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Chapter 1

Diffuse radio emission in galaxy

clusters

Galaxy clusters are the largest gravitationally bound structures in our Universe with

typical masses of ∼ 1014 − 1015 M� within 1.5 Mpc radius of the cluster centre. They

are located at the intersections of the filamentary structure of the cosmic web and

can contain up to several thousand galaxies that account for a small fraction (3 − 5%)

of the total cluster mass. Most of the cluster mass (∼ 80%) is in the form of dark

matter. The remaining 15 − 17% is baryonic matter in the form of hot (107 – 108 K),

dilute (∼ 10−3 particles cm−3) diffuse magnetized plasma held together by gravity and

permeating the space between the galaxies commonly referred to as intracluster medium

(ICM, e.g., Bahcall, 1996, Blumenthal et al., 1984, Sarazin, 1986). X-ray observations

reveal that the ICM emits thermal bremsstrahlung emission from hot electrons (Sarazin,

1986). Galaxy clusters are formed via mergers and accretion of smaller structures driven

by gravity. Cluster mergers are some of the most energetic events in our Universe and

can release up to ∼ 1064 erg over a timescale of a few Gyrs (Sarazin, 2002). Depending

on their dynamical status, galaxy clusters can be classified as relaxed or merging clusters

(Feretti et al., 2012).

In the past two decades, low-frequency radio observations of an increasing number of

galaxy clusters have revealed the presence of diffuse, Mpc-size radio sources of syn-

chrotron origin. These sources are associated with cosmic-ray (CR) electrons and large-

scale magnetic fields of the order of ∼ 0.1 − 1 µG mixed with the thermal ICM gas.

Historically, these diffuse, extended radio sources were classified into three main types:

radio halos, radio relics, and mini-halos (Brunetti & Jones, 2014, Feretti & Giovannini,

1996, Feretti et al., 2012).

1



Chapter 1. Introduction to diffuse radio sources in galaxy clusters 2

Recently, van Weeren et al. (2019) proposed reclassifying these diffuse, large-scale radio

sources inside galaxy clusters associated with the ICM into three broad groups: radio

halos, cluster radio shocks and revived active galactic nuclei (AGN) fossil plasma sources.

The radio halo class now includes giant radio halos (GRHs), mini-halos (MHs) and

possibly ”hybrid” or ”intermediate” radio halos (i.e., radio halos whose properties fall

in between those of GRHs and MHs).

1.1 Radio Halos

1.1.1 Giant Radio Halos

GRHs are diffuse, Mpc-size radio sources of synchrotron origin frequently detected at

the centre of a fraction of massive and merging galaxy clusters. GRHs are typically

extended with linear sizes in the range of 1−2 Mpc. They generally show smooth, regular

morphologies that approximately follow the shape of the hot X-ray gas from the ICM

(Bonafede et al., 2015, Botteon et al., 2018, Cuciti et al., 2018, de Gasperin et al., 2015,

Sommer et al., 2016, Van Weeren et al., 2013, Venturi et al., 2017). In a few exceptional

cases, GRHs have been found to show irregular morphologies (e.g., A 665; Giovannini &

Feretti, 2000). At 1.4 GHz, GRHs are unpolarized, typically show ∼ 0.1−1 µJy arcsec−2

surface brightness and radio power (P1.4GHz) in the ∼ 1024 − 1025 W Hz−1 range. They

are characterised by steep spectra with spectral index values: α = 1.1−1.41 (Brunetti &

Jones, 2014, Feretti, 2002, Feretti et al., 2012, Giovannini & Feretti, 2002, Govoni et al.,

2001, van Weeren et al., 2019). The advent of highly sensitive, very low frequency radio

observations of galaxy clusters has revealed the existence of a subclass of GRHs referred

to as ultra-steep spectrum radio halos (USSRHs). These radio sources are characterized

by very steep spectra (up to α ∼ 2) and are missed by GHz observations (Feretti et al.,

2012, van Weeren et al., 2019, Wilber et al., 2017). Figure 1.1 shows the prototypical

GRH source Coma C located at the centre of the Coma cluster (Feretti et al., 2012,

Giovannini et al., 1993).

GRHs are not a common property of galaxy clusters. At present, there are 65 confirmed

GRHs from literature, all being found in massive and merging clusters (van Weeren

et al., 2019). A survey of 64 X-ray luminous (LX & 5 × 1044 erg s−1) galaxy clusters

carried out with the Giant Metrewave Radio Telescope (GMRT) at 235 and 610 MHz

(Kale et al., 2015, 2013, Venturi et al., 2009, 2008) showed that GRHs are hosted in

only ∼ 20−30% of the sample. Cassano et al. (2008) showed that the fraction of galaxy

clusters hosting GRHs increases with the cluster X-ray luminosity.

1with Sν ∝ ν−α, where Sν is the flux density and ν the observing frequency
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Figure 1.1: Contours of the GRH source Coma C in the Coma cluster at 300 MHz,
superimposed on the Digital Sky Survey optical image (Feretti et al., 2012). Contour

levels are drawn at 3, 6, 12, 25, 50, 100 mJy beam−1.

Giovannini et al. (2009) found a linear correlation between the 1.4 GHz radio power of

GRHs P1.4GHz and its largest linear size (LLS, Figure 1.2). More recently, correlations

were found between P1.4GHz and the cluster X-ray luminosity measured within R500
2

(L500 > 5× 1044 ergs s−1, Brunetti et al., 2009, Cassano et al., 2013, Giovannini et al.,

2009), temperature (Liang et al., 2000) and mass (e.g., Bernardi et al., 2015), indicating

a cluster bimodal distribution. The correlation between P1.4GHz and L500 shown in

galaxy clusters hosting GRHs trace the P1.4GHz−L500 correlation, while galaxy clusters

without GRHs lie below the correlation (Brunetti et al., 2009, Cassano et al., 2013).

With the advent of sensitive, arcminute-resolution Cosmic Microwave Background (CMB)

telescopes, it has been possible to use the Sunyaev-Zel’dovich (SZ) effect to detect galaxy

clusters and measure their masses (Ade et al., 2011, Birkinshaw, 1999, Ruhl et al., 2004,

Sunyaev & Zel’Dovich, 1980). Several authors found a correlation between P1.4GHz and

the SZ cluster mass M500,SZ
3, P1.4GHz ∝ Mαc

500,SZ, with 3 < αc < 4 (e.g., Basu, 2012,

Bernardi et al., 2015, Cassano et al., 2013, Figure 1.4).

2where R500 is radius corresponding to a total density contrast 500ρc(z), where ρc(z) is the critical
density of the Universe at the cluster redshift

3where M500,SZ is the total cluster mass within the radius R500
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Figure 1.2: Correlation between 1.4 GHz radio halo power of GRHs, P1.4GHz, and
their largest linear size, LLS (Giovannini et al., 2009). Red triangles are new radio
halos discovered by (Giovannini et al., 2009) while blue circles are previously known
radio halos. This correlation suggests that giant and smaller size radio halos may have

a common origin and similar physical properties.

This link between radio power and cluster merger history provides the current best way

to discriminate between models of formation of GRHs. CR electrons diffusing over Mpc-

scales experience radiative losses on time scales shorter than the cluster crossing time,

requiring some mechanism of particle reacceleration. Two main classes of models have

been proposed to explain the origin of these CR electrons. These are referred to as the

Secondary Electron (or hadronic) Model (SEM, Blasi & Colafrancesco, 1999, Dennison,

1980, Enßlin et al., 2011, Pfrommer & Ensslin, 2004b) and the Primary Electron (or

turbulent re-acceleration) Model (PEM, Beresnyak et al., 2013, Brunetti & Jones, 2014,

Brunetti & Lazarian, 2011, Brunetti et al., 2001, Petrosian, 2001).

