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Abstract
The forthcoming Square Kilometre Array is expected to provide answers to some of the most 

intriguing questions about our Universe. However, as it is already noticeable from MeerKAT 

and other precursors, the amounts of data produced by these new instruments are significantly 

challenging to calibrate and image. Calibration of radio interferometric data is usually biased by 

incomplete sky models and radio frequency interference (RFI) resulting in calibration artefacts 

that limit the dynamic range and image fidelity of the resulting images. One of the most no

ticeable of these artefacts is the formation of spurious sources which causes suppression of real 

emissions. Fortunately, it has been shown that calibration algorithms employing heavy-tailed 

likelihood functions are less susceptible to this due to their robustness against outliers.

Leveraging on recent developments in the field of complex optimisation, we implement a 

robust calibration algorithm using a Student’s t likelihood function and Wirtinger derivatives. 

The new algorithm, dubbed the robust solver, is incorporated as a subroutine into the newly re

leased calibration software package CubiCal. We perform statistical analysis on the distribution 

of visibilities and provide an insight into the functioning of the robust solver and describe dif

ferent scenarios where it will improve calibration. We use simulations to show that the robust 

solver effectively reduces the amount of flux suppressed from unmodelled sources both in direc

tion independent and direction dependent calibration. Furthermore, the robust solver is shown to 

successfully mitigate the effects of low-level RFI when applied to a simulated and a real VLA 

dataset.

Finally, we demonstrate that there are close links between the amount of flux suppressed from 

sources, the effects of the RFI and the employed solution interval during radio interferometric 

calibration. Hence, we investigate the effects of solution intervals and the different factors to 

consider in order to select adequate solution intervals. Furthermore, we propose a practical 

brute force method for selecting optimal solution intervals. The proposed method is successfully 

applied to a VLA dataset.
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Preface

Radio astronomy is currently in an exciting era with the advent of new telescopes such as the 

Square Kilometre Array (SKA) (Schilizzi et al., 2008), MeerKAT (Jonas & Team, 2018), the 

Hydrogen Epoch of Reionisation Array (HERA; Greenhill & Bernardi (2012)) and the Australian 

Square Kilometre Array Pathfinder (ASKAP) (Johnston et al., 2008). This new generation of 

telescopes, notably the SKA which will be the world’s largest and most powerful telescope, are 

expected to have unprecedented sensitivities, resolutions and data rates. These telescopes will 

be used to study science topics such as the Epoch of Reionisation (EoR) (McQuinn et al., 2006), 

Galaxy formation and evolution (see Colafrancesco et al. (2015); De Blok et al. (2017)), Pulsars 

(Burnell, 1984) and Transient sources, and for performing numerous deep continuum surveys 

(see Jarvis et al. (2017)) in an attempt to answer some of the most fundamental questions about 

the origin of our Universe (see Weltman et al. (2020) for more details).

However, the unprecedented sensitivities, resolutions and data rates promised by these in

struments come with a whole world of data processing challenges. Accurate and efficiently 

processing, as well as storing, this data is one of the most challenging research topics currently 

in the radio astronomy community. Crucial to every data processing pipeline in radio astronomy 

is the process of calibration, which refers to the process of removing all corruptions introduced in 

the data during the observation. Practically, before any imaging and science study can be done, 

the data needs to be adjusted to be an accurate representation of the sky. Radio interferometric 

(RI) calibration is the main focus of this document.

In a nutshell, RI calibration is the process of finding the instrumental parameters and sky 

model, which best fits the observed or measured data. This problem is non-trivial since we 

only have the observed data. However, we need to simultaneously solve for both the instru

mental parameters (propagation effects) and our intended target sky. It is well documented (see 

Linfield (1986), Wilkinson et al. (1988), Marti-Vidal & Marcaide (2008), Grobler et al. (2014)
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Wijnholds et al. (2016)) that inaccurate modelling of propagation effects and sky parameters (in

complete sky models or wrong sky models) during calibration results in spurious sources called 

artefacts that degrade the quality of the output images and the deduced scientific conclusions. 

One particularly worrying effect from these artefacts is the flux suppression/overestimation of 

faint emissions. This problem needs to be well addressed since most interesting astrophysical 

signals are faint.

Due to the inevitability of having unmodelled sources during calibration, the calibration prob

lem therefore needs to be reformulated adequately to avoid suppressing faint signals. This entails 

understanding precisely to what extent these faint signals contribute to the calibration solutions. 

Another unmodelled signal during calibration is radio frequency interference (RFI). Interfero

metric data is always corrupted by unwanted signals from different sources emitting at radio 

wavelengths. These unwanted sources include, for example, signals from television and radio 

stations, flying objects such as helicopters and planes, and even radio signals mistakenly gen

erated by people working at observatories. These effects can generally be mitigated through 

rigorous flagging, but it is practically impossible to completely get rid of all RFI. Because of the 

presence of unmodelled sources and RFI, we need to carefully formulate our calibration problem 

mathematically and adapt existing algorithms in order to mitigate the effects of these outliers.

Traditional calibration methods have mostly employed non linear least squares (NLLS) algo

rithms such as the Levenberg-Marquardt (LM) and the Gauss-Newton (GN) (see Madsen et al. 

(2004)) with a few exceptions such as trust-region methods (Yatawatta, 2013) and quasi-Newton 

methods (Yatawatta et al., 2019). Furthermore, because interferometric data is complex, until 

recently, calibration algorithms proceeded by first splitting the data and the different propagation 

effects into their real and imaginary components before deriving the update rules for the optimi

sation. The recent developments in the field of complex optimisation particularly the application 

of Wirtinger calculus (see Kreutz-Delgado (2009); Sorber et al. (2012)), have made it possible to 

circumvent the need to split the data, and instead to treat calibration as a complex optimisation 

problem. Tasse (2014a) and Smirnov & Tasse (2015) have shown that exploiting Wirtinger cal

culus yields significant algorithmic advantages. Specifically, by careful ordering of the data, the 

Hessian of the optimisation problem can be adequately approximated by its diagonal, leading to
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significant algorithmic speed-ups. In this work, we follow the same approach in formulating the 

calibration problem as a complex optimisation problem. Furthermore, we extend previous work 

from Kazemi & Yatawatta (2013) and Ollier et al. (2017) in order to address the problem of flux 

suppression from faint sources and the effects of RFI during calibration. The last investigated 

issue we report in this document is the choice of solution intervals during calibration. Data is 

generally averaged during calibration to improve the signal-to-noise-ratio. However, as we illus

trate throughout the thesis, there is a link between the employed solution interval, the amount of 

flux suppression and the effects of RFI during calibration.

