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ABSTRACT 

 

In Africa, many large and extensive wetlands are hydrologically connected to rivers, and their 

environmental integrity, as well as their influence on downstream flow regimes, depends on 

the prevailing channel–wetland exchange processes. These processes are inherently complex 

and vary spatially and temporally. Understanding channel–wetland exchanges is therefore, 

indispensable for the effective management of wetlands and the associated river basins. 

However, this information is limited in most of the river basins containing large wetlands in 

Africa. Furthermore, it is important to understand the links between upstream and 

downstream flow regimes and the wetland dynamics themselves, specifically where there are 

water resource developments that may affect these links (upstream developments), or be 

affected by them (downstream developments).  

Hydrological modelling of the entire basin using basin-scale models that include wetland 

components in their structures can be used to provide the information required to manage 

water resources in such basins. However, the level of detail of wetland processes included in 

many basin-scale models is typically very low and the lack of understanding of the wetland 

dynamics makes it difficult to quantify the relevant parameters. Detailed hydraulic models 

represent the channel-wetland exchanges in a much more explicit manner, but require 

relatively more data and time resources to establish than coarser scale hydrological models. 

The main objective of this study was, therefore, to investigate the use of a detailed hydraulic 

wetland model to provide a better understanding of channel–wetland exchanges and wetland 

dynamics, and to use the results to improve the parameterisation of a basin-scale model.  

The study focused on improving the water resource assessments modelling of three data-

scarce African river basins that contain large wetlands: the floodplains of the Luangwa and 

Upper Zambezi River basins and the Usangu wetland in the Upper Great Ruaha River basin. 

The overall objective was achieved through a combined modelling approach that uses a 

detailed high-resolution LISFLOOD-FP hydraulic model to inform the structure and 

parameters of the GW Pitman monthly hydrological model. The results from the LISFLOOD-

FP were used to improve the understanding of the channel–wetland exchange dynamics and 

to establish the wetland parameters required in the GW Pitman model. While some wetland 

parameters were directly quantified from the LISFLOOD-FP model results, others, which are 

highly empirical, were estimated by manually calibrating the GW Pitman wetland sub-model 
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implemented in excel spreadsheets containing the LISFLOOD-FP model results. Finally, the 

GW Pitman model with the inclusion of the estimated wetland parameters was applied for 

each basin and the results compared to the available downstream observed flow data. The two 

models have been successfully applied in southern Africa, with the GW Pitman model being 

one of the most widely applied hydrological models in this region. To address the issue of 

data scarcity, during setup of these models, the study mainly relied on the global datasets 

which clearly adds to the overall uncertainty of the modelling approach. However, this is a 

typical situation for most of the data scarce regions of the continent. 

A number of challenges were, however, faced during the setup of the LISFLOOD-FP, mainly 

due to the limitations of the data inputs. Some of the LISFLOOD-FP data inputs include 

boundary conditions (upstream and downstream), channel cross-sections and wetland 

topography. In the absence of observed daily flows to quantify the wetland upstream 

boundary conditions, monthly flow volumes simulated using the GW Pitman monthly model 

(without including the wetland sub-model) were disaggregated into daily flows using a 

disaggregation sub-model. The simulated wetland inflows were evaluated using the observed 

flow data for downstream gauging stations that include the wetland effects. The results 

highlighted that it is important to understand the possible impacts of each wetland on the 

downstream flow regime during the evaluations of the model simulation results. Although the 

disaggregation approach cannot be validated due to a lack of observed data, it at least enables 

the simulated monthly flows to be used in the daily time step hydraulic model. One of the 

recommendations is that improvements are required in gauging station networks to provide 

more observed information for the main river and the larger tributary inflows into these large 

and important wetland systems. Even a limited amount of newly observed data would be 

helpful to reduce some of the uncertainties in the combined modelling approach. The SRTM 

90 m DEM (used to represent wetland topography) was filtered to reduce local variations and 

noise effects (mainly vegetation bias), but there were some pixels that falsely affect the 

inundation results, and the recently released vegetation-corrected DEMs are suggested to 

improve the simulation results. Channel cross-section values derived from global datasets 

should be examined because some widths estimated from the Andreadis et al. (2013) dataset 

were found to be over-generalised and did not reflect widths measured using high-resolution 

Google Earth in many places. There is an indication that channel cross-sections digitised 

from Google Earth images can be successfully used in the model setup except in densely 

vegetated swamps where the values are difficult to estimate, and in such situations, field 



iv 

 

measured cross-section data are required. Small channels such as those found in the Usangu 

wetland could play major role in the exchange dynamics, but digitising them all was not 

straightforward and only key ones were included in the model setup. Clearly, this inevitably 

introduced uncertainties in the simulated results, and future studies should consider applying 

methods that simplify extractions of most of these channels from high-resolution images to 

improve the simulated results. 

The study demonstrated that the wetland and channel physical characteristics, as well as the 

seasonal flow magnitude, largely influence the channel–wetland exchanges and wetland 

dynamics. The inundation results indicated that the area–storage and storage–inflow 

relationships form hysteretic curves, but the shape of these curves vary with flood magnitude 

and wetland type. Anticlockwise hysteresis curves were observed in both relationships for the 

floodplains (Luangwa and Barotse), whereas there appears to be no dominant curve type for 

the Usangu wetlands. The lack of well-defined hysteretic relationships in the Usangu could 

be related to some of the difficulties (and resulting uncertainties) that were experienced in 

setting up the model for this wetland. The storage–inflow relationships in all wetlands have 

quite complex rising limbs due to multiple flow peaks during the main wet season. The 

largest inundation area and storage volume for the Barotse and Usangu wetlands occurred 

after the peak discharge of the wet season, a result that is clearly related to the degree of 

connectivity between the main channel and those areas of the wetlands that are furthest away 

from the channel. Hysteresis effects were found to increase with an increase in flood 

magnitudes and temporal variations in the wetland inflows. Overall, hysteresis behaviour is 

common in large wetlands and it is recommended that hysteresis curves should be reflected in 

basin-scale modelling of large river basins with substantial wetland areas. At a daily time 

scale, inflow–outflow relationships showed a significant peak reduction and a delayed time to 

peak of several weeks in the Barotse and Usangu wetlands, whereas the attenuation effects of 

the Luangwa floodplain are minimal.  

To a large extent, the LISFLOOD-FP results provided useful information to establish wetland 

parameters and assess the structure of Pitman wetland sub-model. The simple spreadsheet 

used to estimate wetland parameters did not account for the wetland water transfers from the 

upstream to the next section downstream (the condition that is included in the LISFLOOD-FP 

model) for the case when the wetlands were distributed across more than one sub-basin. It is 

recommended that a method that allows for the upstream wetland inflows and the channel 

inflows should be included in the spreadsheet. The same is true to the Pitman model 
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structure, and a downstream transfer of water can be modelled through return flows to the 

channel. The structure of the wetland sub-model was modified to allow an option for the 

return flows to occur at any time during the simulation period to provide for types of 

wetlands (e.g. the Luangwa) where spills from the channel and drainage back to the channel 

occur simultaneously. The setup of the GW Pitman model with the inclusion of wetland 

parameters improved the simulation results. However, the results for the Usangu wetlands 

were not very satisfactory and the collection of additional field data related to exchange 

dynamics is recommended to achieve improvements. The impacts of the Luangwa floodplain 

on the flow regime of the Luangwa River are very small at the monthly time scale, whereas 

the Barotse floodplain system and the Usangu wetlands extensively regulate flows of the 

Zambezi River and the Great Ruaha River, respectively. The results highlighted the 

possibilities of regionalising some wetland parameters using an understanding of wetland 

physical characteristics and their water exchange dynamics. However, some parameters 

remain difficult to quantify in the absence of site-specific information about the water 

exchange dynamics. The overall conclusion is that the approach implemented in this study 

presents an important step towards the improvements of water resource assessments 

modelling for research and practical purposes in data-scarce river basins. This approach is not 

restricted to the two used models, as it can be applied using different model combinations to 

achieve similar study purpose. 
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CHAPTER ONE: INTRODUCTION 

 

1.1 General introduction 

Wetlands are formed at the interface between terrestrial and aquatic areas (Curie et al., 2007; 

Tooth and McCarthy, 2007; Ellery et al., 2009). Their formation is mainly determined by a 

combination of geological, hydrological and geomorphic factors (Ellery et al., 2009; Grenfell 

et al., 2010) or tectonic activities (Sivan et al., 2011). As a result, wetlands formed by 

different processes have different characteristics, and they are expected to function differently 

(Tooth and McCarthy, 2007; McCartney et al., 2010; Acreman and Holden, 2013).  

Globally, wetlands are regarded as valuable freshwater ecosystems because of the functions 

and services they deliver (Hooijer, 2003; Berkowitz and White, 2013; Heimhuber et al., 

2016; Tomscha et al., 2017). Wetlands provide many useful benefits, including the effective 

attenuation of floods, maintaining base flow, recharging groundwater, providing habitats for 

aquatic species, supporting biodiversity, recycling nutrients and purifying water. Moreover, 

the presence of fertile soils in wetlands encourages agriculture, ranging from small to large 

scale (Kakuru et al., 2013). Some human populations, particularly in developing regions in 

Africa, derive more than 50% of their income from wetlands (Schuijt, 2002; Schuyt, 2005). 

For example, approximately 100% of the water used for domestic activities by the 

community living near the Yala swamp in Kenya is abstracted from this wetland, and 86% of 

their building materials, such as soils, woods and papyrus, are similarly obtained from this 

wetland (Schuyt, 2005). In general, wetland functions can be divided into three broad 

categories: 1) hydrological; 2) biological, and; 3) geochemical (Wang et al., 2008). The 

hydrological functions, in particular, are regarded as the driving force of other wetland 

functions (Acreman and Miller, 2007; Todd et al., 2010; Mitsch and Gosselink, 2015; 

Zhiqiang et al., 2016). For example, the ecological health, biodiversity and water quality of 

wetlands are highly influenced by the wetland hydrology (i.e. the amount and movement of 

water in the wetland). Moreover, the hydrological functions of wetlands account for the 

importance of these ecosystems in the hydrological cycle (Bullock and Acreman, 2003; 

Négrel et al., 2005; Fossey et al., 2015). Therefore, wetland hydrological variables (e.g. 

duration, timing, frequency and the extent of inundation) have been widely assessed in many 

wetland studies. 
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Although the importance of wetlands is widely recognised, anthropogenic activities, either 

upstream or within wetlands, modify the natural characteristics, functions and processes of 

wetlands (Grundling et al., 2013; Mcclain, 2013; Matthew and Day, 2014). Channel slopes, 

roughness and velocity may be significantly altered by anthropogenic activities to an extent 

that the duration, timing, frequency, magnitude and the extent of inundation are affected 

(Hattermann et al., 2008). As a result, apart from other factors, such as climate change and 

natural variability, anthropogenic activities have contributed substantially to changes in 

wetland dynamics (Kashaigili et al., 2006a; Tockner et al., 2008; Harrison, 2013).  

In Africa, many large and extensive wetlands are hydrologically connected to large rivers 

(Tooth et al., 2002; Hughes et al., 2014). Examples of these wetlands include the wetlands in 

the upper reaches of the Congo River, the Barotse floodplain of the Zambezi River, the Niger 

River Delta and many other large rivers across the continent. The total integrity of the two 

systems (i.e. river channels and wetland) depends on how they interlink (Thoms et al., 2005; 

Frazier and Page, 2006; Heimhuber et al., 2016). The channel–wetland exchange processes 

are inherently complex, particularly in large wetlands (Phillips, 2013; Hughes et al., 2014; 

Karim et al., 2015; Vanderhoof et al., 2015; Larocque et al., 2016), and they vary spatially 

and temporally. Variation in the exchange processes has impacts on both the wetland water 

balance and river flow regimes (Wang et al., 2010; Hughes et al., 2014; Fossey et al., 2015). 

An improved understanding of the spatial and temporal variation of the exchange processes 

between river channels and wetlands is indispensable for the effective management of 

wetlands and river basins (Frazier and Page, 2009; Kupfer and Meitzen, 2012; Hughes et al., 

2014; Karim et al., 2015). However, this information remains limited for many river basins 

containing large wetlands in Africa. This is because collecting ground-based data particularly 

in large and remote river basins is a challenging task, and high-quality Earth Observation 

(EO) data are not always available for these basins. Modelling can be an alternative approach 

for understanding different processes in wetlands, including channel–wetland exchange 

dynamics.  

Hydraulic models are widely used to understand the channel–wetland exchange dynamics, 

including the occurrence and magnitude of flood inundation in terms of spatial extents and 

depths (Patro et al., 2009; Karim et al., 2012; Neal et al., 2012). However, a comprehensive 

understanding of the influence of these dynamics on flow regimes at the basin scale should 

also consider the impacts of upstream changes on wetland hydrological inputs. As a result, 

this requires basin-scale modelling (Zhang et al., 2013), and many studies have applied basin-
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scale models to understand different processes in wetlands and their impacts on the 

downstream hydrological regime of river basins (Ndomba et al., 2010; Gray et al., 2012; 

Zhang et al., 2013; Hughes et al., 2014; Rahman et al., 2016). Basin-scale models vary from 

simple to complex, based on the required amount of input data and parameters, basin 

processes captured in the model structure and the spatial and temporal resolution used 

(Hughes, 2015a). Existing models either directly incorporate or indirectly model wetland 

processes (Rahman et al., 2016), although many models ignore or oversimplify the natural 

wetland processes e.g. the channel–wetland exchange processes (Hattermann et al., 2008; 

Martinez-Martinez et al., 2014). For example, the earliest version of the Pitman model 

(Pitman, 1973) represented a wetland as a simple reservoir. A model structure that is not 

sufficiently detailed in terms of wetland processes will inevitably produce simulation results 

of low reliability (Hughes et al., 2006).  

In an effort to improve model simulations, various researchers have modified the wetland 

components of some basin-scale models to include relevant wetland processes (Hattermann et 

al., 2008; Wang et al., 2008; Liu et al., 2010; Gray et al., 2012; Zhang et al., 2013; Hughes et 

al., 2014; Mekonnen et al., 2016). For example, a study by Gray et al. (2012) modified the 

wetland component of the Agricultural Catchments Research Unit (ACRU) model, and 

applied it to assess the influence of a wetland on hydrological responses in the Thukela Basin 

in South Africa, whereas Zhang et al. (2013) modified the wetland component in the Soil and 

Water Assessment Tool (SWAT) model to simulate the hydrological processes of the 

Zhalong Wetland in northeast China. Liu et al. (2010) developed an extension of SWAT’s 

wetland module that can be used to assess the wetland–river interactions in large catchments, 

whereas Rahman et al. (2016) further developed SWAT’s wetland module to simulate 

hydraulic interactions between rivers, riparian depression wetlands and aquifers in the Barak-

Kushiyara River Basin in India. Hughes et al. (2014) introduced a wetland component for the 

modified version of the Pitman model (GW Pitman model, Hughes et al., 2004) that includes 

a channel–wetland exchange function, mainly including wetland processes that are important 

for the generation of downstream flows.  

Despite the improvements of the wetland components of many basin-scale models, the 

application of these models to data-scarce basins of Africa remains a challenge (Hughes, 

2015a), as the inclusion of more processes within a model structure requires a greater amount 

of observed data for model calibration. Climatic data required to establish and validate 

models as well as the physical data required to estimate model parameters are generally 
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insufficient and generally not accurate (Hughes, 2006; 2015a). Some researchers have 

attempted to integrate Earth Observation (EO) data and Geographic Information System 

(GIS) into models to understand various wetland characteristics and channel–wetland 

exchanges in many river basins in Africa (Griensven et al., 2008; Jung et al., 2010; 

Leauthaud et al., 2013; Lee et al., 2015). Hughes et al. (2014) acknowledged the importance 

of EO data to understand complex processes associated with channel–wetland exchanges, 

such as wetland return flow. However, although EO data have proved to be valuable in many 

studies, particularly in the developed world, remote sensing images of high quality (e.g. 

Satellite Pour l‘Observation de la Terre (SPOT), Synthetic Aperture Radar (SAR) and light 

detection and ranging (LiDAR)) are expensive to acquire, and in some cases, are not 

available (Frazier and Page, 2009). Freely available satellite images are affordable for use in 

river basins studies in Africa (Yan et al., 2015) but they are subject to a series of 

uncertainties. For that reason, the application of EO data as alternative data to force and 

validate models for data-scarce basins in Africa remains largely problematic.  

A further challenge in applying basin-scale models in river basins containing large wetlands 

is that the level of detail included in these models, especially for large wetlands, is very low. 

Thus, setting up models in these wetlands is always difficult. If detailed hydraulic models 

(e.g. LISFLOOD-FP, MIKE 21 and SOBEK) that include different conceptual processes can 

be used to understand the hydraulic characteristics and inundation dynamics associated with 

these wetlands, it is likely that this information can help to set up basin-scale model. 

Recently, the LISFLOOD-FP model has been successfully applied to many river basins 

containing large wetlands in Africa (Jung et al., 2010; Neal et al., 2012; Schumann et al., 

2013; Fernández et al., 2016). In most of these studies, the LISFLOOD-FP model was 

established using limited ground-based climatic data, free EO data such as the Shuttle Radar 

Topography Mission (SRTM) data to represent the topographical characteristics, and the 

freely available satellite imagery, such as Landsat images, to calibrate and/or validate model 

simulations. This suggests that, despite the challenge presented by data scarcity, detailed 

hydraulic models, which can be set up in data-scarce basins and provide satisfactory results, 

are available. 
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1.2 Research problem  

Surface freshwater resources continue to be the main source of water for many African 

countries; therefore, socio-economic development of these countries is dependent on the 

availability of surface water (Mwanza, 2003; Mcclain, 2013). Yet, most water resources are 

dynamic, resulting in the unpredictability of water availability (Valimba, 2004; Mazvimavi 

and Wolski, 2006; Oguntunde et al., 2006; Conway, 2009). Unless there is an understanding 

of the processes influencing the dynamics of these water resources, it is unlikely that 

sustainable management of water resources can be implemented. Most large rivers are 

hydrologically connected with large wetlands. Although wetlands owe their sustainability to 

the balance between inflows and outflows from their source river, the flow regime of a river 

is also highly influenced by wetland dynamics. As the integrity of both systems depends on 

their connectivity, the channel–wetland exchange dynamics have impacts on the flow regimes 

of both the wetland and the river. Channel–wetland exchange dynamics require quantification 

to facilitate the understanding of water resource dynamics.  

To enable an improved understanding of the impacts of different upstream water resource 

developments on large wetlands, and in turn, the influence of channel–wetland exchange on 

water resources dynamics (i.e. river flow regimes), a basin-scale model which includes a 

wetland component is required (Wen et al., 2013; Zhang et al., 2013). However, the flow 

routing components in most of these models are simplified and do not realistically represent 

the flow dynamics of large wetlands (Goteti et al., 2008; Trigg et al. 2009; Valentová et al., 

2010). Despite several recent studies on the inundation dynamics of large wetlands using 

available ground and/or satellite observations, this approach is always constrained by the 

availability and quality of both ground and satellite observation data. Ground-based 

observations of water surface elevation and discharge often do not exist, particularly for the 

upper catchments that contribute to wetland inflows. It is difficult to establish plausible 

model parameter values when modelling basins that include large wetlands. Therefore, a new 

approach is required for modelling African river basins that contain large wetlands. 

 

1.3 Research aim 

The overall purpose of the study is to improve water resource assessment modelling of data-

scarce large African river basins that include large wetlands. This will be achieved through a 

combined modelling approach that allows the use of a detailed hydraulic model to inform the 
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structure and parameters of the basin-scale model, as summarised in Figure 1.1. The approach 

involves the following steps:  

 To apply an initially calibrated, monthly time step and coarse spatial scale 

hydrological model, coupled with a monthly to daily disaggregation approach, to 

establish the upstream boundary conditions required for setting up the hydraulic 

model. 

 

 To calibrate the hydraulic model using a limited number of seasonal flood sequences 

to understand and quantify the wetland–channel exchange processes and to assist with 

the quantification of the parameters of the much simpler basin-scale model. 

 

 To re-calibrate the basin-scale model that includes a wetland–channel exchange 

function and to validate the model using any available data. 

 

 To assess the possibility of regionalising or directly estimating the wetland parameters 

of the basin-scale model on the basis of the wetland characteristics.  

 

 

Figure 1.1: A combined modelling approach at a basin scale. 
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1.4 Significance of the study 

Generally speaking, the hydrology of wetlands as well as the interactions between wetlands 

and rivers can potentially be assessed through ground-based monitoring; however, this is only 

possible in relatively small wetlands where interactions among hydrological processes can be 

monitored over small spatial scales (Clilverd et al., 2013; Rahman et al., 2016). It is not 

practical to implement gauging and monitoring of a large basin possibly containing one large 

or numerous wetlands (Alsdorf et al., 2007). A combined modelling approach applied in this 

study is expected to improve the understanding and accomplish efficient modelling for 

practical purposes at the basin scale.  

 

1.5 Thesis structure 

Chapter 2 covers a review on channel–wetland exchanges including hydrological and 

hydraulic modelling (and a combined modelling approach) of river basins containing large 

wetlands. Study areas and their physical characteristics are presented in Chapter 3. This 

chapter also introduces sources and quality of the data that were used in the study. Chapter 4 

covers different methods used to attain the overall aim of the study. Results and general 

discussions are presented in Chapter 5, while the conclusions and recommendations of the 

study are in Chapter 6. 
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CHAPTER TWO: LITERATURE REVIEW 

 

This chapter presents a review of the different aspects related to channel–wetland exchanges 

in large river basins. Various methods related to modelling large basins containing substantial 

wetland areas are reviewed, such as the use of EO data, GIS and models, or a combination of 

these methods (e.g. Kashaigili et al., 2006a; Rayburg and Thoms, 2009; Schumann et al., 

2013; Trigg et al., 2013; Heimhuber et al., 2016). A review of a combined modelling 

approach that integrates both hydraulic and hydrological models to improve model simulation 

results in different wetland studies is also included. Since the study focuses on southern 

African river basins containing large wetlands, sections 2.1 and 2.2 briefly introduce the 

distributions and common types of large wetlands in Africa.  

 

2.1 Wetland definition, distribution and the processes responsible for 

wetland formation in Africa 

There is no single agreed definition of wetlands; however, the definition provided by the 

Ramsar Convention on Wetlands (1971) has been widely accepted with some minor 

modifications. The Convention’s definition of wetlands is: ‘areas of marsh, fen, peatland or 

water, whether natural or artificial, permanent or temporary, with water that is static or 

flowing, fresh, brackish or salty, including areas of marine water the depth of which at low 

tide does not exceed six metres’. Some organisations, such as the South African National 

Biodiversity Institute (SANBI, 2009), have modified the stipulation within the Ramsar 

definition of six metres of marine water to ten metres for low tides and replaced the term 

‘fen’ with ‘peatland’. Thus, SANBI defines a wetland as: ‘an area of marsh, peatland or 

water, whether natural or artificial, permanent or temporary, with water that is static or 

flowing, fresh, brackish or salty, including areas of marine water the depth of which at low 

tide does not exceed ten metres’. This definition has been adopted in most areas within 

southern Africa.  

Wetlands in Africa vary from saline coastal lagoons in West Africa to fresh and brackish 

water lakes in East Africa (Hughes and Hughes, 1992). A large number of wetlands are found 

between 15° N and 20° S, such as wetlands of the four major rivers in Africa (i.e. Congo, 

Zambezi, Niger and Nile), the Okavango Delta in Botswana, the Sudd in southern Sudan and 
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Ethiopia and others found along the coastlines (Hails, 1996; Schuijt, 2002). Some wetlands 

are also found outside 15° N and 20° S. These include inland oases, wadis and chotts in 

north-west Africa, the Qualidia and Sidi Moussa lagoons in Morocco, the Limpopo River 

floodplain in Mozambique and other parts of South Africa, the Banc d’Arguin of Mauritania, 

and the St. Lucia wetland in South Africa (Hails, 1996). Large wetlands cover about 2 × 

10
6
 km

2
 of the land mass in the sub-Saharan region (Mitchell, 2012), with more than 20 listed 

as Ramsar sites, and they are located in both coastal and inland areas (Tooth and McCarthy, 

2007). 

The three wetlands used in this study are part of the list of large wetlands in Africa (with area 

greater than 1000 km
2
) and are included in the Ramser sites. Lehner and Döll (2004) dataset 

(GLWD-3) represents the spatial distribution of wetlands, reservoirs, lakes, and rivers in the 

world and the selected wetlands are part of the dataset. Wetlands in the Zambezi River basin 

covers about 19% of the total wetland coverage in the southern Africa region. The Barotse 

floodplain for instance is the second largest wetland in the Zambezi basin approximately 

240 km long and 40 km wide whereas the Luangwa floodplain coverage is about 2 500 km
2
 

(Euroconsult, 2008). The Usangu depression wetland found in the Upper Great Ruaha River 

basin (Tanzania) is approximately 2 000 km
2
. Figure 2.1 represents the spatial distribution of 

wetlands in the GLWD dataset (Lehner and Döll, 2004) within southern Africa region and the 

zoomed image in the bottom indicates spatial location of the selected wetlands in this study.  
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Figure 2.1 The distribution of wetlands in the GLWD dataset (Lehner and Döll, 2004) across 

southern Africa region (top) and selected three wetlands in this study (bottom).  
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2.2 Large inland wetlands in Africa 

There are different types of large inland wetlands in Africa, of which floodplains dominate. 

Floodplains are low-relief features dominated by fluvial deposition and can develop at 

different locations along the river corridor (Lewin, 1978; Tockner et al., 2008; 2010). 

According to Tooth et al. (2012), inland floodplains are mostly formed in low-gradient river 

corridors characterised by low energy and strong interactions between flow, sediments and 

biota. Moreover, fluvial features (e.g. levees, backwater depressions, old infilled channels, 

meanders cut-offs, backwater depressions, ridges and swales) formed as a result of erosion 

and deposition processes in the river corridor are also common in floodplains (Amoros and 

Bornette, 2002; Tooth et al., 2002; Tooth and McCarthy, 2007). They are evenly distributed 

along the river corridor or cluster into distinct physical landforms (Scown et al., 2015). Their 

interactions with the main channel, and/or among each other, occur over scales of decades or 

centuries, thereby modifying their sizes and shapes and resulting in complex floodplain 

geomorphology (Gilvear et al., 2000; Amoros and Bornette, 2002; Tooth et al., 2002; Thoms 

et al., 2005; McCarthy et al., 2010; Tooth et al., 2012). The study by Gilvear et al. (2000) on 

the Luangwa floodplain revealed that high rates of channel migration and cut-offs of 

meandering sections significantly shifted the Luangwa river, which resulted in the formation 

of abandoned channels, meander cut-offs, and anabranches within the period between 1957 

and 1983 (Figure 2.2). The interactions between floodplain features and/or the main river 

modify the local geomorphological settings of the floodplain, and this transformed landscape 

determines how water and sediment move from the main river onto the floodplain and back 

to the main river. Therefore, a floodplain forms a complex mosaic of landforms which have 

great influence on the river–floodplain interactions, including inundation patterns (Tockner et 

al., 2008; Scown et al., 2015). An attempt to modify the geomorphological setup of a river–

floodplain system affects not only its connectivity but also the key functions of the floodplain 

(e.g. hydrological and ecological functions) (Edwards et al., 2016).  
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Figure 2.2: Changes in channel morphology for two different sections of the Luangwa 

floodplain between 1957 and 1983 (Source: Gilvear et al., 2000). 

 

Apart from floodplain features that define the geomorphological complexity of many 

floodplains, evidence of more than one type of wetland in many river basins exists, and these 

types display different characteristics and interact differently with the main river. The study 

by Gilvear et al. (2000) on the middle section of the Luangwa floodplain revealed the 

existence of both meandering and anastomosing floodplain types. Anastomosing occurs when 

the river flows over a low gradient, results in the formation of multiple channels that tend to 

separate and rejoin (anabranches); they are connected to the main river during high flows and 

completely disconnect during flow recession. As a result, anabranches transfer sediment 
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loads and disperse water into different parts of the floodplain. In the meandering floodplain 

section, the main river has sufficient energy to erode and deposit, and the overbank spill is 

common. Moreover, floodplain features such as old infilled channels and oxbows are found 

in these sections. The study by Gilvear et al. (2000) determined the existence of different 

floodplain types in the Luangwa floodplain, suggesting that morphological and micro-

topographical settings of this floodplain are complex because they vary across different 

sections within the floodplain. Apart from the Luangwa floodplain, complex morphological 

settings have been observed in other floodplains, such as the wetland associated with Congo 

River (Jung et al., 2010; O’Loughlin et al., 2013), the Kafue floodplain (Hughes et al., 2014), 

Blood River floodplain (McCarthy et al., 2010), Faguibine floodplain in Mali (Hamerlynck et 

al., 2016) and several floodplains outside Africa, such as the Amazon floodplain (Mertes, 

1997; Trigg et al., 2012), a wetland linked to the Fly River in New Guinea (Day et al., 2008) 

and floodplains in the Murray-Darling basin in Australia (Scown et al., 2016). Figure 2.3 

presents the two different sections of the Luangwa floodplain indicating the anastomosing 

(top) and meandering (bottom) with different geomorphological features. The features in 

Figure 2.3 justify the argument by Lewin and Ashworth (2014) that large floodplains are 

plural (reflecting the activities of several channels and sub-systems, with a partial disconnect 

with main channel activity), complex (with zonal differences in processing and rates of 

activity) and diachronous (contain different forms that have developed over a range of 

timescales).  
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Figure 2.3: Google Earth images of two sections of the Luangwa floodplain indicating 

different floodplain features.  

 

There are other wetlands situated in topographic depressions with closed or nearly-closed 

elevation contours (i.e. basin-like wetlands), and their formation is related to tectonic 

activities such as rifting and volcanic events (Tooth and McCarthy, 2007; Ellery et al., 2009; 

Ollis et al., 2015). These wetlands are mostly known as depression wetlands. Depression 

wetlands may have a single or combination of inlets, and generally, they get inundated from 
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rivers, direct precipitation, overland flows from adjacent uplands and/or groundwater 

discharge (USDA, 2008; Ollis et al., 2015). They are characterised by gentle slopes, as a 

result, many rivers entering depression wetlands reduce their energy, deposit sediments and 

over time, most rivers tend to split into small channels and/or disappear within the wetland 

(e.g. the Lukanga depression in Zambia, the Bahi and Usangu depression wetlands in 

Tanzania). Furthermore, many depression wetlands have no outlet, and where available, is 

confined in such a way that the surface outflow is limited (Ellery et al., 2009).  

Figure 2.4 illustrates that apart from direct rainfall (not shown here), the Lukanga depression 

wetland (Lukanga swamp) receives water from the Lukanga River and other seasonal streams 

as well as spill from the Kafue River especially when the river is at high flows. The dominant 

features include the small ponds scatted in the entire depression, permanent swamp, 

termitaria grasslands, dambos and channels (Mccartney, 2007). These features in totality 

form a major lacustrine (i.e. open water), and palustrine (i.e. marsh) system with the 

palustrine dominating (Mccartney et al., 2011). Other depression wetlands that form more 

than one type is the Usangu depression in Tanzania (see section 3.4.6). The total depression 

contains two types of wetlands (eastern and western wetlands) which are separated by 

elevated land at the centre (SMUWC, 2001). The eastern wetland is very flat, and covers a 

permanent swamp and small ponds, whereas the western part is slightly steeper, and is 

generally seasonally inundated (Kashaigili et al., 2006a; McCartney et al., 2008). Therefore, 

like floodplains, a single large depression wetland may contain different wetland types. 
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Figure 2.4: Google Earth image showing the Lukanga depression wetland  

 

2.3 Channel–wetland exchanges 

2.3.1 General overview 

Globally, there have been many attempts to better understand the relationships between 

wetlands and channels (Popov and Gavrin, 1970; Hughes, 1980; Lewin and Hughes, 1980; 

Junk et al., 1989; Mertes, 1997), and a considerable amount of research on this aspect has 

been conducted during the last two decades (Hudson et al., 2013). In large river basins, the 

interactions between the channels and wetlands are complex, and some of these complexities 

have been described by earlier studies (e.g. Hughes, 1980; Lewin and Hughes, 1980; Mertes, 

1997). The channel–wetland exchange process is primarily controlled by flood pulses (Junk 

et al., 1989; Tockner et al., 2000) and have been reported in many studies worldwide 

(Gallardo et al., 2009; Opperman et al., 2010; Karim et al., 2012; Schumann et al., 2013; 

Trigg et al., 2013). The number, duration and frequency of flood pulses control the exchanges 

in different ways (Junk et al., 1989; Tockner et al., 2000), and the whole process is important 

for ecological, geomorphological and hydrological processes in river basins (Hudson et al., 

2013; Kupfer et al., 2015; Karim et al., 2016). The exchange of water occurs through 

overbank diffuse flows or channelized flows (Junk et al., 1989; Mertes, 1997; Trigg et al., 

2012; 2013) and through sub-surface flow (Tockner et al., 2000). Apart from water volumes, 
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different materials (e.g. soil and nutrients) and aquatic species are exchanged between the 

two systems (Clilverd et al., 2013). Most of the wetland functions are related to how the two 

systems are connected (Frazier and Page, 2006; Tockner et al., 2010; Karim et al., 2012; 

Chen et al., 2015). For example, the ecological and hydrological importance of a wetland 

connected with a river channel is highly dependent on how the two systems are connected 

(Mcginness et al., 2002; Tockner et al., 2008; Karim et al., 2013; Allen, 2015). Water 

resources development upstream of the floodplain may change the size and shape of the flood 

hydrograph (i.e. magnitude of flood and time to peak). Some of these upstream development 

structures include large and small dams, irrigation schemes, and Hydropower systems. This 

can have significant impacts on channel–wetland exchange behaviour (Thoms et al., 2005; 

Kupfer and Meitzen, 2012; Morris et al., 2013). For example, upstream changes tend to 

modify the spatial and temporal inundation patterns (Wiens, 2002), and when wetting and 

drying processes in the floodplain are altered, the downstream flow regime is also affected.  

Although a flood pulse is regarded as the main driving force of the exchanges, 

geomorphological variations among wetland features and the main channel determine the 

movement of water from, and back to, the main channel. Floodplain processes related to 

sediment deposition (e.g. the formation of natural levees) can modify the local morphology of 

the floodplain (Day et al., 2008; Lewin and Ashworth, 2014). For instance, natural levees 

elevate the river banks and create a barrier for surface water connectivity between the river 

and adjacent low-lying backwater areas (Newman and Keim, 2013). Unless the flow depth 

exceeds this height, water movement from the main river to the wetland through the river 

banks may not occur. Apart from natural levees, the relative elevation between different 

floodplain features influences how water diffuses within the floodplain. For example, if a 

backwater depression is located adjacent to the main channel and receives water immediately 

after the channel overtops its bank, the distribution of water from this depression into other 

parts of the floodplain will depend on elevation differences. In most cases, multiple channels 

found within the floodplain play an important role in dispersing water from the main channel 

to different parts of the floodplain (Trigg et al., 2012). Anabranches, which are common in an 

anastomosing floodplain, are examples of floodplain channels that carry sediment-laden river 

water into the floodplain.  
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2.3.2 Hysteretic behaviour in channel–wetland processes 

Hysteretic behaviour occurs when the output response is dependent on both the immediate 

input and the history of the input (Zhang and Werner, 2015). This phenomenon is common in 

different hydrological processes, such as discharge–groundwater relationships, water 

retention–soil moisture tension relationships and stage–discharge relationships (O’Kane, 

2005; Beven, 2006; Norbiato and Borga, 2008). The relationship between the channel 

discharge and inundation characteristics in wetlands also forms a hysteresis curve (Chen et 

al., 2015; Zhang and Werner, 2015), and the shape of this curve varies with flood hydrology, 

wetland surface roughness, wetland topographical setting and internal flow connectivity 

between wetland features (Hughes, 1980; Lewin and Hughes, 1980). For example, large 

hysteresis effects are expected for wetlands characterised by a large area below bank height 

(Hughes et al., 2014).  

Although earlier studies (Hughes, 1980; Lewin and Hughes, 1980) demonstrated the use of 

hysteresis curves to understand the interactions between channels and wetlands of different 

types under different flood magnitudes, studies that maximised the use of hysteresis 

behaviour to understand inundation characteristics, particularly in large wetlands, were 

reported more recently (Chen et al., 2015). In recent years, quite a number of studies have 

incorporated the use of hysteresis curves to understand inundation characteristics in both 

floodplain and depression wetlands (e.g. Shook and Pomeroy, 2011; Shook et al., 2013; 

Hughes et al., 2014; Rudorff et al., 2014; Chen et al., 2015; Zhang and Werner, 2015; 

Mengistu and Spence, 2016; Huang et al., 2017). For example, Zhang and Werner (2015) 

explored the hysteresis behaviour in the flooding dynamics of a large lake–floodplain system 

of Poyang Lake in China, whereas Chen et al. (2015) observed a hysteresis relationship of 

inundation area/volume–discharge in a channel–floodplain system of the Truckee River in 

Nevada. The authors of the latter study argued that the observed hysteresis can be useful for 

water resource management, and can be used in similar basins with substantial floodplain 

areas. Hughes et al. (2014) pointed out that prior knowledge of hysteretic effects of 

floodplain inundation can be used to establish a plausible model parameter set when using a 

relatively simple water balance model to simulate wetland processes. A recent study by 

Huang et al. (2017) explored different characteristics and factors that have influence on the 

hysteresis of water area–stage curves in for Poyang Lake in China.  
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2.4 Quantification of wetland form and dynamics in data-scarce river 

basins 

In the absence of ground-based observation data, wetland form and dynamics can be 

determined from satellite observation data and/or modelling approaches. The use of EO data 

coupled with a GIS has made substantial contributions to wetland studies (Jones et al., 2009; 

MacKay et al., 2009; Rebelo et al., 2009; Mwita et al., 2013; Heimhuber et al., 2016). 

Remote sensing products with different spatial resolutions and temporal coverage such as 

Landsat, SPOT (Satellite Pour l‘Observation de la Terre), NOAA-AVHRR (Advanced Very 

High Resolution Radiometer), SAR (Synthetic Aperture Radar), LiDAR (Light Detection and 

Ranging), Radar systems, and TerraSAR-X are suitable for different wetland studies (Mwita 

et al., 2013). For example, satellite images provide useful information for remote wetlands 

where the collection of ground-based data is expensive and time-consuming (Overton, 2005). 

EO data can also be used in conjunction with models to understand different wetland 

characteristics, including wetland dynamics in data-scarce areas. Winsemius (2009) 

incorporated available ground-based and EO data from the GRACE satellite to build a robust 

model for the Luangwa River basin, which is an example of a data-scarce river basin in 

southern Africa. Milzow et al. (2009) and Bauer et al. (2002) used remote sensing data to 

establish some model inputs (e.g. topographical variability, evapotranspiration, channel 

positions and precipitation) for the Okavango Delta. Different studies (e.g. Frazier and Page, 

2006; Schumann et al., 2013; Trigg et al., 2013; Heimhuber et al., 2016) have applied EO 

data to calibrate and/or validate models used to understand channel–wetland exchange 

processes. Neal et al. (2012) used satellite images to establish river cross-sections as well as 

to validate the calibrated model results in the Niger Inland Delta. Notwithstanding the 

usefulness of EO data in wetland studies, most of the high-resolution satellite data are not 

freely available in many areas in Africa and most studies rely on no-fee available satellite 

data (Patro et al., 2009; Yan et al., 2015). Since the present study focuses on large wetlands 

in Africa, it is important to discuss some of the no-fee available satellite-based data that are 

mostly used to understand wetland form and dynamics in data-scarce areas and to make their 

limitations transparent.  

A Digital Elevation Model (DEM) is a computerised model that represents the Earth’s 

surface elevation, including the heights of different features found on the Earth’s surface 

(Sulebak, 2000; Kiamehr and Sjöberg, 2005). These topographical data can be integrated 
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with GIS to delineate the catchments and derive wetland slopes, stream flow directions and 

channel cross-sections (Wang, 2000; Paz et al., 2006; Patro et al., 2009; Kreiselmeier, 2015). 

Moreover, a DEM is a very important input into hydrodynamic models which are used to 

define the topographical variations and flow directions (Sanders, 2007; Patro et al., 2009). 

Currently, different types of freely (no-fee) available DEM exist, such as Shuttle Radar 

Topographic Mission (SRTM), Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) and Global Arc-Second Elevation (GTOP30). However, their accuracy 

is not uniform because they normally use different data sources in their constructions 

(Kiamehr and Sjöberg, 2005; Li and Wong, 2010).  

The SRTM is an example of a freely available DEM that has been applied in many wetland 

inundation studies in data-scarce basins (Neal et al., 2012; Schumann et al., 2013; Mukolwe 

et al., 2015; Yan et al., 2015; Domeneghetti, 2016). One of the challenges experienced when 

applying the SRTM relates to its vertical accuracy, as its vertical accuracy is affected by the 

presence of vegetation signals contained within the SRTM. As a result, the DEM values are 

over-elevated (i.e. they do not represent ground surface elevations) (Sanders, 2007; Baugh et 

al., 2013; Bates et al., 2014). Despite some initiatives to reduce vegetation bias in this DEM, 

as yet, there is a limited number of globally established methods for correcting the vegetation 

effects (e.g. O’Loughlin et al., 2016; Yamazaki et al., 2017; Allen and Pavelsky, 2018; Zhao 

et al., 2018). Some studies have used an already available vegetation height map and 

subtracted a uniform percentage of each height value from the SRTM (Wilson et al., 2007), 

or subtracted a uniform vegetation artefact height value from the entire DEM (Coe et al., 

2008; Paiva et al., 2011). Baugh et al. (2013) applied the use of an available global 

vegetation height dataset (Simard et al., 2011) to determine the percentage of vegetation 

height to be subtracted from the SRTM and then filtered the DEM to remove the random 

error noise. A percentage of the vegetation height was removed because the radar technology 

used by SRTM could not fully penetrate the vegetation before reflecting (Sanders, 2007; 

O’Loughlin et al., 2016). Even though the last method appears to be an attractive option, the 

percentage of vegetation height that should be subtracted from the SRTM remains unclear. 