In the SEM, CR protons accumulate inside the cluster volume due to their long lifetimes

and the large size of clusters, after being injected by accretion shocks and galaxy outflows

from AGNs. These trapped CR protons undergo hadronic interactions with ICM pro-

tons which continuously generate secondary (or decay) products such as CR electrons,

pions and neutrinos. The decay of secondary neutral pions (or π0) into γ-ray photons

is expected and is indicative of the presence of CR protons in galaxy clusters. The
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Figure 1.3: The distribution of galaxy clusters in the P1.4GHz − LX plane (Cassano
et al., 2013). Black filled dots denote GRHs from literature, blue filled dots are GRHs
from the Extended-GMRT Radio Halo Survey (EGRHS, Venturi et al., 2008) sample
and green asterisks represent USSRHs. The black solid line indicates the best fit line
for GRHs only while the green solid line is the best fit line includes the USSRHs too.
The magenta arrows are cool-core galaxy clusters belonging to the EGRHS sample.
Blue arrows represent the upper limits on GHRs. There is a noticeable bimodality as
most of the low luminosity systems do not host GHRs, whereas systems with GRHs

followed a well defined correlation.

secondary CR electrons are expected to emit synchrotron emission in the radio regime

when they interact with Mpc-sized cluster magnetic fields (e.g., Blasi & Colafrancesco,

1999, Blasi et al., 2007, Brunetti & Jones, 2014, Dennison, 1980, Keshet & Loeb, 2010,

Pfrommer & Ensslin, 2004b, Pfrommer et al., 2008).

In the PEM, seeds of CR electrons are injected into the ICM from AGNs and are in-

situ reaccelerated to relativistic energies by turbulence induced by cluster mergers. In

presence of cluster-wide magnetic fields, they emit synchrotron radiation (e.g., Beresnyak

et al., 2013, Brunetti & Lazarian, 2011, 2016, Brunetti et al., 2001, Donnert et al., 2013,

Petrosian, 2001).

At present, the non detection of γ-ray emission in galaxy clusters from the orbiting Fermi

Large Area Telescope (Fermi-LAT, Atwood et al., 2009) disfavours a purely hadronic

origin of GRHs (Ackermann et al., 2014, Aharonian et al., 2009, Liang et al., 2016,
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Figure 1.4: The distribution of galaxy clusters in the P1.4GHz − M500,SZ plane
(Bernardi et al., 2015). Blue dots represent GRHs from the EGRHS sample while
black dots are GRHs already known in the literature. Arrows are upper limits (see
Bernardi et al., 2015, for details). The black solid line is the best fit for GRHs and the

shaded region is the 95% confidence region. Green asterisks are USSRHs.

Reimer & Sreekumar, 2004, Zandanel & Ando, 2014). Furthermore, a purely hadronic

origin of GRHs has been shown to require values of cluster magnetic fields which are

in tension with estimates from studies based on Faraday rotation measures (Bonafede

et al., 2010, Brunetti et al., 2012, Govoni & Feretti, 2004). Nonetheless, Fermi-LAT

γ-ray observations of galaxy clusters are useful for placing constraints on the CR proton

content of clusters, testing the hadronic nature of GRHs and testing the contributions of

secondary CR electrons in the PEM (Aharonian et al., 2009, Zandanel & Ando, 2014).

The most relevant questions that still need to be addressed are related to the origin of

the reaccelerated electrons and large-scale magnetic fields. Are electrons coming from

hadronic interactions or from AGN outflows? Are magnetic fields primordial or not?

These will be the fundamental questions addressed by future radio surveys of galaxy

clusters.
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1.1.2 Radio mini-halos

Mini-halos (MHs) are diffuse, a few hundred kpc-size synchrotron radio sources found

surrounding powerful radio galaxies in a fraction of relaxed galaxy clusters with cool

cores (Giacintucci et al., 2014, 2017, 2013, Gitti et al., 2004, Govoni et al., 2009, Kale

et al., 2015). Figure 1.5 shows the prototypical MH located in the Perseus cluster

(Sijbring, 1993).

Figure 1.5: Image of the prototypical mini-halo in the Perseus cluster at 327 MHz.
The contour levels are drawn at -4, 4, 8, 12, 16, 20, 40, 60, 80, 100, 200, 400, 600,
800, 1500, 2500, 4000, 8000, 16000 mJy beam−1. The cross indicates the position of

NGC 1275 and the triangle indicates the position of NGC 1272 (Sijbring, 1993).

At present, there are 24 known MHs. They are detected in a high fraction (∼ 50−80%)

of cool core galaxy clusters (Giacintucci et al., 2017, Kale et al., 2015, 2013, van Weeren

et al., 2019). Unlike GRHs, the P1.4GHz of MHs shows no correlation with cluster mass,

M500,SZ, indicating that cluster mergers do not play a crucial role in their formation

(Giacintucci et al., 2013).

Like the GRH case, the short lifetimes of CR electrons compared to the long diffusion

times required to cross the typical MH size requires a form of reacceleration to explain

the formation of MHs. Similar to GRHs, the SEM and PEM have been proposed to

explain radio emission in MHs (Gitti et al., 2012, Pfrommer & Ensslin, 2004a)
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The MH SEM suggests that CR electrons and γ-rays are generated from hadronic colli-

sions between ICM protons and CR protons most likely injected from the AGN at the

central radio galaxy (Keshet & Loeb, 2010, Pfrommer & Ensslin, 2004a, Zandanel &

Ando, 2014). Due to their long lifetimes, CR protons can diffuse across the cluster cool

core region and generate secondary CR electrons, which in turn can create the observed

MH radio emission (Brunetti & Jones, 2014). However, the current non detection of clus-

terwide γ-rays in relaxed clusters from Fermi-LAT telescope observations disfavours a

purely hadronic origin of MHs (Ackermann et al., 2014, Anderson et al., 2016, Prokhorov

& Churazov, 2014). At the same time, γ-rays observations of the Perseus cluster have

not completely ruled out the hadronic origin of MHs but instead impose strict upper

limits on the role of hadronic interactions in the formation of MHs in relaxed clusters

(Ahnen et al., 2016, Aleksić et al., 2012, 2010).

The MH PEM suggests that seeds of CR electrons in the ICM are reaccelerated to

relativistic energies via turbulence in cluster cool core regions. Buoyant bubbles of

plasma are inflated by the AGN and disrupted by turbulent motion of gas in the cool

core (Brunetti & Jones, 2014, Cassano et al., 2008, Gitti et al., 2002). This turbulence,

generated by gas sloshing, reaccelerates and spatially redistributes seeds of CR electrons

to the cluster cool core regions (Mazzotta & Giacintucci, 2008, ZuHone et al., 2012).

At the moment, γ-ray observations by Fermi-LAT are not deep enough to place strong

constraints on the origin of MHs (Ackermann et al., 2014, Aharonian et al., 2009, Han

et al., 2012).

1.2 Cluster radio shocks

Cluster radio shocks are diffuse, Mpc-size synchrotron radio sources often found at the

periphery of a small fraction of massive and merging galaxy clusters. They are associated

with cluster shock regions. At 1.4 GHz, they typically show a ∼ µJy arcsec−2 surface

brightness and elongated, arc-like shapes nearly perpendicular to the cluster radius, with

sizes ranging from 500 kpc up to 2 Mpc (Lindner et al., 2014, Loi et al., 2017, Shimwell

et al., 2015, Van Weeren et al., 2011, 2016). Some merging clusters host cluster double

radio shocks, located on the opposite sides with respect to the cluster centre (Bagchi

et al., 2011, de Gasperin et al., 2015, 2014, Röttgering et al., 1997, van Weeren et al.,

2011). High resolution observations of cluster radio shocks reveal a significant amount of

filamentary structure whose nature is still uncertain (Di Gennaro et al., 2018, Rajpurohit

et al., 2018). Unlike GRHs, they show strongly polarized radio emission with polarization

fractions up to & 20%. Cluster radio shocks are characterized by steep spectra with

spectral index α in the 1.0− 1.5 range (van Weeren et al., 2019). Figure 1.6 shows the
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prototypical cluster radio shock example 1253+275 in the Coma cluster (Giovannini &

Feretti, 2002, Giovannini et al., 1991). Figure 1.7 shows example of a cluster radio shock

and a cluster double radio shock, respectively. Only 5% of clusters host cluster radio

shocks (Kale et al., 2015, 2013).

Figure 1.6: Radio image of the prototypical radio shock 1253+275 in the outskirts of
Coma cluster at 327 MHz (Giovannini & Feretti, 2002). Contour levels are drawn at 3,
5, 7, 10, 12, 15, 20, 30, 50 mJy beam−1. The cluster centre is ∼ 1.2 Mpc away in the

north-east direction.

Like GRHs, the cluster radio shock power P1.4 GHz correlates with the cluster X-ray

luminosity (Feretti et al., 2012) and SZ cluster mass following a power-law relation

P1.4GHz ∝ Mαr
500,SZ, with αr = 2.83±0.39 (de Gasperin et al., 2014). Another correlation

is found between the cluster radio shock linear size and the distance from the cluster

centre, indicating that larger cluster radio shocks prefer being located in the outskirts

of massive and merging clusters (Bonafede et al., 2012).