We begin in Chapter 1 with a brief introduction to radio astronomy and interferometry, 

focussing on the description of the fundamental observables used by radio astronomers for 

their studies. Next in Chapter 2, we introduce the Radio Interferometer Measurement Equation 

(RIME), which is fundamental for calibration, then discuss the different generations of calibra

tion, particularly self-calibration, calibration algorithms and briefly introduce calibration arte

facts.

In Chapter 3, we describe the formulation of calibration as a complex optimisation problem 

using Wirtinger calculus. This is followed by the mathematical description of our novel cali

bration solver dubbed the robust solver and its implementation details. In Chapter 4, the robust 

solver is tested using both simulated and real data sets. Furthermore, we perform a statistical 

analysis of visibilities in order to fully understand flux suppression and elucidate the different 

scenarios in which robust calibration is adequate.

Chapter 5 extends the results of Chapter 4 by looking in detail at the effects of solution 

intervals during calibration. We discuss these effects and describe an approach for selecting 

optimal solution intervals. It should be noted that this chapter does not transcend the question 

of selecting solution intervals but rather highlights the necessity of thinking beyond solution 

intervals. The main conclusions and discussions of the methods presented in this document are 

the focus of Chapter 6.

Four Appendices accompany the main body of the thesis. Appendix A presents a short re

view of the NLLS algorithms employed in the thesis. Appendix B describes the full details on the 

derivation of the robust solver algorithm. Appendix C gives the explicit form of the parametri-

xviii



sation used to represent gains as a function of solution intervals. Appendix D describes specific 

tools that we repeatedly use for simulations in the thesis. The essential part here is how we gen

erate the gains with which we corrupt the data in simulations and constrain them to have specific 

statistical properties using Gaussian Processes.
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CHAPTER 1

Introduction

The presence of electromagnetic (EM) radiation from celestial objects such as cosmic sources, 

galaxies, stars and the interstellar medium provide an essential means of probing and studying 

the Universe. Astronomy, which is the science that studies the Universe, i.e. celestial objects 

and the different physical phenomena that lead to their formation, has relied on EM radiation 

to reveal most of our understanding of the Universe to date. From a historical point of view, 

the science of astronomy has mostly used the visible part of the EM spectrum -  called Optical 

Astronomy. Astronomy now transcends the visible range (wavelength -  740 nm to 380 nm) and 

employs nearly all of the EM spectrum leading to different fields such as X-ray, Gamma-ray and 

Radio Astronomy.

Radio astronomy, which studies the Universe through the radio part (i.e. wavelength «  15 

m to 3 mm) of the EM spectrum, was born in the early 1930s. Karl G. Jansky who was a radio 

engineer at the Bell laboratories (Jansky, 1933; Kraus, 1966), while trying to determine the origin 

of a source of noise in their receivers at 20 MHz, found out that the signal was from the centre 

of our galaxy, the Milky Way. Jansky did not perform further investigation of this signal as the 

Bell laboratory felt the signal was too weak to affect their communication. Grote Reber, also 

a radio engineer, reviewed Jansky’s work and suggested the signal could be detected at a high 

frequency because he thought it was of thermal origin. Using a parabolic dish he built in his back 

yard (Reber, 1940), he had several unsuccessful attempts to detect the signal at high frequencies. 

He was finally able to trace out the signal at 162 MHz, and the emission mechanism remained

1



INTRODUCTION 2

mysterious until the much later discovery of synchrotron radiation. Grote Reber is credited with 

building the first-ever radio telescope. Following these discoveries, the field of radio astronomy 

started flourishing after the second world war as most of the techniques developed for radar 

during the war were transferred to radio astronomy.

Moving away from history, it is essential to be able to study celestial objects at different 

wavelengths. Studying at multiple wavelengths does not only allow accurate identification of 

objects, but the different spectrum reveals different properties of these objects. Furthermore, 

most radiation from the EM spectrum is severely absorbed by molecules in the Earth’s atmo

sphere, notably water vapour, H2O, and O2. This absorption results from these molecules having 

rotation band energies corresponding to the wavelengths from these radiations. For example, 

H2O has energy bands at wavelengths 1.35 cm and 1.63 mm while O2 has an energy band at 

5 mm (Wilson et al., 2009). For wavelengths <  1 mm, the absorption is mostly dominated by 

N2 and CO2 molecules. Coincidentally, radio waves are the least absorbed and have the largest 

window compared to all other parts of the EM spectrum (Condon & Ransom, 2016). Fig. 1.1 is 

a schematic representation of the different EM windows illustrating the transparency of the radio 

window for ground-based astronomy. At low frequencies, the atmosphere ceases again to be 

transparent to EM waves because of free electrons in the atmosphere that scatter EM radiations 

through the process of Compton scattering. Hence, the transmission of EM waves through the 

atmosphere is only possible for waves at frequencies higher than a certain frequency called the 

plasma frequency. This sets a low frequency cutoff of «  4.5 MHz for the radio window for any 

layer in the atmosphere with the average maximum electron density, Ne, of «  2.5 x 105cm- 3 

(Wilson et al., 2009).

1.1 Cosmic Signals

In astronomy, we seek to measure EM waves, henceforth called signals from cosmic sources 

in the sky, using receiving elements called antennas or telescopes. The voltages induced in the 

antennas by such signals are referred to as cosmic signals. We characterise sources using the 

amount of EM waves they radiate, or the rate at which we receive them, called intensity. A
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Figure 1.1: Schematic representation of the Earth’s atmosphere opacity to EM radiation. The 

clear zone lying between A ^  1 mm and A ^  30 m depicts the so-called “radio window” through 

which celestial radio waves are not absorbed by gas molecules in the Earth’s atmosphere (Condon 

& Ransom, 2016).

source’s intensity is thus defined as the amount of power emitted per unit angle by the solid an

gle subtended by the source surface at a specific frequency (Thompson et al., 2017). In radio 

astronomical imaging, it is more intuitive to think of the signal as emanating from the surface 

of the celestial sphere. Hence, we generally refer to the source intensity as its surface inten

sity or surface brightness. A receiving element or telescope will only receive an amount of 

radiation proportional to its collecting area. Thus the quantity which is generally measured is 

the specific intensity defined as the intensity per unit area. The specific intensity, Iv, has units 

Wm-2 Hz-1 sr-1 .