Moreover, the resolutions of most of the available vegetation datasets are low relative to the 

resolution of the DEM itself, e.g. 1 km for Simard et al. (2011) and 500 m for Lefsky (2010). 

An additional issue affecting the quality of the SRTM is the presence of random noise 

(Falorni et al., 2005; Sanders, 2007; Bates et al., 2014; Mukolwe et al., 2015). In most cases, 

this error is resolved by average filtering of the SRTM (Wilson et al. 2007; Neal et al., 2012; 
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Baugh et al., 2013). However, in some cases, the filtering processes may result in a 

misrepresentation of some channels which are important in connecting the floodplain areas 

with the main river (Trigg et al., 2012; Baugh et al., 2013).  

Grid size or DEM resolution (e.g. 30 m and 90 m) is another challenge hindering the 

application of the SRTM in hydraulic modelling. Some of the channels, especially small 

channels, are hardly represented in the SRTM. For example, small channels (e.g. 

width < 30 m) cannot be captured in the 30 m resolution SRTM. In addition, other wetland 

micro-topography variations are not clearly presented in this DEM (Bates et al., 2014). 

Therefore, an attempt to use this DEM in such conditions would not effectively simulate 

wetland dynamics because in some wetlands these small channels contribute to wetland 

inundation dynamics. To account for small channels that influence hydraulic characteristics 

of wetlands, Neal et al., (2012) included a sub-grid solver in the LISFLOOD-FP hydraulic 

model, which allows any size of the river channel below the grid resolution of the DEM to be 

included in the model setup. However, these sub-grid channels should be quantified from 

high-resolution images or DEM, and included in the model setup.  

Optical remote sensors such as Landsat (30 m resolution) are also important sources of data 

to understand wetland dynamics as well as the channel–wetland exchanges (Kashaigili et al., 

2006a; Frazier and Page, 2009; Rowberry et al., 2011; Niu et al., 2012; Ward et al., 2013; 

Tulbure et al., 2016). Landsat is one of the most accurate satellite images for understanding 

wetland dynamics due to its high-resolution (Chang et al., 2012). Moreover, these images are 

used to establish river width values especially when river bathymetry data are missing 

(Andreadis et al., 2013; O’Loughlin et al., 2013). They can also be used to distinguish 

different floodplain features such as levees, ox-bows, meander bends, ridges and swales 

(Syvitski et al., 2012). Despite their applications, Landsat images are sometimes obscured by 

cloud cover, and their temporal coverage (i.e. revisit cycle of 16 days) does not correlate with 

the inundation period in many wetlands (Feng et al., 2012; Bates et al., 2014; Long et al., 

2014). Recently, images from the Moderate-resolution Imaging Spectroradiometer (MODIS) 

have been applied in wetland inundation dynamics studies because these images are available 

daily or at 8-day time scale (Sakamoto et al., 2007; Chang et al., 2012). However, the 

MODIS images can also be obscured by cloud cover, and their spatial resolution (250–

1 000 m) is too coarse. It is likely that under this resolution, MODIS data cannot represent 

shallow inundation and/or inundation that cover small extents. Moreover, small channels 

below the MODIS resolution and those flowing in denser vegetation cannot be clearly 
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represented (Chen et al., 2013; Ticehurst et al., 2014; Tulbure et al., 2016). According to 

Chen et al. (2013), the accuracy of the MODIS data to detect inundation in wetlands can also 

be limited by the spectral confusion of background materials and depth of water. For 

instance, dark alluvial soils can be detected as inundated areas.  

An additional challenge in applying both Landsat and MODIS images is related to the 

method used to extract water pixels. The approaches used to detect and extract inundated 

areas from satellite images can be grouped into single-band and multi-band methods (Xu, 

2006). In the former method, a single band is selected from a multispectral image using a 

specified threshold. However, the possibility of a mixing of pixels representing water with 

those of other land cover types exists, and this is regarded as a weakness of this method 

(Rokni et al., 2014). In the multi-band method, different reflective bands are combined, 

following which a threshold is used to extract the water pixels (Xu, 2006; Rokni et al., 2014). 

The multi-band method provides a variety of spectral identifications that make it easy to 

identify different land cover features, including water pixels. However, the threshold value 

used to identify water pixels is not fixed and there is the possibility of under- or over-

estimating the derived water pixels.  

Google Earth images are also recognised as being useful in wetland studies (Mahay, 2008; 

Karim et al., 2011; Zahera, 2011; Teng et al., 2015; Nguyen et al., 2016). Visual inspections 

using Google Earth images make it possible to delineate inundation areas, river width, 

topographical differences between the main channel and the wetland, and to formulate 

assumptions about vegetation cover and soil characteristics. Mccorquodale et al. (2010) and 

Zahera (2011) used Google Earth images to determine channel cross-sections, whereas Karim 

et al. (2011) used these images to estimate the Manning’s roughness coefficient when setting 

up a hydraulic model.  

The available satellite-based global datasets that provide river width estimates are also widely 

used in data-scarce areas (Andreadis et al., 2013; Yamazaki et al., 2015). However, they have 

some limitations that are worth discussing. For example, the dataset used by Andreadis et al. 

(2013) estimated widths and depths as a function of drainage area and bankfull discharge, it is 

likely that the uncertainty in estimating the bankfull discharge (a 2-year return period 

discharge was assumed to represent bankfull discharge) was propagated to the final estimated 

values of widths and depths. Furthermore, the estimated values were evaluated using the 

Landsat-derived river width values; therefore, they might not have represented the bankfull 

conditions for some rivers (Andreadis et al., 2013). An additional issue with this dataset is 
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that the location of the river network was adopted from the HydroSHEDS dataset by Lehner 

et al. (2006), which contains a number of errors. The HydroSHEDS river network was 

generated from a low-resolution DEM (15 arc-seconds) and there is a high possibility that 

most of the river channels with a width of less than 15 arc-seconds will not be captured 

(Lehner et al., 2008), which in turn affects the quality of the estimated width values in the 

simple global river bankfull width and depth dataset by Andreadis et al. (2013).  

In the absence of direct observations of inundation patterns, hydraulic models are widely used 

to understand wetland dynamics (Patro et al., 2009; Jung et al., 2010; Karim et al., 2012; 

Schumann et al., 2013). However, it is always important to understand the links between 

upstream and downstream flow regimes and the wetland dynamics themselves. This can be 

possible by setting up a basin-scale model for the entire basin (Zhang et al., 2013) and such 

models that include a wetland component include the Pitman (Pitman, 1973; Hughes, 2013), 

SWAT (Arnold et al., 1993), ACRU (Schulze et al., 1987), MIKE SHE (DHI, 2004) and 

WATFLOOD (Kouwen, 1988) models. These models tend to either directly incorporate or 

indirectly model wetland processes (Rahman et al., 2016). However, it is clear that the level 

of detail included in these models, especially in relation to their application to a large 

wetland, is very low. For instance, most semi-distributed models use empirical power 

equations that define the relationships between volume, area and depth, and incorporate these 

relationships in the model structure to define different wetland processes (Rahman et al., 

2016). In a river basin where river channels are integrated with multiple storage systems in a 

large wetland, the application of these models may lead to unacceptable or, at the very least, 

highly uncertain model results (Rayburg and Thoms, 2009). This is because most of the 

processes occurring in a large wetland remain poorly understood. As a result, the 

parameterization of these models remains a challenge. Understanding hydraulic 

characteristics related to wetland dynamics, such as spatial and temporal inundation 

characteristics, will assist in establishing different model parameters required to setup the 

wetland component of a basin-scale model. This information can be obtained from detailed 

hydraulic models (e.g. LISFLOOD-FP, MIKE 21 and SOBEK). This suggests the usefulness 

of an approach that can maximise the benefits of using a combination of hydraulic and 

hydrological models in large river basins containing wetlands.  

A number of studies that used both hydraulic and hydrological models are represented in the 

literature, where one model generates the data inputs for the other model (Biancamaria et al., 

2009; Rayburg and Thoms, 2009; Bravo et al., 2012; Schumann et al., 2013; Wen et al., 
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2013b; Amarnath et al., 2015). Schumann et al. (2013) combined hydrological and hydraulic 

models to simulate inundation extents in the lower Zambezi floodplain, whereas Rayburg and 

Thoms (2009) incorporated these models to predict the inundation characteristics in the 

Narran River floodplain in Australia. The former study applied a hydrological model to 

simulate floodplain inflows and used a hydraulic model to simulate the inundation extents. In 

the latter study, the authors used a hydraulic model for understanding the water dynamics and 

the hydrological model to predict the water levels. The following sections provide a more 

detailed review of different basin-scale models as well as hydraulic models that can be 

applied to these river basins.  

 

2.5 Hydrological models 

Hydrological models are mathematical representations of the hydrological cycle. The 

motivations for their developments differ, including predicting and understanding of the 

hydrological processes in a basin, the generation of hydrological state variable data and the 

exploration of different scenarios used in water resources management (Xu, 2002; 

Silberstein, 2006). Hydrological models have been classified in many ways (Singh and 

Woolhiser, 2002; Xu, 2002; Viessman and Lewis, 2003; Hughes, 2004a). According to Xu 

(2002), mathematical models are sub-divided into categories of theoretical, empirical and 

conceptual, depending on the way they represent the basin processes (Figure 2.5). Theoretical 

models represent real basin processes, whereas empirical models do not consider physical 

processes in the basin. Conceptual models can be considered to fall between these two model 

extremes, as they consider physical processes in a simplified manner. The most often used 

classification of hydrological models is based on their spatial and temporal resolution: 

lumped and distributed models. Lumped models do not take into account the spatial 

variability of processes, inputs, boundary conditions and system geometric characteristics, 

whereas distributed models do (Singh, 1995). Within distributed models, the modelled basin 

is divided into smaller units, and each of these units is modelled independently. The 

structures of distributed models are generally complex, and therefore require a lot of input 

data (Xu, 2002). For this reason, semi-distributed models, which represent a compromise 

between lumped and distributed models, have been used in many studies worldwide.  
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Figure 2.5: One of the classifications of hydrological models (Source: Xu, 2002) 

 

Many different hydrological models have been developed to date, including models that can 

be applied to large river basins which include large wetlands. The choices of appropriate 

model are constrained by 1) the purpose of the study; 2) the availability of data to run the 

model; 3) the hydrological processes captured in the model structure; 4) the previously 

demonstrated applicability of the model to the specific study region and; 5) the time required 

to understand and become proficient at using a model. Based on these criteria, three 

hydrological models were reviewed in the present study. 

 

2.5.1 ACRU hydrological model 

The Agricultural Catchments Research Unit (ACRU) hydrological model is a physically-

based distributed daily time step model developed by the School of Bio-resources 

Engineering and Environmental Hydrology at the University of KwaZulu-Natal (Schulze, 

1984). The original purpose of the model was to quantify impacts of land-use change on 

runoff in both gauged and poorly gauged basins. This model has undergone several 

modifications to improve its structure (Schulze et al., 1989; Schulze, 1995). Currently, it is 

regarded as a versatile model that can be applied to a variety of modelling applications, such 
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as stream flow simulation, crop yield assessment, reservoir yield modelling, ecological 

requirements, irrigation demand and supply, planning optimal water resources utilisation and 

climate change impact studies (Schulze et al., 2003). The model inputs include catchment 

area, altitude, daily rainfall, potential evaporation (A-pan), land cover and soils, irrigation 

scheme as well as reservoir dimensions. ACRU is not a model that utilises parameter fitting 

or optimisation; rather, parameters are estimated from physical catchment characteristics. The 

model has been used for small and large-scale projects within southern Africa (e.g. South 

Africa, Zimbabwe, Lesotho, Swaziland and Namibia). Figure 2.6 shows the dominant 

catchment processes represented in the ACRU model structure.  

The wetland component in ACRU was initially introduced by Schulze et al. (1987) and was 

tested in a study which assessed the hydrological impacts of a proposed reservoir upstream of 

a wetland situated in East Griqualand (Schulze et al., 1987). An initial modification to 

improve its structure was conducted by Schulze (2001), and Figure 2.7 depicts the idealised 

wetland processes after this modification. Schulze and Smithers (2002) provide a list of 

studies that applied the modified wetland component of the ACRU model. The most recent 

modification by Gray et al. (2012) involves an extension that allows excess river flow to 

flood riparian areas or wetland response units. This version of the model provided 

satisfactory results in some wetland studies in South Africa where it was tested (Gray et al., 

2012; Rebelo et al., 2015). Gray et al. (2012) applied the model to simulate the impacts of 

wetlands on catchment hydrological processes in the Thukela River catchment in South 

Africa.  

 



27 

 

 

Figure 2.6: General structure of the Agricultural Catchments Research Unit (ACRU) model 

(Source: Schulze, 1995) 

 

 

Figure 2.7: Wetland processes in the Agricultural Catchments Research Unit (ACRU) model 

(Source: Schulze and Pike, 2004). 
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2.5.2 SWAT hydrological model 

The Soil and Water Assessment Tool (SWAT) model is a semi-distributed physically-based 

model that operates on a daily time step (Arnold et al., 1998). The SWAT model was 

developed by the Agricultural Research Service within the Department of Agriculture 

(USDA) in the United States. The main purpose of the model was to predict the impacts of 

land management practices on water, sediments and agricultural chemical yields in large 

complex watersheds with varying soils, land use and management conditions over a long 

period of time (Neitsch et al., 2005; Griensven et al., 2008). Figure 2.8 shows the dominant 

watershed processes represented in the SWAT model structure. The SWAT model has 

undergone several modifications, including the incorporation of spatial units based on 

Hydrological Response Units (HRUs). The most recent version of this model enables 

parameter calibration as well as uncertainty and sensitivity analysis (Pagliero et al., 2014). 

Depending on the processes included in the SWAT model, a large number of parameters are 

required for setting up the model, resulting in the parameterization and calibration of the 

model being a particularly challenging task (Arnold et al., 2012). Different techniques have 

been developed to improve the parameterization of the SWAT model, including both manual 

and automated approaches using SUFI 2 (Guillermo et al., 2015; Arnold et al., 2012). The 

SWAT model has been applied in many studies worldwide, as presented by Gassman et al. 

(2007) and Rahman et al. (2016). 

Wetlands are represented in two ways in SWAT: 1) as a reservoir on the main channel and; 

2) located off-channel and receiving loadings only from the portion of the sub-basin where it 

is located (Martinez-Martinez et al., 2014). The model has been applied in different wetland 

studies outside Africa (Vining, 2002; Du et al., 2005; Wang et al., 2008; Zhang et al., 2013, 

Martinez-Martinez et al., 2014 and Mekonnen et al., 2016) and in Africa (Griensven et al., 

2008; Ndomba et al., 2010; Liersch and Hattermann, 2011; Liechti et al., 2014). Griensven et 

al. (2008) incorporated remote sensing in the SWAT model to understand the processes of a 

riverine wetland in the Kagera River basin in Tanzania. Ndomba et al. (2010) applied the 

model to understand the hydrological characteristics of the Rugezi Wetland in Rwanda. 

Despite the fact that the SWAT model is a semi-distributed physical model, some wetland 

processes are not well captured in the model (Schuol and Abbaspour, 2006; Wang et al., 

2008; Zhang et al., 2013; Rahman et al., 2016). As a result, a number of researchers (e.g. 

Hattermann et al., 2008; Wang et al., 2008; Liu et al., 2010; Zhang et al., 2013; Mekonnen et 

al., 2016; Rahman et al., 2016) have modified the SWAT wetland module to improve its 
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structure in their studies. For example, Zhang et al. (2013) modified the SWAT wetland 

component to simulate hydrological processes within the Zhalong Wetland in northeast 

China, whereas Wang et al. (2008) represented wetlands using a hydrologic equivalent 

wetland (HEW) to simulate the stream flows in different wetland types of the Otta River 

watershed, northwest of Minnesota. The most recent wetland module of SWAT is SWATrw 

(Rahman et al., 2016), in which the unidirectional hydrological interactions between wetlands 

and the river or aquifer have been modified, with a bidirectional approach to represent the 

interactions between riparian wetlands and the river.  

 

 

Figure 2.8: Schematic representation of water movement in the Soil and Water Assessment 

Tool (SWAT) model (Source: SWAT2005 user manual) 

 

2.5.3 Pitman hydrological model 

Pitman (1973) developed the original version of the Pitman model for simulating runoff in 

both gauged and ungauged catchments in South Africa. The model primarily operates on a 
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monthly time scale and its main inputs are rainfall and potential evapotranspiration. The 

model has undergone several modifications since its inception to improve its structure. The 

most recent modifications include the addition of surface–groundwater interactions (GW 

Pitman: Hughes, 2004b), the inclusion of the model into a comprehensive uncertainty 

framework (Hughes et al., 2010; Kapangaziwiri et al., 2012), a wetland component (Hughes 

et al., 2014) and a sub-model to disaggregate monthly flow values to daily discharge using 

daily rainfall data (Slaughter et al., 2015). The semi-distributed concept has been applied to 

the recent versions of the model in which a basin is divided into discrete areas (sub-basins), 

and these units are modelled independently. The Pitman model is one of the most frequently 

used hydrological models for research and practical water resource assessments in southern 

Africa. Apart from the applications of the earlier version of the model (Pitman, 1973), the 

recent versions of the model have been widely applied in the sub-Saharan region (e.g. 

Andersson et al., 2006; Mazvimavi et al., 2006; Wolski et al., 2006; Hughes et al., 2010; 

Tshimanga et al., 2011; Kapangaziwiri et al., 2012; Hughes et al., 2014; Tumbo and Hughes, 

2015). Moreover, the model has been used for climate change studies (Tshimanga and 

Hughes, 2012; Tirivarombo, 2013; Hughes, 2015b; Mohobane, 2015). 

The original version of the model (Pitman, 1973) treated the wetland as a reservoir. However, 

following the recognition of the importance of wetland processes in the basin–water balance 

dynamics, there was a need to include wetland processes in the model structure. The Pitman 

wetland sub-model was therefore included in the GW Pitman model by Hughes et al. (2014). 

Among the processes represented in the wetland sub-model is the channel–wetland exchange 

function, which is important for representing the interaction between the wetland and river 

channels and the impacts of the wetland on the hydrological regime of the basin (Hughes et 

al., 2014). This sub-model can simulate seasonally inundated wetlands as well as natural lake 

conditions. Wetland–groundwater interactions are not included in the Pitman wetland sub-

model as most of the groundwater–wetland processes are reported to have minor effects on 

the monthly water balance in large river–wetland systems in southern Africa (Wamulume et 

al., 2011; Hughes et al., 2014). In the wetland sub-model, wetland inflows occur as the 

proportion of channel flows above a given threshold, whereas wetland return flow is the 

proportion of the excess volume above the wetland residual volume (the volume below which 

there are no returns to the river). The relationship between area and storage of inundation is 

assumed to be a power function defined by scale and power parameters. There are currently 

13 parameters required for setting up the Pitman wetland sub-model, of which some can be 
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more-or-less directly estimated, whereas others are highly empirical and their estimation 

requires a good understanding of channel–wetland exchange processes and/or hysteresis 

effects. For instance, the maximum and residual wetland volumes and the maximum 

inundated area are some of the parameters required to set up the Pitman wetland sub-model. 

These parameters can either be estimated from area–volume curves or from available satellite 

images. The available area–volume curves can also be used to establish the two parameters 

that define the area and volume of inundation in the model. Other parameters, such as the 

proportions that control wetland inundation volume and wetland return flow, cannot be easily 

estimated without prior knowledge of exchange processes. The Pitman wetland sub-model 

has been applied in river basins that include large wetlands within the southern African 

region. These include the Congo River basin (Tshimanga et al., 2011), the Zambezi River 

basin (Tirivarombo, 2013), the Kafue and Okavango river basins (Hughes et al., 2014) as 

well as the Great Ruaha River basin (Tumbo and Hughes, 2015). The structure of the GW 

Pitman model, including the wetland sub-model, is presented in Figure 2.9. 
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Figure 2.9: Structure of the GW Pitman model (Source: Hughes et al., 2014)  
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2.6 Parameterization and calibration of hydrological models 

Model parameters represent hydrological processes occurring in a specific catchment or basin 

under study. Usually, a more detailed hydrological model requires more parameters (Hughes, 

2004b; Schuol and Abbaspour 2006; Arnold et al., 2012). For example, a larger number of 

parameters are required in distributed models compared to lumped models and different 

approaches are required to parameterize the two types of models (Beven, 1989; Refsgaard, 

1997; Beven, 2006). Generally, the parameterization processes is never a straightforward task 

(Dams et al., 2009; Chen et al., 2015; Malone et al., 2016) and there are relatively few 

guidelines on how to parameterise hydrological models (Malone et al., 2016). One of the 

reasons for this could be the spatial–temporal heterogeneity of physical characteristics within 

the basin, which make it difficult to pre-define model parameters for every single 

hydrological model (Chen et al., 2015). Efficient model parameterization is expected to 

improve the model calibration process and in turn the final model results (Refsgaard, 1997).  

Calibration processes are conducted with the aim of identifying the optimal parameter set that 

simulates characteristics of the catchment or basin (Sahoo et al., 2006). Manual and 

automatic calibration approaches have been proposed for establishing appropriate model 

parameters, however, they all have limitations in their applicability. Manual calibration, for 

instance, is argued to be infeasible (Schuol and Abbaspour, 2006), very tedious and time-

consuming (Jiang et al., 2013; Seong et al., 2015), especially for models with large numbers 

of parameters. Moreover, the successful application of manual calibration is dependent on the 

modeller’s experience, skills, and understanding of basin processes captured in the model 

(Boyle et al., 2000; Confesor and Whittaker, 2007). In general, a broad understanding of the 

model and real basin processes is important for effectively modelling using manual 

calibration (Boyle et al., 2000). Refsgaard (1997), Andersen et al. (2001) and Blasone et al. 

(2008a) acknowledged the use of rigorous parameterization and reduction of parameter space 

to facilitate manual calibration processes. This might be possible through sensitivity analysis 

to identify parameters that greatly influence model results and/or adopting values estimated 

from previous model simulations (Blasone et al., 2008a). 

During automatic calibration, parameters are adjusted automatically using a specific search 

scheme and numerical measures of goodness of fit (i.e. objective functions are used to assess 

the simulated and observed values), and the process is repeated until a specified termination 

criterion is satisfied (Boyle et al., 2000; Madsen, 2001). In most cases, the modeller has to 
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specify the initial range for each parameter, and this parameter space is assumed to contain 

behavioural parameter values. Different algorithms are used in the automatic calibration 

processes, such as Shuffled Complex Evolution (SCE-UA) (Duan et al., 1992), Particle 

Swarm Optimisation (PSO) (Eberhart and Kennedy, 1995), Shuffled Complex Evolution 

Metropolis algorithm (SCEM-UA) (Vrugt, 2003), Multi-objective Particle Swarm 

Optimisation (MPSO) (Gill et al., 2006), Master-slave Swarms Shuffling based on self-

adaptive PSO (MSSE-PSO) (Jiang et al., 2010) and Bayesian Recursive parameter 

Estimation (BARE) (Thiemann et al., 2001). The first two algorithms use single objective 

functions, whereas the remaining algorithms apply multi-objectives. It has been argued that a 

single objective function cannot clearly measure all important characteristics of the observed 

data and provide the most appropriate parameter set (Wagener et al., 2001; Vrugt, 2003; Gill 

et al., 2006). As a result, multi-objective algorithms have recently been used to automatically 

calibrate many hydrological models (e.g. Confesor and Whittaker, 2007; Zhang et al., 2013; 

Wang and Brubaker, 2015; Jung et al., 2017).  

Although automatic calibration is recognised as quicker and less labour intensive, Boyle et al. 

(2000) noted that some automatic calibration methods might fail to produce acceptable 

parameter values and simulated hydrographs. Moreover, they require extensive mathematical 

formulations and computations which hamper their application in many hydrological models. 

Automated calibration is always difficult in ungauged basins where there are no observed 

data to quantify measures of goodness-of-fit (Hughes, 2006; Hughes, 2015a). These problems 

have been overcome by some authors through the use of regionalised constraints on basin 

response (Bloschl, 2005; Merz et al., 2006; Yadav et al., 2007; Zhang et al., 2008; Tumbo 

and Hughes, 2015). In most of these approaches, the hydrological response behaviour of the 

basins are estimated and then regionalised in an uncertainty framework (Yadav et al., 2007; 

Tumbo and Hughes, 2015). Tumbo and Hughes (2015) used an approach that is implemented 

in an uncertainty framework within the GW Pitman hydrological model, and involves the use 

of hydrogical signatures such as mean monthly streamflow (MMQ), mean monthly 

groundwater recharge, Q10, Q50 and Q90 on the flow duration curve as well as the percent 

time of zero flows to constrain generated ensembles from which behavioural parameter sets 

are identified. A detailed explanation of this approach is presented in section 2.11. It can be 

concluded that automatic and manual calibration approaches in hydrological models have 

both merits and drawbacks. An approach that considers the strengths of both approaches 
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(manual and automatic), similar to that developed by Boyle et al. (2000), could improve 

calibration of hydrological models.  

 

2.7 Hydraulic modelling in wetlands 

The importance of two-dimensional (2D) hydraulic modelling in understanding hydraulic 

characteristics of wetlands has been recognised by many authors (e.g. Nicholas and Mitchell, 

2003; Thompson, 2004; Trigg et al., 2009; Karim et al., 2011; Schumann et al., 2013; Chen 

et al., 2015). Unlike remote sensing data which have spatial and temporal limitations, 2D 

models can provide useful information to understand wetland dynamics, including spatial and 

temporal inundation extents and water depths (Shen et al., 2015; Teng et al., 2015). Some of 

the well-known 2D hydraulic models include LISFLOOD-FP (Bates and De Roo, 2000; 

Bates et al., 2010), MIKE 21 (DHI, 2007), SOBEK (Stelling et al., 1998), ISIS-2D (Liang et 

al., 2006) and TUFLOW (Syme, 1991). These models vary according to their algorithms and 

spatial applicability (Gall et al., 2007; Pender and Néelz, 2007). A full solution of the Saint-

Venant shallow water equations or simplified representations (i.e. a version in which the 

inertia terms are ignored in the Saint-Venant shallow water equations) can be used in these 

models (Hunter et al., 2007). However, in most cases, the application of the full Saint-Venant 

shallow water equations in very complex topographies using finite difference, finite element 

or finite volume approaches may result in model instability due to the highly nonlinear and 

hyperbolic nature of the governing equations (Hunter et al., 2007). Thus, the simplified Saint-

Venant shallow water equations have been used in many 2D hydraulic models (Teng et al., 

2017). In shallow water equations, the vertical component of flow is assumed to be 

considerably smaller compared to the horizontal component of flow (Dawson and Mirabito, 

2008). Among the various hydraulic models, MIKE21 and the LISFLOOD-FP have recently 

been applied to a number of studies in Africa e.g. Beck and Basson (2008), Schoen et al. 

(2014), Pamba et al. (2016), Schumann et al. (2013), Zahera (2011); Neal et al. (2012); 

Coulthard et al. (2013), Fernández et al. (2016). The LISFLOOD-FP model is a non-

commercial model, whereas MIKE 21 model is commercial. The two models are described in 

the following sections. 
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2.7.1 MIKE 21 hydraulic model 

The MIKE 21 hydraulic model is a professional engineering software package developed by 

the Danish Hydrological Institute (DHI) with the main purpose of simulating surface flows, 

water quality, sediment transport, and waves in coastal and estuarine environments. However, 

the model can also be applied to floodplains, lakes and reservoirs (DHI, 2007). The model 

applies depth-averaged Saint-Venant equations and uses an implicit finite difference scheme 

to solve for continuity and momentum on each grid mesh covering the whole model domain 

(Petersen and Fohrer, 2010; Karim et al., 2012; Teng et al., 2015). The main model inputs 

include topography (DEM), boundary conditions (inflows and outflows), initial conditions, 

rainfall, evaporation, infiltration, bed roughness and other parameters such as eddy viscosity 

(DHI, 2003; 2007; Karim et al., 2015). The main outputs of the model consist of time series 

of water depths and flow for each grid mesh defined in the model domain (Karim et al., 

2015). The original version of the model has undergone several modifications, including the 

improvements to the flooding and drying routines, the incorporation of routines for 

describing hydraulic structures (broad-crested weir flows, hydraulic jumps, dam-break 

flows), and modelling supercritical flows (McCowan, 2001). Some of the applications of 

MIKE21 in Africa include Beck and Basson (2008), Schoen et al. (2014) and Pamba et al. 

(2016), whereas applications outside Africa include Karim et al. (2012), Wen et al. (2013a), 

Karim et al. (2014), Teng et al. (2015), Zhang and Werner (2015) and Czgani et al. (2016). 

However, it can be noted that there are relatively few reported applications of this model in 

Africa.  

 

2.7.2 LISFLOOD-FP hydraulic model 

The LISFLOOD-FP model was developed at Bristol University in the United Kingdom for 

the purpose of simulating river flooding and floodplain inundation in data-scarce areas (Bates 

and De Roo, 2000; Bates et al., 2010). The model includes two equations that solve 

continuity of mass for each cell and continuity of momentum between cells (Neal et al., 

2012). The model uses an explicit finite difference technique to solve the Saint Venant 

shallow water equation with the advection component ignored and the acceleration, water 

slope and friction slope components retained (Schumann et al., 2013; Fernández et al., 2016). 

The motivation for the above approach is that the advection component is considered to be 

negligible in most floodplains (Hunter et al., 2007; Bates et al., 2010). The most recent 

versions of this model include the introduction of a local inertial term to the diffusive wave 
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equation with the aim of reducing the computation cost (Bates et al., 2010) and the inclusion 

of a sub-grid approach (Neal et al., 2012). The sub-grid approach is incorporated in the base 

model (Bates et al., 2010), and provides for hydraulic characteristics of channels that are 

smaller in size compared to the grid size. Additionally, the LISFLOOD-FP has speed 

advantages for large domains as well as application in data scarce areas. A full description of 

the development of the sub-grid approach can be found in Neal et al. (2012), while 

Figure 2.10b presents a summary of the structure of the sub-grid approach.  

The model inputs include upstream and downstream boundary conditions (discharge and 

water level), topography (DEM), river bathymetry (width and depth, bed elevation) and 

channel and floodplain roughness. In data-scarce areas where most of the river bathymetry 

data are not available (e.g. bankfull depths, bed elevation), the model estimates these 

variables using the hydraulic geometry equation of Leopold and Maddock (1953) that defines 

the relationship between width and depth. The simulated results consist of time series of 

channel and floodplain inundation extent, storage and water depths in the wetland. The model 

is capable of simulating inundation for both small and large wetlands (1 000 to 100 000 km
2
) 

at a high spatial-temporal resolution. Some of the LISFLOOD-FP model applications in 

Africa include to the Lower Zambezi Delta (Schumann et al., 2013), the Inner Niger Delta 

(Zahera, 2011; Neal et al., 2012; Coulthard et al., 2013), the Blue Nile (Yan et al., 2014), the 

Logone floodplain in Cameroon (Fernández et al., 2016) and a significant number of studies 

outside of Africa (e.g. Hunter et al., 2005a; Alsdorf et al., 2007; Wilson et al., 2007; 

Biancamaria et al., 2009; Trigg et al., 2009; de Almeida and Bates, 2013; Trigg et al., 2013; 

Wood et al., 2016). 
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Figure 2.10: Conceptual diagram of the LISFLOOD-FP base model (a), sub-grid solver (b), 

and sub-grid section (c) (Source: Neal et al., 2012).  
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2.8 Uncertainties in hydrological and hydraulic modelling  

In recent years, the need to explicitly quantify uncertainty in modelling results has been 

widely advocated (Sivapalan et al., 2003; Wagener et al., 2003; Pappenberger and Beven, 

2006; Yadav et al., 2007; Hughes et al., 2010; Sawicz et al., 2011; Kapangaziwiri et al., 

2012). Uncertainty analysis provides a fundamental guide to quantify the reliability of model 

simulations for both research and practical uses (Wagener and Gupta, 2005; Pappenberger et 

al., 2006). Liu and Gupta (2007) argued that to address uncertainty issues, uncertainty should 

be well understood, quantified and reduced to an acceptable degree. Therefore, understanding 

of uncertainty is vital for its quantification and reduction in modelling. The three major 

sources of uncertainty in modelling include those associated with the model structure, model 

input data and model parameters (Refsgaard et al., 2005; Di Baldassarre and Montanari, 

2009). These sources of uncertainty are not necessarily independent, as they can interact in 

complex ways (Beven, 2005; Renard et al., 2010; Beven, 2016; Jensen and Wu, 2016). For 

example, a perfect model structure will not produce acceptable results if both model inputs 

and parameters are not correct (Beven, 2005). Moreover, model structural uncertainty can 

hinder identification of a parameter to represent a certain process, and the uncertainty in the 

calibrated parameters may affect model results (Wagener and Wheater, 2006). Thus, 

uncertainty analysis should consider all sources of uncertainty together as they interlink.  

 

2.8.1 Model input data uncertainty 

Input data uncertainties may arise from different sources related to sampling, measurements 

and interpolation methods (Renard et al., 2010). Uncertainties due to model input data are 

generally high in data-scarce regions (Hughes et al., 2010; Hughes and Mantel, 2010; 

Mcmillan et al., 2012; Hrachowitz, et al., 2013; Hughes, 2013). Discharge data are needed to 

validate both hydrological and hydraulic model simulations or as inputs to hydraulic models. 

Unfortunately, many rivers in Africa are not gauged, and where rivers are gauged, data are 

generally of poor quality (i.e. short periods and contain outliers), and in some cases, are 

affected by upstream water resource developments (Hughes et al., 2010; Hughes and Mantel, 

2010). Although some wetlands are linked to narrow river channels upstream and 

downstream, where inflows and outflows can be quantified, flow patterns in these channels 

are frequently unknown (Fekete et al., 2012). The majority of wetlands remain totally 

ungauged (Griensven et al., 2008; Wen et al., 2013; Bates et al., 2014). Many gauging 
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stations are based on rated natural river sections rather than flow gauging structures (Di 

Baldassarre and Montanari, 2009; Guerrero et al., 2012). The stage-discharge relationships 

need to be based on gauging observations across a representative range of discharges (Coxon 

et al., 2015). It is not only difficult to achieve this with limited resources and remote 

locations, but there is also the possibility that channel hydraulic characteristics might change 

over time due to scouring or sedimentation (Di Baldassarre and Claps 2010; Westerberg et 

al., 2011). This, therefore, necessitates frequent updating of the stage–discharge relationships. 

However, most of the stage–discharge relationships are not updated frequently, and this 

inevitably introduces uncertainty in discharge data and in turn the validation of model 

simulation results (Guerrero et al., 2012; Sikorska et al., 2013; Coxon et al., 2015). 

Rainfall, as one of the major inputs to hydrological models, varies in time, space and altitude 

because of multi-climatic mechanisms. The measurement of rainfall requires weather stations 

appropriately distributed across the basin; however, this is not the case in many basins in 

Africa (Hughes, 2006; Nicholson, 2013; Awange et al., 2016). Apart from the spatial 

distribution of gauges, uncertainty in ground-based rainfall data is also associated with gauge 

type and height, windshield, exposure, and interpolation methods (WMO, 1983). Although 

gridded and satellite rainfall datasets are used as alternative sources of rainfall data, they are 

associated with a number of uncertainties related to estimation, and sampling techniques, 

retrieval algorithms and topography (Villarini et al., 2008; Aghakouchak et al., 2010; 

Awange et al., 2016; Dahri et al., 2016). The other sources of uncertainties in satellite-based 

rainfall are related to estimation techniques based on cloud top reflectance and thermal 

radiance, as well as infrequent satellite overpasses (AghaKouchak et al., 2009; Bytheway and 

Kummerow, 2013). For instance, the use of high-resolution infrared spectral band has 

resulted in the unrealistic estimation of rainfall values because the rainfall is estimated from 

cloud-top temperature, which is highly affected by the height of the clouds, and as a result, 

orographic rainfall events in mountainous areas are frequently not captured (Gebregiorgis and 

Hossain, 2013; Awange et al., 2016). Generally, the influence of altitude on rainfall variation 

is ignored in many satellite-based rainfall datasets (Hughes, 2006; Dahri et al., 2016). The 

CRU (Climate Research Unit) gridded long-term monthly rainfall (1901 to date) was 

estimated using available local ground-based rainfall (i.e. fewer stations were used in some 

areas which affect the interpolation process) (Harris et al., 2014). Moreover, some of the 

earlier records are clearly unreliable, and it is evident that they were infilled using long-term 

mean monthly values.  
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Potential evapotranspiration (PET) is an additional important hydrological model input which 

is normally estimated from climate variables (i.e. solar radiation, wind, temperature, 

atmospheric pressure and water vapour deficit), using different empirical formulas such as 

that by Penman (Penman, 1948; Allen et al., 1998), Hargreaves (Hargreaves and Allen, 2003) 

and others as presented by Lu et al. (2005) and Esmaeilabadi (2014). The PET data estimated 

using these methods vary with data inputs and assumptions made during computations 

(Grismer et al., 2002). The climatic variables used to estimate the PET data are mostly 

estimated from meteorological stations which are point-based stations. As a result, the 

computed PET values are not representative of the basin PET (Hughes, 2007; Long et al., 

2014). The introduced errors in the estimated basin PET can inevitably affect the simulated 

model results. Global satellite-based PET datasets have recently been used as another source 

of PET data (Allen et al., 2011). One of the major challenges in applying some of the global 

satellite-based PET datasets is related to their resolution and they tend to be too coarse for 

application at small scales (Allen et al., 2011; Westerhoff, 2015). The MODIS 16 PET 

product has a pixel resolution of 1 km × 1 km and is derived from remote sensing data and 

global meteorological data (Mu et al., 2011). The use of global meteorological data, which 

are mostly not representative of climatic variations, for the computation of the MODIS16 

PET, is regarded as one of the weaknesses of this product (Trambauer et al., 2014; 

Westerhoff, 2015). As a result, application of the MODIS16 PET in modelling has resulted in 

under- or over-estimation of model simulations (Mu et al., 2011; Jovanovic et al., 2015; 

Westerhoff, 2015; Rafiei et al., 2017). Moreover, in some global datasets, the PET values are 

derived using simplified assumptions as applied in the Penman method or interpolated from a 

limited number of available ground-based values. 

Topography is one of the key model inputs in hydraulic models. In data-scarce regions of 

Africa, ground-based topographical data are frequently not available, and freely-available 

DEMs are therefore used to represent topographical characteristics in the model setup (e.g. 

SRTM, ASTER and GTOP30). These DEMs vary depending on the method of acquisition 

(Rodriguez et al., 2006; Bates et al., 2014; Yan et al., 2015). For example, Radar-based 

technology applied in the SRTM could neither penetrate the water surface nor the full 

vegetation height (Sanders, 2007; O’Loughlin et al., 2016). As a result, the SRTM elevation 

data are elevated in some places (i.e. they do not represent ground elevations). Thus, unless 

the vegetation effects are corrected, the application of this DEM, particularly in densely 
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vegetated areas, would result in unrealistic model results (Baugh et al., 2013; Teng et al., 

2017).  

Channel bathymetry data are also required in setting up hydraulic models. Generally, this 

information is rarely available for many rivers. In some cases, the river bathymetry data are 

estimated through surveying river reaches (Trigg et al., 2009; Di Baldassarre et al., 2010; 

Rudorff et al., 2014) for a few representative sections. Clearly, this technique is always 

expensive, and sometimes the few selected sections might not be representative of the entire 

river network. In some studies, river bathymetry data have been extracted from high-

resolution satellite data (Biancamaria et al., 2009; Neal et al., 2012; Kreiselmeier, 2015; Yan, 

2015; Edwards et al., 2016). Even though this approach appears to be an attractive option, 

high-resolution satellite images are often not available for many regions in southern Africa. It 

is also possible to obtain the river bathymetry data from the available global datasets, such as 

Andreadis et al. (2013) and Yamazaki et al. (2014). In most datasets, the river cross-section 

values were derived from low-resolution DEMs (e.g. the 15-arcsecond SRTM DEM), which 

do not correctly represent the river morphology and the estimated values are unrealistic. 

Within other datasets, empirical equations (e.g. Leopold and Maddock, 1953; Dingman and 

Sharma, 1997) were applied to derive river cross-section values, but it is clear most of the 

local channel variations are not captured by the empirical equations (Yamazaki et al., 2014).  

 

2.8.2 Model structure uncertainty 

A model is an abstract and simplified representation of the real-world basin processes 

(Refsgaard et al., 2005). Basin processes interact in a complicated manner, and 

oversimplification of these processes in a model structure may affect the quality of model 

results (Renard et al., 2010; Hughes et al., 2011; Gupta et al., 2012). Moreover, the spatial 

and temporal scale of analysis contributes to structural uncertainty in modelling (Wagener 

and Gupta, 2005; Refsgaard et al., 2007; Beven et al., 2008; Hrachowitz, et al., 2013; Hughes 

et al., 2013). Despite the recognised sources of structural uncertainty, only a few studies have 

focused on assessing model structure uncertainty (e.g. Butts et al., 2004; Refsgaard et al., 

2006; Zhang et al., 2011), because it is often difficult to separate these uncertainties from 

those derived from other sources, and structural uncertainty depends heavily on other sources 

of uncertainty (Beven, 2005; Warmink et al., 2010; Zhang et al., 2011). For example, a more 

detailed model structure requires a large number of parameters, and quantification of these 

parameters is often difficult. As a result, the model predictability becomes low. Therefore, an 
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attempt to change the model structure will inevitably affect both model inputs and model 

parameters. Refsgaard et al. (2006) provide a review of different strategies developed to 

assess structure uncertainties. These strategies include an increase of the parameter space to 

account for structural uncertainty, as applied by Van Griensven and Meixner (2004), 

estimation of the structural uncertainty term, as applied by Radwan et al. (2004), the use of 

multiple conceptual models, as applied by Butts et al. (2004) and Visser et al. (2000) and the 

use of expert elicitation, as applied by Meyer et al. (2004).  