The elongated, arc-like shapes of cluster radio shocks in the cluster periphery, coupled

with the short lifetimes of CR electrons, suggests that they trace CR electrons accel-

erated at Mpc-scales by shock waves. These ICM shock waves are grouped into two

main classes: merger shocks and accretion shocks. Merger shocks are generated during

mergers of subclusters (Bykov et al., 2008), while accretion shocks are derived from

accretions of the warm hot intergalactic medium from the surrounding filaments of the
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Figure 1.7: Left panel : A radio image of the radio shock in the A 115 cluster at 1.4
GHz (Feretti, 2005). Right panel : A radio image of the double radio shock in A 3667

cluster at 833 MHz (Feretti, 2005).

cosmic web (Brunetti & Jones, 2014). In an idealized merger, equatorial shocks form

first and move outwards in the equatorial plane. After the dark matter core passage,

two merger shock waves start from the cluster centre and launch in opposite directions

along the merger axis (van Weeren et al., 2019, 2011). Accretion shocks are typically

stronger than merger shocks, but dissipate less energy since they formed in colder, lower

gas density regions far away from the cluster centre (Brunetti & Jones, 2014).

1.3 Revived AGN fossil plasma sources

Revived AGN fossil plasma sources are diffuse, kpc-size radio sources of synchrotron

origin associated with fossil plasma originally from a dying or extinct AGN that has

somehow been revived by shock waves or weak cluster merger-induced turbulence. The

fossil plasma traces past AGN activity and could be a possible source of pre-existing

CR electrons required to form radio halos and cluster radio shocks. These sources are

generally located near the cluster centre, have sizes smaller than 300 − 400 kpc and

typically show P1.4GHz < 1024 W Hz−1 (Cohen & Clarke, 2011, de Gasperin et al., 2015,

Mandal et al., 2019, Slee et al., 2001, van Weeren et al., 2011). Most revived AGN

fossil plasma sources have roundish and filamentray shapes and exhibit extremely steep

spectra with an mean spectral index α ∼ 2 (Feretti et al., 2012). In most cases, their

spectra is curved and shows high frequency steepening. They also show polarized radio

emission with polarization fraction . 20% (Kempner et al., 2004, Mandal et al., 2019).

Revived AGN fossil plasma sources as shown in Figure 1.8 now include radio phoenices

(de Gasperin et al., 2015), revived fossil sources (formerly AGN relics, Kempner et al.,
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2004, Mandal et al., 2019) and the recently discovered Gently Re-accElerated Tails

(GReETs, de Gasperin et al., 2017). Radio phoenices trace old radio plasma from

previous AGN activity which is no longer visible due to synchrotron losses. When a

merger shock or accretion shock wave passes through this old plasma, it is compressed

together with cluster magnetic fields, leading to re-acceleration of fossil CR electrons to

mild (γ ∼ 100) relativistic energies. The fossil plasma once again becomes visible in the

radio regime (de Gasperin et al., 2015, Kempner et al., 2004).

Figure 1.8: Examples radio phoenices, revived fossil source and GReET. Top left
panel : A GMRT radio image of a radio phoenix in the A 2048 cluster at 325 MHz. Top
right panel : A VLA radio image of the elongated radio phoenix in Ophiuchus cluster at
1.4 GHz. Bottom left panel : LOFAR 118− 166 MHz (red) and Chandra 0.5− 2.0 keV
(blue) composite image of the revived fossil source in A 2034 (van Weeren et al., 2019).
Bottom right panel : Composite image showing optical background from Sloan Digial
Sky Survey (SDSS), LOFAR (blue) and Chandra 0.5-4 keV (purple) emission of the

GReET in A 1033(de Gasperin et al., 2017).

Revived fossil sources are associated with radio galaxies whose AGN has switched off.

As the source ages, it loses energy through synchrotron and inverse Compton losses and
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eventually appears as an X-ray cavity with no observable radio emission at ∼GHz fre-

quencies. When a merger or accretion shock makes contact with these radio lobes or co-

coons, they first adiabatically compress the plasma and tear theses cocoons into filamen-

tary radio structures (Ensslin, 2001, Ensslin & Brueggen, 2002). Observational examples

of revived fossil sources are found in A 2034 (Shimwell et al., 2016), A 1132 (Wilber

et al., 2017), A 1913 (Brüggen et al., 2018), VLSS J1431.8+1331, VLSS J1133.7+2324

and VLSS J1117.1+7003 (van Weeren et al., 2011). GReETs, on the other hand, are

radio galaxy tails that are somehow revived after fading due to radiative losses. Their

radiative losses are just barely balanced by particle re-acceleration mechanisms such as

turbulence and shocks (de Gasperin et al., 2017).

At present, there are 13 confirmed revived AGN fossil plasma sources revealed through

low-frequency observations. However, their precise origin remains uncertain because

they remain undetected at GHz frequencies, due to their steep spectra. Some of these

sources (e.g., in A 85, A 1664 and A 4038) have been found in relaxed galaxy clusters,

indicating that major merger events are not required for their formation (van Weeren

et al., 2019).

1.4 Abell 773

Abell 773 (A 773 hereafter) is a rich galaxy cluster at redshift z = 0.217, located at

R.A. = 09h17m52.8s, Dec. = 51d43m48.0s. It is a hot (T = 9.29 keV), massive (∼
2 × 1015 M�), X-ray luminous (LX ∼ 12.52 × 1045 erg s−1) cluster that is likely in a

merger stage (Giovannini et al., 1999, Govoni et al., 2001).

Giovannini et al. (1999) first observed a 800 kpc regular shaped radio halo in A 773 with

a ∼ 14 mJy flux density at 1.4 GHz from the NRAO Very Large Array (VLA hereafter)

Sky Survey (NVSS hereafter, Condon et al., 1998). The NVSS provides snapshot images

of nearly all the sky north of Dec = -40◦. However, its limited angular resolution (45′′)

and surface brightness sensitivity (∼ 0.45 mJy beam−1) made it difficult to separate the

radio halo emission from the blend of point radio sources detected at the cluster centre.

Later, A 773 cluster was observed by Govoni et al. (2001) using VLA-C configuration at

1365 and 1435 MHz and VLA-D configuration at 1365 and 1665 MHz for a total of 2

hours in each configuration. This way, Govoni et al. (2001) obtained a better sensitivity

and angular resolution with respect to the NVSS as well as a good sampling of short

baselines - necessary to detect exteded emission. The final VLA images of A 773 were

created by adding together the two VLA-C configuration datasets together with the

VLA-D configuration data at 1365 MHz. The VLA-D dataset obtained at 1665 MHz
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was excluded from the imaging process due to corruption caused by interference. The

high and low-resolution images had an angular resolution of 15′′ and 30′′ and noise levels

of 0.02 and 0.03 mJy beam−1 respectively.

Figure 1.9 shows the image of A 773 with a regular shaped, extended (1.5 Mpc) GRH

with a flux density of 12.65 mJy at 1.4 GHz. The presence of a radio halo, coupled

with the irregular and elongated shape of the X-ray emission (Figure 1.9) indicate that

A 773 is in an active dynamic state. Deep (12 hour), follow up radio observations of

A 773 cluster were conducted with the Westerbork Synthesis Radio Telescope (WSRT

hereafter) at 18 cm and 21 cm. The aim of these observations is to:

1. Confirm the presence of a radio halo at the centre of A 773.

2. Study the radio halo physical properties (morphology, extent, flux density) at

18 cm and 21 cm.

3. Carry out a spectral index analysis of its radio halo.

Figure 1.9: Left panel : 1.4 GHz radio image of the radio halo at centre of A773. The
angular resolution is 15′′ × 15′′ and the noise level is 0.02 mJy beam−1. Contour levels
are:-3, 3, 4, 6, 8.5, 12, 17, 24, 34, 48, 68, 96, 136, 192, 272, 384, 543×σ. Right panel : X-
ray contour plots of centre of A 773 cluster taken from the ROSAT archive overlapped
to the 1.4 GHz greyscale image of centre of A 773 cluster with angular resolution of

30′′. The X-ray contours are: 0.65, 0.8, 1, 1.5, 3, 3.4, 3.6 Counts/pixel.

The thesis is organized in the following way. In chapter 2, we provide an overall in-

troduction to radio interferometry. We give a concise description of how a two-element

interferometer operates including interferometric calibration and imaging.