If we consider measuring radiation from a source in direction, s, subtending a solid angle, 

dQ, with a bandwidth, dv, using an instrument with an element of surface area, dA (see Fig. 1.2), 

then the total power, dP , received is described by

dP  =  Iv(s)dQdvdA . (1.1)

The most common quantity used to describe the amount of radiation from a source is the flux
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Figure 1.2: Element of solid angle and surface area used for the definition of surface intensity 

(Thompson et al., 2017).

density, Sv. We obtain the flux density by integrating the specific intensity over the total solid 

angle, Q, subtended by the source,

Sv =  Iv (s) cos YdQ , (1.2)
n

where y is the angle between the element of area, dA, and the direction, s. The flux density has 

unit Wm-2Hz-1 . Cosmic signals are usually very weak and hence a new unit called the Jansky 

(Jy) was introduced for such small values where

1 Jy =  10-26 Wm-2Hz-1 .

For thermal radiation from a black body its intensity at frequency, v , is related to its brightness 

temperature, T , by Planck’s law (Wilson et al., 2009) as

2kbT v 2 (  h v /kbT
Iv ghv/k),T   1 (1.3)

where h is Planck’s constant and kb is the Boltzmann constant. In the regime hv < <  kbT , the

Rayleigh-Jeans law holds, i.e.

2c

I v
2kb T v  2 

c2
> T Iv c2 

2kbv 2 (1.4)
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Eq. (1.4) gives the brightness temperature of the source. Note that, in radio astronomy, even for 

non-thermal emission, Eq. (1.4) is still used to define the brightness temperature even though the 

measured quantity does not represent a real physical temperature but gives an indication on the 

strength of the source.

1.2 Single-dish-Astronomy

As the name implies, in single-dish-astronomy, we study the Universe using voltages from a 

single dish or an antenna. Antennas are the basic elements used to measure the EM radiation 

emitted by observed sources. One of the fundamental properties of an antenna is its primary 

beam or beam pattern. The primary beam of an antenna describes the antenna’s sensitivity as a 

function of the direction of the incoming radiation. Fig. 1.3 is a basic illustration of an antenna’s 

reception pattern. It consists of the main lobe, which is approximately elliptically Gaussian for 

most antenna types, and numerous side lobes. The primary beam of an antenna is generally 

characterised by its half power beam width (HPBW), i.e. the angle between the half-power 

points of the main lobe. The HPBW indicates the antenna’s field of view. For an antenna with a 

circularly symmetric untampered aperture with diameter, D (Thompson et al., 2017), its HPBW 

is given by

HPBW «  ^^DA , (1.5)

where A is the wavelength of the observation. Another important property of an antenna is its 

resolving power or resolution, i.e. the finest angular scale at which it can distinguish two objects. 

Mathematically, the resolution, 9, of a single dish telescope can be approximated as

1.22A
D (1.6)

Eq. (1.5) and (1.6) tells us that both the HPBW and the resolution are directly proportional to 

the wavelength and inversely proportional to the aperture’s diameter. Furthermore, for single 

dishes, HPBW ^  9. The angular resolution of a single dish is significantly limited in the radio 

regime because radio waves have very long wavelengths. For example, the Green Bank Tele-
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Figure 1.3: Basic illustration of an antenna response pattern or primary beam. We can see the 

half power beam width (HPBW), which is used to define an antenna’s field of view, and side 

lobes where the signals are heavily attenuated and back lobes (Taylor et al., 1999).

scope (Prestage et al., 2009) which has a diameter of 100 m will only have a resolution of «  35 

arcminutes for an observation with a wavelength of 1 m.

1.3 Radio Interferometry

In order to overcome the resolution limits of single dish telescopes, astronomers use a technique 

called interferometry. The technique of interferometry in astronomy dates to 1880 with Michel- 

son (Thompson et al., 2017). The first interferometer was the Michelson stellar interferometer. 

The instrument used constructive and destructive interference of signals from two separated re

ceiving elements to determine the angular width of objects. Fig. 1.4 is a schematic representation
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Figure 1.4: Schematic representation of a two-element interferometer. The signal from a source 

with direction vector is measured by the antenna pair, p and q. The signal is then correlated 

while inserting a time delay, rg, to compensate for the path difference between both antennas in 

order to obtain the measured visibilities.

of a basic two-element interferometer. Interferometers nowadays consist of multiple such pairs 

of elements operating as a single unit called arrays. For an interferometer, the resolution, 6, is 

defined as

6 «  (1.7)

where B  is the longest baseline, i.e. the longest separation between all antenna pairs. Hence, we 

can achieve high resolutions by constructing arrays with very long baselines.
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1.3.1 Visibility function

The measurements recorded by single dishes and interferometers are called visibilities. The 

term visibility stems from Michelson’s definition based on fringe amplitudes (Thompson et al., 

2017). For a radio interferometer (see Fig. 1.4), visibilities correspond to the correlation of the 

voltages measured by both antennas. Consider the two-element interferometer in Fig. 1.4, if a 

signal travels in the direction to both antennas, p and q, the signal will reach both antennas 

at different times. Thus, before correlating the voltages from both antennas, a time delay is 

introduced in the signals to ensure we correlate signals at the same time. The time delay, also 

known as the geometrical delay, is given by

—»s
>

b
g (1.8)

—»
where b is the baseline vector connecting both antennas. If the output voltages from both anten

nas are V p(t) and V q(t) respectively, then the output from the correlator at time, t, is described 

as

V M (t) =  (Vp(t) ■ Vq (t -  Tg)) , (1.9)

where () denotes averaging.

It is common practice to specify the visibilities as a function of the baseline vectors between 

antennas. A convenient coordinate system for specifying these is the Cartesian coordinate sys

tem, X Y Z . We can adopt equatorial coordinates, i.e. hour angle, H , and declination, 5, with the 

X  axis pointing towards (0h, 0) (the point where the vernal equinox crosses the local meridian), 

the Y axis towards (—6h, 0) due east and the Z  axis towards the north celestial pole, i.e. 5 =  0. 