 

2.8.2 Model parameter uncertainty 

Parameter uncertainty arises from different sources, which affects model accuracy and 

reliability (Ao et al., 2006). According to Ao et al. (2006), parameter uncertainty can be due 

to 1) quality and quantity of model input data; 2) model structure; 3) initial parameter ranges; 

4) choice of objective functions to evaluate the model; 5) optimisation algorithms and; 6) 

equifinality. The lack of accurate basin physical characteristics (e.g. soils, geological, 

topographical and land cover) which are used to estimate model parameters affects the 

parameterization processes. In most cases, these data are typically not available locally, and 

global datasets offer an alternative source for these types of data (e.g. Lehner et al., 2006; 

Rodriguez et al., 2006; Andreadis et al., 2013; Hengl et al., 2014). However, in most cases, 

they are inconsistent, erroneous and not available at the required resolution or in the correct 

form (Andersson et al., 2015). For example, soil depths and/or water capacity are required to 

derive parameters related to soil infiltration and subsurface storage; however, these datasets 

mostly provide information only on soil types. Moreover, other datasets provide information 

on geological formations, with no details of fracture density, storativity and transmissivity 

values, which are required for model calibration. This suggests that inappropriate basin 

physical data may lead to incorrect estimates of parameter values. Thus, it is always vital to 

examine and identify the datasets that suit the intended purpose (Winsemius, 2009; Yan et 

al., 2015). Discharge data used in calibration have been found to contain a number of types of 

errors, including measurement errors, leading to incorrectly estimated parameter values (Ao 

et al., 2006). Uncertainties in the objective functions used during calibration have impacts on 

the final parameter values. Different objective functions may lead to different parameter sets 

after calibration. Several frameworks are available to understand and reduce parameter 

uncertainties, including a priori parameter estimation, which is appropriate for data-scarce 
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areas (Duan et al., 2006; Zhang et al., 2008; Kapangaziwiri and Hughes, 2008; Hughes et al., 

2010).  

 

2.9 Dealing with uncertainty in hydrological and hydraulic modelling 

Different uncertainty frameworks are available to quantify the sources of uncertainty and 

facilitate parameter estimation and data assimilation (Beven and Binley, 1992; Beven and 

Freer, 2001; Vrugt et al., 2003; Wagener et al., 2003; Abbaspour, 2004; Moradkhani et al., 

2005; Rubarenzya et al., 2007; Wagener and Kollat, 2007; Yadav et al., 2007; Wagener and 

Montanari, 2011; Kapangaziwiri et al., 2012). Some of these frameworks include GLUE 

(Beven and Binley, 1992), DYNIA (Wagener et al., 2003), SCEM-UA (Vrugt et al., 2003), 

BATEA (Kavetski et al., 2006) and SUFI-2 (Abbaspour, 2004).  

The Generalised Likelihood Uncertainty Estimation (GLUE; Beven and Binley, 1992): The 

main purpose of the development of GLUE was to account for different sources of 

uncertainty, such as that associated with the model structure, model parameter values and 

model inputs in hydrological modelling. A Monte Carlo sampling technique is used to 

generate parameter sets from a priori distributions of parameter values, and likelihood 

measures are used to separate non-behavioural and behavioural sets. This technique is one of 

the most widely-applied uncertainty approaches, and an example application of this 

framework in data-poor basins of Africa is a study by Winsemius et al. (2009) in the 

Luangwa River basin. GLUE framework has also been applied together with the LISFOOD-

FP in different studies to estimate uncertainties in the simulated inundation characteristics 

(e.g. Bates et al., 2004; Hunter et al., 2005b; Pappenberger et al., 2006; Pappenberger et al., 

2007; Di Baldassarre et al., 2009). For example, Pappenberger et al. (2007) developed a 

fuzzy methodology that applied this uncertainty framework together with the LISFLOOD-FP 

to estimate uncertainties in the model results whereas, Hunter et al., (2005b) applied the 

framework to estimate uncertainties in the model inputs. Despite its application, other studies 

such as Christensen (2004), Montanari (2005), Montovan and Todini (2006) and Stedinger et 

al. (2008) have reported some drawbacks to this framework. Montovan et al. (2007) argued 

that the prediction limits derived from the GLUE tend to be different from those estimated 

from other classical and widely-accepted statistical methods. Moreover, there is as yet no 

method developed to establish the threshold values used to distinguish behavioural and non-

behavioural model runs (Montanari, 2005; Blasone et al., 2008b; Winsemius et al., 2009).  
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The Dynamic Identifiability Analysis (DYNIA: Wagener et al. (2003): The main purpose of 

DYNIA was to reduce the effects of parameter non-identifiability through identifying the 

model structure and estimation of parameters that are most appropriate. The method locates 

periods of high identifiability for each parameter and detects the failure of the model structure 

(Ouyang et al., 2014). Based on the uniform prior distribution of the feasible parameter 

space, a Monte Carlo sampling technique is used to examine the behavioural parameter 

space. The objective function associated with each parameter set is transformed, and the 

gradient of the cumulative probability distribution of the transformed values can be used to 

estimate the degree of identifiability of each parameter within a parameter space (Wagener et 

al., 2003). One of the strengths of this method is its ability to measure the changing levels of 

parameter identifiability over time, and the flexibility of choosing model performance criteria 

(Wagener et al., 2003). Moreover, this approach can be applied in any model to evaluate its 

structure. 

Bayesian Total Error Analysis (BATEA) by Kavetski et al. (2002; 2006): The main purpose of 

this approach was to understand data and model uncertainties in hydrological modelling. The 

method identifies sources of uncertainties that affect calibration and prediction of 

hydrological models (Thyer et al., 2009; Renard et al., 2010). The method is among few 

frameworks that consider most of the sources of uncertainty in modelling (Ajami et al., 

2007). Its major strength is the ability to use the independent prior information to obtain a 

well-posed and useful inference, even when the data alone may not be sufficient (Kavetski et 

al., 2006a; Thyer et al., 2009). Conversely, the BATEA approach is computationally 

intensive as it includes different numerical methods. For example, Monte Carlo sampling is 

combined with fast Newton-type optimisation methods and Hessian-based covariance 

(Kavetski et al., 2006b). 

The Shuffled Complex Evolution Metropolis (SCEM-UA) by Vrugt et al. (2003): This 

framework uses a Markov Chain Monte Carlo (MCMC) sampling algorithm to infer the 

posterior distribution of hydrological parameters. According to Efstratiadis and 

Koutsoyiannis (2010), SCEM-UA combines both uncertainty assessment and parameter 

optimisation procedures using a modified version of the Shuffled Complex Evolution (SCE-

UA) method for global optimisation developed by (Duan et al., 1992). The method generates 

explicit estimates of parameter uncertainty as well as the prediction of uncertainty bounds 

(Vrugt et al., 2003; Ajami et al., 2007). Moreover, SCE-UA is one of the most-used methods 

for the automatic calibration of hydrological models (Ndiritu, 2009).  
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Sequential Uncertainty Fitting, version 2 (SUFI-2) by Abbaspour et al. (2004): SUFI-2 is 

mainly used for uncertainty analysis and calibration in the SWAT model (Abbaspour et al., 

2004; 2015). It is a multi-site and semi-automated global search procedure that is used to 

combine parameter calibration and uncertainty predictions in the SWAT model (Schuol and 

Abbaspour, 2006). Generally, parameter uncertainty assessment is used to represent 

uncertainties from all other sources in the model, and Latin hypercube sampling is used to 

identify independent parameter sets (Abbaspour et al., 2007; Yang et al., 2008). Objective 

functions and parameter ranges are defined from physical understanding of the basin, and 

parameters are adjusted manually in an iterative mode between auto-calibration runs (Schuol 

and Abbaspour, 2006). The results from uncertainty and sensitivity analyses can be used to 

estimate optimal parameter sets depending on an understanding of the basin processes 

(Arnold et al., 2012). Among the drawbacks of the method is that a modeller is required to 

check the suggested posterior parameter sets; thus, there is a need to have a prior 

understanding of the parameters and their impacts on model outputs (Yang et al., 2008).  

 

2.10 Uncertainty analysis framework for ungauged basins in the southern 

African region 

Although it would be challenging to apply the majority of uncertainty frameworks in data-

scarce areas (Hughes, 2015a), a few approaches suitable for application to these regions are 

available (e.g. Ao et al., 2006; Duan et al., 2006; Yadav et al., 2007; Kuzmin et al., 2008; 

Zhang et al., 2008; Yao et al., 2012). In recent years, uncertainty approaches for hydrological 

predictions in southern Africa with the GW Pitman model have been proposed 

(Kapangaziwiri and Hughes, 2008; Hughes et al., 2010; Tumbo and Hughes, 2015). The 

Kapangaziwiri and Hughes (2008) approach is based on the use of the basin physical and 

climatological characteristics (e.g. land cover, topography, geology, soils, rainfall and 

evapotranspiration) to establish a priori parameter sets using different empirical formulas and 

a regionalisation of the stream flow signatures used to constrain behavioural ensembles. This 

approach was applied in different studies within southern African basins (e.g. Kapangaziwiri 

et al., 2012; Tshimanga 2012). One of the recent approaches focused on using hydrological 

signatures as constraints (Hughes, 2015a; Tumbo and Hughes, 2015). The hydrological 

constraints used in this approach include mean monthly streamflow (MMQ), mean monthly 

groundwater recharge, Q10, Q50 and Q90 on the flow duration curve as well as the percent 
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time of zero flows. The method involves two steps, as indicated in Figure 2.11. The initial 

step uses a priori parameter distributions under Monte Carlo sampling to generate ensembles 

for the incremental natural flows of each sub-basin, and hydrological signatures are used to 

constrain all possible outputs to those considered behavioural. An ensemble can be 

considered behavioural when its bounds fall within all established constraints. In step 2 the 

behavioural parameter sets are re-sampled and the entire model is run for all sub-basins 

linked together to generate the cumulative streamflow volumes at the outlets of all sub-

basins. The final simulated flows can be further constrained using available observed data. 

This approach is simple and flexible and is, therefore, suitable for ungauged basins as it does 

not rely on the time series of observed data to establish the constraints. The approach has 

been successfully applied to the Great Ruaha River basin (Tumbo and Hughes, 2015), 

Caledon River basin (Hughes, 2015b) and five river basins in Swaziland (Ndzabandzaba and 

Hughes, 2017).  

 

 

Figure 2.11: A two-stage approach to uncertainty analysis used within the GW Pitman model 

(Source: Hughes, 2015a). 
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2.11 Conclusions 

In Africa, many river basins contain substantial wetland areas, and these wetlands are 

hydrologically connected to river channels. The total integrity of the two systems depends on 

how they interact. There is evidence to illustrate how upstream water resource development 

changes affect wetland hydrological inputs, and these impacts inevitably modify channel–

wetlands exchanges as well as downstream river flow regimes. Understanding of both the 

impacts upstream changes have on wetlands and the channel–wetland exchanges is important 

to achieve sustainable management of many river basins in Africa. This chapter discusses 

different issues related to large wetlands and their exchanges with river channels, and 

different methods to quantify channel–wetland exchanges in data-scarce river basins. The 

literature reviewed in this chapter suggests that freely-available EO data can provide useful 

information for understanding wetland dynamics; however, their application is limited due to 

their spatial resolution and temporal coverage. Modelling approaches remain useful for 

understanding wetland dynamics and their influence on flow regimes at the basin scale.  

Different types of basin-scale models are available for modelling different basin processes; 

however, in large wetlands, the details captured in these models cannot effectively represent 

the interactions of these wetlands with river channels. As a result, calibration of these models 

in large wetlands is very difficult and does not provide satisfactory model simulations. The 

available detailed hydraulic models can provide information related to wetland dynamics, and 

this information can be used to establish parameters required in basin-scale models. For 

example, Wen et al. (2013b) applied a MIKE FLOOD hydrodynamic model to understand 

wetland dynamics and used the simulated results (i.e. water level, inundation area and 

relationship between stream and wetlands and among wetlands) to estimate data and 

parameters required in the Integrated Quality and Quantity Modelling (IQQM) hydrological 

model in the Macquarie floodplain in Australia. Therefore, the approach that uses both 

hydraulic and basin-scale models to model the influences of large wetlands on river flow 

regime is suitable for river basins that include large wetlands. 
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CHAPTER THREE: BASIN CHARACTERISTICS, DATA 

SOURCES AND QUALITY 

 

The physical and climatic settings (e.g. rainfall, evapotranspiration, topography, slope, 

geology, and land cover) influence basin processes including the generation of runoff. 

Physical characteristics determine the understanding of hydrological processes that is used to 

derive different model parameters, whereas rainfall and evapotranspiration are the main 

inputs for most hydrological models. Although these characteristics are generally important 

for the modelling process, in the southern African region they are frequently not available. 

Global datasets provide alternative data sources to understand the different characteristics and 

processes in basins and have been applied in different studies in this region (e.g. Kashaigili, 

et al., 2006; Winsemius et al., 2009; Tshimanga et al., 2011; Neal et al., 2012; Hughes and 

Slaughter, 2015; Tumbo and Hughes, 2015; Masafu, 2016; Kossi, 2017). Some of the global 

datasets include the SRTM (Farr and Kobrick, 2000); the SoilGrids 1 km (Hengl et al., 2014); 

the USGS land cover (USGS LCI: Broxton et al., 2014); the ARC2 satellite rainfall (Novella 

and Thiaw, 2013); and the CRU TS v. 3.22 monthly rainfall (Harris et al., 2014) which 

provide topography, soil, land cover and rainfall data, respectively. Satellite images have also 

been used to detect different land cover types such as vegetation and open water bodies in 

many places in the southern African region and the results have been used to calibrate and/or 

validate models (Milzow et al., 2009; Meier et al., 2011). 

The current study focused on three basins containing large wetlands within southern Africa: 

1) the Upper Zambezi River basin, 2) the Luangwa River basin, and 3) the Upper Great 

Ruaha River basin as indicated in Figure 3.1. The first two are part of the Zambezi River 

system, and the latter is part of the Great Ruaha River system in Tanzania. The southern 

African region is characterised by variable climatic conditions from tropical dry to humid 

tropical (Valimba, 2004). As a result, the three basins experience different climatic conditions 

depending on their spatial proximity. Apart from the climatic conditions, physical 

characteristics such as topography, soils, and geology vary extensively within the region. 

Therefore, this chapter discusses in detail the physical and climatic settings of the three 

selected basins and their associated wetlands using information that was obtained from local 

and global datasets.  
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Figure 3.1: Locations of the three selected basins in southern Africa. 

 

3.1 Summary of the datasets used in this study 

Most of the data used in this study were obtained from global datasets. The topography and 

slope distributions were derived from the SRTM 90 m resolution dataset (Farr and Kobrick, 

2000). This DEM has an absolute vertical error of 5.6 m and a relative error of 9.8 m in 

Africa (Rodriguez et al., 2006) and has been widely applied in both hydrological (e.g. 

Tirivarombo, 2013; Tumbo and Hughes 2015; Mohobane, 2015), and hydraulic studies (e.g. 

Neal et al., 2012; Coulthard et al., 2013; Schumann et al., 2013; Fernández et al., 2016) in 

southern Africa. The Harmonised World Soil database (HWSD) version 1.2 (Nachtergaele et 

al., 2008) and the SoilGrids 1 km (Hengl et al., 2014) are the most recent available global 

soil datasets. Despite their low spatial resolution, they provide useful information that can be 

used to understand soil types and soil distribution in the basins where local data are not 

available. Hengl et al. (2014) provided some limitations associated with the SoilGrids 1 km 

dataset such as their coarse resolution and the use of low sampling density which is not 

representative of the spatial variation of soils. However, in comparison to the HWSD which 

has not been recently updated, the SoilGrids 1 km dataset (http://soilgrids.org) is the most 

http://soilgrids.org/
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recent soil dataset which is automated and flexible to use (Hengl et al., 2014; Nachtergaele, 

2014). Thus, this dataset was used to evaluate the distribution of the soil types found in the 

three selected basins. 

Global land cover datasets that are freely available include the Global Land Cover map 

(GLOBCOVER: Bontemps et al., 2011), Global Land Cover Facility (GLCF: Channan et al., 

2014), the Global Land Cover Characterisation (GLCC: Loveland et al., 2000) and the USGS 

Land Cover dataset (USGS LCI: Broxton et al., 2014). Recently, the USGS LCI has released 

a 0.5 km MODIS-based Global Land Cover Climatology for Africa. The dataset was 

prepared based on the collection of 5.1 MCD12Q1 land cover type data for 10 years starting 

from 2001 to 2010 (Broxton et al., 2014). Compared to other global datasets, such as the 

Global Land Cover Characterisation (GLCC) data, which were developed using one year of 

Advanced Very High Resolution Radiometer (AVHRR) land cover data (1992 to 1993), the 

USGS LCI included the variations of land cover for a period of 10 years and validated the 

results using high quality data (Broxton et al., 2014). Therefore, USGS LCI dataset is more 

accurate compared to the GLCC dataset and was therefore selected to inform the 

understanding of the land cover in all the study basins.  

Climatic data were obtained from both local and global datasets. Generally, there are a 

limited number of rainfall stations in these basins and, where available, they predominantly 

contain records with either missing values or poor quality data. Under these conditions, 

global rainfall datasets are the only data sources that provide continuous time series over the 

full spatial extent of the basins. The long-term monthly and daily rainfall data required for 

this study were obtained from the Climate Research Unit (CRU) at East Anglia University, 

UK (http://www.cru.uea.ac.uk/cru/data/hrg/cru ts 3.22/) (CRU TS v. 3.22: Harris et al., 2014) 

and the Climate Prediction Centre (CPC) within NOAA (National Oceanic and Atmospheric 

Administration) (ftp://ftp.cpc.ncep.noaa.gov/fews/fewsdata/africa/arc2/bin) (ARC2: Novella 

and Thiaw, 2013), respectively. The ARC2 dataset contains satellite-derived daily rainfall 

data gridded at 0.1° resolution and its records extend from 1983 to the present day (Novella 

and Thiaw, 2013). The CRU TS v. 3.22 (Harris et al., 2014) are long-term series of monthly 

rainfall data available at a coarse resolution (0.5° × 0.5° grids) and contain no missing values 

for the entire data period from 1901 to date. They were established by interpolation of 

available local rainfall data. However, due to the limitation of local rainfall stations in 

southern Africa, it is likely that the number of stations that contributed to the CRU rainfall 

estimation is very low in this region, thereby affecting the quality of the estimated rainfall 

http://www.cru.uea.ac.uk/cru/data/hrg/cru%20ts%203.22/
ftp://ftp.cpc.ncep.noaa.gov/fews/fewsdata/africa/arc2/bin
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values. The average monthly potential evapotranspiration (PET) and the mean monthly 

temperature data were obtained from the Climatic Data Portal within the International Water 

Management Institute (IWMI) (http://wcatlas.iwmi.org/) (New et al., 2002). These PET 

values were computed from the FAO Penman-Monteith equation (Allen et al., 1998) using 30 

years of observations of temperature, humidity, sunshine and wind speed from different 

weather stations around the world (Droogers and Allen, 2002). The computed values are 

presented in a grid format at a resolution of approximately 18 km × 18 km (New et al., 2002). 

The number of stations used to compute PET varies spatially according to the climatic 

variables used, hence errors in the calculated PET and temperature values are expected in 

areas where there are a limited number of meteorological stations.  

 

3.2 Luangwa River Basin 

The Luangwa River basin (approximately 15 × 10
4 

km
2
) is located in the eastern part of 

Zambia and it forms part of the Zambezi River system (Figure 3.2). This basin includes the 

Luangwa Rift Valley which is an extension of the Great East Africa Rift Valley (Beilfuss and 

Santos, 2001; Meier et al., 2011) and is bounded by the Nyika and the Viphya plateaus in the 

north and the Muchinga escarpment in the west (Ashton et al., 2001). The Luangwa River 

emerges from the north-east part of Zambia close to the Malawi border at 9°53’S and 

33°20’E, and it meanders along the Luangwa Rift Valley southwards until its confluence with 

the Zambezi River just upstream of the Cahora Bassa Dam in Mozambique (Figure 3.2). In 

the middle section of the Luangwa Rift Valley, the river flows across a large floodplain 

characterised by different floodplain features including old infilled channels, anabranches, 

small depressions and ox-bows (Gilvear et al., 2000). These features may influence the flow 

dynamics of the Luangwa River. While a number of hydrological studies have been 

conducted in the Luangwa River basin (e.g. Winsemius et al., 2008; 2009; Meier et al., 

2011), to the best knowledge of the author, there is no detailed study that has attempted to 

understand the influence of the Luangwa floodplain on the flow regime of the Luangwa 

River. The information on the factors that affect the flow regime of the Luangwa River is 

important not only for the operation of the Cahora Bassa Dam (Winsemius et al., 2008; 

Beilfuss, 2012; Kling et al., 2014), but also for the reduction of flood impacts downstream 

(Hrachowitz et al., 2013). 

 

http://wcatlas.iwmi.org/
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Figure 3.2: Location of the Luangwa River basin in the Zambezi River system. 

 

3.2.1 Topography and slope 

Topography is regarded as the first-order control of the hydrological response in basins 

(Sørensen et al., 2006; Milzow et al., 2009). In most cases, topography influences channel 

origins and the spatial distribution of the climatic variables such as rainfall, temperature and 

evaporation, whereas slope guides both the surface and the subsurface movement of water in 

a basin (Jarvis et al., 2004; Dennis and Dennis, 2012). Topography can also influence the 

movement and spatial variation/distribution of water in the wetlands. Sichingabula (1998) 

classified the topography of the Luangwa River basin into six zones: 1) escarpment, 2) hills, 

3) ridges and undulating surfaces, 4) plains and pans, 5) old alluvial zone, and 6) floodplain. 

Figure 3.2 and 3.3 present the topography and the slope distributions of the Luangwa River 

basin, respectively. Following the FAO slope classes (Table 3.1) (Jahn et al., 2006), high 

elevated areas such as the Muchinga escarpment and the Nyika plateau are classified as 

sloping to moderately sloping areas (i.e. slope values between 10% and 30%), whereas the 

Luangwa Rift Valley has low elevation values (mostly 254 m to 900 m) and slope values 

between 0% and 2%. The transitional areas between the highlands and the valley are 

characterised by the highest slope values (>31%).  
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Table 3.1: FAO slope classification 

Class Description % 

 1 Flat 0-0.2 

 2 Level 0.2-0.5 

 3 Nearly level 0.5-1 

 4 Very gently sloping 1-2 

 5 Gently sloping 2-5 

 6 Sloping 5-10 

 7 Strongly sloping 10-15 

 8 Moderately steep 15-30 

 9 Steep 30-60 

 10 Very steep >60 

  Modified from Jahn et al. (2006) 

 

 

Figure 3.3: Slope characteristics of the Luangwa River basin. 

 

3.2.2 Geology and soil characteristics 

Geological and soil characteristics influence surface and subsurface flow patterns and the 

distribution of the basin vegetation. The geology of the Luangwa River basin is characterised 

by Permian-Carboniferous, Jurassic-Carboniferous, Paleozoic-Precambrian (Persits et al., 

2002) and Karoo age sediments including sandstone, siltstone, mudstone and grit along the 

Luangwa Rift Valley (Astle et al., 1969; Gilvear et al., 2000; Van Straaten, 2002; Nyirenda, 

2012). The fault scarp is characterised by hard crystalline, igneous and metamorphic rocks of 
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Pre-Cambrian age (Astle et al., 1969), whereas the plateaus are dominated by quartzite, 

sandstones, granites and gneisses underlain by sedimentary rocks (Ashton et al., 2001).  

Ashton et al. (2001) grouped the soils of this basin into three groups: 1) moderately deep, 

well-leached feralitic soils dominating the northern, western and southeastern parts; 2) 

moderately deep sandy soils derived from quartzite, sandstones and alluvial material 

dominating the floor of the Luangwa Rift Valley; and 3) moderately deep, sandy loams 

particularly in areas underlain by limestone deposits. Figure 3.4 illustrates the distribution of 

the soil types found in the Luangwa River basin derived from the SoilGrids 1 km dataset. 

Ferralsols, Cambisols and Rigosols cover about 79% of the basin. Most of the highlands are 

covered by Ferralsols which are physically stable, deep and strongly weathered soils. The 

Regosols dominate large areas of the Luangwa Rift Valley, whereas the Arenosols dominate 

the upper sections of this valley. The Cambisols are weak and moderately developed soils 

whereas the Regosols are soils with very limited development that are of alluvial origin 

(Meek et al., 2016; Chesworth et al., 2016).  

 

 

Figure 3.4: Soil distribution in the Luangwa River basin (Source: Hengl et al., 2014).  
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3.2.3 Land cover and land use 

Land cover and land use control basin processes such as infiltration and evapotranspiration, 

thereby influencing the basin water balance. A detailed classification of land cover in the 

Luangwa River basin was documented by Astle et al. (1969). However, due to land cover 

changes, including self-modification of the river morphology as reported by Gilvear et al. 

(2000), it is important to understand the recent distribution of land cover in this basin. The 

land cover types displayed in Figure 3.5 show that wood-savannas dominate the highly 

elevated areas particularly in the north-west and western parts of the basin, while the 

Luangwa Rift Valley is characterised by a mixture of savanna types (e.g. Miombo-Mopane, 

Acacia-Combretum, Faidherbia-Combretum, and riparian woodland; Timberlake, 2000; 

Nyirenda, 2012). Permanent wetlands occupy 0.04% of the total basin area and are mostly 

located in the Luangwa Rift Valley. The main land use activities in this basin include tourism 

especially in the South and North Luangwa National Parks (located within the Luangwa Rift 

Valley), subsistence agriculture in rural areas, commercial farming such as maize and 

tobacco, as well as livestock rearing (Ashton et al., 2001).  

 

 

Figure 3.5: Land cover distribution in the Luangwa River basin (source: Broxton et 

al., 2014).   
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3.2.4 Climate 

A large part of the Luangwa River basin is located in Zambia whose climatic variables (e.g. 

temperature and rainfall) are highly influenced by altitude (Musambachime, 2016). Within 

the Luangwa River basin, the Luangwa Rift Valley experiences higher mean daily 

temperature (>38
º
C) than the surrounding plateau areas (e.g. Nyika) which are the coldest 

areas. October is the hottest month and July is the coldest month. Rainfall is highly controlled 

by the movement of the Inter-Tropical Convergent Zone (ITCZ), which occurs when the 

moist Congo air mass encounters the humid air from the South East Trade winds (Beilfuss 

and dos Santos, 2001; Musambachime, 2016). There are three dominant climatic seasons: 

cool dry (April to August), hot dry (September to October), and warm wet season (November 

to April) (Winsemius et al., 2008; Nyirenda et al., 2013). The southward movement of the 

ITCZ marks the beginning of the rainy season in the Luangwa basin especially starting from 

November. The dry season starts when the ITCZ reverses its movement towards the north 

around April (Musambachime, 2016). Considerable spatial and temporal variation in rainfall 

has been reported (Nyirenda et al., 2013; Tirivarombo, 2013). Tirivarombo (2013) noted that 

there is evidence of inter-annual rainfall variation in the Luangwa River basin which is 

related not only to change in the position of the ITCZ but also to the El Niño Southern 

Oscillation and La Niña (cold phase). For example, the El Niño in 1997/98 caused severe 

droughts in the surrounding region which resulted in significant reduction in stream flow in 

the Luangwa River (Beilfuss and Santos, 2001).  

 

3.2.4.1 Rainfall 

The monthly and daily rainfall data from the CRU TS V. 3.22 (Harris et al., 2014) and the 

ARC2 (Novella and Thiaw, 2013) were used in this study but in order to assess the reliability 

of these datasets, the rainfall estimates were compared with rainfall records from the local 

stations. A comparison was made between the annual rainfall values from local gauging 

stations and the CRU data for a similar period. Daily data are used in disaggregation of 

monthly to daily flows; where only the rainfall frequencies are used (see section 4.4 and 

Slaughter et al., 2015). Thus, there was no need to evaluate the daily rainfall magnitudes. 

Figure 3.6 illustrates the location of the local rainfall gauging stations and the respective 

CRU grids, and a comparison of annual rainfall from the local and the nearest CRU grid is 

shown in Figure 3.7. The relationship was fitted by a linear curve, and the results indicated 
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high values of coefficient of determination (R
2
) (R

2
 > 0.7). Despite some differences, this 

analysis indicated that the rainfall data from CRU TS can be used for this study.  

The long-term mean monthly rainfall data from area-averaged CRU monthly data for selected 

sub-basins were used to understand the rainfall seasonality in the Luangwa River basin. The 

seasonal analysis indicated that the Luangwa River basin receives a unimodal type of rainfall 

(Figure 3.8). Monthly peak values greater than 200 mm month
-1

 are experienced in the high 

elevated areas such as the Muchinga escarpment in the west. Moreover, the spatial variations 

of the annual rainfall indicate a considerable decrease in rainfall from mountainous areas 

(north and north-east) toward the centre of the Luangwa Rift Valley. These variations have 

been reported by other researchers such as Beilfuss and Santos (2001), Nyirenda (2012) and 

Nyirenda et al. (2013).  
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Figure 3.6: Location of the CRU TS 3.22 grids and the local rainfall stations in 

Luangwa River basin. 
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Figure 3.7: Comparison of the annual rainfall values between the CRU grids and some of the available local rainfall gauging stations in 

the Luangwa River basin. 
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Figure 3.8: Rainfall seasonality and the spatial variation of the mean annual rainfall for some of the sub-basins in the Luangwa River 

basin.  
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3.2.4.2 Temperature and potential evapotranspiration (PET) 

The minimum and maximum mean temperatures in the area are 15
o
C (June to July) and 36

o
C 

(October), respectively (Nyirenda et al., 2012). In October, the Luangwa Rift Valley 

experiences higher temperatures of up to 38
o
C whereas high elevated areas have temperatures 

between 25
o
C and 30

o
C (Nyirenda et al., 2013). Figure 3.9 indicates the spatial variation of 

the mean annual temperatures from the IWMI Climatic Data Portal (New et al., 2002). There 

is not a significant variation in the mean annual temperature in this basin, although somewhat 

higher temperature values have been recorded along the Luangwa Rift Valley (central part) 

and further downstream, suggesting the reason for the higher evapotranspiration rates in these 

areas (Ashton et al., 2001). The mean monthly potential evapotranspiration data were 

obtained from the IWMI Climatic Data Portal (New et al., 2002). September, October and 

November contribute more to annual evapotranspiration (≥ 9.4%) than other months 

(Table 3.2). However, the October contribution to the annual value is the highest in all sub-

basins (≥ 12%) and this can be related to the higher temperatures and low rainfall 

experienced during this month. Generally, the mean annual potential evapotranspiration for 

the Luangwa River sub-basins ranges between 1 476 mm y
-1

 and 1 756 mm y
-1

 (Table 3.2). 

Figure 3.10 shows the spatial variation of the mean annual potential evapotranspiration and 

indicates that the central and lower parts of the basin are characterised by higher potential 

evapotranspiration compared to the other parts of the basin.  
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Figure 3.9: Variation of the mean annual temperature in the Luangwa River basin. 
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Table 3.2: Sub-basin mean monthly potential evapotranspiration (PET) in the Luangwa River 

basin 

Sub-

basin 

Potential evapotranspiration (mm month
-1

)  

Annual 

(mm) Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sept 

L1 195 153 118 109 101 117 115 117 112 126 152 182 1598   

L2 200 166 123 110 102 117 114 114 109 122 147 178 1600   

L3 195 152 114 104 97 112 111 111 103 118 144 175 1536   

L4 204 171 125 114 105 119 116 116 105 116 142 177 1608   

L5 180 150 109 99 90 100 99 100 90 97 127 153 1497   

L6 203 152 114 104 97 112 111 111 103 118 144 175 1536   

L7 201 172 127 115 109 125 120 120 110 122 150 189 1669   

L8 198 159 115 108 102 118 115 115 104 116 145 182 1593   

L9 201 172 127 115 109 125 120 120 110 122 150 189 1669   

L10 200 147 107 103 97 110 107 109 98 111 140 171 1486   

L11 201 172 127 115 109 125 120 120 110 122 150 189 1669   

L12 201 172 127 115 109 125 120 120 110 122 150 189 1669   

L13 201 172 127 115 109 125 120 120 110 122 150 189 1669   

L14 201 172 127 115 109 125 120 120 110 122 150 189 1669   

L15 200 186 139 125 114 134 127 123 111 125 158 197 1756   

L16 200 186 139 125 114 134 127 123 111 125 158 197 1756   

L17 201 148 111 105 98 111 107 105 95 108 138 172 1479   

L18 201 148 108 105 98 111 106 105 95 108 137 171 1477   

L19 201 148 111 105 98 111 107 105 95 108 138 172 1479   

L20 201 148 108 105 98 111 106 105 95 108 137 171 1477   

L21 197 147 114 109 100 115 111 108 96 108 138 169 1497   

L22 197 147 114 109 100 115 111 108 96 108 138 169 1497   

L23 198 153 121 118 105 119 115 107 96 109 140 175 1550   

L24 190 150 118 113 102 116 110 102 92 104 137 169 1551   

L25 192 152 120 117 105 119 111 103 94 103 138 170 1563   

L26 198 171 131 126 113 130 121 115 101 115 150 186 1663   

L27 213 189 146 138 122 139 131 121 105 121 156 201 1699   

L28 205 181 139 131 116 133 123 113 97 111 148 188 1679   
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Figure 3.10: Variation of the mean annual potential evapotranspiration (PET) in the 

Luangwa River basin. 

 

3.2.4.3 Streamflow  

The Luangwa River, which meanders along the Luangwa Rift Valley, is mainly characterised 

by a sand-bed (Gilvear et al., 2000). It receives water from perennial and non-perennial 

tributaries draining from highly elevated areas including the escarpment (Winsemius et al., 

2009; Meier et al., 2011). The Lusemfwa River is the major tributary of the Luangwa River 

which drains an area of about 44 × 10
3
 km

2 
(see Figure 3.2).

 
The Lusemfwa River joins the 
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Luangwa River a few kilometres before the confluence with the Zambezi River (Beilfuss and 

Santos, 2001). The Luangwa River basin is divided into 28 sub-basins and their areas are 

presented in Table 3.3. 

There is a single gauging station on the Luangwa River (Great East Road station or L28 in 

this study) located at 14.9°S and 30.2°E close to its confluence with the Zambezi River 

(Figure 3.2). This gauging station measures the river discharge generated from an area of 

about 95% of the whole Luangwa River basin. The accessed data record is from 1930 to 

1991, which has no missing data. Based on the monthly flow data from this station, the 

streamflow displays a unimodal pattern with the rising limb starting in mid-November and 

peaking in February (1 860 m
3 

s
-1

). The rising limb of the hydrograph responds quickly to the 

peak rainfall amounts, and the recession limb starts rapidly from March until May and then 

decreases slowly up to September (Figure 3.11). The calculated mean annual runoff for the 

record period (1930 – 1991) is 18 × 10
9
 m

3
 with an annual coefficient of variation (CV) of 

0.46 which indicates a year-to-year variation of the annual runoff.  

 

Table 3.3: Catchment areas for sub-basins in the Luangwa River basin 

Sub-basin ID Area (km
2
) Sub-basin ID Area (km

2
) 

L1 12742 L15 668 

L2 4465 L16 4478 

L3 9168 L17 2841 

L4 2744 L18 5339 

L5 86 L19 5482 

L6 4647 L20 5426 

L7 4710 L21 3164 

L8 6150 L22 7231 

L9 2837 L23 4571 

L10 3490 L24 19235 

L11 2645 L25 8762 

L12 3063 L26 997 

L13 29 L27 9633 

L14 5950 L28 7617 
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Figure 3.11: Mean monthly hydrograph for the Great East Road station (L28) in the 

Luangwa River basin. 

 

3.2.5 Water use 

Generally, water is abstracted for domestic, industrial and agricultural use as well as the 

generation of Hydro Electric Power (HEP). A large part of the Luangwa River basin is 

dominated by rural populations, hence abstraction for domestic uses is minimal (Ashton et 

al., 2001). There are two main HEP dams linked to the Lusemfwa and the Mulungushi 

tributaries (Figure 3.2). The two tributaries join the Luangwa River a few kilometres 

upstream of its confluences with the Zambezi River, hence they have no direct impact on the 

Luangwa floodplain which is located on the middle section of the Luangwa River basin. The 

Mulungushi Dam has a surface area of 31 km
2
 and a storage capacity of 49.6 × 10

6
 m

3
 

whereas the values for Lunsemfwa Dam are 45 km
2
 and 72 × 10

6
 m

3
 (Figure 3.12) (Imasiku 

and Feilberg, 2012).  
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Figure 3.12: Mita-Hills or Lusemfwa Dam (Source: 

https://www.snpower.com/history/entering-3-new-markets-article757-271.html ). 

 

The irrigation area in the Luangwa River basin is approximately 101 km
2
 with 91 km

2
 along 

the Lusemfwa tributary and the rest in the eastern part of the basin (World Bank, 2010). 

Beilfuss (2012) and Spalding-Fecher et al. (2014) reported that about 120 × 10
6 

m
3
yr

-1
 of 

water (i.e. less than 1% of the mean annual runoff) is abstracted for irrigation purposes in the 

entire basin. Water abstractions from small dams and weirs have been reported (World Bank, 

2010), however, there is no reliable information on how they are operated. Figure 3.13 

illustrates some patches of the irrigation land in the Luangwa River basin. Although there are 

HEP and irrigation farms, their impacts on the total annual runoff of the Luangwa River basin 

are considered to be minimal (Beilfuss, 2012). 

 

https://www.snpower.com/history/entering-3-new-markets-article757-271.html
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Figure 3.13: Google Earth image showing some irrigation farms in the Luangwa 

River basin. 

 

3.2.6 Luangwa floodplain 

The floodplain is located along the Luangwa Rift Valley and it has been included in the list of 

wetlands of international importance (Ramsar site) since 2007. The Luangwa floodplain also 

includes the South and North Luangwa National Park, as well as various game reserves 

(Ramsar, 2007). The Luangwa floodplain is approximately 340 km in length and covers an 

area of about 2 500 km
2
 (Euroconsult, 2008; Meier et al., 2011) and its width varies between 

5 and 12 km. The inundation characteristics (i.e. extent and depths) are influenced by the 

topographical and morphological settings of the area between the river channels and the 

floodplain. For example, the middle section is wide with minor topographical variation, 

whereas the top and bottom sections tend to be narrow and somewhat steep. Most of the 

Luangwa River tributaries that originate from steep areas are responsible for the inundation 

of the floodplain. Thus, the Luangwa floodplain responds quickly to flooding water at the 

beginning of the wet season and depending on the local topography setup, water diffuses 

throughout the floodplain, and returns back to the main channel through different channels 

found in the floodplain.  

Generally, a large part of the floodplain is seasonally inundated with the exception of a few 

meander cut-offs and other depressions (Hughes and Hughes, 1992; Ashton et al., 2001). For 
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example, there are various lodges and camping sites along the floodplain, and some of them 

are adjacent to the main river (Figure 3.14). Figure 3.15 and 3.16 show a meander section of 

the Luangwa River during the wet and the dry seasons. During the wet season, water in the 

main channel is at bank height and the floodplain is inundated. In the dry season, the main 

channel in this section has low flow, and most of the floodplain areas are dry except for some 

areas with shallow water depths. The floodplain vegetation is sparse and includes a variety of 

species such as grasses, herbs, riparian and Miombo woodland, Berchemia discolor, 

Breonadia salicina, Diospyros mespiliformis, Trichilia emetic, Mopane African ebony, and 

Acacia albida (Hughes and Hughes, 1992; Gilvear et al., 2000; Ramsar, 2007).  

 

 

Figure 3.14: Google Earth image showing lodges and camping sites on the Luangwa 

floodplain. 
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Figure 3.15: The Luangwa River in the dry season (Source: http://www.patrickbentley.com/). 

 

 

Figure 3.16: The Luangwa River in the wet season (Source: http://www.patrickbentley.com/) 

  

http://www.patrickbentley.com/
http://www.patrickbentley.com/
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3.3 Upper Zambezi River basin  

The Upper Zambezi River basin extends down to the Victoria Falls (e.g. Beilfuss and Santos, 

2001; World Bank, 2010; Kling et al., 2014). However, the current study only considers the 

delineated area as shown in Figure 3.17 because the main focus of this study was to capture 

the Barotse floodplain and its entire drainage area. Therefore, the delineated areas include the 

Luena, Luanguinga, Lungue-Bungo and the Kabompo River sub-basins as well as the Barotse 

floodplain at the centre (Figure 3.17). Apart from the Barotse floodplain, some of these sub-

basins are characterised by small plains and flatlands such as the Lungue-Bungo River 

floodplain and the Lui River floodplain (Timberlake, 2000). The Barotse floodplain, as the 

second largest floodplain in the Zambezi River system, extensively regulates the flows of the 

Zambezi River (Moore et al., 2008; Beilfuss, 2012). Beilfuss (2012) reported that about 17 × 

10
9 

m
3
 of water was stored in the floodplain during the large flood of 1958. Despite its 

importance, the spatial and temporal variation of the water exchange processes between the 

Barotse floodplain and the river channels are not well known. As the Upper Zambezi River 

basin is regarded as the ‘water tower’ for the Zambezi River basin (Beilfuss, 2012), 

understanding the floodplain-channel exchange processes is useful not only for sustainability 

of the floodplain but also for other water resource developments downstream.  
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Figure 3.17: Location of the Upper Zambezi River basin in the Zambezi River system. 