In chapters 3 and 4, we present Westerbork observations of A 773 galaxy cluster at 18 cm

and 21 cm. After flagging and calibration, we proceeded to create high-resolution maps

of the field for the purpose of identifying compact sources that were subtracted from the
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data. Low resolution, high brightness sensitivity images were made to detect the radio

halo.

In chapter 5 we present a combined analysis of the 18 cm and 21 cm observations of

A 773. We then present our conclusions, including the limitations of the current work.



Chapter 2

Introduction to radio

interferometry

Figure 2.1: Schematic diagram of transmission of celestial electromagnetic radiation
through Earth’s atmosphere. The clear zone lying between λ ∼ 0.3 mm and λ ∼ 30 m
depicts the so called ‘radio window’ through which celestial radio waves are observable

from Earth (Condon & Ransom, 2016).

The Earth’s atmosphere is opaque to a large range of electromagnetic wavelengths but

mostly transparent in the radio regime (Figure 2.1). Radio telescopes were intially

limited by their poor angular resolution θ, i.e. by the capability to separate two nearby

sources:

θ ≈ λ

D
(2.1)

where λ is the observing wavelength and D is the diameter of the dish telescope. In the

case of the D = 305 m Arecibo telescope - the largest radio telescope - , the angular

resolution is only ∼ 2.2 arcminutes at ν ≈ 1.5 GHz (or λ ≈ 20 cm), worse than a

15
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human eye (θeye ∼ 50 arcseconds). The development of the interferometric technique

alleviates this problem by using an array of antennas distributed over large distances

and combining the signals from antenna pairs. This process “synthesizes” a single dish

of angular resolution:

θ ≈ λ

Bmax
(2.2)

where Bmax is the maximum separation between antenna pairs. In the following sections

I will provide an overview of interferometry and the related image formation largely based

on the Thompson et al. (2017) book.

2.1 The two-element interferometer

Figure 2.2: A schematic diagram of a two-element interferometer. Antennas are
labeled p and q. The dashed-line box indicates the correlator, the digital equipment
that performs the cross-multiplication and average of the antenna signals (from Condon

& Ransom, 2016).

The simplest interferometer is the two-element interferometer (Figure 2.2). When both

elements observe a sky source, the celestial radiation reaches the second element p with
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a delay τ with respect to the first element q:

τ =
~b · σ̂
c

(2.3)

where ~b is the baseline vector between the two telescopes (i.e. the separation between

them), σ̂ is the unit vector in the direction of the source and c is the speed of light.

This delay is often referred to as geometrical delay because it essentially depends upon

the relative position of the antennas and the sky source. The phase associated to the

geometrical delay can be expressed as:

φ = ωτ =
2π

λ
~b · σ̂ (2.4)

where λ is the observing wavelength. The celestial radiation induces voltages Vp and Vq

that are proportional to the amplitude of the celestial signal E and can be written in a

general form as:

Vp(t) = E cosωt, Vq(t) = E cos[ω(t− τ)] (2.5)

The voltages are then correlated:

〈VpVq〉 = 〈E2[cos[ω(t− τ)] cosωt〉 = E2〈[cos(ωt) + cos(2ωt− ωτ)]〉 (2.6)

where brackets indicate a time average. The terms depending upon ωt oscillate much

faster and typically average to zero leaving with:

〈VpVq〉 =

(
E2

2

)
cos(ωτ). (2.7)

The correlator response varies sinusoidally as the Earth’s rotation changes the source

direction relative to the baseline vector ~b. These sinusoids are called fringes and the

correlator can be thought of ‘casting’ a fringe pattern of
(

2π~b′ · σ̂
)

period onto the sky,

where ~b′ =
~b
λ .

Generally, the correlator can measure both the even (cosine) and odd (sine) fringes,

leading to a complex fringe:

V ′ = 〈VpV ∗q 〉 =
E2

2
[cosωτ − ı sinωτ ] =

E2

2
e−2πı ~b′·σ̂. (2.8)
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If the above equation is integrated over the source size, it leads to the well known Van

Cittert-Zernike theorem (Thompson et al., 2017):

V (~b′) =

∫∫
Ω
I(σ̂)e−2πı ~b′·σ̂dσ̂, (2.9)

where I = E2

2 , and Ω is the source area. If the baseline is expressed in terms of (u, v)

coordinates and the source distribution in terms of direction cosines (l,m), equation 2.9

can be re-written as a two dimensional Fourier transform:

V (u, v) =

∫∫
Ω
I(l,m)e−2πı(ul+vm) dl dm. (2.10)

Equation 2.10 is the cornerstone of interferometry and indicates that the measured

visibilities, V (u, v), are the Fourier transform of the sky brightness distribution. The

sky brightness distribution can be recovered by inverting equation 2.10. A reliable

reconstruction of the sky brightness distribution requires to sample the Fourier transform

as densely as possible, i.e. sampling many (u, v) points. This is achieved by both

constructing interferometers with many antennas that have many different separations

as well as using the rotation of the Earth to continuously change the projected baselines

between antenna pairs in the direction of the source, leading to an increase in (u, v)

sampling in a process called Earth synthesis.

2.2 Introduction to calibration and imaging

Visibilities measured by any radio interferometric array are never an ideal measurement

of the sky brightness distribution, but are corrupted by both the effects of the Earth’s

atmosphere and by the instrumental receiving chain. Other important reasons for data

corruption are antenna malfunctioning and terrestrial interference in the form of radio

frequency interference (RFI) from mobile devices and artificial satellites orbiting the

Earth.

The process of editing out corruptions due to antenna malfunctioning and RFI from

radio interferometric datasets is generally called flagging. Radio interferometric data

from malfunctioning antennas, channels corrupted by RFI, zero amplitude data or any

data taken at low elevations which is often unreliable and noisy are colloquially referred

to as ‘bad data’ and need to be flagged from the data before proceeding with the science

analysis.
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The process of correcting for corruptions caused by propagation effects due to the Earth’s

atmosphere and by the instrumental receiving chain is called calibration. Signal corrup-

tions are modelled using 2× 2 complex matrices, called Jones matrices J, that describe

corruption for both polarization states of the incoming radiation. The corrupted visibil-

ities can therefore be written as (Smirnov, 2011):

Vpq(u, v) = Jp

(∫∫
Ω

B e−2πı(ul+vm)dldm

)
JHq , (2.11)

where (p, q) indicate antennas, B is the matrix that describes the polarization state of

the celestial signal in terms of Stokes parameters (I,Q, U, V ):

B =

[
I +Q U + iV

U − iV I −Q

]
, (2.12)

and H is the Hermitian operator. If the brightness matrix B is known, as for example is

the case of a calibration source, then calibration solves for the antenna based matrices J.

Jones matrices can generally be decomposed in time and frequency dependent matrices

with each effect described by its own particular Jones matrix, for example like the matrix

E describing the telescope primary beam response. In the case where the original signal is

first modulated by the primary beam before the antenna based complex gain is applied

by the amplifier, the Jones chain is obtained by simply multiplying E and G Jones

matrices together:

J = GE (2.13)

Calibration is often divided into first generation calibration (1GC), second generation

calibration (2GC) and third generation calibration (3GC). 1GC is performed by ob-

serving a calibrator (i.e. sources with known parameters such as flux density, shape

and spectrum) interspersed with observations of the target field. This allows us to

use calibrator observations to track variations in the system response. Thus, calibra-

tor observations can be used to calibrate for a variety of propagation effects to obtain

calibration solutions which in turn, can be transfered to the target field.

The absolute flux density (i.e. the true flux of sources in the field) is calibrated by

observing a primary calibrator (i.e. a strong point source with a known, constant flux

density and spectrum) a few times during the observation run. Primary calibrators

are relatively rare and are often far away from the target field. To calibrate the time

variation of the instrument gains G(t), a secondary calibrator (i.e. a strong point-like

source located sufficiently close to the target in the sky) is observed periodically for short

durations.
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After 1GC calibration, the target visibilities are Fourier transformed into a “dirty”

image ID, i.e. an image that still includes the telescope sampling function. In the

interferometric case, the sampling function is the sampling of the (u, v) plane. The

observed sky brightness distribution ID is then given by:

ID = PSF ~ II (2.14)

where PSF is the Point Spread Function (i.e. the Fourier transform of the interferomet-

ric sampling function), ~ the convolution operation and II the intrinsic sky brightness

distribution.