If (bx, by, bz) is the baseline vector between two antennas, then for an observation with reference 

direction, (H0,50), the corresponding baseline coordinates called uvw coordinates are given by 

(see Thompson et al. (2017) for more details)

u sin H0 cos H0 0 bx/A

v = — sin 50 cos H0 sin 50 cos H0 cos 50 by/A

w cos 50 cos H0 — cos 50 sin H 0 sin 50 b z / \
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The uvw coordinates are functions of hour angle (i.e. time). These coordinates change through

out an observation as the Earth rotates, making us measure visibilities at different uvw positions. 

Ideally we want to observe for a very long time so as to sample different portions of the uvw- 

plane (improve the uv-coverage). The sky is represented using the ( l ,m,n  =  V l — l2 — m 2) 

frame where the axes are the direction cosines of the u, v and w axes respectively. Using these 

coordinates systems, the Van Cittert-Zernike theorem states that the measured visibilities and the 

sky brightness are related by (Thompson et al., 2017)

A(l ,m)I(l ,  m )e -2m(ul+vm+w^ l- t2- m2- l)) -  , (1.11)
l — l2 — m 2

where V (u, v, w) denotes the measured visibilities at baseline coordinates, uvw, I ( l ,m)  repre

sents the sky brightness distribution and A (l, m ) denotes the combined primary beam response 

of the antennas involved.

V  (u, v, w)

1.3.2 Sky Mapping

Interferometers measure visibilities but our science goals rely on recovering the sky brightness, 

I( l, m ), i.e. computing I(l, m) from Eq. (1.11). I( l, m) is generally recovered by approximating 

Eq. (1.11) using a Fourier transform. The following two specific conditions will make Eq. (1.11) 

a Fourier transform:

(i) if we are observing with a coplanar array, then w =  0 everywhere and Eq (1.11) reduces to

V (u ,v ) =  A( l , m) I  (l,m )e-2m(ul+vm) , (1.12)
— OO — OO

which is the two dimensional Fourier transform of

V l — l2 — m 2

A(l, m )I (l,m)
—l — l2 — m 2

(ii) observing a small area. If our field of view is small such that (V l — l2 — m 2 — 1)w
l

— ̂ ( l2 +  m 2)w (Thompson et al., 2017) then the w-term in the exponent may as well be 

neglected leading to the same expression for the visibilities as in Eq. (1.12).
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Under any of the above conditions, we write the Van Cittert-Zernike theorem as

V (u ,v ) =  I ( l ,m )e -2ni(ul+vm)dldm , (1.13)
— OO — OO

where I ( l ,m )
A( l , m) I  (l,m)

Hence an interferometer measures the Fourier transform of
1 — l2 — m 2

an apparent sky which is the true sky attenuated by the antennas’ primary beam. The true sky, 

I ( l ,m ) can be recovered from the image of the apparent sky, I ( l ,m )  if we have a reasonably 

good model for the combined primary beam response, A (l,m ). Traditionally, the beam is as

sumed to be constant in time and the same for all antennas for small fields of view. In this case,

the factors A(l, m) and — = can be removed by dividing them from the output image
1 — l2 — m 2

(Smirnov, 2011b). For wide-field observations and arrays with complex beam models, recov

ering the true sky is not trivial and requires direction dependent calibration (see §2). From Eq. 

(1.13) the apparent sky brightness is given by

I  (l, m) V (u ,v )e2ni(ul+vm)dudv . (1.14)
— OO — OO

In practice we do not have a continuous function V (u, v) for the visibilities since we only sample 

the (u,v) plane at specific positions. This poses a problem as the recovered sky image is a 

function of this sampling. Suppose we have a sampling function, S(u, v), which is 1 everywhere 

we have measurements and 0 otherwise, then the effective reconstructed sky is described as I

I D (l, m) =  W (u, v)S  (u, v)V  (u, v)e2ni(ul+vm)dudv,
— OO — OO

I * B,

(1.15)

(1.16)

where B W (u, v)S(u, v)e2ni(ul+vm)dudv is called the point spread function (PSF), I D

is the recovered sky image traditionally referred to as the dirty image, and W (u, v) labels the 

weight applied to each sample visibility defined from its uncertainty. Eq. (1.16) is simply a result 

of the Fourier convolution theorem. The dirty image is a convolution of the beam attenuated sky,
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I , and the PSF (i.e. the instrument response to a point source). I  needs to be separated from the 

dirty image, and this is usually done during imaging using algorithms such as CLEAN (Hogbom, 

1974) or maximum entropy (Cornwell & Evans, 1985). Note that, for wide-field images, the 

Fourier relation does not hold. Nevertheless, techniques such as those described by Tasse et al. 

(2013); Offringa et al. (2014); Tasse et al. (2018) can be used to correct for the effects of the 

w-term.

Due to the size of datasets which are generally processed in radio interferometry, the most 

common method for computing the Fourier transform of the visibilities is the Fast Fourier trans

form (FFT). The FFT requires interpolating the visibilities onto a rectangular uv-grid in a process 

referred to as gridding. The FFT is computationally cheaper than the Direct Fourier transform 

(DFT). However, gridding is an expensive operation especially for small images, where the DFT 

may be faster than the combination of gridding and FFT (Taylor et al., 1999).

Another important decision whenever performing imaging is the choice of weighting scheme 

or weighting function W (u, v) to apply to the visibilities. Two extreme schemes exist namely 

natural and uniform weighting. Natural weighting weights each visibility by the inverse of its 

measured uncertainty as reported by the correlator. Hence natural weighting maximises sensi

tivity and gives more emphasis to the short baselines (especially for arrays with dense cores) 

thereby increasing the collecting area of the array. Uniform weighing, on the other hand, tries 

to assign equal weights to all uv cells. This improves resolution as the long baselines have a 

similar contribution as the short baselines thereby suppressing side lobes but at the detriment 

of sensitivity. The weight of each uv cell in uniform weighting is computed as a function of 

its density, i.e. the number of points in the cell. The problem is finding the perfect trade-off 

between sensitivity and resolution. An intermediate weighting scheme is the Briggs weighting 

scheme (Briggs, 1995) which has a robust parameter which helps to compromise between natural 

and uniform weighting. Briggs weighting with the robust parameter close to 2 will correspond 

to natural weighting while the robust parameter close to -2 will denote uniform weighting. Any 

intermediate value for the robust parameter will be a mixture of both schemes.
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1.4 Sensitivity

The sensitivity of an interferometer is the weakest signal it can detect. Sensitivity plays an 

essential role in astronomical observations as it sets a limit on the achievable science studies. 

