2010).  

The methods of NIR spectroscopy analysis of protein, moisture and hardness in 

grains and the determination of protein, ADF and moisture in forages, have been accepted 

by the International Standards Committees. The reasons for NIR spectroscopy being 

adopted in many laboratories as the preferred analytical method over wet chemistry 

analyses include that minimal sample preparation is required, that it is fast to analyse a 

sample and is cost effective to analyse a single sample or large batches of samples. 

Several components can be determined simultaneously and the samples are not 

destroyed during analyses. The operation of the instrument does not require a skilled 

operator and no hazardous chemical reagents are used (Batten, 1998).  

In all the applications that have been discussed, NIR spectroscopy predictions can 

only be as good as the calibration data which is obtained from the reference samples, but 
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once calibration equations are developed, NIR spectroscopy offers fast and economical 

analysis, which is capable to screen a large number of samples (Corson et al., 1999). 

 

Aim of the study 

The aim of this study is to evaluate the usefulness of the NIR spectroscopy technique 

for the evaluation of feed quality with regard to dry matter (DM), ash, crude protein, crude 

fibre, crude fat, acid detergent fibre (ADF), neutral detergent fibre (NDF), calcium (Ca), 

phosphorus (P), in vitro organic matter digestibility (IVOMD), gross energy (GE), amino 

acids such as lysine, methionine, threonine and arginine as well as fatty acids such as 

palmitic acid, stearic acid, oleic acid and linoleic acid in feed samples as well as feed 

ingredients such as alfalfa, canola, lupins and sunflower seeds.  

The objectives of this study were to (i) predict the dry matter, ash, crude protein, 

crude fibre, oil content, palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1) and 

linoleic acid (C18:2) of sunflower seeds using NIR spectroscopy, (ii) determine the use of 

NIR spectroscopy to predict the chemical composition of milled canola seed compared to 

whole canola seed, (iii) predict the chemical composition of milled and whole lupin seeds 

with NIR spectroscopy, (iv) evaluate the use of NIR spectroscopy to predict the chemical 

composition and amino acid content of alfalfa hay, and (v) determine the use of near 

infrared reflectance spectroscopy to predict the chemical composition and amino acids of 

ostrich total mixed ration samples. 
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CHAPTER 2 

 

PREDICTING THE CHEMICAL COMPOSITION AND FATTY ACID CONTENT OF 

SUNFLOWER SEED MEAL USING NEAR INFRARED REFLECTANCE (NIR) 

SPECTROSCOPY  

 

Abstract 

The estimation of the nutritional profile of seeds by near-infrared reflectance (NIR) 

spectroscopy allows for non-destructive predictions which are highly desirable in plant 

breeding. The major advantage of NIR spectroscopy is that it is a non-destructive 

analytical method; therefore, it requires no chemical reagents, and once the calibrations 

are developed, it takes just minutes or a few seconds to have a result of one or more 

constituents, which by traditional chemical analysis may take hours or days. NIR 

spectroscopy was explored as a technique to predict the dry matter, ash, crude protein, 

crude fibre, oil content, palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1) and 

linoleic acid (C18:2) (an essential fatty acid) content of sunflower seed meal. Sunflower 

seeds with a large range in variation in their fatty acid composition were used to develop 

the calibration equations. A total of 160 samples were used for the dry matter (DM), ash, 

crude protein, crude fibre and oil content calibrations and a total of 100 samples were used 

for the fatty acid calibrations from a sunflower breeding program. The sunflower seed meal 

samples were analysed with reference analyses (AOAC and gas chromatography) and 

scanned on a Bran & Leubbe InfrAlyzer 500. The four major individual fatty acids (C16:0, 

C18:0, C18:1 and C18:2) were analysed as fatty acid methyl esters (FAME) on a Thermo 

Focus gas chromatograph. Calibration equations were developed using modified partial 

least square regression (MPLS) with external cross validation. NIR spectroscopy 

calibration equations were developed and tested through external cross validation. The 

coefficient of determination in calibration (r2
cal) and the standard error of calibration (SEC) 

for sunflower seed meal for DM were 0.71 and 0.44%, ash 0.56 and 0.40%, crude protein 

0.87 and 0.93%, crude fibre 0.83 and 1.98% and for oil content 0.85 and 1.29%, 

respectively. The corresponding values for palmitic acid were 0.40 and 2.95 mg/g, 0.45 

and 3.78 mg/g for stearic acid, 0.78 and 16.58mg/g for oleic acid and 0.87 and 12.43 mg/g 

for linoleic acid, respectively. The coefficient of determination of the external cross 

validation was the highest for crude protein and the lowest for palmitic acid. The results 
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indicate that NIR spectroscopy calibrations are applicable in sunflower breeding 

programmes for a fast screening. Screening of sunflower seeds by NIR spectroscopy 

represents a rapid, simple and cost effective alternative that is a great utility for users who 

need to analyse a large number of samples. 

________________________________________________________________________ 

Keywords: sunflower seed meal, fatty acid composition, nutritive value 

 

Introduction 

Sunflower (Helianthus annuus L.) is one of the fastest developing oilseed crops in the 

world and is the fourth largest source of oilseeds after soybean, palm and canola 

(Stefansson, 2013). Sunflower is also appreciated as a high quality commodity in the world 

oil market (Fernández-Martínez et al., 2007). Furthermore, sunflower seeds are one of the 

important dual purpose crops in the world as it provides both protein and oil. As the most 

important source of vegetable oil in South Africa, sunflower is predominantly cultivated in 

the summer rainfall areas and annual production ranges between 500 000 to 700 000 tons 

(Dredge, 2014). The average sunflower seed yield ranges from 1.2 to 1.8 ton/hectare 

under dry land conditions, resulting in the production of sunflower to be the third largest 

grain crop after maize and wheat in South Africa. Regardless, South Africa is not a 

significant role player in the international market, contributing only 3% to the sunflower 

seed produced in the world (Anonymous, 2014). Sunflower is primarily grown in South 

Africa as a source of vegetable oil and the area under cultivation of sunflower is 

continuously increasing (Muya, 2012). Sunflower and sunflower oilcake meal remains an 

important source of protein to supply the South African demand. Until two years ago, when 

soybean production surpassed sunflower production for the first time, sunflower and 

sunflower oilcake meal were the main local source of protein for animal consumption 

(PRF, 2013). 

The three main uses of sunflower are: (1) for the production of sunflower oil, which is 

used for human consumption, (2) as animal feed, and (3) for numerous industrial uses. 

When used as a food source for human consumption, it is widely applied in the form of 

visible fat (margarine, salad dressing oil, and cooking oil) and invisible fat (milk, meat, 

cheese, pastry, snacks, bread, nuts) (Moschner & Biskupek-Korell, 2006; Fernández-

Martínez et al., 2007). As animal feed, the whole seeds or partly dehulled sunflower meal 

can be used for ruminant animals, pigs and poultry feeds because of its high fat and 
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protein content and the silage can be used for animal feeds. The seeds and oil cake meal 

is favoured as animal feeds as it has been found to have a high protein (32 - 35%) and oil 

content (37 - 45%). The fatty acid profiles of the oil are important for both human, as well 

as animal nutrition and health. Sunflower is a widely cultivated oilseed, although utilisation 

in poultry diets is limited because it has a high fibre content and low lysine content, 

compared to other oilseeds, especially soybeans (San Juan & Villamide, 2000). The 

industrial use of sunflower includes the use in certain paints, varnishes and plastics due to 

the good semi-drying properties without colour modification associated with oils high in 

linoleic acid (Anonymous, 2014). Other industrial uses include the production of motor 

fuels (biodiesel) and lubricants, as well as many applications in the oleochemical industry 

(detergents, soaps, surfactants, emulsifiers, cosmetics, etc.), agrichemicals or pesticides, 

surfactants, adhesives, fabric softeners, lubricants and coatings (Fernández-Martínez et 

al., 2007).  

Due to the high levels of unsaturated fatty acids that relates to good nutritional 

characteristics for healthy living of any livestock, the consumption of vegetable oils is very 

important. Consequently, one of the major objectives for breeding sunflower seeds is to 

incorporate these healthy oils into food sources and thereby improving the quality thereof. 

This is of particular importance when refining the quality of animal feed earmarked for 

breeding programmes. In such cases, the analysis of the fatty acid composition of 

sunflower seed oil is required (Sato et al., 1995).  

Several types of sunflower oils are produced, such as high linoleic, high oleic and 

mid linoleic. Mid linoleic sunflower oil typically has at least 69% linoleic acid and high oleic 

sunflower oil has at least 82% oleic acid. For the profitable use of high-oleic sunflower oil 

in food and non-food areas, it is very important to have rapid and accurate analytical 

methods to determine quality parameters. Nutritional properties of sunflower oils are 

determined by their fatty acid profile, the distribution pattern of the fatty acids within the 

triacylglycerol molecule, and the total content and composition of natural antioxidants, 

especially tocopherols and the free fatty acids (FFA) of the harvested and trades high-oleic 

sunflower seeds (Fernández-Martínez et al., 2007; Moschner & Biskupek-Korell, 2006).   

Oleic acid (a mono-unsaturated fatty acid) content of oilseeds has important 

implications for product performance and consumer health (Tillman et al., 2006). High 

linoleic acid oils have alternative nutritional advantages such as the production of 
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conjugated linoleic acid (CLA), which is associated with a wide range of positive health 

benefits (Belury, 1995).  

The development of sunflower cultivars with increased levels of saturated fatty acids 

could increase the usefulness of the oil for specific human consumption purposes (Osorio 

et al., 1995). 

Conventionally, the fatty acid composition in samples is determined using gas 

chromatography (GC). This procedure involves oil extraction, sample preparation for 

analysis and injecting the sample onto a GC. However, this method is destructive, time 

consuming, expensive and requires the use of toxic and flammable reagents and gases 

(Moschner & Biskupek-Korell, 2006). 

An alternative approach that is rapid and more cost-effective than GC, as well as 

non-destructive and reliable, is therefore desired (Velasco et al., 1996). Near infrared 

reflectance (NIR) spectroscopy offers important advantages over traditional chemical 

analysis in that it is fast, non-destructive and does not require the use of any chemical 

reagents. A further advantage of NIR spectroscopy is the simultaneous and simple 

determination of different parameters (Pérez-Vich et al., 1998). A basic requirement for the 

development of NIR spectroscopy calibrations is the availability of a sufficiently 

dimensioned calibration set. The samples should be from different origins, varieties and 

harvest years, and should cover a broad range of the nutrients one wishes to develop 

calibrations for. Once the instrument is calibrated for the specific sample type, it is easy to 

operate and requires minimal sample preparation (Moschner & Biskupek-Korell, 2006).   

Sato et al. (1995) demonstrated that NIR spectroscopy could be used to analyse the 

linoleic acid concentration in bulk, as well as single dehusked sunflower seed samples. 

Additionally, Pérez-Vich et al. (1998) predicted linoleic-, palmitic-, palmitoleic-, stearic- and 

oleic acid concentrations accurately using NIR spectroscopy in bulk samples of dehusked 

sunflower seeds. 

NIR spectroscopy allows rapid and economical analysis with minimal sample 

preparation and without the generation of wastes. Although conventional laboratories are 

still needed to develop and adapt general calibrations for local conditions and maintain 

NIR spectroscopy calibration equations, the number of samples requiring conventional 

analytical procedures can be drastically reduced and there is often opportunity to 

centralise laboratories. Some NIR spectroscopy instruments are designed to be rugged, 

reliable and portable, which allows the use of the technology away from central 
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laboratories and in the field, and with minimal training and technical support (Dixon & 

Coates, 2010). 

The aim of this study was to establish whether NIR spectroscopy and appropriate 

chemometrics could be used for the prediction of various chemical constituents (dry 

matter, ash, crude protein, crude fibre, oil content, palmitic acid (C16:0), stearic acid 

(C18:0), oleic acid (C18:1) and linoleic acid (C18:2) in sunflower seed meal. The 

determination of fatty acid concentration in sunflower seeds with NIR spectroscopy would 

save considerable time, labour and expense, and would allow the evaluation of a large 

amount of samples, which is more laborious and expensive when using standard chemical 

procedures. 

 

Materials and methods  

Sampling and preparation 

The sample set of sunflower seeds (n = 160), kindly supplied by Agricol, consisted of 

different varieties chosen from a wide range of breeding material of the 2007/2008 harvest 

season. The samples originated from one locality, i.e. Potchefstroom, North West 

Province, South Africa. The breeding material differed, among others, with respect to the 

fatty acid content and included linoleic, mid oleic and high oleic acid. According to 

Fernández-Martínez et al. (2007), sunflower seeds are classified according to the fatty 

acid concentrations as high oleic (>85%) and high linoleic (>75%). The seeds were stored 

at 4 - 6 °C in closed containers before milling. 

NIR spectroscopy calibration equations for concentrations of chemical composition 

and fatty acids were developed from a total of 160 sunflower seed meal samples. The 

chemical analysis of DM, ash, crude protein, crude fibre and oil content was conducted on 

the entire set of samples and analysis for fatty acids was conducted on 100 randomly 

selected samples.  

Approximately 20 g of sunflower seeds were milled per sample, using a Foss Tecator 

Knifetec 1095 sample mill (Foss Analytical, Hillerӧd, Denmark). The Knifetec sample mill 

was equipped with a cooling feature attached to the grinding chamber, which enabled the 

milling of samples containing high levels of fats, such as sunflower seeds, thereby 

preventing overheating during milling. High fat samples have a tendency to stick to the wall 

of the chamber as the fat softens during grinding, which prevents adequate 

homogenisation. The milling protocol was further standardised by keeping the milling 
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period of 20 seconds constant for all the samples. Sample preparation is an important step 

in all analytical procedures and it is crucial to grind properly to obtain the highest quality of 

the analytical results (Foss Analytical, 2005). The important factor in grinding sunflower 

seeds for NIR spectroscopy analysis is to obtain a finely ground, pourable and 

homogenous grist in which the pericarp is also micro-milled. However, milling the sample 

for too long causes the destruction of the oil bodies and increases the sample 

temperature. Both factors lead to the formation of conglomerates in the meal, which 

cannot be eliminated by subsequent mixing and have to be avoided. Therefore, it is very 

important to apply a standardised grinding protocol (Moschner & Biskupek-Korell, 2006).   

 

Analysis of reference samples 

The chemical properties of sunflower seeds were determined with the official 

methods as described by the Association of Official Analytical Chemists (AOAC, 2012). 

Moisture content was determined by placing (2 ± 0.01 g) milled sunflower seed in a forced-

air oven at 100 °C for 24 hours (AOAC, 2012) (Method no: 934.01). The ash content was 

determined by combustion in a Labcon Muffle furnace RM7 at 500 °C overnight (18 hours), 

according to AOAC (2012) (Method no: 942.05). Milled sunflower seed samples (2 ± 0.01 

g) were placed in a combustion furnace, after which the samples were cooled in 

dessicators. Nitrogen was determined by the combustion method (AOAC, 2012) (Method 

no: 990.03). A LECO TruMac N Nitrogen Determinator, Version 1.3X (Leco Corporation, 

St. Joseph, Michigan, USA) was used and the results were expressed as nitrogen 

multiplied by the protein factor of 6.25. The oil content was determined by using the official 

method (AOAC, 2012) (Method no: 2003.06) where a Soxtec system HT 1043 (Tecator, 

Hӧganas, Sweden) with diethyl ether as extraction fluid was used. Crude fibre content was 

determined by using the method of Goering & van Soest (1970), making use of FIWE Raw 

Fiber Extractor, Velp Scientifica (Velp Scientifica, Milano, Italy). These measurements 

were done in duplicate and the averaged results were used. 

The fatty acids methyl esters (FAME) were determined using a modified method of 

Folch et al. (1957) where chloroform/methanol (CM 2:1; v/v) (30 ml) were used to extract 

the oil from the milled sunflower seed samples (2 ± 0.01 g). All extraction solvents 

contained 0.01% butylated hydroxytoluene (BHT) as an antioxidant. To homogenise the 

sample within the extraction solvent, a polytron mixer (WiggenHauser, D-500 

Homogenizer) was used. 
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Heptadecanoic acid (C17:0) (Sigma-Aldrich Inc., St. Louis, USA) was used as an 

internal standard to quantify the individual fatty acids. A sub-sample of the extracted lipids 

was transmethylated and thin-layer chromatography (TLC) was performed. The fatty acid 

band was observed under long wave ultraviolet light and transmethylating reagent was 

added to the sample. After being dried under nitrogen, 20 uL carbon disulfide (CS2) was 

added and 1 µL analysed by Thermo Focus GC (Thermo Electron S.p.A, Milan, Italy) 

equipped with a flame ionized detector, using a BPX70 capillary column (60 m x 0.25 mm 

internal diameter, 0.25 μm film, SGE (SGE International PTY Ltd, Victoria, Australia)). The 

individual fatty acids were identified by comparing the retention times to those of a 

standard FAME mixture (SupelcoTM 37 Component FAME mix, 10 mg/ml in 

dichloromethane (CH2Cl2), Supelco, Bellefonte, USA). 

 

Collection of spectra and calibration development 

The absorbance of reflectance spectra was measured in the NIR region (1100 - 2500 

nm) of the electromagnetic spectrum at 2 nm intervals, acquiring 701 data points for each 

sample. The samples were individually presented in closed cups (approximately 6 g) and 

the scans were acquired using an InfrAlyzer 500 Near Infrared Reflectance Spectrometer 

(IA-500). Bran & Leubbe SESAME Version 2.00 software (Bran & Luebbe GmbH, 

Norderstedt, Germany) was used to perform the spectroscopic measurements (Bran & 

Luebbe, 1994). 

