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Abstract

Time remains a frequently discussed issue in physics and philosophy. One interpretation

of growing popularity is the ‘timeless’ view which states that our experience of time is

only an illusion. The isolated Universe model, provided by the Wheeler-DeWitt equation,

supports this interpretation by describing time using clocks in the conditional probability

interpretation (CPI). However, the CPI customarily dismisses interaction effects as negligible

creating a potential blind spot which overlooks the potential influence of interaction effects.

Accounting for interactions opens up a new avenue of analysis and a potential challenge to

the interpretation of time. In aid of our assessment of the impact interaction effects have on

the CPI, we present rudimentary definitions of time and its associated concepts. Defined

in a minimalist manner, time is argued to require a postulate of causality as a means of

accounting for temporal ordering in physical theories. Several of these theories are discussed

here in terms of their respective approaches to time and, despite their differences, there are

indications that the accounts of time are unified in a more fundamental theory. An analytic

analysis of the CPI, incorporating two different clock choices, and a qualitative analysis both

confirm that interactions have a necessary role within the CPI. The consequence of removing

interactions is a maximised uncertainty in any measurement of the clock and a restriction to

a two-state system, as indicated by the results of the toy models and qualitative argument

respectively. The philosophical implication is that we are not restricted to the timeless view

since including interactions as agents of causal interventions between systems provides an

account of time as a real phenomenon. This result highlights the reliance on a postulate of

causality which forms a pressing problem in explaining our experience of time.



iii

Declaration

I hereby declare that this thesis has not been submitted, either in the same or different

form, to this or any other university for a degree and that it represents my own work. I know

the meaning of plagiarism and declare that all of the work in this thesis, save for that which

is properly acknowledged, is my own.

—————————————–

KLH Bryan

March 2020



iv

Acknowledgements

Firstly I would like to thank my supervisor, Prof. A.J. Medved, without whom this thesis

would not have been possible. Thank you for your guidance, continual assistance, and

wide-ranging conversations topics.

I would also like to thank Francis Williamson and Pedro Tabensky for their guidance on the

philosophical topics and many interesting conversations over coffee.

The following funding contributions which supported this research are also owed a debt of

gratitude:

• The Henderson Scholarship, provided by Rhodes University

• The NRF/DAAD Bursary (Grant Numbers: 111616)

• The NRF bursary through Competitive Programme Grant 93595

Incorporated in this is the tireless efforts of Mr John Gillam and the Rhodes University

Postgraduate Funding Office to whom I will always be grateful.

I would also like to thank the many members of the Rhodes Physics Department who have

supported me throughout this journey.

To my Mom and Dad, thank you for all you have done and continue to do for me. This work

represents a culmination of your efforts and love in assisting me in more ways than I can list.

To my sisters, Megan and Laura, thank you for being behind me all the way. I cannot wait

to force you to pretend to read this.

To my grandmother, Ganny, thank you for your continued support in this endeavour and

believing I could accomplish the task at hand.

Finally, to Michael, thank you, you know why. Regardless of what you may say, this would

not have happened without you.



Contents

Contents v

List of Figures viii

1 Introduction 1

1.1 Determining a starting position . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Time and change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Static versus frozen systems . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.3 Being versus becoming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.4 The flow of time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.5 The arrow of time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.6 Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Our Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Time in Physics 10

2.1 A brief history of the “problem of time” . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Quantum gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Emerging theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Newtonian time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Absolute time and relative motion . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Absolute time and causality . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Quantum time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16



Contents vi

2.3.1 The troublesome time operator . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 An emergent notion of time . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Relativistic time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Special and general relativity . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.2 Quantum field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Hope for a resolution through fundamental time . . . . . . . . . . . . . . . . . 24

2.5.1 Emerging theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.2 Interpreting the metric in relativity . . . . . . . . . . . . . . . . . . . . . 25

2.5.3 Incorporating the quantum field theory metric . . . . . . . . . . . . . . 27

2.5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 The Isolated Universe 30

3.1 The Wheeler-DeWitt Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Time in the Page-Wootters Method . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 An outline of the method . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Criticisms and their responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 The problem of ambiguous clocks and the non-interacting clock solution 37

3.3.2 Kuchar’s criticism: measuring successive times . . . . . . . . . . . . . . 40

3.3.3 The refined CPI solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Considering interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Interacting Clocks 44

4.1 The toy Universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 The lightly damped harmonic oscillator . . . . . . . . . . . . . . . . . . . . . . 46

4.2.1 The clock state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.2 Recovering time and the ‘run time’ limit . . . . . . . . . . . . . . . . . . 49

4.2.3 The uncertainty and the decoherence rate . . . . . . . . . . . . . . . . . 51

4.3 The atomic clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.1 Keeping time with atomic clocks . . . . . . . . . . . . . . . . . . . . . . 54

4.3.2 The first pulse: Rabi oscillation . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.3 Decoherence during Ramsey time . . . . . . . . . . . . . . . . . . . . . 57

4.3.4 The second pulse time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.5 Analysing the uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Implications for interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Isolation Versus Interaction 64



Contents vii

5.1 The limitations of isolated clocks . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1.1 The ‘timelessness’ conclusion . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1.2 The two-system Universe . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1.3 Interactions as a matter of principle . . . . . . . . . . . . . . . . . . . . 69

5.2 The consequences of including interactions . . . . . . . . . . . . . . . . . . . . 70

5.2.1 Multi-system description . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.2 Ambiguity as superficial issue . . . . . . . . . . . . . . . . . . . . . . . . 75

6 Philosophical Implications 77

6.1 The experience of time as an illusion . . . . . . . . . . . . . . . . . . . . . . . . 78

6.1.1 The A-series and B-series of time . . . . . . . . . . . . . . . . . . . . . . 78

6.1.2 The Block Universe in physics . . . . . . . . . . . . . . . . . . . . . . . . 80

6.1.3 Quantum timelessness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2 The experience of time as a physical reality . . . . . . . . . . . . . . . . . . . . 84

6.2.1 Interactions and interpretations of time in the CPI . . . . . . . . . . . . 85

6.3 The role of causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7 Discussion and Speculations 89

8 Conclusion 95

A Contrasting the conditional probability expressions 98

B The damped harmonic oscillator 101

B.1 The clock state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

B.2 The expectation value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

B.3 Uncertainty calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

C The atomic clock 105

C.1 The atomic clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

C.2 The evolution operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

D Research Outputs 108

Bibliography 110



.

List of Figures

1.1 An illustration of a static system. This corresponds here to being. . . . . . . . . . . 4

1.2 An illustration of a system undergoing change, corresponding here to both being

and becoming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 A illustration of a frozen system depicting the lack of conclusive definitions

surrounding the concept. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 An illustration adapted from the depiction in [27]. This represents a ’phase space’

showing the five versions of string theory along with the underlying M-theory . . 12

2.2 A schematic representation of the hierarchy of theories in physics. The question

mark represents the as yet unknown ‘theory of everything’ while c, ~, and GN

represent speed of light, Plank’s constant, and Newton’s gravitational constant

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Two alternative orders for paths through time.The dotted line represents the suc-

cessive order of moments a system passes through as it evolves. Diagram A shows

a monotonic order corresponding to the timeline ordering while diagram B shows an

example of an alternative ordering that would contradict experiment. . . . . . . . . . . . 15

2.4 A null cone, with one spatial dimension. Within the cone, paths are timelike while

paths outside the cone are spacelike. A path following the cone, representing the path of

light, is called lightlike. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 A schematic diagram of a lightcone in the flat spacetime of special relativity . . . 21

2.6 A schematic diagram of lightcones in the curved spacetime of general relativity. . 22



List of Figures ix

4.1 Schematic graph showing the probability of finding S in the excited state as a

function of ω, adapted from [61]. The maximum probability corresponds to the

resonance case where ω = ω0. The FWHM, from which we get an expression for

the uncertainty, is also shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1 A schematic representation of the Hilbert space of the maximally entangled sys-

tems C and R which are perfectly isolated. . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 A schematic representation of the Hilbert space of the maximally entangled sys-

tems C and R when interaction effects are permitted. . . . . . . . . . . . . . . . . . 71

5.3 A schematic representation of two interacting galaxies. In the first scenario, the

expansion of the Universe overcome the gravitational force while in the second scenario

the gravitational force overcomes the expansion. . . . . . . . . . . . . . . . . . . . . . . 72

6.1 A representation of the two ways events may be ordered in time. The A series

describes how events change from future to past while the B-series prescribes

each event a fixed placement in time. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 A representation of a secondary A series ordering. This would in turn present

the same problem as the initial A series and so itself require invoking yet another

A series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3 A schematic representation of the Universe as a block, with two dimensions of

space and one of time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.4 A representation of the Block Universe’s perspective of a falling apple within the

spacetime block which has been expanded to provide a view of successive slices. 81

6.5 Conceptual representation of ‘moments of time’ which collectively create the

illusion of change and where the arrows illustrate only one potential ordering of

events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

C.1 Schematic representation of the components necessary to the Cesium atomic

clock. The area labeled C represents the step added by Ramsey. . . . . . . . . . . 106



C
h
a
p
t
e
r

1

Introduction

“Time is what keeps everything from happening at once.”

- Ray Cummings

‘Killing time’ is a phrase typically used to refer to the practice of idling the hours away.

However, it has become applicable to physics in a much more literal sense as a description

of arguments that are in favour of doing away with time as a fundamental concept.

1.1 Determining a starting position
Part of the motivation in removing time, which is accomplished by relegating it to the arena

of ‘illusion’, comes from the desire to provide conclusive answers to the open questions

on the topic of time. One such question involves finding a reason for why we experience

limited freedom of movement in time in that physical systems all appear to be compulsively

‘pushed’ towards the future. So far as we can tell, this is a universal phenomenon affecting

all systems in Nature. Yet despite the ubiquity of change in time, we cannot directly access

time by experiment. We cannot point to time. We must rely on measurements of physical

systems to make indirect observations of time. A second question concerns the implications

of combining space and time into one object known as spacetime, a concept we define fully

in 2. Can time be explained only when it is not considered as a separate from space? Indeed,

can time be considered an entity in its own right which exists independently of any physical

matter?

There are also open questions which are perhaps more directly relatable to modern
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physics. Experiment continues to tell us that the distinction between future and past is an

unavoidable feature of Nature and yet most laws of physics are consistently reversible in

time; they show no preference to either a ‘future’ or ‘past’ direction in time. There are few

exceptions to this time-reversal invariance in physics with the most notable being the second

law of thermodynamics. 1 How do we reconcile experimental results with our time reversal

invariant theories? Related to this issue is another pressing problem for physics: the lack

of consensus among the treatments and interpretations of time across the different theories

of physics. In order to match a particular treatment of time to the observations available in

Nature, we would also need to find a consistent account which could apply to all theories

of physics.

Providing definitive answers to questions of this nature can be problematic. In part,

the difficulty arises due to the prevalence of interpretations and the level of subjectivity

that is present in the discussion. Tied to this lack of objectivity is the problem of definitive

definitions, or lack thereof, for the concepts under debate. A given discussion may take the

meaning of a phrase or word for granted, only to face difficulties when those interpreting the

argument apply their own definitions. Even when care is taken, opinions over the ‘correct’

definitions do vary. For a variety of investigations, each with their own slightly different

approaches in laying out the problems of time, see, for example, [1, 2, 3, 4, 5, 6, 7, 8, 9].

Although a consensus might be found between a couple of viewpoints, an overarching

sense of disagreement is still present and, as yet, the available experimental data does not

definitively lend credence to any one interpretation over another.

In an attempt to avoid the pitfalls of misrepresentation, we will attempt to outline a set

of definitions that will be sufficient for the investigation to follow. The nature of the topic of

time, however, is indeed a slippery one. We aim therefore to be economic in our definitions

and use the minimal requirements necessary to capture each concept in its simplest form.

We also acknowledge that we cannot hope to pin down each and every concept in a manner

which satisfies all the aspects of time or treatments of it. Without the benefit of direct access

to time, we must base our definitions on the second-hand information provided by our

observations of physical objects. The definitions to follow are then not intended as full and

complete explanations of the phenomenon in question. Instead they are simply a means of

providing context and grounding for the following investigation and can be considered as

primitive concepts which have not, or cannot, be subjected to further analysis yet.
1Other examples can be found in quantum mechanics. These include the use of decoherence, particularly

in open systems, the wavefunction collapse, and the weak interaction which violates charge-parity (and so
time) invariance.
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1.2 Definitions

1.2.1 Time and change

We begin by considering a definition for ‘time’ given that we cannot access it directly,

as pointed out above. That there exists a feature of Nature which we call time is based

on the phenomenon of change in a system’s configuration. This appears to be the primary

manifestation of time in physical matter and so we use this as a base for our definition: ‘Time’,

which we take here as a primitive notion, is a feature of the Universe which allows change.

A change to a system’s configuration can be taken to represent an ‘experience of time’, as

does a system’s potential to change, where configuration is taken to mean the structure or

arrangement of a system’s constituent parts. 2 While this might be more commonly referred

to as the ‘state’ of the system, we reserve that particular word for discussions on quantum

mechanics where it has particular significance.

Notice the use of the word allows, as opposed to compels, in the above definition. If we

were to incorporate the compulsion for systems to change as part of the definition of time,

we would move beyond the requirement that the definition take the simplest form. We wish

to be able to distinguish between the potential to change and the compulsion to do so. We

can then avoid assuming they both arise from the same source and that compulsive change

must be how matter experiences time. In order to allow for these distinct phenomena to

be produced by potentially different elements of Nature, we separate them conceptually. It

is possible that there is some other aspect element of Nature, working in conjunction with

time, that is responsible for matter’s ‘flow of time’, a concept we will consider momentarily.

1.2.2 Static versus frozen systems

We can use the above definition to distinguish between two scenarios, both of which involve

a system that remains in a single configuration. On the one hand, we have a ‘static’ system

which stays in one single configuration even as it ‘moves’ through time. 3 Shown in Figure

1.1, a static system has the potential to change, since it is ‘in’ time, but does not do so. Such a

system would have no functional dependence on a time parameter and it would not be able

to distinguish one moment from the next. 4 For comparison purposes, we have illustrated a
2 We consider ‘change’ here as a primitive concept of a single system transitioning between at least two

(different) configurations.
3We use terminology, such as ‘move’, which is primarily found in discussions regarding space, rather than

time, for ease of discussion. This should not be taken as a sign of any particular interpretation of time that
strictly depends on space.

4As used in physics, static is distinct from, and more restrictive, than the notion of stationary.
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Figure 1.1: An illustration of a static system. This corresponds here to being.

changing system in Figure 1.2.

Figure 1.2: An illustration of a system undergoing change, corresponding here to both being
and becoming.

There is also the concept of a ‘frozen’ system: one which remains is a single configuration

as a result of existing in one, single moment of time. In an analogy to a system in space that

is stuck in one location, the frozen system is prevented from changing and cannot ‘move’

into a second moment of time. Conceptually, it is difficult to provide a strict definition of a

frozen system, as the depiction in Figure 1.3 implies. If we say ‘frozen in time’, it implies

the existence of a dimension of time. However, it might be argued that no notion of time

is necessary for the existence of a frozen system if it not only has no time dependence but

also no need for the concept of time at all. One counter argument would be that time is a
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Figure 1.3: A illustration of a frozen system depicting the lack of conclusive definitions
surrounding the concept.

necessary component for the existence of all physical systems. From the above definitions,

the configuration of a system can be identified as what is affected by time. If time were

somehow removed, we can then reasonably expect that this would affect the configuration

of the system. For a frozen system, restricting to one ‘moment’, we might argue that the

single moment allows for one configuration to be selected out of all others. In other words,

in order for a system to exist in a classical manner, and not in a superposition of all its

potential configurations, a moment of time may be required in order to restrict the system

to one configuration. This leads us directly to considerations of time (and also space) as

entities in their own right and the question of whether they can exist independently of

matter. Although related to the topics here, this debate currently lies squarely in the realm

of philosophy.

1.2.3 Being versus becoming

There are other concepts used in philosophical discussions of time that are perhaps more

directly tied to the debate in physics than those above, such as the contrast between the

notions of ‘being’ and ‘becoming’. Here we use ‘being’ to refer to the physical existence

of a system in a given configuration. This is similar to the definition used by Parmenides,

as described in [10]. There are more nuanced definitions available that relate more to
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philosophical concerns and a discussion with a stronger focus on the semantics involved can

be found in, for example, [11]. In contrast to being, the notion of ‘becoming’ corresponds to

the idea of change; it is the transition of a single system from one configuration to another

and was suggested by Heraclitus in response to the ‘eternal time’ of Parmenides. An account

of the differences between the Heraclitus and Parmenides views is given, for example, in

[4]. Essentially, static systems represent a state of being while systems changing through a

succession of configurations represent systems becoming. In later chapters we will discuss

several arguments which suggest that systems can be classified as being and so experience

the illusion of change, with no real transition occurring.

1.2.4 The flow of time

Regardless of whether time is taken to be necessary for existence, or indeed considered

an illusion, we still require several definitions. One necessary element that is missing is

the previously mentioned appearance of a compulsion for physical systems to experience

continual change. Often the experience of this compulsion is referred to as the ‘flow of time’

and likened to a river which pulls all systems along: the ‘river of time’. However, given

the above definitions, there is something of a misnomer in this analogy. It is not time which

flows but rather the physical systems which are compelled to flow through time by means

of changing configurations. To relate this abstract idea to physics, we can identify the flow

of time as the record, or history, of the sequence of configurations that a system is compelled

to progress through. 5 Although not entirely rigorous, this aligns with the definition of the

concept of a flow of time used in [12].

1.2.5 The arrow of time

It is not enough to stop at the definition of a flow of time since most laws of physics can

‘point’ the flow of time in either direction. In order to distinguish between past and future,

as systems appear to do in Nature, we must also define an ‘arrow of time’: the direction in

time along which systems are compelled to change. This is necessary if we hope to recover a

description of time that agrees with the experimental observation that Nature directs changes

in time towards the future. There is more than one way to define an arrow of time but, at least

within physics, the most well known arrow identifies the future as the direction in which

entropy always increases as per the second law of thermodynamics. A violation of this has
5 We refer to the experience of a sequence of configurations in this manner as a ‘sense of time’.
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never been observed over sufficiently large time (or distance) scales. Indeed Eddington once

remarked that “if your theory is found to be against the second law of thermodynamics I

can give you no hope; there is nothing for it but to collapse in deepest humiliation” [13]. We

will discuss this thermodynamic arrow of time in more detail later along with other arrows

associated with psychological time, cosmological time, and entanglement time. What is of

particular interest to the debate in time is why these different arrows of time consistently

align with one another.

1.2.6 Causality

We are left with the question of how Nature enforces change down a one-way street through

time and we anticipate there should be some mechanism or principle responsible for the

consistent behavior of physical systems in time. To account for this phenomenon here, we

turn to the causality postulate. This can be stated as the requirement for physical systems

to experience a continual compulsion to change (the effect) as a result of an interaction

with another system (the cause). 6 This encompasses the idea that a future configuration is

dependent on, and indeed exists because of, past configurations.

The use of causality in this manner also allows a consistent history of configurations to

be constructed. Each past interaction between two systems, which categorises an ‘event’,

would produce new configurations. That being said, we stress that we are not invoking

any notion of determinism by including causality. Although there are those who would

argue that causality necessarily implies determinism, we align our view with that presented

in [14]. Causality is then viewed as a process, in a manner very similar to ‘becoming’, and

we can consider the possibility of applying ‘probabilistic causality’ where a particular cause

does not set a single outcome in stone.

Using this definition of causality, interactions can then be seen as a part of the description

of a system’s compulsion to evolve in time. Returning to the ‘river of time analogy’, we

modify it to identify ‘time’ as the riverbank, physical systems as the water, and causality

as the current or force driving the water downstream. Invoking causality in this manner,

along with our other definitions, does not explain away any of the unanswered question of

time but it does allow us to highlight the separate issues at play within each question, issues

which might otherwise be conflated into one. Armed with these definitions, we investigate

several aspects and interpretations of time that are relevant to physics.
6 ‘Interaction’ is taken here as a primitive concept.
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1.3 Our Investigation
We begin by considering the different views of time that are presented in the various theories

of physics. Although there are apparent contradictions between the different treatments,

specifically quantum field theory and general relativity, this issue does not appear insur-

mountable. By casting the problem into the context of a theory of quantum gravity, several

arguments present themselves in favour of the view that the framework which forms the ba-

sis for the interpretation of time is in some sense shared by all theories of physics. We do still

find it necessary to invoke a postulate of causality, regardless of the theory in question. This

is potentially problematic for those interpretations that wish to do away with the notion of

change as a real phenomenon since causality, as defined above, would be similarly dismissed

as an illusion under such interpretations. To better understand the role of causality and the

feasibility of ‘timeless’ theories, we turn to a model of the Universe which is predominantly

argued to enforce the notion that change in time is not real.

The timeless view in question is provided by the conditional probability interpretation

(CPI) that was put forward by Page and Wootters in [15]. It is a framework designed to

recover a description of evolution within a Universe that is modeled on the Wheeler–DeWitt

equation, which we will define in detail later. The primary features of the CPI framework

are the use of a subsystem of the Universe as a ‘clock’ and the recovery of time through

the entanglement of this clock with the remainder of the Universe. Thus the CPI does

not describe dynamics in the usual sense employed in physics. Rather, it describes every

potential pair of correlated states between the clock and the remainder of the Universe, as

defined by the superposition of the entangled state. All these correlated pairs can be argued

to exist equally, leading some to the interpretation that any experience of change is merely

an illusion based the view provided by a succession of paired states.

Our investigation questions the strict adherence to this timeless view, especially when

interactions are taken into account. By examining clocks which are allowed to interact with

their environment, we can determine the effect interactions have on the CPI framework.

In particular, we can examine the efficacy of the clock as a function of the strength of the

environmental effect; how much the environment affects the uncertainty related to the clock

reading. In doing so, we can determine whether there is any gain to taking interactions seri-

ously within the CPI framework or whether isolated clocks should be considered preferable

from both physics and philosophical perspectives.

We lay out the investigation as follows. Chapter 2 presents an account of the various
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treatments of time found in physics along with the arguments suggesting we might even-

tually resolve all versions of time into one, unified concept. 7 Chapter 3 summarises the

CPI as it is typically presented, along with the timeless interpretation of evolution. Part

of this presentation involves a discussion on the difficulties faced by the CPI and the role

isolated clocks have in overcoming certain criticisms of the approach. Particular mathemat-

ical details pertaining to the resolution of these criticism are given in Appendix A. Once

the CPI framework is defined, we attend to the examples of interacting clocks in Chapter

4. The results of the first clock, a damped harmonic oscillator, are supported by a second

example which uses a description of an atomic clock as an open system. 8 In both cases,

we can rely on the uncertainty associated with a ‘clock reading’ to indicate the effect of the

interactions of the clock with its environment. Appendix B contains mathematical details of

the calculation steps, as well as motivations for the approximations used in the analysis of

the damped harmonic oscillator. Peripheral aspects of the analysis of the atomic clock can be

found in Appendix C, including calculation details as well as a summary of the mechanism

of the clock. Contrary to what might be expected, maximising the interaction effects will be

shown to minimise the uncertainty of the clock, suggesting that interactions are a necessary

component of the CPI. We consider the qualitative aspects of each scenario in Chapter 5.

The analysis and comparison of each case leaves us in favour of the interacting clock system

since, while both isolated and interacting clocks evade the ambiguity issues raised against

the CPI, the latter clock also provides a means for subsystems of the Universe to directly

access the clock’s time parameter. 9

In Chapter 6 we turn to some philosophical considerations concerning the two interpre-

tations of time. While the isolated clock maintains the CPI’s usual interpretation of change

as an illusion, we argue that the inclusion of interactions offers a viable alternative where

the experience of time may be interpreted as a real phenomenon. Further considerations of

a speculative nature are presented in Chapter 7 where we discuss our results and consider

potential avenues for future research. Finally, our conclusions regarding the completed

analysis are presented in Chapter 8. A full account of the research outputs related to the

investigation to follow can be found in Appendix D.

7 This argument can be found in [16].
8 The calculations involving the first and second clock choices can be found in [17] and [18] respectively.
9 This argument can be found in [16].
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Time in Physics

“It’s very hard to talk quantum using a language originally designed to tell other

monkeys where the ripe fruit is.”

- Terry Pratchett

Building on the definitions laid out in Chapter 1, we begin our investigation by consid-

ering the tricky issue of relating disparate accounts of time across physics theories.

2.1 A brief history of the “problem of time”
While multiple questions pertaining to the phenomenon of time remain open and in need

of resolution one problem of particular significance to physics is the apparent disagreement

between the different theories of how to incorporate and interpret time. Specifically, we

are concerned with the two different descriptions of time that are respectively attributed to

quantum mechanics and general relativity. These accounts appear to contradict one another,

resisting attempts to reach some consensus over how time should be treated.