 

3.3.1 Topography and slope 

The topography and slope characteristics of the Upper Zambezi River basin are illustrated in 

Figure 3.17 and 3.18, respectively. The upper sub-basins (north-east and north-west), 

including the Lungue-Bungo and Kabompo sub-basins, are characterised by high elevations 

between 1 041 m and 1 600 m and slope values between 5% and 15% (sloping to strong 

sloping areas according to FAO slope classification by Jahn et al., 2006; Table 3.1). The 

transitional areas between highlands and valleys have slopes between 16% and 62%, 

especially in the north-east. The high elevation and slope values suggest rapid runoff 

generation from these sub-basins. Flat to very gentle slopes (0% to 2%) dominate the Barotse 

floodplain, small plains and flatlands (centre of the basin) and these areas have elevation 

values between 1 000 m and 1 040 m.  

 



74 

 

 

Figure 3.18: Slope characteristics of the Upper Zambezi River basin.  

 

3.3.2 Geology and soil characteristics 

The Luena, Luanguinga, and Lungue-Bungo River sub-basins are underlain predominantly by 

sandstones and conglomerates covered by the Kalahari sands, whereas the Kabompo sub-

basin lies on the copper-rich sandstones, quartzite, arenites, and conglomerates (Ashton et al., 

2001). The Barotse floodplain lies on the Karoo basalts (about 150 m thick) overlain by moist 

and permeable Kalahari sands (Turpie et al., 1999; Winsemius et al., 2006; Flint, 2008). 

Black and grey fertile soils enriched by silts and humus, which resulted from the 

decomposition of vegetation and aquatic species, remain on top of the Kalahari sands when 

floods recede in the floodplain (Moore and Fenton, 2007).  

There is a considerable variation in the soil characteristics within the basin (Figure 3.19). The 

Barotse floodplain and small flatlands are dominated by Gleysols, which are commonly 

found in wetlands characterised by high groundwater levels. Aeronosols, which cover a large 

part of this basin (78%), are unconsolidated soils with low clay content and a high degree of 

porosity. Ferralsols dominate the north-eastern parts including the Kabompo sub-basin and 
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Kalene Hills and they are deeply weathered, acidic, leached and permeable soils with high 

iron content (Ashton et al., 2001). 

 

 

Figure 3.19: Distribution of different soils in the Upper Zambezi River basin (Source: 

Hengl et al., 2014). 

 

3.3.3 Land cover and land use 

Figure 3.20 illustrates that a large part of this basin is dominated by wood-savannas (59.3%) 

except for the upper course of the Zambezi River valley which is covered by grasslands. 

Forests are also found in the upper sub-basins especially in the Kabompo sub-basin in the 

north-east. The areas surrounding the Barotse floodplain (south-eastern part) are dominated 

by savannas. The permanent wetland areas, which cover about 1.5% of the whole basin, are 

expected to attenuate high flows as well as contribute to higher evapotranspiration losses. 

Major land use activities in this basin are livestock farming, wildlife, mining, fishing and 

tourism (Ashton et al., 2001). 
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Figure 3.20: Land cover in Upper Zambezi River basin (Source: Broxton et al., 2014).  

 

3.3.4 Climate 

The basin is characterised by three climatic regimes: cool dry (April to August), hot dry 

(September to October), and a warm wet season (November to April) (Beilfuss and dos 

Santos, 2001). The rainfall in this basin is also controlled by the position of the ITCZ, and the 

mean annual rainfall is approximately 1 000 mm (Beilfuss and dos Santos, 2001; Beilfuss, 

2012). The temperature varies with altitude; highly elevated areas experience lower 

temperatures compared to the floodplain and other low-lying areas. October is the hottest 

month and the coldest is July (World Bank, 2010). Generally, the area is moist and warm due 

to the effects of the Congo Air Masses (Timberlake, 2000).  

 

3.3.4.1 Rainfall 

The seasonal analysis in Figure 3.21, using area-averaged CRU monthly rainfall data for the 

selected sub-basins, indicates a unimodal pattern. The rainfalls in the upper sub-basins peak 

around December whereas the other remaining sub-basins peak around January. Generally, 
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there is no substantial difference between the long-term monthly rainfall values across the 

basin except for the areas downstream of the Barotse floodplain (sub-basin or nodal point 

BP10). The peak values in the upper section of the basin are close to 250 mm month
-1

, 

whereas values below 250 mm month
-1

 are experienced in the centre and lower parts of the 

basin. The spatial variation of mean annual rainfall presented in Figure 3.21 indicates a 

decrease in mean annual rainfall from the upper to the lower parts of the basin. The mean 

annual rainfall for the upper sub-basins is between 1 100 – 1 230 mm, whereas the values are 

760 – 950 mm in the floodplain and the downstream areas. The inter-annual rainfall variation 

is very small as the annual CV values are less than 0.15 in all sub-basins. However, any 

seasonal and/or inter-annual variations of rainfall, especially in the upper sub-basins, will 

result in flow variation in the Zambezi River, thereby affecting the inundation characteristics 

in the Barotse floodplain (World Bank, 2010; Tirivarombo, 2013; Beyer et al., 2016). 
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Figure 3.21: Rainfall seasonality in the Upper Zambezi River basin. 
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3.3.4.2 Temperature and potential evapotranspiration (PET) 

Figure 3.22 illustrates the spatial variations of the mean annual temperatures derived from the 

mean monthly temperatures obtained from the IWMI Climatic Data Portal (New et al., 2002). 

The mean annual temperatures increase from the highlands toward the Barotse floodplain; 

however, the difference in terms of magnitude is minimal. The average maximum 

temperature is between 18
o
C and 27

o
C and the average minimum temperature ranges from 

12
o
C to 15

o
C. The coldest month is July whereas October and November are the warmest 

months with average values of 16
o
C and 22

o
C, respectively (Euroconsult, 2007). The mean 

monthly potential evapotranspiration data were also obtained from the IWMI Climatic Data 

Portal, and these values were used to estimate the mean annual PET. The mean annual PET 

ranges between 1 466 mm y
-1

 and 1 611 mm y
-1

 (Table 3.4). The months of September and 

October contribute more to annual evapotranspiration (>10%) and this can be related to 

higher temperature and low rainfall experienced during these months. Similar to the mean 

annual temperature, the spatial variation of the mean PET shows an increase toward the 

Barotse floodplain (Figure 3.23).  

 

 

Figure 3.22: Variation of the mean annual temperature in the Upper Zambezi River 

basin.  
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Figure 3.23: Variation of the mean annual potential evapotranspiration (PET) in the 

Upper Zambezi River basin.  

 

Table 3.4: Sub-basin monthly and annual potential evapotranspiration in the Upper Zambezi 

River basin. 

Sub-basin 
Potential evapotranspiration (mm month

-1
) Annual 

(mm) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

BP1 120 113 118 118 117 110 122 146 160 154 129 118 1524 

BP2 115 111 112 113 115 109 118 143 153 143 119 115 1466 

BP3 120 114 118 118 117 109 121 145 160 154 128 119 1523 

BP4 117 107 117 116 109 94 105 138 161 159 132 118 1473 

BP5 123 114 121 118 114 101 113 142 165 163 135 123 1531 

BP6 125 116 126 118 107 92 102 137 168 174 145 131 1539 

BP7 125 117 122 119 113 102 112 138 162 161 137 128 1534 

BP8 128 118 127 120 110 95 107 138 169 172 146 133 1563 

BP9 129 118 127 120 112 98 112 141 169 174 145 132 1578 

BP10 132 125 130 120 108 92 104 136 170 180 157 140 1594 
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3.3.4.3 Streamflow 

The Zambezi River arises near the Kalene Hills in the north-western part of Zambia 

(Figure 3.17), and it flows southwards until it merges with the tributaries originating from the 

steep areas of the Angolan highlands e.g. the Luena River (Beilfuss and dos Santos, 2001; 

Kling et al., 2014). Further downstream, the river captures the runoff from its major 

tributaries, the Kabompo and Lungue-Bungo, which emerge from the north-western and the 

north-eastern parts, respectively. The two tributaries flow through an area of steep 

topography, which affects the shape and the timing of the response hydrographs. A few 

kilometres further down, the river increases its sinuosity by meandering along a flat and 

broad Barotse floodplain (Beilfuss and dos Santos, 2001). In the middle reaches of the 

floodplain, the river captures flow from other tributaries such as the Luanguinga River which 

drains the south-eastern parts of Angola (Ashton et al., 2001). In this study, the Upper 

Zambezi River basin is divided into nine sub-basin nodes, and their areas ranging from 4 100 

to 71 900 km
2
 (Table 3.5). 

Figure 3.24 shows the location of the accessed streamflow gauging stations in this basin. 

Most of the Zambezi River tributaries are gauged but their data records are of short periods 

and contain a lot of missing values. Table 3.6 gives a summarised description and the 

percentage of missing values in the data record for each station in this basin. The longest 

records span from 41 to 44 years, and the missing data for most of the gauges are less than 

10% except for station 1591002, which is located on the Zambezi River. Although station 

1591200 has less than 10% missing values, its record is very short (4 years). Therefore, only 

two gauge stations (i.e. 1591820 and 1291100) were considered appropriate to be used for 

modelling this basin. The daily discharge data for the gauge station at Sioma/Ngonye Falls 

(BP9 in Table 3.6) were also used. Since there is only one reliable long-term gauging station 

in the upper sub-basins (ID: 1591820), it was difficult to understand the attenuation effects of 

the Barotse floodplain system, as the total inflow into the floodplain is not known.  
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Figure 3.24: Location of the streamflow gauging stations in the Upper Zambezi River 

basin. 

 

Table 3.5: Catchment areas for sub-basin nodes in the Upper Zambezi River basin. 

Sub-basin node ID Area (km
2
) 

BP1 40629 

BP2 38964 

BP3 51847 

BP4 71908 

BP5 5195 

BP6 13903 

BP7 32459 

BP8 4128 

BP9 54140 

BP10 18763 
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Table 3.6: Streamflow gauging stations in the Upper Zambezi River basin. 

Station ID River Longitude Latitude Start End Period (years) % Missing values 

1591200 Kabompo 23.5 -14.09 1975 1979 4 6 

1591820 Luanguinga 22.7 -15 1958 2003 44 8 

1591002 Zambezi 23.23 -14.4 1989 2003 14 39 

1291100 Zambezi 24.3 -17.5 1964 2005 41 2 

BP9 Zambezi 23.49 -16.57 1948 2014 66 9 

 

Figure 3.25 shows the seasonal hydrographs for the three gauging stations (1591820, BP9 

and 1291100) which display a single peak pattern. The Luanguinga (1591820) peaks in late 

March/early April, whereas the Zambezi River at Sioma Fall (BP9) peaks in late April/early 

May. The long-term (1965 – 2004) mean annual runoff for the Zambezi River (1291100) is 

approximately 37 × 10
9
 m

3
 with an annual CV of 0.38. The mean annual runoff for the 

Luanguinga River between 1958 and 1992 is around 2 × 10
9
 m

3
 with an annual CV of 0.34. 

The CV values (< 0.5) for the two gauging stations suggest that there is some variation 

between the annual runoffs, but it is of small magnitude. 

 

 

Figure 3.25: Mean monthly hydrograph for three gauges in the Upper Zambezi basin. 
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3.3.5 Water use 

The total annual abstraction for irrigation, domestic and other activities is approximately 28.8 

× 10
6
 m

3
 (about 0.1% of annual basin runoff) (Beilfuss, 2012), which is relatively small when 

compared to the total runoff generated in this basin. There are no existing hydropower dams 

in this basin (Moore et al., 2008; World Bank, 2010) but some HEP and large-scale irrigation 

projects have been proposed to start in the near future (Beilfuss, 2012). 

 

3.3.6 Barotse floodplain and associated flats 

The Barotse floodplain, locally known as Bulozi or Lyondo, is located between 13
o
50'S to 

16°40' S and 22°45'E to 23°45' E (Figure 3.17) and it extends from the confluence of the 

Zambezi River and the Lungue-Bungo tributary to a few kilometres upstream of the Ngonye 

Falls (Timberlake and Childes, 2004). The downstream end of the Barotse floodplain is 

controlled by natural basalt rock, acting as a natural dam that causes backwater effects into 

the floodplain (Flint, 2008). Being the second largest floodplain in the Zambezi River basin 

which drains a basin area of 320 × 10
3
 km

2
, it is approximately 240 km long and 40 km wide 

(Beilfuss et al., 2001). The inundated areas for the Barotse floodplain occupy 5 500 km
2 

of 

land but can extend up to 9 000 km
2
 if other flatlands and small plains within the basin are 

included. The annual average storage for the floodplain is approximately 8.5 × 10
9
 m

3 
(Turpie 

et al.,1999; Beilfuss, 2012) which could be about 23% of the average annual basin runoff. 

The maximum inundation depth ranges between 1.5 m and 3 m especially in the interior of 

the floodplain generally around April (Steenbergen et al., 2015).  

The Barotse floodplain is characterised by depressions and abandoned channels (old 

channels) which experience flooding during the wet season and when the flow starts to 

recede, water remains only in the main channel and other depressions connected to the river 

(Steenbergen et al., 2015). Most of these floodplain features are connected to each other in a 

complex manner, with direct and indirect connections with the Zambezi River (e.g. 

Figure 3.26). The western and eastern parts of the floodplain are dominated by pans and 

dambos of different sizes covered by grasslands (Timberlake and Childes, 2004; Moore et al., 

2008). A large part of the upper section of the Barotse floodplain is at a high elevation 

relative to the Zambezi River and some rural populations (Lozi people) have been residing in 

these areas since the 17
th

 century, and they benefit from the ecological goods and services 

provided by the Barotse floodplain (Flint, 2008). At the beginning of the wet season, when 

the floodplain starts to inundate, the people leave the floodplain for the highlands and come 
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back when the inundation starts to recede (Emerton, 2003; Moore et al., 2008). Figure 3.27 

and 3.28 show some rural houses located on the Barotse floodplain.  

Different vegetation species are also found within the floodplain including Acacia albida, 

thicket, Syzygium guineense, Echinochloa and Oryza sp., in addition to birds as well as 

aquatic species (approximately 80 different types of fishes) (Turpie et al., 1999; Ramsar, 

2007). Figure 3.29 is a LandsatLook image showing the Barotse floodplain and its related 

flatlands and small plains. The image on the right in Figure 3.29 shows the main part of the 

Barotse floodplain which is inundated for long periods of time. 

 

 

Figure 3.26: A 3D Google Earth image showing detail of the geomorphology of the main 

channel and other floodplain features in the Barotse floodplain (Source: 

https://earth.google.com/web/@-

14.8480635,22.98257525,1029.26325177a,6877.27730748d,35y,0.91172863h,67.15028773t,0r). 

 

https://earth.google.com/web/@-14.8480635,22.98257525,1029.26325177a,6877.27730748d,35y,0.91172863h,67.15028773t,0r
https://earth.google.com/web/@-14.8480635,22.98257525,1029.26325177a,6877.27730748d,35y,0.91172863h,67.15028773t,0r
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Figure 3.27: Natoga village in the Barotse floodplain (Source: 

https://farm6.staticflickr.com/5507/14158410929_22e59f4527_z.jpg). 

 

 

Figure 3.28: Some temporary rural houses on the Barotse floodplain (Source: 

http://mw2.google.com/mw-panoramio/photos/medium/22959134.jpg).   

https://farm6.staticflickr.com/5507/14158410929_22e59f4527_z.jpg
http://mw2.google.com/mw-panoramio/photos/medium/22959134.jpg
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Figure 3.29: Barotse floodplain and its associated flats and plains (source: LandsatLook 

image; 30
th

 April 2016): 1) swamps and floodplain of the Lungue-Bungo, 2) Liuwa plains 

National Park, 3) Luena flats, 4) Luanguinga floodplain, 5) Barotse floodplain, 6) Lui 

floodplain and 7) a broad floodplain which carries the overspill from the high floods of the 

Cuado River.   
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3.4 The Upper Great Ruaha River Basin  

The Upper Great Ruaha River basin (approximately 2 × 10
4
 km

2
) is located in the south-west 

part of Tanzania. The basin is divided into the Usangu plains and highlands, which constitute 

28% and 72% of the total basin area, respectively (Figure 3.30). The Usangu plains, at the 

interior of the basin, are characterised by alluvial fans and wetlands which are seasonally and 

permanently inundated (Kashaigili et al., 2006a; McCartney et al., 2008; Tumbo, 2015). 

While the wetlands owe their sustainability to the water balance in the basin, they play a 

significant role in regulating the flows of the Great Ruaha River, thereby serving as a major 

source of the inflow for the two HEP dams (Mtera and Kidatu Dams) that are located 

downstream of the Usangu plains (Figure 3.30). These dams collectively produce electricity 

serving more than 50% of the Tanzanian population (Mtahiko et al., 2006). For the last two 

decades, significant flow reduction in the Great Ruaha River and its tributaries has been 

observed (SMUWC, 2001). Several studies such as SMUWC (2001), Kashaigili et al. 

(2006b) and Mwakalila (2011) have revealed that the irrigation abstractions contribute to this 

reduction.  

Some studies have assessed the hydrological characteristics of this basin including an 

understanding of the dynamics of the Usangu wetlands using remote sensing images 

(Kashaigili et al., 2006a) and hydrological models (McCartney et al., 2008; Tumbo, 2015). 

Tumbo (2015) applied the Pitman monthly hydrological model with the inclusion of a 

wetland sub-model to understand the hydrological responses in the Great Ruaha River basin. 

Although this study is among a few of the detailed studies in the Upper Great Ruaha River 

basin, the uncertainties in the model simulations were related to inabilities to quantify some 

of the wetland parameters. It is likely that a detailed understanding of the spatial and temporal 

variations of water exchanges between channels and the Usangu wetlands would help to 

improve the quantification of some wetland parameters. Moreover, this information would be 

useful for the present and future sustainability of the Usangu wetlands and the activities 

downstream.  
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Figure 3.30: The Upper Great Ruaha River Basin and the Usangu wetlands. 

 

3.4.1 Topography and slope characteristics 

The topographical distribution of the Upper Great Ruaha River basin (Figure 3.30) indicates 

that the Usangu plains are characterised by elevations between 1009 m and 1 100 m. The 

high elevation values are observed in the southern parts of the basin, especially in the 

Kipengere Mountain ranges. The transitional areas between the mountains and the Usangu 

plains (Figure 3.31) are characterised with high slope values which can be classified as steep 

to very steep slopes according to the FAO soil classification by Jahn et al. (2006) (see 

Table 3.1). Many tributaries of the Great Ruaha River originate from these highly-elevated 

mountainous areas and the steep slopes have a positive impact on the generation of runoff. 

The Usangu plains (centre of the basin) are very gently sloping areas with slope values 

between 0% and 2% that support water accumulation.  
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Figure 3.31: Slope characteristics of the Upper Great Ruaha River basin. 

 

3.4.2 Geology and soil characteristics 

Geologically, the Upper Great Ruaha River basin lies on the Pre-Cambrian basement rocks of 

gneiss and granite origin (McCartney et al., 2008). The Usangu plains form a depression 

bounded by fault lines and are dominated by lacustrine sediments deposited when the plains 

were still a lake (SMUWC, 2001). The south-west part of the Upper Great Ruaha River basin 

is surrounded by the Kipengere volcanic mountain ranges composed of basalts, pumice, and 

ash (SMUWC, 2001). The unconsolidated alluvial fan deposits found in the Usangu plains 

consist of materials which are highly permeable.  

Figure 3.32 shows the distribution of the soil types in the Upper Great Ruaha River basin 

derived from the SoilGrids 1 km (Hengl et al., 2014). The northern and southern parts of the 

basin are dominated by Cambisols and Acrisols, respectively. The plains are covered by 

Fluvisols, whereas Leptosols form a boundary between the plains and the highlands. The 

Fluvisols are young soils mostly found in alluvial or lacustrine deposits and are characterised 

by clay, especially when the area has been frequently flooded. The Leptosols are normally 



91 

 

found at the foot of the mountain where soils have been eroded or in rivers with gravel 

deposits (Nachtergaele, 2010).  

 

 

Figure 3.32: Distribution of the soils types in the Upper Great Ruaha River basin 

(Source: Hengl et al., 2014). 

 

3.4.3 Land cover and land use 

The land cover of this basin has changed in time and space. Kashaigili et al. (2006b) grouped 

the land cover of the Upper Great Ruaha River basin into seven classes: 1) closed woodland, 

2) open woodland, 3) vegetated swamp, 4) open bushland, 5) closed bushland, 6) bushed 

grassland, and 7) cultivated land and bare land. Vegetated swamp, closed and open woodland 

are found in the Usangu plains. Figure 3.33 shows that a large part of the Upper Great Ruaha 

River basin is covered by savanna and wood-savanna. Grasslands and other natural 

vegetation cover about 7.6%, whereas the permanent wetland areas are only 0.06% of the 

entire Upper Great Ruaha River basin. The main land use activities within this basin are 

irrigation (mainly paddy rice) and rain-fed agriculture especially in the western wetland, with 
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livestock rearing and fishing being important in the eastern parts. However, irrigation and 

livestock rearing are the predominant activities that contribute to land cover change in the 

Upper Great Ruaha River basin (Mtahiko et al., 2006; Kashaigili, 2008; Kihwele et al., 

2012). 

 

 

Figure 3.33: Land cover in the Upper Great Ruaha River basin (Source: Broxton et 

al., 2014). 

 

3.4.4 Climate 

Generally, the climatic conditions of the Upper Great Ruaha River basin are controlled by the 

movement of the ITCZ as well as the altitude (Kashaigili et al., 2006a; Tumbo and Hughes 

2015). The ITCZ occurs when the north-east monsoon and the south-east air masses 

converge. The ITCZ reaches the southern part of Tanzania around January/February and 

changes its direction (northwards) around March/May. As a result, the wet season dominates 

from October to May and the dry season extends from June to September. The basin 

experiences large spatial variability in the mean annual precipitation (Tumbo, 2015). This 

could perhaps be an effect of an orographic influence of the highlands, with the mountainous 
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areas receiving higher rainfall than the low-lying areas (Kashaigili et al., 2006a; McCarthy et 

al., 2008). Low-temperature values have been recorded in the highlands, whereas high 

temperatures values are experienced in the Usangu plains.  

 

3.4.4.1 Rainfall 

The monthly rainfall data for each sub-basin in the Upper Great Ruaha River basin were 

obtained from Tumbo (2015). These data are based on spatial interpolation of remotely 

sensed monthly rainfall estimates from the Climate Prediction Centre/Famine Early Warning 

System (CPC-FEWS v2) for the period 1960 – 2009. Tumbo (2015) explains how these 

rainfall values were derived. 

The seasonal analysis using long-term mean monthly rainfall for some sub-basins indicated a 

unimodal type (Figure 3.34). However, a slight decrease in rainfall in February results in two 

rainfall seasons: short rains and long rains commonly known as Vuli and Masika, 

respectively. The Vuli occurs between late October/early November and February, whereas 

the Masika are experienced between March and May. Monthly peak values greater than 

250 mm are observed in the highlands, whereas values less than 250 mm are common in the 

Usangu plains. The dry season is between June and late September/early October with 

August regarded as the driest month. Low amount of rainfall is experienced in the dry season, 

except for areas around the Kipengere Mountain ranges (southern parts) which receive 

comparatively higher rainfall (see 1ka8 in Figure 3.35) during this season. Generally, there is 

considerable spatial variation in the rainfall in the Upper Great Ruaha River basin. The 

rainfall in the Kipengere mountain ranges is associated with orographic lifting of air moving 

north from Lake Nyasa (Tumbo, 2015). The annual rainfall increases from the Usangu plains 

toward the highly elevated areas. For example, the sub-basins covering the Usangu plains 

receive about 1 200 mm y
-1

, whereas the highlands may receive annual rainfall up to 

2 000 mm or more, especially in the areas surrounding the Kipengere Mountain ranges 

(1ka8). Apart from the spatial variation in the mean annual rainfall, some variation in the 

annual rainfall has been experienced for the period 1960 – 2009. For instance, there was a 

decrease in the annual rainfall throughout the basin, especially for the period 1990 – 2009 

(Figure 3.35). However, the annual coefficient of variation for the period 1960 – 2009 is less 

than 0.3 for all the sub-basins which suggests that the inter-annual rainfall variation is 

minimal. 
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Figure 3.34: Rainfall seasonality for some of the sub-basins in the Upper Great Ruaha River Basin. 



95 

 

 

Figure 3.35: Spatial variations of the mean annual rainfall and the inter-annual rainfall variations for some of the sub-basins in the Upper Great 

Ruaha River basin for the period 1960 – 2009. 
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3.4.4.2 Temperature and potential evapotranspiration (PET) 

The minimum and maximum mean monthly temperatures vary between 15
o
 – 24

o
C and 28

o
 – 

30
o
C, respectively in the plains and from 5

o
 – 13

o
C and 22

o
 – 27

o
C in the highlands (Tumbo, 

2015). Maximum temperatures are normally observed in October or November and low 

temperatures are observed between May and August (Wilson, 2003). Generally, the mean 

annual temperature in the Upper Great Ruaha River basin is approximately 18
o
C in the 

highlands and 28
o
C in the Usangu plains (Kashaigili et al., 2006b). The annual 

evapotranspiration ranges between 1 380 mm y
-1

 and 1 868 mm y
-1 

(Table 3.7). September, 

October and November have the higher proportion of the annual evapotranspiration demand 

(10% – 12.4%) in most sub-basins. The October contribution to annual PET is the highest in 

many sub-basins and can be related to higher temperatures and lower rainfall experienced 

during this month. The spatial variation in the mean annual PET can also be related to the 

fluctuation in temperatures and rainfall across the entire basin (Figure 3.36). As expected, 

higher values of annual PET are experienced in the Usangu plains and low values in the 

highlands.  
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Table 3.7: Sub-basin average monthly potential evapotranspiration in the upper Great Ruaha 

River basin. 

Sub-basin 

Potential evapotranspiration (mm month
-1

) 
Annual  

(mm) 
Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

1ka71a 190 154 139 140 132 148 133 143 147 165 187 190 1868 

1ka56 187 170 195 119 112 120 112 117 114 124 142 165 1677 

1ka33 179 162 129 114 106 115 107 111 108 118 135 156 1540 

1ka15 179 162 129 114 106 115 107 111 108 118 135 156 1540 

1ka27 199 180 144 127 118 128 119 123 120 132 151 174 1714 

1ka10 183 163 131 116 108 116 108 113 111 120 138 158 1566 

1ka9 187 165 130 115 107 114 107 108 107 117 138 163 1557 

1ka51 170 144 110 100 94 101 94 94 92 104 126 151 1380 

1ka50a 172 145 111 101 94 102 95 96 94 104 129 154 1396 

1ka16a 181 154 117 107 100 107 101 100 98 110 135 161 1471 

1ka7a 193 165 126 113 107 114 107 107 105 117 143 171 1566 

1ka8a 174 153 120 107 99 106 99 101 99 109 128 151 1447 

1ka11 155 126 113 115 108 121 109 117 120 135 153 155 1527 

1ka12 203 179 141 125 116 124 116 117 114 126 149 177 1685 

ug5 198 178 140 125 116 125 118 122 119 131 150 174 1694 

ug3 204 182 144 127 117 128 121 123 119 131 153 176 1726 

ug18 198 175 135 121 113 123 116 119 117 128 149 175 1668 

ug1 181 154 119 109 102 110 103 105 103 114 139 162 1501 

ug17 170 143 110 100 93 101 94 95 92 103 127 152 1380 

ug16 172 146 111 101 95 102 95 95 93 105 128 153 1396 

ug15 201 171 130 119 111 119 112 111 109 123 150 179 1634 

ug2 213 187 147 131 121 130 121 123 121 133 157 185 1768 

ug20 224 197 155 137 127 137 128 129 127 140 165 194 1859 

ug6 189 153 138 139 131 147 133 142 147 165 186 189 1859 

ug21 186 150 136 137 129 145 131 140 144 162 183 186 1828 

ug4 180 145 131 132 125 140 126 135 139 156 177 180 1765 

ug22 183 148 133 135 127 142 128 137 142 159 180 183 1797 

Note: ug represents ungauged sub-basin adopted from Tumbo (2015) 
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Figure 3.36: Variation of the mean annual potential evapotranspiration in the Upper 

Great Ruaha basin.  

 

3.4.4.3 Streamflow 

The Upper Great Ruaha River basin has both perennial and seasonal rivers which originate 

from the highlands of the basin. The perennial rivers draining into the Usangu Plains are the 

Great Ruaha, Mbarali, Kimani, Chimala, and Ndembera, whereas Kioga and Mjenje are 

seasonal rivers as indicated in Figure 3.30. The Great Ruaha River is the major source of 

water in the Usangu plains and it comprises of several tributaries that join to form a single 

river as they flow through a constriction at Nyaluhanga (Figure 3.30). The Great Ruaha River 

flows eastwards until it enters the permanent wetland known as Ihefu swamp (see Figure 3.41 

below), and a few kilometres downstream the river exits the Usangu wetlands at Ng’iriama 

(Figure 3.30). In this study, the Upper Great Ruaha River basin includes 28 sub-basins and 

their areas are presented in Table 3.8.  
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Most of the perennial rivers were gauged (starting from the mid-1950s) but only a few 

gauging stations are currently operational (Table 3.9). Furthermore, the operational gauges 

have data for short periods and have missing values. The spatial distribution of the gauging 

stations in this basin is such that most gauges are upstream of the Usangu wetlands, and there 

are no gauges measuring the total inflows into or the outflows from the wetland 

(Figure 3.37). In addition, these gauges do not include all the key tributaries upstream to 

allow effective quantification of the total inflows into the Usangu wetlands. Gauging station 

1ka71a is located where the Great Ruaha River enters the eastern wetland at Nyaluhanga 

(Figure 3.30 above). The gauging station 1ka59, which is located 80 km from the wetland 

outlet, is the only reliable gauging station normally used to estimate the outflows from the 

Usangu wetlands. There is not much substantial flow contribution into the Great Ruaha River 

between the wetland exit and where the gauge is located (Kashaigili et al., 2006b). Table 3.9 

summarises the extent of the data record for each gauging station (i.e. start and end year of 

the accessed data), and the percentage missing data.  

 

Table 3.8: Catchment areas for the sub-basins in the Upper Great Ruaha River basin 

Sub-basin ID area (km
2
) Sub-basin ID area (km

2
) 

1ka59 2539 ug4 500 

1ka22 461 ug17 181 

ug5 2149 ug21 420 

1ka15 1221 ug16 277 

1ka33 618 1ka51 38 

ug3 1463 1ka50a 102 

ug18 501 1ka16a 75 

1ka56 182 1ka10 233 

1ka27 4244 ug15 198 

1ka71a 1055 1ka7a 169 

ug1 1176 1ka12 807 

ug20 175 1ka9 446 

ug6 480 1ka8a 783 

ug2 1709 1ka11 1600 
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Table 3.9: Streamflow gauging stations in the Upper Great Ruaha River basin 

Station ID River Start End Latitude Longitude 
% Missing 

Status 
data 

1ka7a Chimala 1962 1992 -8.9 34 52 Closed 

1ka8a Great Ruaha 1954 2009 -8.9 34.1 34 Operational 

1ka9 Kimani 1954 2009 -8.9 34.2 17 Operational 

1ka10 Mlomboji 1956 1983 -8.78 34.35 25 Closed 

1ka11a Mbarali 1955 2009 -8.8 34.4 17 Operational 

1ka12 Halali 1956 1983 -8.85 34.57 20 Closed 

1ka15 Ndembera 1956 2010 -8.3 35.2 12 Operation 

1ka27 Great Ruaha 1965 1979 -8 34.58 36 Closed 

1ka33 Ndembera 1957 2009 -8.2 34.8 52 Closed 

1ka71 Great Ruaha 2001 2008 -8.4 34.23 52 Closed 

1ka59 Great Ruaha 1963 2010 -7.8 34.15 15 Operation 

1ka16 Lunwa 1964 1994 -8.957 33.83 58 Closed 

1ka50a Umrobo 1960 1994 -8.859 33.74 32 Closed 

1ka51a Mswiswi 1958 1976 -8.918 33.66 68 Closed 

Source: Tumbo (2015) 

 

 

Figure 3.37: Location of the streamflow gauging stations in the Upper Great Ruaha 

River basin.  
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The mean monthly hydrographs for some of the gauged sub-basins show a unimodal pattern 

with a rising limb starting from late November/early December and most of the headwater 

sub-basins peaking in March except for the Ndembera River (gauge 1ka33) which peaks in 

April (Figure 3.38). The recession limb extends from May to September. A considerable 

decrease in the annual runoff since 1993 has been reported for the Great Ruaha River and its 

tributaries due to a rapid increase in water abstractions for irrigation purposes (Kashaigili et 

al., 2006b; Mwakalila, 2011). In some years, zero flow was observed downstream of the 

Usangu wetland outlet (Kashaigili et al., 2006a; McCarthy et al., 2008), perhaps because of 

significant decrease of Usangu wetland inflows (about 70%) (Kashaigili et al., 2006b). 

Table 3.10 presents the catchment area and the corresponding mean annual runoff for some 

of the gauged sub-basins. The mean annual runoff in the sub-basin 1ka59 is about 2 235 × 

10
6
 m

3
, with the annual coefficient of variation greater than 1 (Table 3.10). This indicates a 

high variation of annual runoff which has been reported by other studies (Kashaigili, et al., 

2006b; McCartney et al., 2008; Mwakalila, 2011; Tumbo, 2015).  

 

Table 3.10: Mean annual runoff for some gauged sub-basins in the Upper Great Ruaha River 

basin. 

Station ID River Catchment (km
2
) 

Mean Annual Runoff  

Annual coefficient 

of variation (CV) ( × 10
6
 m

3
) 

1ka51 Umrobo 55 22 0.47 

1ka16a Lunwa 77 47 0.57 

1ka7a Chimala 167 99 0.55 

1ka8a Great Ruaha 795 489 0.32 

1ka9 Kimani 448 211 0.45 

1ka11 Mbarali 1 600 509 0.38 

1ka12 Halali 807 201 0.6 

1ka15 Ndembera 1221 203 0.56 

1ka33 Ndembera 2 190 372 0.37 

1ka27 Great Ruaha 19 941 1577 
0.57 

1ka59 Great Ruaha 24 620 2235 
1.20 

Modified from Tumbo (2015) 
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Figure 3.38: Streamflow seasonality for some gauged sub-basins in the Upper Great Ruaha River basin. 
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3.4.5 Water use 

The main water uses in the Upper Great Ruaha River basin are: 1) abstractions for domestic 

use, 2) irrigation in the plains, and 3) pastoralists (Lankford et al., 2004; WWF 2010), with 

abstraction for irrigation being the largest water use component. There are both large and 

small-scale irrigation farms, mainly for paddy rice which constitute about 15% of the rice 

production in Tanzania (Mtahiko et al., 2006; Lankford et al., 2009). The other small 

irrigation farms include maize, beans, tomatoes and vegetables. Water is abstracted from both 

perennial and seasonal tributaries flowing into the Usangu plains, thereby affecting the 

inundation patterns of the Usangu wetlands. The irrigated area in the Usangu plains is 

approximately 420 km
2
 and 170 km

2
 in wet and dry years, respectively (Tumbo, 2015). 

Figure 3.39 shows the location of the large-scale paddy rice farms in the Usangu plains with 

many of them located in the western wetland except for the Madibira Smallholder 

Agriculture Development Project which is in the eastern part. Some of these farms are shown 

in Figure 3.40; the top image is part of the Kapunga rice farm and the bottom one is a section 

of the Madibira farm.  
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Figure 3.39: Location of the large-scale irrigation farms in the Upper Great Ruaha 

River basin (Source: SMUWC, 2001).  



105 

 

 

Figure 3.40: Google Earth images showing different paddy rice farms in the Usangu 

plains. 

 

3.4.6 Usangu Wetlands 

The Usangu wetlands are estimated to cover an area of about 2 × 10
3
 km

2
, and they are 

divided into two parts (west and east wetlands) by a slightly elevated ridge of underlying 
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basement rock at Nyaluhanga (SMUWC, 2001; Kashaigili et al., 2006a; Mwakalila, 2011) 

(Figure 3.41). The western wetland is mostly seasonally flooded. The eastern wetland 

contains seasonal grassland and a permanently inundated swamp (Ihefu swamp) covering 

approximately 80 km
2
 with an average inundation depth of 2 – 3 m (McCartney et al., 2008). 

The western wetland receives water from the rivers draining the highlands, whereas the 

eastern wetland receives inflows from the Great Ruaha River at Nyaluhanga and the 

Ndembera River. Moreover, the outflow from the eastern wetland is controlled by a rock bar 

at the wetland outlet (Ng’iriama) (Kashaigili et al., 2006b; Mwakalila, 2011). When the flow 

in the Ihefu swamp starts to recede, the swamp divides into small five ponds (SMUWC, 

2001). The topography of the Usangu wetlands is very flat, however, the eastern part of the 

eastern wetland is slightly higher (about 6 m higher than the Ihefu swamp), and it is assumed 

to be a perched section of the Usangu wetland (SMUWC, 2001). The Usangu wetland is 

characterised by numerous channels with varying connectivity to the main channel 

(Figure 3.42). Generally, these channels form a complex drainage network that contributes to 

water dispersion in different parts of the Usangu wetlands (Canisius et al., 2011; Mwakalila, 

2011). Different vegetation and aquatic species are found in the wetlands; the eastern wetland 

is dominated by grasslands and aquatic vegetation whereas Miombo, Thorny trees and wood 

grasslands are found in the western wetland (SMUWC, 2001; Kashaigili et al., 2006a; 

Mtahiko et al., 2006). Fishing is also dominant in the Ihefu swamp, whereas irrigation 

activities (i.e. paddy rice farms) are common in the western wetland.  
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Figure 3.41: The Usangu wetlands (modified from Mwakalila, 2011). 

 

 

Figure 3.42: Google Earth image showing the distribution of different channels in the eastern 

wetland. 
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3.5 Conclusions 

The physical and climatic characteristics of the three river basins including their wetlands 

have been presented in this chapter. The three river basins have a diverse physiography, and 

the wetlands in these basins have unique characteristics which influence the wetland 

inundation characteristics. For instance, the Usangu wetlands consist of numerous channels 

with variable connectivity to the main channel, and in the Barotse floodplain, a large part of 

the floodplain is above the main channel. In general, an understanding of the spatial and 

temporal variability of the physical and climatic characteristics is considered to be important 

in establishing the appropriate model parameters, thereby improving the results of the model 

simulation.  
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CHAPTER FOUR: METHODOLOGICAL FRAMEWORK 

 

The rationale of the present study is to improve the understanding of hydrological response 

and efficient modelling of water resources availability for practical purposes at a basin-scale. 

The study focused on three basins containing large wetlands within southern Africa: 1) the 

Upper Zambezi River basin, 2) the Luangwa River basin, and 3) the Upper Great Ruaha 

River basin. A combined modelling approach is used, that involves combining the detailed 

high-resolution (time and space) LISFLOOD-FP hydraulic model (sub-grid version) with the 

basin-scale Pitman monthly hydrological model (Figure 4.1). The initial simulation results 

(with or without including wetland effects) from the basin-scale model are disaggregated to 

daily flows and are used to quantify the upstream boundary conditions for the LISFLOOD-FP 

model setup for the large wetlands under consideration. The LISFLOOD-FP model is 

validated as far as possible using observations of inundation extent or other information that 

can confirm the validity of the model setup. The outputs from the hydraulic model are then 

used to improve the understanding of the river–wetland water exchange dynamics and 

quantify the wetland parameters of the basin-scale model. The basin-scale model is then re-

run with the wetland sub-model included and performance assessments conducted using any 

available observed data. While the version of the GW Pitman model used allows for 

parameter uncertainty, the LISFLOOD-FP model doesn’t have specific uncertainty 

framework built into it ,but can be used within uncertainty framework (the component that 

was not specifically explored in this study). However, this is not considered to be a major 

restriction as the key uncertainties in water resources availability at the basin-scale will be 

captured by the final version of the Pitman model. 

The two models used in this study were selected based on the review of three hydrological 

models and two hydraulic models presented in section 2.5 and 2.7. The GW Pitman 

hydrological model is less data intensive and includes the uncertainty analysis framework that 

suits data scarce basins of southern Africa. Its channel–wetland exchange function has been 

demonstrated to be appropriate for river basins containing large wetlands (Hughes et al., 

2014). Further, it is linked to the disaggregation sub-model that is useful in disaggregating 

monthly to daily flows. Overall, the GW Pitman model remains one of the most widely used 

hydrological model in the southern Africa region (Hughes, 2013). The LISFLOOD-FP is a 

freely available hydraulic model that can be applied in wetlands of different sizes. The recent 
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version that provides for the hydraulic characteristics of channels that are smaller in size 

compared to the grid size is useful for wetlands that interact with small channels. Unlike 

MIKE 21, the LISFLOOD-FP is not data intensive, thereby it suits data scarce basins and a 

significant number of studies have applied this model in different wetlands in Africa (see 

section 2.7.2). In addition, the Institute for Water Research (IWR; where this study was 

carried out) has established a strong collaboration with Bristol University (i.e. the model 

developers), hence more support was available during setting up the LISFLOOD-FP model. 