This section discusses the expected sensitivity of radio interferometers (see Taylor et al. (1999) 

and references therein for more details). Using the Rayleigh-Jeans approximation to Planck’s 

law, the power P  from a signal with brightness temperature T is given by

P  =  k6T  Av, (1.17)

where kb is the Boltzmann constant and Av is the observing bandwidth. This power is amplified 

in the antenna’s feeds by a gain factor, g2, which depends on the type of antenna, to produce an 

output power,

P  =  g2 kbTAv. (1.18)

The temperature, T , can be split into two components namely: the temperature of the target 

source, Ta, and the system temperature, Tsys, i.e.

T  =  Ta +  Tsys. (1.19)

The system temperature is the power of the system’s noise. It consists of contributions from the 

receiver noise, galactic background, spillover, feed losses and cosmic background. The power 

from a source with flux density, S , is related to the antenna’s collecting area, A, and efficiency, 

n«, by

Pa =  1 g2naAS Av =  g2k6TaAv. (1.20)

From Eq. (1.20), if we substitute Tsys for Ta, we can define a quantity called the system equiva

lent flux density (SEFD) given by

2kbTsys
SEFD =  b s . (1.21)

naA

The SEFD represents the source’s flux density that will produce the same power as the system 

temperature. The lower the SEFD, the higher the instrument’s sensitivity. Any signal weaker
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than the SEFD will have a power lower than that from the system temperature. In addition, we 

can show that the noise rms of an interferometer with antennas having the same properties is

AV
1 SEFD

(1.22)

where A V is the noise rms per baseline often referred to as thermal noise and 5t is the integration 

time (see Taylor et al. (1999)).

1.5 KAT-7, MeerKAT and VLA

This section briefly overviews the three telescopes we use in this thesis, namely the Karoo Array 

Telescope (KAT-7), MeerKAT (Jonas & Team, 2018) and Jansky Very Large Array (VLA) (Per- 

le y e ta l., 2011).

KAT-7: KAT-7 is a seven dish telescope located in the Northern Cape Province of South Africa 

that served as an engineering prototype for the MeerKAT telescope. Its longest baseline is 180 

m giving it a resolution of «  3 arcmins at its central frequency of 1.83 GHz. Each dish has a 

diameter of 12 m giving it a field of view of «  0.8 degrees at 1.83 GHz. KAT-7 operates at a 

single frequency band with range of 1.2 GHz to 1.95 GHz.

MeerKAT: Following the success of the KAT-7 telescope, the 64 dish MeerKAT telescope was 

also built in the Northern Cape Province of South Africa. MeerKAT is currently one of the 

world’s most powerful radio telescopes, and it will be absorbed into the future Square Kilometre 

Array (SKA) (Schilizzi et al., 2008) phase 1 configuration. MeerKAT has a dense core array con

figuration which provides it with many short baselines as well as a few long baselines with the 

longest at 8 km for high-resolution imaging. MeerKAT operates over the frequency range 0.58 

GHz to 14.5 GHz. This range is divided into different bands, namely the L-band, the X-band, 

the S-band, and the UHF-band.

VLA: The VLA is a 28 dish Y-shaped telescope located in New Mexico in the United States 

of America. Each VLA dish has 25 m diameter. The VLA array operates in a varying number 

of configurations depending on the specific observation’ sensitivity and resolution requirements 

(configuration A, B, C and D). The A configuration has the longest baseline, i.e. 36 km and thus
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provides its highest resolution. VLA operates at frequency range 1.0 GHz to 50 GHz divided 

over multiple bands namely the L, S, C, U, Ku, K, Ka, and Q bands. Over recent years the VLA 

has undergone major upgrades from the VLA to Expanded VLA and the current plans for the 

VLA will be the addition many more antennas to form what will be call the next generation VLA 

(ngVLA).

Some other current and future general purpose radio interferometric telescopes not mentioned 

here include, uGMRT in India, LOFAR in Europe, the Australian SKA Pathfinder (ASKAP) in 

Australia, and the Atacama Large Millimeter Array in Chili.

1.6 Radio sciences

The collaborative efforts to build and upgrade several powerful telescopes [such as the SKA, 

MeerKAT, the Hydrogen Epoch of Reionisation Array (HERA) (Greenhill & Bernardi, 2012), 

the Expanded Very Large Array (Perley et al., 2011)) and the Low-Frequency Array (LOFAR) 

(van Haarlem et al., 2013)] have radio astronomers at their utmost delight. We conclude this 

introductory chapter with an overview of some research areas these new instruments will inves

tigate.

Epoch of Reionisation

The Epoch of Reionisation (EoR) is a period in the history of the Universe during which the first 

luminous sources ionised the neutral interstellar medium (see McQuinn et al. (2006)). Probing 

this epoch will provide an enormous amount of information about the formation of the Universe 

and the nature of the first luminous sources -  these include objects such as galaxies, stars and 

quasars. Detecting the redshifted 21-cm signal from Neutral Hydrogen (HI) is believed to be 

one of the most promising means of probing reionisation, formation and evolution of galaxies 

as well as dark matter (i.e. an unseen mass that is believed to be the cause of gravitational field 

holding boundary stars together). EoR projects will be a key science goal for arrays like HERA 

and LOFAR.
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Neutral Hydrogen (HI) and Galaxy formation

The distribution of galaxies in the Universe can be described using the cosmic web. The cosmic 

web is 3-dimensional network of interconnecting filaments of galaxy clusters and gases separated 

by voids. It is speculated that these filaments supply gas to galaxies through accretion and act 

as fuel for continued star formation in galaxies. Studying HI around regions with low column 

densities will provide a better understanding of galaxy formation and their distributions and will 

provide evidence or not for cosmic web based cosmological models. MeerKAT, for example, is 

expected to detect HI signals at redshifts up to 0.4, but using techniques such as stacking (see 

Healy (2016)) it will be possible to push these detections to redshifts up to 1.4. MeerKAT surveys 

such as LADUMA and MHONGOOSE (see Booth & Jonas (2012)) are examples of surveys that 

will be carried out in search of HI signals.