A total of 160 sunflower seed samples were used to develop calibrations for DM, ash, 

crude protein, crude fibre and oil content. From this sample set, 100 sunflower seed 

samples were used for the development of palmitic acid (C16:0), stearic acid (C18:0), oleic 

acid (C18:1) and linoleic acid (C18:2) calibrations. The samples were divided into two sets 

for the different constituents. The larger set was used as the calibration set with n = 134 

for DM, ash, crude protein, crude fibre, and oil content and n = 80 for palmitic acid, stearic 

acid, oleic acid and linoleic acid. The external validation set was the smaller set, with n = 

26 for DM, ash, crude protein, crude fibre, and oil content and n = 20 for palmitic acid, 

stearic acid oleic and linoleic acid which was used to test the accuracy of the calibrations. 

Calibration equations were developed by means of partial least square regression 

(PLSR) on 2nd derivative spectra (segment = 1; gap = 0). As suggested by the SESAME 

version 2.00 software, the outliers were removed and every fifth sample was selected to 
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use as the validation set. The second derivative function appeared to be better suited for 

the estimation of all constituents. 

Figure 1 presents the NIR spectra that were collected for 160 sunflower seed 

samples. 

 

Figure 1 Original near infrared reflectance spectra obtained for sunflower seed meal 

samples 

 

Results and discussion 

NIR spectroscopy calibration equations were developed using partial least square 

regression (PLSR) with cross validation for dry matter, ash, crude protein, crude fibre, oil 

content, palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1) and linoleic acid 

(C18:2). Each individual fatty acid was expressed as the milligram per gram (mg/g) 

sample. The minimum, maximum, mean values and standard deviations (SD) for each 

constituent for the calibration and validation sets of the calibrations developed for 

sunflower seed meal are reported in Table 1 and 2, respectively. 

The chemical composition of sunflower seed meal samples used in the calibration 

equations as reported in Table 1 were 93.77% for DM, 3.36% for ash, 18.98% for crude 

protein, 37.56% for crude fat and 29.89% for crude fibre, which corresponds with values 

obtained by Srilatha & Krishnakumari (2003) for DM (94.50%), ash (3.49%), crude protein 

(18.72%), crude fat (37.47%) and crude fibre (28.36%). The mean values for the individual 
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fatty acids were 15.36 mg/g for palmitic acid, 15.80 mg/g for stearic acid, 75.59 mg/g for 

oleic acid and 47.93 mg/g for linoleic acid. 

 

Table 1 Summary of nutrient composition (%) and fatty acid content (mg/g) of sunflower 

seed meal used in the calibration set, showing the number of samples (n), minimum, 

maximum, mean and standard deviation (SD) 

Chemical component/ Fatty acid  n Min Maximum Mean SD 

DM% 134 91.14 97.04 93.77 0.81 

Ash% 134 1.56 4.52 3.36 0.61 

Crude protein% 134 12.08 26.03 18.98 2.56 

Crude fibre% 134 19.87 48.63 29.89 4.83 

Oil content% 134 29.76 48.18 37.56 3.38 

C16:0 mg/g  80 7.79 24.99 15.36 3.81 

C18:0 mg/g  80 6.74 30.73 15.80 5.12 

C18:1 mg/g  80 14.97 172.96 75.59 35.17 

C18:2 mg/g  80 0.35 117.30 47.93 34.56 

 

 

The chemical composition of sunflower seed meal samples used in the validation set as 

reported in Table 2, were 93.84% for DM, 3.35% for ash, 18.78% for crude protein, 

37.34% for crude fat and 30.43% for crude fibre. The mean values of the samples used in 

the validation set for the individual fatty acids were 15.46 mg/g for palmitic acid, 16.24 

mg/g for stearic acid, 76.20 mg/g for oleic acid and 48.65 mg/g for linoleic acid. Pérez-Vich 

et al. (1998) investigated a set of 387 sunflower intact seed samples for fatty acid profile. 

The results revealed the range for C16:0 (palmitic acid) as 3.00 - 35.50%, C18:0 (stearic 

acid) 1.40 - 30.30%, C18:1 (oleic acid) 7.70 - 90.70% and C18:2 (linoleic acid) 1.80 - 

74.50% as a percentage of the total fatty acids. The results revealed that the fatty acid 

composition of different sunflower oil types (e.g. oils with high palmitic acid, high stearic or 

high oleic acid contents) can be accurately determined by NIR spectroscopy. 
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Table 2 Summary of nutrient composition (%) and fatty acid content (mg/g) of sunflower 

seed meal used in the validation set, showing the number of samples (n), minimum, 

maximum, mean and standard deviation (SD) 

Chemical component/ Fatty acid  n Min Maximum Mean SD 

DM% 26 92.61 96.33 93.84 0.86 

Ash% 26 1.87 4.51 3.35 0.58 

Crude protein% 26 13.31 25.45 18.78 2.68 

Crude fibre% 26 19.87 40.94 30.43 4.79 

Oil content% 26 26.31 44.35 37.34 3.37 

C16:0 mg/g  20 7.79 24.99 15.46 4.18 

C18:0 mg/g  20 6.74 25.91 16.24 4.98 

C18:1 mg/g  20 15.81 165.49 76.20 42.24 

C18:2 mg/g  20 4.24 139.06 48.65 34.66 

 

 

Fassio & Cozzolino (2004) have found that NIR spectroscopy has proven that it is 

capable to produce repeatable results for pre-screening of quality characteristics on intact 

sunflower seeds for breeding purposes. Although the coefficients of determination in 

prediction obtained for oil and moisture (r2
cal < 0.70) were not high, the advantage of 

evaluating individual phenotypes in sunflower breeding for quality characteristics outweigh 

the losses of accuracy when many samples need to be selected. 

Results obtained by Velasco et al. (2004) indicate that high correlations for stearic 

acid (r2 = 0.83), oleic acid (r2 = 0.92) and linoleic acid (r2 = 0.93) were found between 

predicted NIR spectroscopy values and GC analysis, when calibration equations were 

developed for husked achenes. Velasco et al. (1999) reported r2 in cross validation of 0.91 

for oleic acid and 0.92 for linoleic acid and SECV to SD ratios of 0.30 for oleic acid and 

0.29 for linoleic acid, which corresponds with results obtained by Velasco et al. (2004). 

These results revealed that the analysis of husked achenes instead of unhusked achenes 

did not present clear advantages for these fatty acids. NIR spectroscopy can reduce the 

amount of analysis done by GC, as it is more expensive and time-consuming than NIR 

spectroscopy. NIR spectroscopy has the additional advantage that the oil content and fatty 

acid composition can be analysed simultaneously (Pérez-Vich et al., 1998). 
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Hurburgh (2007) states that there are complicating issues for calibration of fatty acids 

in oil still within its solid substrate. NIR spectroscopy counts molecules of a certain type: 

the number of certain fatty acid molecules as a percent of oil is affected by the total oil 

percentage as well as concentration within oil. Spectral influences from many compounds 

are combined in every scan. The lesser effects (individual fatty acids and individual amino 

acids) are difficult to separate from the major influences of moisture, total protein, total oil 

and sugars. Plant breeding efforts created a highly non-normal distribution; samples were 

either normal, or low, with few in between. 

The standard error of calibration (SEC) is calculated by comparing the laboratory 

values of one set of samples to the instrument values of that same set when creating the 

calibration equation. The standard error of prediction (SEP) is obtained by comparing the 

laboratory values of a second set of samples to the instrument percent reading of that 

second set and verifying the existing calibration (Kaffka et al., 1982). 

The calibration and external cross validation results were obtained in the calibration 

equations developed from sunflower seed meal samples scanned for DM, ash, crude 

protein, crude fibre, oil content, palmitic acid, stearic acid, oleic acid and linoleic acid. The 

coefficient of determination in calibration (r2
cal) and the standard error of calibration (SEC) 

for DM, ash, crude protein, crude fibre, oil content, palmitic acid, stearic acid, oleic acid 

and linoleic acid were determined. The relationship between coefficient of correlation in 

calibration (r2
cal), SEC, coefficient of correlation in validation (r2

val), SEP and RPD are 

presented in Table 3, together with the means and standard deviations (SD) of the 

laboratory and predicted values.  

The coefficient of determination in calibration (r2
cal) values was 0.71 for DM, 0.56 for 

ash, 0.87 for crude protein, 0.83 for crude fibre and 0.85 for oil content. SEC values were 

0.44% for DM, 0.40% for ash, 0.93% for crude protein, 1.98% for crude fibre and 1.29% for 

oil content. The corresponding values for the individual fatty acids were 0.40 and 2.95% for 

palmitic acid, 0.45 and 3.78% for stearic acid, 0.78 and 16.58% for oleic acid and 0.87 and 

12.43% for linoleic acid. In the validation tests the r2 values ranged from 0.53 for crude 

fibre to 0.83 for crude protein and SEP values ranged from 0.38% for ash to 3.39% for 

crude fibre. The corresponding validation statistics for the individual fatty acids was 0.48 

and 3.10 mg/g for palmitic acid, 0.51 and 3.49 mg/g for stearic acid, 0.72 and 23.50 mg/g 

for oleic acid and 0.75 and 17.46 mg/g for linoleic acid. The values for DM, ash, crude 
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protein, crude fibre, and oil content showed relatively low SEC and SEP values and higher 

SEC and SEP values was recorded for the individual fatty acids. 

 

 

Table 3 Calibration and external validation statistics in the development of calibration 

equations for nutrient composition and fatty acid content in sunflower seed meal samples 

Chemical 

component/ 

Fatty acid 

Calibration 

set 
Validation set 

Actual lab 

values -  

validation set 

NIRS predicted 

values - 

calibration set 

r2
cal SEC r2

val SEP RPD Mean SD Mean SD 

DM % 0.71 0.44 0.67 0.50 1.72 93.84 0.86 93.77 0.68 

Ash % 0.56 0.40 0.59 0.38 1.53 3.35 0.58 3.36 0.46 

Crude protein % 0.87 0.93 0.83 1.10 2.44 18.98 2.68 18.98 2.38 

Crude fibre % 0.83 1.98 0.53 3.39 1.41 30.43 4.79 29.89 4.41 

Oil content % 0.85 1.29 0.64 2.27 1.48 37.34 3.37 37.56 3.13 

C16:0 mg/g  0.40 2.95 0.48 3.10 1.35 15.46 4.18 15.36 2.40 

C18:0 mg/g  0.45 3.78 0.51 3.49 1.43 16.24 4.98 15.83 3.45 

C18:1 mg/g 0.78 16.58 0.72 23.50 1.80 76.20 42.24 75.59 30.98 

C18:2 mg/g 0.87 12.43 0.75 17.46 1.99 48.65 34.66 48.00 32.12 

 

 

A useful value for evaluation of a calibration involves the ratio of the SEP to the SD 

statistic, which is termed the RPD. It is the ratio of the standard error of prediction to 

standard deviation of the reference data of the validation sample set. The SEP should be 

much lower than the SD and the ideal ratio should be 5 or more, but at least 3 (Williams, 

2001). The results for this study indicated RPD values less than 3 for all constituents, 

which indicate that calibrations are not recommended for predictions by NIR spectroscopy 

for sunflower seed meal. 

Pérez-Vich et al. (1998) found that the accuracy and reliability of calibration 

equations for oil content and individual fatty acids, which were developed from intact seed 

samples, were lower than those obtained with husked seed, meal and oil. It is not 

recommended to routinely analyse oil and fatty acid composition in intact sunflower seeds 

by NIR spectroscopy, because the r2 values were not high enough which corresponds with 
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the results found in this study. However, the results revealed that NIR spectroscopy 

calibration equations for intact seed may be of great use for rapid screening purposes, 

although it is less accurate than equations for husked seed. Results obtained by Sato et al. 

(1995) reported that the determination of the fatty acid composition of sunflower seeds 

could be determined by NIR spectroscopy for both extracted oil and kernel seed. As NIR 

spectroscopy is a non-destructive analysis, the manually husked single-grain seed can still 

be germinated after the analysis. Pazdernik et al. (1997) reported coefficient of 

determination in validation (r2
val) of 0.38 and 0.18 for ground soybean samples and 0.71 

and 0.56 for fatty acids of whole soybean samples. Kovalenko et al. (2006) evaluated 

calibration equations for fatty acid predictions in whole soybeans. The highest predictions 

were found in total saturated fatty acids (r2 = 0.91 - 0.94), followed by palmitic acid (r2 = 

0.80 - 0.84), stearic acid (r2 = 0.49 - 0.68), oleic acid (r2 = 0.76 - 0.81), linoleic acid (r2 = 

0.73 - 0.76) and linolenic acid (r2 = 0.67 - 0.74). 

The correlation between the laboratory determined values and NIR spectroscopy 

predicted values and SEP values for dry matter, ash, crude protein, crude fibre and oil 

content are illustrated in Figure 1.  
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c)  d) 

 

  e) 

 

 

Figure 1 The relationship between laboratory determined and NIR spectroscopy predicted 

values for (a) DM, (b) ash, (c) crude protein, (d) crude fibre and (e) oil content 

 

 

The correlation between the laboratory determined values and NIR spectroscopy 

predicted values and SEP for the individual fatty acids values for palmitic acid, stearic acid, 

oleic acid and linoleic acid are illustrated in Figure 2. Palmitic acid content (C16:0) of 

sunflower seed meal was not well predicted (r2 = 0.40) by NIR spectroscopy. Similarly, NIR 

spectroscopy did not efficiently predict stearic acid (C18:0) (r2 = 0.45) in sunflower seed 

meal. 
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a)  b) 

 

 

c)             d) 

 

Figure 2 The relationship between laboratory determined and NIRS predicted values for 

(a) palmitic acid, (b) stearic acid, (c) oleic and (d) linoleic acid 

 

Conclusions 

Calibration equations for DM, ash, crude protein, crude fibre, oil content, palmitic 

acid, stearic acid, oleic acid and linoleic acid were developed on NIR spectroscopy, which 

shows that the calibrations can be used for screening of sunflower seed samples. 

Calibration equations for the DM, ash, crude protein, crude fibre and oil content were 

developed from a set of 160 intact milled sunflower seed samples which were scanned by 

NIR spectroscopy and further analysed by the reference methods, and 100 samples were 

used for development of the calibrations for the individual fatty acids. Calibration models 

for the individual fatty acids, namely palmitic acid, stearic acid, oleic acid and linoleic acid, 

were scanned by NIR spectroscopy and analysed by gas chromatography (GC). 
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Mathematical procedures on the spectral information were performed with SESAME 

Version 2.00 software (Bran & Luebbe GmbH, Norderstedt, Germany). Since NIR 

spectroscopy predictions are faster and more cost-effective than GC analysis, NIR 

spectroscopy can be used alternatively to GC to speed up selection programmes.  

Furthermore, NIR spectroscopy offers the possibility of a non-destructive analysis of the 

fatty acid composition of the whole seed in materials with non-uniform fatty acid 

composition along the seed, for which GC cannot be used. 

SEC values ranged from 0.40% for ash to 1.98% for crude fibre and r2 values ranged 

from 0.56 for ash to 0.87 for crude protein. In the validation tests the coefficient of 

determination in calibration (r2
val) values range from 0.53 for crude fibre to 0.83 for crude 

protein and SEP values ranged from 0.50% for DM to 3.39% for crude fibre.  

This data suggests that NIR spectroscopy is a rapid tool which can be used for the 

screening of the nutritional value of fatty acids in sunflower seeds with a precision which 

can be used as a routine quality control tool. Although the accuracy was too low for routine 

analysis, NIR spectroscopy could be used as a screening tool to predict the DM, ash, 

crude protein, crude fibre, and oil content, but was too low for screening of palmitic acid, 

stearic acid, oleic acid and linoleic acid of sunflower seed meal. The results of this study 

gives an indication that NIR spectroscopy could be successfully used for the prediction of 

chemical composition and fatty acid concentration if a large enough calibration set was 

used to develop the calibration. Screening of sunflower seeds by NIR spectroscopy can 

represent a rapid, simple and cost effective alternative that is a great utility for users who 

need to analyse a large number of samples. For the successful development of accurate 

calibration models to estimate the fatty acid composition in sunflower seed samples by 

NIR spectroscopy, a calibration with large variability for fatty acid composition and good 

repeatability in the analyses by the reference method is needed. 
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CHAPTER 3 

 

THE USE OF NEAR INFRARED (NIR) SPECTROSCOPY TO PREDICT THE CHEMICAL 

COMPOSITION OF MILLED AND WHOLE CANOLA SEED (BRASSICA NAPUS L.)  

 

Abstract 

The potential of near infrared reflectance (NIR) spectroscopy to determine the 

chemical composition of milled and whole canola seeds (Brassica napus L.) was 

investigated. Standard quality analyses, like ether extraction for oil content, are laborious 

and time-consuming, which is why a fast method for standard quality analyses is desirable. 

A non-destructive method for the screening of seed samples would also allow high 

throughput analyses in plant breeding and genotype selection. For this study, 138 canola 

seed samples were analysed for DM, crude protein and oil content by traditional wet 

chemistry analysis. The samples were scanned on a NIR spectroscopy model Perten 

DA7200 and calibration equations were developed for each nutrient in both milled and 

whole seed samples. The calibration was focused on the possibility of screening whole 

seed samples of different compositions of DM, crude protein, and oil content using NIR 

spectroscopy analysis, which would save a considerable amount of time as milling of 

samples is laborious and time consuming. The verification of a validation equation in 27 

randomly selected samples in milled canola seed samples, proved high coefficients of 

determination (r2) between NIR spectroscopy analysis and laboratory reference values for 

crude protein (0.91) and oil content (0.91) although not as accurate for DM (0.57). The 

standard deviation (SD) to standard error of prediction ratio (RPD) values for DM was 

1.53, 3.18 for crude protein and 3.09 for oil content. The corresponding results for whole 

canola seeds were crude protein (r2 = 0.80) and oil content (r2 = 0.86), but not as accurate 

for DM (r2 = 0.57). The RPD was 1.52 for DM, 2.25 for crude protein and 2.61 for oil 

content. Although the results indicated that calibrations were better for milled canola 

seeds, it indicated values that were typical of equations suitable for screening purposes to 

select samples for more detailed chemical analysis.  