 

 

Figure 4.1: Flow chart diagram illustrating the combined modelling approach used in 

this study 

 

4.1 Data preparation for modelling  

4.1.1 Sub-basin delineation  

ArcGIS is frequently being used for automatic delineation of basins (Tarboton, 2005; Pryde 

et al., 2007). The hydrology tool and other ArcGIS extensions, such as Arc Hydro, 

TAUDEM and ArcSWAT are capable of delineating basins from topographical, land cover, 
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slope or geological characteristics presented in a grid format (Jankowfsky et al., 2013; Li, 

2014). In this study, the ArcSWAT (SWAT2012) extension was used to delineate each basin 

into sub-basins using the topography, slopes and main streams derived from the DEM. The 

streams were generated using a threshold value (assumed to be a catchment area), the 

selection of which is always critical and varies from basin to basin. To arrive at a reasonable 

threshold value, different values were tested through a trial and error method. For instance, 

the threshold values of 2 700 km
2
 and 4 000 km

2
 were used in the Luangwa and Upper 

Zambezi River basins, respectively.  

To simplify the link between the LISFLOOD-FP and Pitman models, there was a need to 

identify the sub-basins that represent the major wetland inflows and those that represent the 

main wetland inundation effects. The downstream points of the inflow sub-basins should be 

correctly located to represent the wetland inflows to the LISFLOOD-FP model. The sub-

basin delineation identified using ArcSWAT was therefore modified by creating nodal points 

at the downstream end of the key tributary inflow sub-basins, as well as the downstream ends 

of the main wetland areas. These nodal points were then used to setup the GW Pitman Model 

and the original sub-basin areas adjusted accordingly. To illustrate the approach, Figure 4.2 

shows the delineated sub-basins and the sub-basin nodal points for the Luangwa basin and 

Table 4.1 presents areas of the original sub-basins and the new nodal point sub-basins.  
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Figure 4.2: Original sub-basins and the created sub-basin nodal points in the Luangwa 

River basin. Note: Sub-basin name starts with ‘L’ and sub-basin node with ‘N’. 
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Table 4.1: Catchment areas of the original sub-basins and the new sub-basins nodes. 

Sub-basin 

Name 

Sub-basin Area 

(km
2
) 

Sub-basin 

Nodes 

Sub-basin Node 

Area (km
2
) 

Remarks on Sub-basin Node areas 

L1 12742 N1 12742 Same as L1 

L2 4465 N2 4465 Same as L2 

L3 9168 N3 8821 
Part of L3 excluding wetland (inflows 

from East & West) 

L4 2744 N4 3508 L4 and L5 & East part of L6 

L5 86 N5 3511 West part of L6  

L6 4647 NF1 805  Upper section of the floodplain 

L7 4710 N6 5610 L7 and East part of L9 (about 40%) 

L8 6150 N7 1467 West part of L9 (about 60%) 

L9 2837 N8 6180 L8 & West part of L11 

L10 3490 N9 5209 East part of L11 & L12 (minus FP part) 

L11 2645 N10 2740 East part of L14 (about 50%) less FP 

L12 3063 N11 6259 L10 & L13 & West part of L14 less FP 

L13 29 NF2 1410 Middle section of the floodplain 

L14 5950 N12 5146 L15 & L16 

L15 668 N13 7178 L19 & East part of L18 (40%) less FP 

L16 4478 N14 2763 West part of L18 (60%) less FP 

L17 2841 NF3 880 Lower section of the floodplain 

L18 5339 N15 2842 L17 

L19 5482 N16 5427 L20 

L20 5426 N17 10396 L21 and L22 

L21 3164 N18 4572 L23 

L22 7231 N19 9633 L27 

L23 4571 N20 27997 L24 and L25 

L24 19235 N21 8614 L26 andL28 

L25 8762       

L26 997       

L27 9633       

L28 7617       

 

4.1.2 Extracting physical and hydrological characteristics for each sub-basin  

The physical and hydrological characteristics of the sub-basins were established from both 

ground-based and satellite derived global datasets. Some of these characteristics are rainfall, 

evaporation, temperature, streamflow, soils, topography, and land cover. The data sources, 

including their limitations, are discussed in Chapter 3, and their choice was largely 

constrained by availability rather than reliability assessments. This is largely because there is 

no additional information to compare with at a local scale. Topography, soil and land cover 
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were downloaded in grid format from the SRTM (Farr and Kobrick, 2000); the SoilGrids 

1 km; (Hengl et al., 2014); and the USGS land cover (USGS LCI: Broxton et al., 2014) data 

sources, respectively. They were then processed into the required format using some ArcGIS 

tools such as Spatial Analyst (extraction then extraction by mask) and Data Management 

(projection and transformation). The initial step was to extract the data for the entire basin 

and then for individual sub-basin/sub-basin nodes.  

Daily rainfall data gridded at 0.1° resolution (ARC2 satellite rainfall: Novella and Thiaw, 

2013) and monthly rainfall at 0.5° resolution (CRU TS v. 3.22: Harris et al., 2014) were also 

downloaded in a grid format. The time series of monthly rainfall data were extracted using a 

program linked to the SPATSIM (Spatial and Time Series Information Modelling) platform 

(Hughes and Forsyth, 2006). The extraction process involved three main steps as shown in 

Figure 4.3. Initially, the raw data file was selected, followed by the selection of a point file 

which includes the centroid points for each sub-basin. The last step was to choose the 

required format between the single point and catchment/basin average. For sub-basin rainfall, 

the single point format was selected. Similar steps were used to extract the satellite gridded 

daily rainfall into time series (Figure 4.4). Potential evapotranspiration and temperature data 

from the IWMI Climate Data Portal (New et al., 2002) are also in a grid format and were 

downloaded as long-term mean monthly values (mm d
-1

) for the centroid point of each sub-

basin. The monthly values (mm month
-1

) used in both models were computed from the long-

term mean monthly values.  
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Figure 4.3: A screenshot of the CRU time series data extract program of SPATSIM. 
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Figure 4.4: A screenshot of the ARC2 satellite time series data extract program. 

 

4.1.3 Sub-basin similarity analysis  

The sub-basin similarity analysis was used to identify sub-basins that are expected to have 

similar hydrological responses and consequently similar parameter values. This is required to 

assist with establishing the parameter sets for the Pitman model as most of the delineated sub-

basins are not gauged, and therefore calibration is not possible. There are no universally 

accepted approaches for grouping sub-basins according to their similarity (Razavi and 

Coulibaly, 2013). However, spatial proximity, physiographic characteristics and various 

similarity indices are mostly applied (Parajka et al., 2005; Sawicz et al., 2011; Ali et al., 

2012; Garambois et al., 2015). The use of multiple variables is required to attain an 

appropriate classification, but this is always subject to data availability. Slope, mean 

elevation, minimum elevation, maximum elevation, PET, mean annual precipitation (MAP), 

the Topographical Wetness Index (TWI: Beven and Kirkby, 1979); Aridity Index (AI: 

Budyko, 1974) and Hypsometric Integral (HI: Langbein, 1971) were used to group sub-basins 

according to their similarities in this study. Most of these variables were generated using 

ArcGIS techniques. The TWI, AI and HI were calculated using Equations 4.1 to 4.3, 

respectively by using the calculator tool in the ArcGIS. The influence of each variable on the 
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classification process varies, and it was important to identify variables that explained the 

major differences between sub-basins. This was conducted using Principal Component 

Analysis (PCA) in SPSS version 21. All variables for each sub-basin were entered in the 

PCA, and the identified major variables were considered in the grouping of sub-basins. The 

resulting sub-basins found in the same group were assumed to have similar characteristics 

and were assigned similar model parameters values (or uncertainty ranges) during the model 

setup. 

 

𝑇𝑊𝐼 = 𝑙𝑛 (
𝑎

tan 𝛽
)      (Equation 4.1) 

Where ′𝛽′ is a measure of water draining from a given point and 

 ‘a’ is a measure of the water flowing towards a specified point.  

 

𝐴𝐼 =
𝑀𝐴𝑃

𝑃𝐸𝑇
       (Equation 4.2) 

 

𝐻𝐼 =
𝑀𝑒𝑎𝑛 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛−𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛−𝑀𝑒𝑎𝑛 𝐸𝑙𝑎𝑣𝑎𝑡𝑖𝑜𝑛
  (Equation 4.3) 

 

4.2 Spatial and Time Series Information Modelling (SPATSIM) 

The Spatial and Time Series Information Modelling (SPATSIM) platform was developed at 

the Institute for Water Research (IWR), Rhodes University (Hughes and Forsyth, 2006). It is 

freely available software and can be downloaded from the IWR website 

(https://www.ru.ac.za/iwr/research/spatsim/). The full details of SPATSIM are not presented 

here but can be found in Hughes and Forsyth (2006) as well as within the ‘Help’ options that 

are part of the software package. The software forms a modelling framework, providing a 

common platform for the storage and analysis of data, as well as running various 

hydrological and water resource models. The main aim of SPATSIM is to improve the 

efficiency of the application of hydrological models for solving different types of water 

resources problems. There are currently multiple models that can be run through SPATSIM, 

including the GW Pitman model and its related versions, such as the Pitman Uncertainty 

model and the Pitman Disaggregation sub-model. Various past studies have used SPATSIM 

https://www.ru.ac.za/iwr/research/spatsim/
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as a platform to run the Pitman model (e.g. Bharati and Gamage, 2011; Tshimanga et al., 

2011; Kapangaziwiri et al., 2012; Hughes et al., 2014; Tumbo and Hughes, 2015; Slaughter 

et al., 2015; Hughes and Slaughter, 2016). SPATSIM manages data through data attributes, 

stored in database tables, and linked to spatial features. The features comprise ArcGIS 

created shapefiles (e.g. sub-basin polygons, points and river networks), while many different 

attribute types are allowed for so that all of the input and output information typically 

associated with running a hydrological model can be stored in a SPATSIM database 

(Table 4.2).  
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Table 4.2: The GW Pitman model attributes in the Spatial and Time Series 

Information Modelling (SPATSIM) platform. 

Attribute Type  Attribute Requirement 

Text 
Catchment ID 

Downstream Area 

Single real number 
Catchment area (km

2
) 

Catchment cumulative area (km
2
) 

Time series 

Average rainfall (mm) 

Observed monthly flow (volume) 

Downstream outflow (volume) 

Uncertainty ensembles 

One dimension array 

GW-model parameters 

Mean monthly evaporation (monthly % of total annual) 

Reservoir model parameters 

Wetland model parameters 

Disaggregation parameters 

Two dimensional array 
Uncertainty parameters 

Monthly water distribution (fractions) 

 

4.3 The GW Pitman model 

4.3.1 The structure and parameters of the GW Pitman model 

The main inputs for this model are rainfall and potential evaporation; these data are used to 

force the different basin processes (i.e. surface, sub-surface and groundwater processes) 

which are considered in the generation of stream flow (Figure 4.5). The processes are 

represented by the model algorithms and the model parameters (Table 4.3). The full details of 

the model algorithms are provided in many previous publications (see for example 

Kapangaziwiri, 2011) and are not repeated here. However, the following paragraphs provide 

brief descriptions of the model parameters and how they are used in the model process 

algorithms. 
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Figure 4.5: Structure of the GW Pitman model (Source: Hughes et al., 2014). 
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Table 4.3: The GW Pitman model parameters 

Parameter Units Parameter description 

RDF   Rainfall distribution factor 

AI   Fraction of impervious area of the sub-basin 

PI1 and PI2  mm Interception storage for the two vegetation types 

AFOR % Area of sub-basin under vegetation type 2 

FF   Fraction ratio of potential evaporation rate for veg 2 relative to veg 1 

PEVAP mm y
-1

 Annual potential evaporation (typically based on S-pan values) 

ZMIN mm month
-1

 Minimum sub-basin absorption rate 

ZAVE mm month
-1

 Mean sub-basin absorption rate 

ZMAX mm month
-1

 Maximum sub-basin absorption rate 

ST mm Maximum moisture storage capacity 

SL mm Minimum moisture storage below which no GW recharge occurs 

POW   Power of moisture storage-runoff equation 

FT mm month
-1

 Runoff from the moisture storage at full capacity (ST) 

GPOW   Power of moisture storage-GW recharge equation 

GW  mm month
-1

 Maximum groundwater recharge at full capacity (ST) 

RSF % Controls the riparian evaporation losses from GW storage 

R   Evaporation-moisture storage relationship parameter 

TL  months Lag of surface and soil moisture runoff 

CL  months Channels routing coefficient 

DDENS km km
-2

 Drainage density 

T m
2 
d

-1
 Groundwater transmissivity 

S   Storativity 

GW Slope   Slope fraction initial groundwater gradient 

Reservoir and water abstraction parameters 

A and B   Parameters in nonlinear area-volume relationship 

MAXDAM m
3
 × 10

6
  Reservoir capacity 

IWR m
3
 × 10

6
  Return flows from irrigation  

IrrAreaDmd km
2
  Area irrigated from the small dams 

NIrrDmd m
3
 × 10

6
  Annual volume of non-irrigation demand  

EffRRF mm Amount of rainfall reduces the irrigation depth 

 

Rainfall distribution function (RDF): This parameter controls the distribution of total 

monthly rainfall in the four iterations used in the model, and can be estimated from an 

understanding of the rainfall characteristics of the basin. Ideally, a month is divided into four 

iterations, and rainfall is distributed to each using a non-linear distribution. The original 

model used a fixed value of 1.28, however, some studies such as Mwelwa (2004), have used 

lower values in areas of southern Africa that frequently experience very high wet season 

monthly rainfalls. 

Interception parameters (PI1 and PI2): Two main assumptions are considered in the model: 

1) the total rainfall within a day is concentrated in a single storm event and; 2) the intercepted 

rainfall is lost through evaporation before the next day. PI1 and PI2 are parameters that 
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control interception in the model. PI1 represents the primary vegetation type (natural 

vegetation), whereas PI2 represents secondary vegetation such as a planted forest. Past 

studies in South Africa have adopted values of 1.5 and 4 for PI and PI2, respectively 

(Kapangaziwiri, 2008). Parameter AFOR specifies the % of the sub-basin area that is covered 

by the secondary vegetation type. 

Evapotranspiration from moisture store parameters (R and FF): R controls the ratio of actual 

to potential evaporation in a linear relationship with the relative soil moisture storage 

(Kapangaziwiri, 2008). The value of R ranges between 0 and 1 with higher values 

representing generally lower volumes of actual evapotranspiration and vice versa. FF scales 

the potential evaporation for the secondary vegetation type. 

Infiltration and surface runoff parameters (ZMIN, ZAVE, ZMAX, and AI): The vertical 

movement of water in the basin is controlled by the infiltration capacity of the soils. ZMIN, 

ZAVE, ZMAX, and AI parameters guide the generation of surface runoff. The parameter AI 

accounts for surface runoff from impermeable areas. The ZMIN, ZAVE and ZMAX 

parameters define a triangular distribution of sub-basin absorption rates (Figure 4.6). No 

surface runoff is generated during periods of rainfall below ZMIN, whereas progressively 

higher rainfall amounts contribute to increasing volumes of surface runoff. Higher values of 

the parameters are assigned to sub-basins with coarser textured and well-drained soils, 

whereas smaller values are appropriate for finer textured soils.  

 

 

Figure 4.6: Frequency distribution of basin absorption rate, Z (A) and cumulative frequency 

curve of generated surface runoff, r is the rate of rainfall input (B).  
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Soil moisture storage and runoff parameters (ST, POW, and FT): ST is the maximum depth 

of subsurface unsaturated zone storage, with any rainfall inputs that exceed ST contributing 

to surface runoff. This parameter combines storage in soils (STsoil) and the deeper unsaturated 

zone (STunsat). The value of STsoil depends on soil porosity and soil depth, whereas STunsat 

depends on storativity and depth of fractured rocks (Kapangaziwiri, 2011). Deep, well-

drained soils have higher ST values compared to shallower soils. FT and POW represent the 

scale and power parameters, respectively, of a non-linear relationship (Figure 4.7) between 

the soil moisture storage level (S) and the depth of interflow runoff.  

 

 

Figure 4.7: Soil moisture storage and subsurface runoff generation parameter relationship 

(Source: Kapangaziwiri, 2008). 

 

Groundwater discharge and recharge parameters (DDENS, T, S, RSF, GPOW, GW, GW-

slope and SL): The groundwater components are controlled by parameters that reflect 

recharge and discharge. These include drainage density (DDENS), transmissivity (T), 

storativity (S), ground water slope (GW-slope) and riparian strip factor (RSF). The 

calculation of recharge depth uses a similar non-linear relationship with unsaturated zone 

moisture storage as used for interflow runoff (Figure 4.7). GW represents the maximum 

recharge depth at ST, SL is the storage level at which the recharge ceases and GPOW is the 

power of the relationship. The riparian strip factor (RSF %) controls evaporation from 

groundwater through channel margins. The Pitman model uses a simple geometry presented 

in Figure 4.8 to simulate groundwater inflows and outflows (Hughes, 2013). A detailed 
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explanation of this component of the GW Pitman model is not presented here but can be 

found in Hughes (2004). The basin area and drainage density parameter (DDENS) are used to 

divide the basin into representative slope elements. Subsequently, the drainage density 

(DDENS) and storativity (S) parameters are used to compute the geometry of the 

groundwater storage zone. The outflows from groundwater storage component can be 

determined from transmissivity (T) and internal model calculations of the groundwater 

gradients. Generally, the water balance components highlighted in this simple geometry 

include the recharge from the unsaturated zone, evapotranspiration losses from riparian 

zones, transmission losses to groundwater from upstream (when the gradients are negative) 

and discharge to the river channel (when the gradients are positive).  

 

 

Figure 4.8: The geometry of the groundwater component in the GW Pitman model (Source: 

Hughes, 2013). 

 

Routing parameters (TL and CL): TL and CL represent the runoff lag time and flow 

attenuation characteristics within the basin. CL (channel routing) is only used (i.e. CL > 0) in 

large basins where flow attenuation within a single sub-basin is significant at the monthly 

time scale. TL represents the sub-basin runoff attenuation and lag-time and is normally fixed 

to a value of 0.25 months. 
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Reservoir parameters and water abstraction parameters: The model can also be applied in 

basins where there are small dams, large reservoirs, and irrigation abstractions. The reservoir 

and water abstraction parameters are included in the model setup if a reservoir or other water 

abstractions exist in the basin. These parameters have not been used in the present study 

because the reservoir and irrigation abstractions were not included in the model setup because 

their influence o simulated flows were assumed to be negligible.  

Pitman wetland sub-model parameters: The wetland component was included by Hughes et 

al. (2014) and Table 4.4 presents the parameters, model algorithms and brief descriptions. 

These parameters were established to reflect the key processes occurring during the channel–

wetland exchanges in most wetlands. Wetland–groundwater interaction processes are not 

included because most of the groundwater–wetland processes are reported to have minor 

effects on the monthly water balance in large river–wetland systems in southern Africa 

(Wamulume et al., 2011; Hughes et al., 2014). The wetland sub-model can be applied in both 

natural lakes and seasonally inundated wetlands. Some of the parameters can be more-or-less 

directly estimated from relatively simple topographical analysis of the wetlands, whereas 

others are highly empirical and their estimation requires a good understanding of the 

channel–wetland exchange processes and/or hysteresis effects. The relationship between area 

and volume of inundation is assumed to be a power function defined by two parameters. The 

two parameters can directly be estimated from area–volume curves or indirectly from 

available satellite images. In the sub-model, the inundation area is limited to a given 

maximum inundation area (i.e. wetland local catchment area). Maximum inundation area, 

maximum and residual wetland volumes can also be estimated from area–volume curves, 

available satellite images or other hysteresis curves.  

The wetland is assumed to be inundated from channel overbank spills when the volume of 

water in the channel is above a given channel-threshold (QThresh). For natural lakes or 

wetlands where the main river disappears within the lake/wetland, high values of QProp and 

a zero value of QThresh are used. This proportional value (QProp) varies with wetland type, 

but cannot easily be estimated without a clear understanding of channel–wetland 

characteristics. Wetland return flow (Rfract) is the proportion of the excess volume above a 

given wetland residual volume (the volume below which there are no returns to the river). 

Two options exist in the model regarding return flow; the wetland return flow may or may 

not be constrained by the volume of water in the channel. These options are designed to allow 

for situations where spillage from the channel and return flows back to the channel, can occur 
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simultaneously as well as situations where return flows are severely restricted while the 

channel continues to spill. The selection of either of these options will clearly have a 

substantial impact on the shape of the inflow–inundation volume hysteretic curve.  

 

Table 4.4: Parameters used within the Pitman wetland sub-model 

Parameter(s) Algorithm Explanation 

A and B IA = A × IV
B 

 

(limited to maximum of MaxIA) 

Scale and power parameters in the 

relationship between inundation area (IA 

m
3
×10

6
) and volume (IV m

3
×10

6
). Used to 

estimate rainfall additions and 

evapotranspiration losses. 

MaxIA (m
2
 ×10

6
) Maximum inundation area. 

QThresh (m
3
 ×10

6
) If QIN > QThresh 

 

Then QIV = QProp × QIN- 

QThresh 

 

Else QIV = 0 

Monthly inflow volume below which there 

is no flow from the channel to the wetland. 

QProp (fraction) The proportion of monthly channel inflow 

(QIN m
3
 × 10

6
) that contributes to 

inundation volume (QIV m
3
×10

6
). 

SRes (m
3
 ×10

6
) If IV > SRes then 

Rfract = AR × (IV/SRes)
BR 

(limited to maximum of 0.95) 

Else  

Rftact = 0 

 

Optional reduction of Rfract : 

Rfract = Rfract * QThresh / QIN 

 

Calculation of return flow: 

QRET = Rfract × (IV – SRes) 

QOUT = QIN – QIV + QRET 

Residual inundation volume below which 

there is no return flow to the channel. 

AR and BR Scale and power parameters in the function 

to calculate the proportion (Rfract) of 

inundated volume above SRes that returns 

to the channel (QRET m
3
×10

6
) and 

contributes to downstream flow (QOUT 

m
3
×10

6
). Rfract can be optionally reduced 

when the channel is spilling (on the 

assumption that spilling and return flow do 

not occur simultaneously in some wetland 

types). 

 

4.3.2 Versions of the Pitman model 

4.3.2.1 The structured uncertainty version of the GW Pitman model. 

The structured uncertainty version of the GW Pitman model (Kapangaziwiri and Hughes 

2008) including its modified versions (Hughes et al., 2010; Kapangaziwiri et al., 2012) is 

based on the use of the basin physical and climatological characteristics (e.g. land cover, 
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topography, geology, soils, rainfall and evapotranspiration) to establish a priori parameter 

sets using different empirical formulas and a regionalisation of the stream flow signatures 

used to constrain behavioural ensembles. The model uses parameter ranges (i.e. upper and 

lower bounds) with the defined distribution (normal, log-normal or uniform) to generate up to 

10 000 ensembles using simple Monte Carlo sampling, with the generated parameter sets 

being independent of each other and across the sub-basin (Hughes et al., 2010). For a 

distribution represented by normal or log-normal, the mean and standard deviation are 

defined before running the model, whereas simple parameter ranges are used for the uniform 

distribution (Kapangaziwiri, 2011). 

The model results are saved in two files. The first file with the ‘.un1’ extension contains the 

sampled parameter values, mean monthly flows, and mean monthly recharge, the slope of 

FDC, and the flows at 10%, 50%, and 90% for each ensemble. For gauged sub-basins, this 

file includes model performance results computed from the objective functions for each 

ensemble. The second file ‘.un2’ includes the upper (5%), median (50%) and lower (95%) 

exceedance values for all the sub-basins and a series of observed flows for a gauged sub-

basin. The generated ensembles are assessed using several statistical objective functions (see 

4.3.3 below) and behavioural ensembles are identified using appropriate thresholds for the 

objective functions. This approach was applied in different studies within southern African 

basins (Hughes et al., 2010; Kapangaziwiri et al., 2012; Tshimanga, 2012).  

 

4.3.2.2 The single-run version  

This version of the model applies the use of a single parameter set to simulate flows for each 

sub-basin (Hughes et al., 2010). The simulated flows are evaluated using the objective 

functions discussed in section 4.3.3 below as well as visual analysis of seasonal distributions, 

and the FDCs. In this version of the model, the parameters are manually calibrated, but when 

there are many sub-basins, the calibration processes is never a straightforward task. In such 

cases, the structured uncertainty version of the model can be run prior to the single-run 

version of the model to provide likely behavioural parameter sets to be used in calibrating a 

single run model. In a similar way, the single-run version can be used to ‘manually’ explore 

the effects of different parameter combinations prior to setting the parameter ranges in the 

structured uncertainty version. Therefore, the structured and single-run version of the model 
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can be linked together to improve parameter estimations and in turn, the model simulation 

results.  

 

4.3.2.3 The 2-stage model  

This is one of the most recent approaches focused on using hydrological signatures as 

constraints to improve parameter estimations and uncertainty analysis in the Pitman model 

(Hughes, 2015a; Tumbo and Hughes, 2015). The approach involves two steps as indicated in 

Figure 2.11 in section 2.10. The initial step uses a priori parameter distributions under Monte 

Carlo sampling to generate up to 100 000 ensembles for the incremental natural flows of each 

sub-basin, and hydrological signatures are used to constrain all possible outputs to those 

considered behavioural. The hydrological constraints used in this approach include mean 

monthly streamflow (MMQ), mean monthly groundwater recharge, Q10, Q50 and Q90 on the 

flow duration curve as well as the percent time of zero flows. These constraints can be 

estimated from observed flow data, regional information on natural hydrological behaviour or 

previous model simulations (Hughes, 2015a; Tumbo and Hughes, 2015; Ndzabandzaba and 

Hughes, 2017). A behavioural ensemble its bounds fall within all established constraints, and 

these are automatically saved in the database for use in the second step. In the second step, all 

the saved behavioural parameter sets are re-sampled and the entire model is run for all sub-

basins linked together to generate the cumulative streamflow volumes at all sub-basins outlets 

(Ndzabandzaba and Hughes, 2017). The final simulated flows can be further constrained 

using available observed data.  

 

4.3.3 Model performance measures 

The model performance statistical measures in the SPATSIM version of the GW Pitman 

model are the Nash-Sutcliffe coefficient of efficiency (CE), Percentage Bias of mean monthly 

flows (PBIAS) and coefficient of determination (R
2
), determined using untransformed and 

natural log (ln) or transformed streamflow volumes. In addition, visual comparisons can be 

made between the observed and simulated time series, flow duration curves and seasonal 

distributions using the TSOFT facility that forms part of the SPATSIM framework.  

 

Nash-Sutcliffe coefficient of efficiency (CE) 
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This measure is used to evaluate the residual variance of simulated data against the observed 

variance (Nash and Sutcliffe, 1970) and takes a value between −∞ and 1. Negative values of 

CE indicate that the simulated flow represents the observed flows to a lesser degree than the 

mean observed flow, whereas a value of zero indicates that the simulated flow is no better 

estimator than the mean of observed flow (Kapangaziwiri, 2008). CE can be calculated as 

indicated in Equation 4.4. The same formula can be used to calculate the transformed values 

to obtain CE (ln) that reduces the effects of high flows.  

𝐶𝐸 =  1 −
∑ (𝑄𝑜𝑖

−𝑄𝑆𝑖
)

2
𝑛
𝑖=1

∑ (𝑄𝑜𝑖
−𝑄̅𝑜)

2
𝑛
𝑖=1

    (Equation 4.4) 

where 𝑄𝑜𝑖
,𝑄̅𝑜 and 𝑄𝑆𝑖

, are the observed monthly stream flow, mean of the observed stream 

flows and simulated monthly stream flow, respectively. 

 

Coefficient of determination (R
2
) 

This statistical function provides an estimate of the general fit between the observed and 

simulated flows, and varies between 0 and 1. R
2
 can be calculated as indicated in Equation 

4.5. It is the most commonly used statistical objective function to define the linear 

relationship between two variables. However, R
2
 is not sensitive to systematic differences 

between the observed and simulated flows (Tirivarombo, 2013).  

𝑅2 =  
∑ (𝑄𝑜𝑖

−𝑄𝑜̅̅ ̅̅ )𝑛
𝑖=1 (𝑄𝑠𝑖

−𝑄̅𝑠)

[(∑ (𝑄𝑜𝑖
−𝑄𝑜̅̅ ̅̅ )

2
∑ (𝑄𝑠𝑖

−𝑄̅𝑠)
2

𝑛
𝑖=1

𝑛
𝑖=1 )]

0.5  (Equation 4.5) 

 

Percentage bias of mean monthly flows (PBIAS)  

PBIAS measures the percentage deviation of mean simulated flow volumes to observed flow 

volumes. A value of 0 represents the least bias, positive values indicate underestimation and 

negative values indicate overestimation. PBIAS can be calculated as; 

𝑃𝐵𝐼𝐴𝑆 =
∑ (𝑄𝑜𝑖

−𝑄𝑠𝑖
)𝑛

𝑖=1

∑ 𝑄𝑜𝑖
𝑛
𝑖=1

× 100    (Equation 4.6) 
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4.3.4 GW Pitman model setup for this study 

The model was initially set up to simulate or quantify the wetland inflows required as 

upstream boundary conditions in the LISFLOOD-FP hydraulic model, and later re-run with 

the inclusion of the wetland sub-model parameters which were estimated from the hydraulic 

model. The setup was done on the SPATSIM platform for all three sub-basins (the Luangwa 

River basin, the Upper Zambezi River basin, and the Upper Great Ruaha River basin). 

However, for the Upper Great Ruaha River basin, the wetland monthly inflows were already 

generated from Tumbo (2015) and the initial simulations not repeated in this study.  

Since the basins are largely ungauged and there is no adequate information to establish the 

model parameters, a combination of the structured uncertainty and single-run versions of the 

GW Pitman model was used. The main inputs (i.e. rainfall and potential evapotranspiration), 

were obtained from CRU TS 3.22 and IWMI Climate Data Portal datasets, respectively. The 

CRU TS monthly rainfall data extended from 1901 to 2013, whereas the potential 

evapotranspiration values were long-term monthly averages. In setting up the structured 

uncertainty model, some parameters were fixed, whereas those with high influence on runoff 

generation remained uncertain. These uncertain parameters were assumed to be uniformly 

distributed and parameter ranges were largely established using past experience (i.e. studies 

that have used the model) and some knowledge of basin physical characteristics. For 

example, low values of infiltration parameters (ZMIN, ZAVE, and ZMAX) were used for 

sub-basins in high elevated areas with coarse textured soils to account for more surface 

runoff, whereas sub-basins located in flat areas with finer soils were assigned higher values. 

In flat areas where soils are expected to be deep, higher values of ST were used. Moreover, 

low values of FT and GW parameters were used in flat sub-basins to account for low amounts 

of interflow and recharge. Higher values of POW and GPOW parameters used in low 

elevated areas to account for more variable amounts of recharge and interflow in these areas, 

whereas low values reflect less variable amounts in the two fluxes for high elevation areas. 

Generally, the initial parameter values adopted were consistent with those used in past studies 

(e.g. Mwelwa, 2004; Kapangaziwiri, 2011; Tshimanga, 2012; Tirivarombo, 2013; Tumbo, 

2015).  

For the case of the Luangwa River basin, a single gauging station downstream of the 

floodplain (data from 1930 to 1991) was used to assess the total model output. In the Upper 

Zambezi River basin, gauging stations (BP9, 1291100 and 1591820) were used, with the first 

two located a few kilometres downstream of the Barotse floodplain and the last one located 
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upstream of the floodplain. Clearly, the wetland attenuation effects are included in the 

downstream observed data, but to avoid incorrectly estimating the wetland parameters, the 

wetland sub-model was not included in the initial setup of the model. This was not considered 

to be a major limitation as the uncertainties related to this would be captured by the final 

calibration of the GW Pitman model when the estimated wetland parameters are included in 

the model setup. The model was set to generate 10 000 ensembles, and these ensembles were 

filtered using thresholds established for each objective function. An ensemble was considered 

behavioural if the CE and PBIAS for both transformed and non-transformed values were 

> 0.5 and ±15%, respectively. In addition, the best fit index that includes the effects of all 

objective functions (CE and PBIAS) was used to identify the most optimal behavioural 

ensemble. The index was calculated 

as 𝐶𝐸 + 𝐶𝐸(𝑙𝑛) + 1/[𝐴𝐵𝑆(𝑃𝐵𝐼𝐴𝑆) + 𝐴𝐵𝑆(𝑃𝐵𝐼𝐴𝑆 (𝑙𝑛))]. The identified most optimal 

behavioural ensembles were then used to guide the establishment of the initial parameter set 

for the single-run model. 

Using the single run version, several manual calibration runs were performed before arriving 

at the final calibration results. CE (> 0.5) and PBIAS (±15%), as well as visual comparisons 

of observed and simulated FDCs and seasonal distributions, were used to test the model 

performance. These objective function thresholds were applied in all basins, and the final 

calibrated model was considered appropriate enough to represent monthly wetland inflows. 

However, since daily wetland flows were required in the LISFLOOD-FP, the Pitman 

Disaggregation sub-model was used disaggregate the simulated monthly to daily flows.  

 

4.4 Pitman Disaggregation sub-model  

This sub-model was introduced by Slaughter et al. (2015) and was initially aimed at 

establishing a link between daily water quality modelling and monthly time-step water 

quantity models of natural hydrology and water use (system models). It can also be useful for 

various hydrological applications, including linking of monthly rainfall–runoff model results 

to the hydraulic modelling of wetland inundation at a finer (daily) time scale (Hughes and 

Slaughter, 2015). A detailed explanation of the model is found in the original document 

(Slaughter et al., 2015) and is summarised in Hughes and Slaughter (2015; 2016). The model 

uses daily rainfall data and five model parameters to disaggregate the monthly flows to daily 

flows. Three parameters (A, B, C) are used to establish the scaling relationship between 
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monthly flow duration curve quantiles and the equivalent daily flow duration curve. The 

remaining parameters (Rthresh and K) are used to convert discrete daily rainfall values to a 

continuous antecedent rainfall time series. Rthresh is a threshold parameter that accounts for 

small values of daily rainfall that are not considered relevant to the generation of runoff, 

whereas K represents the storage response in the catchment (Slaughter et al., 2015). The daily 

FDC and the antecedent frequency distribution are used to generate the initial daily flow time 

series. Finally, a volume correction is included in the model computation to balance the total 

daily volumes with the monthly volume. To summarise, the six steps involved in the 

disaggregation processes are presented below as adopted from Hughes and Slaughter (2016):  

i. Simulated monthly flow volumes are used to generate flow duration curves (M_FDC) 

of mean monthly flows. 

ii. The mean monthly flow quantiles of the M_FDC are scaled (𝑆𝑃𝑃) to daily values 

(D_FDC) using three parameters (A, B, C) developed from the available observed 

daily flow data or regional estimates.  

𝐷_𝐹𝐷𝐶𝑝𝑝 = 𝑆𝑃𝑃 ∗ 𝑀_𝐹𝐷𝐶𝑃𝑃      (Equation 4.7) 

Where 𝑆𝑃𝑃 = 𝐴. 𝑃𝑃𝐵 + 𝐶  (If 𝑆𝑃𝑃 < 0 𝑡ℎ𝑒𝑛 𝑆𝑃𝑃 = 0)  (Equation 4.8) 

iii. Daily rainfall (𝑃𝑖) is converted to a single continuous time series of antecedent 

rainfall (API) using K and Rthresh parameters.  

𝐴𝑃𝐼𝑖 = 𝐴𝑃𝐼𝑖−1
𝑘 + 𝑅𝑡ℎ𝑟𝑒𝑠ℎ  (For 𝑃𝑖 > 𝑅𝑡ℎ𝑟𝑒𝑠ℎ)  (Equation 4.9) 

𝐴𝑃𝐼𝑖 = 𝐴𝑃𝐼𝑖−1
𝑘  (For 𝑃𝑖 < 𝑅𝑡ℎ𝑟𝑒𝑠ℎ)   (Equation 4.10) 

iv. The generated antecedent rainfall time series is used to generate an antecedent rainfall 

frequency curve (API_DC).  

v. The API time series and API_DC are used to establish the exceedance frequency for 

each day from which the initial daily flow estimates are obtained. 

vi. The initial time series of daily flows (𝐷𝑖) are volume corrected (𝐷𝐶𝑖) to balance with 

the monthly flow volumes (𝑀𝑗). 

𝐷𝐶𝑖 = 𝐷𝑖 + (𝑀𝑗 − ∑ 𝐷𝑖
𝑛
𝑖=1 ) ×

𝐷𝑖
2

∑ 𝐷𝑖
2⁄    

(For ∑ 𝐷𝑖
𝑛
𝑖=1 < 𝑀𝑗)     (Equation 4.11) 
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The ARC2 global satellite daily rainfall data (Novella and Thiaw, 2013) for the period 

between October 2000 and September 2013 were used in this study. Applying this model in 

the absence of some local observed daily stream flow data is never a straightforward task and 

the simulated daily inflows are almost impossible to validate. However, the key issue was to 

obtain representative hydrographs that can be used as upstream boundary conditions in the 

LISFLOOD-FP model. The initial parameter values largely relied on the parameter values 

suggested by previous studies (e.g. Hughes and Slaughter, 2015; Slaughter et al., 2015). 

According to Hughes and Slaughter (2015), the possible values for K and Rthresh are 0.95 – 

0.99 and 1 – 10, respectively. Similar parameter values were assigned to all sub-basins as 

there was no information available to distinguish between different sub-basins. 

 

4.5 LISFLOOD-FP hydraulic model 

4.5.1 The structure and parameters of the LISFLOOD-FP hydraulic model 

Some details about the LISFLOOD-FP model were presented in section 2.7.2, and the full 

details of the model algorithms for the most recent versions can be found in previous 

publications (see for example Bates et al., 2010; Neal et al., 2012). It is a freely available 2D 

hydraulic model that includes two equations that solve for continuity of mass (Equation 4.12) 

for each cell and continuity of momentum (Equation 4.13) between cells (Neal et al., 2012). 

An explicit finite difference approach is used to solve the Saint Venant shallow water 

equation with the advection component ignored and the acceleration, water slope and friction 

slope components retained (Schumann et al., 2013; Fernández et al., 2016). The recent 

version of the model by Neal et al. (2012) known as a sub-grid model which was 

incorporated into the base model (Bates et al., 2010) is applied in this study. The sub-grid 

model allows the inclusion of hydraulic characteristics of channels that are smaller in size 

compared to the grid size. Although a detailed description of the sub-grid model is not 

repeated here, a summary of the structure of the base model and the sub-grid model are 

shown in Figure 4.9.  

 

ℎ𝑖,𝑗
𝑡+∆𝑡 = ℎ𝑖,𝑗

𝑡 + ∆𝑡
𝑄𝑥 𝑖−1/2,𝑗

𝑡+∆𝑡 −𝑄
𝑥 𝑖+

1
2

,𝑗

𝑡+∆𝑡 +𝑄
𝑦 𝑖−

1
2

,𝑗

𝑡+∆𝑡 +𝑄𝑦 𝑖+1/2,𝑗
𝑡+∆𝑡

𝐴𝑖,𝑗
 (Equation 4.12) 
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𝑄𝑖+1/2
𝑡+∆𝑡 =

𝑞𝑖+1/2
𝑡 −𝑔ℎ𝑓𝑙𝑜𝑤

𝑡 ∆𝑡𝑆𝑖+1/2
𝑡

1+𝑔∆𝑡𝑛2|𝑞𝑖+1/2
𝑡 |/(ℎ𝑓𝑙𝑜𝑤

𝑡 )
7/3 ∆𝑥   (Equation 4.13) 

 

Where ∆𝑥 is the cell width (m), ∆𝑡 is a time step (sec), g is the acceleration due to gravity 

(m s
-1

), 𝑞𝑡 (m 
2
s

-1
) is the flow from the previous time step (𝑄𝑡) divided by cell width (∆𝑥), S 

is the water surface slope between cells, n is Manning’s roughness coefficient, and ℎ𝑓𝑙𝑜𝑤 (m) 

is the depth between cells through which water can flow.  

 

 

Figure 4.9: Conceptual diagram of the LISFLOOD-FP base model (a), sub-grid solver (b), 

and sub-grid section (c) (Source: Neal et al., 2012). 

 

Topography, channel cross-sections, bankfull heights, model parameters (surface roughness 

(n), p, and r) and boundary conditions (discharge and water level) are required to set up the 

LISFLOOD-FP model. When channel width values are provided as the model inputs, 

bankfull depth can be estimated from the hydraulic geometry relationship proposed by 

Leopold and Maddock (1953) (Equation 4.14) which was summarised by Neal et al. (2012) 

as indicated in Equation 4.15. The parameters ‘r’ and ‘p’ are hydraulic radius parameters, and 
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the inundation results are generally less sensitive to the variation of p than r. The 

topographical characteristics are mostly represented using a DEM. In some cases, particularly 

when the detailed river bathymetry data are not available, the bankfull elevations are 

represented using the grid elevations adjacent to the river boundary. Surface roughness is 

established using the land cover maps and other guidelines such as Chow (1959). The 

upstream and downstream boundary conditions specify inflows and outflow water levels in 

the model domain, respectively. When the observed boundary conditions are missing, 

upstream inflows are simulated using hydrological models, whereas a normal depth (i.e. 

depth of flow when the water surface slope is assumed to be similar to channel bed slope) is 

assumed to be a downstream boundary condition. With the assumption of normal depth, the 

water surface slope is estimated using the average channel bed slope.  

 

d = (
c

a
f
b

) w
(

f

b
)
       (Equation 4.14) 

d = rwp  (𝐹𝑜𝑟 𝑝 = (
𝑓

𝑏
)  𝑎𝑛𝑑 𝑟 = (

𝑐

𝑎
𝑓
𝑏

))  (Equation 4.15) 

Where d represents bankfull depth, 

 w represents channel width values and  

‘r’ and ‘p’ are scale and exponential hydraulic radius parameters. 

a, b, c, f are coefficients and exponents that define the hydraulic geometry relationship   

The model outputs include a series of water depths; maximum inundated depth and area in a 

grid format, as well as a single time series file of area and volume of inundation, outflow, and 

inflow at each specified time interval. The simulated results are compared with any available 

observed data (e.g. discharge at the downstream point, inundation extents and storage) to 

assess the model performance. 