2.1.1 Quantum gravity

We certainly need the theories of general relativity and quantum mechanics to agree if

we hope to explain the phenomena that occur where the theories overlap. An example

of one such case where this is necessary can be provided by considering a measurement

that is designed to probe a smaller and smaller scale. The uncertainty principle dictates
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that completing this measurement would require a greater and greater amount of energy.

When the scale reaches a small enough threshold, the amount of energy required by the

measurement device becomes large enough to cause the system to collapse into a black

hole. In that scenario, a high gravitational energy is applied at an infinitesimal scale and a

theory of ‘quantum gravity’, which combines the necessary relativistic and quantum effects,

is required along with a consistent version of time. 1

By quantum gravity, we are specifically referring to a theory which unifies the principles

of general relativity with quantum field theory. Currently, string theory provides the only

example of such a theory as it alone accounts for both general relativity and the quantum

fields of the standard model. While there is a class of related theories that provide a means for

quantising gravity, such as loop quantum gravity, we do not consider these to be examples

of quantum gravity as these descriptions do not account for the standard model description

and so do not unify general relativity with quantum field theory. By omitting any account of

the principles of quantum field theory, these alternatives do not account for the Weinberg-

Witten theorem which states that massless spin-2 particles cannot be consistently coupled to

the fields associated with the standard model [19]. 2 It should be kept in mind that a way

to circumvent the Weinberg-Witten theorem is suggested by string theory where point-like

particles are no longer used. We will return to this point in Section 2.5.

Quantum gravity is frequently considered to be synonymous with the ‘theory of every-

thing’: an ultimate account of all phenomena. However, in the context of an account of

quantum gravity provided by string theory at least, this need not be the case since string

theory itself is not a representation of the ultimate description of Nature. Instead, there

are five variations of string theory that are all considered to ‘emerge’ from M-theory, an

underlying framework which supposedly provides the ‘fundamental theory of everything’.

This account is explained in, for example, [20] from which the accompanying illustration in

Figure 2.1, which depict the variations of string theory, has been adapted.

2.1.2 Emerging theories

The sense in which one theory emerges from another refers to the construction of an emergent

theory from the components contained within a more encompassing and more fundamental

theory. As an example, the principles of Newtonian mechanics can all be found within the
1For another example of where the regime of quantum gravity is anticipated to apply, we can also consider

the birth of the Universe which similarly involves a high energy system limited to an infinitesimal scale.
2This is discussed in more detail in Section 2.4.2.
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Figure 2.1: An illustration adapted from the depiction in [27]. This represents a ’phase space’
showing the five versions of string theory along with the underlying M-theory .

framework of special relativity. The non-relativistic mechanics emerge intact in the limit

where the speed of light goes to infinity. Adopting the viewpoint that all theories in physics

can be related in this manner allows us to create a hierarchy of theories from most to least

fundamental. A schematic representation of this shown in Figure 2.2 . Also illustrated are

the limits that connect one theory to another. These will be discussed in more detail later.

All theories are then be expected to trace back to and emerge from a single fundamental

physical theory.

Figure 2.2: A schematic representation of the hierarchy of theories in physics. The question
mark represents the as yet unknown ‘theory of everything’ while c, ~, and GN represent
speed of light, Plank’s constant, and Newton’s gravitational constant respectively.
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We cannot yet specify the form of this fundamental theory of everything but we can

anticipate that it must contain some feature that is ultimately responsible for the various

versions of time found in emergent theories. We will refer to this underlying feature as

‘blueprint time’ but must stress that this should not be taken to imply that blueprint time

would resemble a description of time that we are familiar with. Without specifying the exact

form or framework of blueprint time, we can still discuss the feasibility of it as a concept

in principle. Specifically, it would ensure the consensus between different versions of time

in the theories of physics as all these descriptions would have to spring from the same

source. In Section 2.5, we will consider several arguments in support of the notion that a

consensus of this nature is indeed achievable, despite the apparent difficulties. What these

arguments collectively suggest is that the interpretation of time in quantum field theory can

be considered a limit of a more general description which utilises metric fields. We will

clarify the definitions of these concepts in the discussion to follow.

First, however, we explore absolute time, as it is used in Newtonian and quantum physics.

We can then contrast this to the description of time used in the special and general theories

of relativity, as well as the treatment of time that is used in quantum field theory. It is

this last case which highlights the difference in interpretations since quantum field theory,

while utilising features of special relativity, does not agree with general relativity. We will

outline these differences in order to discuss the possibility of a theory of quantum gravity

that provides a definition of time from which both quantum and relativistic time treatments

can emerge.

Lastly, we point out that we will be taking note of the role of causality throughout the

discussion in order to highlight the ubiquitous nature of the postulate of causality, regardless

of the theory in question. The addition of causality is required as a means of ensuring that the

order of events matches up between the physical theories’ descriptions and our experimental

experience. The definitions summarised in Chapter 1 can then be reinforced in a manner

which augments the philosophical assessment presented in Chapter 6.

2.2 Newtonian time
The nature of time has been considered by many people throughout the history of mankind

and yet, despite this continued attention, it was only in the seventeenth century that we find

a recorded attempt at a strict, scientific definition. This is in reference to the work of Newton

who provided a definition of “absolute time” which is, as stated by Newton, an “absolute,
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true and mathematical time” [7]. As per this description, absolute time is treated as external

to all physical systems; It is ‘outside’ of any system that we might measure via physical

access and, as such, it essentially provides a backdrop upon which change occurs.

2.2.1 Absolute time and relative motion

A common visualisation of external time is as a number line that monotonically extends into

the future as well as into the past. In a similar manner, space can also be visualised using

three numberlines, one for each of the three spatial dimensions. Neither space nor time is

directly accessible by experiment. Instead, they are indirectly measured by examining the

observable quantities of physical systems with the use of a labeled coordinate system. For

space, this might mean using the physical ends of a ruler to determine a distance. Measuring

time, on the other hand, requires the periodic change to a system’s configuration to define

a unit of duration. Considering the manner in which these coordinate frames are used in

Newtonian mechanics, a distinction between time and space becomes apparent.

If we wish to shift our description from one coordinate system to the other, we must

apply Galilean transformations. These are transformations that describe how to change

perspective from one frame of reference to another which involves specifying which objects

are in motion and which are stationary, relative to the origin of a given coordinate system.

Time, however, remains invariant under these transformations. Simply put, Newtonian

mechanics does not allow two separate systems to advance through time at different rates,

regardless of their motion through space. Instead, all systems agree on one manner in which

they all progress through time, leading to the identification of time in Newtonian mechanics

as a ‘global time’. Although first explicitly defined by Newton, the notion of a global time

also underlies the theory of relativity put forward by Galileo: Motion is relative to a reference

frame but time is a global and absolute parameter, regardless of any position or motion in

space.

2.2.2 Absolute time and causality

We are left with an interpretation of time as a universally applicable phenomenon, experi-

enced by all systems in the same manner; time ‘ticks’ the same for all systems. Included in

this is the implication of a global ‘now’, or present, moment that is shared by all physical

systems. This is not a statement regarding the existence of a privileged moment which

defines the present and moves from past to future. An analysis of that particular concept is
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reserved for the philosophical discussion in Chapter 6. Rather, the ‘now’ moment in New-

tonian mechanics defines the notion of simultaneity such that different systems, regardless

of whether they are in separate frames of reference or not, can be associated with and share

the same single, global time.

Selecting a particular moment in time along the time dimension can be easily done

with the numberline representation of a coordinate system. This description is commonly

termed a ‘timeline’ in reference to the incremental moments that are mapped onto the

numberline. However, the construction of this concept can arguably be said to invoke

an overlooked assumption. Specifically, we assume that a system’s progression through

successive configurations must occur in a manner that is consistent with physical laws and

that matches with the monotonic ordering of the numberline. Essentially, the assumption is

that there is in an order to events, which cannot be contradicted in Nature, that is represented

by following the prescribed order as dictated by the labels of our timeline. This ordering,

along with an alternative option for comparison, is shown schematically in Figure 2.3. 3

Figure 2.3: Two alternative orders for paths through time.The dotted line represents the succes-
sive order of moments a system passes through as it evolves. Diagram A shows a monotonic order
corresponding to the timeline ordering while diagram B shows an example of an alternative ordering
that would contradict experiment.

Imposing this restriction can be interpreted as an assumption of causality. Considering

the monotonic increments along the timeline, we presuppose that there will be no ‘jumps’
3 Note this refers to a local, rather than global, causal ordering.
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from one point in time to another distant point such that any consecutive points are skipped.

It is similar to how we expect events to follow a specific and consistent order in time, such

that the causes always precede their effects. To ensure that the laws of physics, such as we

understand them, match with our experimental measurements of the world, we require this

assumption of causality, or some similar axiom, to impose an order on events.

With this account of time in Newtonian mechanics in hand, we can consider the compari-

son to quantum mechanics. As illustrated in Figure 2.2, Newtonian mechanics is anticipated

to emerge from quantum mechanics as Plank’s constant ~ goes to zero. This does not always

represent a well-defined limit but, baring very few special scenarios, quantum behaviour

does not survive an application of the condition ~ = 0. The potential link between the two

theories is much more stringent in the other direction since there is no manner in which quan-

tum mechanics may be retrieved from classical mechanics by simply inserting ~. However,

we can still expect that the concept of time used in Newtonian physics can be, in some sense,

contained within the notion of time that is present in quantum mechanics which represents

the more fundamental of the two theories.

2.3 Quantum time
In the quantum realm, we find a notion of time that is similar to the one used in Newtonian

physics with all quantum systems operating under a global time coordinate. However, there

is an important distinction to make note of.

2.3.1 The troublesome time operator

Time is not directly measurable in quantum mechanics and, although this is also true of

Newtonian mechanics, quantum mechanics widens the divide between space and time by

the introduction of observables: Variables which are used to define measurable quantities.

While a position measurement can be accomplished by acting on a system with the operator

associated with the position observable, there is no such observable that can be associated

with time. Time intervals may still be inferred indirectly via an observation of a change to

the system’s configuration, such as its position or energy state, but there is no time operator

available. 4 Time only appears as an evolution parameter that we impose on the system.
4 Specifically, there is no self-adjoint time operator available. For an account of how a self-adjoint time

operator can be constructed at the cost of some information see, for example, [21].
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To understand why we cannot have a time operator, consider a system’s minimum energy

state as an indicator of the threshold below which that system’s energy cannot decrease. If

there were a time operator T̂ for such a system, necessarily conjugate to the Hamiltonian Ĥ

of the system, a transformation could then take the system from one representation to the

other. In the energy representation the unitary operator U(Ĥ), as the well-known evolution

operator, moves the system along the time dimension. The conjugate representation would

then be a unitary operator U′(T̂) which moves the system along the energy spectrum. While

this may initially sound feasible, a problem soon arises as pointed out by Pauli [22]: There

is no restriction against U′(T̂) from progressing the system along the energy spectrum in

either direction and for any distance. The possibility then exists of a system with arbitrarily

negative energy, in contradiction of the notion of a stable vacuum. The conclusion is that

the existence of a time operator is prohibited. 5

2.3.2 An emergent notion of time

The quantum view of time is then, as with the previous case, an inaccessible, global coordi-

nate system ‘within’ which all physical systems evolve homogeneously. However, this is not

the end of the line for quantum time. Just as Newtonian mechanics was seen to limit from

the quantum theory, quantum mechanics can itself be considered a limit of another, more

fundamental account: Quantum field theory. As with the Newtonian–Quantum limit, there

is no well-defined limit between quantum field theory and quantum mechanics, a point we

clarify in Section 2.4.2. Nonetheless, we anticipate that standard quantum mechanics should

be in some sense recoverable from the field theory as the speed of light c is allowed to go to

infinity and so any notion of time appearing in the field theory should inform the concept

of quantum mechanical time discussed above.

As quantum field theory uses a relativistic description of time, we first introduce the

notion by examining the classical theories that share this view on time before returning to

an account of quantum field theory.

2.4 Relativistic time
There is more than one theory in physics that utilises relativistic time. We begin this section

with a summary of time in the classical relativistic theories of special and general relativity
5In Chapter 3 we will see how an effective time operator can be developed by tying it to existing observables

of a quantum system. A similar approach can be found, for example, in [23].
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after which we briefly discuss quantum field theory and its interpretation of time.

2.4.1 Special and general relativity

In the limit where c → ∞, Newtonian mechanics emerges from the theory of special rel-

ativity. Similarly, special relativity itself emerges from the theory of general relativity as

the gravitational constant, given by GN, vanishes. We turn to the progressively more fun-

damental description of the relativistic theories in an attempt to gain insight into how the

phenomenon of time arises.

2.4.1.1 Transformations

As with Newtonian mechanics, special and general relativity rely on coordinate systems to

identify and label the dimensions of space and time. The coordinate system is used in the

description of the properties associated with a system and its frame of reference, essentially

giving the perspective from the standpoint of the system. To relate two different frames

which move relative to one other, we once again rely on transformations. However, as

we are now dealing with relativistic theories, the Galilean transformations of Newtonian

mechanics are no longer sufficient.

In the case of special relativity, we must account for ‘boosts’. 6 A boosted frame is one

which moves at a constant velocity with respect to another. Boosts can also be viewed as

rotations which mix space and time in a 4-dimensional Euclidean space that is obtained

by the application of a Wick rotation to imaginary time: t → it. Shifting between the

perspectives of these boosted frames requires using Lorentz transformations. Along with

boosts, this class of transformations also include the usual rotation in three dimensions that

are covered by Galilean transformations. Furthermore, Lorentz transformations, along with

translations, form part of the larger set know as the Poincare group.

In aid of the discussion to follow, we briefly consider the manner in which special

relativity is constructed. The requirement of Lorentz transformations is often identified

as a consequence of the axioms of special relativity: the requirement that light travel at a

constant speed in all frames along with the restriction that the laws of physics must remain

the same in all frames [24]. It is also possible to arrive at the same theory starting with

Lorentz transformations and leading to the framework of special relativity wherein certain
6 We restrict our use of this terminology to the relativistic case for clarity and note ’boosts’ should not be

confused with the different form as represented by ’Galilean boosts’.
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properties, such as the speed of light, are shown to be ‘Lorentz invariant’: unchanged by the

Lorentz transformations. As will be seen in Section 2.5, a useful perspective can be attained

by relating the physical properties which remain invariant under Lorentz transformation

with the notion of a ‘global symmetry’.

General relativity utilises yet another type of transformation. 7 Unlike special relativity,

the general theory accounts for non-inertial frames which are those that accelerate relative

to one another. The transformations responsible for relating such frames are known as

diffeomorphisms, also referred to as generic transformations which smoothly map from one

coordinate system to another. 8 More conceptually, they can be considered as transformations

which maintain the consistency of physical laws when we shift between the perspectives of

accelerating frames. In the language of tensor algebra, a geometric object which transforms

in a manner which preserves the laws of physics is said to transform covariantly. It should

be noted that a rank-0 tensor or scalar field is invariant under diffeomorphisms.

2.4.1.2 Spacetime and the metric

A marked difference appears between the Newtonian and relativistic treatments of both

space and time as the application of a transformation now affects both the spatial and

temporal aspects. This led to the amalgamation of space and time into a single entity,

known as spacetime. Before continuing our discussion further, we must also introduce

another concept that is crucial to special and general relativity: the metric. We begin with

a manifold, defined as a collection of points in spacetime, that has a topology; an overall

geometric shape. 9 Between any pair of points is an interval and at each point there is a

local ‘curvature’ of spacetime. 10 The description of these properties relies on a rank-2 tensor

known as the metric. In special relativity, where the topology is flat, the Minkowski metric

is used since there is no curvature to account for.11 In the case of general relativity, which

allows for distorted spacetime, the derivatives of the metric determine the curvature of the

manifold. A description of the infinitesimal interval between two points is provided by a

line element which is defined as a two-fold contraction of the metric and a differential change

in the spacetime coordinates.
7We will be restricting to a mostly conceptual description of general relativity. For a full mathematical

account of the framework see, for example, [25].
8 Specifically, we are refering here to local diffeomorphisms.
9 This can also be described as properties such as simple or multiple connectedness.

10 More accurately, this refers to a distance between any pair of points on a given curve.
11Other metrics can also be used. However, in special relativity, we may adopt the Minkowski metric

without any loss of generality.
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The four dimensions contained in spacetime are each associated with a component of the

metric. Here we are considering the case of general relativity in approximately Minkowskian

spacetime. 12 We can then discuss four-dimensional spacetime that has one ‘timelike’ direc-

tion, a notion we will clarify in a moment, as opposed to the other potential configurations

of spacetime allowed in general relativity. In such a case, one diagonal component of the

metric can be identified as having the opposite sign to the other three. This sign associated

with the metric is usually referred to as the signature and it allows us to distinguish time

from space.

2.4.1.3 Lightcones

This distinction between space and time can be further illustrated using the geometric

construction of nullcones. Choosing to restrict to one spatial dimension, rather than three,

we can plot the straight line path taken by light as it travels through spacetime, as is shown

in Figure 2.4. The resulting geometric shape is referred to as a ‘lightcone’ and it divides

Figure 2.4: A null cone, with one spatial dimension. Within the cone, paths are timelike while
paths outside the cone are spacelike. A path following the cone, representing the path of light, is called
lightlike.

spacetime into three distinct sections. The paths followed by objects within each section can

then be labeled as follows: timelike paths fall within the cone, spacelike paths fall outside

the cone, and lightlike paths lie along the boundary of the cone. 13

12This refers to the use of a ‘background’ consisting of a flat spacetime onto which general relativistic
corrections are made.

13An additional spacial dimension has been used in Figure 2.5 to better illustrate the cone shape.
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We now return to our considerations of the differences between the relativistic theories.

Special relativity utilises reference frames in a spacetime that is ‘flat’ in the sense that two

Figure 2.5: A schematic diagram of a lightcone in the flat spacetime of special relativity

free-falling objects each following a straight-line path, the definition of the shortest distance

between two points, will remain parallel if they begin parallel. Compared to general rela-

tivity, a different picture emerges as a result of the theories capacity for different geometrical

structures of spacetime. A free-falling object follows a generally curved path, which is known

as a geodesic, the general relativistic analogue of a straight line and whose curve is influ-

enced by the shape spacetime takes. 14 Lightcones constructed under these circumstances

must similarly adhere to spacetime’s curvature, as illustrated schematically in Figure 2.6.

Regardless of this difference, special and general relativity both indicate timelike directions

by identifying timelike paths.

2.4.1.4 Proper time

Given the description of lightcones in special relativity, we can discuss a related concept:

the Lorentz invariant quantity known as ‘proper time’. Proper time, as defined in special

relativity, refers to the shortest path between two events in spacetime. It corresponds to the

the interval of time measured by a system using a clock ‘attached’ to the system’s co-moving

frame of reference. 15 Coordinate time, by comparison, is the interval of time as measured
14 Note that it is the projection of geodesics onto spacelike slices which produces curved paths and, further-

more, in the case of Minkowski space, the geodesics are straight lines.
15Proper time can also be thought of as the interval of time measured by a clock following a strictly timelike

path.
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Figure 2.6: A schematic diagram of lightcones in the curved spacetime of general relativity.

by a system that is moving relative to the reference frame of the clock. Two different frames

could then disagree over coordinate time intervals since each would measure according

to their own perspective but both frames must agree on the proper time interval which is

defined through the use a line element, as previously described.

In the case of either relativistic theory, the proper time remains invariant. In special

relativity, it is unchanged under Lorentz transformations, ensuring that all observers agree.

In general relativity, proper time is represented as a scalar quantity and so will be invariant

under diffeomorphisms. It must be stressed that the metric, however, is not constrained to

be invariant in general relativity. This point will be important in the discussion in Section

2.5.

2.4.1.5 Causality in special and general relativity

The metric and the lightcones (or null cones) are built-in features of the geometry used to

formulate special and general relativity. As it is these features which help identify time, the

claim is often made that time emerges from the framework of relativity. Indeed, one might

argue that time is built-in. However, such an argument omits a crucial (but often hidden)

assumption: causality. While causality is often referred to in discussions on relativity, it is

typically used in the context of a restriction against faster-than-light travel: the condition

that a system’s path through spacetime must remain in (or on, in the case of photons) the

lightcone’s boundary. And yet we also expect a specific order of events which the relativity
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framework does not include by default.

Mathematically, the same framework which provides lightcones does not restrict against

solutions which would appear as discontinuous paths through spacetime. Such a path

would, for example, correspond to systems suddenly appearing and disappearing. In order

to prevent this, we must always add causality in by hand in much the same way we restrict

to a monotonically increasing numberline for the time parameter in Newtonian mechanics.

As it is so natural to do so, it is often overlooked. Thus time, as we know it, does not emerge

intact from the axioms of special relativity alone, nor does general relativity fix the problem.

A causality postulate to dismiss discontinuous solutions is needed if the description is to

match with reality.

There now remains one more relativistic theory to consider: Quantum field theory.

2.4.2 Quantum field theory

As mentioned previously, we anticipate that quantum mechanics is obtained as a limit from

quantum field theory as c → ∞. This does not represent a well-defined limit as it would

require somehow reversing the quantisation which forms the bedrock of quantum field

theory. We are referring here to the description of particles as quantised fields, which is

known as second quantisation, and is built on the work started by Dirac who developed the

formalism to quantise the electromagnetic field [26]. Attempting to recover special relativity

from quantum field theory by setting Planck’s constant to zero similarly represents a naive

limit as it would also require us to ‘undo’ the quantisation mentioned above.

2.4.2.1 The metric in quantum field theory

What is of importance to our discussion is that quantum field theory and special relativity

both interpret and use the Minkowski metric in the same manner. While the metric is used to

describe the background spacetime, it remains independent of the spacetime points. Time in

quantum field theory, as a feature built on this view of the metric, is interpreted as ‘external’

to physical systems in a manner which aligns with the interpretation in standard quantum

mechanics.

For quantum field theory, there is a strong restriction against the interpretation of the

metric as a field. If we consider general relativity as a gauge theory, it then incorporates a

gauge field which represents the metric with the background subtracted. This gauge field
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describes massless spin-2 particles 16 in the same manner that the gauge field in electromag-

netism describes a massless spin-1 particles, known as the photon. Herein lies the problem:

The Weinberg–Witten theorem prohibits the the existence such particles in quantum field

theory. This implies that the gauge field associated with these particles, representing the

spacetime dependent part of the metric, must be similarly ruled out. Instead quantum field

theory must employ a metric which remains independent of spacetime coordinates. This

interpretation of the metric as constant is shared with the Minowski metric of special relativ-

ity which is also almost always taken as constant. However, the independence of spacetime

coordinates does not constitute a strict requirement of special relativity. 17

It is possible to argue that the metric in special relativity can be interpreted differently.

As a limit of general relativity, special relativity could be argued to utilise the same concepts

and, as such, the metric could be taken to be a field which does indeed depend on spacetime

coordinates. 18 If the Minkowski metric in special relativity can be interpreted in this manner,

adhering to the general relativity view, it would contradict the account in quantum field

theory. We would then have two different and incompatible interpretations of time tied to

each distinct interpretation of the metric.

To better address the implications of viewing the metric in special relativity in a different

manner to quantum field theory, we cast the problem into the language of symmetries in

order to highlight how the treatment of the metric is analogous to the treatment of gauge

fields. The following section summarises the disagreement between the treatments of the

metric, and so time, in terms of the symmetries associated with gauge fields.

2.5 Hope for a resolution through fundamental

time

2.5.1 Emerging theories

We can consider two different paths of limits through the theories depicted in Figure 2.2.

Starting first with quantum field theory, this leads to quantum mechanics which in turn

leads to Newtonian mechanics. On the other hand, from general relativity we can progress

to special relativity and finally back to Newtonian mechanics. These ‘transitions’ are ac-
16Particles of this nature are sometimes referred to as gravitons.
17 Here we maintain a distinction between ‘constant’ and ‘independent’ as a metric may depend on spacetime

coordinates and yet still be constant, an interpretation we clarify in Section 2.5.
18 This relies on a special solution of the vacuum Einstein equations.
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complished using the appropriate limits although we once again reiterate that these are not

always well-defined. They are only being invoked in order to imply that the notion of time

in Newtonian mechanics is contained in the more fundamental theories. Although both

quantum field theory and general relativity can limit to Newtonian mechanics, this does

not mean they can be related to one another following this reasoning. The limits leading to

Newtonian mechanics are ‘one-way’.

We then consider the other direction, towards a more fundamental theory from which all

theories emerge. Quantum field theory and general relativity both utilise metrics as part of

the respective formalisms. However each theory takes a different approach as in one case

the metric is a field and in the other it is not, potentially influencing the interpretations of

time that relate to these metrics. In Section 2.4.1, we examined how the treatments of time

are tied to the metric of relativistic theories and so it is the use of the metric that we focus on

here to try find some resolution to the disagreement.