________________________________________________________________________ 

Keywords: intact canola seed, milled canola seed, nutritive value, NIR spectroscopy 
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Introduction 

Canola and rapeseed is the second most important oilseed crop in the world and 

currently contributes close to 14% of the total world production of oilseeds with a total 

world production over the past three years of 63.9 million tons annually (PRF, 2013) and 

112 000 tons produced in South Africa (Dredge, 2014). 

Canola is a feed ingredient in animal nutrition which can be included in complete 

diets of a wide range of livestock with great benefits as either full-fat seed (the 

unprocessed seed) or as protein-rich residue canola oilcake meal (the residue that is left 

once the oil has been removed from the seed). The oil content of full-fat canola is in the 

range of 36 - 50% and its crude protein content about 20 - 25%, whereas the canola 

oilcake contains nearly 37% protein. The optimum inclusion level of full-fat canola is 

approximately 12% in the complete diets of lambs and 6% in the complete diets of dairy 

cows. The ideal inclusion level of full fat canola in the diet of monogastric animals ranges 

from 12 - 18% for pigs, 10% for ostriches and the maximum inclusion level for chickens is 

5 - 10%. The inclusion of full-fat canola in the diets of chickens, pigs and dairy cows 

results in healthier fat and milk fat profiles, since canola contains a higher concentration of 

unsaturated fats versus saturated fats (de Kock & Agenbag, 2009). The good amino acid 

ratio, a relatively low apparent metabolisable energy (AME) and high levels of phytate 

(3%), provide benefits for inclusion in poultry diets (Classen et al., 2004). 

The use of fast analytical techniques, such as NIR spectroscopy, has many 

advantages compared with standard analytical techniques. NIR spectroscopy analysis is 

carried out with considerable saving of time and cost and operates without using 

hazardous chemicals. In addition, NIR spectroscopy is a non-destructrive technique and 

samples can be analysed in their natural form without destruction (Font et al., 2006). The 

technique is being increasingly utilised nowadays and can be used for the simultanous 

evaluation of several components, such as the estimation of oil, protein, total 

glucosinolates and other characteristics in routine analysis of whole canola seed samples 

(Prem et al., 2012), as well as for other seed quality parameters, which are highly 

desirable in plant breeding (Rudolphi et al., 2012). This is due to the relative ease of 

sample preparation and the flexibility of sample presentation. The technology is now 

utilized extensively throughout the world at grain receiving points, commercial oil 

producers and analytical laboratories, particularly for the evaluation of oil and moisture 

content in intact seed. With the use of advanced spectrometrics and chemometrics 
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software, the selection of calibration samples is based on relevant spectral information; 

this is important when establishing robust calibrations. There is still, however, a need to 

conduct primary analyses on samples for the development, validation and maintenance of 

calibrations (Pallot & Golebiowski, 2014). Plant breeding programmes usually involve 

extensive evaluations of the quality components of seeds. Thus, large numbers of 

screenings by standard analytical methods of seed lines are usually performed, in order to 

detect target genotypes. Although standard analytical techniques usually offer a high level 

of accuracy and precision, they also show some disadvantages, such as high costs, high 

labour input and delay in reporting. In addition, many standard techniques involve the 

destruction of the test sample, which could have a negative impact in the case of valuable 

and scarce materials (Font et al., 2006). 

NIR spectroscopy is an analytical technique which measures light absorption of 

radiation in the region of 400 - 2500 nm (visible plus near-infrared regions) which is closely 

related to important chemical bonds (O-H, N-H and C-H) and is used to develop calibration 

curves, which can be related to chemical composition in the sample. After calibration, the 

regression equations developed allows accurate analysis of many other samples by 

prediction of data based on the spectra (Font et al., 2006). The application of NIR 

spectroscopy technology allows established knowledge of the science of animal nutrition 

to be readily and objectively applied to improve productivity and cost-effectiveness of 

livestock production systems. In the animal feed manufacturing industries, NIR 

spectroscopy can be applied to determine important nutrient profiles of concentrates and 

forage feeds used as ingredients, and for quality control during manufacturing of products 

for both monogastric and ruminant animals. It thus allows quality control and application of 

nutritional science in animal feed manufacturing and, consequently, animal production 

systems, to an extent not previously practicable (Dixon & Coates, 2010). 

This study was conducted to develop NIR spectroscopy equations to predict the 

chemical composition of milled and whole canola seeds. The development of calibration 

equations on the samples chosen for this study were done on canola seed samples from 

different seasons with significant sample variation and could produce a more robust 

calibration to determine moisture, crude protein, and oil content. Traditional wet chemical 

analysis was used to determine the nutritive composition of canola seeds, but these 

procedures are costly, time-consuming and sometimes hazardous.  
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The aim of this study was therefore to determine the suitability of a NIR spectroscopy 

instrument for the effective screening selection of whole canola seed to predict dry matter, 

crude protein, and oil content in whole canola seeds compared to milled canola seeds, 

with different nutrient content for utilization in the Swartland and Southern Cape breeding 

programmes in South Africa. 

 

Materials and methods 

Sampling and preparation 

A total of 138 canola seed samples were collected from several experimental farms 

in the Swartland and Southern Cape regions of South Africa, which varies in location, soil 

characteristics (texture, organic matter, nitrogen content, pH) and farm management. The 

samples were used to develop NIR spectroscopy calibration equations in milled and whole 

canola seeds. The samples consisted of different cultivars of canola, including Agamax, 

Jardee, Thunder, and Cobler.   

Sample preparation for conducting the reference analysis included milling the 

samples for 2 x 10 seconds intervals per sample at 20000 rpm by making use of a Foss 

Tecator Knifetec 1095 sample mill, equipped with a rotor blade with sharp knives (FOSS 

Analytical, Hillerӧd, Denmark). The Knifetec 1095 sample mill is designed for the 

preparation of high fat, high moisture and/or fibrous samples prior to analysis and 

therefore is the ideal mill for grinding of canola seeds. The mill is equipped with a grinding 

chamber cooling feature which enables it to be connected to a cold water tap to reduce 

adhesion of high oil samples to the wall of the grinder. Samples containing high levels of 

fat have the tendency to stick to the wall of the chamber as the fat softens during grinding, 

preventing adequate homogenisation (Foss Analytical, 2005). 

 

Analyses of reference samples 

Dry matter (DM), crude protein (CP) and oil content analysis was performed on 138 

milled canola seed samples. The nutritive value of canola seeds was determined using 

official methods as described by the Association of Official Analytical Chemists (AOAC, 

2012). Moisture content was determined by placing 2 g of milled canola seed in a forced-

air oven at 100 °C for 24 hours, by using the AOAC (2012) (Method no: 934.01). The 

crude protein content was estimated by determining the nitrogen content by the 

combustion method (AOAC, 2012) (Method no: 990.03) using a LECO TruMac N Nitrogen 
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Determinator, Version 1.3X (LECO Corporation, St. Joseph, Michigan, USA) and 

subsequent multiplication of the nitrogen content value by 6.25, the universally accepted 

protein content estimation factor. Oil content was determined by solvent extraction on a 

Soxtec system HT 1043 (Tecator, Hӧganas, Sweden) by using diethyl ether as extraction 

fluid (AOAC, 2012) (Method no: 2003.06). All chemical analysis results are expressed on 

an as is basis and samples were analysed in duplicate. 

 

Collection of spectra and calibration development 

In total, 138 canola seed samples representing a wide range of chemical 

characteristics, from different years, cultivars and locations, were scanned as whole seeds 

as well as milled seeds in an NIR spectrometer instrument. The canola seed samples were 

scanned as duplicates in the reflectance mode between 950 - 1650 nm and recorded as 

log (1/R) at 2nm increments of the near-infrared region on a Perten DA7200 Diode Array 

analyser (Perten Instruments AB, Huddinge, Sweden). Approximately 80 g of each sample 

in whole seed form and 50 g of each milled seed sample was packed into an open rotating 

sample cup with a diameter of 75 mm. Subsequently, the sample set was split into two 

sets: the larger set was used as the calibration set (n = 111) for development of the 

calibrations and the smaller set was used as the external validation set (n = 27) and was 

used to test the accuracy of the calibrations. The samples were divided in such a way that 

samples from the different varieties were contained in both sets (Perten, 2007).  

Partial least squares (PLS) regression was applied to obtain mathematical models 

comparing the spectral data and the reference laboratory data. Models were built by full 

cross validation by using Unscrambler version 10.3 (Camo, Trondheim, Norway) software. 

NIR spectroscopy is widely used as a quantitative method and the main multivariate 

techniques consist of regression methods used to build prediction models (Dardenne et 

al., 2000). Modified partial least squares regression was used, as it can deal with non-

linearity and produce accurate models for the analysis of agricultural products (Dardenne 

et al., 2000). 

After elimination of outliers, all calibrations were developed using full spectrum 

information and different mathematical treatments were tested by correcting the original 

reflectance spectra prior to calibration. This was done by applying Smoothing Savitzky 

Golay, 2nd derivative transformation with Savitzky Golay (2nd order polynomial, 7 point 

smoothing), standard normal variate (SNV) and SNV with de-trend scatter correction 
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(polynomial order = 2). The most appropriate models were chosen by the highest 

coefficient of determination (r2) and lowest standard error of calibration (SEC). For milled 

canola seeds the Savitzky Golay 2nd derivative was applied for DM and oil content and for 

crude protein calibration SNV was applied. Pre-processing used for whole canola seeds 

included Savitzky Golay 2nd derivative transformation for development of DM, crude 

protein and oil content calibrations. 

The original (a), pre-treated Savitzky Golay 2nd derivative (b) and SNV (c) spectra of 

milled canola seed samples are shown in Figure 1 and original (a) and Savitzky Golay 2nd 

derivative data (b) obtained from canola whole seed samples are demonstrated in Figure 

2. 

 

a) b) 

 

 c) 

 

Figure 1 Absorbance spectra for milled canola seeds from (a) raw data, (b) Savitzky Golay 

2nd derivative data and (c) standard normal variate (SNV)    
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a)  b) 

 

Figure 2 Absorbance spectra for whole canola seeds from (a) raw data and (b) Savitzky 

Golay 2nd derivative data 

 

 

The accuracy of the calibration models was expressed by means of the standard 

error of prediction (SEP), the coefficient of determination (r2) and the ratio of SEP to 

standard deviation (SD) of the validation set (RPD), which is an indication of the efficiency 

of a calibration. The goal of model development is to obtain a calibration model with a low 

SEP, a high r2, preferably above 0.83 and a RPD higher than 5. The SEP should also be 

as close as possible to the standard error of reference data (SEL) (Williams, 2001). 

 

Results and discussion 

Calibration equations for rapid analysis by NIR spectroscopy were developed by 

using partial least square regression (PLS) with cross validation for dry matter, crude 

protein and oil content in milled and whole canola seed samples. The number of samples 

(n), minimum, maximum, mean values and standard deviations (SD) for each constituent 

for the calibration and validation sets of the calibrations developed for milled and whole 

canola seeds are reported in Table 1 and 2, respectively.  
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Table 1 Summary of nutrient composition (%) of milled canola seed used in the calibration 

set, showing the number of samples (n), minimum, maximum, mean and standard 

deviation (SD) 

Chemical component n Min (%) Max (%) Mean (%) SD 

DM 111 90.66 96.29 94.12 1.01 

Crude protein 111 14.14 25.48 21.53 2.17 

Oil content 111 34.35 45.90 40.10 3.00 

 

 

Table 2 Summary of nutrient composition (%) of milled canola seed used in the validation 

set, showing the number of samples (n), minimum, maximum, mean and standard 

deviation (SD) 

Chemical component n Min (%) Max (%) Mean (%) SD 

DM 27 89.38 95.92 94.00 1.30 

Crude protein 27 16.78 24.59 21.11 2.41 

Oil content 27 34.56 46.23 40.74 3.29 

 

 

Results reported in Table 1 show the reference values used in the calibration set for 

DM which ranged from 90.66 - 96.29%, crude protein from 14.14 - 25.48% and oil content 

from 34.35 - 45.90%. Results of the nutrient composition of the samples used in the 

validation set are reported in Table 2, as the range of DM is 89.38 - 95.92%, crude protein 

ranges from 16.78 - 24.59% and oil content from 34.56 - 46.23%. Results for reference 

analysis as reported in Table 1 and Table 2 correspond with ranges obtained by Nosenko 

et al. (2013) for DM of 90 - 92%, Velasco et al. (1999) for protein content (13.4% - 28.3%) 

and oil content (28.5% - 54.9%) and 32.46% to 50.64% as reported by Greenwood et al. 

(1999) for oil content of canola seeds. 

The optimum number of PLS factors selected for each calibration were 

recommended by Unscrambler software using cross validation, as shown in Table 3 for 

milled canola seed samples and Table 4 for whole canola seed samples. The reliability of 

calibration models was established based on the values of the coefficient of determination 

(r2), standard error of prediction (SEP), standard error of laboratory (SEL) and RPD (the 
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ratio of standard deviation of reference values in the validation set to SEP) (Williams, 

2001). The ratio of performance to deviation (RPD) is a measurement of the ability of an 

NIR spectroscopy model to predict a constituent. Reporting the SEP alone may be 

misleading unless it is reported by comparison with the SD of the original reference data. If 

the SEP is close to the SD, then the NIRS calibration is not efficiently predicting the 

composition or functionality. If SEP is equal to SD, the calibration is essentially predicting 

the population mean. Williams (2001) suggested that a RPD value below 2 does not 

supply accurate predictions. RPD value of 2 - 3 is considered as adequate for rough 

screening. A value above 3 is regarded as satisfactory for screening, a value of 5 and 

upward is suitable for quality control analysis and a value above 8 is excellent and can be 

used in any analytical application. 

An external validation procedure (n = 27) was carried out to determine the accuracy 

and precision of the equations obtained in the calibration for each component in both 

milled and whole canola seeds. To evaluate the accuracy of the equations, different 

statistics were used, namely the coefficient of determination (r2), the RPD, which is the 

ratio of the standard deviation (SD) for the validation samples to the standard error of 

prediction (SEP).  

 

Milled canola seeds 

Calibration models were developed by PLS regression from original spectra and after 

pre-processing, with Savitzky Golay 2nd derivative for DM and oil content and SNV for 

crude protein. Table 3 displays the results of the multivariate data analysis of the 

calibrations and their performance on the validation set. The better calibration equation for 

each constituent, with respect to higher coefficient of determination in calibration (r2
cal), 

SEC, r2
val, lower SEP, SD and RPD, are shown in Table 3. The calibration model for milled 

canola seeds is of reasonable quality with an r2
val value in the external validation set and 

standard error of calibration (SEP) of 0.57 and 0.64% for DM, 0.91 and 0.60% for crude 

protein and 0.91 and 1.07% for oil content. According to Williams (2001), the RPD values 

of 1.53 for DM indicate that the calibration is not appropriate for predicting milled canola 

seeds and a RPD value of 3.18 for crude protein and 3.09 for oil content indicate that the 

prediction model is satisfactory for screening of milled canola seeds. 
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Table 3 Calibration and external validation statistics in the development of calibration 

equations for nutrient composition in milled canola seed samples 

Chemical 

component 

PLS 

factors 

Calibration set Validation set 

r2
cal SEC (%) r2

val SEP (%) SD RPD 

DM 5 0.76 0.54 0.57 0.64 0.98 1.53 

Crude protein 7 0.87 0.78 0.91 0.60 1.91 3.18 

Oil content 5 0.89 1.00 0.91 1.07 3.31 3.09 

 

 

The calibration model showed a good agreement between reference and NIR 

spectroscopy predicted values. As shown in Figure 3 (b) and (c), the high values of r2
val for 

crude protein (0.91) and oil content (0.91) indicates a good correlation between the 

predicted and the reference values for the validation model for milled canola seeds. A 

lower correlation was found for dry matter (r2
val = 0.57) as shown in Figure 3a, which 

indicates a lower correlation between predicted and reference values for milled canola 

seeds. 

 

a)  b) 
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c) 

 

Figure 3 The relationship between laboratory determined and NIR spectroscopy predicted 

content for (a) DM, (b) crude protein and (c) oil content in validation statistics for milled 

canola seed 

 

 

Whole canola seeds 

The NIR spectroscopy calibration and external validation statistics for DM, crude 

protein and oil content for whole canola seed are presented in Table 4. The calibration 

equation for DM did not show adequate validation statistics, as the coefficient of 

determination (r2
val) between NIR spectroscopy and reference data was low (r2 = 0.57) and 

the ratio of the standard deviation of the calibration set to the standard error of prediction 

to the (RPD) was 1.57. The calibration equation for crude protein was more accurate, 

exhibiting an r2 of 0.80 and a RPD value of 2.27 and the values for oil content was 0.86 

and 2.61, respectively. The standard error of prediction (SEP) for the NIR spectroscopy 

calibration models for intact canola seeds were as follows: dry matter (SEP: 0.83%), crude 

protein (SEP: 1.06%) and oil content (SEP: 1.26%).  