Spectral Line studies

Spectral line studies target absorption or emission processes that occur at a specific wavelength 

as a result of electrons moving across different orbitals or energy states, thereby absorbing or 

releasing energy in the process. Spectral line studies can be done using different chemical com

pounds other than HI, such as the Carbon Monoxide (CO) and the Hydroxyl radical (OH) lines. 

Comparing absorption and emission lines yields information about the temperature and density 

of the emitting source (Thompson et al., 2017). With the high spectral resolution of MeerKAT, 

it will be possible to detect thin absorption lines such as the line splitting caused by the Zeeman 

effect (Booth & Jonas, 2012).

Deep Continuum Surveys

Continuum studies, unlike spectral lines, involve multiple frequencies. Continuum studies are 

not only necessary because of the information provided about the Universe but also because 

spectral line studies are generally performed only after subtraction of continuum sources from 

the visibility data. Thus accurate knowledge and modelling of continuum sources are essential
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for studies of weak signals like HI, haloes and diffuse emissions which are faint compared to con

tinuum foreground sources (see Morales et al. (2006)). The MeerKAT, and even more the SKA, 

will have the sensitivity and resolution required for the deepest radio survey ever. These sur

veys will improve the understanding of known sources and will allow the detection of numerous 

new sources. An example is the MeerKAT International GHz Tiered Extragalactic Exploration 

(MIGHTEE) survey (Jarvis et al., 2017) which will cover an entire field of view of 20 square 

degrees, with ^Jy expected sensitivity at frequencies up to the GHz range.

Pulsar and Transients sources

Discovered by Jocelyn Bell and her doctorate supervisor Antony Hewish (who received a No

bel prize), pulsars are highly magnetised neutron stars emitting EM radiation (Burnell, 1984). 

Pulsars are only detected when their radiation beam points towards the Earth, hence the name 

pulsar (i.e. a contraction of “pulse” and “star”). Transient sources produce short-lived burst radi

ation. Unlike transients, pulsar emissions are continuous or long-lived but can only be detected 

at specific periods. Studying pulsars and their timing is necessary to understand gravity in bi

nary systems. Transient studies are important, as most often, unknown signals in the data are 

considered to be radio frequency interference and is flagged. Such signals may be from transient 

sources or rapidly varying sources. The MeerKAT L-band and high-frequency receiver will be 

used to explore the Galactic centre and the Galactic plane in order to conduct precision pulsar 

timing and searches for fast radio transients (Booth & Jonas, 2012).



CHAPTER 2

Radio Interferometric Data Reduction — Calibration

The process of estimating and removing the different propagation effects present in interferomet

ric data (visibilities), known as calibration, is a critical step of any data reduction pipeline. Cali

bration in radio interferometry, just as in any experimental science, is an essential factor for the 

quality of the science outputs. In a nutshell, calibration is the process of adapting the parameters 

of an instrument so that the instrument has the correct response to some a priori known model. 

This chapter reviews some concepts of radio interferometric data reduction with particular em

phasis on the process of calibration. We discuss in §2.1 the mathematical formalism adopted 

by radio astronomers to describe the measurement process of an interferometer and propagation 

effects. In §2.2, we describe the different steps involved in a typical data reduction process and 

how the different steps and techniques have evolved over the years. We present some conven

tional calibration algorithms in §2.3 and we conclude with a discussion of calibration bottlenecks 

and some recent calibration frameworks in §2.4.

2.1 Radio Interferometer Measurement Equation (RIME)

2.1.1 Discrete sources formulation

In §1, we defined the visibilities measured by an interferometer as the correlation of the voltages 

measured by a pair of antennas. From waves and optics, we can represent an electromagnetic 

signal by its complex vector amplitude, e. If we assume a Cartesian X Y Z  coordinate system,

17
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with the Z-axis pointing along the direction of propagation then the complex vector amplitude, 

e, is defined as

e  =  [  ex I
The choice of coordinates is completely arbitrary as we can easily move from one coordinate 

system to another through a coordinate transformation. The most common systems adopted 

in radio astronomy are a linear coordinate system for horizontal and vertical polarisation and 

circular coordinate system for left and right circular polarisation. If the signal, e, is assumed to 

be quasi-monochromatic, then all transformations along its path are linear and can be represented 

by matrix operators called Jones matrices. Hence the modified voltage, vp, measured by an 

antenna, p, from a source emitting a signal e  is given by

vp Jpe , (2.1)

where J p denotes the Jones matrix representing the propagation effects in the direction of antenna 

p. The visibility matrix for two antennas p and q is thus defined as

Vpq =  2 (Jpe) ■ (Jqe) H

JP 2
ex

eX e*y ) ) J H

J p ( 1 2exeX 2ex ey i j2eyex 2eyey

ey

(2.2)

(2.3)

(2.4)

where (.) represents the expectation value, (.)H represents the conjugate transpose and (.)y rep

resents the complex conjugate. The validity of Eq. (2.1) relies on the assumptions that we are 

observing a monochromatic signal and the Jones matrices have infinitesimally small spectral 

variations. Hence, if we assume the Jones matrices are also constant over sampling times, then 

we can safely remove them out of the expectation operator to get Eq. (2.3). Note that here the 

visibilities are defined as a matrix product of a column vector and a conjugate row vector. This is 

contrary to the 4 x 4 formalism in which V pq is a 4 x 1 vector defined by the following Kronecker
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product

Vpq =  2 ((Jpe) 0  (Jqe)y) (2.5)

=  2 (Jp  0  Jy)  (e 0  e y) . (2.6)

The middle term of Eq. (2.4) provides the definition of Stokes parameters in radio interferometry 

and unifies it with optics (Hamaker et al., 1996). For linearly polarised feeds

/  2(exeX) 2(exey) \ =  /  I  +  Q U +  iV \  =  B  (2 ?)