 

4.5.2 LISFLOOD-FP hydraulic model setup for this study 

This section explains the methods used to set up the LISFLOOD-FP model for the three 

basins selected for the current study. Although the SRTM 30 m resolution DEM provides 

more detailed topographical characteristics, an initial analysis to compare the 90 m and 30 m 
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DEMs indicated that the 30 m DEM contained too much random noise, thereby affecting the 

model simulation results and increasing the model run time. Therefore, the SRTM 90 m 

resolution DEM was found to be more reliable, but filtering processes were necessary to 

reduce some of the local variations and noise effects but could not correct the vegetation bias. 

The DEM was pre-processed using the filter tool (low pass filter) of the ArcGIS 10.2 which 

calculates the mean value for each 3 × 3 neighbouring cells, and as a result, the high and low 

values within each neighbouring cells are averaged-out to reduce extreme values. The filtered 

SRTM 90 m resolution DEM was then used as topographical data in the model setup. It is 

important to note that, even though the filtering process is useful to reduce the noise effects, 

in some cases it may introduce some errors in the DEM (Trigg et al., 2012; Baugh et al., 

2013). The presence of vegetation bias in the DEM could introduce some errors in the 

simulated inndation results. Recently (in the course of this study), a number of vegetation 

corrected DEMs have been released (e.g. O’Loughlin et al., 2016) which can be used to 

reduce the effects of vegetation bias in the hydraulic modelling. 

No channel cross-section details are available for the main river or the tributaries in all of the 

studied wetlands. The available global river cross-section datasets such as the global river 

bankfull width and depth dataset by Andreadis et al. (2013) have been used in many studies 

including some in southern Africa (Schumann et al., 2013). When the river network from the 

Andreadis et al. (2013) dataset and the network derived from the SRTM 90 m DEM during 

the sub-basin delineation process, were overlaid on top of the Google Earth imagery, there 

was a somewhat better agreement between the latter river network and the Google Earth 

image compared to the former network (Figure 4.10). The reasons for this may be that the 

Andreadis et al. (2013) network was generated from a lower resolution DEM (15 arc sec) 

compared to the SRTM 90 m resolution DEM. Generally, the locations of the two river 

networks could not match properly with the observed river network on Google Earth. 

Moreover, the width values estimated from the Andreadis et al. (2013) dataset were found to 

be over-generalised and did not reflect widths measured using Google Earth in many places. 

Any attempt to use a river network with incorrectly-located coordinates and inaccurate width 

values will inevitably affect the simulated inundation results. Therefore, in this study, the 

river network was digitised using the Google Earth image and the width values were 

measured at different representative sections and interpolated for the whole network. The 

digitised river network together with the width values were then rasterised to the format 

required in the LISFLOOD-FP model setup.  
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Figure 4.10: Comparison between two river networks generated from two different 

DEMs. 

 

The bankfull depths were established using the width–depth relationship suggested by Neal et 

al. (2012) and the values of the scale (r) and power (p) parameters that define this 

relationship ( see Equation 4.15) were set to reflect the actual width and depth values for each 

river network. A fixed value of p was used (i.e. the model default value of p=0.76), whereas a 

given range of parameter r was used. Bank elevations were represented using the grid 
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elevations adjacent to the river boundary. The channel roughness (Cn) and the floodplain 

roughness (Cf) were established depending on the land cover and channel characteristics 

using the guidelines suggested by Chow (1959).  

Disaggregated daily flows were used as the upstream boundary conditions. However, to limit 

the model run time, which is important in most detailed hydraulic models due to their 

computational demands, a short, but representative daily time series of wet and normal years 

were used in the setup of the LISFLOOD-FP (i.e. a complete hydrological year for each case) 

instead of the whole disaggregated time series (October 2000 – October 2013). The initial 

conditions in the wetland largely influence the simulated inundation results. The three studied 

wetlands consist of both seasonal and permanent inundated areas. In such wetlands, when the 

initial conditions are assumed to be dry (i.e. depth of water in the wetland is zero), the model 

tends to use a range of starting values as a ‘warm-up period’. Thus, an addition of one year 

prior to the targeted ones (wet and normal years) was used as a warm-up period to create 

initial conditions in each wetland. An assumption of the normal depth (i.e. water surface is 

assumed to be parallel to the channel bed) was used as the downstream boundary condition at 

the end of the main channel. This depth was automatically estimated by the model using the 

average channel slope estimated from the Google Earth image. This was done by plotting a 

profile of a digitised channels in the Google Earth. For tributaries, the downstream boundary 

condition was assumed to be the water level in the downstream receiving channel. For 

wetlands with both dense vegetation and standing water, evapotranspiration was expected to 

have a great influence on the inundation characteristics and was considered in the model 

setup. The influence of direct rainfall on the inundation characteristics was also included in 

the model setup.  

The Barotse floodplain covers one sub-basin, whereas the Luangwa and Usangu wetlands 

cover more than one sub-basin in the Pitman model setup. For the Luangwa and Usangu 

wetlands, the wetland sub-model parameters were required for each sub-basin. The 

LISFLOOD-FP was set up for each sub-basin starting from the one located upstream, and the 

outflows from this sub-basin were used as one of the inflow boundary conditions to the next 

sub-basin up to the last sub-basin. Although the setup was done for each sub-basin containing 

wetland effects, the setup for the entire wetland as a single unit was, however, used to 

establish likely parameter values, and the optimal values were used to inform parameter 

values in the individual sub-basin setups.  

 



139 

 

4.5.3 Validation of the LISFLOOD-FP model results 

The simulated inundation extents were compared with the few available LandsatLook and 

Landsat level 1 images. Water pixels from the selected Landsat level 1 images were extracted 

using the Modified Normalised Difference Water Index (MNDWI) (Xu, 2006) which can be 

computed using Equation 4.16 and the results were used to represent the observed inundation 

extents. The extracted water pixels together with the simulated inundated extents were used 

to calculate the Flood Area Index (FAI) (Fernández et al., 2016) using Equation 4.17 in order 

to assess the model performance. The simulated outflows from the wetlands were validated 

using the available observed daily flows for gauging stations located a few kilometres 

downstream of the wetland outlet, but this was only possible for the Barotse floodplain and 

the Usangu wetlands. Although the Landsat images were used to validate simulated 

inundation extents, it is clear that these images may not be that good to validate the model 

results because of some limitations discussed in section 2.4. Different researchers have 

proposed ways to deal with uncertainties of validation data (e.g. Pappenberger et al., 2007; 

Schumann et al., 2009). Pappenberger et al. (2007), proposed a fuzzy approach to deal with 

some of the uncertainties of validation data. The approach make use of the GLUE uncertainty 

framework. Generally speaking, the aim of applying the LISFLOOD-FP model was to get a 

likely representative simulation of wetland inundation dynamics and not to capture a specific 

observed event, and evidence from past studies has indicated that the model can provide 

likely inundation characteristics.  

 

𝑀𝑁𝐷𝑊𝐼 =
𝐺𝑟𝑒𝑒𝑛 𝑏𝑎𝑛𝑑−𝑀𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 𝑏𝑎𝑛𝑑+𝑀𝐼𝑅
     (Equation 4.16) 

 

𝐹𝐴𝐼 =
𝑀𝑖𝑂𝑖

(𝑀𝑖𝑂𝑖+𝑀𝑖𝑂𝑛+𝑀𝑛𝑂𝑖)
     (Equation 4.17) 

Where O is the observation and M corresponds to the model output,  

MiOi is the number of inundated cells modelled and observed, 

MiOn is number of non-inundated cells that the model simulated as inundated,  

MnOi is the number of inundated cells that the model simulated as non-inundated, and  

MIR is middle infrared. 
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4.6 Re-run and evaluation of the GW Pitman model for the entire basin 

4.6.1 Establishment of Pitman wetland sub-model parameters from the LISFLOOD-

FP model results 

The Pitman wetland sub-model parameters are presented in Table 4.4. These parameters were 

estimated for each sub-basin with assumed wetland effects. Some of these parameters were 

directly estimated from the LISFOOD-FP results: maximum inundated area (MaxIA), the 

channel flow volume below which there is no flow into the wetland (QThresh) and the 

residual inundation volume below which there is no return flow from the wetland to the 

channel (SRes), others which are highly empirical were estimated manually. The scale (A) 

and power (B) parameters in the area–volume relationship were estimated by plotting the 

area–volume of inundation graph and varying A and B until a line of best fit was obtained. 

The remaining parameters were established using the time series for inundation volume, 

inflows, and outflows generated by LISFLOOD-FP. This was achieved by implementing the 

Pitman wetland sub-model algorithms in a spreadsheet version together with the LISFLOOD-

FP results. The LISFLOOD-FP results (simulated daily flows and storage/volumes) are saved 

as mass file in the model results folder. This mass file can be opened in the excel sheets and 

the required LISFLOOD-FP results can be extracted and saved in different excel sheet. Then 

the simulated daily flows and storage/volumes can be converted to monthly values (as the 

wetland sub-model simulates monthly values) and added in the spreadsheet version of the 

wetland sub-model. The Pitman wetland sub-model parameters were manually calibrated by 

comparing the LISFLOOD-FP simulated monthly inundation volumes and outflows with 

those generated by the spreadsheet version of the Pitman wetland sub-model.  

 

4.6.2 Re-run the Pitman model with the inclusion of wetland sub-model parameters. 

The previously established parameter ranges used in the structured version of the model 

together with the wetland sub-model parameters were used to re-set this version of the model. 

The aim was to determine if there is any difference in model performance before and after 

inclusion of wetland sub-model parameters in the model setup. The performance of the 

original structured uncertainty model setup (before inclusion of wetland sub-model 

parameters) was compared to the performance after the wetland sub-model parameters were 

included in the model setup. The initial run suggested a need to revise the structure of the 
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previous version of the wetland sub-model. This small revision involved the inclusion of an 

option to limit the return flows from the wetland back to the river when the river was still 

spilling onto the wetland. The revised version allows for the option to have return flows at 

any time. The estimated parameters were then used in the single-run version, and the final 

calibrated model was used to establish the likely impacts of the wetland on the downstream 

flow regime.  

4.7 Regionalisation or direct estimation of wetland parameters of the 

basin-scale model 

The final part of the results analysis was designed to provide guidelines on establishing the 

Pitman wetland sub-model parameters directly from their identified physical characteristics 

(i.e. without having to setup and run the LISFLOOD-FP model). While a sample of only 

three wetlands is certainly insufficient to develop clear guidelines, the three wetlands are 

considered sufficiently different (not only in their characteristics but also in their water 

exchange dynamics) to expect that these differences will be reflected in different wetland 

sub-model parameters. The approach adopted was to conceptually interpret the wetland sub-

model parameters in terms of their physical characteristics, together with the better 

understanding of the different water exchange dynamics of the three wetlands that was 

obtained from the LISFLOOD-FP model.  

 

4.8 Conclusions 

This chapter discussed the methodological setup used in the present study. Three models 

(Pitman hydrological model, Pitman disaggregation sub-model and LISFLOOD-FP hydraulic 

model) were linked together to achieve the overall aim of the study. Generally, the quality of 

the model forcing data was expected to substantially influence the simulation results. There 

was no adequate information to be used in setting up and validating both hydraulic and 

hydrological models in the three basins. Some of the available data that were used in setting 

up these models have a number of limitations due to their spatial and temporal coverages as 

well as extraction methods. As a result, it was always expected that there would be quite large 

uncertainties in the simulated results related to the quality of model forcing data.  
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CHAPTER FIVE: A COMBINED MODELLING APPROACH: 

RESULTS AND DISCUSSION 

 

Hydrological modelling in a river basin containing large wetlands requires a detailed 

conceptualisation of the interacting processes between channels and wetlands. Understanding 

these processes is vital for the estimation of model parameters (e.g. maximum inundation 

extents, wetland residual volume, and return flow). However, in data scarce basins these 

processes are not well understood therefore, parameter estimation can be very difficult. A 

combined modelling approach that was implemented in this study maximised the use of the 

LISFLOOD-FP hydraulic model to understand channel–wetland exchanges and wetland 

dynamics, and the results were used to quantify parameters and modify the structure of the 

basin-scale Pitman hydrological model.  

This chapter presents the calibration results and a general discussion of the results of the 

combined modelling approach for the three selected basins as per the methodological 

sequence (explained in Chapter 4) which is summarised below:  

 Data preparation for modelling. 

a. Sub-basin delineation 

b. Establishment of sub-basin characteristics 

c. Sub-basin similarity analysis 

 Initial setup of the GW Pitman model to simulate wetland inflows. 

d. Parameter sampling using structured uncertainty version  

e. Single-run version 

 Disaggregation of simulated monthly flows to daily flows using the Pitman 

disaggregation sub-model. 

 Simulation of wetland inundation characteristics using the LISFLOOD-FP model. 

 Quantification of the Pitman wetland sub-model parameters. 

 Re-run the Pitman model for the entire basin with the inclusion of the wetland sub-

model and quantification of the wetland impacts on the downstream flow regimes. 

It is important to note that, the first two components of the sequence were dealt with by a 

previous study by Tumbo (2015) for the Upper Great Ruaha River basin and are not repeated 

here. 
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5.1 The Luangwa River basin  

5.1.1 Sub-basin delineated 

A total of 28 sub-basins were delineated in the Luangwa River basin (Figure 5.1) and their 

characteristics are presented in Table 5.1. However, these sub-basins were modified to 

simplify the linkage between the LISFLOOD-FP and Pitman models by creating nodal points 

at the downstream end of the key tributary inflow sub-basins, as well as the downstream ends 

of the main wetland areas (NF1, NF2 and NF3). As a result 24 sub-basin nodes were formed 

and their upstream area characteristics are presented in Table 5.2. These sub-basins nodes 

were used in the setup of the GW Pitman model instead of the delineated sub-basins 

(Figure 5.1).  

 

Table 5.1: Characteristics and indices for each sub-basin that were entered into the 

PCA 

Sub-basin 

Slope 

(%) 

Mean Elev 

(m) 

Min. Elev 
(m) 

Max. Elev 

(m) HI
1
 

PET 

(mm y
-1

) 

MAP 

(mm y
-1

) AI
2
 TWI

3
 

L1 7.0 1071.1 652.0 2311.0 0.3 1597.6 1012.7 1.6 9.0 

L2 9.5 1168.3 657.0 2231.0 0.3 1599.9 937.7 1.7 8.8 

L3 5.0 914.3 605.0 1683.0 0.3 1535.5 941.2 1.6 9.3 

L4 3.3 968.3 604.0 1276.0 0.5 1608.3 904.8 1.8 9.6 

L5 1.3 660.8 604.0 744.0 0.4 1497.2 1025.9 1.5 10.4 

L6 4.6 849.7 579.0 1649.0 0.3 1535.5 1025.9 1.5 9.4 

L7 3.9 1040.9 582.0 1529.0 0.5 1668.5 866.1 1.9 9.2 

L8 7.6 1127.4 561.0 1842.0 0.4 1593.3 986.9 1.6 8.8 

L9 2.2 645.9 555.0 1300.0 0.1 1668.5 1025.9 1.6 10.0 

L10 6.0 1150.0 542.0 1727.0 0.5 1486.0 1025.9 1.4 9.1 

L11 3.4 747.8 543.0 1242.0 0.3 1668.5 924.6 1.8 9.6 

L12 4.2 944.7 555.0 1407.0 0.5 1668.5 854.4 2.0 9.1 

L13 1.1 545.4 539.0 556.0 0.4 1668.5 924.6 1.8 10.7 

L14 2.7 721.5 523.0 1218.0 0.3 1668.5 924.6 1.8 9.7 

L15 3.0 653.4 525.0 1097.0 0.2 1756.4 928.6 1.9 9.8 

L16 5.7 907.5 538.0 1645.0 0.3 1756.4 928.6 1.9 9.1 

L17 7.7 1075.5 485.0 1758.0 0.5 1478.9 1001.8 1.5 8.9 

L18 5.5 718.0 486.0 1701.0 0.2 1476.7 957.1 1.5 9.3 

L19 4.7 842.7 539.0 1452.0 0.3 1478.9 958.0 1.5 9.2 

L20 7.1 757.4 449.0 1328.0 0.4 1476.7 982.4 1.5 9.0 

L21 6.2 1208.0 493.0 1615.0 0.6 1497.4 1026.3 1.5 8.9 

L22 8.2 1086.3 488.0 1714.0 0.5 1497.4 1026.3 1.5 8.7 

L23 10.5 919.2 408.0 1657.0 0.4 1549.6 961.5 1.6 8.5 

L24 5.9 1092.1 406.0 1877.0 0.5 1550.8 944.4 1.6 9.1 

L25 4.2 1091.5 463.0 1417.0 0.7 1562.6 852.3 1.8 9.5 

                                                 
1
 Hypsometric Integral 

2
 Aridity Index 

3
 Topographical Wetness Index 
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Sub-basin 

Slope 

(%) 

Mean Elev 

(m) 

Min. Elev 
(m) 

Max. Elev 

(m) HI
1
 

PET 

(mm y
-1

) 

MAP 

(mm y
-1

) AI
2
 TWI

3
 

L26 16.9 664.9 365.0 1243.0 0.3 1662.5 866.4 1.9 8.0 

L27 8.1 754.8 370.0 1414.0 0.4 1699.1 948.3 1.8 8.8 

L28 10.6 658.6 323.0 1492.0 0.3 1679.1 720.0 2.3 8.6 

 

Figure 5.1: Sub-basins and sub-basin nodes formed in the Luangwa River basin. 
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Table 5.2: Areal characteristics upstream of each sub-basin node in the Luangwa 

River basin. 

Sub-basin 

Name 

Sub-basin 

Area (km
2
) 

Sub-basin 

Nodes 

Sub-basin Node 

Area(km
2
) 

Remarks on Sub-basin Node areas 

L1 12742 N1 12742 Same as L1 

L2 4465 N2 4465 Same as L2 

L3 9168 N3 8821 

Part of L3 excluding wetland (inflows 

from East & West) 

L4 2744 N4 3508 L4 and L5 & East part of L6 

L5 86 N5 3511 West part of L6  

L6 4647 NF1 805  Upper section of the floodplain 

L7 4710 N6 5610 L7 and East part of L9 (about 40%) 

L8 6150 N7 1467 West part of L9 (about 60%) 

L9 2837 N8 6180 L8 & West part of L11 

L10 3490 N9 5209 East part of L11 & L12 (minus FP part) 

L11 2645 N10 2740 East part of L14 (about 50%) less FP 

L12 3063 N11 6259 L10 & L13 & West part of L14 less FP 

L13 29 NF2 1410 Middle section of the floodplain 

L14 5950 N12 5146 L15 & L16 

L15 668 N13 7178 L19 & East part of L18 (40%) less FP 

L16 4478 N14 2763 West part of L18 (60%) less FP 

L17 2841 NF3 880 Lower section of the floodplain 

L18 5339 N15 2842 L17 

L19 5482 N16 5427 L20 

L20 5426 N17 10396 L21 and L22 

L21 3164 N18 4572 L23 

L22 7231 N19 9633 L27 

L23 4571 N20 27997 L24 and L25 

L24 19235 N21 8614 L26 andL28 

L25 8762   

 

  

L26 997   

 

  

L27 9633   

 

  

L28 7617   

 

  

 

5.1.2 Sub-basin groups formed. 

Sub-basin characteristics or variables presented in Table 5.1 were used to group sub-basins 

according to their similarities. From the PCA results, the first two principal components 

explained a total of 66.4% of the variation between the sub-basins (Table 5.3). Climatic 

variables (PET, MAP and AI), as well as the physical characteristics (i.e. slope, minimum 

elevation, and TWI), account for the first two principal components (Figure 5.2). These basin 

characteristics were predominantly used in the classification and resulted in three groups of 

sub-basins as shown in Figure 5.3. The first group consists of sub-basins primarily located in 

highly elevated areas with steep slopes (i.e. slopes values 7% – 16%), high MAP and low 

PET. The third group includes sub-basins with gentle slopes (1% – 3.9%), low MAP and high 

PET. Group two consists of sub-basins with characteristics between the above two extremes. 
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Sub-basins found in the same group were assumed to have more-or-less similar hydrological 

responses. Since the sub-basin nodes were used in the setup of the GW Pitman model, the 

group of each sub-basin node was established based on the dominant characteristics upstream 

of the nodal point (Figure 5.3). The final groups for sub-basin nodes are presented in 

Table 5.4.  

 

Table 5.3: Total variance explained by 9 variables in the PCA 

Component 

Initial Eigenvalues 

Total % of Variance Cumulative (%) 

1 3.19 35.46 35.46 

2 2.78 30.92 66.37 

3 1.25 13.85 80.22 

4 1.12 12.48 92.70 

5 0.35 3.93 96.63 

6 0.25 2.72 99.35 

7 0.05 0.50 99.84 

8 0.01 0.09 99.93 

9 0.01 0.07 100.00 

 

 

Figure 5.2: PCA biplot for the 9 variables of the Luangwa River basin. 
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Figure 5.3: The sub-basin groups generated by the PCA and the location of sub-basin nodes 

used in the final model runs of the Luangwa River basin. 
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Table 5.4: Sub-basin node groups formed in the Luangwa River basin 

Node Remarks on sub-basin node areas 
Group 

N1 same as L1 1 

N2 same as L2 1 

N3 Part of L3 excluding wetland (inflows from East & West) 2 

N4 L4 and L5 & East part of L6 2 

N5 West part of L6  2 

NF1 Upper section of the floodplain 3 

N6 L7 and East part of L9 (about 40%) 2 

 N7 West part of L9 (about 60%) 3 

N8 L8 & West part of L11 1 

N9 East part of L11 & L12 (minus FP part) 3 

N10 East part of L14 (about 50%) less FP 2 

N11 L10 & L13 & West part of L14 less FP 2 

NF2 Middle section of the floodplain 3 

N12 L15 & L16 2 

N13 L19 & East part of L18 (40%) less FP 2 

N14 West part of L18 (60%) less FP 3 

NF3  Lower section of the floodplain 3 

N15 L17 1 

N16 L20 3 

N17 L21 and L22 1 

N18 L23 3 

N19 L27 3 

N20 L24 and L25 2 

N21 L26 andL28 3 

 

5.1.3 Parameter sampling using the structured uncertainty version of the GW Pitman 

model 

The model setup was done for the period October 1930 – September 1991. The initial 

uncertain parameter ranges were established using past experience of studies that have used 

the model in southern Africa (e.g. Mwelwa, 2004; Kapangaziwiri, 2011; Tshimanga, 2012; 

Tirivarombo, 2013; Tumbo, 2015) together with a reasonable understanding of basin physical 

characteristics. For instance, sub-basin nodes found in steep areas (Group 1) which are 

expected to have shallower soils were assigned lower values of the ST parameter and those 

located in relatively flat areas with finer and deep soils (Group 3), especially along the 

Luangwa Rift valley, were assigned higher values. Steep areas were also assigned low values 

of infiltration parameters (ZMIN and ZMAX) to allow more infiltration excess runoff volume 

in these areas compared to areas with gentle slopes. Low values of FT and GW parameters 
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were assigned in flat areas including areas along the valley to reflect a minimal contribution 

of these fluxes to the total runoff and higher values were used in steep areas. The high value 

of RSF in flat areas and downstream reflects the assumption of higher losses through riparian 

margins than in steep and highly elevated sub-basins. Generally, a wide range of parameters 

was used to allow different parameter combinations. The parameters which were assumed to 

have minimal impacts on the generation of basin runoff remained fixed (Table 5.5). Sub-

basin nodes in the same group were assigned similar parameter ranges with the assumption 

that they have a similar hydrological response.  

 

Table 5.5: The parameter ranges used to set the uncertainty model 

Parameter 
Group1 Group2 Group3 

min max Min max Min Max 

RDF 0.8 0.8 0.8 

PI1 1.5 1.5 1.5 

PI2 4 4 4 

AFOR 0 0 0 

FF 0 0 0 

PEVAP varies with sub-basins 

ZMIN 40 80 40 100 60 100 

ZAVE 0.5*(ZMIN+ZMAX) 

ZMAX 600 1000 800 1200 800 1250 

ST 400 800 600 1000 700 1000 

SL 0 0 0 

POW 2.5 3.5 2.5 3.5 2.5 3.5 

FT 5 10 2 8 0 4 

GW 5 15 5 10 2 8 

R 0.4 0.7 0.4 0.7 0.2 0.5 

TL 0.25 0.25 0.25 

CL 0 0 0 

GPOW 2.5 3.5 2.5 3.5 2.5 3.5 

DDENS 0.4 0.4 0.4 

T 15 15 15 

S 0.001 0.001 0.001 

GW slope 0.01 0.01 0.01 

RWL 25 25 25 

RSF 0.2 0.2 1 

 

Only one sub-basin node is gauged (N21; located at the downstream outlet), and this gauging 

station was used to evaluate the model performance for the entire basin. Figure 5.4 illustrates 

that the high flows which occur less than 30% of the time are well simulated (the uncertainty 

bounds closely bracket the observed flow), whereas the uncertainty bounds for the moderate 

flows are somewhat over-estimated and low flows were under-estimated. The general pattern 

of the simulated ensembles could be related to the quality of the data used to establish the 
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parameter ranges and/or the difficulty to clearly define some of the parameter ranges as well 

as the assumptions used in setting up the model. Using the established thresholds for each 

objective function, the majority of the simulated ensembles were satisfactory (about 95% of 

all generated ensembles were considered behavioural).  

 

 

Figure 5.4: The FDCs of the observed and simulated bounds for the N21 sub-basin node of 

the Luangwa River basin.  

 

Although the main purpose of running the model was to estimate the possible parameter 

values that could assist the manual calibration approach used in the GW Pitman model, most 

parameters were not individually identifiable (Figure 5.5). From this figure, different values 

of ST and ZMAX parameters have more-or-less the same values of CE and CE (ln). 

Simulated moderate and low flows are mainly related to the interaction of FT, POW, GW and 

GPOW parameters and different combination of these parameters may also result in the same 

model performance (equifinality). An index that combines the four parameters (FT/POW + 

GW/GPOW) can be used to minimise the equifinality issue and improve simulation of 

moderate to low flows. From Figure 5.6, given the other three parameters are fixed (GW, 

POW and GPOW), the index can be used to establish an appropriate/behavioural value of the 

FT parameter. However, the index is still constrained by the availability of data to establish 

the other three parameters. For example, most basins in southern Africa including the 

Luangwa, lack any accurate information on groundwater recharge that could be used to 
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establish appropriate values of GW and GPOW. The same value of the index corresponds to 

different values of CE and CE (ln) (Figure 5.6). This suggests that the scatter plot cannot be 

used to establish one of these parameters. There is a need for appropriate data to establish 

these parameters in the Luangwa River basin.  

 

 

Figure 5.5: Scatterplots of the variation in CE and CE (ln) against ST and ZMAX 

parameter values for the N21 sub-basin node of the Luangwa River basin. 
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Figure 5.6: Scatterplots of the variation in CE and CE (ln) against FT/POW + 

GW/GPOW index for the N21 sub-basin node of the Luangwa River basin. 

 

5.1.4 Simulation of wetland inflows using a single-run version of the GW Pitman 

model 

The optimal behavioural ensemble, which was established using the Best Fit index 

(calculated as 𝐶𝐸 + 𝐶𝐸(𝑙𝑛) + 1/[𝐴𝐵𝑆(𝑃𝐵𝐼𝐴𝑆) + 𝐴𝐵𝑆(𝑃𝐵𝐼𝐴𝑆 (𝑙𝑛))]) for sub-basin node 

N21 was used to guide the establishment of parameter values for the other sub-basin nodes in 

the initial setup of the model. The optimal ensemble number was used to identify parameter 

values for all the remaining sub-basin nodes. Although sub-basin nodes in the same group 

were given the same parameter ranges, the sampling process used is independent of the sub-

basin nodes. Thus, different parameter values were obtained for each sub-basin node in a 

similar group. Mean parameter values were calculated for each group, and these values were 

used as an initial parameter set in the setup of the model (Table 5.6). Several simulation runs 

were performed before arriving at an acceptable model result. The parameter values used to 

setup the final model run are presented in Table 5.7.  
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Table 5.6: The initial set of calibration parameters for the GW Pitman model.  

Parameter Group1 Group2 Group3 

RDF 0.8 0.8 0.8 

PI1 1.5 1.5 1.5 

PI2 4 4 4 

AFOR 0 0 0 

FF 0 0 0 

PEVAP varies with sub-basins 

ZMIN 62 75 79 

ZAVE 0.5*(ZMIN+ZMAX) 

ZMAX 743 971 1077 

ST 536 809 783 

SL 0 0 0 

POW 2.7 3.3 3.2 

FT 7.4 5.2 2.6 

GW 10.3 7.8 5.5 

R 0.5 0.5 0.4 

TL 0.25 0.25 0.25 

CL 0 0 0 

GPOW 2.7 3.3 3.3 

DDENS 0.4 0.4 0.4 

T 15 15 15 

S 0.001 0.001 0.001 

GW slope 0.01 0.01 0.01 

RWL 25 25 25 

RSF 0.2 0.2 1 

 

Table 5.7: Final set of calibration parameters for the GW Pitman model 

Parameter Group1 Group2 Group3 

RDF 0.8 0.8 0.8 

PI1 1.5 1.5 1.5 

PI2 4 4 4 

AFOR 0 0 0 

FF 0 0 0 

PEVAP varies with sub-basins 

ZMIN 61 76 76 

ZAVE 0.5*(ZMIN+ZMAX) 

ZMAX 738 875 931 

ST 541 732 793 

SL 0 0 0 

POW 3 3.1 3.1 

FT 9 4 2 

GW 10 7 6 

R 0.5 0.5 0.4 

TL 0.25 0.25 0.25 

CL 0 0 0 

GPOW 3 3.1 3.1 

DDENS 0.4 0.4 0.4 

T 15 15 15 

S 0.001 0.001 0.001 

GW slope 0.01 0.01 0.01 

RWL 25 25 25 

RSF 0.4 0.4 1 
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Reasonably good simulations of the high flows were achieved with CE and PBIAS values of 

0.58 and 12.72%, respectively. The low flows simulations were achieved with CE (ln) and 

PBIAS (ln) values of 0.62 and 0.34%, respectively. The model somewhat under-estimated the 

low flow values, whereas the moderate flow values were over-estimated (Figure 5.7). From 

Figure 5.8 (top), high flows in most years are over-estimated, whereas for the period after 

1960 most peak flows are under-estimated. Underestimated and over-estimated flows are 

expected to improve when the wetland parameters are included in the model setup. In 

general, the uncertainty in the simulated flows could have resulted from the relatively poor 

quality of the rainfall and the limitations of the observed flow data (only being available at 

the basin outlet), as well as the assumptions used during setting up the model, particularly 

with regard to the grouping of the sub-basins. However, the results were considered 

acceptable enough to establish representative inflows (after disaggregation) to the 

LISFLOOD-FP model. 

 

 

Figure 5.7 Observed and simulated monthly flow duration curves for N21 sub-basin 

node for the period 1930 – 1991. 
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Figure 5.8: Time series of observed and simulated monthly flows for the N21 sub-basin node 

for the period October 1930 – September 1960 (top) and October 1960 – September 1991 

(bottom).  

 

5.1.5 Disaggregation of simulated monthly flows into daily flows using the Pitman 

disaggregation sub-model 

Simulated monthly flows for each sub-basin node contributing to the floodplain inflows were 

disaggregated to daily flows for the period October 2000 – September 2013. Since none of 

these sub-basins has observed daily flows, which are important for establishing scaling 

parameters (A, B and C) and validating the model results, the whole disaggregation processes 

was never a straightforward task. Parameter values suggested by previous studies (e.g. 

Hughes and Slaughter, 2015; Slaughter et al., 2015) were used to establish likely parameter 
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values (A = 0.4, B = -0.5, C = 0.9, K = 0.98 and Rthresh = 4). While the disaggregated daily 

flow magnitudes could not be validated, the onset and duration of simulated high peaks were 

compared with the information reported by the Dartmouth Flood Observatory (Adhikari et 

al., 2010) and the Robin Pope Safaris Blog (http://robinpopesafaris.net/blog/2000/01/its-

monday-22nd-jan-2007-and-the-popes-go-flying/). According to the Robin Pope Safaris 

Blog, most of the areas in the Luangwa River basin experienced floods in late January and 

early February 2007 and 2010 (Figure 5.9). Similarly, most of the simulated high peaks in 

these years (2007 and 2010) are observed in late January and early February for the sub-basin 

nodes shown in Figure 5.10. Broadly speaking, there is a high degree of uncertainty in the 

simulated daily magnitudes which is mostly related to the appropriateness of the parameters 

used, as well as errors carried over from the simulated monthly flows. Overall, since the 

rationale was to obtain likely representative flow patterns that could be used in LISFLOOD-

FP, the simulated daily flows are considered representative enough to be used as boundary 

conditions in the LISFLOOD-FP model. 

  

http://robinpopesafaris.net/blog/2000/01/its-monday-22nd-jan-2007-and-the-popes-go-flying/
http://robinpopesafaris.net/blog/2000/01/its-monday-22nd-jan-2007-and-the-popes-go-flying/
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Figure 5.9: Screenshot of the published information on early 2007 floods in the 

Luangwa (Source: http://robinpopesafaris.net/blog/2000/01/its-monday-5th-feb-2007-

and-the-flood/ ) 

http://robinpopesafaris.net/blog/2000/01/its-monday-5th-feb-2007-and-the-flood/
http://robinpopesafaris.net/blog/2000/01/its-monday-5th-feb-2007-and-the-flood/
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Figure 5.10: Disaggregated mean daily flows for some sub-basin nodes of the 

Luangwa River (October 2005 to September 2013). 
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5.1.6 Simulation of wetland inundation characteristics using LISFLOOD-FP model 

The Luangwa floodplain (Figure 5.11) was divided into three sections; upper (Figure 5.12), 

middle (Figure 5.13) and lower (Figure 5.14). These figures also show the floodplain 

elevation and river width values used for setting up the model in each floodplain section. As 

explained in section 4.5.2, the widths were estimated/measured at different representative 

sections and interpolated for the whole river network. However, it is clear that in some 

sections especially where the main river or its tributaries was covered by vegetation, the 

values were difficult to estimate as the channel boundaries were covered by vegetation. The 

total length of the meandering river (i.e. main channel) in each of the three sections is 

191 km, 194 km and 121 km for the upper, middle and lower, respectively. The channel 

bankfull depths were not provided as model input, the model generated these values at the 

beginning of the simulation using the width–depth relationship (see Equation 4.15). 

Figures 5.15 and 5.16 show the channel bankfull depths in each floodplain section. It can be 

seen that most of the low depth values (i.e. less than 1) are for tributaries. The channel depths 

in the middle section decreases and increase in the lower section because the floodplain at the 

lower section meets the Gorge where the channel become deep. The locations of tributary 

inflows used as upstream boundary conditions in each floodplain section are indicated using 

black circles (Figure 5.12 to 5.14). The downstream boundary condition for each floodplain 

section was defined using the normal depth (depth at which the water surface slope is 

assumed to be parallel to the channel bed slope). This depth was calculated using Manning’s 

flow equation that defines the relationship between discharge and water surface. Since the 

water surface slope was not known, the average channel slope was used in the computation of 

normal depth. The average channel slope values used in the three floodplain sections were 

estimated from Google Earth imagery (i.e. 0.04 in the upper, 0.02 in the middle and 0.03 in 

the lower section).  

The model runs were performed separately, starting with the upper section; the outflows from 

this section including the inflows from tributaries found in the middle section become 

upstream boundary conditions for the middle section. Subsequently, the output from the 

middle section together with inflows from tributaries in the lower section were used as 

upstream boundary conditions in the lower section. To limit the model run time, the model 

was run for a few representative years that include both wet and normal years. The period 

October 2006 – September 2007 represents the wet years, and October 2012 – September 

2013 represents normal years. An addition of one year prior to the targeted ones was used as 
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‘warm up’ period. Thus, the model was run from October 2005 – September 2007, and 

October 2011 – September 2013. To gain some insight into parameter values, the model was 

initially run for the entire floodplain as a single unit, and the final estimated parameter values 

were used to guide parameter values for the individual floodplain sections. The parameter 

values were largely established based on basin physical characteristics. For instance, the 

Luangwa River mostly was a sandy bed, with the bankfull depth approximately 3 – 6 m. 

These characteristics led to the selection of parameter ranges for channel roughness (Cn) and 

hydraulic radius parameter (r) (Table 5.8). Floodplain vegetation is scattered and includes 

different species such as grasses, herbs, riparian woodland and Miombo woodland. The 

vegetation characteristics were used to decide on the parameter range for the floodplain 

roughness (Cf) (Table 5.8).  
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Figure 5.11: The location of the Luangwa floodplain in the Luangwa River basin 
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Figure 5.12: The elevation and channel width values for the upper section of the Luangwa floodplain. 
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Figure 5.13: The elevation and channel width values for the middle section of the Luangwa floodplain. 



164 

 

 

Figure 5.14: The elevation and channel width values for the lower section of the Luangwa floodplain. 



165 

 

 

Figure 5.15: Channel depth values for upper and middle sections of the Luangwa floodplain. 
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Figure 5.16: Channel depth values for the lower section of the Luangwa floodplain. 
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Table 5.8: Parameter ranges used to setup the LISFLOOD-FP model 

Parameter Parameter range Final parameter value 

Channel roughness (Cn) 0.015 – 0.035 0.015 

Floodplain roughness (Cf) 0.06 – 0.08 0.08 

p (fractional exponent in the Width–depth 

relationship) 
0.76 0.76 

r (scale coefficient in the Width–depth 

relationship) 
0.04 – 0.055 0.052 

 

In the absence of observed daily flows at the floodplain outlet, the simulated outflows could 

not be validated. Only the simulated inundation extents were partially validated using the 

limited observations of inundation extents from Landsat images. Regarding the quality of 

Landsat images, the images covering the period of maximum inundation (i.e. late February or 

early March) for the simulated years were largely obscured by cloud cover. The 26
th

 March 

2010 image was used to represent the wet season images. Other images used to validate the 

simulated inundation results include images acquired on 21
st
 May 2007, 19

th
 April 2013 and 

5
th

 May 2013. The results presented here are for simulations that involved the entire 

floodplain as a single unit as well as simulations for individual floodplain sections (middle 

and lower sections). The quality of the images on the upper section of the floodplain was very 

poor. Figure 5.17 shows different sections of the floodplain with the simulated inundation 

extent on 26
th

 March 2010 and 21
st
 May 2007 overlaid on the LandsatLook images. It is clear 

that most of the low-lying areas including the oxbows are well captured by the model 

(Figure 5.17 and 5.18). Additionally, simulated inundation extents on individual floodplain 

sections are reasonably good (Figure 5.19 and 5.20). For instance, inundation extents in the 

lower parts of the middle section of the floodplain are captured by the model (Figure 5.19). 

The results have indicated that the model over-estimated some of the inundation extents, 

especially during the dry season (see images during the dry seasons: Figure 5.21). 

Furthermore, the calculated Flood Area Index (FAI) values decreased during the dry season; 

an index value of about 35% was observed on 19
th

 April 2013 and 39% on 26
th

 March 2010. 

Even though the FAI values were generally low (less than 50%), the model captured more 

than 65% of the observed water pixels during the wet season. The average inundation depth 
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was around 1.3 m, but inundation depths with values greater than 4 m were observed in 

oxbows and other depressions. 
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Figure 5.17: Comparison between observed and simulated flooding extents 26
th

 March 2010 in the Luangwa floodplain (simulation for 

entire floodplain as a single unit).  
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Figure 5.18: Comparison between observed and simulated flooding extents 26
th

 March 2010 in the Luangwa River floodplain (simulation 

for entire floodplain as a single unit).  
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Figure 5.19: Comparison between observed and simulated flooding extents 26
th

 March 2010 in the middle section of the Luangwa 

floodplain. 
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Figure 5.20: Comparison between observed and simulated flooding extents 26
th

 March 2010 in the lower section of the Luangwa 

floodplain. 
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Figure 5.21: Comparison between the observed and simulated flooding extents on 21
st
 May in the middle section of the Luangwa 

floodplain. 
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The storage–inflow and area–storage relationships for each 7-day simulation results form a 

nearly-closed anti-clockwise hysteresis behaviour. There is a low volume of water remaining 

on the floodplain at the end of the dry season (possibly in the few depressions and oxbows 

found within the floodplain). The maximum 7-day inundation extents and volumes for 

simulation of the entire floodplain were in the range of 400 – 700 km
2
 and 900 – 

1 500 m
3
×10

6
, respectively (Figure 5.22). Maximum inundation area in the lower section of 

the floodplain was smaller compared to upper and middle sections (Figure 5.28). Part of this 

could be related to the topographic characteristics of this section (i.e. the floodplain becomes 

quite narrow) as indicated in Figure 5.14 above. The maximum inundation area and storage 

occur more-or-less simultaneously with the peak inflow suggesting a close relationship 

between the floodplain areas and the flow in the river channels. Although the storage–inflow 

relationship form a counter-clockwise hysteresis curve, the curves are somewhat complex 

especially during the rising limb. This could be related to multiple flow peaks and the 

complex nature of connectivity between the floodplain features and the main river, 

particularly during high flood magnitudes (see Figure 2.3 in section 2.2). In order to compare 

the hysteresis curves observed in both relationships, the variables of the hysteresis curves (i.e. 

area–storage or storage–inflow) were standardised/normalised by dividing each variable by 

the maximum value. The maximum separation distance between the rising and falling limbs 

is used (Table 5.9) to represent the magnitude of the hysteresis. The shape of the area–storage 

relationships during the wet and normal years are relatively similar, whereas their sizes are 

different (see Figure 5.23, 5.25, and 5.27. The higher the flood magnitude, the greater the 

hysteresis effect (Table 5.9). The difference in the hysteresis magnitude for the three wetland 

sections reflect the variations of their channel–wetland exchange processes. The greatest 

hysteresis effect is observed in the middle section (NF2). Generally, the difference in the size 

of the hysteresis loops between wet and normal hydrological years could be related to the 

differences in how the floodwater propagates and penetrates the floodplain as well as how 

long the return flow cycle lasts. During floods of greater magnitude the extent and volume of 

inundation is greater and this results in a greater hysteresis as it takes a longer relative time 

for the water to return to the river. The difference between inflows and outflows is minimal in 

the lower section because the effects of the floodplain in this section are very small and the 

hysteresis magnitudes are small regardless of the level of flooding.  
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Figure 5.22: Storage–inflow and area–storage 7-day anticlockwise hysteresis for the 

wet (2006/07: Left) and normal (20012/13: Right) years in the entire Luangwa 

floodplain. 