However, it is suggested that the technique could be used as a routine procedure to 

apply in breeding programmes, only if calibration is done for each species, season and 

particular conditions (Garcia & Cozzolino, 2006). Additionally, NIR spectroscopy 

calibrations were more accurate for chemical composition of milled seed than whole 

canola seeds. In previous studies done by Pazdernick et al. (1997) and Pérez-Vich et al. 

(1998) the same relationship was observed in soybean and sunflower seeds respectively, 

where better calibration equations were obtained for ground seed than whole seed 

samples. 
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Table 4 Calibration and external validation statistics in the development of calibration 

equations for nutrient composition in whole canola seed samples 

Chemical 

component 

PLS 

factors 

Calibration set Validation set 

r2
cal SEC (%) r2

val SEP (%) SD RPD 

DM 5 0.86 0.38 0.57 0.83 1.30 1.57 

Crude protein 5 0.84 0.86 0.80 1.06 2.41 2.27 

Oil content 5 0.92 0.84 0.86 1.26 3.29 2.61 

 

 

Font et al. (2006) obtained RPD and r2 values of 6.98 and 0.98, respectively, for oil 

content in Brassica juncea. Studies done by Velasco et al. (1999), revealed that NIR 

spectroscopy calibration models were developed to simultaneously predict the oil, protein 

and glucosinolate contents and oleic acid and erucic acid concentrations of single seeds of 

canola, which is a non-destructive, fast and cost-effective method. Reliable calibration 

equations were developed for oil (r2 = 0.87 and SECV = 1.90%), crude protein (r2 = 0.91 

and SECV = 0.94%) in cross validation and can thus be used for screening of single seeds 

for quality characteristics in canola. Prem et al. (2012) obtained calibration statistics for 

three Brassica species for oil content (SECV = 1.30, r2 = 0.94, SEC = 1.18), moisture 

content (SECV = 0.12, r2 = 0.87, SEC = 0.39) and protein content (SECV = 12.19, r2 = 

0.91, SEC = 2.18). Greenwood et al. (1999) have reported on the development of oil 

content estimation calibrations in canola whole seed (SECV = 0.77, SEC = 0.61 and r2 = 

0.98). The potential of NIR spectroscopy to predict the concentrations of various chemical 

components, or functional properties of plant materials, which is faster and more 

economical than conventional chemical analysis, should be a challenge to analysts. If the 

costs are sufficiently lower, then monitoring, rather than once per season analysis by 

making use of NIR spectroscopy, could be extremely informative, even if the calibrations 

have a high SEP or low RPD value (Batten, 1998). 

The correlation between the NIR spectroscopy predicted and laboratory determined 

values of the validation sets for the various chemical components found in canola seeds 

are illustrated in Figure 4 (a) for DM, (b) for crude protein and (c) for oil content in whole 

canola seeds. 
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a)   b) 

 

c) 

 

Figure 4 The relationship between laboratory determined and NIR spectroscopy predicted 

content for (a) DM, (b) crude protein and (c) oil content in validation statistics for whole 

canola seed 

 

Conclusions 

The chemical composition of canola, predicted by NIR spectroscopy was highly 

correlated with values determined by AOAC analytical methods. The results demonstrate 

the potential of NIR spectroscopy to predict the chemical composition of different canola 

cultivars. This indicates that NIR spectroscopy can be used as a reliable tool in the 

screening process of milled and whole canola seeds. This will result in a rapid, less 

expensive analysis technique, which will benefit the feed industry in formulations of 

balanced diets. The accuracy was quite satisfactory for screening purposes as RPD 

values was between 2 and 3 for crude protein and oil content for whole canola seeds and 

above 3 for milled canola seeds. The analysis of whole canola seeds by NIR spectroscopy 
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was less accurate (r2 ranged from 0.57 for DM to 0.86 for oil content) although it is reliable 

enough to use for pre-screening purposes to identify variants with significantly different 

nutritive values. Non-destructive NIR spectroscopy analysis enables rapid and reliable 

selection of materials with different nutrient composition in whole canola seed. It can be 

concluded that NIR spectroscopy can be used reliably for non-destructive selection of 

chemical components in both milled and whole canola seeds. 
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CHAPTER 4 

 

PREDICTION OF THE CHEMICAL COMPOSITION OF MILLED AND WHOLE LUPIN 

SEEDS WITH NEAR INFRARED REFLECTANCE (NIR) SPECTROSCOPY  

 

Abstract 

The potential of near-infrared reflectance (NIR) spectroscopy to perform an easy and 

rapid estimation of dry matter (DM), ash, crude protein (CP), crude fibre and oil content in 

milled and whole lupin seeds was investigated. Lupin samples from different cultivars 

produced at different localities in the Western Cape regions of South Africa were collected. 

A total of 160 samples were used to develop calibrations for milled lupin seeds and 49 to 

develop calibrations for whole lupin seeds. All samples were analysed by traditional wet 

chemistry techniques for DM, ash, crude protein, crude fibre and oil content and were 

subsequently scanned on a NIR spectroscopy model Perten DA7200. Calibration 

equations for the different chemical components were developed for each nutrient in both 

milled and whole lupin seed. For both milled and whole lupin seed, the performance of the 

calibration equations was evaluated through external validation. The results showed that 

NIR spectroscopy is a reliable and accurate technique to estimate these constituents in 

whole lupin seeds and milled lupin seeds. The validation statistics revealed better results 

for whole lupin seed than milled lupin seed. The validation r2 for milled lupin seeds ranged 

from 0.55 for crude fibre to 0.85 for oil content, whereas the r2 in whole lupin seeds ranged 

from 0.66 for ash to 0.96 for crude protein. NIR spectroscopy equations showed RPD 

values of 1.39 to 2.52 for milled lupin seeds and 1.65 to 4.76 in whole lupin seeds that 

were indicative of equations suitable for screening. According to these results, there is no 

need to grind the seeds to scan the meal; similarly accurate results are obtained by 

analysing whole seeds. Screening of whole lupin seeds by NIR spectroscopy represents a 

rapid, simple and cost effective alternative that may be of great utility for users who need 

to analyse a large number of samples with no sample preparation. 

________________________________________________________________________ 

Keywords: lupin whole seeds, chemical composition, NIR spectroscopy 
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Introduction 

Lupins are the harvested seed of species from the Lupinus genus, a group within the 

leguminous bean and pea family Fabaceae, and are known as a rich source of protein 

which has long been used in human and animal nutrition.  The major cultivated species of 

lupins are: L. angustifolius (narrow-leafed sweet lupin), L. albus (white or albus lupin) and 

L. luteus (yellow lupin), where L. angustifolius dominates world lupin production 

(Glencross, 2007). Lupins play an important role as an alternative crop in the Western 

Cape and approximately 18 000 ha lupins are currently cultivated in the Western Cape 

winter rainfall area (Dunn, 2015).  

Lupin seed has the potential to be a vegetable protein source due to its comparable 

quality to the commonly used soy proteins (Bartkiene et al., 2011). Lupin grain is 

considered as a valuable protein source in monogastric (Brand et al., 1995) and ruminant 

animals (Brand et al., 1997) as well as in aquaculture nutrition, such as salmon (Alomar & 

Mera, 2008) and rainbow trout (Glencross et al., 2015). The evaluation of NIR 

spectroscopy in agricultural applications started when Karl Norris applied the statistical 

regression data analysis method in NIR diffuse reflectance studies in the 1960’s (Norris & 

Hart, 1965). Since then, many NIR spectroscopy related applications have been reported 

for oil seed analysis. NIR spectroscopy is a rapid, non-destructive, inexpensive and 

accurate method for the analysis of chemical components and material characteristics in 

seeds, grains and other types of materials. Another advantage of modern NIR 

spectroscopy instruments is its capability of producing multiple results from one single 

analysis of intact samples (Tseng et al., 2004). 

Analysis of nutrient composition of oil seeds plays an important role in the quality 

control and assurance of oil seeds in both agriculture and food industries. Conventional 

analytical methods of oil seeds are often time consuming, labour intensive and expensive. 

Different analytical methods are required for each oil seed parameter or trait of interest 

and the analysis of each method individually is time consuming and can last hours or days 

(Tseng et al., 2004).  

NIR spectroscopy depends on calibrations which use absorbances at many 

wavelengths, to predict the composition of a sample. The greatest advantage of the NIR 

spectroscopy technique is that minimal sample preparation is required and the speed of 

analysis. Compared to conventional analytical techniques which, however, involves high 

costs and labour requirements are excessive. These advantages make it possible to 
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analyse large batches of samples in a short period of time (Batten, 1998). Unlike most 

conventional analytical methods, NIR spectroscopy is a non-destructive technique, which 

requires little or no sample preparation, does not use chemicals, or generate chemical 

wastes which requires disposal.  The technique is entirely safe to operate, rapid, can be 

portable, and simultaneously determines numerous constituents or parameters. NIR 

spectroscopy instrumentation is simple to operate by non-chemists and operates without 

fume hoods, drains or other installations (Williams, 2012). 

Accurate calibration equations have been obtained by several authors for predicting 

chemical composition, digestibilities and anti-nutritional factors in lupin seed. Glencross et 

al. (2015) obtained accurate calibrations for DM, ash, crude protein, crude fibre, oil 

content, acid detergent fibre (ADF), neutral detergent fibre (NDF), lignin, digestible protein 

and digestible energy. Viljoen (2003) developed accurate calibrations for DM, ash, crude 

protein, oil content, ADF, NDF, in vitro organic matter digestibility (IVOMD), total digestible 

nutrients (TDN), and accurate calibrations for alkaloids in milled lupin seeds were obtained 

by Brand & Brandt (2000).  Results obtained by Alomar & Mera (2008) showed the 

remarkable potential of the NIR spectroscopy technique for selecting lupin individuals with 

lower seed coat in whole grains, indicating that this could be a valuable tool in breeding 

programmes oriented to improve the feeding quality of lupin grains. 

The objective of this study was to develop NIR spectroscopy calibrations and to 

explore the technique to be used as a rapid technique to estimate the dry matter (DM), 

ash, crude protein (CP), crude fibre (CF) and oil content in whole lupin seeds compared to 

milled seeds, which will save a considerable amount of time by not grinding the samples. 

 

Materials and methods 

Sampling and preparation 

Lupin samples were obtained from different lupin cultivars produced at different 

localities in the Western Cape region of South Africa. A total of 160 narrow leaf lupins 

(Lupinus angustifolius) samples were analysed to develop calibrations for DM, ash, crude 

protein, crude fibre and oil content for milled lupin seeds and 49 samples were used for 

developing calibrations for whole lupin seeds. Samples were ground using a RetschTM 

ZM200 sample mill (Haan, Germany) with a 1.5 mm screen to create consistent particle 

size meal. 
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Analysis of reference samples 

During this study, the nutritive value of lupin seeds was analysed by making use of 

official methods as described by the Association of Official Analytical (AOAC, 2012). The 

lupin seed samples were analysed for dry matter (DM), ash, crude protein (CP), crude 

fibre (CF) and oil content. The DM of each sample was calculated by gravimetric analysis 

following oven drying at 100 °C for 24 hours (AOAC, 2012) (Method no: 934.01). Ash 

content of each sample was determined following the loss of mass after combustion of the 

sample in a muffle furnace (Labcon Muffle furnace RM7) at 550 °C for 8 hours (AOAC, 

2012) (Method no: 942.05). Nitrogen concentration was determined by the Dumas 

combustion method (AOAC, 2012) (Method no: 990.03) using a LECO TruMac N Nitrogen 

Determinator, Version 1.3X (LECO Corporation, St. Joseph, Michigan, USA). Nitrogen 

content was then transformed by the factor 6.25 into crude protein content. Crude fibre 

content was determined by using the method of Goering & van Soest (1970) making use 

of FIWE Raw Fiber Extractor, Velp Scientifica (Velp Scientifica, Milano, Italy). Oil content 

was determined by solvent extraction on a Soxtec system HT 1043 (Tecator, Hӧganas, 

Sweden) by using diethyl ether as extraction fluid (AOAC, 2012) (Method no: 2003.06).   

All chemical analysis were performed in duplicate and results are expressed on an as 

is basis. 

 

Collection of spectra and calibration development 

The lupin seed samples were scanned by making use of Diode Array Near Infrared 

Spectrometer DA7200 (Perten Instruments, Huddinge, Sweden). The samples were 

scanned in reflectance mode using a rotating 75 mm cup.  The spectra were collected 

from the whole lupin seeds, as well as from milled lupin seed samples, across the full 

wavelength range (950 - 1650 mm) of the instrument as absorbance at a resolution of 2 

nm using nine scans per sample (Perten, 2007). The samples were scanned in duplicate 

and were repacked as indicated by the instrument software. The reference data was 

incorporated in the Unscrambler software 10.3 (Camo, Trondheim, Norway) and the 

spectra were linked with the nutrient composition of each individual sample. 

The calibration equations were calculated using partial least squares (PLS) 

regression and cross validation technique using Unscrambler software 10.3. Cross 

validation was used to evaluate the relationship between the spectra and the nutrient 

composition of the milled and whole lupin seeds. The equations with the lowest standard 
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error of calibration (SEC) and highest coefficient of determination (r2) were used to 

develop calibrations after different mathematical pre-treatments were followed. The pre-

processing methods included Smoothing Savitzky Golay, 2nd derivative transformation with 

Savitzky Golay (2nd order polynomial, 7 point smoothing), standard normal variate (SNV) 

and SNV with de-trend scatter correction with polynomial order = 2. A total of 38 randomly 

selected samples were reserved for external validation of milled lupin seeds, and 12 for 

whole lupin seeds. NIR spectroscopy calibration equations for DM, crude protein, crude 

fibre and oil content were developed by using the remaining 160 samples for milled seed 

calibrations and 49 samples for whole seed calibrations. 

The original spectra obtained from scanning the milled lupin seeds are shown in 

Figure 1a, and corrected spectra by applying standard normal variate (SNV) and detrend 

pre-processing techniques, as shown in Figure 1b. Original reflectance spectra were 

corrected before calibration by applying standard normal variate (SNV) for development of 

DM, ash, crude protein and oil content calibrations and gap derivative for crude fibre 

calibrations in lupin whole seeds. Original reflectance spectra for whole lupin seeds are 

illustrated in Figure 2a, SNV data in Figure 2b and gap derivative data in Figure 2c. 

 

a) b) 

 

Figure 1 Absorbance spectra for milled lupin seed for (a) raw data and (b) standard 

normal variate (SNV) detrend data in the NIR spectroscopy range 
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 a) 

 

 

b) c) 

 

Figure 2 Absorbance spectra for whole lupin seed for (a) raw data, (b) standard normal 

variate (SNV) data and (c) gap derivative data in the NIR spectral range 

 

 

Results and discussion 

The nutrient composition of lupin seeds used in developing calibrations and 

validating the calibration in milled lupin seeds are presented in Table 1 and 2, respectively. 

The number of samples (n), range, mean and standard deviation (SD) values, was 

calculated for milled lupin seeds and results for the calibration and validation sets are 

reported in Table 1 and 2, respectively.  
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Table 1 Summary of nutrient composition (%) of milled lupin seed used in the calibration 

set, showing the number of samples (n), minimum, maximum, mean and standard 

deviation (SD) 

Chemical component n Min (%) Max (%) Mean (%) SD 

DM 156 87.08 91.01 89.94 0.86 

Ash 160 2.02 3.53 2.89 0.27 

Crude protein 160 21.00 34.63 29.24 2.43 

Crude fibre 160 12.43 18.70 15.71 1.40 

Oil content 160 3.41 6.58 4.95 0.70 

 

 

Table 2 Summary of nutrient composition (%) of milled lupin seed used in the validation 

set, showing the number of samples (n), minimum, maximum, mean and standard 

deviation (SD) 

Chemical component n Min (%) Max (%) Mean (%) SD 

DM 38 86.47 92.11 89.67 1.14 

Ash 38 2.41 3.53 2.89 0.28 

Crude protein 38 25.75 32.81 29.06 1.90 

Crude fibre 38 13.11 18.87 15.76 1.56 

Oil content 38 3.57 6.09 4.94 0.68 

 

 

Results reported in Table 1 show the reference values in the calibration set for DM 

which ranged from 87.08 - 91.01%, ash from 2.02 - 3.53%, crude protein from 21.00 - 

34.63%, crude fibre from 12.43 - 18.70% and oil content from 3.41 - 6.58%. Results of the 

nutrient composition of the samples used in the validation set are reported in Table 2 with 

the range for DM as 86.47 - 92.11%, ash from 2.41 - 3.53%, crude protein ranges from 

25.75 - 32.81%, crude fibre from 13.11 - 18.87% and oil content from 3.57 - 6.09%.  

The nutrient composition of lupin seeds used in developing calibrations in whole 

seeds is presented in Table 3 and 4. The number of samples (n), range, mean and 

standard deviation (SD) values were calculated for lupin seeds used in the development of 

calibrations for whole seeds and results for the calibration and validation sets are reported 

in Table 3 and 4, respectively. Results reported in Table 3 show the reference values in 
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the calibration set for DM which ranged from 87.08 - 89.82%, ash from 2.58 - 2.93%, crude 

protein from 21.00 - 31.13%, crude fibre from 13.80 - 17.48% and oil content from 4.39 - 

5.66%.   Results of the nutrient composition of the samples used in the validation set are 

reported in Table 4 with the range for DM as 87.08 - 89.37%, ash from 2.63 - 3.00%, crude 

protein ranges from 21.00 - 31.44%, crude fibre from 14.29 - 17.48% and oil content from 

4.55 - 5.55%.  