V 2(eyex) 2(eyey) )  \  U -  iV I  -  Q J

where I , Q, U, V are the Stokes parameters and B  is the brightness matrix of the source (Born 

& Wolf, 1964; Hamaker et al., 1996). The factor of 2 here is introduced as a convention. As 

discussed in Smirnov (2011a), there are two conflicting conventions, the convention-1/2 and the 

convention-1. We define the total intensity, Stokes I , as

I  =  (exex) +  (ey ey). (2.8)

For a 1-Jy unpolarised phase centred source, i.e. unity Stokes parameters (I = 1 ,  Q =  U =  

V =  0), (exex) =  (eyey) =  1/2. The question is how do we define the output of an ideal

interferometer? Using convention-1, a unity correlation output of 

Stokes. Hence

1 0

0 1
corresponds to unity

V pq 2
(eI ex) (exey) i =  j  1 0 

(eyex) (eyey) 0 1

Substituting B  in Eq. (2.4) the RIME for a single source of emission is given in terms of its 

brightness as

Vpq J P B J q
H (2.9)

An important aspect of the RIME is that every propagation effect is simply represented by a new 

Jones term. Hence, if a series of propagation effects corrupt the signal, then the RIME is given 

by

Vpq = Jpm(...(Jp2(JplBJqH ) JqH )•••) JqH (2.10)
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We refer to Eq. (2.10) as the onion form of the RIME and an important property of the RIME is

brightness matrix while the effects closer to the antennas are furthest. Furthermore, this order

sky from different sources are uncorrelated, we modify the RIME as follows to include emissions 

from different sources

where J sp represents the propagation effects encountered by the signal from the source s on its 

path to the antenna p, B s is the brightness matrix of the source s and Ns is the number of sources.

2.1.2 Jones Matrices

Having derived the RIME for discrete sources, we now discuss some familiar Jones matrices and 

their forms. Jones matrices represent the different propagation effects a signal encounters along 

its path. Propagation effects are generally classified as direction dependent (DD) or direction 

independent (DI) based on whether they vary with direction in the sky or not. DI effects are 

constant across the sky and thus the same for all the sources. These are usually effects close 

to the antennas. DD effects vary across the sky and are effects generally close to the source of 

emission such as ionospheric and tropospheric effects. Jones matrices generally have different 

mathematical representations based on the nature of the propagation effect. The following defi

nitions are mostly for linear feeds. For circular feeds, some of the Jones terms, particularly the 

rotation matrices, take slightly different forms.

that the number of propagation effects m  and n do not have to be equal for different antennas. 

The order of the Jones matrices is crucial as it represents the order by which the different Jones 

matrices corrupt the signal. Jones matrices for effects closer to the source are the closest to the

needs to be preserved as matrix multiplication is not in general commutative. Since signals in the

rH
sq, (2.11)

Phase m atrices: K  =  e ^  =

Such matrices are used to model propagation effects which only modify the phases of visibilities. 

An example is the phase delay we need to insert into the correlator to correct for the geomet

ric path length difference between the signals measured by the antennas (see Fig. 1.4). The
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phase delay is an intrinsic property of any inteferometer and it is present even in the case of an 

ideal uncorrupted observation. From Thompson et al. (2017), for an antenna, p, with coordinates, 

up =  (up, vp, wp), its phase difference relative to u 0 =  (0,0,0) for a signal with direction cosines

l, m, n =  V l — l2 — m 2 is given by

2n
0p =  (upl +  Vpm +  Wp(n — 1)), (2.12)

A

where A is the signal wavelength.

Another example of phase corruption is the ionospheric phase delay (Smirnov, 2011b) caused 

by excess path length due to signal refraction in the atmosphere. Ionospheric phase delay is a 

function of electron cloud density. The ionospheric phase delay can reach up to 104 rad at 

low frequencies. For a small field of view (fov), the ionospheric corruptions can be considered 

constant across the fov and treated as DI effects during calibration (see Lonsdale (2005)).

The phase matrix is scalar since it can be parametrised as a scalar multiplied by the identity 

matrix. Scalar matrices have the same representation in all coordinate systems. Also, scalar ma

trices commute with every matrix and thus can be placed at any position in the RIME.

(cos 0 — sin 0 

sin 0 cos 0

Certain propagation effects such as Faraday rotation or parallactic angle rotation of antenna feeds 

are modelled as matrix rotations. Rotation matrices are not scalar but, in 2D, they commute 

among themselves. f

(gx 0 

0 gy
can be represented by a diagonal matrix if a linear coordinate system is assumed with no polar

isation. Note that this is not the case for circular feeds. Similarly to rotation matrices, diagonal 

matrices commute among themselves.

Fully polarised gains: P
gx gxy 

gyx gy ,

An example of such a Jones matrix is the feed-error matrix, D
1

- d yx

xy

1
which repre-

sents the polarisation leakages of the antenna’s feed, i.e. the sensitivity of the x feed to the y
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polarisation and vice versa.

Pointing errors: All antennas have pointing errors. These generally result from the gravitational 

load, thermal expansion, wind pressure and errors in the antennas driving mechanism (Smirnov, 

2011b). Pointing errors cause DD effects because of misalignment of the antenna’s primary 

beam, E, i.e. instead of a source at a position (l, m) to have beam gain, E(l, m), it has a gain 

E(l +  il, m  +  £m). £l and £m are called pointing offsets and ideally should be included in the 

RIME and solved for during calibration.

Note that certain corruptions can not be represented using Jones matrices. We refer to such 

corruptions as interferometer-based errors. These errors are generally due to the correlator or 

mutual coupling between antennas. Interferometer-based errors are modelled per baseline as 

either an element-wise multiplicative 2 x 2 matrix term or an additive term (Smirnov, 2011a).

2.1.3 Full-sky RIME & Van Cittert-Zernike theorem

In §2.1.1, we derived the RIME by assuming the sky consists of a discrete set of sources. In real

ity, the sky brightness is not discrete but continuous. We obtain the full-sky RIME by integrating 

the entire sky brightness distribution over a unit sphere. Consider the following discrete form for 

the RIME,

EspKspBsKfqEfqj G f , (2.13)

where G p is the DI instrumental gain for antenna p, K sp denotes the phase delay matrix along the 

direction of the source, s, to the antenna p and E sp is the antenna’s primary beam in the direction 

s for antenna p. Its’ full-sky representation is given by

Vpq =  G p Q y  n E p (l,m )K p (l,m )B (l,m )K f  (l,m )E f  (l,m )dldm ^ G f , (2.14)

where we have replaced the discrete source direction, s, by the (l, m, n) direction cosines sky 

coordinates. Using Eq. (2.12) for the phase delay matrix, i.e.