2.5.2 Interpreting the metric in relativity

2.5.2.1 The metric and gauge transformations

First, we consider the differences between special and general relativity. As mentioned

previously, the process of shifting between coordinate frames requires Lorentz transfor-

mations in special relativity while general relativity uses diffeomorphisms. The Lorentz

transformations represent a ‘global transformation’ as they are not restricted to local neigh-

bourhoods but instead apply universally. The diffeomorphisms used in general relativity

are, by contrast, local transformation which are dependent on the spacetime coordinates.

Although this seems a marked difference between the theories, further examination of these

transformations can lead to a shared interpretation of the metric.

Although general relativity can be represented as a geometric theory, with diffeomor-

phisms transforming the metric, we are not restricted to this position as it may also be

viewed as a field theory, in which case the use of diffeomorphisms can be interpreted as

gauge transformations. This is exactly analogous to classical electromagnetism where gauge

fields are commonly used to alter mathematical descriptions of systems without altering

the laws of physics that govern measurable properties. In the case of general relativity, the

laws of physics are similarly maintained under the application of gauge transformations.

The rules of tensor algebra which govern the transformation ensure that no one observer is

privileged and that the laws of physics remain invariant. To reiterate, an object transforming
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in this manner is said to transform covariantly under diffeomorphisms.

2.5.2.2 The metric and symmetries

Utilising the field theory view, the discussion can be cast into the language of symmetries.

In the case of special relativity, the Lorentz invariance of a given property describes a global

symmetry. Of importance to our investigation is that the Minkowski metric is a feature

which remains invariant under Lorentz transformations. In general relativity, by contrast,

we are instead considering diffeomorphisms which represent local transformations and these

can be viewed, in some sense at least, as generalisations of Lorentz transformations. The

transition from the special to the general theory can then be viewed as a breaking of the

global symmetries that are associated with various properties of the Minkowski spacetime,

including the Lorentz invariance of the metric. In this field theory point of view, gauge fields

are included in the general relativistic case in order to maintain the required covariance

in systems that are transformed by diffeomorphisms. A similar approach can be seen in

quantum electrodynamics when the phase of the electron wavefunction is made spacetime

dependent and so a gauge field must be introduced in order to maintain the consistency

of the physical laws [27]. In the case of general relativity, the gauge field is the full metric

minus the background. 19

Although the use of gauge fields is typically restricted to the general theory of relativity,

the concept can be applied to special relativity and, in particular, allow us to reinterpret the

metric. As special relativity is a classical theory, we are free to incorporate a gauge field pro-

vided the gauge choice constrains the field to vanish as would be necessary for the continued

use of Lorentz transformations. The implication is that there is a ‘hidden’ dependence on

the spacetime coordinates as the more fundamental picture is one of local, not global, sym-

metry. 20 It may seem superfluous, but a similar logic is used in classical electromagnetism

where the inclusion of a gauge field is not done as a necessary step in completing the theory

but rather represents a means making our calculations more manageable. Introducing gauge

choices into special relativity may not influence the calculations in a similar way but could

allow for the interpretation of the use of global transformations and a constant metric as a

useful but ultimately incomplete picture.
19For a fully general theory, the background can be spacetime dependent.
20 Note the orthodox interpretation considers the spacetime coordinates are constant without considering

any hidden dependence.
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2.5.3 Incorporating the quantum field theory metric

We now return to our consideration of the potential differences between interpretations

of special relativity and quantum field theory. Certainly the quantum theory incorporates

special relativity but if the metric is now associated with a gauge field, we run into a problem.

In quantum field theory, the gauge fields are viewed as representations of physical systems.

For example, consider the photon, a particle represented by excitations controlled by the

electromagnetic field operators. Endowing a metric with gauge freedoms is tantamount to

the elevation of this metric to a quantum field operator. The associated excitation of the field

would represent the creation of a massless spin-2 particle which, according to the Weinberg–

Witten theorem previously mentioned, cannot be coupled to the fields of the standard model.

It seems we cannot have the same interpretation of the metric in quantum field theory as we

do in general relativity, undermining the argument that these ideas should arise from the

same underlying source.

Hope, however, is not lost as we may turn to examples of a theory of quantum gravity

where the Weinberg–Witten theorem need not hold sway. Such cases can be argued to

indicate that the theory which does ultimately unify quantum field theory with general

relativity may do so without necessarily including the Weinberg–Witten theorem. The use

of a constant metric in quantum field theory may once again be interpreted as a limit of

a more complete picture in which the global symmetry has been broken. We briefly list

four arguments which suggest the Minkowski metric in quantum field theory can in fact be

interpreted to have precisely this type of hidden dependence on spacetime coordinates.

The first argument is the expectation that, in a general sense, the global symmetries of

quantum field theory are expected to be broken [28]. We are referring here to the so-called

quantum anomalies [29], where an unavoidable breaking of global symmetries follows the

quantisation and renormalisation of a theory. If this is the case, Lorentz invariance should

certainly not be excluded from this requirement, provided that any effect of breaking the

Lorentz invariance remains hidden as outlined above. Based on this argument, we could

anticipate that a theory with a metric independent of spacetime coordinates is only a limit

in which symmetries remain unbroken.

The second argument is provided from considerations of string theory. The suggestion

from the framework of string theory is that any emergent theory must have a hidden de-

pendence on spacetime coordinates [30]. As a representation of a self-consistent account

of a theory containing both general relativity and all the quantum fields of the standard
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model, string theory provides insight into how such theories might look. Even though the

ultimate theory of everything is likely different from string theory, we can at least expect

certain features, such as those implied here, to remain a necessary addition. 21 And so once

again we find that a lack of global symmetries is implied. This aligns with the suggestion

above and corroborates the first argument.

Our third argument centers around the presence of quantum fluctuations. We are again

looking for evidence of a dependence on spacetime coordinates and these fluctuations can

be used to imply that such a dependence exists. If we consider a (hypothetical) theory

of quantum gravity we would anticipate all aspects of this to be influenced by quantum

fluctuations. Provided no fundamental restriction against this arose, there should be no

reason to prevent these fluctuations from depending on the spacetime coordinates of the

manifold. Thus we anticipate that the metric, as a feature of the theory, would also depend

on these coordinates as a result of the effect on it from quantum fluctuations. If this is the case

in the more fundamental theory, it once again implies a hidden dependence of the metric in

an emergent quantum field theory.

As a final argument, we mention a more standard case against global symmetries. We are

referring to the implied breaking of globally conserved quantities, for example the number

of baryons, in the case where particles fall irretrievably into a black hole [32]. From a

classical perspective, this rests on the expectation that all in-falling matter is destroyed by

the singularity. Such an argument remains intact even after appealing to the process of black

hole evaporation [33]. The Hawking radiation emitted from black holes is predominantly

populated by massless particles which would be unable to carry a baryon number and other

similarly conserved quantities.

2.5.4 Conclusions

Of the arguments presented above, the second and third invoke the existence of a more

fundamental theory which would contain general relativity and quantum field theory. Al-

though we anticipate that such a theory would contain a ‘blueprint time’, from which all

the different treatments of time would emerge, there is no reason to think the fundamental

description would resemble time as we know it. Ultimately, our suggestion is simply that

all emergent theories are utilising the same underlying feature of the Universe, albeit in

different ways. Nonetheless, the current indications are that this ultimate theory would
21For arguments countering the notion that string theory is fundamental see, for example, [31].
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imply spacetime dependence as the more fundamental viewpoint.

Although we have focused here on arguing that the disparate versions of time can

be related in a consistent manner, what we have found most compelling is the continual

dependence of our existing theories on a postulate of causality, or some similar notion that

is responsible for a consistent order among events in time. Motivating a dependence on

such a postulate would presumably form part of the fundamental picture of time, in order

to explain the experience we have of an ordered and irreversible progression of moments.
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The Isolated Universe

“What we observe is not nature itself, but nature exposed to our method of

questioning.”

- Werner Heisenberg

Engaging with the topic of time has led physicists to many interesting, and often diverse,

conjectures. In one particular case, John Wheeler and Bryce DeWitt assembled an equation

describing a Universal state which was notably time independent. The following discussion

summarises this equation, the Universe it describes, and the account of dynamics produced

in such a Universe. We also consider criticisms of the presented framework along with their

associated rebuttals.

3.1 The Wheeler-DeWitt Equation
The Wheeler-DeWitt equation, originally presented without a formal derivation, has been

investigated at length since its initial presentation in [34] and is regularly applied as a

Universal model. An account of the origin and development of the equation can be found

in [35], along with many other sources.

A large part of what generates interest in the Wheeler-DeWitt equation is that it unites

aspects of both quantum mechanics and general relativity. To see how this is accomplished,

consider the equation in Dirac notation

Ĥ |Ψ〉 = 0. (3.1)



Chapter 3. The Isolated Universe 31

Here |Ψ〉 is a wavefunction representing the Universe in a pure quantum state. The Ĥ term,

on the other hand, is constructed from the classical Hamiltonian constraint which governs

dynamics in general relativity [36]. This classical Hamiltonian is elevated to the status of a

quantum operator, thus producing Ĥ to act on |Ψ〉. The dynamics prescribed by a general

relativistic theory are then applied to a quantum state description, bringing the principles of

both of these theories of physics together. To follow, we point out a few important features

and implications of equation (3.1), which is deceptively simple in its appearance.

Firstly, consider the Universal state |Ψ〉. While it cannot be taken for granted that the total

Universe can be described by a quantum state, this approach is at the very least considered

feasible. Accounts of such descriptions can be found in, for example, [37, 38, 39]. That a

definitive description of a Universal wavefunction remains to be settled does not prevent us

from using |Ψ〉 as representative of a Universal state which exists in principle. We do note

that if a description of the Universe as a quantum state is shown to be impossible outright, it

would provide a strong argument against any reasonable application of the Wheeler-DeWitt

equation.

The second notable feature of equation (3.1) is the annihilation of the Universal state by

the Hamiltonian operator which provides a description of the Universe as a closed system.

The energy of the Universe is restricted to a constant value of zero and has no capacity to

change as a function of time under equation (3.1). The conservation of energy in this manner

permits the interpretation that the Universe does not exchange energy across its boundary,

hence describing a closed system. 1 2 The possibility of any external influence produced by

systems ‘outside’ the Universe is prohibited from affecting |Ψ〉, which remains a closed, and

indeed isolated, system.

It should be noted that this does not forbid the existence of ‘outside’ systems in principle.

For example, parallel universes or a multiverse may well exist but are prevented from

interacting with |Ψ〉. If such external systems are shown to be capable of interacting with

|Ψ〉, it seems feasible that a boundary could be constructed to include all systems under a

new state |Ψ′〉 and so preserve the principles of equation (3.1). As a brief caveat, we also

point out that a total non-zero energy value in equation (3.1) would also provide a picture

of an isolated Universe, provided this energy value remained constant. Such a system could
1A detailed perspective on the treatment of the Universe as a closed system can be found in, for example,

[40].
2As an alternative, an open Universe interpretation could be suggested whereby energy enters and leaves

the Universe in equal quantities. While this would conserve the total energy value, it requires the additional
assumption of systems ‘outside’ the Universe along with the specific constraints on energy transfers.
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easily be related back to equation (3.1) simply by adding a constant term to the Hamiltonian

without altering the dynamics.

The last feature of equation (3.1) to discuss is the implications it has on our interpretation

of time evolution. Considering the half of the Schrödinger equation not shown in equation

(3.1), we have d
dt |Ψ〉 = 0. The Universal state does not have any functional dependence on

time and the |Ψ〉 is unable to experience any change with regard to the time parameter t.

A problem is opened up by this result: How does the experience of time by systems arise

within a Universe which does not itself experience time?

It would seem our Universe should simply be interpreted as a time-independent quantum

state. There is however, a subtle difference between |Ψ〉 and the states used in standard

quantum mechanics. Consider standard time-independent states which, when characterised

by a conserved energy value, operate under a similar application of the Schrödinger equation

as above. The parameter t influences such systems through the evolution of phase terms.

This highlights an implicit assumption in the standard quantum scenario of isolated systems:

that they reside within a larger system which does experience time. Thus the smaller isolated

system does not provide an account of time itself but can ‘import’ the notion from the larger

time-dependent system. This description corresponds to a ‘static’ description, persistence

without change, and is discussed further in Chapter 5.

If this standard time-independent interpretation is applied to |Ψ〉 it contradicts the char-

acteristics of an isolated Universal state. A larger system, containing |Ψ〉, may be postulated

such that it provides a notion of time for internal systems of |Ψ〉, thus allowing the Universe

to remain static while subsystems within it can experience time ‘inherited’ from the larger

containing system. There are, however, at least two issues with this resolution.

First, providing time through a larger system implies that there is an external influence

on |Ψ〉 albeit one restrained to influencing phase terms. This nonetheless contradicts the

interpretation of the Universe as a completely isolated system free from all external influ-

ences. This is a stricter use of isolation than in the standard quantum mechanical sense but,

if we relax the definition, we encounter a second issue. The larger system does not account

for time itself. The problem of defining time is shifted to a larger system, undermining the

method intended to account for the experience of change. Essentially, we cannot label |Ψ〉

as static without implying a containing (or reference) system which |Ψ〉 does not change

with regard to. Such a system would necessarily influence |Ψ〉 by ‘providing’ time while

remaining unable to account for how it does so.
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The resulting, and generally accepted, interpretation is that the Universe, as modeled by

the Wheeler-DeWitt equation, is not simply static in time but “timeless”. The experience

of time is considered an emergent phenomenon which arises within the Universe but not

one which |Ψ〉 undergoes. By way of analogy, if all space is contained within the Universe,

it is sensible to claim the Universe cannot experience movement through space. In this

manner, the Universe somehow ‘contains’ the phenomenon of time, as experienced by

systems within it, but |Ψ〉 cannot ‘move’ through time as a whole by changing its state. This

point is considered again in Chapter 6 and Chapter 7.

This reasoning provokes the question: can we reconcile our experience of time as change

with this timeless model of the Universe? We will now present an account of one answer

which suggests it is indeed possible. 3

3.2 Time in the Page-Wootters Method
A method for describing change, or evolution in time, within the Universal model outlined

above was presented by Page and Wootters in [15]. While maintaining the timelessness

of equation (3.1), the Page–Wootters method recovers a description of time evolution for

subsystems within |Ψ〉, leaving the Universal state unchanged.

The first iteration of the Page–Wootters method, as presented by the original authors,

appeared vulnerable to two serious criticisms. The first is an ambiguity issue related to the

choice over how to partition |Ψ〉 into subsystems [43]. The second issue is concerned with

an apparent inability to account for a succession of states, leaving the subsystems of |Ψ〉 in

a single state and unable to account for change [44]. A more detailed description of these

concerns follows later.

Both of these criticisms were resolved by a reformulation which had the effect of clarifying

the intent, and subsequently the use, of the original authors’ axioms. Here we present the

Page-Wootters method in terms of this reformulation, presented in [45] (and later in [12]),

and discuss the manner is which this settles the issues raised above. 4 It should be noted that

the reformulation does not alter any fundamental features or assumptions, only the way in

which these aspects are presented.
3For examples of alternative approaches regarding this model of the Universe, see [41, 42].
4 The arguments presented in [45] employ Rovelli’s ‘evolving constants’ method which represents an

alternative but related approach to recovering dynamics from the Wheeler-DeWitt equation.
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3.2.1 An outline of the method

The Page–Wootters method calculates probabilities as functions that are conditional on spe-

cific states. As such, this approach is frequently referred to as the conditional probability

interpretation (CPI). The CPI relies on three key features: the partitioning of |Ψ〉 into sub-

systems, entanglement between these subsystems, and a requirement of weak interactions.

We discuss these, along with their implications, below.

We begin with the division of the Universe into two subsystems: the clock and the

remainder of the Universe labeled as C and R respectively. The Universal state |Ψ〉 can then

be decomposed into |φC〉 and |φR〉, with each representing the state of C and R respectively.

Next comes the requirement of maximal entanglement between superpositions of states

of the form C j and R j. Under this condition, the Universal state can be written as

|Ψ〉 =
∑

j

α j |φC〉 j |φR〉 j , (3.2)

where the coefficients α j are normalised under the condition
∑

j |α j|
2 = 1. 5

Dividing the Universe up into this entangled pair has implications for the Hamiltonian

as well. Given these two subsystems, the global Hamiltonian Ĥ must contain the terms ĤC

and ĤR to govern the dynamics of C and R respectively. As there is no boundary which must

necessarily isolate C from R, any potential influence of one subsystem on the other must be

accounted for by an interaction Hamiltonian ĤI, bringing us to the third requirement of the

CPI.

The last condition stipulates that C and R only interact weakly with one another. As will

be seen below, this allows the CPI to relate the dynamics of C and R such that the evolution

of one corresponds to the evolution of the other. Under this weak interaction condition, ĤI

is considered negligible and the total Hamiltonian is

Ĥ = ĤC ⊗ IC + IR ⊗ ĤR + ĤI = 0 (3.3)

Ĥ ≈̇ ĤC ⊗ IC + IR ⊗ ĤR≈̇ 0, (3.4)

where ≈̇ is the weakly vanishing constraint corresponding to the annihilation of physical

states, as defined in [46], and IC,R is the identity operator with the same dimensionality as C

and R respectively.
5 More strictly, a maximally entangled state requires the reduced density matrix for each subsystem be

maximally mixed, ensuring degeneracy of the coefficients.
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The relation between the remaining Hamiltonians is then given as

ĤC ≈̇ − ĤR. (3.5)

Using equation (3.5) to relate the dynamics of C and R, any knowledge of how the clock

states evolve relates to a correlated evolution in R. The separate Hilbert spaces defined for

each of the two subsystems governed by ĤC and ĤR are given asHC andHR, which form a

tensor product description for the total Hilbert spaceH ∼ HC ⊗HR.

The three features outlined above form the backbone of the CPI, providing a description

of the time evolution of R as a process conditional on the correlated states of C. Specifically,

applying the relations in equations (3.2) and (3.5) allows an observable of C, which essentially

labels each state, to serve as a ‘time’ parameter for R. It must be kept in mind that this

observable is not a measurement of the standard time parameter t, which remains a parameter

that cannot be represented by a Hermitian operator, as per the framework of standard

quantum mechanics explained in Chapter 2.

To provide a time parameter for R, an operator that is conjugate to ĤC is identified and

labeled as K̂, such that the relation

[ĤC, K̂] = i~, (3.6)

holds. 6 Under this condition, the observable associated with K̂, which we call κ, can be used

as an evolution parameter in place of the usual time parameter t. The operator K̂ now serves

as an effective time operator on C.

Taking κ in place of t alters the operator which governs changes of state of C. This

evolution operator, labeled as UC, becomes

UC = e i~ĤCκ. (3.7)

All dependence on the absolute time t is removed, allowing a description of the change of

state of C solely in terms of an observable parameter.

Although initially given as |φC〉, the clock state can be rewritten as an eigenvector of κ,

such that a ‘measurement’ of the clock is represented by

K̂ |κ〉 = κ |κ〉 . (3.8)

The eigenvalues {κ} can be considered as ‘labels’ for each state of φC in much the same

way that values of the usual time parameter t are used to differentiate (and order) states in
6 The Hamiltonian in equation 3.6 is for a subsystem, not the entire system, and so the conjugate does not

violate any prohibition against time operators.
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standard quantum mechanics. If the spectrum of values for κ approximates a continuous

number line, this observable further mimics the usual t parameter and makes it an adequate

parameter for distinguishing states of R’s evolution.

Taking κ to represent the ‘tick’ of a clock, each state |φR〉 can be assigned a tick of C as per

the entanglement requirement. A progression of the correlated states of C and R constitutes

a description of evolution. Essentially, as C advances through its states, the entanglement

ensures R is advancing through a correlated evolution which is similarly associated with κ.

Under this setup, the evolution operator for R can be constructed as

UR = e i~ĤRκ, (3.9)

which becomes

UR ≈ e−i~ĤCκ, (3.10)

under the application of equation (3.5). Thus the CPI recovers a description of evolution

in time for R as a series of states linked to a measurable variable of C which progresses as

κ = 1, 2, 3... .

In this description, there is no need to call upon an external time variable which ‘contains’

the evolving systems. The usual notion of ‘evolution in time’ is replaced by the description

provided by the entangled subsystems C and R. An account of R’s dynamics is not provided

by increasing an absolute time variable t monotonically, but by identifying the associated

state of C (along with the observable κ). Thus the picture of evolution which emerges is

a sequence of correlated C and R states. These subsystems rely on one another, and their

entanglement relationship, to describe their sequence of evolution in the absence of any

external time. 7

At this point it is necessary to point out that there is a wide choice of ways to partition

|Ψ〉 and not all choices produce a subsystem which serves well as a time-keeper. A criteria

for ‘good’ clocks needs to be identified over and above the requirement that C must interact

minimally with R. It is easy enough to identify the crucial feature as the necessity of having

a sufficient amount of distinguishable states for a system to function as a good clock.

The importance of having enough states can be illustrated by considering an example

of an analog wall clock with no minute or second hand, only an hour hand which moves

in discrete jumps from one hour to the next. Such a system cuts down the usual forty-

three thousand two hundred states of a wall clock to only twelve distinguishable states.
7The sequence of states can also be described in terms of rotation, as discussed in Chapter 5.
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Events which might have been associated with different times are then all lumped together

under one label, decreasing more finely grained distinctions. In this way, a degeneracy is

introduced by either associating more states of R with fewer states of C or having only a few

states of R labelled by ticks of the clock, leading to a less effective clock in either case.

Even if the choice of clock subsystem is restricted to only ‘good’ clocks which have

enough distinguishable states, a problem results from having any choice at all. We discuss

this in the following section, along with a second important criticism of the CPI.

3.3 Criticisms and their responses
Here we present the two criticisms mentioned in Section 3.2 and discuss how the resolution

of each within refined versions of the Page–Wootters method.

3.3.1 The problem of ambiguous clocks and the

non-interacting clock solution

The clock ambiguity problem was first described in [47] and later presented in more detail

in [43]. The difficulty in question revolves around the apparently arbitrary choice of how

to partition the Universe into the clock C and the remainder R. This leads to a similarly

arbitrary description of dynamics. We outline the crux of the argument, as it applies to the

Page–Wootters method.

As per equation (3.9) given above, the subsystem R evolves with respect to the observable

κ provided by C. Mimicking the usual time parameter t, κ represents a real-valued label

for the clock states. The values are given, for simplicity, by a discrete series of values,

κ = 1, 2, 3, .. . This follows the assumption of discreteness used in the analysis given in

[47, 43].

What if we were to choose to divide the Universe up differently? As we are free to

do under the Page–Wootters method, we might choose a new partition choice associated

with the subsystems C̃ and R̃. The dynamics resulting from Hamiltonian operators and the

clock observable associated with this new partition can then be arbitrarily different from the

dynamics associated with C and R; An apparently arbitrary partition choice results in an

equally arbitrary dynamical description.

As alluded to previously, this ambiguity is not cleared up by resorting to the good clock
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criteria. There are multiple partition choices available with weakly interacting subsystems

where the clock provides a sufficient number of distinguishable states. There are any number

of potential ways to divide up |Ψ〉 and, in principle, every possible description of evolu-

tion is then possible. Producing a particular dynamical description would simply require

determining an appropriate choice of subsystems.

With no clear way to remove more partitioning choices and pick out a particular de-

scription of evolution as ‘special’, the ambiguity over dynamics remains, putting the Page-

Wootters method on shaky ground. We observe a Universe in which dynamical systems

exhibit a strong preference with regard to their evolution in time. Dynamical descriptions

certainly do not appear to satisfy all the variations permitted by the arbitrary choice of

which system happens to be the clock and we would expect to see this reflected our physical

theories. 8

We now summarise a solution to the clock ambiguity problem that was developed by

Marletto and Vedral [12]. 9 These authors showed that the partitioning choice can be suitably

limited if one strengthens the weakly interacting requirement discussed above. In particular,

this involves extending it to the limit where no interactions are possible between C and R.

Using this non-interacting limit as the criteria for the ‘ideal’ clock, the partitioning choice

can be sufficiently reduced in order to resolve the ambiguity, an argument which we outline

below.

We start by partitioning the Universal state into two non-interacting subsystems C and

R. We can then consider a second partition choice associated with new subsystems C̃ and R̃.

These two partition choices are equivalent if C and C̃ are unitarily equivalent and, similarly,

R and R̃ are unitarily equivalent. As discussed below, the partition choices for isolated

clocks must then all be the same and, if we restrict to isolated clocks only, any ambiguity is

removed.