 

 

Table 3 Summary of nutrient composition (%) of lupin whole seed used in the calibration 

set, showing the number of samples (n), minimum, maximum, mean and standard 

deviation (SD) 

Chemical component n Min (%) Max (%) Mean (%) SD 

DM  49 87.08 89.82 88.86 0.61 

Ash 49 2.58 2.93 2.78 0.10 

Crude protein 49 21.00 31.13 28.30 2.32 

Crude fibre 49 13.80 17.48 15.40 0.93 

Oil content 49 4.39 5.66 4.96 0.28 

 

 

The variation in the chemical composition for reference samples of lupin seeds, as 

reported in Table 1, 2, 3 and 4, corresponds with results obtained by Glencross et al. 

(2015) for DM (89.20 - 95.00%), ash (1.90 - 6.60%), crude protein (27.70 - 61.30%), crude 

fibre (17.50 - 43.40%) and oil content (5.00 - 17.10%) and Viljoen (2003) for DM (90.01 - 

96.89%), ash (2.60 - 4.43%), crude protein (21.06 - 40.57%) and oil content (3.06 - 

11.43%).  

The calibration accuracy was determined by the coefficient of determination of the 

calibration (r2
cal) and the external validation (r2

val). External validation statistics were 

calculated for the calibration equations developed for DM, ash, crude protein, crude fibre 

and oil content in the milled lupin seeds as well as the whole seeds. Prediction of an 

external validation set (n = 38) for milled lupin seeds and whole seeds (n = 12) showed 

significant correlation between reference values and NIR spectroscopy predicted values, 

based on the SEP, r2 and the ratio of standard deviation (SD) of reference data to SEP 
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(RPD). The number of factors used in the PLS calibration models were those suggested 

by the Unscrambler software (version 10.3) and are reported in Table 5 and 6. 

 

Table 4 Summary of nutrient composition (%) of lupin whole seed used in the validation 

set, showing the number of samples (n), minimum, maximum, mean and standard 

deviation (SD) 

Chemical component n Min (%) Max (%) Mean (%) SD 

DM 12 87.08 89.37 88.67 0.67 

Ash 12 2.63 3.00 2.78 0.13 

Crude protein 12 21.00 31.44 27.91 2.53 

Crude fibre 12 14.29 17.48 15.93 0.94 

Oil content 12 4.55 5.55 4.94 0.32 

 

 

The various calibration equations developed for milled and whole lupin seeds were 

compared using the r2 in calibration samples, standard error of calibration (SEC), r2 in 

validation samples, standard error of performance (SEP) and standard deviation (SD), 

standard error of laboratory (SEL) and RPD. Results in Table 5 report the calibration and 

external validation statistics for milled lupin seeds and Table 6 reports the statistics for 

whole lupin seeds. The coefficient of determination (r2) and standard error of calibration 

(SEC) values for the calibration equations of best fit for each constituent measured in 

lupins and the coefficient of determination (r2), standard error of prediction (SEP), RPD 

values and standard error of laboratory (SEL) for the external validation set, are reported 

in Table 5 and 6 for milled lupin seeds and whole lupin seeds, respectively.  

The coefficient of determination in calibration (r2
cal) values were 0.93 for DM, 0.71 for 

ash, 0.94 for crude protein, 0.76 for crude fibre and 0.89 for oil content and SEC values 

were 0.22% for DM, 0.15% for ash, 0.61% for crude protein, 0.69% for crude fibre and 

0.23% for oil content in milled lupin seeds. The corresponding values for the chemical 

components in whole lupin seeds were 0.90 and 0.19% for DM, 0.73 and 0.05% for ash, 

0.96 and 0.46% for crude protein, 0.82 and 0.40% for crude fibre and 0.78 and 0.13% for 

oil content. In the validation tests, the r2 values for milled lupin seeds ranged from 0.61 for 

ash to 0.85 for oil content and SEP values ranged from 0.18% for ash to 1.12% for crude 

fibre. The r2 and SEP values for whole lupin seeds were 0.66 and 0.08% for ash, 0.96 and 
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0.53% for crude protein, 0.83 and 0.40% for crude fibre and 0.78 and 0.15% for oil 

content. 

The standard error of prediction (SEP) ratio to standard deviation (SD) ratio was 

calculated to evaluate the performance of the calibrations. Validation in terms of routine 

NIR spectroscopy analysis, followed by reference method confirmation of the selected best 

calibrations, was done by using 38 unknown milled lupin seed samples and 12 whole lupin 

seed samples which were not included in the calibration set.  Values of RPD (Williams, 

2001) were calculated to verify the applicability of the calibrations. The RPD is the ratio of 

the standard error of prediction (SEP) to the standard deviation (SD) of the reference data. 

As recommended by Williams (2001), RPD ratios can be defined as follows: 0.0 - 2.3 is not 

recommended, 2.4 - 3.0 is suitable for very rough screening, 3.1 - 4.9 suitable for 

screening, 5.0 - 6.4 for quality control, 6.5 - 8.0 as process control and a value higher than 

8.1 is suitable for any application.  

According to these criteria, the RPD values obtained in the study for milled lupin 

seeds for dry matter (1.87), ash (1.60), crude protein (2.52), crude fibre (1.39) and oil 

content (2.45), could be considered as moderate NIR spectroscopy models, adequate for 

screening. Calibration models for whole lupin seeds could be considered as good with 

RPD values for DM (4.06), ash (1.65), crude protein (4.76), crude fibre (2.39), and oil 

content (2.13), suggesting that NIR spectroscopy models might be used for routine 

analysis on these parameters. 

Windham et al. (1989) stated that if the SEP for validation is less than double the 

SEL for the primary reference method analysis, the final NIR spectroscopy equation can 

be accepted for use and the SEP for validation can be used as a reliable indication of the 

accuracy of the final NIR spectroscopy equation. This rule held true for all the lupin 

calibrations, which leads to the conclusion that the chemical composition determined by 

means of NIR spectroscopy is similar to that analysed using conventional laboratory 

techniques. The SEP obtained in the validation of the single-population equations for DM, 

ash, crude protein, crude fibre and oil content, was within two times the standard error of 

the laboratory (SEL), which is the limit usually considered to accept NIRS equations for 

accurate routine use. 

It can be concluded that the values for DM, ash, crude protein, crude fibre, and oil 

content in whole lupin seeds, showed relatively higher r2, lower SEP and higher RPD than 

milled lupin seeds. These results correspond with results obtained by Jansen et al. (2013) 
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who tested the NIR spectroscopy calibration equations on blue lupins (L. angustifolius), 

yellow lupins (L. luteus) and white lupins (L. albus). The best calibration, cross validation 

and prediction of independent samples were observed for whole seeds of blue lupins 

(RMSECV = 0.92; r2 = 0.82) and RPD values of 2.36 was obtained for crude protein.  

 

 

Table 5 Calibration and external validation statistics in the development of calibration 

equations for nutrient composition in milled lupin seed samples 

Chemical 

component 

PLS 

factors 

Calibration set Validation set 

r2
cal SEC (%) r2

val SEP (%) SD RPD SEL 

DM 7 0.93 0.22 0.72 0.55 1.03 1.87 1.80 

Ash 7 0.71 0.15 0.61 0.18 0.28 1.60 0.35 

Crude protein 6 0.94 0.61 0.84 0.75 1.90 2.52 2.63 

Crude fibre 6 0.76 0.69 0.55 1.12 1.56 1.39 2.25 

Oil content 6 0.89 0.23 0.85 0.28 0.68 2.45 0.63 

 

 

Calibration performances were evaluated based on the coefficient of determination 

(r2), standard error of prediction (SEP), standard error of laboratory (SEL) and ratio of 

standard error of prediction to standard deviation (RPD). 

The accuracy of calibrations for all constituents, except oil content, was higher when 

whole seeds instead of milled seed were scanned. The coefficients of determination (r2) 

were higher and standard errors of prediction (SEP) reduced in calibrations for whole lupin 

seeds.   

Studies done by Glencross et al. (2015) obtained reliable calibration results for lupin 

kernel meal with respect to coefficient of correlation in validation (r2
val) and standard error 

of cross validation (SECV) for crude protein (0.91 and 2.00%), crude fibre (0.94 and 

0.96%) and oil content (0.78 and 0.48%), respectively. Results obtained by Viljoen (2003) 

indicated that NIRS can be used for the rapid evaluation of the chemical composition of 

milled lupin seeds to a degree of accuracy comparable to that of conventional laboratory 

techniques. Multiple correlation coefficients (r) and SEP for the validation sets were as 
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follows: DM (0.98; 0.28%), ash (0.93; 0.16%), crude protein (0.98; 1.07%) and oil content 

(0.96; 0.33%). 

 

Table 6 Calibration and external validation statistics in the development of calibration 

equations for nutrient composition in whole lupin seed samples 

Chemical 

component 

PLS 

factors 

Calibration set Validation set 

r2
cal SEC (%) r2

val SEP (%) SD RPD SEL 

DM 6 0.90 0.19 0.94 0.16 0.67 4.06 0.12 

Ash 7 0.73 0.05 0.66 0.08 0.13 1.65 0.08 

Crude protein 7 0.96 0.46 0.96 0.53 2.53 4.76 1.03 

Crude fibre 7 0.82 0.40 0.83 0.40 0.94 2.39 0.66 

Oil content 5 0.78 0.13 0.78 0.15 0.32 2.13 0.28 

 

 

Figure 2 shows the scatter plots for NIR spectroscopy data versus reference data for 

(a) dry matter, (b) ash, (c) crude protein, (d) crude fibre and (e) oil content in the external 

validation set in milled lupin seeds. 

 

a)  b) 
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c)  d) 

 

 e) 

 

Figure 2 The relationship between laboratory determined and NIR spectroscopy predicted 

values for (a) dry matter, (b) ash, (c) crude protein (d) crude fibre and (e) oil content in 

milled lupin seeds 

 

Figure 3 shows the scatter plots of NIR spectroscopy data vs. reference data for (a) dry 

matter, (b) ash, (c) crude protein, (d) crude fibre and (e) oil content in the external 

validation set in whole lupin seeds. 
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a)  b) 

 

c)  d) 

 

 e)      

 

Figure 3 The relationship between laboratory determined and NIR spectroscopy predicted 

values for (a) dry matter, (b) ash, (c) crude protein (d) crude fibre and (e) oil content in 

whole lupin seeds 
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Conclusions 

It can be concluded that the NIR spectroscopy technique has a high potential to 

estimate the accuracy of the chemical composition of whole lupins seed samples 

compared to milled samples in a non-destructive way and with a high degree of accuracy. 

The results indicate that there is no need to grind lupin seeds, which will save a 

considerable amount of time and is less labour intensive. Furthermore, these results have 

special significance because NIR spectroscopy is a multi-trait technique. Therefore, a 

simple, rapid and reliable estimation of seed quality traits in this species may be obtained 

at a low cost, which may have a high impact in applications where large numbers of 

samples have to be analysed, such as breeding programmes, surveys and quality control.  

 

References 

Alomar, D. & Mera, M., 2008. Prediction of seed coat proportion in lupins by near infrared 

reflectance spectroscopy: preliminary results. In: Lupins for health and wealth. Proc. 

12th International Lupin Conference. Fremantle, Western Australia. Eds. Palta, J.A. & 

Berger, J.B. 

AOAC, 2012. Official methods of analysis (19th ed.). Association of Official Analytical  

Chemists, Inc., Arlington, Virginia, USA. Ed. Latimer, Jr., G.W. 

Bartkiene, E., Juodeikiene, G., Vidmantiene, D., Viskelis, P. & Urbonaviciene, D., 2011. 

Nutritional and quality aspects of wheat sourdough bread using L. luteus and L. 

angustifolius flours fermented by Pedioccocus acidilactici. Int. J. Food Sci. Tech. 46, 

1724-1733. 

Batten, G.D., 1998. Plant analysis using near infrared reflectance spectroscopy: the 

potential and the limitations. Aust. J. Exp. Agr. 38, 697-706. 

Brand, T.S., Olckers, R.C. & van der Merwe, J.P., 1995. Evaluation of faba beans (Vicia 

faba cv. Fiord) and sweet lupins (Lupinus albus cv. Kiev) as protein sources for 

growing pigs. S. Afr. J. Anim. Sci. 25(2), 31-35. 

Brand, T.S., Franck, F., Durand, A. & Coetzee, J., 1997. Intake and production of ewes 

grazing oat stubble supplemented with sweet lupin (Lupinus albus) seed. Small 

Ruminant Res. 26, 93-103. 

Brand, T.S. & Brandt, D.A., 2000. Alkaloid content of South African lupins (L luteus, L 

albus and L angustifolius) and determination thereof by near infrared reflectance 

spectroscopy. S. Afr. J. Anim. Sci. 30(1), 11-12. 



86 
 

Dunn, L., 2015. Chairman’s Report 2014/ 2015. Animal Feed Manufacturers Association. 

Pretoria, South Africa. 

Glencross, B., 2007. Lupins in Aquafeeds. Proc. 4th workshop for harvesting the benefits of 

grain in Aquaculture feeds. Fremantle, Western Australia. 

Glencross, B., Bourne, N., Hawkins, W., Karopoulos, M., Evans, D., Rutherford, N., 

McCafferty, P., Dods, K., Burridge, P., Veitch, C., Sipsas, S., Buirchell, B. & 

Sweetingham, M., 2015. Using near infrared reflectance spectroscopy (NIRS) to 

predict the protein and energy digestibility of lupin kernel meals when fed to rainbow 

trout, Orcorhynchus mykiss. Aquacult. Nutr. 21, 54-62. 

Goering, H.K. & van Soest, P.J., 1970. Forage fiber analysis (apparatus, reagents, 

procedures and some applications). Agriculture Handbook no 379. ARS-USDA, 

Washington, USA. 

Jansen, G., Jugert, M. & Ordon, F., 2013. High-throughput screening for protein content in 

blue, yellow and white lupins. Tagung der Vereinigung der Pflanzenzüchter und 

Saatgutkaufleute Österreichs 19-20.  

Norris, K.H. & Hart, J.R., 1965. Direct spectrophotometric determination of moisture 

content of grain and seeds. In: Principles and methods of measuring moisture in 

lipids and solids. Ed. Wexler, A., Reinhold, New York, USA. 4, 19-25.  

Perten, 2007. DA7200 Diode Array Analyzer – Operation Manual. Perten Instruments AB, 

Huddinge, Sweden. 

Tseng, C-H., Ma, K. & Wang, N., 2004. Internet-enabled near infrared analysis of oil 

seeds. In: Oil extraction and analysis: Critical issues and competitive studies. Ed. 

Luthria, D.L., AgroSolution/ QTA, Cincinatti, Ohio, USA. pp. 166-192. 

Viljoen, M., 2003. Prediction of the chemical composition and digestibility of lupins and full-

fat canola and the determination of alkaloids in lupins with near infrared reflectance 

spectroscopy. The use of near infrared reflectance spectroscopy (NIRS) for the 

chemical analysis of meat and feedstuffs. MSc (Agric) thesis, University of 

Stellenbosch, South Africa.  

Williams, P.C., 2001. Implementation of near-infrared technology. In: Near-infrared 

Technology in the Agricultural and Food Industries, 2nd ed. Eds. Williams, P.C. & 

Norris, K., St. Paul, USA: American Association of Cereal Chemists. pp. 145-169.  

Williams, P.C., 2012. About near-infrared spectroscopy. PDK Projects Inc. 

(www.pdkprojects.com). 



87 
 

Windham, W.R., Mertens D.R. & Barton II, F.E., 1989. 1. Protocol for NIRS calibration: 

Sample selection and equation development and validation. In: Near infrared 

reflectance spectroscopy (NIRS): Analysis of forage quality. Eds. Marten, G.C., 

Shenk, J.S. & Barton II, F.E., USA. Department of Agriculture, Springfield, VA, U.S.A. 

pp. 96-103. 

 

  



88 
 

CHAPTER 5 

 

PREDICTION OF CHEMICAL COMPOSITION AND AMINO ACID CONTENT OF 

ALFALFA HAY BY NEAR INFRARED REFLECTANCE (NIR) SPECTROSCOPY  

 

Abstract 

The objective of this study was to develop near infrared reflectance (NIR) 

spectroscopy calibration equations for the prediction of chemical composition and amino 

acid content from different populations of alfalfa hay (Medicago sativa L.), harvested from 

6 commercial irrigation farms in the Western Cape and Klein Karoo areas of South Africa. 

Alfalfa harvested on 10 successive dates over a 10 week period, were evaluated for dry 

matter (DM), crude protein, ether extract, crude fibre, acid detergent fibre (ADF), neutral 

detergent fibre (NDF) and essential amino acids (lysine, methionine, threonine and 

arginine). Samples (n = 60) representing the spectral characteristic of the South African 

Medicago sativa L. hay population were chemically analysed for the development of 

calibration equations. Samples differed in chemical composition due to collections at 

different growth stages. Alfalfa hay samples were scanned in reflectance mode on a 

Perten DA7200 in the near infrared spectral range of 950 - 1650 nm and calibration 

equations were developed by partial least squares (PLS) regression using cross validation.  

NIR spectroscopy calibration equations were developed for the prediction of dry 

matter (DM), crude protein, ether extract, crude fibre, crude fat, ADF and NDF. Calibration 

models to predict amino acids included lysine, methionine, threonine and arginine in alfalfa 

hay were also developed. The current results obtained showed that NIR spectroscopy 

equations moderately explained the variation in the composition of alfalfa hay. The 

equations obtained for the prediction of chemical parameters in this study did not explain 

the major part of the variation existing in the reference data. NIR spectroscopy calibrations 

could however successfully be used for the prediction of chemical composition if a large 

enough calibration set is used. The development of accurate calibrations will be of great 

use in planning feeding strategies for livestock, based on alfalfa hay and forage systems. 