 

 

Figure 5.23: Standardised storage–inflow and area–storage 7-day anticlockwise 

hysteresis for the wet (2006/07: Left) and normal (20012/13: Right) years in the entire 

Luangwa floodplain.  
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Figure 5.24: Storage–inflow and area–storage 7-Day hysteresis for wet (2006/07: 

Left) and normal (20012/13: Right) years in the upper section of the Luangwa 

floodplain.  
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Figure 5.25: Standardized storage–inflow and area–storage 7-day hysteresis for wet 

(2006/07: Left) and normal (20012/13: Right) years in the upper section of the 

Luangwa floodplain.  
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Figure 5.26: Storage–inflow and area–storage 7-day anticlockwise hysteresis for the 

wet (2006/07) and normal (20012/13) years in the middle section of the Luangwa 

floodplain.  

 

 

Figure 5.27: Standardised storage–inflow and area–storage 7-day anticlockwise 

hysteresis for the wet (2006/07) and normal (20012/13) years in the middle section of 

the Luangwa floodplain.   
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Figure 5.28: Storage–inflow and area–storage 7-day hysteresis for the wet (2006/07) 

and normal (20012/13) years in the lower section of the Luangwa floodplain.  
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Figure 5.29: Standardised storage–inflow and area–storage 7-day hysteresis for the 

wet (2006/07) and normal (20012/13) years in the lower section of the Luangwa 

floodplain.  
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Table 5.9: Magnitude of the hysteresis curve in the Luangwa floodplain 

Relationship 

NF1 NF2 NF3 

Wet year Normal year Wet year Normal year Wet year Normal year 

Area-storage 0.070 0.030 0.120 0.060 0.06 0.001 

Storage-Inflow 0.120 0.030 0.130 0.050 0.000 0.000 

 

 

Figure 5.30: Mean daily inflows and outflows for the wet (2006/07) and normal 

(20012/13) years in the entire Luangwa floodplain.  

 

 

Figure 5.31: Mean daily inflows and outflows in the upper section of the Luangwa 

floodplain. 
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Figure 5.32 Mean daily inflows and outflows in the middle section of the Luangwa 

floodplain. 

 

 

Figure 5.33: Mean daily inflows and outflows in the lower section of the Luangwa 

floodplain. 

 

5.1.7 Quantification of Pitman wetland parameters 

Table 5.10 presents the estimated parameter sets for the Pitman wetland sub-model 

established from the LISFLOOD-FP results for each sub-basin node with wetland effects. 

Some of these parameters were estimated directly from the LISFLOOD-FP results, whereas 

others were established through manual calibration by implementing the Pitman wetland sub-

model in the excel sheet containing the LISFLOOD-FP results. The low value of the channel 

spill factor in the lower section corresponds to its channel characteristics (the channel is deep 

with low volumes of water spilling into the floodplain area). The maximum return flow 

fraction value illustrates that the return flows are not restricted by the amount of water in the 
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channel relative to the capacity for spillage because spills and drainage back to the channel 

are expected to occur simultaneously in this floodplain. Figure 5.34, 5.35, 5.36 and 5.37 show 

the simulated monthly volume and outflow graphs for the LISFLOOD-FP and the Pitman 

wetland sub-model. The Pitman model is a monthly time-scale model, but the computations 

are done by dividing the monthly value into four iterations (i.e. 96 model iterations within 

two years). The results have indicated that there is a better agreement between the simulated 

outflows from the two models (the Pitman wetland sub-model and the LISFLOOD-FP) 

compared to the simulated volume (especially on the rising limb). Furthermore, the simulated 

results when the floodplain was divided into three sections are not as good as when the 

floodplain was simulated as a single unit. The reason could be that the floodplain is passing 

water down to the next section (or getting from the upstream section) and this was not being 

accounted for in the spreadsheet used to establish the wetland parameters. The fact that the 

LISFLOOD-FP model is accounting for downstream water transfers on the floodplain, while 

the Pitman model is not, could be a major issue to consider when setting up the model with 

more than one unit to represent the floodplain. The results suggest that some of the wetland 

parameters can be inferred from the results based on LISFLOOD-FP setup when the 

floodplain was a single unit. Generally speaking, the established parameters were considered 

appropriate enough to be used as the best-estimated parameter sets for the Pitman wetland 

sub-model.  

 

Table 5.10: Estimated parameter set for the Pitman wetland sub-model based on the 

LISFLOOD-FP applications 

 

Parameters and units 

The estimated value for each sub-basin 

Upper 

section 

(NF1) 

Middle 

section 

(NF2) 

Lower 

section 

(NF3) 

Entire floodplain as a single unit 

Local catchment area (Km2)  500 450 200 2500 

Residual wetland volume (RWV) in m3106  215 150 130 400 

Initial wetland volume (WV) in m3106  212 140 130 550 

A in Area(m2106) = A(WV (𝑚3106))B 10.5 9 0.19 0.012 

 B in Area(m2106) = A(WV (𝑚3106))B 0.82 0.87 1.004 1.18 

Channel capacity for spillage (QCAP) m3106 100 80 160 80 

Channel spill factor 0.25 0.15 0.06 0.2 

AA in RFF = AA (
WV

RWV
)

BB
 0.32 0.3 0.33 0.09 

BB in RFF = AA (
WV

RWV
)

BB
 1.9 1.8 1.7 2.6 

Maximum return flow fraction 10.95 10.95 10.95 10.95 
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Annual evaporation (mm) 
1535 1668.5 1668.5 1535 

 

 

Figure 5.34: Comparison between the volume and flows simulated by the 

LISFLOOD-FP and Pitman wetland sub-model in the Luangwa floodplain (simulated 

as a single unit) for the period October 2011 to September 2013. 
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Figure 5.35: Comparison between the volume and flows simulated by the 

LISFLOOD-FP and Pitman wetland sub-model in the upper section (NF1) of the 

Luangwa floodplain for the period October 2011 to September 2013. 
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Figure 5.36: Comparison between the volume and flows simulated by the 

LISFLOOD-FP and Pitman wetland sub-model in the middle section (NF2) of the 

Luangwa floodplain for the period October 2005 to September 2007. 
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Figure 5.37: Comparison between the volume and flows simulated by the 

LISFLOOD-FP and Pitman wetland sub-model in the lower section (NF3) of the 

Luangwa floodplain for the period October 2005 to September 2007. 

 

5.1.8 Re-run the Pitman model for the entire basin with the wetland sub-model 

included 

The LISFLOOD-FP related estimated parameters for the Pitman wetland sub-model 

(Table 5.10) together with the final parameters (Table 5.5) used in the initial setup of the 

structured uncertainty version were used to re-set this version of the model. The aim was to 
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see if there is a difference in parameter values estimated before and after inclusion of the 

wetland sub-model. The final parameter values established for the single run version after 

inclusion of wetland parameters in the model setup are presented in Table 5.11. The inclusion 

of the wetland parameters in the model setup gave somewhat improved simulation results, 

especially on the high and moderate flows (Table 5.12 and Figure 5.39). Most of the peak 

values which were over-simulated are reduced but generally the difference between the 

simulated results with and without wetland parameters is very small (Figure 5.38 and 5.39). 

The final results suggested that the influence of the Luangwa floodplain on the downstream 

flow regime of the Luangwa River is very small at the monthly time scale.  

Table 5.11: Final parameter values established after inclusion of wetland sub-model in 

the model setup. 

Parameter Group1 Group2 Group3 

RDF 0.8 0.8 0.8 

PI1 1.5 1.5 1.5 

PI2 4 4 4 

AFOR 0 0 0 

FF 0 0 0 

PEVAP varies with sub-basins 

ZMIN 50 58 66 

ZAVE 0.5*(ZMIN+ZMAX) 

ZMAX 712 825 841 

ST 539 643 768 

SL 0 0 0 

POW 2.8 3.0 3.0 

FT 12.4 11 7 

GW 9.5 8.7 4.6 

R 0.5 0.5 0.4 

TL 0.25 0.25 0.25 

CL 0 0 0 

GPOW 3.1 3.5 3.5 

DDENS 0.4 0.4 0.4 

T 15 15 15 

S 0.001 0.001 0.001 

GW slope 0.01 0.01 0.01 

RWL 25 25 25 

RSF 0.4 0.4 1 

 

Table 5.12: Summarised model performance measures for sub-basin node N21 

 Statistical function Before wetland sub-model After wetland sub-model 

CE(CE(ln) 0.58(0.62) 0.65(0.62) 

Pbias (Pbias(ln)) 12.72(0.34) -5.57(-3.18) 

Note: Values in the brackets are for transformed values 
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Figure 5.38: Observed and simulated flows (before and after wetland parameters) for sub-

basin node N21 in the Luangwa River basin. 
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Figure 5.39 Observed and simulated FDCs (before and after wetland sub-model) for 

sub-basin node N21 in the Luangwa River basin. 

  



191 

 

5.2 The Upper Zambezi River basin 

5.2.1 Sub-basin delineated 

Nine sub-basins were delineated in the Upper Zambezi River basin (Figure 5.40). However, 

to include the effects of one tributary inflow in the setup of the LISFLOOD-FP model which 

was part of sub-basin B8, a nodal point was created (BP8) as indicated in Figure 5.40. 

Subsequently, to create consistency in setting up of the GW Pitman model, sub-basin nodes 

were created at the downstream end of the remaining sub-basins (Figure 5.40). The Barotse 

floodplain system is therefore found in the BP9 sub-basin node. The gauging stations used in 

the model setup are found in the three sub-basin nodes (BP7, BP9 and BP10) as shown in 

Figure 5.40. 

 

 

Figure 5.40: Sub-basins and sub-basin nodes in the Upper Zambezi River basin. 

 

5.2.2 Sub-basin groups formed  

The characteristics for each sub-basin node are presented in Table 5.13 and were used in the 

grouping process using the same approach as in the Luangwa River basin. Based on the PCA 
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results (Table 5.14), the first two principal components explained a total of 79.3% of the 

variation between the sub-basin nodes. Figure 5.41 shows the physical variables (slope, 

elevation, TWI, and HI) and climatic variables (MAP and AI) that account for the first two 

principal components. Subsequently, these variables were primarily used in the classification 

of the sub-basin nodes, and four groups were formed (Table 5.15). The first group includes 

two sub-basin nodes (BP2 and BP4), whereas group two consists of BP7, BP1, and BP3. 

These first two groups have more or less similar characteristics, however, somewhat higher 

values of the slope are observed for sub-basin nodes in group one. Group three consists of 

sub-basin nodes BP6, BP8, and BP10, whereas the last group contains two sub-basin nodes 

(BP5 and BP9) characterised by very low slope values.  

 

Table 5.13: Characteristics and indices for each sub-basin node that were entered in the PCA 

Sub-basin 

 node Slope Elev(mean) Elev. Min Elev. Max TWI
4
 MAP PET AI

5
 HI

6
 

BP1 1.9 1153.6 1055.0 1638.0 10.2 1228.5 1524.1 0.8 0.2 

BP2 3.4 1284.8 1047.0 1674.0 9.7 1071.0 1466.1 0.7 0.4 

BP3 1.9 1165.1 1025.0 1621.0 10.3 1085.2 1523.4 0.7 0.2 

BP4 2.6 1236.8 1025.0 1564.0 9.8 1182.6 1472.5 0.8 0.4 

BP5 0.7 1065.4 1029.0 1098.0 11.0 992.2 1531.0 0.6 0.5 

BP6 1.5 1170.7 1066.0 1241.0 10.3 843.1 1539.2 0.5 0.6 

BP7 2.1 1145.4 1018.0 1496.0 10.8 908.8 1533.7 0.6 0.3 

BP8 1.3 1114.6 1047.0 1163.0 10.5 873.1 1562.6 0.6 0.6 

BP9 1.1 1059.6 988.0 1227.0 10.6 927.1 1577.8 0.6 0.3 

P10 1.9 1077.6 930.0 1211.0 10.2 756.3 1593.8 0.5 0.5 

  

                                                 
4
 Topographical Wetness Index 

5
 Aridity Index 

6
 Hypsometric Integral 
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Table 5.14: Total variance explained for the 9 variables in the PCA 

Component 
Initial Eigenvalues 

Total % of Variance Cumulative % 

1 5.63 62.53 62.53 

2 1.51 16.80 79.33 

3 1.18 13.14 92.47 

4 0.41 4.58 97.05 

5 0.22 2.48 99.52 

6 0.02 0.24 99.77 

7 0.02 0.21 99.97 

8 0.00 0.03 100.00 

9 0.00 0.00 100.00 

 

 

Figure 5.41: PCA biplot for the 9 variables of the Upper Zambezi River basin. 

 

Table 5.15: Sub-basin groups generated by the PCA for the Upper Zambezi River basin  

Group Sub-basin nodes Characteristics 

1 BP2, BP4 High slope, high elevation and low TWI 

2 BP1,BP3,BP7 Characteristics are somewhat similar to group 1 

3 BP6, BP8, PB10 Characteristics somewhat similar to group 4 

4 BP5, BP9 Gentle slope, low elevation and high TWI 
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5.2.3 Parameter sampling using structured uncertainty version of the GW Pitman 

model. 

The same methods and criteria used to establish parameters in the Luangwa River basins 

were used in this basin (Table 5.16). Deep Kalahari sands that dominate the Barotse 

floodplain and surrounding areas (i.e. group 3 and 4 sub-basin nodes) suggested high values 

of the ST parameter. Additionally, very low slopes in group 3 and 4 suggested high values of 

the infiltration parameters (ZMIN and ZMAX) in these areas.  

 

Table 5.16: Final parameter ranges used to set the uncertainty model 

Parameter 
Group 1  Group 2 Group 3 Group 4 

min max min max min max Min max 

RDF 0.8 0.8 0.8 0.8 

PI1 1.5 1.5 1.5 1.5 

PI2 4 4 4 4 

AFOR 0 0 0 0 

FF 0 0 0 0 

PEVAP varies with sub-basins 

ZMIN 100 300 100 300 200 300 200 300 

ZAVE 0.5*(ZMIN+ZMAX) 

ZMAX 500 1000 800 1200 1000 1300 1000 1600 

ST 500 900 1000 1400 1000 1500 1000 1600 

SL 0 0   0 0 

POW 3 5 3 4 3 5 3 5 

FT 10 40 10 30 10 30 10 20 

GW 5 20 5 20 5 15 5 10 

R 0.3 0.5 0.3 0.5 0.3 0.5 0.3 0.6 

TL 0.25 0.25 0.25 0.25 

CL 0 0 0 0 

GPOW 3 5 3 4 3 5 3 5 

DDENS 0.4 0.4 0.4 0.4 

T 30 30 30 30 

S 0.001 0.001 0.001 0.001 

GW slope 0.01 0.01 0.01 0.01 

RWL 25 25 25 25 

RSF 0.4 0.4 0.4 0.4 

 

Two gauging stations located in BP7 and BP9 sub-basins were used to evaluate model 

simulations. It should be noted that, even though BP7 sub-basin node is among the upstream 

sub-basin nodes, its gauging station was not sufficient enough to calibrate the upstream sub-

basin nodes. Moreover, the gauging station in the BP9 sub-basin node includes wetland 

effects. Thus, the calibration process was not an easy task. Figure 5.42 illustrates the 

simulated FDCs of the upper and lower uncertainty bounds as well as the observed flows for 

BP7 and BP9 sub-basin nodes. Simulated flows for BP7 are reasonably good (i.e. narrow 
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bounds of uncertainty), whereas there is some under-estimation of low flows in BP9. 

Generally, most of the simulated ensembles in the two sub-basin nodes were acceptable and 

about 2 000 ensembles were considered behavioural (based on the objective function 

statistics) in each sub-basin node. Despite a large number of simulated ensembles being 

considered behavioural, most of the parameters were not individually identifiable due to 

equifinality problems (Figure 5.43). The  scatter plot of CE and CE (ln) against parameter ST 

for BP7 sub-basin node indicates that the range of parameter ST has been reduced to some 

extent (1 200 – 1 400 mm month
-1

) compared to parameter ZMAX which is still similar to the 

initial range used (see Figure 5.43 and Table 5.16; group 2). Figure 5.44, a scatter plot of CE 

and CE (ln) against an index that combines the effects of FT, POW, GW and GPOW 

(FT/POW + GW/GPOW), indicates that the combined low flow index is identifiable for BP7 

and not in BP9. This is likely to be related to the effects of the Barotse floodplain system on 

low flows. The fact that the incremental flows of BP9 are less important than the combined 

upstream inflows, although all of the other upstream sub-basins are not gauged, the result at 

BP9 in Figure 5.42 (even though the wetland effects have not yet been included) suggests that 

the simulations are reasonably good for generating inflows to the wetland.  
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Figure 5.42: FDC of Observed and Simulated bounds for BP7 and BP9 sub-basin 

nodes. 
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Figure 5.43: Scatterplots of the variation in CE and CE (ln) against ST and ZMAX parameter 

values for the BP7 sub-basin node of the Upper Zambezi River basin. 
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Figure 5.44: Scatterplots of the variation in CE and CE (ln) against FT/POW + 

GW/GPOW index for the BP7 sub-basin node of the Upper Zambezi River basin. 

 

5.2.4 Simulation of wetland inflows using GW Pitman monthly model 

The initial parameter set used to set a single run version was established from the identified 

optimal ensemble, and manually calibrated using the gauging stations located in BP7, and 

BP9 sub-basin nodes up until the final established parameter values in Table 5.17 were 

obtained.  
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Table 5.17: Final set of calibration parameters for the GW Pitman model 

Parameter group1 group2 group3 group4 

RDF 0.8 0.8 0.8 0.8 

PI1 1.5 1.5 1.5 1.5 

PI2 4 4 4 4 

AFOR 0 0 0 0 

FF 0 0 0 0 

PEVAP varies with sub-basins 

ZMIN 100 270 300 300 

ZAVE 0.5*(ZMIN+ZMAX) 

ZMAX 700 950 1000 1100 

ST 800 1260 1300 1350 

SL 0 0 0 0 

POW 3.3 3.9 3.9 3.9 

FT 40 28 25 18 

GW 22 10 8 5 8 

R 0.4 0.4 0.4 0.4 

TL 0.25 0.25 0.25 0.25 

CL 0 0 0 0 

GPOW 3.3 3.6 3.8 3.9 

DDENS 0.4 0.4 0.4 0.4 

T 30 30 30 30 

S 0.001 0.001 0.001 0.001 

GW slope 0.01 0.01 0.01 0.01 

RWL 25 25 25 25 

RSF 0.4 0.4 0.4 0.8 

 

For BP7 sub-basin node, the final simulations of moderate to high flows were achieved with 

CE and PBIAS of 0.65 and 7.7%, respectively. The low flow simulations were achieved with 

CE and PBIAS of 0.64 and 1.4%, respectively. Figure 5.45 indicates that there is a better 

simulations results for the period before 1970, whereas poor simulations are observed from 

1982 to 1992 (both low and high flows are under-estimated). Additionally, the model has 

captured some extreme historical events such as those occurred in year 1977/1978. In 

general, high flows which occur less than 10% of the time are somewhat over-simulated and 

low flows are under-estimated (Figure 5.46). 

For BP9 sub-basin node, the final simulation of high flows was achieved with CE and 

%PBIAS of 0.55 and 24.66%, respectively. Furthermore, low flow simulation was achieved 

with CE and %PBIAS of 0.58 and 3.60%, respectively. Simulated flows during the rising 

limb are over-estimated compared to the recessions (Figure 5.47). Over-simulated moderate 

flows (Figure 5.48) could be explained by uncertainties in the model setup for the upper sub-

basin nodes as well as the floodplain attenuation effects which were not fully considered in 

the model setup. Additionally, the quality of data (i.e. rainfall and observed flow) could also 

contribute to the uncertainties in the simulated results.  
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Figure 5.45: Observed and simulated monthly flows volumes for the period October 

1958 – September 1978 (Top) and October 1978 – September 1992 for BP7sub-basin 

node. 
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Figure 5.46: The FDCs of the observed and simulated monthly flows volumes for 

BP7sub-basin node for the period October 1958 – September 1992. 
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Figure 5.47 Observed and simulated monthly flows volumes for the period October 1948 – 

September 1963 (Top) and October 1963 – September 1979 for BP9 sub-basin node. 
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Figure 5.48: The FDCs of the observed and simulated monthly flows volumes for BP9sub-

basin node for the period October 1948 – September 1979. 

 

5.2.5 Disaggregation of simulated monthly flows into daily flows using the Pitman 

disaggregation sub-model 

Disaggregation of monthly to daily flows from October 2000 to September 2013 was done 

for each sub-basin node contributing to the total floodplain inflows. The initial parameter 

values were established from past experience (studies that have applied the model) together 

with an understanding of the existing relationship between monthly and daily flows (e.g. 

higher peaks in daily flows than in monthly flows). The final possible parameter set used in 

the disaggregation processes includes: A = 0.4, B = -0.3, C = 0.9, K = 0.96 and Rthresh = 4 and 

these parameter values were used in all sub-basin nodes. In the absence of observed daily 

flows, the simulated daily flow magnitudes were not validated, and introduces uncertainties 

in the disaggregated daily flows. The published information on onset and duration of floods 

helped to somehow assess the disaggregated results. For instance, high peak flows indicated 

in Figure 5.49 can be related to historical high events in 2004, 2007, 2009 and 2010 as 

reported by Dartmouth Flood Observatory (2007) and Long et al., (2014). Since the key issue 

was to obtain reasonable representative hydrographs that can be used in the LISFLOOD-FP 

model, the simulated daily flows are considered adequate to be used as upstream boundary 

conditions in the LISFLOOD-FP model.   
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Figure 5.49: Mean daily flows for two sub-basins in Upper Zambezi River basin (Oct 2003 to 

Sept 2013). 

 

5.2.6 Simulation of wetland inundation characteristics using LISFLOOD-FP model 

Figure 5.50 illustrates the location of the Barotse floodplain system in the Upper Zambezi 

River basin. The floodplain is covered in a single sub-basin node (BP9) and receives inflows 
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mainly from six upstream boundary conditions (Figure 5.50). The total length of the 

meandering river (the Zambezi) in the floodplain was estimated to be 394 km. Channel 

widths were estimated from Google Earth images (Figure 5.51), whereas channel depths 

(shown in Figure 5.52) were computed by the model at the beginning of simulation using the 

width–depth relationship (see Equation 4.15). The model setup was done for a representative 

hydrological period with a consideration of both wet and normal years (October 2002 – 

September 2007). However, an addition of one year (October 2001 – September 2002) was 

used as a warm-up period to establish an initial condition in the model domain. Furthermore, 

the selected period was also motivated by the availability of observed daily flows 

downstream of the Barotse floodplain which were used to validate simulated outflows from 

the floodplain.  

The parameter values used to setup the LISFLOOD-FP model in this floodplain are presented 

in Table 5.18 and were established to reflect the characteristics of the river channels as well 

as the vegetation distribution in the Barotse floodplain system. For instance, the middle and 

lower parts of the floodplain are covered by denser vegetation which suggested higher values 

of floodplain roughness (0.07 – 0.1). The Zambezi River and its tributaries in this basin have 

sandy beds with the banks covered by dense vegetation. Thus, the channel roughness 

parameter ranges from 0.045 to 0.06. The downstream boundary conditions were presented 

using the normal depth assumption (depth at which the water surface slope is assumed to be 

parallel/equal to the channel bed slope). This depth was calculated through the Manning’s 

flow equation that defines the relationship between discharge and water surface. Since the 

water surface slope was unknown, the average channel slope (0.001) estimated from the 

Google Earth image was used in the computation of normal depth. The simulated outflow 

from the wetland was calibrated using the Ngonye Falls gauging station (BP9) which is 

located a few kilometres from the wetland outlet. 
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Figure 5.50: The location of the Barotse floodplain system in the Upper Zambezi 

River basin. 
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Figure 5.51: Elevation and channel width values in the Barotse floodplain system 
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Figure 5.52: Elevation and channel depths in the Barotse floodplain system 

 

Table 5.18: Parameter ranges used to set up the LISFLOOD-FP model 

Parameter Parameter range Final established value 

Channel roughness (Cn) 0.045 – 0.06 0.06 

Floodplain roughness (Cf) 0.07 – 0.1 0.08 

p (fractional exponent in the Width–

depth relationship) 
0.76 0.76 

r(scale coefficient in the Width–depth 

relationship) 
0.05 – 0.065 0.045 

Average channel slope 0.001 0.001 
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Landsat images acquired on 12 March, 20 September 2004, 22 April 2007, were used to 

validate inundation extents through visual analysis. Figures 5.53 to 5.56 indicate different 

sections of the floodplain when the simulated inundation extents were overlaid on different 

LandsatLook images. Maximum inundation extents are observed between late February 

(upper section of the floodplain) and late April to early May (lower section). The simulated 

inundation extents were reasonably good especially for the middle and lower sections of the 

floodplain (most of the meander-cuts and isolated channels are filled with water as expected), 

whereas simulated inundated extents in the upper section of the floodplain were spatially 

inconsistent with observed inundation extents. Part of this could be related to the variation in 

topography in this section which might not be well represented in the DEM. Additionally, 

apart from the overflows from the Zambezi River, the right side of this section of the 

floodplain could be inundated from the tributary inflows. Under-simulation of the flooding 

extents in this area, therefore, could be linked to uncertainties in the simulated tributary 

inflows. Differences between simulated and observed flooding extents could also be related 

to the quality of the Landsat images used. Flood Area Index (FAI) values indicated that the 

model has captured some of the spatial variation of inundation extents during the wet season. 

FAI values close to 45% were observed in April 2007, whereas values less than 40% were 

observed during the dry season (September 2004). Despite the mismatches between the 

simulated and observed inundation extents, the results represent sensible simulations of the 

inundation extents in this floodplain. The average inundation depth was about 2 m. 

Inundation depth values less than 1 m were observed in the upper section of the floodplain, 

whereas high values (about 5 m) were observed in some depressions found in the middle and 

lower sections of the floodplain.  
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Figure 5.53: Comparison between observed and simulated flooding extents on 12 March 2004 in the upper section of the Barotse 

floodplain system. 
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Figure 5.54: Comparison between observed and simulated flooding extents on 12 March 2004 in the middle and lower sections of the 

Barotse floodplain system. 
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Figure 5.55: Comparison between observed and simulated flooding extents on 22 April 2007 in the upper section of the Barotse 

floodplain system.  
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Figure 5.56: Comparison between observed and simulated flooding extents on 22 April 2007 in the middle and lower sections of the 

Barotse floodplain system.  
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The 7-day maximum inundation extents and volume were in the range of 5 000 – 

6 000 km
2
 and 6 000 – 12 000 m

3
×10

6
, respectively (Figure 5.57). A counter-

clockwise hysteresis loop was observed in both area–storage and storage–inflow 

relationships, and the earlier relationship suggests that there is substantial storage 

remaining on the floodplain at the end of the dry season. This could represent the 

storage in the isolated channels and backwater depressions found in the Barotse 

floodplain. It is clear that the storage–inflow relationship is complex due to multiple 

inflow peaks (Figure 5.57). As a result, the explanation of the interactions between the 

Barotse floodplain features and the channels become much complex. Standardised 

hysteresis curves for both relationships are presented in Figure 5.58 and the distance 

between the rising and falling curves indicated a high hysteresis effect when there is 

increased discharge during the wet year (Table 5.19). Daily inflow–outflow 

relationships showed that the Barotse floodplain system has a potential to attenuate 

flows, as the output hydrographs are smoothed and the high peaks are significantly 

reduced (Figure 5.59). Moreover, the floodplain delays time to peak to about 3 to 4 

weeks and increases the low flows during the dry season. A comparison between the 

simulated outflows from the Barotse floodplain with the observed daily flows from a 

gauging station located a few kilometres downstream of the floodplain outlet (the 

Ngonye Fall gauging station or BP9) in Figure 5.60, indicates some agreement 

between the observed and simulated hydrographs (although it is a short record). Some 

of the high peaks and the flow patterns are well captured by the model. Over-

estimated flows, especially in the rising and falling limbs, could be related to the 

uncertainties in the simulated wetland inflows used as upstream boundary conditions 

in the LISFLOOD-FP model. In general, the simulated inundation extents, storages 

and outflows were acceptable to be used to estimate the wetland sub-model 

parameters, as they largely reflect the characteristics of this floodplain.  
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Figure 5.57: Storage–inflow and area–storage anti-clockwise hysteresis for the wet (left) and 

normal (right) years in the Barotse floodplain system.  

 

 

Figure 5.58: Standardised storage–inflow and area–storage anti-clockwise hysteresis for the 

wet (left) and normal (right) years in the Barotse floodplain system.  
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Table 5.19: Magnitude of the hysteresis curve in the Barotse floodplain  

Relationship Wet year Normal year 

Area–storage 0.070 0.040 

Storage–inflow 0.380 0.200 

 

 

Figure 5.59: Daily inflows and outflows in the Barotse floodplain system for the 

period January 2003 to September 2007.  

 

 

Figure 5.60: Comparison between observed and simulated daily flows (a gap on the observed 

flows indicates missing values) for the period January 2003 to September 2007.   
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5.2.7 Quantification of Pitman wetland parameters 

The final estimated parameters for the Pitman wetland sub-model are given in Table 5.20. 

The scale and power parameters that define the relationship between the area and volume of 

inundation were directly estimated from the relationship between the simulated area and 

volume of inundation. The remaining parameters were established through manual calibration 

by implementing the Pitman wetland sub-model in the excel sheet containing the 

LISFLOOD-FP results. The large value of wetland residual volume (800 m
3
×10

6
) reflects the 

volume of water remaining in the isolated channels and backwater depressions found in the 

middle and lower parts of the floodplain during the dry season. However, this is relatively 

small compared to the total amount of storage in the entire floodplain (1 100 m
3
×10

6
). The 

return flows were not restricted by the volume of the channel inflows and thus, the value of 

the maximum return flow fraction was set to 10.95. Based on the comparison between 

simulated volume and outflows from the LISFLOOD-FP and Pitman wetland sub-model, it is 

clear that the simulated outflows and volumes from the two models are largely comparable 

(Figure 5.61). Thus, the estimated parameters can be used as wetland parameters in the new 

setup of the GW Pitman model.  

 

Table 5.20: Estimated parameters for the Pitman wetland sub-model based on 

LISFLOOD-FP applications 

Parameters and units Estimated parameter value 

Local catchment area (Km
2
)  

9500 

Residual wetland volume (RWV) in m
3
10

6
:  

800 

Initial wetland volume (WV) in m
3
10

6
:  

1600 

A in Area(m2106) = A(WV (𝑚3106))B 800 

 B in Area(m2106) = A(WV (𝑚3106))B 0.69 

Channel capacity for spillage (QCAP) m
3
10

6
:  

600 

Channel spill factor 0.8 

AA in RFF = AA (
WV

RWV
)

BB

 0.2 

BB in RFF = AA (
WV

RWV
)

BB

 0.8 

Maximum return flow fraction 10.95 

Annual evaporation (mm) 
1577.8 
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Figure 5.61: Monthly volume and flow simulated by LISFLOOD-FP and Pitman wetland 

sub-model in the Barotse Floodplain. 

 

5.2.8 Re-run the Pitman model for the entire basin with the wetland sub-model 

included 

The parameters (Table 5.16) used in the initial setup of the structured uncertainty version to 

generate wetland inflows together with LISFLOOD-FP related estimated wetland parameters 

(Table 5.20) were used to re-set this version of the model. Subsequently, the estimated 

parameters after the re-run of the structured uncertainty version were used in the setup of the 

single run version. The final estimated parameter values for the single run version after 

inclusion of wetland parameters in the model setup are presented in Table 5.21. Some of the 

parameters (initially established) have been modified when the wetland sub-model 
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parameters were included in the model setup (see Table 5.17 and 5.21 for comparison). 

Notably improved simulation results were achieved after the inclusion of the wetland 

parameters in the model setup (Table 5.22). Simulated moderate and low flows are improved, 

and the peak flows which were previously (before the wetland sub-model) over-estimated are 

reduced (Figure 5.62 and 5.63). It can be concluded that the influence of the Barotse 

floodplain on both high and low flows in the Upper Zambezi River basin is substantial. Table 

5.23 and Figure 5.64 suggest that the simulation results (downstream of the wetland at BP9) 

for the two models are broadly comparable. 

 

Table 5.21: Final parameter values established after inclusion of wetland sub-model in 

the model setup. 

Parameter group1 group2 group3 group4 

RDF 0.8 0.8 0.8 0.8 

PI1 1.5 1.5 1.5 1.5 

PI2 4 4 4 4 

AFOR 0 0 0 0 

FF 0 0 0 0 

PEVAP varies with sub-basins 

ZMIN 230 238 250 250 

ZAVE 0.5*(ZMIN+ZMAX) 

ZMAX 636 1005 1219 1230 

ST 816 1100 1200 1250 

SL 0 0 0 0 

POW 3.5 3.5 3.8 4 

FT 20 16 15 15 

GW 13 10 8 6 

R 0.3 0.4 0.4 0.4 

TL 0.25 0.25 0.25 0.25 

CL 0 0 0 0 

GPOW 3.5 3.7 3.8 4 

DDENS 0.4 0.4 0.4 0.4 

T 30 30 30 30 

S 0.001 0.001 0.001 0.001 

GW slope 0.01 0.01 0.01 0.01 

RWL 25 25 25 25 

RSF 0.4 0.4 0.4 0.8 

 

Table 5.22: Summarised model performance measures for BP9 and BP7 sub-basin 

nodes. 

Statistical function 

BP9 

Before wetland sub-model After wetland sub-model 

CE(CE(ln)) 0.55(0.58) 0.77(0.86) 

Pbias (Pbias(ln)) 24.3(3.6) 8.97(1.92) 

Note: Values in the brackets are for transformed values 
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Table 5.23: Summarised model performance measures for the LISFLOOD-FP and the 

Pitman model. 

 Statistical function Simulation by LISFLOOD-FP Simulation by Pitman wetland sub-model 

CE(CE(ln)) 0.73(0.76) 0.72(0.81) 

Pbias (Pbias(ln)) 13.92(3.15) 6.20(2.53) 

Note: Values in the brackets are for transformed values 

 

 

Figure 5.62: Observed and simulated flows (before and after inclusion of wetland sub-model) 

for sub-basin BP9 in the Upper Zambezi River basin.  
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Figure 5.63: Observed and simulated FDCs before and after inclusion of wetland sub-model 

for BP9 sub-basin in the Upper Zambezi River basin. 

 

 

Figure 5.64: Comparison between observed and simulated monthly flows at BP9 (a 

gap on the observed flows indicates missing values) for the period January 2003 to 

September 2007.  
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5.3 The Upper Great Ruaha River basin (UGRRB) 

5.3.1 Disaggregation of simulated monthly flows into daily flows 

The simulated monthly wetland inflows (from Tumbo, 2015) were disaggregated into daily 

inflows for the period between October 2000 and September 2009. The scaling parameters 

were manually calibrated using the limited available historical daily and monthly flows in 

1ka71 sub-basin until the best estimates were obtained. Figure 5.65 presents the FDCs of the 

observed (daily and monthly) and simulated daily flows established using the final estimated 

parameters (i.e. A = 0.3, B = -0.2, C = 0.8. K = 0.95 and Rthresh = 5). These parameter values 

were used in all sub-basins that contribute to wetland inflows. Observed daily flow records 

were available in some sub-basins, however, the records are very short, contain missing 

values and mostly precede the selected simulation period (October 2000–September 2009). 

Therefore, it was difficult to assess the simulated daily flows for all the sub-basins. The 

results in Figure 5.66 indicate that the simulated daily flows have low peaks (sub-basins are 

quite small) and nearly zero flows during the dry season. In general, there are many 

uncertainties in the simulated flows that were used as upstream boundary conditions in the 

LISFLOOD-FP model.  

 

 

Figure 5.65: FDC of the observed (daily and monthly) and simulated daily flows after 

the establishment of the final scaling parameters. 
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Figure 5.66: Disaggregated mean daily flows for 1KA33, UG3,UG5, UG21, UG6, 

UG21 and 1ka18 sub-basins of the Upper great Ruaha River basin (October 2000 to 

September 2009). 
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5.3.2 Simulation of wetland inundation characteristics using LISFLOOD-FP model 

The location of the Usangu wetlands is shown in Figure 5.67. The model setup was done for 

the period October 2000–September 2009 with 2000/2001 used as a warm-up period and this 

matches the period for which observed downstream flows are available. The Usangu 

wetlands are covered by numerous channels of different sizes (Figure 5.68). Some have 

widths of less than 10 m and although they can be identified in Google Earth or Landsat Look 

images, they would be very difficult to include in a LISFLOOD-FP model setup. Most of 

these small channels were, therefore, initially ignored and only the main channels included in 

the model setup. The digitised channel widths for the whole network in the Usangu are shown 

in Figure 5.68. The total length of the main river meandering within the Usangu wetlands (the 

Great Ruaha River) is approximately 133 km. Channel depths generated at the beginning of 

the simulations are presented in Figure 5.68 with most of them having values between 0.3 m 

and 1 m which is quite low compared to river depths in other wetlands (see Figure 5.15, 5.16 

and 5.52).  

The initial assessment of the wetland inflows suggested a need to scale up the flow values 

before using them in the model setup. This was because a trial setup using these values as 

upstream boundary conditions generated zero outflows at the wetland outlet and a very small 

inundated area. The wetland inflows used in the model setup were the disaggregated daily 

flows from the simulated monthly flows of Tumbo (2015). It is likely that errors in the 

wetland inflows could be related to uncertainties in the simulated monthly flows by Tumbo 

(2015). For instance, most of the gauging stations used to validate the model simulations in 

the Tumbo (2015) study do not represent all the key upstream tributaries (especially those 

located in the western part of the basin), and mostly cover very short periods. Additionally, 

irrigation abstractions are common in most of these tributaries and data on irrigation use 

which were used for setting up the model were largely uncertain. According to Tumbo 

(2015), the computed irrigation demand was assumed to be fixed throughout the simulation 

period (1960 – 2010), but this is not practically feasible. For instance, management 

interventions for the period 2000 – 2007 improved the water use efficiency and reduced water 

use for irrigation. Thus, there is a possibility that adopting fixed values of irrigation water 

abstractions could under-estimate the flows during this period. Amongst others, these could 

be the reasons for too low values of the wetland inflows. Therefore, the wetland inflow 

values were scaled using Equation 5.1 to increase the high flows that contribute to wetland 

inundation and outflows. A value of n=3 was used in the final model setup.  
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Xi + n(Fi)      (Equation 5.1) 

Fi =
Xi− XMIN

XMAX−XMIN
      (Equation 5.2) 

Where 𝑋𝑖 is the original daily flow value 

XMAX is the maximum value in the daily time series 

XMIN is the minimum value in the daily time series 

n is a multiplier ≥ 1 

Fi is a daily scale factor 

Another issue regarding the setting up the LISFLOOD-FP model related to the characteristics 

of channels within the wetlands. The Usangu wetlands (eastern and western) are dominated 

by numerous shallow and small (i.e. less than 10 m width) channels. Most of these channels 

are more easily identified in the western wetland than the eastern wetland which consists of a 

permanently inundated swamp (Ihefu). Additionally, the main river flowing into the swamp 

cannot clearly be seen from the LandsatLook or Google Earth images, possibly because of 

dense vegetation that surrounds a large part of the swamp. The initial setup of the model, 

which included clearly visible main channels in the wetland resulted in more storage in the 

wetland at the end of the simulation (dry season). This suggested that the channels that were 

ignored in the model setup, despite their small sizes, have an influence on the inundation 

dynamics of the Usangu wetlands including returning flows from the wetlands to the main 

channel. To improve the model simulation results, without explicitly including all of the 

small channels in the model, the simulated evaporative losses were increased. These 

additional volumes of water loss were assumed to represent drainage back to the main 

channel at the outlet and were therefore manually added to the outflows at the end of the 

model run. Clearly, this is simulating the inundation and outflow volumes for the wrong 

reason, but it represented a quick and pragmatic approach to improving the simulations. The 

basic assumption is that the greater the inundated area (and volume), the greater the real 

amount of return flow from the small channels and the greater the effect of the artificial 

evaporation scaling. Several model runs were performed to determine the appropriate 

additional value, and finally 4 mm of evaporation was added to each daily evaporation value. 

Figure 5.70 shows that the simulated wetland storage has been reduced. 
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The western wetland is found in the 1ka71 sub-basin while the eastern wetland is within the 

1ka21 sub-basin. To simplify the establishment of wetland parameters in the two wetland 

sections (Figure 5.69), these wetland sections were simulated independently starting from the 

western wetland, and the outflows from this wetland together with tributary inflows found in 

the eastern wetland were used as upstream boundary conditions in the eastern wetland. 

However, the model was initially run for the two wetland sections (eastern and western) 

combined as a single unit to gain some insight into the parameter values to be used for each 

wetland section, and the estimated parameter values were used to guide parameter values for 

the specific wetland section (Table 5.24). The wetland physical characteristics largely guided 

the establishment of the initial parameter values. The Great Ruaha River and most of the 

channels flowing into the wetlands have sand-beds and in the eastern wetland, the main river 

is covered by vegetation, with the bankfull depths in most sections approximately 1 – 2 m. 