To see this, consider a partition choice C̃ and R̃ such that this partition is equivalent to C

and R. Since C and R are non-interacting, then C̃ and R̃ must be similarly non-interacting. All

partition choices restricted to non-interacting subsystems can then be expected to provide

the same description of dynamics. If, however, we choose a partition C̃ and R̃ which is

not equivalent to C and R, then the transformation C ⊗ R → C̃ ⊗ R̃ is not factorisable.

The transformed Hamiltonian governing C̃ and R̃ is also not factorisable, leading to the
8 The arbitrary assignment of partitions differs from, say, coordinate choices
9In Chapter 5 we will discuss an alternative resolution based on a different interpretation of time in the

isolated Universe.
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conclusion that C̃ and R̃ are interacting subsystems. Now consider a partition choice which

is related to C and R via non-unitary transformations. In such a scenario, the non-unitary

transformations are related to interactions occurring between subsystems.

Consider the unitary operator Û = e iX̂ used to induce a finite partition where U defines

an isomorphism, a reversible mapping relating two objects of the same structure, which in

this case are H and H1 ⊗ H2. The term X̂, which is the generator of the transformations

of U, is a Hermitian partition operator defined as a Hermitian matrix which induces an

infinitesimal partition of the system. The operator X̂ can be mathematically described as X̂ =

X̂C⊗1+1⊗X̂R+X̂CR. If the term X̂CR which mixes the subsystems is present, it ensures that any

separable partition acted on by Û is no longer separable after the transformation. Provided

the term which mixes the states of the subsystems is non-vanishing, the partition becomes

non-trivial. In particular, consider a separable Hamiltonian given as Ĥ = ĤC ⊗ 1 + 1 ⊗ ĤR.

The transformed Hamiltonian ˜̂H = Û†ĤÛ can be expected to contain an interaction term

ÎC ⊗ ÎR as a result of X̂CR. The conclusion is that the operators X̂ and ˜̂X, associated with Ĥ

and ˜̂H respectively, cannot be taken to describe comparable partitions because, while the

transformation relating them is formally unitary, it restructures the partition in a non-local

way. The associated evolution is also non-unitary, an example of which is given in the

Lindblad equation [49], the features of which are discussed in more detail in Chapter 4.

The inclusion of a significant interaction term in the Hamiltonian contradicts the relation

given in equation (3.5) which is required at least approximately by the CPI. Extending

this, any potential ambiguity can be removed by restricting the choice of how to divide

up the Universe to non-interacting subsystems only as they are all related by a unitary

transformation and so using one isolated clock is essentially the same as using another. This

solution appears to fit extremely well within the Page–Wootters method as the restriction to

use only isolated clocks is simply an extension of the weakly-interacting condition already

in place.

The case of a non-interacting clock does resolve the ambiguity issue but it raises other

concerns. One in particular is the interpretation of time as an illusion, a notion that is rein-

forced by the use of non-interacting clocks. 10 A second issue is the reliance on the idea that

interactions can be excluded in principle. As the model of the Universe in question incor-

porates aspects of general relativity, the effects of gravity must be taken into account since

these cannot be shielded. Interactions are then not so easily dismissed and in Chapter 5 we
10 Two non-interacting systems operate as isolated systems, bringing us back to the initial interpretation of

time as an illusion.
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further assess the interpretive issues surrounding non-interacting subsystems. Specifically,

we argue that interactions are conceptually incompatible with the timeless interpretation

of an isolated Universe and that the presence of (weak) gravitational interactions supports

interpretation of change as a real phenomenon.

Putting these considerations on hold for the time being, we move on to a second important

criticism of the CPI.

3.3.2 Kuchar’s criticism: measuring successive times

The most commonly mentioned criticism of the CPI was raised by Kuchar in [44]. The

crux of the issue is the CPI’s inability to compare successive states. In brief, the formalism

presented in [15] calculates a probability associated with one instant; The states of C and R

are correlated to one another but not related to other paired states, i.e. C′ and R′. Restricting

the description to one state in the probability calculation implies that the CPI fails to describe

a succession of evolving states. But standard evolution through the Schrödinger equation

includes this dynamical aspect where states follow each other as they progress through time.

The lack of such a feature then makes the CPI an inadequate description of evolution in the

Universe.

Page’s response was to dismiss the relevance of Kuchar’s claim [50], arguing that the

direct comparison of a state with a previous (or later) one is unnecessary. One instantaneous

state is all that is ever directly accessible in practice, making tests of any other scenario

impossible. There is then no reason to require a description of the progression of states in

the probability calculations.

Page’s viewpoint has since been superseded as rebuttals to Kuchar’s criticism have been

presented from multiple sources, including in [45]. One argument of particular relevance

here is the solution offered by Dolby [51]. It involves a refinement of the CPI which relies in

part on an abstract integration variable, among other features. While the use of this variable

assists in resolving Kuchar’s criticism, it is typically overshadowed by other features. A

similar approach can be found in [52] where the use of the abstract integration variable

is emphasised. After presenting Dolby’s resolution, we will briefly discuss this second

approach.

There is another advantage to the refined CPI. The clock, as previously described, is an

abstract system with a similarly abstract observable which provides an account of time in
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principle. But it need not remain so as realistic clock systems can be employed within the

refined CPI framework and, in particular, this includes interacting subsystems. As a more

realistic scenario than the isolated case, interacting clocks are better investigated using the

refined formalism along with toy models based on real clocks. 11 To assist in this, we focus

on the resolution to Kuchar’s criticism which makes use of the refined CPI, built for such a

scenario, rather than the formulation provided in [45].

3.3.3 The refined CPI solution

The refinement relies on recasting the CPI in terms of physical operators. The description

of C and R that then appears in the formalism is one of physically measurable states. The

Hilbert space containing all possible physical states is identified as Hph, along with the

projection operator P̂ph which is responsible for selecting out physically measurable states.

As mentioned above, one advantage of this approach is its ability to investigate real world

clocks. The refined CPI not only potentially allows for more application of the framework

but also provides a means of analysing scenarios involving interacting clocks, as we will see

in Chapter 4.

In order to use this physical representation to resolve Kuchar’s concerns, the conditional

probability functions required for the CPI are considered. An important distinction is needed

here. A typical conditional probability expression resembles the function P(R | C;ρ), where

ρ represents the density matrix of the Universal state containing C and R. The interpretation

is that the probability of the outcome of a state of R is conditional on the state of C, the terms

after the vertical divider. This can be loosely described as the probability of R if C. 12 In

the refined CPI, a new probability expression is described: P(R when C;ρ) and, although

it is presented as a means of ensuring simultaneity in [51], there is no consensus over this

physical interpretation. The mathematical differences between the probability expression

are clarified in Appendix A where we also discuss the interpretive issues. As the issue does

not prevent the refined CPI from recovering standard quantum mechanics results, we do

not discuss it here. Without relying on the interpretation above, the states of C and R are still

able to be synchronised as required by the refined CPI formalism.

In order for C to act as a clock for R, the state of one must coincide with the other such

that the state of R correlates to the provided time reading. The refined CPI accomplishes
11That interacting clocks should be used in principle is explored in more detail in Chapter 5 where we

discuss potential shortcomings of the isolated case and the problem with isolation as matter of principle.
12In the terminology used in [51], this standard probability is identified as P(R given C;ρ).
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this by the use of an abstract integration variable n. This variable replaces the usual time

parameter t in the dynamical equations used to evolve C and R according to∫
dn λn |Cn〉 |Rn〉 . (3.11)

. It allows a definition of the ‘overlap’, or ‘syncing’, or C and R. Crucially, n is not a

physically realisable quantity. The role it plays is as a label for the states of C and R. This

works much the same way that the monotonically increasing numberline, denoted by t, is

used to represent labels for states as they evolve. If two states are labeled by the same value

of n, then they are ‘synced’ and we have a useful way of defining ‘simultaneous’ states. The

two subsystems C and R can be evolved separately using the abstract evolution parameter

n. The state of R ‘at’ n can then be written as a function dependent of the value of the

clock observable associated with C ‘at’ n. This process involves integrating out n, ensuring

it remains an abstract variable and is not mistaken for a physical quantity of any kind.

Given a pair of initial states φC (n0) and φR (n0) for C and R respectively, with both

contained in ρ(n0), where n0 represents an ’initial time’. A final state for each subsystem at a

‘later time’ n would be given by φC(n) and φR(n). The two types of probability expressions

described above can be used to provide the ‘two-time’ probability description

P
(
φR(n) when φC(n) | φR(n0) when φC(n0);ρ(n0)

)
. (3.12)

This expression allowed Dolby to calculate the probability of finding a specific physical

state of R which corresponds to a physical state of C, given a pair of initial (and similarly

correlated) states of C and R, thus resolving Kuchar’s concern.

A useful feature arises from this refinement of the CPI. We are referring to the definition

of an ‘ideal clock limit’. It represents the limit in which the time parameter provided by C is

indistinguishable from the parameter t in standard quantum mechanics. The identification

of this limit relies on the separate evolution of C and R as functions of n. Analysing the clock

state as a separate system, the following function can be identified: fC(n) ≡ 〈φC |φC(n)〉 =

〈φC(n)| e−iĤCn
|φC(n)〉. Within the refined CPI, the effective state of R is functionally dependent

on the clock observable as a result of including this ‘clock function’; a measure of the overlap

of the clock wavefunction at different times. It should be noted that the initial time is taken

to be n0 = 0. When fC (n) approaches a delta-function δ(n), and the overlap is minimal, the

clock observable is expected to begin to mimic the usual time parameter t. Under this limit,

the evolution of R resembles standard quantum mechanics and the clock can be identified

as optimal. This provides a useful way of measuring the effectiveness of a clock, as will be

seen in Chapter 4.
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This refinement of the CPI, and its use of an abstract integration variable used with

physical operators, bears a resemblance to the description used in the investigations carried

out by Gambini et al in [53, 52, 54]. In both cases, the emphasis is on the use of realistic

clocks. This must, by definition, refer to clocks which experience interactions. As pointed

out in Section 3.3.1, any realistic scenario which incorporates the effects of gravity must

contain unavoidable interactions, however negligible. Adequate analysis tools, such as that

provided by the clock function, are required in order to investigate the effect of taking these

interaction effects seriously.

3.4 Considering interactions
As pointed out in Section 3.3, the standard approach to the CPI is to assume that the weakly

interacting subsystems are, in the ‘ideal’ case, limited to perfect isolation, a scenario which

has been argued to be possible in principle, as in [12]. In a sense, this backs up the timeless

interpretation. The isolation of C and R imply they must also be interpreted as timeless,

similarly to the isolated Universe, a point explored in more detail in Chapter 5.

By taking the non-interacting limit from the start of the analysis, unknown consequences

are possibly being excluded. The result of including interaction has the potential to affect

various issues surrounding the interpretations associated with the CPI and the isolated

Universe at large. In Chapter 4 we examine these interaction effects with the purpose of

revealing any influence they may have on how the CPI is applied and interpreted. This

has been done to some extent in [55] where the focus was on the mathematical complexities

of including an explicit interaction Hamiltonian (ĤI) in the CPI framework. Here we will

focus on developing toy models of the subsystem C to instead investigate any interpretive

implications of either ignoring or including interactions between C and R as a matter of

principle.

The potential shortcoming of the non-interacting limit and the associated timeless inter-

pretation, briefly mentioned in Section 3.3.1, are further discussed in Chapter 5. There are

also philosophical considerations to take into account. If interaction effects are considered a

necessary feature of the CPI, this has potential ramifications for the interpretation of time in

the isolated Universe. As we will argue in Chapter 6, interactions can be considered incom-

patible with the timeless view, resulting in an alternative approach to the interpretation of

time under the CPI.
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Interacting Clocks

“Entropy is the price of structure.”

- Ilya Prigogine

Analysing the role of interactions within the CPI framework can be done by considering

specific physical systems. After defining a suitable system to serve as our clock, we can

examine a chosen observable along with its associated uncertainty. According to the defini-

tions in Chapter 3, the ideal clock is an isolated system. Given that any interaction effects

are excluded, the isolated clock may be made arbitrarily accurate and so provide a potential

uncertainty of zero. Alternatively, in examining the optimal case we might provide a more

nuanced analysis of the situation.

The optimal case can be defined as follows. Taking an interacting system as the clock,

with a suitably chosen observable, the optimal outcome is one where the uncertainty accom-

panying the clock observable is minimised. If the isolated clock is indeed the optimal choice,

we would expect to see a minimum uncertainty when the clock hits the non-interaction limit

with zero interactions. However, as will be shown below, it is the presence of weak interac-

tions that ultimately ensures the smallest uncertainty, while still maintaining a functioning

formalism for the clock system. In a result which perhaps runs counter to intuition, weakly

interacting clocks appear to be the optimal choice.

To substantiate this claim, we examine interacting clock systems within a toy model of the

Universe, the details of which are supplied below. The first clock system under consideration

is a damped harmonic oscillator. The analysis is then reinforced and further developed by
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an investigation into a second clock system, given by a two-state atom. 1

4.1 The toy Universe
As per the description in Chapter 3 any potential interaction effects between C and R, the

partitioned subsystems of the Universal state |Ψ〉, would be governed by an interaction

term ĤI. The weak interaction condition of the CPI implies that ĤI is expected to have a

minimal contribution to the total Hamiltonian. Thus the approximate relation ĤC ≈̇ − ĤR

can be considered true, in terms of the weakly vanishing Dirac constraint introduced in the

previous chapter. In the case of a strictly non-interacting clock partition with ĤI = 0, this

can be extended to the weak equality ĤC = −ĤR.

Although the approximate relation implied by the weak interaction condition is used

commonly in applications of the CPI, formulations exist where ĤI has been explicitly in-

cluded, as done in, for example, [55]. As we are interested here in examining general trends

of the formalism, our investigation follows the former approximation approach. In aid of

this, we define a toy model of the Universe which simplifies the mathematics in favour of

the more general examination.

The toy model is based on the approximation that the clock is much smaller than the rest

of the Universe: C � R. 2 This contradicts the CPI framework in the sense that C and R

are typically required to be of the same order, a result of enforcing maximal entanglement

between the two subsystems as well as the necessity of sharing a sufficient amount of

information regarding the states. In this context, ‘sufficient’ refers to the minimal information

R requires in order to have enough knowledge of the clock state to make use of the time

parameter. We expand on this issue in Chapter 5 where interactions are considered between

subsystems of comparative sizes. For now, we consider clocks within a toy model Universe

only.

Regardless of this restriction, we may investigate realistic clocks without dramatically

changing the formulation of the CPI. Under the condition C � R, any interaction effects

can be assumed to have a significantly larger effect on C than on R. The CPI’s weak

interaction requirement further ensures the effect of C on R is so minimal as to be considered

negligible. The advantage of this scenario is that it allows us to incorporate the interactions
1A published description of the damped harmonic oscillator analysis is given in [17] while the atomic clock

investigation can be found in [18].
2This assumption regarding the dimensionality of the subsystems is more explicitly stated as Dim(C) �

Dim(R).
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as a component of the clock dynamics and the effect of R on C can be contained within ĤC,

negating the need for an explicit expression of ĤI. As we discuss in the analysis of the clock

to follow, this also permits a recovery of the CPI. The subsystem dynamics remain related

via ĤC ≈̇ − ĤR and so we need not consider an independent and explicit form of ĤR either.

One last point on the toy model description above: The interaction effects are more

appropriately interpreted as the influence of an environment on C. While we continue to

use the notation R to represent the system with which C interacts, it must be kept in mind

that in this context the ‘remainder of the Universe’ is synonymous with an environmental

system for the analytical examples which follow. We now turn to our first clock system.

4.2 The lightly damped harmonic oscillator
The first clock is a harmonic oscillator. It involves a periodic motion that arguably underlies

most mechanical clocks. Interactions are also easily included into such a system in the form

of a damping effect imposed by the environment.

4.2.1 The clock state

As per the description laid out in Section 3.3.3, the evolution of the clock is initially described

in terms of n: The effective evolution parameter. The series of states through which C

progresses are labeled by successive values of n, in the same manner that t conventionally

labels sequential moments of time. Ultimately, n is integrated out and replaced by a time

parameter based on an observable of the clock. Our goal is to examine how the evolution

of successive states of C affects the uncertainty associated with the clock observable and,

by extension, the resultant time parameter ultimately used by R. We begin our analysis by

selecting an observable of the damped harmonic oscillator.

The optimal choice of observable would be one that has an approximately linear relation

to n. This is due to the fact that the linearity ensures the clock observable is ‘synchronised’ to

the sequential values of the evolution parameter n; For each successive value of n, the clock

observable will progress similarly, up to a multiplication factor. This will be expanded on

and clarified by example with our specifically selected observable once we have defined the

linear relation.

For the case of the damped harmonic oscillator, we select the position of the center of

mass as our clock observable. We abbreviate this to ‘position’ and denote it as x in order
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to simplify the discussion to follow. The position of the oscillator can be interpreted as a

measurement of time in a similar manner as how a (physical) measurement of the position

of the hands of an analog clock correlates to a time reading. The conversion of a position

variable into one of time can be easily accomplished by dividing the position value by c, the

speed of light. To utilise this conversion in an efficient manner, we set c = 1. The analysis to

follow can now use the position as an effective time measurement.

For each change in n to correspond to a similar change to the x, the position must relate

to n in a linear fashion as it is this one-to-one relation which allows us to replace n with x

as the evolution parameter. To show that a linear relation between x and n is possible, we

apply the classical relations connecting position and time for the oscillator. Replacing t with

n as the surrogate evolution parameter, we can determine n’s relation to the clock’s position.

This is done explicitly in Section 4.2.2 after the following mathematical description of the

clock evolution.

The Universe, as a large system, is expected to behave in a classical manner. To facilitate

this, we choose a coherent state description for our clock, based on the propensity of such

a state to mimic classical behaviour. Specifically, we use the coherent state wavefunction

that is applicable to a damped harmonic oscillator system and which was developed in [56].

Since x has been identified as the clock observable of interest, the wavefunction description

is put into the position representation. We outline the development of the wavefunction

below but a complete account is available in [57, 56].

The dynamics of the damped oscillator can be described by the Caldirola–Kanai Hamil-

tonian [58, 59], which is given as

ĤC = e−rn p2

2m
+ ern 1

2
ω2

0x2, (4.1)

where r, typically referred to as the damping coefficient, is treated as a variable controlling

the strength of the damping effect on an oscillator with an undamped frequencyω0 and mass

m. After damping is applied, the clock will oscillate at a frequency given by ω =
√
ω2

0 −
r2

4 .

Note that we have set ~ = 1 both here and throughout the remaining calculation.

As per the CPI formulation, equation (4.1) evolves as a function of n. The initial value of

n, simulating an initial time, is taken to be n = 0. An important feature to note regarding the

above Hamiltonian is that the mass can be interpreted as the time-dependent term m(n) =

ernm. Then, even though a coherent state can maintain a time-independent uncertainty,

this adapted description ensures the effect of R on C introduces a time-dependence into the

uncertainty, provided a mass term is present.
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With equation (4.1) providing a starting point, the coherent state representation can be

developed by following the procedure in [57, 56]. To qualify as a description of a coherent

state, four properties must be met. First, the wavefunction must be described in terms of

the eigenstates of a suitably defined annihilation operator â. In mathematical terms, this

eigenstate relationship is represented as

â |α〉 = α |α〉 , (4.2)

where α is the complex parameter of the coherent state. The second condition for the

coherent state is that these eigenstates |α〉 be associated with a minimal uncertainty. Thirdly,

the eigenstates must be produced by acting on the vacuum state, given as |0〉, with â†. The

fourth and final requirement is that the coherent states form a complete and normalized set.

The annihilation and creation operators, â and â† respectively, are defined as follows:

â =
1
i
(ηx̂ − µp̂)

â† =
1
i
(µ∗p̂ − η∗x̂),

(4.4)

where η andµ are time-dependent complex coefficients that are defined in detail in Appendix

B.1. These coefficients also depend on ω, the damped frequency of the oscillator, as well

as on r, and their dimensionality matches that of the position and momentum; Specifically,

[η] = [p] and [µ] = [x]. Using these definitions for the annihilation and creation operators,

equation (4.1) can be rewritten in terms of coherent states. Using the position representation,

the wavefunction associated with the resulting Hamiltonian is

φC(x,n) = 〈x |α(n)〉 = A exp
[
−

η(n)
2iµ(n)

x2 +
α
µ(n)

x −
1
2
|α|2 −

µ∗(n)
2µ(n)

α2
]
, (4.5)

where A represents a normalisation constant defined as A = (2πµµ∗)−
1
2 . We now have

a wavefunction for the damped harmonic oscillator in the representation of our selected

observable.

The probability density of this clock landing up in a particular position is given by

P(x,n) = |φC(x,n)|2. By quantifying the likelihood of finding a particular state, this probability

expression serves as a means of analysing the effectiveness of the clock in question. We are

specifically interested in the associated uncertainty and the manner in which it changes with

respect to successive values of n. This will be explained further in Section 4.2.3 after we

examine how the damped harmonic oscillator fits within the CPI framework to provide a

description of time.
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4.2.2 Recovering time and the ‘run time’ limit

The CPI is typically formulated to use a clock observable κ, associated with an operator

conjugate to the Hamiltonian ĤC. In the case of the damped harmonic oscillator, however,

our chosen observable is the position x. As described above, by converting x to a time reading

with a suitable multiplication of c, a position measurement can be directly interpreted as

a time reading. We now consider the required linear relation between x and the evolution

parameter n which is used to recover the CPI. 3 What follows is our motivation that such a

relationship can exist for the damped harmonic oscillator described above. 4

Before relating n and x, we establish some necessary conditions. First, we enforce r
2 < ω0 in

order to ensure that the clock remains underdamped, avoiding the critical and overdamped

cases. Alone this is not a sufficient restriction. The weak interaction condition of the CPI

requires an additional restraint on the exponential term rn in equation (4.1) to constrain the

clock to the light damping regime. We must include the condition rn . O(1) which only

permits weak interactions that would not affect the clock in a significant manner over a

small ‘time’ n.

One final restriction must be enforced in order to recover the CPI formalism. Within

the domain of light damping, we introduce a ‘reset time’, nreset, such that nresetr < 1. As

the discussion to follow shows, the Taylor expansion allowed by enforcing this condition

is a necessary step in recovering a linear relationship between n and x. Thus nreset does not

represent a physical reset of the clock but should instead be seen as a reset of the formalism

to maintain the linearity necessary for the CPI. 5 With the light damping and reset time

conditions in place, we can now develop a linear expression for x(n).

Our starting position is the equation for the expectation value which provides a relation

between 〈x〉 and n. A simple rearrangement is then required to attain n(x) which can be

used to evaluate whether the relation is in fact linear. The wavefunction in equation (4.5)

has an associated expectation value given by 〈x〉 = µ∗α + µα∗ [56]. Employing the condition

rn < rnreset < 1 discussed above, the calculation can be simplified by considering the leading

order terms of rn only, resulting in the expression

〈x〉 = Ae−
rn
2 , (4.6)

where A =
√

2~
mωR(α). A more detailed description of this calculation is presented in Ap-

3 This may be generalised to a monotonic relationship.
4 For our argument to follow, the linear relationship need only hold piecewise.
5 The reset time should not be interpreted as a means of ensuring a state of minimum damping but solely

as a means of countering the breakdown of linearity between n ad x as n becomes large.
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pendix B.2. Inverting equation (4.6) produces

n(x) =
2
r

ln
( A
< x >

)
. (4.7)

A naturalness argument can be applied at this point to the effect that no one scale

is considered to be parametrically larger or smaller than any other. The calculation can

essentially be simplified by maintaining that this is a ‘one-scale’ problem: nreset ∼
1
ω . As

we are in the light damping regime, we can also assume that there is very little difference

between the undamped frequency and the resultant frequency: ω0 ∼ ω. These substitutions

allow us to rewrite the resultant frequency expression ω =
√
ω2

0 −
r2

4 as

ω ∼ ω0 ∼ r → ω = ar, (4.8)

where a is some numerical factor of order one.

Equation (4.7) is then expanded and rewritten as

rn
2

= ln
(A

x
cos(arn)

√

1 + arn
)

= ln
(A

x

)
+ ln

(
1 −

a2r2n2

2
+ O(r4n4)

)
+ ln

(
1 + arn

) 1
2

= ln
(A

x

)
+

arn
2
−

a2r2n2

2
+ O(r4n4)

rn
2

(1 − a) = ln
(A

x

)
−

a2r2n2

2
+ O(r4n4).

(4.10)

From inspection, equation (4.10) is resolved by either setting A
x > 0, a < 1 or, vice versa,

A
x < 0, a > 1. We select the first combination of values for A and a but point out that either

choice would lead to similar conclusions. Substituting these values into equation (4.10) gives

ln
(A

x

)
≈ rn(1 − a)�

r2n2

2
, (4.11)

where higher-order terms are excluded as per the reset time constraint and the factor of 1
2 is

omitted as allowed by the small enough value of rn. The relation rn
2 ≈ ln

(
A
x

)
, once rearranged,

serves as an adequate description of n(x).