 

Key words: forage quality, alfalfa, NIR spectroscopy, chemical composition, stage of 

maturity 
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Introduction 

Alfalfa (Medicago sativa L.) is a deep-rooted perennial legume pasture plant which is 

well adapted to a range of climatic conditions and soil types (Devenish et al., 2003). 

Alfalfay hay provides valuable feed for ruminants (González et al., 2001) and is an 

important feed ingredient of monogastric animals, especially ostriches. Feed formulation of 

the diets of monogastric animals should be based on the provision of essential amino 

acids and not crude protein, since the nutrient requirements of monogastric animals is 

based on the amino acids requirement of the body for growth. Lysine is considered as the 

first limiting amino acid in the nutrition of monogastric animals. Huge variation in crude 

protein and amino acid content of alfalfa hay, however, exists (Brand et al., 2011). Alfalfa 

hay is highly digestible (about 65 to 75%) and is a reliable and economic source of crude 

protein with good levels of metabolisble energy (Devenish et al., 2003). 

An important factor is that pasture quality changes substantially over a growing 

season, thus NIR spectroscopy analyses will be a routine requirement if diets are to be of 

optimal nutritional quality (Corson et al., 1999).   

Results obtained by Jančík et al. (2008) indicate that the protein value of forages is 

related to the stage of maturity. Maturity of the alfalfa plant leads to a decrease in the 

crude protein content and to an increase in the concentration of fibre fractions (González 

et al., 2001). Digestibility deteriorates with increased fibre content. However, this does not 

relate to crude fibre alone, but to the decreased utilization of other nutrients. During the 

growing season, all plants are subject to changes in composition and consequently in 

nutritional value and digestibility. Whilst high levels of nitrogen substances are recorded in 

young plants, these levels drop throughout the plant growth (Písaříková et al., 2007) and 

the amino acid contents decreased with growth stage in alfalfa hay (Homolka et al., 2008).  

The analysis of chemical composition of feedstuffs is routinely conducted by wet 

chemistry methods, which are time consuming, costly and in some cases the methods 

involve hazardous chemicals (Shenk & Westerhaus, 1985). NIR spectroscopy has the 

benefit of more economical analyses compared to traditional chemical techniques, as 

there is good potential for substantial economic benefits from balancing the diets (Corson 

et al., 1999). NIR spectroscopy has become widely recognized as a rapid, reliable and 

non-destructive alternative procedure for the accurate estimation of quality characteristics 

in feed samples (Batten, 1998) and forages (Shenk & Westerhaus, 1985) that could be 

applied to the increasing need for effieciency in the feeding of livestock (Shenk & 
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Westerhaus, 1994). For example, conventional analysis of feed composition (fibre, 

nitrogen, sugars, lipid and ash) will take about 16 hours, with each of the five assays 

running concurrently, where this can be completed in 2 - 3 minutes or even a few seconds 

by NIR spectroscopy on suitably prepared samples (Corson et al., 1999). The speed of 

analysis is the primary advantage of NIR spectroscopy analysis. A finely ground sample of 

grain or forage can be analysed for multiple nutrients in less than 2 minutes. No special 

handling of the sample other than grinding is required. The sample does not need to be 

weighed or corrected for dry matter (Shenk et al., 1979). 

The NIR spectroscopy technique requires a sample which is exposed to an electro-

magnetic scan over a spectral wavelength range of 1100 – 2500 nm, which is the near 

infrared region. Energy in this spectral range is directed onto the sample and reflected 

energy (R) is measured by the instrument. The diffuse reflection carries information which 

identifies chemical bonds within the sample, such as C-H, O-H, N-H and S-H. The 

reflected energy is stored as the reciprocal logarithm (log 1/R) and the spectra are 

transformed to provide information about the chemical composition of the sample (Baker & 

Barnes, 1990).  

Sixty alfalfa hay samples were collected from 6 commercial irrigation farms in the 

Western Cape and Klein Karoo region of South Africa and subjected to dry matter, crude 

protein, ether extract, crude fibre, ADF, NDF and amino acid analysis. 

The aim of this study was to test the potential of NIR spectroscopy as a rapid method 

to estimate the dry matter (DM), crude protein (CP), ether extract (EE), crude fibre (CF), 

acid detergent fibre (ADF), neutral detergent fibre (NDF) and amino acids such as lysine, 

methionine, threonine and arginine, in alfalfa hay. 

 

Materials and methods 

Sampling and preparation 

Alfalfa (Medicago sativa L.) from 6 farms was harvested on 10 successive dates, one 

week apart, representing different stages of growth. The 60 alfalfa hay samples were 

collected during 2010 and 2011 from 6 commercial irrigation farms in the Western Cape 

(Stellenbosch) and Klein Karoo (Oudtshoorn) of South Africa. The samples were collected 

over a 10 week period to include different growth stages such as boot, early heading, and 

full heading. The samples included different cultivars, soil characteristics (texture, organic 

matter, nitrogen content, phosphorus content and pH) and farming management practices 
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to cover a wide range of chemical and spectra variation. The following cultivars were used 

in the studies – Magna 60, SA Standard, SA Select and WL525. The alfalfa were cut on 

several cutting dates, one week apart, starting one week after harvesting, to show 

changes in composition with increasing plant maturity throughout the growing season. 

Samples were identified as day 7 to day 70. Plant material represents the whole plant cut, 

thus including leaves and stems. 

 

Analysis of reference samples 

The standard varieties of alfalfa hay (Medicago sativa L.) were analyzed for their 

quality characteristics. The chemical properties of alfalfa hay were determined with the 

following official methods as described by the Association of Official Analytical  

Chemists (AOAC, 2012). The oven drying procedure producing the minimim chemical 

changes in the samples involved drying the samples in an air forced oven at 60°C to 

constant weight for 48 hours and were ground using a RetschTM ZM200 sample mill (Haan, 

Germany) with a 1.5 mm screen. Analytical dry matter was determined by drying a 2 g 

aliquot of each sample at 100 °C for 24 hours (AOAC, 2012) (Method no. 934.01) and ash 

by incinerating the dry sample at 500°C for 18 hours overnight (AOAC, 2012) (Method no. 

942.05) in a Labcon Muffle furnace RM7 (Labcon, Johannesburg, South Africa). Nitrogen 

was determined by using a LECO TruMac N Nitrogen Determinator, Version 1.3X (LECO 

Corporation, Michigan, USA) and converted to crude protein using the factor N x 6.25 

(AOAC, 2012) (Method no. 990.03). Crude fibre was determined by the method described 

by Goering & van Soest (1970), making use of FIWE Raw Fiber Extractor, Velp Scientifica 

(Velp Scientifica, Milano, Italy). ADF and NDF were determined following the procedure of 

van Soest et al. (1991) making use of FIWE Raw Fiber Extractor, Velp Scientifica (Velp 

Scientifica, Milano, Italy). Total digestible nutrients (TDN) were calculated by the following 

equation: TDN = 82.38 – (0.7515 x ((NDF% - 3.41)/ 1.1298)) on an as fed basis 

(Robinson, 1999). All chemical analysis were performed in duplicate and the results 

expressed on a dry weight basis. 

The amino acid content of the reference samples were analysed with the method 

described by Grace Davison Discovery Sciences (Grace Davison, 2008) by hydrolysis in 

HCl medium and high performance liquid chromatography (HPLC) determination. An 

amount of 0.1g was weighed in a hydrolysis tube and 6 ml of a 6 N HCl and 15% Phenol 

solution was added. The samples were placed under vacuum after nitrogen was added 
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and the samples in sealed hydrolysis tubes were placed in an oven at 110 °C for 24 hours 

for protein hydrolysis to be completed. After this time, the samples were left to cool, were 

filtered with syringe filter hydrophyllic PVDF (0.45 μm, 33 mm), and decanted into 1.5 ml 

Eppendorf tubes. Amino acids were derivatised with o-phthaldialdehyde (OPA) and 3-

mercaptopropionic acid in borate buffer (Agilent Technologies, Waldbronn, Germany) and 

separated by reverse-phase Dionex HPLC (Dionex Corporation, California, USA) on a 3.9 

x 150 mm C18 Nova-Pak column (Waters, Ireland) and a 1.1 ml/min flow rate. Amino acids 

were identified by L-Amino acid standard (2.5 μmol/ml in 0.1N HCl) (Thermo Scientific, 

Illinois, USA).  

  

Collection of spectra and calibration development 

NIR spectroscopy calibration equations were developed on 60 samples randomly 

selected from the population set, using partial least squares regression (PLS) with cross 

validation. The alfalfa hay samples were randomly divided into two sets, the first set of 45 

samples was used to develop the calibration models and the second set of 15 samples as 

the validation set, used to test the accuracy of the calibrations. Alfalfa hay samples were 

scanned using a diode array analyser (Perten DA7200, Perten Instruments, Huddinge, 

Sweden) (Perten, 2007). Each sample (35 g) was fitted in a 75 mm diameter cup that 

rotated during NIR spectroscopy scanning. Absorbance readings at 5 nm wavelength 

increments were collected over a NIR wavelength range of 950 – 1650 nm. Two scans 

were conducted on each sample.  

Selected spectra were matched with the reference data and calibration models for 

DM, crude protein, ether extract, crude fibre, ADF, NDF and amino acids (lysine, 

methionine, threonine and arginine) were developed using PLS (partial least squares) 

regression and cross validation technique by Unscrambler version 10.3 (Camo, 

Trondheim, Norway) software. Prior to PLS regression, three mathematical treatments 

were applied to enhance the quality of the PLS calibrations, which included standard 

normal variate (SNV), standard normal variate and detrending and 2nd derivative Savitzy 

Golay. The best calibration was selected by means of the highest correlation coefficient 

(r2), rank (number of PLS factors) and lowest standard error of calibration (SEC). The final 

number of PLS factors selected for each calibration was recommended by the 

Unscrambler software as being the lowest rank that gives the absolute minimum Y-

residual variance. Figure 1a shows the raw NIR spectra and Figure 1b illustrates the 
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Savitzky Golay 2nd derivative spectra of 60 alfalfa hay samples scanned over the spectral 

range of 950 – 1650 nm.  

 

a) b) 

  

Figure 1 Absorbance spectra for 60 alfalfa hay samples for (a) raw data and (b) Savitzky 

Golay 2nd derivative spectra in the NIR spectroscopy range 

 

Results and discussion 

A wide variation in the chemical composition was expected due to the variety of 

cultivars, seasons and growth stages used to develop the NIR spectroscopy calibration 

models. As indicated in Table 1 and demonstrated in Figure 2, contents of crude protein, 

lysine, methionine, threonine and arginine decreased as the time of sampling proceeded, 

with dry matter, ether extract, crude fibre, ADF and NDF following the opposite trend. The 

results in this study were as expected, and in accordance with findings reported by 

Homolka et al. (2008) and Hoffman et al. (1993), with the crude protein content that 

decreased with maturity from 23.0% (day 0), 21.2% (day 6), 16.4% (day 20) to 16.3% (day 

30). The crude fibre content increased with stage of maturity with values from 25.5% (day 

0), 29.7% (day 6), 40.2% (day 20) to 38.1% (day 30). The percentage contents of the 

individual amino acids in the alfalfa hay is illustrated in Table 1, which reflected variations 

caused by different times of harvesting from day 7 to day 70 after cut.  

 

  



94 
 

Table 1 Chemical composition of alfalfa hay on air dry basis as influenced by stage of 

growth (%) 

Day of 

harvest 

Day   

7 

Day 

14 

Day 

21 

Day 

28 

Day 

35 

Day 

42 

Day 

49 

Day 

56 

Day 

63 

Day 

70 

DM 90.18 90.36 90.38 90.66 90.57 90.23 90.73 90.85 90.79 91.46 

CP 30.25 27.16 25.15 23.58 19.89 19.41 18.29 17.66 19.47 17.44 

CF 14.76 17.96 19.16 22.18 24.22 24.16 25.61 28.63 24.59 26.43 

EE 2.22 2.21 1.92 2.17 1.99 1.95 2.26 2.55 3.15 3.90 

TDN 68.39 66.56 63.95 63.49 61.61 61.46 60.11 58.88 60.26 56.55 

ADF 19.78 23.92 27.74 27.68 28.72 28.98 29.88 31.15 28.56 31.08 

NDF 24.44 27.19 31.12 31.82 34.63 34.86 36.99 38.75 36.66 42.24 

Amino acids 
         

Lys 1.38 1.22 1.19 1.15 0.95 0.89 0.85 0.78 0.83 0.78 

Meth 0.24 0.23 0.23 0.22 0.16 0.16 0.15 0.14 0.15 0.16 

Thr 0.93 0.83 0.80 0.78 0.62 0.60 0.54 0.48 0.53 0.46 

Arg 0.97 0.84 0.80 0.77 0.60 0.55 0.55 0.54 0.64 0.71 

DM - dry matter 

CP - crude protein 

EE - ether extract 

CF - crude fibre 

TDN - total digestible nutrients (calculated) 

ADF - acid detergent fibre 

NDF - neutral detergent fibre 

Meth - methionine 

Lys - lysine 

Thr - threonine  

Arg - arginine 
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a)  b) 

   

c)  d) 

   

e)  f) 

   

Figure 2 The chemical compositon as influenced by stage of growth  (days of harvest) for 

(a) crude protein, (b) ether extract, (c) crude fibre, (d) total digestible nutrients (TDN), (e) 

acid detergent fibre (ADF) and (f) neutral detergent fibre (NDF) in alfalfa hay 
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a)  b) 

   

c)  d) 

   

Figure 3 The chemical compositon as influenced by stage of growth (days of harvest) for 

(a) lysine, (b) methionine, (c) threonine and (d) arginine in alfalfa hay  
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calibration models. However, the range in the validation set was smaller for chemical 

composition and amino acid contents, as shown in Table 3. 

 

Table 2 Summary of nutrient composition (%) of alfalfa hay on as fed basis used in the 

calibration set, showing the number of samples (n), minimum, maximum, mean and 

standard deviation (SD) 

Chemical 

component 
n Min (%) Max (%) Mean (%) SD 

DM 45 88.67 92.22 90.59 1.06 

Crude protein 45 15.75 33.20 22.20 5.14 

Ether extract 45 1.49 4.30 2.47 0.71 

Crude fibre 45 10.76 40.45 22.47 6.00 

TDN 45 50.19 72.40 61.98 4.77 

ADF 45 14.57 37.66 27.51 5.45 

NDF 45 18.41 51.80 33.45 7.18 

Amino acids 

Lysine 45 0.68 1.67 1.02 0.25 

Methionine 45 0.04 0.89 0.19 0.24 

Threonine 45 0.38 1.10 0.67 0.19 

Arginine 45 0.38 1.13 0.70 0.18 

DM - dry matter 

TDN - total digestible nutrients (calculated) 

ADF - acid detergent fibre 

NDF - neutral detergent fibre 

 

An independent set of samples were used to validate the NIR spectroscopy 

calibration models (n = 15). The standard deviation (SD) and ranges of chemical 

composition in the validation set were for DM 88.79 - 92.11% (SD = 1.10), crude protein 

16.22 - 27.87% (SD = 3.60), ether extract 1.60 - 4.56% (SD = 0.82), crude fibre 16.93 - 

33.58% (SD = 4.35), ADF 19.14 - 38.57% (SD = 4.95) and NDF 26.55 - 44.52% (SD = 

5.06). Corresponding values for amino acids were 0.63 - 1.49% (SD = 0.23) for lysine, 
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0.03 - 0.77% (SD = 0.21) for methionine, 0.34 - 0.99% (SD = 0.19) for threonine and 0.35 - 

0.98% (SD = 0.15) for arginine.  

 

Table 3 Summary of nutrient composition (%) of alfalfa hay on as fed basis used in the 

validation set, showing the number of samples (n), minimum, maximum, mean and 

standard deviation (SD) 

Chemical 

component 
n Min (%) Max (%) Mean (%) SD 

DM 15 88.79 92.11 90.73 1.10 

Crude protein 15 16.22 27.87 20.71 3.60 

Ether extract 15 1.60 4.56 2.48 0.82 

Crude fibre 15 16.93 33.58 23.67 4.35 

TDN 15 55.04 66.99 61.31 3.36 

ADF 15 19.14 38.57 28.45 4.95 

NDF 15 26.55 44.52 35.09 5.06 

Amino acids 

Lysine 15 0.63 1.49 0.95 0.23 

Methionine 15 0.03 0.77 0.16 0.21 

Threonine 15 0.34 0.99 0.62 0.19 

Arginine 15 0.35 0.98 0.68 0.15 

DM - dry matter 

TDN - total digestible nutrients (calculated) 

ADF - acid detergent fibre 

NDF - neutral detergent fibre 

 

Calibration and external validation statistics for NIR spectroscopy models are shown 

in Table 4, which summarizes the performance parameters, obtained for the calibration 

equations.  
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Table 4 Calibration and external validation statistics in the development of calibration 

equations for nutrient composition in alfalfa hay samples 

Chemical 

component 

PLS 

factors 

Calibration set Validation set 

r2
cal SEC (%) r2

val SEP (%) SD RPD 

DM 7 0.62 0.63 0.47 0.80 1.05 1.31 

Crude protein 7 0.67 2.86 0.10 3.92 3.59 0.92 

Ether extract 7 0.47 0.52 0.04 0.85 0.82 0.96 

Crude fibre 5 0.66 3.27 0.36 3.60 4.17 1.16 

TDN 4 0.82 1.94 0.80 1.48 3.25 2.19 

ADF 5 0.56 3.21 0.43 3.03 3.82 1.26 

NDF 5 0.73 3.59 0.60 3.67 3.47 0.95 

Amino acids        

Lysine 4 0.54 0.16 0.29 0.19 0.23 1.17 

Methionine 7 0.67 0.14 0.35 0.19 0.22 1.16 

Threonine 7 0.64 0.11 0.22 0.18 0.18 1.04 

Arginine 4 0.59 0.10 0.38 0.12 0.15 1.26 

DM - dry matter 

TDN - total digestible nutrients (calculated) 

ADF - acid detergent fibre 

NDF - neutral detergent fibre 

 

Calibration statistics for dry matter, crude protein, ether extract, crude fibre, ADF, 

NDF and amino acids (lysine, methionine, threonine and arginine) included the calculation 

of standard error of calibration (SEC), the coefficient of determination in calibration (r2
cal), 

the standard error of prediction (SEP), and the coefficient of determination in cross 

validation (r2
val). Calibration performance was assessed by SEC (standard error of 

calibration), r2 (coefficient of determination) and SEP (standard error of prediction).  