These characteristics led to the selection of parameter ranges for channel roughness (Cn) and 

hydraulic radius parameter (r). A value of 0.05 was used as channel roughness for channels in 

the western wetland and 0.07 for channels in the eastern wetland. Vegetation is scattered on 

the western wetland and denser in the eastern wetland, especially in the Ihefu swamp. The 

vegetation characteristics were used to select a parameter range for the floodplain/wetland 

roughness (Cf). A higher value of the wetland roughness was used in the eastern wetland 

(0.1) compared to the western wetland (0.07). 
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Figure 5.67: The location of the Usangu wetlands in the Upper Great Ruaha River basin. 
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Figure 5.68: Channel depth values in the Usangu wetlands.
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Figure 5.69: Elevation and channel widths in the western (Top) and eastern (Bottom) 

wetlands 
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Table 5.24: Parameter ranges used to setup the LISFLOOD-FP model 

Parameter Parameter range Final value 

Channel roughness (Cn) 0.02 – 0.07 0.05 

Floodplain roughness (Cf) 0.05 – 0.1 0.08 

p (fractional exponent in the Width–depth 

relationship) 
0.76 0.76 

r (scale coefficient in the Width–depth relationship) 0.055 – 0.15 0.1 

Average channel slope 0.0001 0.0001 

 

 

Figure 5.70: Simulated wetland storage before and after increasing evaporation values 

by 4 mm in the Upper Great Ruaha River basin. 

 

The average inundation depth is about 0.7 m. From Figure 5.71, the 7-day maximum 

inundation area is between 600 km
2
 and 700 km

2
, whereas the maximum storage is in the 

range 500 ×10
6
 – 600 ×10

6
 m

3
 when the two wetland sections were simulated as a single unit. 

Furthermore, the 7-day maximum storage and inundated area were in the range of 300 – 

450×10
6
 m

3
and 250 – 300 km

2
 in the western wetland (Figure 5.73). In the eastern wetland 

(1ka27), the maximum inundation area is 300 km
2
 – 500 km

2
 range and 200 ×10

6
 – 

500 ×10
6
 m

3
 for maximum storage (Figure 5.75). Simulated storage–inflow relationships 

show large magnitude counter-clockwise hysteretic relationships (Figure 5.71 5.73 and 5.75). 

Multiple inflow peaks in both the eastern and western wetland sections reflect the response of 

streamflows to short and long rains seasons in this basin. A nearly clockwise hysteresis loop 

in the area–storage relationship (normal year) illustrates that the inundation area is always 
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higher than the storage at the beginning of the wet season, and low during the dry season. 

This means flooding water spreads quickly through the wetland (because large areas of the 

wetland are very flat), and the average inundation depth in most sections is less than 1 m. 

During the wet year, the area–storage relationship tends to form a figure of eight shaped 

hysteresis curve. In general, the standardised storage–inflow and area–storage relationships 

have indicated that whenever the peak flow increases, the hysteresis effect is great and the 

temporal fluctuation of the wetland inflows certainly influences the size of the hysteresis, 

particularly in the eastern wetland (Figure 5.76 and Table 5.25). In the western wetland, the 

hysteresis effect is much less than expected (Figure 5.74), and this could be related to 

uncertainties in the simulated results. The difference between inflows and outflows indicate 

that the Usangu wetland significantly attenuates high flows (Figure 5.77, 5.78 and 5.79). 

The simulated outflows from the western wetland (1ka71) were not validated due to the lack 

of observed data, whereas simulated outflows from the eastern wetland (1ka27) were 

compared with the available daily flows for a gauging station (1ka59) located 80 km 

downstream of the wetland outlet. This gauging station was considered eligible to validate the 

wetland outflows as there are no substantial inflows between the wetland outlet and where the 

gauge is located. Simulated flows (i.e. recession and rise limbs) compare reasonably well 

with high peaks (Figure 5.80). Generally, the flow patterns are not well simulated (the model 

could not capture the observed peaks during short rains) (Figure 5.80). It is not easy to 

explain why the peaks were not captured, particularly in year 2006 when the wetland inflows 

were multiplied by a factor of 3. Increasing the multiplying factor might resolve the issue, but 

this would affect the simulated low flows (which are somewhat reasonable). Perhaps, the 

multiplying factor should vary across the tributary inflows, but clearly, this would be difficult 

especially in the absence of observed flow data. All in all, there is a wide range of uncertainty 

in the results and part of this could relate to the uncertainties in the model structure as well as 

wetland inflows. Additional field data are therefore required to resolve the issue.  
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Figure 5.71 Storage–inflow and area–storage mean monthly hysteresis for 2001/02 

(left) and 2002/03 (right) years in the Usangu wetlands (simulated as a single unit).  
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Figure 5.72: Standardised storage–inflow and area–storage mean monthly hysteresis 

for 2001/02 (left) and 2002/03 (right) years in the Usangu wetlands (simulated as a 

single unit).  
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Figure 5.73: Storage–inflow and area–storage mean monthly hysteresis for 2001/02 

and 2002/03 years in the western Usangu wetland (1ka71).  
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Figure 5.74: Standardised Storage–inflow and area–storage mean monthly hysteresis 

for wet (left) and normal (right) years in the western Usangu wetland (1ka71).  
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Figure 5.75: Storage–inflow and area–storage 7-day hysteresis for wet (left) and 

normal (right) years in the eastern Usangu wetland (1ka27).  
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Figure 5.76: Standardised Storage–inflow and area–storage mean monthly hysteresis 

for wet (left) and normal (right) years in the eastern Usangu wetland (1ka27).  
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Table 5.25: Magnitude of the hysteresis in the Usangu wetlands 

Relationship 

Eastern wetland (1ka27) Western wetland (1ka71) 

Wet year normal year Wet year normal year 

Area-storage 0.09 0.06 0.01 0.02 

Storage-Inflow 0.64 0.60 0.78 0.63 

 

 

Figure 5.77: Daily inflows and outflows in the Usangu wetlands (simulated as a single 

unit).  

 

 

Figure 5.78: Daily inflows and outflows in the western Usangu wetland (1ka71).  
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Figure 5.79: Daily inflows and outflows in the eastern Usangu wetland (1ka27). 

 

 

Figure 5.80: Observed (1ka59) and simulated daily outflows in the Usangu wetlands. 

 

5.3.3 Quantification of Pitman wetland parameters 

Wetland sub-model parameters were estimated from the LISFLOOD-FP results for the two 

sub-basins. A similar approach applied in the other basins was used in this basin; most of the 
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parameters were established through manual calibration by implementing the Pitman wetland 

sub-model in an excel sheet containing the LISFLOOD-FP results. The quantified wetland 

parameters for each sub-basin are presented in Table 5.26. A zero value of channel capacity 

for spillage and high value of spill factor in the eastern wetland (1ka27) were used because 

the Great Ruaha River tends to disappear in the Ihefu swamp which is part of the eastern 

wetland. Furthermore, the wetland residual storage value is higher in the eastern wetland than 

the western due to the presence of a permanently inundated swamp. Return flows are limited 

by the volume of water in the channel (i.e. no return flows during spilling onto the wetland). 

Better agreement between the two models was achieved for simulated storage volumes, 

compared to simulated outflows (Figure 5.81, 5.82 and 5.83). This illustrates the difficulties 

of simulating the exchange processes for this wetland, regardless of the model being used. 

Part of the problem lies with the uncertainties relating to the inflows, but the effects of the 

complex network of small channels in the eastern wetland (which were not explicitly 

simulated) are also expected to contribute to the difficulties.  

 

Table 5.26 Estimated parameter set for the Pitman wetland sub-model in the Usangu 

wetlands 

 

Parameters and units 

The estimated wetland parameter values for each sub-basin 

Western 

(1ka71) 

Eastern 

(1ka27) 

Whole wetland as unit 

Local catchment area (Km
2
) 800 600 1600 

Residual wetland volume 

(RWV) in m
3
10

6
 

20 60 80 

Initial wetland volume 

(WV) in m
3
10

6
 

40 20 20 

A in Area(m2106)
= A(WV (𝑚3106))B 

680 680 760 

B in Area(m2106)
= A(WV (𝑚3106))B 

0.65 0.67 0.65 

Channel capacity for 

spillage (QCAP) m
3
10

6
 

20 0 0 

Channel spill factor 0.7 0.9 0.9 

AA in 

RFF = AA (
WV

RWV
)

BB QCAP

Q
 

0.11 0.4 0.15 

BB in 

RFF = AA (
WV

RWV
)

BB QCAP

Q
 

0.5 0.35 0.8 

Annual evaporation (mm) 1867 1714 1714 
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Figure 5.81: Monthly volume and flow simulated by LISFLOOD-FP and Pitman wetland 

sub-model in the Usangu wetlands (simulated as a single unit). 

 

 

Figure 5.82: Monthly volume and flow simulated by LISFLOOD-FP and Pitman wetland 

sub-model in the western Usangu wetland (1ka71 sub-basin).  
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Figure 5.83: Monthly volume and flow simulated by LISFLOOD-FP and Pitman wetland 

sub-model in the eastern Usangu wetland (1ka27 sub-basin). 

 

5.3.4 Re-run the Pitman model for the entire basin with the wetland sub-model 

included 

The final estimated parameter values established by Tumbo (2015) together with the 

quantified wetland parameters were used to reset the uncertainty version of the model and the 

results are presented in Figure 5.84 (top). High flows are underestimated, whereas the low 

flows are somewhat high. This suggested that the estimated wetland parameters 

overestimated the impacts of the Usangu wetlands, possibly because the whole setup of the 

LISFLOOD-FP in the Usangu was difficult, and the dynamics of the Usangu wetlands were 

not well understood. Clearly, the simulated results are not good compared to that of Tumbo 

(2015) as indicated in Figure 5.84. Performance measures for the optimal ensemble indicates 

poor results especially in high flows (values are beyond the minimum requirements). 

Therefore, additional field data related to exchange dynamics could improve the setup of the 

LISFLOOD-FP to achieve acceptable estimated wetland parameters from the LISFLOOD-FP 

results. 
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Table 5.27: Summarised model performance measures for 1ka59 sub-basin 

 Statistical function Simulation by Tumbo (2015) Current simulation after wetland sub-model 

CE(CE(ln)) 0.53(0.59) 0.30(0.63) 

Pbias (Pbias(ln)) -7.13(1.13) -48.50(13.10) 

Note: Values in the brackets are for transformed values 

 

 

Figure 5.84: Observed and simulated uncertainty bounds after inclusion of wetland 

parameters in the Pitman model.  
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5.4 Regionalisation or direct estimation of wetland parameters of the 

basin-scale model. 

The wetland sub-model parameters (Table 5.28) were interpreted in terms of their physical 

characteristics, together with the better understanding of the different water exchange 

dynamics of the three wetlands that were obtained from the LISFLOOD-FP model. The 

detailed explanations of the physical characteristics of the basins and the wetlands are 

presented in Chapter 3, of which some of the key physical characteristics of the three 

wetlands were used to help understand and interpret the wetland sub-model parameters. 

Standardised storage–inflow and area–storage hysteresis curves are different across the three 

studied wetlands and between wet and normal years. Higher flood discharges (wet years) tend 

to have a greater hysteresis effect compared to lower flood discharges (normal year) and the 

temporal fluctuation of the wetland inflows increases the size of the hysteresis.  

The relative residual storage computed as a ratio between residual wetland storage and the 

total size of the individual wetlands are: Luangwa NF1 (0.36), NF2 (0.27), NF3 (0.41), 

Barotse (0.073), western Usangu (0.03) and Eastern Usangu (0.06). Clearly, the Luangwa has 

the highest relative residual storage and this is related to the number of cut-off channels 

evident on the floodplain. However, this result is rather inconsistent with the relatively low 

hysteresis of the Luangwa and could be a modelling artefact. The low value in the Barotse 

floodplain could reflect the small volume of water (compared to the total inundated volume) 

that remains in abandoned channels and other depressions connected to the river, possibly 

because the Barotse is very wide and shallow.  

The relative spill capacity (channel spillage capacity relative to maximum simulated 

discharge) is about 0.03 to 0.04 for the Upper and Middle Luangwa, 0.075 for the Barotse 

and very low for the Usangu. This is consistent with the nature of the floodplains, and the 

Luangwa has many more low lying floodplain features that are directly connected to the 

channel (promoting quite early spill) compared to the Barotse (Figure 5.85), while the 

Usangu is a depression type wetland (rather than a floodplain) with a very limited size main 

channel passing through (notably in the eastern wetland). The channel spill factor (proportion 

of upstream inflow that contributes to floodplain storage) for the Usangu also reflects the 

wetland type and most of the inflows will spill onto the wetland. It is hard to explain why the 

Luangwa floodplain sections have such low spill factors compared to the Barotse when both 

have many low lying features connected to the floodplain. This is possibly because of the 
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greater extent of these features across the Barotse, while many of the active ones in the 

Luangwa are quite close to the channel (see Figure 5.85 for comparison).  

Figure 5.86 illustrates the relationship between the return flow fraction and the stored 

volumes relative to the residual volume. It is difficult to make any generalisations about the 

return flows. However, it is clear that the Luangwa returns more water at relatively low 

storages and this suggests a better channel–floodplain connectivity than the Barotse or 

western Usangu wetland. Figure 5.85 shows that the nature of channel–floodplain 

connectivity determines the possibility of return flows to occur even during high inflows in 

the Luangwa compared to the Barotse. The Usangu wetlands (eastern and western) are slow 

to return water and this could be because the small channels found in this wetland were not 

adequately catered for in the model, and the final calibrated Pitman model could not properly 

account for the extra evaporation losses which were designed to account for this effect. 

Further consideration is that the Usangu and Barotse relative storages (compared to the 

residual storage) are much higher than that of the Luangwa. That illustrates that the AA and 

BB parameters are both scale dependent, making it difficult to make direct comparisons 

between these parameter values across different wetlands. Regionalising the AA and BB 

parameters will therefore not be realistic objective and it may be necessary to perform the 

type of analysis represented by Figure 5.86 to check that appropriate AA and BB parameters 

are quantified for different types of wetland. 
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Table 5.28: Summary of the estimated wetland sub-model parameters  

Parameters and units 

LUANGWA 

BAROTSE 

USANGU 

Upper  

section (NF1) 

Middle 

section 

(NF2) 

Lower 

section 

(NF3) 

Western 

(1ka71) 

Eastern 

(1ka27) 

Local catchment area (Km
2
)  500 450 200 9500 800 600 

Residual wetland volume 

(RWV) in m
3
10

6
:  

215 150 130 800 20 60 

Initial wetland volume (WV) 

in m
3
10

6
:  

212 140 130 1600 40 20 

A in Area(m2106)
= A(WV (𝑚3106))B 

10.5 9 0.19 800 680 680 

B in Area(m2106)
= A(WV (𝑚3106))B 

0.82 0.87 1.004 0.69 0.65 0.68 

Channel capacity for spillage 

(QCAP) m
3
10

6
:  

100 80 160 600 20 0 

Channel spill factor 0.25 0.15 0.06 0.8 0.7 0.9 

AA in RFF = AA (
WV

RWV
)

BB

 0.32 0.3 0.33 0.2 0.11 0.4 

BB in RFF = AA (
WV

RWV
)

BB

 1.9 1.8 1.7 0.8 0.5 0.35 

Maximum return flow fraction 10.95 10.95 10.95 10.95 0.95 0.95 

Annual evaporation (mm) 1535 1668.5 1668.5 1577.8 1867 1714 

 

 

Figure 5.85: Interactions between the Luangwa River and the floodplain features 

(left), the Zambezi River and Barotse floodplain features (right).  
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Figure 5.86: Return flows against standardised plot of the stored volume relative to 

the residual volume.  
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5.5 General discussions and conclusions 

Each basin was divided into smaller units (sub-basins/sub-basin nodes) depending on their 

physical characteristics, mainly topography and slope. Sub-basins with more-or-less similar 

characteristics were grouped together using Principal Component Analysis (PCA). Sub-

basins found in the same group were assumed to have similar hydrological responses, thus 

assigned similar parameter values. Basin physical characteristics were also used to derive 

parameters required in the model setup (both hydraulic and hydrological models). These data 

were obtained from global data sets, and are subject to a number of uncertainties due to their 

coarse resolution and/or temporal coverage and some of the derived physical characteristics 

could not reflect the real physical characteristics of the basin. However, this was the best 

information available for understanding the sub-basin physical characteristics and 

establishing parameter values for ungauged areas 

Most of the upstream sub-basins were ungauged, and the wetland inflows required as 

upstream boundary conditions in the LISFLOOD-FP model were generated using the Pitman 

model. In general, the whole process of generating wetland inflows introduced uncertainties, 

as most of the available gauging stations are located downstream of the Luangwa and Barotse 

floodplains (i.e. include the wetland effects). For the Luangwa, a single gauging station was 

used to calibrate 24 upstream sub-basins nodes. In the Upper Zambezi River basin, apart from 

the downstream gauging station, one upstream sub-basin is gauged, yet it was not sufficient 

to calibrate all upstream sub-basins. Thus, the downstream gauging stations were mainly used 

to calibrate the model simulations in the two river basins for both structured and single run 

versions of the Pitman model. The structured version was run to provide likely behavioural 

parameter sets to be used in calibrating a single run model, but most of the parameters were 

not individually identifiable due to equifinality problems. Part of the problem is related to the 

difficulty of clearly defining some of the parameter ranges. The scatter plots of the CE and 

CE (ln) against an index (FT/POW + GW/GPOW) should assist in the establishment of some 

parameters which interact together to generate moderate and low flows. However, they were 

not very useful due to the limited information about basin physical characteristics that could 

be used to reject certain parameter combinations (See Figure 5.6 and 5.44 above). Despite 

these challenges, the number of simulated behavioural ensembles suggested that the 

simulations were reasonably good for generating inflows to the wetland. 
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Optimal ensemble sets (established using index: 𝐶𝐸 + 𝐶𝐸(𝑙𝑛) + 1/[𝐴𝐵𝑆(𝑃𝐵𝐼𝐴𝑆) +

𝐴𝐵𝑆(𝑃𝐵𝐼𝐴𝑆 (𝑙𝑛))]) were used as the initial parameter sets for the setup of the single model 

run, and manually calibrated using any gauging station data. Simulated monthly flows were 

either over- or under-estimated in some years which could be related to either the quality of 

data used and/or assumptions made during setting up the model. For instance, the quality of 

the observed flows in the Luangwa River gauging station could be impacted by inadequate 

rating curves that are not often updated (Beilfuss and dos Santos, 2001). Initially, part of the 

uncertainties in the simulated wetland inflows was expected to be reduced when the 

estimated wetland parameters (using LISFLOOD-FP) were included in the revised setup of 

the Pitman model.  

Disaggregation was used to obtain representative hydrographs of daily flows that can be used 

as upstream boundary conditions in the LISFLOOD-FP model. Parameter values suggested 

by previous studies (e.g. Hughes and Slaughter, 2015; Slaughter et al., 2015) were used to 

establish likely parameter values. The duration of high peaks correlated with what has been 

reported by some researchers, but generally the disaggregated daily flow magnitudes were 

not validated and some under/overestimation resulted. This is possibly because of the 

appropriateness of the parameters used, as well as errors carried over from the simulated 

monthly flows through the volume correction processes in the model. Generally, the flow 

patterns were appropriate enough to be used, especially in the Luangwa and Barotse as the 

key objective was to obtain possible representative flow patterns that could be used in the 

LISFLOOD-FP model. 

The approach used to set up the LISFLOOD-FP model varied between the three wetlands. 

The Luangwa floodplain was divided into three sections and flows from the upper sections 

become upstream inflows to the next downstream section. The same was true for the Usangu 

wetlands which are naturally divided into two sections (western and eastern) by a narrow 

constriction at the centre (hydraulic control). Channel characteristics (locations and widths) 

were digitised from Google Earth images. However, this was easier for channels with large 

widths (especially in Luangwa and Barotse floodplains) than for small channels (widths < 10 

m) such as those found in the Usangu wetlands and therefore, most of these small channels in 

Usangu were not included in the model setup. In areas where the channels were covered by 

dense vegetation, it was difficult to estimate the widths as well as establishing the channel 

location. For the Usangu, the setup process was not straightforward; the initial runs generated 

almost zero outflows and very small inundation extents and this prompted an increase in the 
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simulated wetland inflows by a variable factor. Further, after several model runs, the results 

indicated that the model simulates more storage in the wetland at the end of the simulation 

(i.e. dry season) and insufficient outflow. This effect was assumed to be related to the 

influence of small channels (previously ignored in the model setup) on the inundation 

dynamics. To avoid the need to include all of the minor channels in the model setup, the 

simulated evaporative losses were increased and these additional volumes of water loss were 

assumed to represent drainage back to the main channel at the outlet and were manually 

added to the outflows at the end of the model run. This whole process is highly uncertain, but 

the approach improved the simulated inundation results in the Usangu wetlands. 

The rapid rise of the hydrograph in the Luangwa floodplain could suggest that a large part of 

the floodplain gets inundated during the early months of the wet season. Most of the 

tributaries of the Luangwa River originate from steep escarpment areas that are expected to 

have quick responses to rainfall and promote early spills even before the Luangwa River 

overtops its banks. The Luangwa example illustrates that some large wetlands can have a 

minimal influence on the downstream flow (the difference between inflows and outflows in 

daily time scale was minimal). However, the Barotse floodplain significantly modifies the 

Zambezi River hydrographs in the Upper Zambezi River basin by reducing peak flows, 

delaying time to peak and stabilising or increasing downstream flows during the dry season. 

This is comparable to what was reported by other studies (World Bank, 2010; McCartney et 

al., 2013; Cai et al., 2016). The average monthly inundated area (about 5 500 km
2
) is closely 

equivalent to the reported value by Turpie et al. (1999). The Usangu wetlands clearly have a 

major influence on the flow regime of the Great Ruaha River, although the results of the 

combined modelling approach used in this study were largely unsatisfactory. Area–storage 

and storage–inflow relationships form hysteresis curves but the shape of these curves varies 

across the three wetlands. Anticlockwise hysteresis curves are common in the floodplains 

(Luangwa and Barotse) and the inundation area during the rising limb is larger than during 

the recession for a given storage value, while different types of hysteresis were observed in 

the Usangu wetlands. The anticlockwise hysteresis observed in the Luangwa and Barotse 

floodplains is common in river–floodplain systems and have been observed in similar 

systems by other researchers (e.g. Rudorff et al., 2014a; Chen et al., 2015; Zhang and 

Werner, 2015). Standardised hysteresis curves indicated that the hysteresis effect increases 

with the increase in flood magnitude except in the western Usangu, and this could be 

associated with uncertainties in the model results. Moreover, the temporal fluctuation of the 
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wetland inflows was found to have an influence on the shape of the hysteresis. The channel–

wetland exchanges are complex in all three wetlands due to topographic and structure settings 

of the wetlands as well as fluctuations of the wetland inflows. In combination these influence 

the shape of the hysteresis curves.  

The LISFLOOD-FP results present a major step in understanding channel-wetland exchanges 

and dynamics in the three wetlands. However, the observed inconsistencies of spatial 

distribution between inundated and non-inundated areas could be related to the accuracy of 

the SRTM DEM, boundary conditions, and land cover characteristics used in the model 

setup. The SRTM DEM data suffer from random noise effects (Rodriguez et al., 2006; Bates 

et al., 2014; Yan et al., 2015). Although the SRTM 90 m DEM used to represent the 

topographic characteristics was filtered to reduce noise effects, it is likely that there were still 

a number of pixels that could falsely affect the inundation extents. Moreover, Radar-based 

technology applied in the SRTM does not penetrate the water surface. Since this DEM was 

produced around February 2000, when water levels in some channels are almost at bankfull 

height, it is possible that the channel characteristics such as bed elevation could have been 

overestimated in some areas. Even though this effect was somewhat lowered by adjusting the 

values of channel roughness and hydraulic parameter (r), it is likely that there is an 

unresolved degree of uncertainty in the model results associated with this effect. In some 

sections especially where the main river or its tributaries was covered by vegetation, the 

width values were difficult to estimate, particularly in the eastern Usangu wetland. The 

vegetation bias in the SRTM 90 m DEM could have also contributed to the quality of 

simulated LISFLOOD-FP results and new datasets such as MERIT DEM (Yamazaki et al., 

2017) could improve the simulation results. Generally, the results have indicated low values 

of Flood Area Index (FAI) during the dry season which could be related to wetting and 

drying ability of the LISFLOOD-FP model as pointed out by (Neal et al., 2012). In the 

Usangu and Luangwa wetland were the wetland were divided into more than one section 

there is possibility that back water effect (elevated downstream water levels tend to move 

upstream) have occurred. In addition, this effect could be more evident in the Usangu wetland 

where the two sides of the wetland are separated by elevated land at the centre and the outlet 

of the eastern wetland is controlled by hydraulic constriction. One of the solutions for this 

effect could be to transfer the downstream water levels to the upstream model as an outflow 

boundary condition to allow for this hydraulic effect rather than assuming the normal 

depth/slope at the downstream point. 
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Most of the final estimated Pitman wetland parameter values from the LISFLOOD-FP results 

reflect the characteristics of these wetlands. For example, a zero value of channel capacity for 

spillage and high value of spill factor in the Usangu wetland (eastern wetland, 1ka27) reflects 

the fact that the Great Ruaha River tends to disappear in the Ihefu swamp. The wetland 

residual volume in the Barotse floodplain system reflects the presence of isolated channels 

and backwater depressions found in its middle and lower parts. In the Luangwa floodplain, 

better results were obtained when the floodplain was set as a single unit compared to 

simulations of more than one wetland sections. This could possibly relate to the fact that the 

spreadsheet used to estimate Pitman wetland sub-model parameters did not account for the 

water transfer from the upstream to the next section downstream while the LISFLOOD-FP 

model does. This highlighted the important need to consider the effects of all water transfers 

in the wetland sub-model to accommodate the simulation of wetlands that involve more than 

one section.  

In general terms, the results from the LISFLOOD-FP model assisted the establishment of 

wetland parameters and an assessment of the structure of the wetland sub-model. The 

Luangwa example (mostly because of its high level of channel-floodplain connectivity), 

suggested a modification of the structure of the Pitman wetland sub-model to allow for return 

flows to occur at any time and not be limited by high water levels in the main channel. 

Overall, the revised setups of the Pitman model, with the wetland sub-model parameters 

included, improved the model results, particularly in Luangwa and Barotse river basins and 

the following can be concluded: 

 The influence of the Luangwa floodplain on downstream flow regime is almost 

negligible on a monthly time scale, whereas the Barotse floodplain significantly 

influences the downstream flow regime.  

 There is still a high degree of unresolved uncertainty in the simulated results for the 

Upper Great Ruaha River basin which could be related to the limited information/data 

used to set up the LISFLOOD-FP model. Additional field data collection could 

improve the model results. 

 Despite the improvement in the model results for the three river basins after inclusion 

of the estimated wetland parameters in the Pitman model setup, data availability to 

force both LISFLOOD-FP and the Pitman model could lead to better results in 

modelling river basins containing large wetlands in Africa. 
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 The degree of equifinality when using the structured uncertainty version of the model 

is high, and the recent uncertainty approach applied with the Pitman hydrological 

model that uses hydrological signatures as model constraints to quantify possible 

parameter sets is recommended for future studies (Hughes, 2015a; Mohobane, 2015; 

Tumbo and Hughes, 2015; Ndzabandzaba and Hughes, 2017). 
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CHAPTER SIX: CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

The current study aimed to improve water resources assessment modelling of data-scarce 

African river basins that include large wetlands. This was achieved through a combined 

modelling approach that includes the use of the high-resolution LISFLOOD-FP hydraulic 

model to establish an in-depth understanding of channel–wetland exchanges and wetland 

dynamics to estimate the wetland parameters required for the basin-scale Pitman hydrological 

model. The final model results, with the wetland parameters included in the model, were used 

to quantify the impacts of wetlands on flow river regimes. Due to the fact that different types 

of wetlands are expected to function (and impact) differently, three river basins that include 

large wetland areas within southern Africa were considered as case studies. The interpretation 

of the different parameter values in relation to the physical characteristics of the three 

wetlands are expected to be of value for the estimation of wetland parameters for other 

wetlands, although this was not directly assessed during the study. The following can be 

concluded from this study:  

 

6.1.1 Establishment of wetland inflows 

The basin physical characteristics derived from global datasets can be used for similarity 

analysis (grouping sub-basins with similar characteristics), and establishing some model 

parameters. However, due to their low spatial resolutions and accuracy, it is likely that some 

of the basin characteristics were not well represented. Complex basin processes such as those 

related to groundwater movement (recharge and discharge) are mostly not known, and the 

groundwater parameter ranges used in the setup of the model were largely uncertain. 

Generally, with a limited amount of information related to basin characteristic, initial 

parameter ranges used in the uncertainty model were difficult to estimate. A higher degree of 

equifinality was observed in the uncertainty model results, despite the fact that the number of 

behavioural ensembles were reasonably good. The scatter plots (see Figure 5.5 and 5.43) 

indicated a wide range of likely parameter values and this is a reflection that the basin 

physical information was not sufficient to establish the possible parameter ranges and it can 

be concluded that the parameter ranges used in the model setup determine the possible 

estimated parameter values. Regardless of such difficulties, the results were quite satisfactory 

for generating wetland inflows.  
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The initial setup of the GW Pitman model for Luangwa and Upper Zambezi River basins to 

generate wetland inflows were evaluated using downstream gauging stations that include 

wetland effects. The results highlighted that in such situations, it is important to understand 

the likely impacts of each wetland on the downstream flow regime as these impacts largely 

influence the model results. However, this is not always possible because of the limited 

information related to wetland dynamics. There is a need to establish reliable gauging stations 

in rivers that contribute to wetland inflows.  

The disaggregation sub-model proved to be useful to link a monthly time-scale hydrological 

model with the detailed hydraulic model that operates on a daily time-scale, despite the lack 

of observed information that can be used to validate the disaggregated daily flows. The 

simulated daily flows were considered appropriate to be used as upstream boundary 

conditions in the LISFLOOD-FP model. Generally, uncertainty in the disaggregated daily 

flows is related to the quality of the simulated monthly flows as well as the rainfall data used 

in the disaggregation processes. 

 

6.1.2 Understanding the wetland–channel exchange processes and quantification of the 

wetland parameters of the basin-scale model 

The study demonstrated that amongst other factors, wetland characteristics (i.e. complex 

topographical and structural settings) as well as flood magnitude, determine the inundation 

dynamics in wetlands. Moreover, small channels such as those found in the Usangu wetlands 

despite their size, could have influence on the inundation dynamics of the Usangu wetlands. 

Conversely, the nature of connectivity between the floodplain features and channels in the 

Luangwa allows channel spills and drainage back to the channel to occur simultaneously. 

Most of Luangwa River’s tributaries originate from high escarpment areas that allow 

different areas of the floodplain to become inundated even at the early stage of the wet 

season. Simulated inundation results indicated meaningful hysteresis curves in the area–

storage and storage–inflow relationships, but the size and shape of these curves varied across 

the wetland types and with flood magnitude. An anticlockwise hysteresis type was observed 

in the area–storage and storage–inflow relationships for the Luangwa and Barotse 

floodplains, while there appeared to be no dominant type of hysteresis curve for the Usangu 

depression wetland. For the anticlockwise hysteresis, when the river starts to spill, the 

inundation area increases quickly as the water spreads across the floodplain, and during the 

recession flooding extent decreases until only ponding remains in depressions/oxbows and 
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other abandoned channels. The counter-clockwise hysteresis type found in the Luangwa and 

Barotse floodplains has also been observed in other river–floodplain systems by some 

researchers (e.g. Rudorff et al., 2014a; Chen et al., 2015; Zhang and Werner, 2015).  

In the Usangu wetlands, the largest inundation area and storage occurred after the peak 

discharge. The same was true for the Barotse floodplain. Amongst other factors, this could be 

related to complex exchange processes attributed by spatial heterogeneity of the lateral 

movement of floodwater in these areas. Standardised hysteresis curves confirmed the increase 

of hysteresis effects with an increase in flood magnitude. Moreover, temporal fluctuation of 

the wetland inflows strongly influences the hysteresis size and mostly increases the hysteresis 

effect. Generally, the distinct hysteresis curves in floodplains and depression wetlands, 

respectively, are a reflection of complex channel–wetland exchanges and vary considerably 

with wetland type, as well as within a given wetland (somewhat different curves were 

observed in the upper, middle and lower sections of the Luangwa floodplain). Hysteresis 

curves are evident in large wetlands and thus, it is recommended that they should be 

incorporated into models that are used in water resource assessments, including assessment of 

floods and river ecosystems.  

Daily inflow–outflow relationships indicated a significant peak reduction, as well as a 

delayed time to peak of several weeks in the Barotse floodplain and Usangu wetlands, while 

the impacts of the Luangwa floodplain on the Luangwa River are minimal even on a daily 

time scale. This implies that the Barotse and Usangu wetlands could play a more important 

role in reducing the impacts of flood events than the Luangwa. Furthermore, the Luangwa is 

an example of a large linear floodplain that has minimal flow attenuation effects, even at the 

daily time-scale.  

Although there are unresolved uncertainties in the LISFLOOD-FP results, the model results 

provide useful information to establish wetland parameters as well as to assess and improve 

the structure of Pitman wetland sub-model. The simple spreadsheet used to estimate wetland 

parameters did not account for the wetland (rather than channel) water transfers from the 

upstream to the next section downstream (the condition that is included in the LISFLOOD-FP 

model) when the floodplains were divided into more than one section. This restricted the 

value of the spreadsheet for estimating the parameter values and in future studies a method 

allowing for the upstream wetland inflows as well as the channel inflows should be included. 

The same situation applies to the Pitman model structure and the only way in which a 

downstream transfer of water can be modelled is through return flows to the channel. It is 
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therefore necessary to be very careful how the Pitman model is set up if a single wetland is 

distributed across more than one sub-basin.  

 

6.1.3 Re-calibration of the basin-scale model with a channel–wetland exchange function 

included 

Statistical objective functions indicated an improvement in the model simulation results when 

the estimated wetland parameters (by the LISFLOOD-FP model) were included in the Pitman 

model setup, particularly in the Luangwa and Barotse river basins. The Luangwa River basin 

illustrated the importance of allowing the return flows to occur at any time in the model. The 

physical characteristics (and simulated inundation dynamics) in Luangwa highlighted that 

channel spillage and drainage back to the channel can occur simultaneously. The earlier 

version of the model restricted return flows when the amount of water in the channel 

exceeded the channel spill capacity parameter, and after the modification, the simulated 

results in the Luangwa River basin were improved. Generally, the impacts of the Luangwa 

floodplain on the downstream flow regime are very small, especially at the monthly time 

scale, whereas the Barotse floodplain system and the Usangu wetlands significantly regulate 

the flows of the Zambezi River and the Great Ruaha River, respectively. These findings are 

important for both practical and research purposes in these river basins. The minimal 

influence of the Luangwa floodplain is consistent with reports that flooding from the 

Luangwa River reaches the Zambezi River (western end of the Cahora Bassa Dam) within a 

few days and almost at the same magnitude as reported by several researchers (e.g. Beilfuss, 

2012; Kling et al., 2014). Beilfuss (2012) argued that the natural flooding patterns within the 

Cahora Bassa Dam resemble that of the Luangwa River.  

The understanding of the role played by the Barotse floodplain could be important for the 

operation of Kariba Dam as well as a recently proposed hydro-electric power plant at Ngonye 

Falls (located approximately 50 km downstream of the Barotse wetland). Additionally, this 

information could be useful for the Lozi people living and benefiting from ecological goods 

and services in the floodplain as they will be able to understand the possible duration over 

which the floodplain is inundated during wet or dry years. In the Upper Great Ruaha River 

basin, although the results are somewhat encouraging (the wetlands have significant impacts 

on the Great Ruaha River), there is still a need for further improvement of model 

performance and this will only be possible with additional field data collection.  



258 

 

This study demonstrated the potential of the combined modelling approach towards the 

improvements of model parameterisation (and structure). In fact, it presents a first attempt to 

estimate wetland parameters of the basin scale model (the Pitman) from a detailed hydraulic 

model (LISFLOOD-FP) in the large ungauged river basins in southern Africa. Given the fact 

that the two models were forced under limited data conditions, the results are informative 

enough to be used for both research and practical purposes.  

 

6.1.4 Regionalisation of the estimated wetland parameters 

Most of the wetland parameters were either estimated directly or reflect the type of wetland 

that is being modelled. Relative residual storage in Luangwa reflected the volume of water 

that remains in oxbows and other cut-off channels that are close to the main river. Likewise, 

in the Barotse the residual wetland storage is very small compared to the huge volume of 

water that inundates this floodplain. The channel spill factor and channel capacity for spillage 

in Usangu agree with its characteristics in that the large value of the spill factor and a zero 

value for channel capacity for spillage in the eastern wetlands reflects the fact that there are 

no major channels passing through the wetland. The study highlighted the possibility of 

interpreting some of the wetland parameters physically, while others such as those related to 

non-linear return flow and the area–volume relationships are still difficult to interpret. 

Perhaps, more than one wetland in each wetland type would have improved the 

regionalisation processes as the estimated parameters could have been compared for wetlands 

in the same category before concluding on the likely possible parameter ranges for each 

wetland type. However, the limited time resources available during this study precluded the 

inclusion of more wetlands.  

 

6.2 Recommendations 

6.2.1 Simulation of wetland inflows 

 To account for the equifinality problem, future studies should use the recent 

uncertainty approach applied with the Pitman hydrological model. It uses 

hydrological signatures to quantify possible parameter sets. These hydrological 

signatures which are used as model constraints do not rely only on the observed flow 

data, and hence can be applied even in ungauged river basins. So far this version of 

the model has been successfully applied in some studies (Hughes, 2015a; Mohobane, 

2015; Tumbo and Hughes, 2015; Ndzabandzaba and Hughes, 2017).  
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 The quality of simulated flows depends on the climatic data inputs (i.e. rainfall, 

evapotranspiration), the parameters and observed flows used for calibration or 

validation. In these data scarce basins, the model was forced using data derived from 

global datasets which are subject to uncertainty related to spatial resolution and 

temporal coverages. To improve the model simulations, data from different datasets 

should be assessed before being used in the model setup.  

 For basins containing substantial wetland areas, the inflows and outflows should be 

gauged (i.e. upstream and downstream) to improve quantification of the wetland 

storage. Conversely, if the wetland receives water from several main tributary rivers 

these should also be gauged. Above all, it is advisable that there should be an 

improvement in data collection and monitoring including the establishment of 

gauging networks in ungauged rivers. Rating curves should also be periodically 

updated, especially for rivers affected by sedimentation and fluctuating bed levels. It 

is likely that without adequate observational data, research findings will remain 

uncertain and so will their applications. 

 

6.2.2 Simulation of wetland inundation characteristics 

 Since the LISFLOOD-FP is a raster-based model and a DEM is used to represent the 

topographical characteristics in the wetland, DEM accuracy should be considered to 

minimise errors in the model results. Moreover, for wetlands covered with dense 

vegetation, vegetation bias should be reduced in the DEM as this tends to affect the 

model simulation results (e.g. inundation extents, water depths), and a number of no-

fee vegetation corrected DEMs have been released recently (e.g. O’Loughlin et al., 

2016; Yamazaki et al., 2017; Allen and Pavelsky, 2018; Zhao et al., 2018).  

 For a wetland that receives inflows from rivers of different sizes, the major channels 

should be identified, and well-represented in the model setup. Poor representation of 

the channel location and size in the DEM could affect the spatial distribution of the 

inundation results. Furthermore, the study demonstrated the importance of 

representing small channels in some wetlands such as the Usangu. Thus, an 

assessment of these channels should, if possible, be done prior to setting up of a 

model to identify whether they influence wetland inundation dynamics.  

 The study identified the importance of assessing the freely available global river 

widths datasets before applying them. The initial assessment of the Global River 
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Bankfull Width and Depth dataset by Andreadis et al. (2013) revealed that most of the 

channel locations, width and depth values estimated in this dataset did not match with 

the locations observed from the 90 m SRTM DEM as well as the higher resolution 

Google Earth images. One of this could be how most of these values were estimated 

in African rivers; the downstream river widths are applied to their upstream 

tributaries, resulting in rivers being too wide. Whenever possible, future studies 

should emphasise the use of high-resolution images to estimate river location and 

widths, as suggested by Schumann et al. (2013). 

 

6.2.3 Pitman wetland parameter estimations and revision of the GW Pitman model 

The approach applied in the current study depends on the validity of the simulation 

results from the hydraulic model as these results were used to establish the wetland 

parameters for the simulations using the Pitman model. The approach is not limited to 

the combination of the LISFLOOD-FP and Pitman models, and different model 

combinations can be used to achieve a similar study purpose. 

 

6.2.4 Recommendations for further studies 

 Future studies should apply the estimated wetland parameters in related/similar 

wetlands to see whether they can give appropriate results.  

 Future studies may investigate different model combinations or how the Pitman 

model can be combined with other types of hydraulic models to achieve similar 

purposes.  

 In the present study, the LISFLOOD-FP model was validated using low-resolution 

satellite images. For future studies, the use of high-resolution images to calibrate and 

validate the model results is recommended.  

 The wetland function does not include exchanges with groundwater in the current 

version of the Pitman wetland sub-model. However, groundwater-wetland interactions 

might be significant in other wetlands. Therefore, future modifications of the Pitman 

wetland sub-model structure should consider including a groundwater-wetland 

function to increase its applicability to such wetlands. The same is true for the 

LISFLOOD-FP model, which does not include a groundwater component in its 

structure.  
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 Use of additional field data related to exchange dynamics to refine the model setup of 

the Upper Great Ruaha River basin is recommended in future studies.  
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