We have from equation (4.6) that x . A. Using this, expressed as A
x & 1, we resolve n(x)

as

n =
2
r

ln
( A
A − y

)
≈

2
rA

y,
(4.13)

where we have used the definition y = A − x.
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The application of this result within the CPI requires consideration of the evolution

operator UC = eiĤCn. Given equation (4.13), we can make the substitution n = 2
rA y resulting

in

UC = e i ˜̂HC y, (4.14)

where we have also used the redefinition ˜̂HC = 2
rAĤC; a simple matter of rescaling given

~ = c = 1 and so the dimensionless relation [rA] = 1. The evolution is now a described as a

function of the clock observable.

As the weak interaction limit has been enforced, the Hamiltonian Ĥ governing the total

state of C and R is roughly separable. The result is an approximate commutation relation

between the position operator on C and any operator on R, defined as Ô ∈ R. The relation

ĤR ≈̇ − ĤC, described previously, implies that the evolution operator for R can be written as

UR = e−i ˜̂HR y, where a similar redefinition ˜̂HR = 2
rAĤR is used. Once this is taken into account,

along with the description of the decomposition of |Ψ〉 described in Chapter 3, the evolution

description becomes 6

〈x| x̂ (|φR〉 |φC〉) = 〈x| x̂ |φC〉 |φR〉

= x φC(x) |φR(x)〉 .
(4.16)

The conclusion is that, from the point of view of R, any x (or y(x)) is only seen as a numerical

parameter. This is in comparison to the perspective of C where x is seen as the spectral value

of an operator.

This use of the measurement of C as a time parameter remains feasible under the reset

time constraint

rn < rnreset < 1, (4.17)

and so a linear relation between x and n can be established. We now begin our analysis of

the clock by considering the associated uncertainty.

4.2.3 The uncertainty and the decoherence rate

As laid out in Section 3.3.3, the effectiveness of the clock can be tied to how sharply peaked

the probability of finding C at a particular x at n is, with the ideal case being a delta-function.

If this probability, denoted P(x,n), is represented as a Gaussian function, the associated width

provides us with a measure of how far the distribution is from the desired delta function.

Minimising the width in order to approach the sharpest possible peak also affects the related
6 Specifically, it is the seperable state described in equation 3.2 that we draw on here.
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terms; namely, the variance δ2
x. The value of r which minimises δx represents the strength

of interactions resulting in the most accurate, and so optimal, clock. Also of interest is the

rate of change of δx as a measure of how quickly the system decoheres. 7 If the rate of

decoherence is too high, the oscillator will not ‘run’ long enough to provide the required

number of distinguishable states necessary for it to function as a clock.

The uncertainty associated with the variance of P(x,n), for the damped harmonic oscilla-

tor described above, is given by [56]

δx =
√
〈x〉2 − 〈x2〉 =

√
µµ∗. (4.18)

As our interest remains in the basic qualitative result and so, once again, the calculation is

simplified by restricting to the first order limits following the outline in Section 4.2.2.

To the first order of rn ∼ ωn, equation (4.18) can be rewritten as

δx = e
−rn

2

√
1

2mω
. (4.19)

A more detailed description of this calculation can be found in Appendix B.3.

The rate of change of the uncertainty is established from equation (4.19). This refers

to the decoherence rate of an open system in a surrounding environment: How quickly

does the environment influence the state. We follow the analysis presented in [60] (also see

[61]), where the decoherence rate was defined as σ(n) =
∂(δ2

x,min)

∂n and used in the context of

non-unitary Lindblad evolution, which we discuss in detail later. After substituting in the

uncertainty from equation (4.19) into the decoherence expression, we have

σ(n) =
re−rn

mω
. (4.20)

We can now examine how the expressions for σ(n) and δx(n) might be minimised.

The decoherence rate, as given in equation (4.20), is minimised by ∂σ(n)
∂n = 0. This calcula-

tion gave

rn = 1. (4.21)

This reinforces the reset time condition discussed in Section 4.2.2, minimising the decoher-

ence rate under r = 1
n .

The same minimisation procedure was then applied to the uncertainty from equation

(4.19), giving
−n
2

√
1

mω
e−

rn
2 = 0. (4.22)

7 Note that this decoherence is a result of the oscillator’s interaction with its environment, which we have
purposely kept large enough to remain negligibly affected by the clock.
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To satisfy equation (4.22), we would need to set r → ∞. However, we are restricted by the

condition rn < rnreset < 1. As such, setting r to infinity would require setting n = 0. Physically

this would correspond to a clock which did not run at all! We must limit the expression to

a ‘maximum’ value of r which would still allow the clock to progress through a sufficient

number of states. It may well be argued that the alternate limit of r → 0 could be applied

in principle as this would simply require the limit n → ∞. However, while this cannot be

excluded in the case of the damped harmonic oscillator, the atomic clock system considered

in the following section rules out this possibility.

Ultimately then, the weak damping condition results in the need to balance the rn term

between two opposing scenarios. On the one hand, increasing the time (or amount of

states) available to the clock runs requires setting r to the smallest possible value in order

to keep nreset large enough. On the other hand, we require r to be as large as possible in

order to maximise the accuracy of the clock. A more detailed optimisation of these factors

would depend on further specification of the clock. However, within the context of this

investigation, we simply note that a totally isolated clock, which would require setting r = 0,

does not correspond to the optimally functioning clock. This result is not consistent with

the claims made in [12] and so, to verify the validity of our result, we consider another clock

system.

4.3 The atomic clock
The next system under investigation is an atomic clock; A real world example of an ex-

tremely accurate time-keeping procedure. 8 More importantly, at least with respect to our

investigation, the atomic clock system can be shown to eliminate the possibility of satisfying

rnreset < 1 by setting r = 0 and allowing for an infinite run time. Additionally, we can choose

a different observable. Specifically, we can exchange position for frequency since the atomic

clock relies on the frequency associated with the energy transitions of specific atoms. While

this alternative choice should not affect our conclusions in any crucial manner, it nonetheless

broadens the scope of our results.
8 Note that we use a toy model, intended to investigate the importance of interactions in princple rather

than represent reality, and so the description of entanglement is limited and not developed into a fully realistic
model. For a realistic description see, for example, [55].
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4.3.1 Keeping time with atomic clocks

The first use of atomic systems and their associated energy transitions as a means to de-

fine time measurements is credited to Rabi [62]. The specific type of repeated transitions

described in this method have become known as Rabi oscillations, an explanation of which

can be found in most quantum mechanic textbooks, for example [63]. The procedure starts

with a two-state system which we denote S. Next, ω12 is identified as the specific frequency

associated with a transition of S from the ground state to the excited state which have energy

levels of E1 and E2 respectively. Setting ~ = 1, similarly to the first analysis, the transition

frequency can be written as ω12 = E2−E1. If an electromagnetic wave is set to this frequency,

we can measure time by counting the total number of cycles the wave progresses through

and dividing by the frequency.

Our focus is on the general use this procedure and, as such, it is not necessary to specify

any one particular atomic system, over the multiple similar systems available, as the one

employed here. However, we do provide a brief example in order to give a sense of the

precision these clocks can achieve. In the case of a cesium atom, the transition frequency

between the two states used by the clock is 9, 192, 631, 770 Hz. Counting the oscillations

of an electromagnetic wave set to this frequency produces a measure of one second that

can be separated into a phenomenally large number of discrete intervals. This provides the

opportunity for highly precise time measurements.

The electromagnetic wave’s frequency, which we denote ω, must be as close to ω12 as

possible for this procedure to produce the most accurate time measurement. The electromag-

netic wave is tested by preparing an atom in its ground state and then exposing said atom

to the wave oscillating at frequency ω with the intention of stimulating a transition to the

higher energy level. The probability Pex of finding the system in the excited state can then be

examined as a function of ω. The maximum chance of seeing a transition is associated with

the resonance case, when the wave oscillates exactly at the transition frequency: ω = ω12.

This defines the ideal case with a maximum probability of transition Pex,MAX. In practice, the

frequency cannot be set with such precision. To account for any deviation from the ideal

result, we introduce the quantity θ ≡ ω − ω12. For the analysis to follow, the resonance case

is then associated with θ = 0.

The probability Pex, plotted as a function of ω, is portrayed in Figure 4.3.1. This repre-

sentation helps identify a useful parameter: the full width half maximum (FWHM) which

measures the spread of Pex across the values of ω satisfying Pex = 1
2Pex. In terms of our
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Figure 4.1: Schematic graph showing the probability of finding S in the excited state as a
function of ω, adapted from [61]. The maximum probability corresponds to the resonance
case where ω = ω0. The FWHM, from which we get an expression for the uncertainty, is also
shown.

investigation, the FWHM can be used to determine the uncertainty associated with the fre-

quency, which we label δω. The accuracy of the atomic clock relies on setting the frequency

ω as precisely as possible and so δω provides a measure of the effectiveness of the clock.

The smallest possible uncertainty in the frequency would translate to an optimally set clock

system.

If the oscillation of the wave is governed by the potential V(n) = λeiωn + λe−iωn, δω is

proportional to the amplitude λ. Our expectation for the calculation to follow is that a

greater environmental effect on the clock will result in a greater uncertainty in the frequency.

And so the effectiveness of the clock can be measured by analysing this uncertainty This

effectiveness is further improved by the change to the atomic clock procedure introduced by

Ramsey [64]. Here we mention only the salient features of Ramsey’s alterations but a more

detailed account of how this, and the Rabi clock system, keep time is laid out in Appendix

C.1. Ramsey’s method involves exposing the two-state system S to the electromagnetic

wave for a short pulse time τwhich is then followed by a non-interaction period for a time T,

which is referred to as the Ramsey time and is typically much larger than τ. Finally, another

pulse is then applied, also for the time τ, to complete the process. As τ and T each refer to a

duration, it is tempting to think that the above description contradicts the CPI by including



Chapter 4. Interacting Clocks 56

a standard quantum mechanic account of time evolution. However, as in the previous clock

example, the ‘time’ is replaced with the abstract variable n and so here τ and T are taken to

be components of this abstract variable. This can be represented as n = 2τ + T such that the

interaction and non-interaction components remain separated.

In the adjusted procedure, the uncertainty is no longer associated with λ. Provided the

frequency is close to resonance with ω ≈ ω12, the uncertainty now goes as δω ∝ π
T , implying

that an increase in T leads to greater precision for the value of ω and ultimately a more

accuracy of the clock. It must be noted that it is not possible to take this to the limit where

T → ∞. The second pulse must be applied to complete the procedure and this ensures a

finite T. It is this caveat that is ultimately responsible for ensuring n → ∞ is not a viable

solution, an option which remained possible in principle in the case of the damped harmonic

oscillator.

With this outline of the atomic clock procedure, we move on to the details of S’s evolution

through the three phases of Ramsey’ method and the inclusion of decoherence interaction

effects. The clock system is once again assumed to produce a negligible effect on its en-

vironment as compared to the environment’s effect on it. Given S is initially prepared in

a pure state, we expect the interaction with the environment to manifest as a decoherence

effect causing a progressively more mixed state for S. A density matrix description of S can

be used to account for said decoherence effects as an effect on the off-diagonal terms. We

define this density matrix as ρS, which is constructed by considering the typical treatment

of systems undergoing Rabi oscillations.

4.3.2 The first pulse: Rabi oscillation

In the wavefunction representation, the initial state of S is typically described by |φS〉 =

c1 |1〉 + c2 |2〉, where |1〉 and |2〉 represent the ground and excited state with coefficients

c1, c2 respectively. The first pulse is applied for the duration τ � T. This, along with the

assumption that the electromagnetic pulse swamps any potential interaction effects induced

by the environment, implies there are no decoherence effects to account for in this first stage.

The wavefunction representation is then sufficient to a description of the effect of the first

pulse on S. We begin with that description and then convert to the density matrix form.

The evolution of S as it is exposed to the potential V(n) for a pulse ‘time’ τ is given as

|φ(τ)〉 =
(

cos (Ωτ) −
iθ
2Ω

sin (Ωτ)
)
e iθτ/2

|1〉 +
λe−iθτ/2

iΩ
sin (Ωτ) |2〉 , (4.23)
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with the Rabi frequency defined as Ω =
√
λ + θ2

4 , representing the resultant frequency of

the oscillator after exposure to the potential V(n). Having determined a description for the

effect of V(n) on S, the density matrix is given as

ρS(τ) = |φS(τ)〉 〈φS(τ)| =

 1 − λ2

Ω2 a2 iλeiθτ

Ω
a(b − iθ

2Ω
a)

−iλe−iθτ

Ω
a(b + iθ

2Ω
a) λ2

Ω2 a2

 , (4.24)

where a = sin(Ωτ) and b = cos(Ωτ).

The evolution of S, in the density matrix representation, is governed byρ(τ) = US(τ, 0)ρ(0)U†S(τ, 0),

where US(τ, 0) is the evolution operator applied to S during the pulse time τ. Under the

assumption that S is initially in the ground state, ρ(0) =

1 0

0 0

, a specific form of US can be

determined from the evolution expression. 9 The explicit manner in which this is used to

calculate US is presented in Appendix C.2. Here we simply quote the result as

U(t, 0) =

b − iθ
2Ω

a −
iλeiθt

Ω
a

−
iλe−iθt

Ω
a b + iθ

2Ω
a

 , (4.25)

which is also used in the application of the second pulse to S in the third stage of the

procedure. Next we apply the second non-interaction stage of the evolution.

4.3.3 Decoherence during Ramsey time

To evolve ρS(τ) through the Ramsey time T, where decoherence effects are experienced, we

utilise a Lindblad equation [49]. 10 The crucial feature that this equation provides for our

investigation is the ability to describe the evolution of an open system, such as a clock within

an environment.

Given a general density matrix ρ, the term ρ̇ represents the ‘time’ derivative where once

again t is replaced with n. The Lindblad equation is given by

ρ̇ = −i[Ĥ, ρ(n)] +

N2
−1∑
i

[
L̂iρ(n)L̂†j −

1
2

L̂†i L̂iρ(n) −
1
2
ρ(n)L̂†i L̂i

]
, (4.26)

where L̂, L̂† represent the Lindblad operators and N is the dimensionality of the system. 11

9 The form of US does not depend on the initial, we are only specifying the ground state as the S’s starting
state.

10For a derivation of the Lindblad equation see, for example, [65, 66].
11The term N2 is set proportionally to the identity matrix. This term is then excluded from the summation,

which runs up to N2
− 1, as the N2 term components will vanish. For a motivation of this claim, along with a

detailed derivation of equation (4.26), see, for example, [67].
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In order to apply this equation to our clock system, we utilise the application of the Lind-

blad equation as it is laid out in [68]. 12 Replacing the general description, we identify ρ(n)

as the density matrix representation of our two-state clock system prior to any application

of equation (4.26). We also identify the ground and excited states as |g〉 and |e〉 respectively,

representing the eigenvectors of a Hamiltonaian where the Linblad operators are included.

The energy values associated with these two states, given by Eg and Ee respectively, repre-

sent the eigenvalues for Ĥ. As equation (4.26) is the diagonalised Lindblad equation, the

operators L̂ j and L̂†j also have eigenvalues. These are identified here as l j,g,l∗j,g for the ground

state and l j,e,l∗j,e for the excited state.

Equation (4.26) evolves the two-state system ρeg from an initial state, where n = 0, to a

final state, corresponding to n, to give

ρ(n)eg ∝ ei(Ee−Eg)n−γegn = e−i(Eg−Ee)n−γ∗gen. (4.27)

where the decoherence component is re-expressed as

γeg = α + iβ = (α − iβ)∗ = γ∗ge, (4.28)

with the substitution α =
∑

i
1
2 |li,g − li,e|

2 and β =
∑

i I(li,gl∗i,e).

The diagonal terms of ρ(τ) are not affected by the evolution described in equation (4.27)

given that the exponential terms in equation (4.28) vanish for e = g. After the Ramsey time

T, our clock system S is then

ρ(τ + T) =

 b2 + θ
4Ω2 a2 iλeiθe(iω21−γ)T

Ω
a(b − iθ

2Ω
a)

−iλe−iθe(−iω21−γ
∗)T

Ω
a(b − iθ

2Ω
a) b2 + θ

4Ω2 a2.

 (4.29)

This concludes the second stage of the atomic clock procedure and marks the end of any

environmental effect on S. We move on the the final stage, where the second pulse is applied.

4.3.4 The second pulse time

Now S interacts with V(n) a second time in order to complete the Ramsey process. Impor-

tantly, the electromagnetic wave still maintains in own oscillations during the non-interaction

time T. A phase term is included to account for this effect which, based on the phase term

already present in V(n), is given as e±iωT. This only affects the off-diagonal terms of the den-

sity matrix, as will be seen below. With this new phase term taken into account, the effect of

the second pulse on S can be determined using the evolution operator from equation (4.25).
12The analysis in [68] also examines the decoherence of atomic clocks, although in a different context. As

such, the method we employed here bears some similarity to this previous analysis.
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The goal of this process is ultimately to determine the probability of finding S in the excited

state and so quantify the effectiveness of the clock in terms of the associated uncertainty. If

the system were at resonance, where ω = ω12, the probability of a transition to the excited

state would be exactly Pex = 1. We need an expression for Pex as a function of the decoherence

terms in order to calculate which values (or limits) will maximise the probability of finding

the excited state after the second pulse, providing the optimal scenario with the closest match

between the frequency of the potential V(n) and the transition frequency.

To simplify this calculation, we only concerned ourselves with the density matrix element

corresponding to the probability Pex, rather than the entire matrix. The state of S after the

second interaction time τ is defined asρ(2τ + T)11 ρ(2τ + T)12

ρ(2τ + T)21 ρ(2τ + T)22

 =

 A B

−B∗ A∗


ρ(τ + T)11 ρ(τ + T)12

ρ(τ + T)21 ρ(τ + T)22


A∗ −B

B∗ A

 ,
(4.31)

where A = b − iθ
2Ω

a and B = − iλeiθt

Ω
a are defined, up to a phase, in the detailed derivation of

equation (4.25) in Appendix C.2.

Identifying the matrix element ρ(τ + T)22 as representative of the probability of finding

the density matrix in the excited state, we can calculate

Pex(2τ + T) = ρ(2τ + T)22 =
4λ2

Ω2 sin2(Ωτ)
[
2 cos(Ωτ) +

θ2

2Ω2 sin2(Ωτ)

+ e−αT
(
2 cos2(Ωτ) cos((θ − β)T)

−
θ

2Ω2 sin2(Ωτ) cos((θ − β)T)

−
2θ
4Ω

sin(2Ωτ) sin((θ − β)T)
)]
.

(4.33)

This expression can be simplified by considering the substitution of a particular value for τ.

Considering the ideal outcome, that of resonance, we can identify values for Pex, θ, and T.

Substituting these values into equation (4.33), we can solve for τ and, in so doing, identify

the optimal value for this pulse time. 13 This optimal value for τ can then be substituted

back into equation (4.33).

The resonance case corresponding to the probability Pex = 1 gives the system in the excited

state with certainty, matching the frequency of the wave with the transition frequency.

Restricting to this case, θ = ω − ω12 = 0 is also set. Now we turn to the Ramsey time
13Note that, although we are considering the final expression, the value of τ determined here applies to

both the first and second pulse; the terms from each pulse time have been grouped in equation (4.33).
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T which was introduced as a means of lowering the uncertainty. At resonance, however,

the non-interaction stage cannot increase the accuracy which would already be maximised.

Qualitatively, this justifies setting T = 0 for the resonance case. Substituting these values of

T and Θ into equation (4.33) gives a resulting value of τ = π
4λ . This represents the optimal

pulse time which we substitute back into equation (4.33).

If we assume the system is operating close to resonance, we have ω ≈ ω12. 14 The

implication of this assumption is that θ must be very small and must adhere to the relation

θ � λ. While we cannot guarantee the frequencies will match exactly, we can at least

restrict to cases close enough to resonance to enforce the above relation and further simplify

equation (4.33) to

Pex(2τ + T) =
1
2

[
1 − e−αT cos((θ − β)T)

]
, (4.34)

where we have applied θ
λ → 0.

4.3.5 Analysing the uncertainty

The expression defining the probability of finding the system in the excited state is given

by Pex(2τ + T). We determine the associated uncertainty in order to analyse it in the same

manner as the damped oscillator. From equation (4.34), the probability Pex can be considered

as a function of ω. This frequency’s uncertainty expression is determined by the FWHM, as

was done for the Rabi oscillation scenario, produces the uncertainty expression δω = π
T . The

precision of the clock is seen to rely on the Ramsey time, rather than the amplitude of the

oscillator as in the previous case. But there appears to be no dependence on the decoherence

effects. One might conclude that the decoherence does not affect the time measurement

under the Ramsey method.

However, this is not the end of the analysis. We anticipate that there should be an

influence of decoherence on the system and this is corroborated by an examination of the

probability expression in equation (4.34) which shows that the maximum value is smaller in

the case where decoherence is included. To illustrate this, we set α = β = 0 to restrict to the

case of no decoherence effects, and substitute these values into equation (4.34). Comparing

the outcome to the original expression for equation (4.34), we have

Pex(α = β = 0) =
1
2

[
1 − cos((θT)

]
> Pex(α, β) =

1
2

[
1 − e−αT cos((θ − β)T)

]
, (4.35)

14The resonance case was only used to set specific variable to their ‘ideal’ values and not applied for the
continued analysis which may then use the near resonance limit.
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where the left-hand side remains larger than the right-hand side since α ≥ 1, as per equation

(4.28). 15

It is clear that the decoherence has some effect on the clock. Certainly a decreased

efficiency might be expected when the system is exposed to environmental effects. While

this is not apparent above, we can investigate further by converting the uncertainty δω to an

uncertainty in Pex using the expression

δPex =

√(∂Pex

∂ω

)2
δω2. (4.36)

From equation (4.36), the relative uncertainty δPrel can then be calculated as

δPrel =
δPex(T)
Pex(T)

=
π
2

e−αT sin(ΘT)
(
1 + e−αT cos(ΘT)

)−1
, (4.37)

where we have re-expressed Θ = θ − β.

Setting T → ∞ minimises the expression in equation (4.37) with respect to the Ramsey

time. While at first this may seem to be applicable in principle, it would in fact be inconsistent

with the clock procedure outlined above. An infinite Ramsey time implies the second pulse,

a crucial feature, is never applied. In order to maintain the use of the system as a clock, the

Ramsey time must have an upper limit to ensure the procedure is completed by the final

pulse.

For the case without decoherence effects, the uncertainty expression becomesδω = π
T ,

setting the relation

T ∼
1
δω
. (4.38)

This similarly reinforces the restriction of a finite T.

To determine the expression which does minimise δPrel under these conditions, and to

allow us to determine the optimal amount of decoherence, we can introduce the Lagrange

multiplier Λ to calculate
∂
∂T

[
δPrel

Pex
−Λ(δω −

π
T

)
]

= 0. (4.39)

Substituting the terms from equation (4.37) into equation (4.39), the resulting expression can

be simplified to

e−2αT
(
ΘT2
− 2Λ cos2(ΘT)

)
+ e−αT

(
(ΘT2

− 4Λ) cos(ΘT) − αT2 sin(ΘT)
)
− 2Λ = 0. (4.40)

Next we enforce the near resonance condition on the clock as θ ≈ 0 when ω closely

approaches ω12 in a similar manner as before. Following this, we then also have Θ ≈ −β. A
15 Furthermore, the entanglement with the environment ensured the clock was no longer in a pure state and

a second pulse would not undo this.
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naturalness argument can be used to motivate that the relation β ∼ ±α should hold, which

we can then enforce as |β| ≈ α. We acknowledge that this does not constitute a rigorous

calculation but we argue that it is sufficient in determining the relationship between α,

which represents the strength of the decoherence effect, and T. A more rigorous calculation,

while useful, is not expected to contradict our conclusions. 16

The minimisation of the relative uncertainty using the Lagrange multiplier method results

in one of two cases, both of which lead to Λ = 0. The first is given by αT � 1 and the second

by αT � 1. In either scenario there is a contradiction. If Λ vanishes, it would imply that the

condition enforcing a finite Ramsey time is no longer valid and so contradict the requirements

of the atomic clock procedure. This restriction must affect the term αT which can not be

either infinitesimal nor infinite. Rather, αT must be some finite number, a condition captured

schematically by 17

αT ∼ O(1). (4.41)

This result can be considered from the perspective of the clock system. An increase in

T implies an increase in precision. However, T must remain finite. By equation (4.41), the

decoherence effect governed by α cannot vanish since allowing α→ 0 would require setting

T→∞. The two finite values for T and α must be continually balanced against one another

in order for the system to function as intended. As the interaction of the clock with its

environment is responsible for the decoherence effect, equation (4.41) can be interpreted as

a weakly interacting condition represented by

αT . O(1). (4.42)

Unlike the previous clock example in Appendix 4.2, the isolated clock limit can no longer

apply, even as a matter of principle.