Values for coefficient of determination in calibration (r2
cal) and SEC used as estimates 

of calibration accuracy for chemical composition and amino acid contents, were as follows: 
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DM (r2 = 0.62; SEC = 0.63), crude protein (r2 = 0.67; SEC = 2.86), ether extract (r2 = 0.47; 

SEC = 0.52); crude fibre (r2 = 0.66; SEC = 3.27), ADF (r2 = 0.56; SEC = 3.21) and NDF   

(r2 = 0.73; SEC = 3.59). The corresponding values for amino acids were as follows: lysine 

(r2 = 0.54; SEC = 0.16), methionine (r2 = 0.67; SEC = 0.14), threonine (r2 = 0.64; SEC = 

0.11) and arginine (r2 = 0.59; SEC = 0.10). 

Williams (2001) suggested the use of RPD or SD/SEP, which is calculated by 

dividing the standard deviation of the reference values used in the validation (SD) by the 

standard error of prediction (SEP). A value of RPD higher than 3.0 is defined as 

satisfactory for the screening in a breeding program and values of 5-10 are defined as 

adequate for quality control. Williams (2007) stated that the r2 and the ratio of prediction to 

deviation (RPD) are the most meaningful statistics for appraisal of analytical efficiency by 

NIR spectroscopy. Other calibration evaluation statistics used in the present study 

included SEC and SEP. 

The ratio of prediction of deviation (RPD), calculated as standard deviation divided by 

standard error of cross validation (SECV), was used to evaluate the performance of the 

calibrations (Williams, 2001). According to these criteria the RPD values obtained in the 

present study for DM content (1.31), crude protein (0.92), ether extract (0.96), crude fibre 

(1.16), ADF (1.26), NDF (0.95), lysine (1.17), methionine (1.16), threonine (1.04) and 

arginine (1.26), showed poor calibration models and might only be used for very rough 

screening. The lower RPD values can be attributed to a narrow range of the reference 

values (small SD), or to a large error in the prediction (SEP) compared with the variability 

of the reference values (Williams, 2001). The models developed in the study on alfalfa hay 

had relatively low RPD values (less than 3). The poorer calibration performance could 

possibly be explained by the lack of a large enough sample pool in these parameters in 

alfalfa hay. These results corresponds with results obtained by Scholtz et al. (2009) who 

obtained calibration equations for DM (RPD = 4.84), crude protein (RPD = 4.57), ether 

extract (1.82), ADF (3.97) and NDF (3.99).  

Figure 3 shows the scatter plots of reference samples measured and predicted using 

NIR spectroscopy with PLS models in the validation sets for dry matter, crude protein, 

ether extract, crude fibre, ADF and NDF. 
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a)  b) 

 

c)  d) 

 

e)  f) 

  

Figure 4 The relationship between laboratory determined and NIR spectroscopy predicted 

values for (a) crude protein, (b) crude fibre, (c) ether extract, (d) total digestible nutrients 

(TDN), (e) ADF and (f) NDF in alfalfa hay samples 
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Figure 4 shows the scatter plots of reference samples measured and predicted using 

NIR spectroscopy with PLS models in the validation sets for amino acids (lysine, 

methionine, threonine and arginine). 

 

a)  b) 

  

c)  d) 

  

Figure 5 The relationship between laboratory determined and NIR spectroscopy predicted 

values for (a) lysine, (b) methionine, (c) threonine and (d) arginine in alfalfa hay samples 

 

Conclusions 

The results recorded in the present study indicated that the NIR spectroscopy 

technique moderately predicted the chemical composition (r2 = 0.04 - 0.80) and amino 

acids (r2 = 0.22 - 0.38) on the current set of alfalfa hay samples. However, the usefulness 

of applying NIR spectroscopy in alfalfa meal has been reported in the literature and more 

accurate calibration equations can be obtained by adding more samples to the calibration 

set. 
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CHAPTER 6 
 

PREDICTION OF CHEMICAL COMPOSITION AND AMINO ACID CONTENT OF 

COMPOUND OSTRICH FEEDS BY NEAR INFRARED REFLECTANCE (NIR) 

SPECTROSCOPY  

 

Abstract 

The wet chemical analysis of feed samples is time consuming and expensive. In 

recent years, near infrared reflectance (NIR) spectroscopy was developed as a rapid 

technique to predict the chemical composition of feeds and feedstuffs. The prediction and 

accuracy of NIR spectroscopy relies heavily on obtaining a calibration set that represents 

the variation in the main population, accurate laboratory analyses, and the application of 

the best mathematical procedures. In this study, NIR spectroscopy was used to determine 

the chemical composition of compound ostrich diets. Compound feeds are spectrally 

complicated due to the wide variety of raw materials that can be used in such feeds, which 

means an infinite number of combinations are possible. A sample population of 616 ostrich 

feed samples were available for the development of calibrations and 155 samples were 

available for the independent validation of dry matter (DM), ash, crude protein (CP), ether 

extract (EE), crude fibre (CF), acid detergent fibre (ADF), neutral detergent fibre (NDF), 

calcium (Ca), phosphorus (P), in vitro organic matter digestibility (IVOMD), and amino 

acids such as lysine, methionine, threonine and arginine. The compound ostrich feed 

samples were analysed with reference analyses and scanned on a Bran & Leubbe 

InfrAlyzer 500. Coefficient of determination in validation (r2
val) and standard error of 

prediction (SEP) was satisfactory (r2
val values higher than 0.80) for CP (r2

val = 0.97; SEP = 

0.74), CF (r2
val = 0.94; SEP = 1.50%), EE (r2

val = 0.89; SEP = 0.50%), ADF (r2
val = 0.93; 

SEP = 2.09%), NDF (r2
val = 0.95; SEP = 2.63%) and IVOMD (r2

val = 0.91; SEP = 2.17%), 

respectively. Less accurate values (r2
val below 0.80) were obtained for DM, ash, Ca and P 

being 0.57 and 1.04%, 0.67 and 1.30%, 0.43 and 0.59% and 0.49 and 0.11%, 

respectively. Coefficient of determination in validation (r2
val) and SEP values were r2

val = 

0.88; SEP = 0.08% for arginine, r2
val = 0.74; SEP = 0.15% for lysine, r2

val = 0.51; SEP = 

0.05% for methionine and r2
val = 0.57; SEP = 0.11% for threonine. In this study the 

possibility of using NIR spectroscopy to predict the chemical composition of compound 

ostrich feeds was examined and the results indicate that NIR spectroscopy is a suitable 

tool for a rapid, non-destructive and reliable prediction of the crude protein, crude fibre, 
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ether extract, IVOMD, ADF and NDF in compound ostrich feeds. Calibrations can be 

improved for amino acids if a larger sample pool is used to develop the calibrations. 

 

Keywords: NIRS, ostrich TMR, chemical composition, nutritive value 

 

Introduction 

For adequate feeding of livestock, farmers and nutritionists need information about 

the nutritive value of available feedstuffs (Goedhart, 1990). Livestock selected for high 

production require an adequate supply of nutrients. This is essential not only for the health 

of the animals, but also from an economic viewpoint (Givens et al., 1997). The cost of 

feeding is the largest expenditure in ostrich farming. A well-conditioned chick with optimum 

growth rate and well-nourished, is less likely to succumb to diseases and thus nutrition 

plays a vital role in ostrich production. Ostriches are monogastric herbivores that must be 

provided with adequate balanced diets containing optimal nutrients when managed 

intensively. Nutritional disorders in ostriches, which result in expensive losses to the 

farmers when it occurs, can be prevented (Aganga et al., 2003). The wet chemical 

analyses of feed samples to determine their chemical composition are time consuming and 

expensive. Plant breeders, farmers and animal nutritionists require an accurate, rapid, and 

cost-effective method of assessing the nutritive value of pastures and feeds (Smith & 

Flinn, 1991). Near infrared reflectance (NIR) spectroscopy provides an opportunity to 

determine the chemical composition of feedstuffs. Apart from its rapidity, NIR spectroscopy 

is a physically non-destructive method, requiring minimal sample preparation, with high 

accuracy. In contrast to traditional chemical analyses, NIR spectroscopy requires no 

reagents, producing no waste. It is furthermore a multi-analytical technique as several 

determinations can be made simultaneously and once the NIR spectrometer instrument is 

calibrated, it is simple to use and operate (Givens et al., 1997). For example, conventional 

chemical analysis of feeds will take two to three days, while a similar analysis can be 

completed in 2-3 minutes by NIR spectroscopy (Corson et al., 1999). However, calibration 

sets with insufficient distribution of the samples could lead to inaccurate calibrations 

(Viljoen et al., 2005). 

The chemical composition of compound ostrich diets varies considerably due to the 

wide range of raw materials and by-products available. The prediction of the composition 

of compound feeds is generally less accurate than calibrations to predict the chemical 
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composition of raw materials. This is mainly due to the variation in range and quantity of 

raw materials, which may exhibit different spectral characteristics for a compound feed 

with apparently the same chemical composition (Givens & Deaville, 1999; de Boever et al., 

1995) and, thus, considerable variation in reproducibility between collected NIR spectra is 

obtained (de la Roza-Delgado et al., 2006). Aufrère et al. (1996) stated that NIR 

spectroscopy is not widely used for concentrates and compound feeds, as a large number 

of samples are required for the calibration.  

Accurate knowledge of the amino acid content of feedstuffs is crucial for the 

successful formulation of ostrich diets. A lack of the essential amino acids, such as lysine, 

methionine, arginine and threonine, in the diet, limits the nutritional value of the feed, 

thereby limiting the growth of the ostriches. Methionine and lysine, for instance, are 

essential amino acids usually included in poultry diets, since these amino acids are limiting 

in most feed ingredients (Aganga et al., 2003). Yet, amino acid analysis is complicated and 

labour intensive, requiring 3 days of processing time by using a high pressure liquid 

chromatography (HPLC). This procedure is costly and time-consuming in comparison to 

using NIR spectroscopy predictions which are fast and cost effective (de Boever et al., 

1995). HPLC can be highly variable, due to small sample sizes, multiple steps required for 

analysis and the hydrolysis procedure which can be very destructive to amino acids, 

especially methionine and cysteine (Pazdernik et al., 1997).  

The NIR spectroscopy method relies on the measurement of light absorption by a 

feed sample when scanned using wavelengths in the near-infrared region (1100 - 2500 

nm) with reflectances measured (as log 1/reflectance) at 2nm intervals to obtain the NIR 

spectra. The resulting absorption spectrum depends on the chemical bonds within the 

components of the scanned sample and it is therefore possible to identify specific regions 

of the spectrum correlated with constituents such as starch, fibre or crude protein (Mould, 

2003). Calibrations were developed by means of partial least-squares (PLS) regression. 

PLS regression is the appropriate multivariate calibration technique to avoid the problem of 

the very high intercorrelation between absorbances (Goedhart, 1990). 

The constitution of feedstuffs consists mostly of organic matter. The molecular bonds 

which are most frequent in feedstuffs are thus bonds between hydrogen, carbon, oxygen, 

sulfur, phosphorus, and nitrogen.  The frequency of the vibration between these molecules 

is such that these bonds generally absorb light in the near infrared region or the region 

which extends just beyond red in the rainbow which are visible to humans. NIR 
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spectroscopy uses the principle that molecular bonds absorb specific frequencies of light 

to obtain information about the number and type of organic bonds present in a feedstuff 

(van Kempen, 1996). 

Results obtained by de la Roza-Delgado et al. (2006) confirmed that NIR 

spectroscopy could accurately predict the dry matter, crude protein, crude fat, ADF and 

starch in dairy cow total mixed rations.  

A sample population of 771 complete ostrich feed samples was available to develop 

NIR spectroscopy equations and for use in the independent validation for dry matter (DM), 

ash, crude protein (CP), ether extract (EE), crude fibre (CF), acid detergent fibre (ADF), 

neutral detergent fibre (NDF), gross energy (GE), calcium (Ca), phosphorus (P), in vitro 

organic matter digestibility (IVOMD), and amino acids such as arginine, lysine, methionine 

and threonine. Calibration equations were developed by using a Bran & Luebbe InfrAlyzer 

500 NIRS and the samples were scanned between 1100 and 2500 nm by using partial 

least square regression (PLS) with cross validation.  

The aim of this study was therefore to determine if NIR spectroscopy can be used for 

the estimation of chemical composition and amino acids in mixed and processed ostrich 

feed samples, which will be a rapid and cost effective method for users who need to 

rapidly analyse a large number of samples.  

 

Materials and methods 

Sampling and preparation 

For this study, a very large sample pool was used to develop calibrations from a wide 

variety of samples, as the samples contain a wide variation of raw materials. A total of 771 

samples were collected from separate ostrich feeding trials that were conducted on 

Kromme Rhee and Oudtshoorn Research Farms in the Western Cape and Southern Cape 

regions of South Africa. Samples represented feed samples from different growth stages 

of ostriches, which included pre-starter, starter, grower and finisher phases. The main 

ingredients used to formulate the diets were: maize meal, soybean oilcake, fishmeal, full 

fat soya, full fat lupin meal, alfalfa meal, wheat bran, molasses plant oil, monocalcium 

phosphate, limestone, salt, synthetic lysine, vitamin and mineral premix; these were used 

in the total mixed ration. Samples were ground using a RetschTM ZM200 sample mill 

(Haan, Germany) with a 1.5 mm screen to create consistent particle size meal. 
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Analysis of reference samples 

The compound ostrich feed samples selected for this study varied widely in their 

chemical composition, as samples of feeds used in different growth stages, such as pre-

starter, starter, grower and finisher diets, were collected. A total of 771 compound ostrich 

feed samples were subjected for chemical analysis for DM, ash, CP, EE, CF, ADF, NDF, 

in vitro organic matter digestibility (IVOMD), Ca, P and amino acids, including arginine, 

lysine, methionine and threonine.  

The DM percentage of the ostrich feed samples was determined by loss of weight 

after drying a 2 g aliquot of each sample for 24 hours at 100 °C (AOAC, 2012) (Method no: 

934.01). The ash content was determined by combustion at 500 °C overnight (18 hours) in 

a Labcon Muffle furnace RM7 (Labcon, Johannesburg, South Africa) (AOAC, 2012) 

(Method no: 942.05). Nitrogen was analysed by using a LECO FP428 Nitrogen analyser 

(LECO Corporation, St. Joseph, Michigan, USA) according to the Dumas Combustion 

Method (AOAC, 2012) (Method no: 990.03). A factor of 6.25 was used to estimate the CP 

content. Ether extract was determined by a Tecator Soxtec system HT 1043 (Tecator, 

Hӧganas, Sweden), using diethyl-ether as an extraction fluid (AOAC, 2012) (Method no: 

2003.06). Crude fibre, ADF and NDF were determined by using a FIWE Raw Fiber 

Extractor, Velp Scientifica (Velp Scientifica, Milano, Italy). Crude fibre was determined 

using the method described by Goering & Van Soest (1970), while ADF and NDF were 

determined according to the method described by van Soest et al. (1991). 

Ca en P content was determined by the official method of the Agri Laboratory 

Association of South Africa (AgriLASA), using the dry ashing method 6.1.1 (Palic, 2007) on 

0.5 g finely ground ostrich feed samples. The samples were incinerated at 460 °C 

overnight, and after cooling, 5 ml of 6 M hydrochloric acid (HCl) was added. The sample 

was placed in an oven for 30 minutes at 50 °C. Subsequently, 35 ml distilled water was 

added and the solution was filtered into an amber bottle. Ca and P concentrations were 

measured on an Thermo Electron iCAP 6000 Series Inductively Coupled Plasma (ICP) 

Spectrophotometer (Thermo Electron Corporation, Milan, Italy), fitted with a vertical quartz 

torch and Cetac ASX-520 autosampler. Concentrations were calculated by using Merck 

Titrisol standards with concentration of 1000 ppm (Merck, Darmstadt, Germany) and 

calculated using iTEVA Analyst software.  

The in vitro organic matter digestibility (IVOMD) was determined by an adaptation of 

the method of the two-stage rumen fluid-pepsin technique described by Tilley & Terry 
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(1963). It involves firstly a 48 hour fermentation by rumen micro-organisms in a buffer 

solution, followed by a 48 hour pepsin-hydrochloric acid digestion. The residue represents 

the indigestible part of the sample. 