The intrinsic sky brightness distribution can be recovered through deconvolution from

the PSF. The most used deconvolution algorithm in radio interferometry is called CLEAN

(Högbom, 1974). The simplest CLEAN algorithm can be described as follows (Cornwell

et al., 1999):

1. Initialize the model image to an empty copy of the “dirty” image and the residual

image to a copy of the “dirty” image;

2. Identify the peak in the “dirty” image fmax;

3. Subtract a replicated PSF shifted at the peak location with intensity γfmax, where

γ ∼ 0.1− 0.2 is called loop gain;

4. Add a clean component of intensity γfmax to the model image. Update the residual

image;

5. Repeat from 2 but now on the residual image, unless the peak of the residual

image is smaller than the user-specified threshold or the user-specified number of

iterations was reached;

6. Construct a restored image by convolving the model image with a two dimensional

Gaussian function fitted to the main lobe of the PSF and adding the residual image.

Clark (1980) developed a variant of the Högbom CLEAN known as Clark CLEAN,

aimed at taking advantage of two dimensional Fast Fourier Transforms (FFT). Unlike

the Högbom CLEAN, the Clark CLEAN iteration has a “major” cycle with a nested

“minor” cycle. Inside the “minor” cycle, a modified Högbom CLEAN is used to find

CLEAN components using only a small fraction of the PSF. This significantly increases

computation speed in the “minor” cycle for large images. As the search is terminated,

the “major” cycle begins and CLEAN components are fast Fourier transformed and

correctly subtracted from the residual image.
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Cotton and Schwab (Schwab, 1984) developed a variant of the Clark CLEAN (i.e.,

Cotton-Shwab CLEAN) where the CLEAN components are subtracted from the un-

gridded visibilities in the “major” cycle allwoing for deconvolution across the entire

image.

Images obtained with 1GC calibration are generally limited by variations of the instru-

mental response on time scales shorter than the cadence used to observe calibrators.

Image quality is often defined in terms of dynamic range (i.e the ratio between the

image peak flux fmax and the noise σrms) can be improved even further by performing

self-calibration (2GC) (Ekers, 1984, Pearson & Readhead, 1984). A 2GC calibration

routine typically proceeds as follows:

1. an initial sky-model of the target field is created by deconvolving a 1GC calibrated

image;

2. the sky-model is used to improve the time variations of the instrument gains;

3. a new, more complete sky model is derived from the deconvolution of self-calibrated

visibilities;

4. calibration and deconvolution loops are iterated until convergence is achieved.

2.3 Westerbork Synthesis Radio Telescope

The Westerbork Synthesis Radio Telescope (WSRT) is a one-dimensional (1D) aper-

ture synthesis telescope operated by the Netherlands Institute for Radio Astronomy

(ASTRON). It consists of 14 steerable dish-shaped antennas of 25 m diameter on an

East-West baseline. Ten WSRT antennas labelled from 0 to 9 are fixed 144-m apart and

four antennas labelled A to D are on a movable rail track on the eastern end (Figure 2.3).

Each antenna is on an equatorial mount.

Figure 2.3: The layout of the 14 WSRT dishes.

The WSRT can observe in five different configurations, namely maxi-short, traditional,

2 × 48, mini-short and 2 × 96. In the maxi-short configuration, the antenna distance

9-A is 36 m, while A-B and C-D are 54 m and 72 m apart respectively. In traditional
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configurations the A-9 distance can be moved incrementally by 12 m starting from 36

up to 96 m while distances A-B and C-D are fixed at 72 m. The combination of all

these configurations cancels the grating lobes to the regular spacings across the whole

field of view, at the cost of an increased observing time. The maxi-short configuration

offers a good sensitivity to extended emission and a PSF with relatively low sidelobes

in a reduced observing time.



Chapter 3

Observations of Abell 773 at

18 cm

3.1 Observations and data reduction at 18 cm

In this chapter, we present observations of A 773 taken with the WSRT at 18 cm (or

1713 MHz) on 31 January 2011 with the aim of studying the physical properties of the

radio halo located at its centre.

The A 773 galaxy cluster was observed starting at sunset, for a total of 12 hours. The

12 hours synthesis is employed at the WSRT to improve the uv coverage through Earth

rotation synthesis. Observations were taken in the maxi-short configuration that offers

good imaging performance to extended emission.

Observations were performed at the central frequency of 1713 MHz with a 146 MHz

bandwidth, divided in 8 slightly overlapping sub-bands, each 20 MHz wide. Table 3.1

provides a summary of observational details.

In WSRT observations, it is standard practice not to observe a secondary calibrator

throughout the run as the telescope is known to be very stable. Instead, two primary

calibrators were observed at the beginning and at the end of the observing run. The

primary calibrator source 3C48 was observed at the beginning of the observation run

for ∼ 15 minutes, followed by the target A 773 which was continuously observed for 12

hours. At the end of the observation run, the primary calibrator 3C286 was observed

for ∼ 15 minutes. The data reduction was done in CASA version 5.1.1-5 (McMullin

et al., 2007). Each sub-band was split into an individual dataset for each source before

proceeding with flagging and calibration.

23
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Table 3.1: Summary of the 18 cm observational setup

Coordinates of the field
centre (J2000) R.A. = 9h17m59s, Dec. = +51d43m48s

Central observing frequency ν (MHz) 1713
Frequency range (MHz) 1640 - 1786
Number of spectral sub-bands 8
Central frequency of each sub-band (MHz) 1650, 1668, 1686, 1704

1722, 1740, 1758, 1776
Width of each sub-band (MHz) 20
Number of channels in each sub-band 64
Channel width (kHz) 312.5
Integration time (sec) 30

After a visual inspection of the variation of visibility amplitudes of the primary calibra-

tors against frequency, antenna 6 was found malfunctioning and permanently flagged,

along with the sub-band edges. Further automatic RFI flagging was done using the

tfcrop option in the flagdata task (Martins & Rau, 2016). Tfcrop is an automatic

flagging algorithm that detects outliers on the 2D time-frequency domain. The algo-

rithm iterates through the data in chunks of time. For each chunk, the user’s visibility

data are organized as 2D time-frequency planes, one for each baseline. After that, for

each baseline, an average visibility spectrum is calculated by averaging the visibility

amplitudes in the time dimension. Next, a piece-wise polynomial fit to the visibility

spectrum is calculated, together with standard deviation, σ. By default, all points devi-

ating from the fit by more than 3σ are flagged. The above routine is repeated for each

baseline in the frequency domain.

3C48 was used as a bandpass calibrator, assuming a 14.4 Jy flux density at 1.65 GHz

and a α = −0.84 1 spectral index (Perley & Butler, 2017). Antenna-based complex

gains as a function of frequency were solved for using the CASA task bandpass for each

sub-band. An example of amplitude calibration solutions is shown in Figure 3.1. The

calibrated visibility amplitudes for 3C48 at 1.65 GHz shown in Figure 3.2 clearly match

the assumed 14.4 Jy flux density of 3C48 at this frequency.

We tested the bandpass stability across the night by applying bandpass solutions to an

observed second calibration source, 3C286, which was observed after the target field. The

amplitude of its calibrated visibilities is consistent with the expected value of 13.9 Jy at

1.65 GHz (Figure 3.3), indicating negligible time variation of the bandpass throughout

the night. The bandpass solutions derived for 3C48 were therefore applied to the target

field. As there was no observation of a secondary calibrator during the observing run,

time-dependent gains were only corrected for during 2GC self-calibration.

1Sν ∝ να, where Sν is the flux density and ν the observing frequency
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Figure 3.1: Example of bandpass solutions derived from 3C48 for the sub-band cen-
tred at 1.65 GHz. Each colour is a different antenna.

Figure 3.2: Calibrated visibility spectrum of 3C48 at 1.65 GHz. Their average am-
plitude is consistent with the model value (14.4 Jy).

The A 773 calibrated visibilities were Fourier transformed into a “dirty” image centred

at central frequency of 1.713 GHz using the multi-frequency synthesis algorithm (Sault

& Wieringa, 1994) and uniform weights in order to suppress sidelobes throughout the

field of view. We imaged the whole field of view, corresponding to 1.4◦ × 1.4◦ at 18 cm.