4.4 Implications for interactions
Removing the interaction effects while still achieving maximal certainty was stymied in the

clock examples presented here. When the ideal clock limit with zero interaction terms is

applied, it ultimately runs into the restrictions imposed by equation (4.17) and (4.42). The

standard interpretation of the CPI is that while interactions may be necessary in practice,

the ideal case should not include them as a matter of principle. But the above results do
16We briefly discuss other ways this calculation can be made more rigorous in Chapter 7.
17More precisley, the condition enforces αT 3 1, αT 4 1.



Chapter 4. Interacting Clocks 63

not agree with this interpretation and, once interactions are considered, there is no way to

remove them by taking the ideal limit and still maintain maximum precision,

The previously raised concerns are reinforced by the results here: Interaction represent

an unavoidable and necessary feature. Ignoring interactions from the outset allows certain

issues to be overlooked. To further the new considerations raised here regarding the impor-

tance of interactions, we next consider a qualitative view of the limits of isolated clocks and

the potential shortcomings they fall prey to.
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Isolation Versus Interaction

“The irreversibility of time is the mechanism that brings order out of chaos.”

- Ilya Prigogine

No restriction against the use of interacting clocks was implied from the results in Chapter

4. On the contrary, a review of the importance of including interactions within the CPI

appears to be necessary. We turn to more qualitative arguments and matters of principle,

examining the implications of choosing either isolated or interacting clocks.

5.1 The limitations of isolated clocks
There are three key issues which arise when using strictly isolated clocks within the CPI

framework. First, there are the interpretive implications which affect our view of time.

Specifically, we argue that the view of time as an illusion is reinforced by the use of isolated

clocks. The second issue we examine is the notion that a subsystem can be isolated at all.

We argue that complete isolation is impossible as a matter of principle, rather than simply

in practice, which raises concerns for isolated clocks. Lastly, the isolated clock appears to

restrict the CPI to a two-system description. This apparently inevitable outcome of ignoring

all interactions limits the potential of the CPI to be used as an adequate description of the

Universe.
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5.1.1 The ‘timelessness’ conclusion

In Chapter 3 the model of the Universe provided by the Wheeler-DeWitt equation was

described as timeless. Restricting to this interpretation relies on the annihilation of the

physical state |Ψ〉 by the Hamiltonian H, and so the removal of any functional dependence

on the time parameter t as far as the Universal state is concerned. This should not be seen

as a purely quantum issue since, in the classical limit, the Hamilton-Jacobi formulation of

general relativity features the same timelessness. 1 The interpretation in the CPI is then

consistent with the similarly timeless view found in general relativity.

An alternate, but related, perspective on the timeless nature of |Ψ〉 is also available. Given

the conservation of energy implied by the Wheeler-DeWitt equation, the Universe in this

model must be an isolated system. No exchange of energy is allowed across its boundary and

this state of constant energy implies |Ψ〉 is isolated from any ‘external’ influences. Without

any permitted change, the state must remain the same resulting in a scenario we might

interpret as timelessness.

Yet another perspective is granted by considering other systems which are similarly time

independent. In standard quantum mechanics, a closed system with a constant energy

value is described by the time-independent Schrödinger equation. In more accurate terms,

this scenario describes the ‘evolution’ of a stationary state solution of the time-dependent

Scrödinger equation. While systems that are isolated in this manner bear a strong resem-

blance to |Ψ〉, we do not typically interpret such system as timeless in standard quantum

mechanics. Instead, they maintain a sense of time which can be seen in the phase terms from

the time-dependent perspective.

To understand the difference between the isolated Universe and a standard isolated

quantum system, consider the surrounding environment. If a system is isolated, as per

standard quantum mechanics, it can nonetheless be assumed to exist within a larger system

which does change with time. Thus the sense of time can be ‘inherited’ by the isolated

system. The Universe cannot rely on the same logic. Firstly, the timelessness is not simply

a result of considering |Ψ〉 as an isolated quantum system. It is the inclusion of the classical

Hamiltonian, and its related criteria, which enforce the energy constraints resulting in the

negation of any time dependence. Secondly, as mentioned in Chapter 3, the boundary of

the Universe includes all systems, ensuring there are no ‘exterior’ systems available which

can influence |Ψ〉. A larger system which might provide a sense of time by ‘containing’ the
1This classical view of timelessness in relevant to the Block Universe interpretation which is discussed in

more detail in Chapter 6.
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Universe is then excluded. Ultimately, if a sense of time is present, it must emerge from

within the Universal boundary.

In light of the above discussion regarding isolated system of constant energy, we argue

that there is neither an inherent sense of time nor an inherited time available to the isolated

clocks; With no change in energy permitted, they remain independent of any inherent time.

As for an inherited time, the larger system in this case is |Ψ〉 which must remain timeless.

There is then no sense of time is available for the clock to inherit.

The sense of time in the CPI is provided by the entanglement between C and R. Although

the energy value remains constant, the clock system can still provide distinguishable states

which correlate to states in R. An account of C and R’s history is provided by these states

as each pair of states essentially represents a ‘moment’ of time within the Universe. These

consequences are summarised in, for example, [12]. While this view appears internally

consistent, adopting the interpretation does imply that particular features which form part

of our experience of time must be excluded.

Firstly, there is no sense of a ‘now’ moment; A privileged instance of time which con-

stitutes the present. 2 Rather, each and every pair of entangled states of C and R are on

equal footing and considered to exist ‘simultaneously’. A consequence of this perspective

is the removal of the experience of the ‘flow of time’ as a system’s change from one state

to another, recorded as a continual history. To claim that the states of a system must all

exist as equally real can be argued to be synonymous with claiming that a system exists in

all states. While this is an acceptable position for a quantum system to adopt, we do not

expect classical systems, or semi-classical in the case of the CPI, to behave this way. Thus to

maintain the existence of every state, we must postulate a distinct system ‘at each instant’.

The collection of these systems, each in a distinct configuration, is what we recognise as an

object undergoing change.

A useful analogy to explain this perspective is given by equating each instant of time

to a frame from a film. The system in a particular state can be represented within a frame

as an image. A succession of images then gives the illusion of change but each frame, and

the system within it, is an inherently static object which does not move from one frame to

another frame. Proponents of the timeless interpretation can then argue that a description

of our experience of time is still recoverable under this view. This brings us to the last issue

under discussion in Section 5.1.1.
2This is discussed in more detail in Chapter 6.
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In order for the timeless account of Nature to match up with the physical measurements

in experiment, the frames must line up in a very particular order. In other words, the laws

of physics as experienced require a consistent history of states to be maintained. However,

there is as yet no inherent reason to order the states of an isolated clock in a manner consistent

with our expectations. Rather than a film where the frames are all stuck one after the other,

we can think of the clock states as forming a collection of frames which cover every possible

eventuality and are in no particular order. The very specific order necessary to recover a

description of an ‘arrow of time’ is still missing.

One approach to resolve the ordering issue is to add an auxiliary system which may

serve as a ‘memory’. A history of previous states can be recorded by this memory system

such that any given state is assigned a position in the ‘timeline’. Regardless of the system in

any particular frame, the record would only hold information regarding ‘past’ states. This

would maintain the illusion that a system evolves in a privileged direction; there would be

a perceived difference between past and future enforced by the information in the memory

system. Such a system is used, for example, in [12]. We discuss this approach, and the

related interpretation, from a more philosophical standpoint in Chapter 6 while here we

argue that the construction of a history in this manner is largely meaningless under the

following interpretation on the recovery of time.

We take the entangled state of the Universe, the Hamiltonians , and the unitary operators

responsible for the evolution of each system, ÛC and ÛR, as defined in Chapter 3. However,

rather than viewing illusion of change as the generation of successive pairs of C and R in

correlated states, another interpretation is available. The application of the unitary operator

ÛC can be seen as the rotation of R through the superposition of entangled states. This

amounts to a change of basis for R with no physically realisable change occurring. Thus

the construction of a ‘history’ of states by the addition of an auxiliary memory system is

a somewhat pointless exercise as it does not represent any physically real phenomenon,

leaving the order as an ad hoc addition imposed on the timeless states. 3

Ultimately, restricting to isolated clocks removes the sense of directed evolution in time.

A description of change as a real process cannot be recovered if we start from the isolated

clock perspective. We are left with the interpretation that time, as it emerges within the CPI,

must be an illusion and this is carried through to all systems. 4

3 Without changing the outcomes of the framework, this interpretation highlights how the flow of time is
a physical reality under the CPI.

4The view of time described here can be interpreted as a quantum version of the Block Universe, as defined
in Chapter 6.
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To assess whether isolated clocks, which lead to treating time as illusion, is a viable

approach, we consider two potential shortcomings: the limit to a two-state Universe and the

ability to restrict to isolated systems. Following this, we present the alternative perspective

of time afforded by using interacting clocks.

5.1.2 The two-system Universe

Let us consider a clock C and remainder R which are perfectly isolated from one another.

As pointed out above, the sense of time recovered in the CPI is provided by the maximal

entanglement between C and R. In the absence of any interaction effects, the entanglement

correlations are the only available avenue for information about each system to be shared

with the other. Essentially, the systems in question can only ‘know’ about each other through

their shared entangled state. The implication is that R can only access the clock parameter

when the description of C and R is viewed as a whole state, rather than any one part.

There is another consideration to take into account: The respective sizes of C and R.

Instead of discussing the systems’ physical sizes, we are interested here in the relative sizes

of the Hilbert spaces associate with each subsystem. If R’s configuration space was larger

than C’s, there would be a degeneracy in the entangled state |Ψ〉. This leads to an ineffective

clock since more than one state of R would be associated with a single state of C and the

ordering of correlated states would become ambiguous. Similarly, if C is much bigger than

R, the problem arises that multiple clock states could be associated with a single state of

R. The subsystems C and R must then be of comparable dimensions if the time parameter

provided by the clock is to be useful in the description of R’s evolution. 5

Given the above account, how do subsystems within R (or C) account for a sense of time?

Consider a subsystem of R, which we label R′, which is significantly smaller than the whole

system: R′ � R. This is illustrated in Figure 5.1. Since R′ is not correlated to the entire state

of C, only a portion of the clock state, and so only part of the entanglement information, is

available to the subsystem R′.

Since the entanglement is the only means of sharing information between C and R in the

isolated scenario, there is no other recourse for R′ to learn the clock state. The same is true

from the perspective of the clock. It is only aware of R as a whole state, rather than as a

collection of constituent parts. From the limited access, R′ only has part of the picture and
5 The requirement that every state of R be entangled with a state of C results from the CPI’s requirement

for a maximally entangled state.
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Figure 5.1: A schematic representation of the Hilbert space of the maximally entangled
systems C and R which are perfectly isolated.

the result is an ineffective time parameter, from R′’s perspective, which cannot successfully

convey a sense of time in the manner accomplished for the total R state. Even if we were to

consider R′ to be entangled with C′, a subsystem of C, we could not guarantee that that R′

and C′ would maintain a maximally entangled state and the necessary correlations. The time

description between such a pair could differ sharply from that provided by C and R. The

conclusion is that C and R provide a sense of time, and so a description of evolution, only

when taken as a whole. The subsystems C and R contain are not privy to the information

regarding the overall entangled state nor time parameter measured by C.

The cost of recovering time using isolated clocks seems to be a restriction to a two-system

Universe. This is not the only disadvantage of the isolation constraint as can be seen when

we consider whether interactions can be entirely excluded.

5.1.3 Interactions as a matter of principle

The introduction of the weak interaction limit in the CPI formalism is commonly used as

a motivation to discount all interaction effects. Specifically, this argument is used in [12] to

limit the discussion to these features of the CPI which are necessary as a matter of principle.

The assumption is that perfectly isolated systems are required by the framework of the CPI

and that interacting systems, while important in practice, are not considered relevant in

principle.

If we examine the manner in which interactions occur, however, an argument arises

which is in favour of their inclusion as a matter of principle rather than in practice. Consider
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two subsystems of the Universe, similar to (but not necessarily) C and R. We anticipate that,

even if they are isolated from all other interaction effects, there will still be a gravitational

force between them. This effect, however negligible, cannot be shielded and, while it might

remain a very small, insignificant effect, it would nonetheless be present as a matter of

principle.

If interaction effects must be included in the manner described above, an alternative

interpretation of the weak interaction limit presents itself. Following a much more literal

definition of ‘weak’, we suggest that the interactions effects should be included as negligible

but not zero. Small gravitational effects are ideally suited to this perspective. They become

negligible over large distances, leaving the framework of the CPI largely unchanged but

they cannot be zero, even in principle, and so must be taken into account in order to provide

a more complete picture than the current view.

The notion that interactions are involved as a matter of principle supports the analysis

presented in Chapter 4. The influence of interactions on the accuracy of the clock would

be missed entirely in the isolated clock approach since interactions are excluded from the

start. The analytic results confirm that the interactions should be kept close to zero which

reinforces the use of the gravitational force as a useful method of facilitating interaction

effects between C and R. In the discussion to follow, we will build on this in order to argue

that the subsystems within R rely on interactions for their sense of time.

5.2 The consequences of including interactions
The inclusion of interactions in principle ultimately lead us to question whether time and

change, as emergent phenomena of an isolated Universe, must be interpreted as an illusion.

A discussion of this nature naturally leads to philosophical issues which we will discuss in

Chapter 6. 6 Here we present an argument to show that the inclusion of weak interactions

allows the subsystems of R to ‘retrieve’ a sense of time without contradicting the CPI frame-

work. We will also argue that restricting to weakly interacting clocks does mean renewed

trouble with the clock ambiguity problem discussed in Chapter 3.
6 Briefly, interactions constitute a process and so are incompatible with a timeless Universe in which such

change is not ‘real’.
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5.2.1 Multi-system description

From a conceptual viewpoint, the inclusion of interactions provides a way around the two-

system Universe restriction. If the subsystems of R are permitted to interact directly with

C, as illustrated in Figure 5.2, the result is a measurement of the clock which grants direct

access to the time parameter. The time parameter, and an accompanying sense of time, can

be distributed throughout any number of subsystems of R in this manner. 7 We will illustrate

Figure 5.2: A schematic representation of the Hilbert space of the maximally entangled
systems C and R when interaction effects are permitted.

this with an example shortly, but first two important points must be noted regarding the

inclusion of interactions.

First, the interactions can provide a direct measurement of the clock, while still adhering

to the restriction that the effect between systems is very small. Provided the systems remain

weakly interacting in this manner, the CPI framework will continue to function. This is not

to say that interactions can occur indefinitely without affecting the formalism and we will

discuss the outcome of allowing the interaction effects to build up after the presentation of

an example of an interacting clock.

The second point is the continued importance of the entangled state. Even though R′,

and other subsystems of R, rely on interactions with the clock to provide a time parameter,

the entanglement between C and R is still necessary in order to recover a sense of time. If

we were to describe C and R as separable, we would lose the correlation between specific

states of C and R as provided by the entanglement. Any state of R could then be associated

with any state of C, nullifying the use of C as a clock. Maintaining the CPI thus requires the

continued use of the entangled state. As alluded to above, the build up of interactions does
7As with the isolated case, the systems C and R are taken to have similar dimensions.
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present a threat to this entanglement but, as we will explain following the example, there is

a conceptually consistent interpretation available which resolves the concern.

We now turn to our example and select a suitable clock. The expansion of the Universe

serves as a useful system in this regard and has in fact been used previously in a time-keeping

capacity as can be seen, for example, in [39]. Although the expansion does not resemble

a familiar clock system, we nonetheless assume that the expansion is governed by some

mechanism which we can identify as C, a subsystem of the Universal Hilbert space. This

type of clock was also used in [69] where interaction effects were once again assumed to be

zero.

We are interested in how time emerges for subsystems of R and so we identify two galax-

ies, labeled R′ and R′′, to serve as (comparatively) small subsystems of R. The gravitational

force between R′ and R′′ provides a means by which one galaxy may influence another. The

Figure 5.3: A schematic representation of two interacting galaxies. In the first scenario,
the expansion of the Universe overcome the gravitational force while in the second scenario the
gravitational force overcomes the expansion.

resulting ‘measurement’ of the expansion of the Universe can be separated into two cases

which are illustrated in Figure 5.3. In one scenario, the expansion of the Universe overcomes
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the gravitational force between R′ and R′′. In this case the two subsystems continue to

separate further from one another in space. On the other hand, R′ and R′′ might have a large

enough gravitational force between them to overcome the effect of the expansion meaning

they would eventually collide. 8

In either case, the gravitational forces allow an ‘interaction’ with the clock and, however

weak the effect of the expansion and gravitational forces might be, the effect cannot be

shielded. 9 In examining galaxies today, we collect the photons emitted from distant systems

in the Universe in order to determine properties such as their mass and their velocity relative

to the Earth [70, 71]. To measure the expansion of the Universe as an influence on the strength

of the gravitational attraction between them, we may similarly rely on light emitted by R′

and subsequently collected by R′′ (and vice versa). The respective masses of two galaxies

determine the gravitational force which, in the absence of any other influence, would cause

the two systems to move towards each other at some calculable velocity. The expansion

of space would produce a discrepancy between this calculated velocity and the velocity

determined by measuring the emitted light.

Overall, we argue that this scenario serves well as a description of time when investigating

interacting clocks within the CPI. Indeed the expansion factor can easily be interpreted as

a natural choice for a ‘cosmic’ time parameter since it influences the entire measurable

Universe. Utilising weak gravitational effects as the interactions is similarly useful since

these are also experienced by all systems across the Universe. Any subsystem of R can then

access the clock along with its associated time parameter.

Another benefit is that, as with the examples analysed in Chapter 4, an arrow of time re-

sults from the inclusion of interactions. To see how this arrow both manifests and aligns with

others, we first consider the psychological arrow of time which, under a certain description,

can be closely related to the thermodynamic arrow of time [72, 73]. Specifically, we can dis-

cuss the psychological arrow in terms of the continual process of recording new memories.

This is essentially the accumulation of information and, as such, represents the extension

of the psychological arrow beyond conscious systems such as humans or even the closely

related computer systems. If we consider the configuration of a system as its ‘memory’, then

any change to this configuration that results from an external influence can be interpreted
8One might also argue for a third option in which the gravitational attraction is exactly balanced by the

push of expansion. We do not discuss this in any detail as this unlikely scenario is not expected to affect the
outcome of our argument.

9 Here, we are attributing the expansion of the Universe solely to gravitational forces and not to some form
of exotic energy or matter source associated with so-called dark energy.
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as the recording of information. 10 Continually recording new information in this manner

can then be tied to the thermodynamic arrow of time. In order to ‘write’ a newly gathered

piece of information, the previous configuration of the ‘memory’ system must be erased. In

computer jargon, it must be overwritten. The process of erasing information produces heat

[74] and must then be accompanied by an increase in entropy, as per the description given

by the Clausius inequality. Thus the psychological arrow can be argued to point in direction

of an increase in entropy and in doing so align with the thermodynamic arrow of time.

What about our ‘cosmic’ time? Certainly the interactions between the subsystems, which

are no longer closed, are expected to result in an increase in entropy. For the arrow of time

between C and R, an interpretation similar to that given above is available. We can consider

the measurement of one system by another as a change to the system’s configuration. A

direct result of the external influence, this represents a record of new information and the

erasure of the previous configuration. Heat must also be produced in this process and

the result is an increase in entropy. We can reasonably anticipate that the cosmic arrow

of time, as directed by this entropy increase, should also align with the thermodynamic

and psychological arrows as described here. While this recovery of an arrow of time aids

our description of change in time, weak interactions over a long enough time period raise

concerns which we now address. 11

The cumulative effect of the interactions becomes significant as the evolution of C and

R continues. 12 Eventually we would reach a stage where we can no longer approximate to

the weak interaction limit, prohibiting any further use of the CPI. In terms of our example,

the expansion continues and R′ and R′′ will either form one system, if gravity overcomes

expansion, or be separated by the expansion to such a distance that any interaction effects

vanish and no further communication is possible. In either case, neither system can access

the clock state via the gravitational effects.

This certainly seems problematic for the CPI but it need not be. Extending this scenario

to its conclusion, we would reach a maximum entropy state for the Universe. In this case, the

subsystems of R could no longer record the state of C, even if the clock was still accessible.

We might then argue that the inability to measure C coincides with the “heat death” of

the Universe. This would leave the CPI perfectly functional up to this expected point of
10 We are referring specifically to irreversible change.
11For a contrary but related perspective on how the entropy in the above scenario leads to an arrow of time,

see [75].
12Although the interactions may remain weak indefinitely, the effect will become significant given a long

enough time.
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no return, a state of maximally coarse-grained entropy after which no evolution would be

possible.

There is one more issue to consider before concluding the discussion on interacting clocks.

As suggested by the above discussion, isolated clocks may have certain shortcomings but

they were successfully used to resolve the clock ambiguity. It might appear that invoking

interacting clocks as a matter of principle reopens the problem, an issue we discuss below.

5.2.2 Ambiguity as superficial issue

The ambiguity problem, as explained in Chapter 3, arises as a result of our ability to partition

the Universe in any number of ways. Every different partition corresponds to a different

clock, a different Hamiltonian, and different clock dynamics. Under this view, the behaviour

of C and R depends on an arbitrary partition choice and there is no inherent reason to

expect consistency between different choices. By restricting to isolated clocks (or equivalent

systems) only, the choice over how to partition the Universe became superficial and the

ambiguity was removed. While it may appear that allowing for interacting clocks leaves us

back with the ambiguity problem, we argue this is not necessarily the case.

Let us first consider the subsystems within R which each access C directly in order to

gain a sense of time. Each subsystems only measures part of the clock state, as per the

description above. The perspective a subsystem of R has of the time parameter might then

differ significantly when compared to what is measured by another subsystem of R. There

is then an ambiguity over dynamics as the subsystems C and R depend on what part of the

clock they arbitrarily happen to access. This ambiguity can be resolved if we appeal to the

feature ultimately responsible for a sense of time in R: the entangled state. It is only through

the entanglement of C and R that a sense of time is recovered in the CPI at all. As such, any

measurement of the clock performed by a subsystem of R must ultimately relate back to,

and so align with, the ‘entanglement time’. 13 All the subsystems of R must then ultimately

be using the same time, regardless of which part of C they access directly.

What about the entanglement time? While we can argue that the subsystems of R (and

similarly C) are all accessing the same time, the ambiguity remains over the partition choice

which is initially used to select C and R. The entanglement time, and related dynamics,

certainly depend on a choice but this need not mean the descriptions are entirely arbitrary.
13 This refers to the time associated with the entanglement between C and R, as per the CPI framework

discussed in Chapter 3.
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As C and R are interacting with one another, they share more than just their entangled state.

The continued interactions ensure that the entropy of the pair increases. If the second law of

thermodynamics is adhered to, we can expect every partition involving an interacting clock to

describe an entanglement time which also aligns to the thermodynamic arrow of time. 14 In

effect, all the clocks ‘point’ the same way. 15 It must be stressed that this relies strongly of the

implementation of weak interactions to ensure that the increase in entropy, associated with

a decrease of entanglement, is gradual enough to provide a sufficient number of correlated

states of C and R.

The clock ambiguity need not be seen as means of prohibiting against the use of interacting

clocks. While a choice over how to partition |Ψ〉 does remain, the ambiguity over which

direction in time the systems evolve is removed. Realistic clocks may still be governed by

different dynamical laws, for example a relativistic versus a Newtonian clock as used in

the application of the CPI as per [51], but these clocks would nonetheless agree on which

direction in time is toward the past and which is toward the future. We conclude that the

inclusion of interactions not only avoids breaking the CPI framework, but also continues to

reinforce the phenomenon of an arrow of time as an in-built feature of the isolated Universe.

The implications of this outcome can now be assessed with reference to the interpretive and,

indeed, philosophical considerations of time in physics.

14 In discussing interacting clocks, we are discussing open systems undergoing irreversible processes.
15 Specifically, clocks share the same arrow even while maintaining a partition-dependent entanglement.
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Philosophical Implications

“Time is an illusion, lunchtime doubly so.”

- Douglas Adams

Beset by differences in opinion, the debate over the nature of time extends at least

as far back as the early Greek philosophers and has continued over the centuries. Modern

considerations of time are prolific and we while we can point to the examples in [3, 8, 9, 76, 77],

this is by no means a complete list. Irrespective of the extent of this debate, two opposing

camps which were laid out in the philosophical discussion of the ancient Greeks can still be

identified today.