To determine the amino acid content of the reference samples, the finely ground feed 

samples were analysed with the method described by Grace Davison Discovery Sciences 

(Grace Davison, 2008), by hydrolysis in HCl medium and HPLC determination. An amount 

of 0.1 g was weighed in a hydrolysis tube and 6 ml of a 6 N HCl and 15% Phenol solution 

was added. The samples were placed under vacuum after nitrogen was added and the 

samples in sealed hydrolysis tubes were placed in an oven at 110 °C for 24 hours for 

protein hydrolysis to be completed. After this time, the samples were left to cool, were 

filtered with syringe filter hydrophyllic PVDF (0.45 μm, 33 mm), and decanted into 1.5 ml 

Eppendorf tubes. Amino acids were derivatised with o-phthaldialdehyde and 3-

mercaptopropionic acid in borate buffer (Agilent Technologies, Waldbronn, Germany) and 

separated by reverse-phase Dionex HPLC (Dionex Corporation, California, USA) on a 3.9 

x 150 mm C18 Nova-Pak column (Waters, Ireland) and a 1.1 ml/min flow rate. Amino acids 

were identified by L-Amino acid standard (2.5 μmol/ml in 0.1N HCl) (Thermo Scientific, 

Illinois, USA). All chemical analysis were analysed in duplicate and expressed on an as is 

basis. 

 

Collection of spectra and calibration development  

The sample population used in the calibration consisted of 616 compound ostrich 

feed samples while 155 samples were used in the external validation to test the accuracy 

of the calibrations. The samples were individually presented in closed cups (approximately 

6 g) and the scans were acquired using a Bran & Luebbe InfrAlyzer 500 near infrared 

reflectance spectrometer (IA-500). The samples were scanned in the reflectance mode 

between 1100 - 2500 nm of the near-infrared region with 2 nm intervals, acquiring 701 

datapoints for each sample. Bran & Leubbe SESAME Version 2.00 software (Bran & 

Luebbe GmbH, Norderstedt, Germany) was used to perform the spectroscopic 

measurements. 

The optimum number of terms in the PLS calibration models were determined by full 

cross validation as defined by SESAME Version 2.00 software. The 2nd derivative was 

used as a mathematical treatment in order to correct for baseline effects and to separate 

overlapping peaks when calibration models were developed (Hruschka, 2001). 
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Calibrations were developed for the following chemical components: DM, ash, CP, 

EE, CF, ADF, NDF, Ca, P, IVOMD, and for the following amino acids: arginine, lysine, 

methionine and threonine. To test the robustness of the calibration method, external 

validation was performed with a set of samples that did not belong to the calibration set. 

The reference or laboratory values were determined of the validation set and are samples 

which did not belong to the calibration set. The aim of the validation set is to test how each 

of the calibration equations would predict the different parameters and to compare the 

results obtained with the reference values (González-Martín et al., 2006b). The calibration 

equations were independently validated by using 155 TMR samples and outliers were 

removed, as suggested by the SESAME 2.0 software. Figure 1 shows the raw NIR spectra 

of 771 compound ostrich feed samples over the spectral range of 1100 - 2500 nm. 

 

 

Figure 1 Original absorbance spectra for ostrich total mixed rations scanned between 

1100 - 2500 nm wavelengths 

 

 

Results and discussion  

Table 1 indicates the mean values, range and standard deviation (SD) of the nutritive 

value measured by the reference methods in compound ostrich feed samples used in the 

calibration set, and shows a wide range in chemical composition, while Table 2 indicates 

the nutritive values of the samples used in the validation set. Similar feed composition 
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results for total mixed rations were reported by Aganga et al. (2003) and Kritzinger et al. 

(2010).  

 

Table 1 Summary of the nutritive value of ostrich total mixed ration samples as measured 

by reference methods used in the calibration development, showing the number of 

samples (n), minimum, maximum, mean and standard deviation (SD) 

 

Chemical component n Min (%) Max (%) Mean (%) SD 

DM 384 85.67 94.51 91.27 1.29 

Ash 377 4.86 15.59 9.59 2.18 

Crude protein 379 5.88 28.93 14.09 3.94 

Crude fibre 378 2.91 36.44 17.87 5.96 

Crude fat 378 0.47 9.00 2.70 1.45 

ADF 616 3.53 46.12 20.38 7.78 

NDF 616 7.00 62.72 32.83 11.37 

Calcium 380 0.40 5.08 1.97 0.82 

Phosphorus 378 0.21 1.38 0.68 0.16 

IVOMD 158 60.53 88.97 79.15 6.15 

Amino acids      

Lysine 96 0.35 1.48 0.84 0.21 

Methionine 96 0.03 0.28 0.09 0.04 

Threonine 96 0.15 0.85 0.50 0.13 

Arginine 96 0.40 1.14 0.70 0.16 

DM - dry matter 

ADF - acid detergent fibre 

NDF - neutral detergent fibre 

IVOMD – in vitro organic matter digestibility 
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Results obtained by Aganga et al. (2003) revealed the following ranges in chemical 

compositions in ostrich diets: dry matter (88.00%), crude protein (12.00 – 20.00%), crude 

fibre (13.50 - 17.50%), crude fat (2.50%), Ca (0.90 - 3.50%), P (0.50 - 0.65%), arginine 

(0.46 - 1.20%), methionine (0.19 - 3.50%), lysine (0.60 - 1.00%) and threonine (0.41 - 

0.73%). Results in Table 1 correspond with results obtained by Kritzinger et al. (2010) with 

ADF (10.65 - 26.1%) and NDF (21.0 - 43.3%). 

Statistics calculated for the calibration included coefficient of determination in 

calibration (r2
cal) and standard error of calibration (SEC). The prediction accuracy of the 

models was tested on the validation set using the coefficient of determination in validation 

(r2
val) and standard error of prediction (SEP). The r2, SEC and SEP values indicate how 

well the equations will perform within the same populations (Cozzolino & Moron, 2004). 

The residual predictive deviation (RPD), defined as the ratio between the standard 

deviation of the population (SD) and the SEP for the NIR spectroscopy predictions, is a 

useful statistic that is often applied to evaluate how well a calibration model can predict 

chemical data (Williams, 2001). If the SEC is large compared to the standard deviations, a 

relatively small RPD value results and the NIR calibration model is considered not robust 

(Williams, 2001). The higher the value of the RPD, the greater the probability of the model 

to accurately predict the chemical composition of samples outside the calibration set. It 

was reported by Williams (2001) that an RPD value greater than three and less than five is 

considered fair and recommended for screening purposes. An RPD value greater than five 

is considered good for quality control. Guidelines for interpretation of r, according to 

Williams (2001), state that a value of 0.83 to 0.90 for r2 is usable in most applications, 

including quality assurance. A value of more than 0.98 is usable in any application while r2 

values of 0.66 to 0.81 can only be used for screening and possibly some other 

approximate applications. 

The calibration statistics for the prediction of chemical components in compound 

ostrich feeds by NIR spectroscopy are presented in Table 3. According to above 

specifications, the coefficient of determination in validation (r2
val) and standard error of 

prediction (SEP) was satisfactory. i.e. the r2
val was higher than 0.83 for CP (0.97; 0.74%), 

CF (0.94; 1.50%), EE (0.91; 0.44%), ADF (0.93; 2.09%), NDF (0.95; 2.63%) and IVOMD 

(0.91; 2.17%), respectively. The r2
val and SEP values was less accurate (r2

val below 0.80) 

for DM (0.57; 1.04%), ash (0.67; 1.30%), Ca (0.43; 0.59%) and P (0.49; 0.11%), 

respectively. Coefficient of determination in validation (r2
val) and SEP values were r2

val = 
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0.88; SEP = 0.08% for arginine, r2
val = 0.74; SEP = 0.15% for lysine, r2

val = 0.51; SEP = 

0.05% for methionine and r2
val = 0.57; SEP = 0.11% for threonine, which indicates that 

calibrations for amino acids in ostrich total mixed rations is not accurate enough to be used 

for screening purposes.  

 

Table 2 Summary of the nutritive value of ostrich total mixed ration samples as measured 

by reference methods used in the external validation set, showing the number of samples 

(n), minimum, maximum, mean and standard deviation (SD) 

 

Chemical component n Min (%) Max (%) Mean (%) SD 

DM 94 84.68 97.79 91.24 1.57 

Ash 94 4.99 15.86 9.43 2.24 

Crude protein 94 5.36 25.24 14.08 4.24 

Crude fibre 94 5.09 29.13 17.52 5.65 

Ether extract 94 1.04 8.81 2.76 1.48 

ADF 155 4.43 35.31 20.20 7.70 

NDF 155 10.92 62.33 33.13 12.07 

Calcium 94 0.58 4.24 1.86 0.74 

Phosphorus 94 0.38 1.05 0.68 0.15 

IVOMD 41 60.56 89.50 78.69 7.21 

Amino acids      

Lysine 24 0.34 1.50 0.88 0.30 

Methionine 24 0.04 0.28 0.11 0.07 

Threonine 24 0.21 0.87 0.53 0.16 

Arginine 24 0.41 1.31 0.75 0.23 

DM – dry matter 

ADF – acid detergent fibre 

NDF – neutral detergent fibre 

IVOMD – in vitro organic matter digestibility 
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Table 3 Calibration and external validation statistics in the development of calibration 

equations for nutrient composition in compound ostrich feed samples 

 

Chemical 

component 

PLS 

factors 

Calibration set Validation set 

r2
cal SEC (%) r2

val SEP (%) SD RPD 

DM 8 0.77 0.62 0.57 1.04 1.57 1.51 

Ash 10 0.87 0.78 0.67 1.30 2.24 1.72 

Crude protein 6 0.96 3.94 0.97 0.74 4.24 5.72 

Crude fibre 6 0.95 1.36 0.94 1.50 5.65 3.76 

Ether extract 6 0.93 0.38 0.91 0.44 1.46 3.34 

ADF 4 0.91 2.30 0.93 2.09 7.77 3.70 

NDF 6 0.93 3.01 0.95 2.63 12.07 4.59 

Calcium  10 0.77 0.39 0.43 0.59 0.74 1.26 

Phophorus 10 0.78 0.08 0.49 0.11 0.15 1.35 

IVOMD 8 0.95 1.36 0.91 2.17 7.21 3.32 

Amino acids        

Lysine 4 0.60 0.13 0.74 0.15 0.30 1.96 

Methionine 5 0.68 0.02 0.51 0.05 0.07 1.43 

Threonine 7 0.78 0.06 0.57 0.11 0.16 1.51 

Arginine 7 0.87 0.06 0.88 0.08 0.23 2.93 

DM – dry matter 

ADF – acid detergent fibre 

NDF – neutral detergent fibre 

IVOMD – in vitro organic matter digestibility 

 

 

According to the criteria proposed by Williams (2001), the RPD obtained in the 

present study for CP content (5.72), crude fibre (3.76), ether extract (3.34), ADF (3.70), 

NDF (4.59) and IVOMD (3.32), could be considered as good and suggested that NIR 

spectroscopy calibration models can be used for routine analysis of these parameters. 

Moderate to poor NIR spectroscopy calibration models, adequate for rough screening, 

were found for DM (1.51), ash (1.72), Ca (1.26), P (1.35) and amino acids, which ranged 

from 1.43 - 2.93. The poor calibration performance for ash, Ca and P, could possibly be 
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explained due to the fact that minerals do not absorb in the near infrared region, which 

corresponds with results reported by de Boever et al. (1995) for compound feeds for cattle. 

The coefficient of correlation, r, indicates the closeness of fit between the NIRS 

reflectance and reference data over the range of composition. A high r value with a low 

SEP and bias, together with a slope close to 1.0, means that the NIR spectroscopy results 

are accurate over the anticipated range and likely to remain so, provided that these 

statistics were based on a sufficient number of observations (Williams, 2001). 

Results obtained by several studies indicate acceptable accurate calibrations in 

compound feeds for different species for CP, EE and CF, such as cattle, swine, sheep, 

poultry and rabbits (González-Martín et al., 2006b), compound feed for rabbits (Xiccato et 

al., 2003) and cattle, lamb, poultry, pig, ostrich, horse, rabbit, cat and dog feeds (Pérez-

Marín et al., 2004). Aufrère et al. (1996) reported accurate NIR spectroscopy calibrations 

of energy value in compound feeds for swine and ruminants. González-Martín et al. 

(2006a) obtained comparable results of amino acids with a fibre-optic probe to HPLC 

analysis in animal feeds such as cattle, swine, poultry and sheep compound feeds. 

The relationship between laboratory determined and NIR spectroscopy predicted 

values for CP, CF, EE, IVOMD, ADF and NDF, is presented in Figure 2 and amino acids 

(lysine, methionine, threonine and arginine) is presented in Figure 3. Results of NIRS 

calibration indicate good correlations for CP, CF, EE, IVOMD, ADF and NDF with r2 values 

higher than 0.81. The high r2 values for CP, CF, EE, IVOMD, ADF and NDF indicate very 

good predictive capability compared to DM, ash, Ca, P and amino acids. Bruno-Soares et 

al. (1998) also reported accurate predictions of CP and CF by NIR spectroscopy, 

confirming the findings of the present study. NIR spectroscopy is most successful when 

equations are used on sample sets other than those used in calibration development, so it 

is necessary to determine whether it is appropriate to analyse a new population with 

existing NIR spectroscopy equations (Smith & Flinn, 1991). 
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a)  b) 

   

c)  d) 

  

e)  f) 

   

 

Figure 2 The relationship between laboratory determined and NIR spectroscopy predicted 

values for (a) crude protein, (b) crude fibre, (c) ether extract, (d) IVOMD, (e) ADF and (f) 

NDF in compound ostrich feeds 
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a) 

 

b) 

 

c) 

 

d)

 

Figure 3 The relationship between laboratory determined and NIR spectroscopy predicted 

values for (a) lysine, (b) methionine, (c) threonine and (d) arginine in compound ostrich 

feeds 

 

Conclusions 

The above results indicate that good predictions can be obtained from the predictions 

for CP, CF, EE, IVOMD, ADF and NDF for compound ostrich feeds. Less accurate 

predictions for DM, ash, Ca, P and amino acids were achieved for compound ostrich 

feeds. Better calibrations can be obtained for the latter components if separate calibrations 

are developed for diets with a higher variation in the amino acid contents. The study, 

however, does indicate that NIR spectroscopy is an accurate technique for the prediction 

of the most important chemical components in compound ostrich feeds.  
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CHAPTER 7 

 

General conclusion and future perspective 

 

NIR spectroscopy has transformed the analysis and nutritional characterization of 

forages, feeds and feedstuffs as it allows for the rapid and accurate evaluation thereof. 

The use of NIR spectroscopy in feed analysis has gained recognition due to the fact that 

its level of accuracy has reached the levels required by the feed industry (Landau et al., 

2006). The major advantages of NIR spectroscopy is that it provides a more rapid and 

more cost effective technique and no or minimal sample preparation is required. Several 

constituents can also be analysed simultaneously (Ruiz, 2001). Making use of a NIR 

instrument for routine analytical analysis will result in a substantial decrease in traditional 

wet chemistry analysis (Ruiz, 2001), avoiding both the need for reagents and the 

production of chemical residues (Garrido-Varo et al., 2002). 

Disadvantages of NIR spectroscopy entail development of calibrations for each 

substitute and is time consuming, resource intensive and expensive (Mark, 2012). The 

accuracy of predictions is dependent upon instrument calibration, supported by good 

quality assurance methods. The interpretation of data for animal feeding is best achieved 

using diet balancing software. NIR spectroscopy can be used as an aid to plant selection 

programmes for improved nutritive value and in the analysis of compound feeds for 

monogastric animals and ruminants (Corson, 1999). The NIR spectroscopy models need 

to be frequently updated to accommodate changes in the sample matrix, even for the 

same type of sample and chemical component. Robust models may require hundreds or 

even thousands of samples analysed by the traditional chemical methods.  

External validation of the procedure should demonstrate the performance of the 

chosen model using an independent validation set consisting of samples that were not 

used in the creation of the spectral reference library (Anonymous, 2012). 

The results of this study showed that NIR spectroscopy can play an important role in 

screening of chemical composition and fatty acid analysis in sunflower seed meal, but 

calibrations can be improved if more samples are added to the calibration model.  

The RPD values below 3 in this calibration model indicate that NIR spectroscopy can 

be used as a rough screening method for milled canola seeds compared to whole seeds. 
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Calibration models can be improved by using more samples from different cultivars and 

regions to develop the calibration models. 

NIR spectroscopy has high potential to estimate the chemical composition of whole 

lupin seeds compared to milled seeds, which can discard the need to grind the samples 

which allows for a more rapid and less laborious method. 

According to the results of the study done to predict the chemical composition and 

amino acid content in alfalfa hay, further development is needed to improve the efficiency 

of the NIR spectroscopy method. A stable calibration needs a large number of sample 

analyses in order to cover the wide variability of chemical composition and amino acid 

content in alfalfa hay. It has important practical implications in that parameters cannot be 

treated as a constant, but has to be established for each growth stage in further studies. 

The results indicate that good predictions can be obtained from the calibration 

models for CP, CF, EE, IVOMD, ADF and NDF for compound ostrich feeds. Less accurate 

predictions for DM, ash, Ca, P and amino acids were achieved for compound ostrich 

feeds. Recommendations for further work in this area would include improving calibrations 

for the latter components if separate calibrations are developed for diets formulated with a 

larger variation in amino acid contents. 

The results of this work suggest that the calibration and external validation statistics 

show the potential of NIR spectroscopy technology as a powerful tool for quality control on 

oilseeds and compound ostrich feeds. Further work must be carried out in order to 

increase the calibration set to develop a new equation able to cope with more variability. 

Increasing pressure to establish environmentally friendly farming practices, will drive 

future research to develop rapid and accurate methods of determining nutritive value of 

feeds and feedstuffs and NIR spectroscopy is a great tool to meet the demands. 
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