The “dirty” image was then iteratively deconvolved using the Cotton-Schwab CLEAN
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Figure 3.3: Calibrated visibility spectrum of 3C286 at 1.65 GHz. There is a good
agreement with the model amplitude (13.9 Jy).

algorithm (Cornwell et al., 1999) until the first negative component was found at 0.7 mJy

threshold. The derived sky model was used to self-calibrate time-dependent variation

of the antenna phases with a 120 second solution interval. Examples of solutions are

shown in Figure 3.4.

Figure 3.4: Self-calibration phase solutions. Each antenna is a different colour.

The self-calibrated visibilities of A 773 were imaged and deconvolved down to a flux

density threshold of 0.4 mJy, where another negative component was found, after which

a mask that included all the sources brighter than 200 µJy was created to restrict the
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deconvolution within these regions down to a 60 µJy threshold. The final deconvolved

image shown in Figure 3.5 has a noise level of 0.03 mJy beam−1. The image essentially

shows radio emission from compact-like sources with no evidence of diffuse emission at

the centre (Figure 3.6).

Figure 3.5: Uniform weighted image of the A 773 field at 18 cm. The image is
not primary beam corrected. The angular resolution is 11′′ × 9′′ and the noise level
0.03 mJy beam−1. The red circle in the centre indicates the cluster Abell radius (∼ 8′).

In order to highlight the potential presence of diffuse emission at the cluster centre, we

proceeded with the identification and successful subtraction of all the compact sources

down to 60 µJy in order to image the residual visibilities at lower resolution and improve

the brightness sensitivity. The sky model was Fourier transformed and subtracted from

the self-calibrated visibilities in order to form a set of residual visibilities that were

imaged using different weighting schemes (Briggs, 1995). We generated residual images

with robust parameter r = 0, 0.5 and 0.75 respectively (Figure 3.7). The variations

of radio properties of the radio halo at centre of A 773 as a function of r are listed in

Table 3.2. Diffuse emission becomes more visible at the cluster centre with increasing

value of r. Although there is no hint of diffuse emission in the r = 0 map, a small,

extended source (0.87 arcmin2, corresponding to 12 synthesized beams) is visible in the

r = 0.5 map (middle panel of Figure 3.7).
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Figure 3.6: Zoom into the centre of Figure 3.5. Contours (black) showing the compact
radio sources are drawn at -3, 3, 6, 9, 12, 15, 18, 24, 30, 36, 42, 48, 54, 60, 66 ×σ. The

red circle denotes the cluster Abell radius (∼ 8′).

Table 3.2: Radio properties of radio halo at centre of A 773 cluster as a function of r
at 18 cm.

r synthesized image noise halo area linear size number Sν
beam size mJy beam−1 arcmins2 arcmins of beams mJy

-2 11′′ × 9′′ 0.03 – – – –
0 14′′ × 11′′ 0.02 – – – –

0.5 18′′ × 14′′ 0.02 0.87 1.70 12 1.42± 2%
0.75 19′′ × 15′′ 0.02 5.88 3.68 74 8.82± 3%

Diffuse emission is clearly evident in the r = 0.75 map, with contour levels up to ten

times the noise (Figure 3.7 Bottom panel). It extends over ∼ 3.68 arcmin (1 Mpc

linear size), with an area corresponding to 5.88 arcmin2 (∼ 74 synthesized beams) and

a 8.82 ± 3% mJy integrated flux density at 1.713 GHz. We also imaged the residual

visibilities using natural weights, which give the best brightness sensitivity. We noted,

however, that for robust parameters r ≥ 1, images start to suffer from substantial

contribution of grating lobes, due to the regular configuration of the array. Grating

lobes make it difficult to estimate the noise level of the image and make the estimates

obtained at the edge of the field, where the sky emission is suppressed by the primary
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Figure 3.7: Low resolution, 1.713 GHz radio images of A 773 with robust parameter
r = 0, 0.5, 0.75 (see text for details) after subtraction of point sources (black contours).
In all images, the noise level is 0.02 mJy beam−1 and contours (blue) are drawn at -3,
5 and 7× σ respectively. Top panel : r = 0 image, the angular resolution is 14′′ × 11′′.
Middle panel : r = 0.5 image, the angular resolution is 18′′ × 14′′. Bottom panel :

r = 0.75 image, the angular resolution is 19′′ × 15′′.
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Table 3.3: Radio properties of radio halo at centre of A 773 as a function of uvrange
at r = 0.75.

uvrange synthesized image noise halo area linear size number Sν
m beam size mJy beam−1 arcmins2 arcmins of beams mJy

100 19′′ × 15′′ 0.018 – – – –
80 19′′ × 15′′ 0.018 0.18 0.78 2 0.20± 15%
50 19′′ × 15′′ 0.018 2.65 2.23 33 3.62± 0.8%

beam, unreliable at the image centre. We therefore consider the image obtained with

the robust parameter r = 0.75 as the image with the best brightness sensitivity.

Low resolution images inevitably become sensitive to emission on scales much large

than the synthesized beam as well as confusion noise. Figure 3.7 (Bottom panel) indeed

displays residual emission at the location of sources that appear accurately subtracted in

the r = 0 image (Figure 3.7 Top panel), as well as sidelobe emission from these sources

and general positive and negative fluctuations on scales of several arcminutes. Although

part of this pattern seems to be due to sidelobes, it cannot be excluded that part is

genuinely due, for example, to Galactic diffuse emission that may have power on such

scales (e.g., Bernardi et al., 2009). In particular, the radio halo appears to be seated

on top of a “pedestal” of low surface brightness emission whose extent complicates the

assessment about its significance.

We attempted to filter out some of the large scale emission by excluding the shortest

baselines from the images. In particular, we imaged the residual visibilities using a

robust parameter r = 0.75 and excluding baselines shorter than 100, 80 and 50 m

respectively. As is evident from Table 3.3, there is no diffuse radio emission present at

the cluster centre when only baselines greater than 100 m were included. This means

that the diffuse radio emission visible in Figure 3.7 (Bottom panel) is associated with

baselines shorter than 100 m, which correspond to ∼ 1.7 Mpc scales at z = 0.217. When

baselines longer than 80 m are included, only marginal diffuse emission is detected. A

clear detection is only obtained when baselines longer than 50 m are included.

As it can be seen in Figure 3.8, the shape of the diffuse radio emission at the cluster centre

with the baseline cut at 50 m is more regular but significantly less extended compared to

the image with no baseline cut. Conservatively, we adopted Figure 3.8 (Bottom panel)

and the corresponding radio parameters in Table 3.3 as our most accurate assessment

of the radio halo at the centre.

The radio halo appears regularly shaped with a linear extent of 2.23 arcmin (0.6 Mpc)

corresponding to an area of 2.65 arcmin2 with a 3.62±0.8 mJy flux density at 1.713 GHz.
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Figure 3.8: Top panel : Contours from the r = 0.75 image (Figure 3.7 Bottom panel)
overlaid on the uniform weighted image (Figure 3.6). Contours are drawn at -3, 5, 7
and 10 ×σ. Bottom panel : Contours from the r = 0.75 image with baselines longer
than 50 m overlaid on the uniform weighted image (Figure 3.6). Contours are drawn

at -3, 5, 7 and 10 ×σ.
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By visually comparing the shape and area of our radio halo to that detected by Govoni

et al. (2001) shown in Figure 1.9 (Left panel), at 1.4 GHz with angular resolution of 15′′

and a noise level of 0.02 mJy beam−1, a relatively good match in terms of morphology

is found, although the extent in our images is ∼ 40% than in Govoni et al. (2001) and

the flux density is only ∼ 30%.



Chapter 4

Observations of Abell 773 at

21 cm

4.1 Observation and data reduction at 21 cm

In this chapter, we present observations of A 773 taken with the WSRT at 21 cm on 26

January 2011. Observations were carried out at the central frequency of 1380 MHz with

a 146 MHz bandwidth, divided into eight slightly overlapping sub-bands, each 20 MHz

wide. Table 4.1 includes a summary of the observational details. The calibration source

3C48 was observed at the beginning of the observation for 15 minutes. Thereafter, A 773

has observed for 12-hours in order to fill the uv -plane. As for the 18 cm observation,

a secondary calibrator was not observed throughout the night since. At the end of the

observation run, the primary calibrator 3C286 was observed for 15 minutes.

The data reduction was done in CASA version 5.1.1-5 (McMullin et al., 2007). Each sub-

band was split into an individual dataset for each source before proceeding with flagging

and calibration. Antenna 6 was flagged again along with the band edges. Further

automatic RFI flagging was done using the tfcrop option in the flagdata task (Martins

& Rau, 2016). About 30% of the data were flagged in total.