On the one hand, there is the ‘eternal’ Universe described by Parmenides [10]. Under this

interpretation, any perceived change is taken to be an illusion while the Universe remains an

unchanging and, indeed, static place. The opposing view offered by Heraclitus argues that

change must be a real process and not an illusion. It is worth pointing out that these two

views typically use the shorthand term ‘time’ in a sense which encompasses our perception

of change in time. Here, following the definitions laid out in Chapter 1, we maintain the

distinction between the two concepts.

The focus of this discussion is to see whether including interactions as a matter of principle

offers any further insight into the debate on the opposing interpretations of time mentioned

above. This centuries old debate, however, contains many nuanced definitions and argu-

ments which involve notions that are much more philosophical in nature than those typically

addressed in physics. We will therefore try to distill the most relevant elements of the in-
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terpretations, specifically in terms of how they pertain to the theories of physics discussed

in the preceding chapters as the aim is simply to place our results into the philosophical

context. 1

6.1 The experience of time as an illusion
We first consider the view that change, as our perception of time, must be an illusion. While

it may have its roots in ancient Greece, this notion of ‘eternal existence’ without change can

often be found in modern physics as well; It is the view we encountered in the timeless

interpretation of the CPI discussed in Chapter 5.

6.1.1 The A-series and B-series of time

In examining this view on change, or lack thereof, we turn to an argument presented in [78],

known commonly as McTaggart’s Paradox. By considering two ways of describing events

in time, the resulting paradox implies that interpreting change as real is an invalid approach.

McTaggart’s description allows us to neatly differentiate between two interpretations of time

and so we sketch the argument below in order to the relate its conceptual pictures of time to

the interpretations found in physics. However, the validity of the argument, as well as the

conclusions drawn from it, remain under debate. 2

The two descriptions of time are as follows. We have the A series of time that describes

the transition of an event in time and requires a privileged ‘now’ moment to represent the

present. An event then undergoes a transition from future, through to ‘now’, and finally

to past as the present moment progresses along in time. This describes our perception of

time; essentially the continual change of the configuration labeled ‘present’. The B series, on

the other hand, assigns only one time ‘label’ to each event and they remain in that position.

Events are then related to one another in terms of where they fall along the dimension of time,

rather than by their relation to a moving present moment. These two views are illustrated

for comparison in Figure 6.1.

McTaggart’s argument is that the inclusion of the A-series presents a contradiction,

although there is some disagreement on exactly how the problem manifests. Here we present

one view of the paradox in which the labels of ‘future’, ‘present’, and ‘past’ cannot apply
1 Note that this context involves arguments previously established in the literature as opposed to the more

speculative discussion which is reserved for Chapter 7.
2A summary of the treatment of time in physics that touches on these issues can be found in [4].
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Figure 6.1: A representation of the two ways events may be ordered in time. The A series
describes how events change from future to past while the B-series prescribes each event a
fixed placement in time.

‘simultaneously’ to a single event without causing a paradox. It must be explained how an

event is successively labeled future, then present, and finally past. This requires explaining

how the labels are assigned at different times, as dictated by a present moment which is

held responsible for the transition of events from ‘future’ to ‘past’. But the specification

of ‘where’ the present moment is, and so what is considered future or past, must also be

defined. As argued by McTaggart, this requires a second A series which defines the ‘future’,

‘present’, and ‘past’ status of the present moment itself in order to locate it along the B

series. This essentially involves an appeal to a higher-order temporal series, which we have

schematically represented in Figure 6.2, but, if the argument holds, we would be stuck in

an infinite regress. Each attempt to explain the application of ‘past’, ‘present’, and ‘future’

labels relative to a present moment results in the use of yet another A series.

There have been many concerns raised over the definition and use of the A and B series

of time and the arguments which utilise them are by no means conclusive. However, they

do provide two useful representations of time which aid our discussion. If a consideration

of the A series, as a representation of the experience of time, concludes that the very notion

of time is an inconsistent one then change must be an illusion. The Universe in such an

interpretation would exist is a stationary state; a permanent ‘being’ in the sense defined

earlier following [10]. This view arises in general relativity, where the Block Universe can
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Figure 6.2: A representation of a secondary A series ordering. This would in turn present
the same problem as the initial A series and so itself require invoking yet another A series.

be used to describe just such a scenario of permanent existence.

6.1.2 The Block Universe in physics

The Block Universe is an interpretation of time which can be applied to general relativity. 3

The conceptual picture resembles the B series in that it fixes all events in relation to one

another in a permanent location in space and time.

There are two key features of general relativity which make it suited to such a view of

time. First is the elimination of simultaneity and, with it, the possibility of a privileged

present moment. Without the ability to pinpoint ‘now’, the notions of ‘past’ and ‘present’

become meaningless, except as relations between events in spacetime. The second feature

is the deterministic nature of general relativity. If one had enough information about the

configuration of the Universe for a single moment, all moments before and after could be

essentially set in stone.

This leads us to the conceptual picture of the block Universe which is illustrated in Figure

6.1.2. There is no privileged present which can be used to pick out a special single slice of

time as ‘now’. Furthermore, all events can be described in a deterministic fashion following

the classical equations of motion. The entire history of the Universe can then be laid out in

a four dimensional block of spacetime. Each event is then assigned a location within that

block. 4

Within the Block Universe, there can be no real sense of change. A system in a particular
3The idea is not limited to general relativity and is more broadly considered in philosophy as ‘eternalism’.

For a summary see, for example, [79].
4There are different variations on this idea one of which is the ‘evolving Block Universe’ in which the block

continually grows as successive moments of time are added. This is described in, for example, [5].
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Figure 6.3: A schematic representation of the Universe as a block, with two dimensions of
space and one of time.

configuration is permanently set at its assigned spacetime coordinates and what we might

perceive as change to a system should rather be interpreted as the sum of several parts. These

Figure 6.4: A representation of the Block Universe’s perspective of a falling apple within the
spacetime block which has been expanded to provide a view of successive slices.

parts each represent a particular configuration of the system within a ‘slice’ of time and it is

the presentation of these slices as a progression which produces an illusion of change. This

is conceptually illustrated in Figure 6.4 where an apple falling from a tree is viewed from

the Block Universe perspective.
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We cannot identify any real physical difference between the future and the past under

this approach. All the configurations of the falling apple exist equally and together; none

can claim a privileged status of existence. The description of the series of events can be

considered entirely reversible in a manner consistent with the classical equations of general

relativity. It would appear that it is a quirk of Nature, rather than a requirement, that we

remember the past and not the future since, under current Block Universe descriptions, we

could construct alternative representations where the illusion of causal order need not hold.

What is lacking from this interpretation then is an explanation for why we should perceive

the illusion of change at all; why should measurement differentiate between the past and

future? We certainly see a very specific and consistent order that appears to correspond

to a cause and effect chain which leads from past to future. To ensure that the Block

Universe picture is consistent with our experience, there must be some additional feature or

postulate which explains how and why the Universe goes through the trouble of constructing

the illusion of an irreversible causal ordering rather than any other number of potential

constructions. 5 6

Another potential problem for the Block Universe is the introduction of quantum me-

chanics. The use of probability and uncertainty present a possible contradiction to the

deterministic nature of the Block Universe. 7 However, while the original form of the block

Universe might not survive standard quantum mechanics, the interpretation of change as

an illusion certainly does.

6.1.3 Quantum timelessness

In Chapter 5 the notion that there is no physically real sense of change within the CPI was

introduced. The use of isolated clocks led to an interpretation with neither a privileged

present nor an inbuilt arrow of time. Rather, an ad hoc memory system was introduced in

order to provide a history of states and, in so doing, an arrow of time.

The requirement to put in an arrow of time by hand and the interpretation that time must

be an illusion aligns with the Block Universe approach. However, there is an important

difference. Rather than a single, privileged order which aligns with a time dimension, the
5 If microdynamics are considered, the second law can be invoked to retain an order of events but this does

not explain the irreversibility we experience.
6This line of thinking brushes against the vast collection of philosophical thought on reality and our

perception of it. While there are many varied and nuanced positions to be found, we do not discuss them in
detail as the primary focus remains on interpretations applicable to physics.

7It should be pointed out that this issue is avoided under deterministic descriptions of quantum mechanics.
For example, see [80, 81].
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systems in different configurations are ‘scattered’, in an abstract sense. This is conceptually

illustrated in Figure 6.5, where we have again used the example of an apple falling from a

tree.

Figure 6.5: Conceptual representation of ‘moments of time’ which collectively create the
illusion of change and where the arrows illustrate only one potential ordering of events.

This ‘quantum Block Universe’ also appears in other interpretation where it is argued

to be a truly timeless interpretation that effectively removes the time dimension altogether.

Championed by Barbour [82], this interpretation claims to remove time ordering at the most

fundamental level of reality. Rather, the laws of physics are responsible for the illusion of

ordered change as they group systems, such as those represented in Figure 6.5, in terms

of the similarity of the configurations. Specifically, the principle of least action is called

upon to provide a consistent ordering. For a more nuanced summary of this approach see,

for example, [83]. This sentiment which regards time as inessential to the foundational

description of reality are echoed in other research as can be seen, for example, in [84] and

also in [85] where an alternative approach is taken.

Whether in general relativity or quantum mechanics, or indeed a semi-classical theory

such that the CPI provides, it appears that change may be treated as an illusion. However,

in either case, there must be some additional feature, or in some cases a postulate, in order

to recover the one-way experience of time as a process which appears to be ubiquitous

throughout all physical systems. We now contrast this with the alternative approach to
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argue that, if change is taken to be a real process, there is a consistent interpretation of

time with no more cost of additional postulates than what we have seen in these timeless

interpretations.

6.2 The experience of time as a physical reality
There are arguments in favour of the notion that time, and our experience of it, should be

interpreted as a real phenomenon. Examples of these types of arguments can be found in

[86, 87] where the necessity of interpreting general relativity to have a Block Universe-type

structure is questioned.

Following along a similar line, recent arguments have also been presented against the

inclusion of timeless interpretations in quantum theories. One such example, given in

[88], calls to question the assumption that an abstract mathematical description must in all

cases stand for physical reality; while the theory’s mathematical framework may describe

systems as existing perpetually, this need not necessarily represent a view of fundamental

reality. This echoes the arguments laid out in [89] which similarly caution against assuming

every element of the abstract mathematics of physical theories must correspond to physical

reality; a point that has also been argued from the other perspective in [90], who states that

current physics’ lack of an account of the experience of time should not mean we discard

the phenomenon. Others have raised the question of irreversibility, arguing that there are

features of quantum theory which align more with an interpretation of time where the future

is distinguishable from the past. See, for example, [91, 92, 93]. Still others question the value

of the timelessness interpretations, suggesting that, even if they can be shown to be logically

self-consistent, they do not allow for any further understanding [94].

What of the alternative view of change as a real phenomenon? Considering change as

the result of one system’s interaction effect on another, is the result really more costly in

terms of assumptions and unresolved issues? As per the definitions laid out previously,

such interactions can be considered to be a process by which two (or more) system exchange

information regarding their configurations with one another. Under such a view, each system

exists in a series of successive configurations but is only ever in one configuration at a time,

rather than existing equally in all configurations. With this interpretation in hand, we turn

once more to the CPI.
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6.2.1 Interactions and interpretations of time in the CPI

The interpretation of time in the CPI is typically taken to align with the timelessness philoso-

phies described in Section 6.1 and, as discussed in Chapter 3 and Chapter 5, this treatment

of time as an illusion takes the notion of change with it. Including interactions, however,

forces us to reconsider this position. As pointed out above, interactions can be taken to rep-

resent the influence of one system on another. If these interactions are to be responsible for

transferring information from one system to another, as with the measurement of the clock

in Chapter 5, it must arguably be a real physical process. In other words, if we are taking

interactions seriously and as a means to transmit information, we are also taking change to

be a real, physical process responsible for getting information from one system to another.

If the process is not real, but instead taken to be an illusion, we return to the same problem

as the timelessness interpretations: We must introduce an auxiliary memory system or ad

hoc postulate to account for the ordered experience of time and the ‘knowledge’ of systems

on their, or other systems’, previous configurations.

There are several benefits to the interpretation of change as real. The irreversible nature

of an interaction between two systems allows us to distinguish between the future and the

past since one direction can be picked out as corresponding to the continual increase of

entropy, given a sufficiently large scale. From this we gain an arrow of time. Similarly,

under the interpretation that an interaction imparts information, we can identify a historical

record without including an auxiliary memory system. Rather, we can argue that the current

configuration of systems in the present moment represents a record which encodes the past. 8

This incorporates a dependence of present (and future) configurations on past configurations

and interactions. By investigating a system and its interactions with others at one time, we

may extrapolate the past configurations. In this sense, we recover an account of the flow of

time as a historical record which is built into the current configuration of the system that has

experienced that history, as opposed to a record kept by a separate ‘memory’ system.

The importance of irreversible process in the examination of time, along with the treat-

ment of such change as real, has been advocated for previously in physics. Notably, Prigogine

argued that a sufficient account of time would require not just the description of a system

in a series of configurations (being) but also the process by which it changes from one con-

figuration to another (becoming) [95]. 9 The role of irreversiblity continues to be discussed
8 While this resembles Barbour’s use of ‘time capsules’, taking change as a real physical process implies

these capsules cannot exist equally and so diverges from the timeless picture.
9For a detailed account of this type of process philosophy, see [96].
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in current accounts of time. As a recent example, the use of irreversible process has been

argued to help resolve the gap between the relativistic and quantum theories [91]. There are,

however, arguments which are presented against the necessity of incorporating irreversibil-

ity at a fundamental level. For example, one suggestion is that reversible processes need

not be forbidden provided they remain unobservable to physics’ experimental procedures

[97]. 10 Nonetheless, even if such an argument were applicable, we would still require an

account of how (and why) irreversible procedures remain ever-present in experiment at all.

In this investigation, we find that including interactions and attempting to avoid addi-

tional caveats leads us to conclude that the experience of time is a real phenomenon. It

may be troubling that the Universe as a whole remains incapable of experiencing time in

the manner described here, as there is no ‘outside’ system for it to interact with. However a

possible interpretation exists whereby real change may be considered an emergent feature of

a Universe that remains timeless when taken as a whole. For an account of our speculations

on such an interpretation, as well as potential path to resolving the A series paradox, see

Chapter 7.

It must be noted that we are not arguing that the timeless approach is in any sense beaten

out by the interpretation of change as real. While we need not add the additional axioms

of the timeless models, we still rely on the postulate of causality which was pointed out to

be a requirement in accounting for change in Chapter 2. 11 By enforcing the interpretation

that a future system depends on a past system, we can argue that we are invoking a cause

and effect relationship of the type described in the introductory definitions. Interpreting

interactions as real phenomena which produce new configurations in a consistent way can

then be considered as tantamount to including a postulate of causality.

It may be taken as a mark against the ‘change is real’ interpretation that it too relies

on an as yet unexplained postulate, in a similar manner to the timeless interpretations.

Nonetheless, taking the process of change as real is no more expensive than assuming

change is an illusion. It certainly appears that the alternative interpretation is consistent,

and perhaps unavoidable, even within the ‘timeless’ CPI. We might then consider the task

of accounting for causality and its role in the process of change.
10For an example of alternative approach in which an arrow of time is discussed in the context of irre-

versibility, see [98].
11 Examples of additional axioms include the priinciple of least action and, in some cases, the order of events

is simply taken as axiomatic.
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6.3 The role of causality
Causality, as a physical phenomenon worth discussing, was thrown out of discussions of

physics largely as a result of Hume who argued that there is no possible method by which

we may prove cause and effect relationships [99]. His argument focused on the inability of

our senses to provide any empirical evidence for causality, arguing that at best we could

point out correlations but that this would never be sufficient, according to empiricism, to

determine causal links between events.

Hume’s approach has since been countered by others who have argued that there are

benefits to considering causal relationships. A significant contribution was provided by

Popper, who argued that science requires an assumption of causality in order to produce

theories which corresponded to the ordered state of the Universe [100]. 12 The argument is

that the scientific method relies on causal relations and, while these might not be provable, we

continue to use them and in so doing refine our theories which each successive experimental

measurement of Nature. In spite of this continued reliance on causality in the scientific

method, the concept came to be considered ‘folk’ science by many. Indeed, Russell had stated

that the “law of causality, I believe, like much that passes muster among philosophers, is a

relic of a bygone age, surviving, like the monarchy, only because it is erroneously supposed

to do no harm” [101]. And so the use of causality as an explanatory tool, or even a concept

worth investigation by physics, fell somewhat by the wayside while nonetheless remaining

a crucial feature of our current models.

Regardless of this general opinion, arguments have been put forward that are in favour

of treating causal reasoning as a crucial part of the framework of physics and examples can

be found in [102, 103, 104]. In recent years, there has been a renewed interest in the role

causality has to play in understanding the Universe. Some credit the advent of computers

for this stating that the cause and effect relationship is crucial when determining why a

computer program is not functioning as expected [14]. 13 Others have advocated for the

use of causality specifically as a resolution to issues in quantum mechanics [108]. We can

then add the interpretation of the CPI presented here as an additional reason for further

investigation into the role of causality.

Certainly adding causality is not a silver bullet to the problem of time. There are multiple

open questions which still require explanation. Not least of these is the problem of infinite
12Similar considerations can also be found in [89].
13Alternative accounts of causality can be found in, for example, [105, 106] which are reviewed, along with

[14], in [107].
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regress; An explanation of the starting point for the chain of cause and effect which has

seemingly been discussed for as as long as time itself. We would also have to address the

concerns first put forward by Hume regarding our inability to prove causal relationships.

In terms of the interpretation of time in the CPI, we would have to consider the interplay of

interactions and causality. Specifically, if interactions as causes are to be considered external

influences as in the case of the environment influencing the clock, we must ensure this is

consistent with the closed Universe model used within the CPI framework. The Universe as

whole could not be said to experience interactions since all influences would be internal. If

cause and effect processes are tied to interactions, the Universal state would not experience

them, relating this to the description of change as an emergent phenomenon that is only

experienced by subsystems of the Universe but not the Universe as a whole. Following this

line of reasoning, a description of emergent causality might be pursued; a postulate which

would be incapable of applying to the Universal state but crucial to the account of time

nonetheless.

Once we have the postulate of causality in place, our treatment of interactions as a

real process leads to a description of change which aligns with experiment. Similarly, the

theories discussed in Chapter 2 appeal to some additional feature to provide an ordering that

is consistent with cause and effect relationships. If the issues surrounding time are resolved

in this manner, leaving only the postulate of causality to be added by hand, it implies that it

is this postulate which requires further investigation. Not only should causality be included

in the discussions on time, it should be a focal point.
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Discussion and Speculations

“Time changes everything except something within us which is always surprised

by change.”

- Thomas Hardy

All of the interpretations of time that we have discussed up to this point lack conclusive

experimental evidence, a result that is mostly due to the inherent interpretive and philo-

sophical nature of the topic. But this need not remain the permanent status quo. History

has shown that concepts which begin as purely philosophical considerations can be later

related to physical theories, and in some cases even physical measurements, as our knowl-

edge and technological capabilities progress. If we want to try to bring interpretive issues

within reach of experimental procedures with the potential to probe the phenomenon of

time, further research into the topic of time is warranted. Attempts to do just this can be

found in [109, 110]. Here we consider the directions future research might take within the

context of the outcomes of the our investigation.

The model of the Universe used in the CPI has had ramifications for the problem of

time. The standard interpretation, associated with the Wheeler–DeWitt equation, that this

isolated Universe is timeless has led some to the conclusion that our emergent experience of

time must ultimately be an illusion. However, this interpretation of change is brought into

question by our investigation into the use of interacting systems within the CPI. Certainly

timelessness, as associated with isolated clocks, no longer appears to be the only available

option. Before discussing these interpretive aspects further, we consider the quantitative
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results of our clock examples in Chapter 4.

The focus throughout our analysis has been on the general features of the CPI. This

leaves open areas where the approach could be refined by, for example, further examining

the influence of interactions on the CPI in more detail. We accounted for the influence

of interactions on the clock but no specifics were provided about the environment that is

responsible for inducing the damping (or decoherence) effect in the clock system. It may

be worthwhile to carry out a more rigorous analysis in which the environment is explicitly

described in order to examine if this affects the results reported here. We might, for instance,

consider the damped harmonic oscillator to be coupled to a secondary oscillator as was done

in, for example, [111, 112]. Adapting this description to fit the context of interacting clocks

within the CPI, the secondary oscillator would represent the environment and a comparison

could be made to other approaches in which the interactions are considered, such as was

done in [45, 55]. While we might anticipate that an explicit calculation would deliver similar

results, a rigorous example provides the opportunity for verification of the conclusions in

Chapter 4. We could also ensure that the two subsystems of the Universe are of a comparable

scale, as per the requirement discussed in Chapter 5, to better align with the CPI framework.

Along this same line of thought, we might consider a more rigorous investigation into

the use of the Universal expansion as a cosmic clock system. Such a ubiquitous phenomenon

throughout the Universe certainly serves well as a clock and the expansion’s accessibility by

physical systems makes it particularly applicable to the CPI formalism. A clock based on the

expansion is only used here in a schematic sense but it could be developed into a more explicit

calculation, similar to the investigation in [69]. For example, we might consider how long

such a clock could be efficiently used by the physical systems of the Universe. Quantifying

a description of the entanglement between the expansion, or the systems responsible for

it, and the rest of the physical Universe could provide a more concrete assessment of this

clock’s ability to function within the CPI framework. Certainly the entanglement must be

maintained as a necessary feature of the CPI, as per the definitions in Chapter 3 and the

following discussion in Chapter 5. Given a sufficiently detailed account of the entangled

state, we might be able to calculate the rate of decoherence resulting from the continual, but

weak, interaction effects that are ultimately anticipated to lead to a state of maximum entropy

for the Universe. The timescale provided by such a calculation, along with the specification

of the entangled state, could be examined with respect to potentially measurable predictions.

The potential connection between the expansion of the Universe and cosmic time is one
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which has been pointed out before in previous investigations, such as those conducted in

[113, 69]. This line of reasoning can be taken further as our proposal, outlined in Chapter

5, may be taken to suggest a connection between entropy, a result of interaction effects,

and gravity, which is incorporated into the description via the expansion. Although we

will not go into further details of this idea here, as it remains highly speculative, we would

nonetheless point out that research conducted in the field of high-energy physics shows

indications of a close relationship between entropy and gravity. One such example is the

derivation of Einstein’s field equation’s via the first law of thermodynamics [114]. Others

build on the gauge-gravity duality, a description of which can be found in [115], to show a

connection between entanglement entropy and null surface [116] and this same holographic

framework was also shown to allow a recovery of the second law of thermodynamics [117].

On the philosophical side of the issue, future investigations might also allow us to further

refine the interpretive issues surrounding time and change. In particular, the difference

between the description of time provided by isolated clocks and that currently used in

standard quantum mechanics could be examined. The CPI certainly differs from standard

quantum mechanics as it introduces a ‘mechanism’ to account for time: the entangled state.

However, the isolated clock remains inaccessible from the point of view of systems within

the rest of the Universe. In this sense, the CPI provides an interpretation of time similar

to absolute time: A feature of the Universe which remains ‘external’ to the systems that it

affects. A clock of this nature, which is inaccessible from all other physical systems, is for all

intents and purposes ‘outside’ of the (remainder of the) Universe. One might argue the CPI

essentially recovers absolute time only with more steps and the additional interpretation of

change as an illusion.

After considering the philosophical aspects, our conclusion in Chapter 6 is that interpret-

ing change as real is a feasible viewpoint, even if it is an emergent phenomenon. This may

seem inconsistent at first since the Universal state as a whole continues to have no functional

dependence on time and yet its internal subsystems are time dependent. One potential way

forward is to consider an analogy to motion through space. It would seem straight forward

to claim that the phrase ‘move the Universe to the left’ makes little sense; The Universe

taken as a whole system would not functionally depend on space but rather, in some sense,

would contain all space. An internal subsystem, however, may move in space. Applying

a similar argument to time, the question of a ‘Universe two minutes into the future’, or a

‘Universe yesterday’, might make as little sense as a ‘Universe moved to the left’. Under this

interpretation, a physical system could experience time by changing while the Universe as
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a whole could not. More concrete arguments could be pursued along these lines to support

the interpretation of emergent time as a real phenomenon within a Universe which contains

space and time but does not, as a system, experience either. One important consideration

would be the role of the Universal boundary and whether it must would depend on space

and time in a manner which contradicts the above idea.

The analogy of space to time is certainly useful in providing some insight. Just as

movement can be described as relative, time can also be treated as a relative concept as

can be seen in, for example, [118, 119] where space and time are both considered primarily

as relations between physical systems. For examples of other approaches that use similar

reasoning, see, for example, [120]. Another point of comparison where the analogy between

time and space may be useful is in considerations of the expansion of the Universe. This is

often discussed in terms of the spatial intervals between objects and yet, since time and space

are connected as spacetime, we could also look for expansion effects or similar phenomena

in time. Indeed, the use of the expansion as a clock might be used to shed light on a potential

connection between the expansion of space and the continual and compulsive experience of

change.