3C48 was used as a bandpass calibrator assuming a 16.5 Jy flux density at 1.41 GHz and

a α = −0.84 spectral index (Perley & Butler, 2017). Antenna-based complex gains as

a function of frequency were solved for using the CASA task bandpass. An example of

amplitude calibration solutions in Figure 4.1. Calibrated visibility amplitudes for 3C48

at 1.41 GHz shown in Figure 4.2 match the flux density predictions. We tested here again

the bandpass stability across the night by applying bandpass solutions to the calibration

source 3C286, which was observed after the target field. The amplitude of its calibrated

33
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Table 4.1: Summary of the 21 cm observational setup

Coordinates of the field
centre (J2000) R.A. = 9h17m59s, Dec. = +51d43m48s

Central observing frequency ν (MHz) 1380
Frequency range (MHz) 1301 - 1450
Number of spectral sub-bands 8
Central frequency of each sub-band (MHz) 1311, 1330, 1350, 1370

1392, 1410, 1432, 1450
Width of each sub-band (MHz) 20
Number of channels in each sub-band 64
Channel width (kHz) 312.5
Integration time (sec) 30

visibilities is consistent with the expected value of 15.2 Jy at 1.41 GHz, confirming the

bandpass stability throughout the observation (Figure 4.3). The bandpass solutions

were then used to calibrate the target field A 773.

Figure 4.1: Example of bandpass solutions derived from 3C48 for the sub-band cen-
tred at 1.41 GHz. Each colour is a different antenna.

The calibrated visibilities were Fourier transformed into a “dirty” image centred at

1.38 GHz using the multi-frequency synthesis algorithm (Sault & Wieringa, 1994) and

uniform weights in order to suppress sidelobes throughout the field of view. We imaged

the whole field of view, corresponding to 1.4◦ × 1.4◦ at 21 cm. The “dirty” image was

then deconvolved using the Cotton-Schwab CLEAN algorithm (Cornwell et al., 1999)

until the first negative component was found at the 1.2 mJy threshold. The derived sky
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Figure 4.2: Calibrated visibility amplitude of 3C48 at 1.41 GHz. The average value
of visibility amplitude is consistent with the model value of 16.5 Jy.

Figure 4.3: Calibrated visibility amplitude of 3C286 at 1.41 GHz. The average value
of visibility amplitude matches the model flux density of 15.2 Jy.

model was used to self-calibrate time-dependent variations of the antenna phases with

a 120 second solution interval. Examples of solutions are shown in Figure 4.4.

The self-calibrated visibilities were imaged and deconvolved down to a flux threshold

of 0.4 mJy, where a negative component is added to the sky model, after which a

mask that included all the sources brighter than 200 µJy was created to restrict the
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Figure 4.4: Phase behaviour of the self-calibration solutions at 1.41 GHz. Each
antenna is a different colour.

deconvolution within these regions down to a 60 µJy (2σ) threshold same as in the

18 cm data reduction. The final deconvolved image is shown in Figure 4.5. The image

shows emission from compact-like sources with no evidence of diffuse emission at the

cluster centre (Figure 4.6). The image also suffers from significant contamination by

secondary sidelobes that appear to originate from the bright off-axis source visible at

the bottom of the field of view. These ring-like secondary sidelobes in the 21 cm image

are direction dependent effects likely caused by telescope pointing errors.

In order to highlight the potential presence of diffuse emission associated within the

cluster centre, we followed the same procedure applied to the 18 cm data, i.e. we

identified and subtracted compact sources and imaged the residual visibilities at lower

resolution to improve the surface brightness sensitivity. In order to build a sky model

of the compact radio sources in the field of view, the self-calibrated visibilities were first

Fourier transformed into a “dirty” image and then deconvolved using the Cotton-Schwab

CLEAN algorithm down to a 60 µJy (2σ) threshold, where σ is the measured final image

rms noise of 0.03 mJy beam−1 measured in a small region far away from the centre of

the final deconvolved image (Figure 4.5).

The sky model was Fourier transformed and subtracted from the self-calibrated visi-

bilities in order to form a set of residual visibilities that were imaged using different

weighting schemes (Briggs, 1995). We generated residual images with robust parameter

r = 0, 0.5 and 0.75 (Figure 4.7), respectively. The variations of radio properties of the

radio halo at centre of A 773 as a function of r are listed in Table 4.2. Like at 18 cm,

we note that evidence of diffuse emission at the cluster centre increases with increasing
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Figure 4.5: Uniform weighted image of the A 773 field at 21 cm. The angular
resolution is 14′′ × 11′′ and the noise level is 0.03 mJy beam−1. The red circle in

the centre of the field indicates the cluster Abell radius ∼ 8′.

Table 4.2: Radio properties of radio halo at centre of A 773 cluster as a function of r
at 21 cm.

r synthesized image noise halo area linear size number Sν
beam size mJy beam−1 arcmins2 arcmins of beams mJy

-2 14′′ × 11′′ 0.030 – – – –
0 17′′ × 13′′ 0.026 – – – –

0.5 21′′ × 16′′ 0.026 1.92 2.4 20 3.25± 1%
0.75 23′′ × 18′′ 0.032 5.62 4.0 48 10.1± 0.5%

value of r, as expected. There is no hint of diffuse emission found in the r = 0 image

(Figure 4.7 top panel). However, some extended diffuse radio emission (1.9 arcmin2,

corresponding to 20 synthesized beams) is visible in the r = 0.5, with a flux density of

3.25 mJy (Figure 4.7 Middle panel).

Diffuse emission is clearly evident in the r = 0.75 map, with contour levels up to ten

times the noise level (Figure 4.7 Bottom panel). The diffuse emission extends with

a 4 arcmin linear size (or ∼1.1 Mpc at z = 0.217), corresponding to a 5.6 arcmin2

area (∼ 48 synthesized beams) and an integrated flux density of 10.1 mJy. Also here,
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Figure 4.6: Zoom into the centre of Figure 4.5. Black contours showing the compact
radio sources are drawn at -3, 6, 9, 12, 15, 18, 24, 30, 36, 42, 48, 54, 60, 66×σ. The red

circle denotes the cluster Abell radius ∼ 8′.

images made with robust parameters r ≥ 1 suffer from contributions from grating lobes,

therefore, as it was done for the 18 cm data, we thus considered the r = 0.75 radio

image (Figure 4.7 Bottom panel) to be the image with the best brightness sensitivity.

Our r = 0.75 radio image has an angular resolution of 20′′ and an rms noise level of

0.03 mJy beam−1 which are similar to Govoni et al. (2001) (15′′ and 0.02 mJy beam−1

respectively).

The radio halo at the centre of Figure 4.7 (Bottom panel) has morphological similarities

with the radio halo observed by Govoni et al. (2001) as shown in the left panel of their

Figure 5 at the same frequency (see Figure 1.9 Left panel). The radio halo in our

r = 0.75 images appears to have a regular shape and fairly extended just like in Govoni

et al. (2001). The centre of the radio halo is clearly contaminated by rings of secondary

sidelobes originating from the bright off-axis source south of the image centre.

As for the 18 cm images, our 21 cm images show positive and negative fluctuations on

scales of several arcminutes. Also in these observations, we attempted to filter out some

of the large scale emission by excluding the shortest baselines from the images. We

imaged the residual visibilities using a robust paramter r = 0.75 and excluding baselines
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Figure 4.7: Low resolution, 1.38 GHz images of the A 773 cluster with different
robust parameter values. Top panel : r = 0 image with 17′′×13′′ angular resolution and
0.026 mJy beam−1 noise rms. Contours (blue) are drawn at -3, 5 and 7×σ respectively.
Middle panel : r = 0.5 image, with a 21′′×16′′ angular resolution and 0.026 mJy beam−1

noise rms. Contours (blue) are drawn at -3, 5, 7 and 10×σ respectively. Bottom panel :
r = 0.75 image, with a 23′′ × 18′′ angular resolution and a 0.032 mJy beam−1 noise

rms. Contours are drawn at -3, 5, 7 and 10× σ respectively.
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Table 4.3: Radio properties of radio halo at centre of A 773 as a function of uvrange
at r = 0.75 at 21 cm.

uvrange resolution image noise halo area linear size number Sν
m mJy beam−1 arcmins2 arcmins of beams mJy

100 22′′ × 13′′ 0.026 1.10 2.1 14 1.51± 2%
80 22′′ × 16′′ 0.023 1.58 2.3 15 2.24± 2%
50 23′′ × 18′′ 0.025 3.76 2.9 34 5.66± 1%

shorter than 100, 80 and 50 m respectively. As is evident from Table 4.3, there is a

marginal amount of diffuse radio emission present at the cluster centre when only base-

lines greater than 100 m were included. A clear radio halo detection is only obtained

when baselines larger than 50 m are included, similar to the 18 cm case (Figure 4.8 Bot-

tom panel).

As it can be seen in Figure 4.8, the shape of the diffuse radio emission at the cluster centre

with the baseline cut at 50 m is more regular but signifcantly less extended compared

to the image with no baseline cut. Conservatively we adopted the Figure 4.8 Bottom

panel and the corresponding parameters in Table 4.3 as our most accurate assessment

of the radio halo at the cluster centre at this frequency. It is ∼ 0.8 Mpc wide, with a

5.66 mJy flux density, about two times fainter than what is reported by Govoni et al.

(2001) at the same frequency.



Chapter 4. Abell 773 observations at 21 cm 41

Figure 4.8: Top panel : Contours (blue) from the r = 0.75 image (Figure 4.7 bottom
panel) overlaid on the uniform weighted image (Figure 4.6). Contours (blue) are drawn
at -3, 5, 7 and 10 ×σ. Bottom panel : Contours (blue) from the r = 0.75 image
with baselines longer than 50 m overlaid on the uniform weighted image (Figure 4.6).

Contours (blue) are drawn at -3, 5, 7 and 10 ×σ.
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Observations of Abell 773 at

19.43 cm

5.1 Observations and data reduction at 19.43 cm

In this chapter, we jointly image the 18 cm and 21 cm observations with the goal to

further suppress sidelobe contamination and artefacts through multi frequency synthesis.

Using the calibrated datasets from Chapters 3 and 4 , the uniform weighted image

shown in Figure 5.1 was created using the Cotton-Schwab CLEAN algorithm (Cornwell

et al., 1999) by deconvolving down to a flux density threshold of 3σ, where σ is the

final image noise of 0.022 mJy beam−1. The reference frequency is now 1.544 GHz

corresponding to λ = 19.43 cm. The image has a synthesized beam size of 12′′ × 9′′ and

a 0.022 mJy beam−1 noise. In comparison, the 1.380 GHz radio image in Figure 4.5

has a 14′′ × 11′′ synthesized beam and a 0.03 mJy beam−1 noise. A visual inspection of

the centre of A 773(Figure 5.1) shows a significant reduction of artefacts present at the

centre of the radio image.

To assess the impact of combining the two frequencies on the presence of diffuse radio

emission at the cluster centre, we first proceeded to re-image the residual visibility data

at 18 cm and 21 cm after the compact sky model was subtracted. Since the radio images

obtained with robust parameter r = 0.75 at 18 cm and 21 cm were considered to have the

best brightness sensitivity, we adopted the same Briggs weighting for the joint residuals

visibility data. Figure 5.2 (Top panel) shows contours (blue) of the diffuse radio emission

overlaid on the uniform weighted image. The diffuse emission is more extended with a

linear size of ∼ 4 arcmin, corresponding to an area of 6.75 arcmin2 (∼ 68 synthesized

beams) and a 5σ integrated flux density of 10.2 mJy.
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Figure 5.1: Uniform weighted image of A 773 at 19.43 cm. The angular resolution is
12′′ × 9′′ and the noise level 0.022 mJy beam−1. The contamination at the centre of
the field due to secondary sidelobes originating from the bright off-axis radio source in

the south of the image appears to be partially suppressed.

As it was done in the analysis of 18 cm and 21 cm data, we filtered out the largest-

scale emission by excluding baselines shorter than 50 m. Figures 5.2 (Top panel) and

5.2 (Bottom panel) show that the shape of the diffuse radio emission becomes more

regular but less extended with the 50 m baseline cut compared to the image with no

baseline cut. The linear size of the radio halo is now ∼ 3.9 arcmin, corresponding to

a 5.4 arcmin2 area, with a 5σ integrated flux density of 6.76 mJy. While the linear

extent of the radio halo remained essentially the same after excluding baselines shorter

than 50 m from the image, its area decreased by ∼ 20% and its flux density by ∼ 34%,

showing that significant power is present in the very short baselines, although it is not

clear which fraction of this power is due to Galactic emission and which fraction to the

radio halo.

A comparison between Figures 4.8 (Bottom panel) and 5.2 (Bottom panel) shows that

the noise in the 1.544 GHz radio image is ∼ 30% reduced with a 14% decrease in the

synthesized beam. The radio halo in the 1.544 GHz radio image appears more extended
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Figure 5.2: Top panel : Contours (blue) from the residual r = 0.75 image overlaid on
the uniform weighted (Figure 5.1, black contours) image. The angular resolution and
noise rms are 21′′ × 17′′ and 0.021 mJy beam−1 respectively. The contours (blue) are
drawn at 5, 7 and 10σ. Bottom panel : Same as Figure 5.2 (Top panel) but excluding
the baselines shorter than 50 m for the residual r = 0.75 image. The angular resolution

and noise rms are 21′′ × 17′′ and 0.017 mJy beam−1 respectively.
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and brighter than in the individual images. Overall, artefacts in the 1.544 GHz image

are partially suppressed, providing further significance for the presence of a radio halo.



Chapter 6

Conclusion

In this thesis, we have presented 18 cm and 21 cm observations of the A 773 galaxy

cluster observed with the Westerbork radio telescope.

The 18 cm and 21 cm datasets were individually reduced and imaged. In both cases

we used images at the highest resolution (uniformly weighted) to identify a sky model

composed of compact radio sources. The uniform weighted images achieved a noise

level of 0.03 mJy beam−1 at 18 cm and 21 cm. The compact source sky model was

then subtracted from the data at both frequencies to form residual visibilities that were

imaged at lower resolution.

Diffuse emission at the cluster centre was identified in the 18 cm images with a 19′′ ×
15′′ angular resolution and noise of 0.02 mJy beam−1. The 18 cm images may be

affected by confusion due to Galactic emission and we attempted to filter out the Galactic

contribution by excluding the baselines shorter than 50 m from the image. In this way

the candidate radio halo with an area of 2.65 arcmin2 (or 0.44 Mpc in size) and a

3.62 mJy flux density.

The 21 cm images were obtained following the same procedure but were, unfortunately,

affected by secondary sidelobe contamination from a few bright sources away from the

pointing direction. These sources could be removed through a direction dependent

calibration that we did not, however, attempt in this thesis. Nevertheless, also at 21 cm

we found evidence of a radio halo, however, with morphology a bit different than at

18 cm.

In order to provide further, convincing evidence of the presence and morphology of the

radio halo, we jointly imaged the 18 cm and 21 cm datasets obtaining a final image at

the reference frequency of 1.544 GHz. Also in this case, residual visibilities were formed

by subtracting the compact source sky model and were imaged at lower resolution. We
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obtained a suppression of the artefacts that affected the 21 cm image, enabling a clearer

analysis of the halo properties. In the combined 19.43 cm image, the radio halo has a

6.75 arcmin2 area with a 10.2 mJy flux density. Like in the 18 cm case, we attempted to

filter out the Galactic contribution by excluding the baselines shorter than 50 m from

the image. In this way, we obtain a radio halo with a 5.37 arcmin2 (or 0.62 Mpc in size

at z = 0.217) area with a 6.76 mJy flux density. Compared to the detection presented

in Govoni et al. (2001), the two morphologies are in fair qualitative agreement, although

the radio halo is ∼ 50% fainter in our observations.

Given the uncertainty on the presence of a radio halo in our data, we could not carry

out any reliable spectral index measurement, which is left for future work.
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U. B., Barrio J., Bastieri D., González J. B., et al., 2012, Astronomy & Astrophysics,

541, A99
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Govoni F., Feretti L., Giovannini G., Böhringer H., Reiprich T., Murgia M., 2001,

Astronomy & Astrophysics, 376, 803

Govoni F., Murgia M., Markevitch M., Feretti L., Giovannini G., Taylor G., Carretti E.,

2009, Astronomy & Astrophysics, 499, 371

Han J., Frenk C. S., Eke V. R., Gao L., White S. D., Boyarsky A., Malyshev D.,

Ruchayskiy O., 2012, Monthly Notices of the Royal Astronomical Society, 427, 1651
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