It does seem necessary to re-evaluate the role of a ‘now’ moment, or privileged present, in

our descriptions of Nature. The introduction of relativity challenged the notion of a Universal

present as a matter of principle with the inability of systems to agree on the simultaneity

of events as the primary piece of evidence. However, this restriction on defining global

simultaneity applies to systems within the Universe and the Universal state as a whole

need not be so restricted. A means of defining a present moment which is populated by

all physical systems already forms part of ongoing research as can be seen, for example,

in [88] which describes relative now moments for individual systems. Collectively, these

continually advancing now moments might be taken to represent an ‘expansion’ in time.

The concepts above could also be related to the expanding (or growing) Block Universe

interpretations. These are models of the Universe that are characterised by the continual

addition of moments of time onto an ever-growing block of spacetime. A detailed account can

be found, for example, in [5]. However, if we were attempting to describe an interpretation

where change is taken as real, the account would have to differ from the Block Universe

in that physical matter would not be ‘pinned down’ to a particular location in spacetime.

If a reasonable description could be provided of physical systems which continually move

forward along with the expansion of time it could be taken as support for the notion that a
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present moment can be consistent with modern physics. This remains a speculative line of

thought and an account of physical systems changing both their positions in space and time

in a physically meaningful way is yet to be found or ruled out. A more detailed investigation

into such descriptions would be necessary before assertions could be made regarding the

usefulness, or even the feasibility, of such a view of the Universe. Nonetheless, as we have

acknowledged the lack of concrete arguments and calculations in this respect, we indulge in

some wild speculation.

Assume for a moment that the notion of a present could be developed into a consistent

picture: the Universe as a whole could be taken to contain all spacetime, and so would

be ‘everywhere’ and ‘everywhen’, while the physical systems inside are only ever in the

‘present’, each at a single local spacetime location. Now consider motion in space. We

naturally posit a force, or some similar mechanism, to set systems in motion. Pressing the

analogy between space and time even further, we might look for a similar description for

‘movement’ in time. This is similar to the idea of ‘entropic force’ which has been discussed in

investigations such as [121]. If the present moment ‘moves’ with the expansion of spacetime,

it could be represented by a ‘wavefront’: a distortion of some area in spacetime denoting the

present. Alternatively, we may consider physical matter to be pressed against the ‘edge’ of

the expanding spacetime and so continually pushing through time as it expands. Although

heavily speculative, these suggestions represent possible descriptions of change which have

not, to the best of our knowledge, been conclusively ruled out. Without engaging with these

and similar descriptions at the thought experiment level at the very least, we may miss

potential ways to account for the experience of change as a physically meaningful process

simply because we are accustomed to a more standard interpretation. We need to at least

look for an account of change that explains the compulsion experienced by physical systems,

a continual ‘forward momentum’ in time, to better understand the irreversiblity measured

by experiment.

One benefit of the interpretation that physical systems move through time in the manner

described above is that it provides a potential resolution to the A series paradox described in

Chapter 6. The A series, and a moving present moment in general, falls prey to the problem

that it would require a reference point for the present to move with respect to. A timeless

Universal state is capable of providing just such a reference point while still allowing the

moving present moment to be tied the expansion of spacetime (or some other suitable clock).

The timeless Universal state remains static and the present indicates where change occurs.

A meaningful distinction between the future and the past is then maintained with a present
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moment defined as the area in time where all matter is located.

Throughout the above discussion and speculation, we have found the analogy to space

useful in trying to understand the phenomenon of time. As a brief caveat, we point out that

it may be worthwhile to consider the parallels between space and time in a more rigorous

manner. Many issues that are listed as part of the ‘problem of time’ have an analog in space

where they do not present any difficulty. Thus an investigation into the ‘problem of space’

might allow us to reconsider what might be misconceptions or unrecognised assumptions

in our attempt to understand spacetime as the backdrop of the Universe. That being said,

care must be taken, as pointed out in [88], over the temptation of reading too much into the

‘spatialisation’ of time.

Our last discussion point is the postulate of causality. We have found the theories of

time discussed here inevitably invoke an axiom that is responsible for ordering events in a

manner consistent with experiment. This is perhaps most clearly seen in the timeless theories

which tend not to rely directly on the causality postulate. Instead they posit other axioms,

such as memory systems or a manifestation of the principle of least action, which perform

the same role of placing events in an order consistent with observation. We would argue

that investigating this ubiquitous requirement of Nature should form a focus point of future

research into time. Such investigation could inform the discussion on time and change and

so may provide insight into the mechanism responsible for our experience of the ‘natural

order’, and perhaps even shed light on time as concept in its own right. Simply discarding

causality as ‘unprovable’ folk science does a disservice to the importance of causal order

as displayed in experiment. While the alternative options might provide reason to order

events consistently, they do not get very far on explaining the irreversibility of such an order.

Regardless of what we call it, there is a need to explain why Nature insists on invoking

compulsive and continual change in such a regular and structured manner only one way on

time.

While there is some renewed interest in causality as a topic worth investigation in modern

physics, for example, in [108, 14], it is still mostly excluded from considerations of time. We

would argue that future research into time should include causality in a much more explicit

manner. The ‘problems of time’, specifically the arrow of time and its irreversiblity, are

predominantly issues relating to our experience of time, to change. If this is identified as

the area in which the postulate of causality plays a role, then we might be better served

considering the ‘problem of causality’.
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Conclusion

“Nothing endures but change.”

- Heraclitus

Getting to one single, definitive interpretation remains a challenge in the attempt to

quantify time. The disparate versions of time found in quantum field theory and general

relativity continue to make this problem difficult and yet there are indications that a res-

olution is feasible, even if the full solution remains to be identified. While these theories

certainly differ in their treatments of time, as based on their interpretations of the metric,

the underlying theory of quantum gravity from which both theories are expected to emerge,

can be expected to resolve these differences into one cohesive picture. The metric may be

required to be treated as constant and independent of spacetime coordinates in quantum

field theory but, as per the arguments discussed in Chapter 2 this can be interpreted as a

limit of the more complete description to be found in a theory of quantum gravity. Time,

as a feature based on the description of the metric, only appears differently in quantum field

theory and general relativity. What remains to be resolved is the addition of a causality

postulate, or some similar axiom, which acts to continually order configurations in a manner

consistent with our observations of Nature.

The investigation of interactions within the CPI provides a means of challenging the

standard interpretation of time in the isolated Universe described by the Wheeler–DeWitt

equation. Although perfectly isolated clocks have been advocated for as the ideal choice for

use in the CPI, the interacting clock are also consistent with the framework. Furthermore,

the results in Chapter 4 indicate that a small amount of interaction effects would act to
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decrease the uncertainty of the clock observable. It appears that the weakly interacting

condition associated with the CPI should be enforced much more literally: We need negligible

interaction effects that are not zero.

The arguments in Chapter 5 suggest that incorporating the interactions into the CPI

has implications for the interpretation of time. While one is free to choose to partition the

Universe into either isolated or interacting subsystems, the isolated clock is at a disadvantage

when compared to the clocks which are allowed to interact. Over and above the issue of

interactions being included as a matter of principle, due to gravitational effects which cannot

be shielded, choosing isolated clocks leads to a restriction on the CPI such that it can only

describe a two-system Universe, limiting the effectiveness of the framework. Allowing for

weak interactions between subsystems, on the other hand, provides all the subsystems of the

Universe a means of directly accessing the clock state while still maintaining the requisite

entangled state for a time. Other benefits of interacting clocks include the alignment of all

the arrows of time along the direction of increasing entropy. This further supports the use

of the interaction picture over the isolation one in describing our experience of time.

The conclusion is that interactions have a role to play in the CPI and has ramifications

on the philosophical issues, which we discussed in Chapter 6. The use of the isolated clock

is associated with the view that change must be taken to be an illusion within the timeless

Universe model. However, the inclusion of interactions allows us to challenge this view.

Emergent time, and the experience of it as change, can be interpreted as a real phenomenon

when interactions are taken into account; a viewpoint which comes at the cost of the postulate

of causality.

The CPI does not restrict us to either interpretation of time, illusion or real, and definitive

experimental evidence is still to be found. The benefits of the interaction picture, however,

appear to outweigh the alternative choice of treating change as an illusion. The arrow of

time, along with a flow of time recorded as a history of states, are provided as a built in

feature once interactions are included. The cost is the inclusion of a postulate of causality; a

feature so ubiquitous in Nature that we often forget we have invoked it in our descriptions

at all. Adhering to the view that time is an illusion does not side step the causality issue,

although it may appear under a different name. The theory would still need to provide a

reason for the causally consistent ordering of configurations in Nature, which is often done

in such theories by adding ad hoc constraints or rules. By taking interactions seriously, we

can better identify this issue over causality as a central concern in the problem of time.
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Our conclusion is that we need to take a closer look at the role of causality not only in

physics but in the philosophical interpretations of time as well. Causality has been somewhat

cast aside in such discussions for some time and, while it is experiencing a revival of sorts,

it remains distinctly separated from most debates involving time. As suggested by the

definitions used in this investigation, incorporating causality allows us to more finely grain

our description of the phenomena surrounding our experience of change; time allows change

but causality might be identified as the feature of the Universe which compels change in an

orderly fashion. Placing causal ordering front and center in the debate about time might

allow us to gain insight into this phenomenon that continues to perplex and provoke us.



A
p
p
e
n
d
i
x

A

Contrasting the conditional probability

expressions

In Chapter 3 we present a summary of the refined CPI as laid out by Dolby in [51]. Part of

the framework of this refined CPI involves the distinction between two different types of

conditional probabilities. These are represented as

P(a given b; ρ̂),

P(a when b; ρ̂),
(A.2)

where a and b are eigenvalues associated with the observables XA and XB. These observables

are themselves respectively associated with two subsystems A and B that are both repre-

sented in the density matrix ρ̂. Here we give a mathematical description of the two different

probability expressions, using the same terminology as that defined in Chapter 3.

To begin with, we identify the probability of measuring a (for subsystem A) among the

spectrum of states of ρ̂. The associated probability expression is

P(a; ρ̂) ≡
Tr(P̂aρ̂)
Tr(ρ̂)

, (A.3)

where P̂a is the projection operator that selects out any physical states of A which correspond

to a value of a for the observable XA. Equation (A.3) represents a trivial mathematical

rearrangement of the standard probability expression used to calculate the likelihood of a

particular outcome, in this case a, by summing the individual probabilities associated with

each occurrence of a in ρ̂.
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Next we introduce the second system B and construct the conditional probability of

measuring a given that the observable XB was measured to be b. This is represented as

P(a | b; ρ̂) =
Tr(P̂aP̂bρ̂P̂b)

Tr(P̂bρ̂P̂b)
, (A.4)

where P̂B is similarly a projection operator selecting out the physical states corresponding to

a measurement of b. The variables to the right of the delimiter ‘|’ represent the conditional

parameters that are taken into account in calculating the probability of a occurring.

Up to this point, there has been no deviation from the standard descriptions used in

quantum mechanics. Next, however, the refined CPI introduces another type of conditional

probability denoted as

P(a when b; ρ̂) ≡
Tr(P̂aP̂bρ̂)

Tr(P̂bρ̂)
. (A.5)

Although the same projection operators are used, this is not a trivial rearrangement of equa-

tion (A.4). We can identify this expression as one which calculates probability of a occurring

as being in some sense dependent on b but there is no clear cut physical interpretation of

equation (A.5). We can, however, assess the suggested interpretations.

The account in [51] presents interpretations of the above probability expressions in term

of paths in configuration space. Equation (A.3) is taken to represent the fraction of ρ̂’s path in

configuration space where the outcome a is true. Equation (A.4), on the other hand, calculates

the likelihood of a occurring as conditional on the fact that b also occurs in some region, but

not necessarily the same section, of ρ̂’s path in configuration space. The interpretation of

equation (A.5) is taken to be a more specific case that corresponds to the case where the

outcomes a and b both occur over the same portion of the path in configuration space. By

taking this to mean a occurring “when” b occurs, the refined CPI attempts to invoke a sense

of simultaneity between the measurements of a and b that is not apparent in equation (A.4).

Our concern is that the offered interpretation is somewhat problematic in the following

way. If we anticipate that equation (A.5) defines simultaneity, we would expect it to be

more restrictive than equation (A.4) which only requires that both outcomes occur at some

point along the path. This expectation is not verified by an examination of the equations in

question since the projection operators appear to be applied more restrictively in equation

(A.4) than in equation (A.5). Other investigations have also raised the problem of how to

motivate a specific physical interpretation of P(a when b; ρ̂) as can be seen, for example, in

[122].
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While the interpretation of equation (A.5) remains unresolved, we point out that this

does not produce a problem for the refined CPI since the probability expressions that are

ultimately used are shown to agree with the expectations of standard quantum mechanics.

While there is a distinction between equation (A.4) and equation (A.5) that may be subject to

further clarification, this does not negate the final result. Certainly the simultaneity between

the clock and the rest is maintained through the use of the abstract integration variable n,

which is also discussed in Chapter 3.
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The damped harmonic oscillator

B.1 The clock state
The analysis in Section 4.2.1 considers the damped harmonic oscillator in the coherent state

representation as defined in [56]. Here we provide details of the wavefunction representa-

tion, including explicit descriptions of the terms η and µ. As in the main text, we have set

~ = 1.

The terms remains as previously defined, such that the Caldirola–Kanai Hamiltonian

[58, 59] is

H = e−rn p
2m

+ ern 1
2
ω2

ox2, (B.1)

and the annihilation and creation operators are

a =
1
i
(ηx − µp)

a† =
1
i
(µ∗p − η∗x).

(B.3)

The explicit description of η and µ is

η(n) =
1

2
√
R(A)

ei cot−1( r
2ω+cot(ωn))

µ(n) =
√

2i~
A
D

ei cot−1( r
2ω+cot(ωn)),

(B.5)

where we have retained the use of n as the evolution parameter.

It remains to identify the terms in equation (B.5). These are given by a collection of
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inter-dependent definitions:

N =
mω
π

1
4 e−

1
2 rn

ζ(n) sin
1
2 (ωn)

ζ(n) =
r2

4ω2 +
r
ω

cot(ωn) + csc2(ωn)

A(n) =
mω
2

ern

(
1

ζ(n)2 sin2(ωn)
+ i

( r
2ω
− cot(ωn) +

r
2ω + cot(ωn)

ζ(n)2 sin2(ωn)

))
D(n) =

√
mω

e
1
2 rn

ζ(n) sin(ωn)
,

(B.7)

where ω is the damped frequency given by ω =
√
ω2

0 −
r2

4 . The variables in equation (B.7)

are produced from the wavefunction expression for the damped harmonic oscillator in [56]

prior to the transformation to the coherent state representation.

B.2 The expectation value
In Section 4.2.2, the expectation value 〈x〉 is used to relate the position to n. Here we show

the calculation of this expression to leading order in ωn.

The expectation value depends on µ = 1
2 (ReA)−

1
2 exp

[
i cot−1

(
γ

2ω + cot(ωn)
)]

along with

other factors. To simplify, we take the first order limit to get

cot−1
( γ
2ω

+ cot(ωn)
)
≈ cot−1

( γ
2ω

+
1
ωn

)
≈ cot−1

( 1
ωn

)
≈ cot−1

(
cot(ωn)

)
≈ωn

⇒ µ =
1
2

(ReA)−
1
2 expiωn

=
1
2

(ReA)−
1
2

[
cos(ωn) + i sin(ωn)

]
(B.9)

Using this result along with α = Re(α) + iIm(α) allows us to write

〈x〉 =µ∗α + µα∗

=
1
2

(ReA)−
1
2

[
cos(ωn) − i sin(ωn)

]
(Re(α) + iIm(α))

+
1
2

(ReA)−
1
2

[
cos(ωn) + i sin(ωn)

]
(Re(α) − iIm(α))

=
1
2

(ReA)−
1
2

[
2 cos(ωn)(Re(α) + 2 sin(ωt)Im(α)

]
=(ReA)−

1
2

[
cos(ωn)(Re(α) + sin(ωn)Im(α)

]
.

(B.11)
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Looking at the first term (ReA)−
1
2 =

[
mω
2 eγn

(
1

ξ2sin2(ωn)

)]− 1
2

we notice the same term from the

uncertainty calculation which we have already resolved to the first order limit: ξ2sin2(ωn) ≈

1. Therefore we have (ReA)−
1
2 = e−

γn
2

√
2

mω and equation (B.11) becomes

〈x〉 =e−
γn
2

√
2

mω

[
cos(ωn)(Re(α) + sin(ωn)Im(α)

]
. (B.13)

Restricting to the first order in rn, we can substitute cos(ωn) = 1 and sin(ωn) = ωn, giving

〈x〉 =e−
γn
2

√
2

mω

[
(Re(α) + ωnIm(α)

]
. (B.15)

The naturalness argument, essentially the claim that neither the real nor imaginary parts are

much smaller or greater than one another, is then used to argue that Re(α) ∼ Im(α). As such,

we can enforce the relation Re(α)� (ωn)Im(α), allowing us to simplify equation (B.15) to

〈x〉 = Ae−
γn
2 , (B.16)

whereA =
√

2~
mωRe(α)

B.3 Uncertainty calculation
As per the description in Section 4.2.3, the variance, and related uncertainty, are of interest as

measures of the effectiveness of the time parameter provided by the clock. Here we provide

explicit expressions for the uncertainty δx, calculated from the variance associated with a

probability distribution P(x,n).

From [57], we have the definition of the variance as

(∆x)2 =µµ∗

=
1
2

(ReA)−
1
2 exp

[
i cot−1

( γ
2ω

+ cot(ωn)
)]
×

1
2

(ReA)−
1
2 exp

[
− i cot−1

( γ
2ω

+ cot(ωn)
)]

=
1
4

(ReA)−1

=
1
4

[
Re

[mω
2

eγn
( 1
ξ2 sin2(ωn)

+ i
( γ
2ω
− cot(ωt) +

γ
2ω + cot(ωn)

ξ2 sin2(ωn)

))]]−1

=
1
4

[
mω
2

eγn
( 1
ξ2 sin2(ωn)

)]−1

=
1
4

2
mω

e−γnξ2 sin2(ωn)

=
e−γn sin2(ωn)

2mω
ξ2

(B.18)
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As per the small time limit, imposed by the run time constraint, we resolve equation

(B.18) to the first order approximation in rn. This gives

sin2(ωn)ξ2 = sin2(ωn)
[ γ2

4ω2 +
γ

ω
cot(ωn) + csc2(ωn)

]
≈ω2n2

[ γ2

4ω2 +
γ

ω

( 1
ωn

)
+

1
ω2n2

]
=
γ2n2

4
+ γn + 1

=1 + O(γn)

(B.20)

To the first order then, sin2(ωn)ξ2
≈ 1 and we have

(∆x)2 =
e−γn

2mω

∆x =

√
1

2mω
e−

γn
2 ,

(B.22)

as given in Section 4.2.3.
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The atomic clock

C.1 The atomic clock
In Chapter 4 the second clock system we investigate is an atomic clock. Here we sketch the

basic layout of such a device to clarify how it used as a time-keeping system.

In the method first laid out in [62], the harmonic oscillations of an electromagnetic wave

are used as the ‘tick’ of a clock. If the oscillations are maintained at a constant frequency, we

have a consistent measure of time. However, in order to produce a time reading, we need

to know how many oscillations of our electromagnetic wave equate to one second. To set a

standard, we can turn to the transitions found in atomic systems.

Although other elements may be used, Cesium is most commonly called upon for this

task. An atom of Cesium, prepared in its ground state, will transition to an excited state if

it is placed in an appropriate electromagnetic field. In this case, appropriate refers to a field

which oscillates at a frequency similar to the energy level difference between the two states

of the atom. The closer the frequency of the electromagnetic wave matches the transition

frequency of the atom, the higher the probability of a transition. Thus the frequency of

the oscillating wave can be tested by measuring how likely it is to cause a transition of the

Cesium atoms.

A diagram showing a rough representation of how such a clock incorporates the fre-

quency provided by Cesium transitions is shown in Figure C.1. A collection of Cesium

atoms, prepared in the ground state at A, are passed through the electromagnetic field at B.
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Figure C.1: Schematic representation of the components necessary to the Cesium atomic
clock. The area labeled C represents the step added by Ramsey.

For the Rabi method, the interaction zone B permeates the entire block as the restriction of a

non-interaction zone at C is only introduced later by Ramsey. After passing through B, the

atoms are measured at D.

From the measurements of the atoms, the probability of a transition to the excited state

can be calculated at E. By repeating this process, with the aim of maximising the number

of transitions, the electromagnetic wave can be tuned to the transition frequency. As this

frequency is calculable from theory, we can determine how many oscillations correspond

to one second. In the case of Cesium, this is 9192631770 cycles per second, allowing the

clock to be set by this number at G. The feedback loop involving the application of the

electromagnetic wave to the atoms in order to set the frequency of the wave provides a

continual check that the correct frequency is maintained. What emerges from the Rabi

method, is that the precision to which the wave frequency can be set is determined by how

long the atoms spend interacting with the electromagnetic wave, up to the limit discussed

in Chapter 4.

Ramsey determined a way of increasing the precision by inserting a non-interaction

zone, within the interaction zone, as labeled in Figure C.1 as C. This reduced the interaction
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with the wave to two ‘pulses’. The resulting probability of a transition was now found to be

proportional to the length of time the atoms spent in the non-interaction zone. By comparison

to the Rabi method, this provided a more effective way on minimising the uncertainty, thus

leading to a better clock.

C.2 The evolution operator
Here, evolution utilised in Section 4.3.2 is derived in detail.

Let us consider a two-level system at time t = 0 in its energy basis, |ψ(0)〉 = c1 |1〉+c2 |2〉 .

If the external potential oscillates according to V(t) = λeiωt +λe−iωt with λ real, then the state

at a later time t is |ψ(t)〉 =
(

cos(Ωt) − iθ
2Ω

sin(Ωt)
)
eiθt/2

|1〉 +
γe−iθt/2

iΩ sin(Ωt) |2〉 and its density

matrix is

ρ(t) = |ψ(t)〉 〈ψ(t)| =

 1 − γ2

Ω2 a2 iγeiθt

Ω
a
(
b − iθ

2Ω
a
)

−
iγe−iθt

Ω
a
(
b + iθ

2Ω
a
)

γ2

Ω2 a2

 , (C.1)

where a = sin(Ωt) , b = cos(Ωt) and Ω =
√
λ2 + θ2

4 . Alternatively, the evolution can be

described by ρ(t) = U(t, 0)ρ(0)U†(t, 0) .

Assuming that the system starts in its ground state, ρ(0) =

1 0

0 0

 , one finds an evolution

matrix of the form ρ(t)11 ρ(t)12

ρ(t)21 ρ(t)22

 =

 A B

−B∗ A∗


1 0

0 0


A∗ −B

B∗ A

 . (C.2)

where

|A|2 = b2 +
θ2

2Ω2 a2 ,

|B|2 =
λ2

Ω2 a2 ,

−AB =
iλeiθta

Ω
(b −

iθ
2Ω

a) ,

−A∗B∗ =
−iλe−iθta

Ω
(b +

iθ
2Ω

a) .

(C.4)

Since A = b − iθ
2Ω

a is true up to a phase, the evolution matrix can be resolved into

U(t, 0) =

b − iθ
2Ω

a −
iλeiθt

ω a

−
iλe−iθt

ω a b + iθ
2Ω

a

 . (C.5)

The non-decohering limit of this outcome agrees with the final form of Ramsey’s result [64].
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Research Outputs

We present here a list of the research output generated by this work.

• Publications

– KLH Bryan and AJM Medved, ”Realistic clocks for a Universe without time.” Foun-

dations of Physics 48.1 (2018)

• Preprint manuscripts

– KLH Bryan and AJM Medved, ”Requiem for an ideal clock.” arXiv:1803.02045 (2018)

– KLH Bryan and AJM Medved, ”The problem with ‘The Problem of Time’.”

arXiv:1811.09660 (2018)

• Conference outputs

– KLH Bryan, ”No time for isolated clocks in the timeless Universe.” Talk given at

the Ninth International Workshop DICE2018: Spacetime - Matter - Quantum

Mechanics (2018)

– Forthcoming in the conference proceedings publication:

KLH Bryan and AJM Medved, ”No time for isolated clocks in the timeless Universe.”

Journal of Physics: Conference Series
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• Popular articles

– KLH Bryan ”Time marches on, but in which direction?” Science Today

https://sciencetoday.co.za/2016/11/14/55/ (2016)

– KLH Bryan and AJM Medved, ”Finding Time For Evolution.” Science Trends

https://sciencetrends.com/finding-time-evolution/ (2018)
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