K p(l, m) =  e- í^ =  e- ^  ̂ V + ^ + ^ U - i ) )

Ns
Vpq =  Gp | £

, s=i



CALIBRATION 23

we get

Vpq =  Gp Q y  n E p ( l,m )B (l,m )E f  (l, m )e-2ni(upp^ m+wpp(n-1))dldm^ G f , (2.15)

where upq =  (up — u q)/A. The dependence of Eq. (2.15) on the w-term can be removed by 

absorbing it in the beam term E  in order to turn Eq. (2.15) into a 2D Fourier transform. Let

E p(l,m ) =  E p(l,m )W p(l,m ) where W p(l,m ) =  — e-2ni(wp(n-1)), then we have

Vpq =  Gp Bpq (l, m )e-2ni(upq '+Vpq m)dldm G f , (2.16)

where B pq(l,m ) =  E p(l,m )B (l,m  , m) .

Eq. (2.16) tells us that the measured visibilities as modelled by the RIME is a Fourier trans

form of the sky corrupted by different propagation effects. An interesting observation here is 

the presence of the baseline subscripts pq in the modified sky brightness Bpq(l, m). This tells us 

that each baseline sees the sky differently. Thus DD effects will make the sky appear different to 

each baseline. Finally, we add noise as astronomical observations are always corrupted by noise 

to write our final form of the RIME as

Vpq G pXpqGf +  Npq , (2.17)

where X pq =  F (13pq(l,m )). X pq is called the sky coherency whenever the only DD effect 

present is the phase delay, N pq represents Gaussian noise and F  denotes the Fourier transform 

operator.

2.2 Data Reduction Steps

Data reduction refers to the sum of all the processes which we perform on the data from the 

moment the instrument collects it to producing the final images required for the intended science 

goals. These steps range from data averaging and flagging through calibration to imaging. In this 

section, we discuss some traditional data reduction steps with special emphasis on calibration and 

its development over the years. The current trend in the field is to automate these processes as
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much as possible using data reduction pipelines. Fig. 2.1 is a schematic illustration of what a 

typical data reduction pipeline could look like.

Figure 2.1: Overview of a typical radio interferometric data reduction pipeline showing the dif

ferent tasks performed at the various stages.

2.2.1 Preprocessing

Preprocessing is the first step after obtaining the data. It involves understanding the data format 

and transferring it to a preferred data format. This may be, for example, changing from the raw 

UVFITS format(Chen et al., 2013) to the standard measurement set or CASA table format (van 

Diepen, 2015).

The next step after exporting to a desired format is usually data editing and flagging. Editing 

and flagging refer to removing or tagging severely corrupted data. These corruptions, called 

radio frequency interference (RFI), come in different flavours and correspond to all unwanted 

signals and even data with significant instrumental errors, such as antenna failures for example, 

during observations. This process can be done manually by plotting and inspecting the data or
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using automated tools such as AOflagger (Offringa et al., 2012).

With the current capacities of the new generation of telescopes, the data rates are too large 

to be stored at full resolution. Thus after First Generation Calibration (see §2.2.2), the data is 

generally averaged both for computational and storage reasons. Averaging needs to be performed 

intelligently to minimise the amount of information loss through time and bandwidth smearing 

(Taylor et al., 1999), i.e. the loss in the amplitude of the signal or decorrelation due to excessive 

averaging. The rising trend is to employ baseline-dependent averaging (BDA) techniques (see 

Atemkeng et al. (2016)). Averaging can also be done after the final calibration in order to avoid 

smearing caused by rapidly varying corruptions. Wijnholds et al. (2018) present different BDA 

schemes and frameworks that can be used to average the data and transform it later to its full 

resolution for calibration. The averaging scheme can also be chosen depending on the science 

goals. For spectral line or pulsar studies, for example, we try to keep the data at the highest 

frequency resolution possible. In §5, we will focus on the concept of solution intervals, where 

data is averaged during calibration in order to improve the SNR for the solutions.

2.2.2 First Generation Calibration (1GC)

After preprocessing, we are ready to correct the data. Following Noordam & Smirnov (2010), 

calibration can be broadly divided into three stages: First Generation Calibration (1GC), Second 

Generation Calibration (2GC) and Third Generation Calibration (3GC). 1GC was predominantly 

the only calibration step until the early eighties (Noordam & Smirnov, 2010). 1GC, also known 

as cross-calibration, involves deriving gain solutions from a well-studied source called the cali

brator and applying them to a target field. Hence, when scheduling observations, we first need 

to identify calibrator sources in the vicinity of the target field. During the observation, the tele

scopes switch between observing the target and the calibrator field. Different calibrators are used 

for different propagation effects, but the same calibrator can be used for different effects as well. 

Below we provide a list of calibration steps as well as the properties of the associated calibrators:

• Amplitude Calibration: Amplitude calibration, also known as flux scaling, is required to 

scale the fluxes of the visibilities to their true values. The calibrator used for amplitude
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calibration should be very bright and unresolved in order to obtain a high signal to noise 

ratio in the shortest time possible to reduce the time spent on the calibrator source. The flux 

calibrator is usually observed for a short time at the start and the end of observation. When 

it is not possible to find unresolved calibrators, amplitude calibration can be performed 

using the system equivalent flux density of all the antennas (Janssen et al., 2019).

• Phase or any unknown delay calibration: Different errors cause insertion of wrong delay 

values during correlation, e.g. incorrect antenna positions in the correlator delay model or 

additional delays caused by atmospheric effects. Such errors lead to a constant in time 

linear phase slope as a function of frequency in the data for each baseline. The slope of the 

linear phase needs to be corrected for in order to avoid decorrelation of the signal during 

continuum imaging.

• Bandpass calibration: This is done to correct for the frequency response of the instru

ment. An ideal Bandpass calibrator should be bright with a known spectrum and unre

solved or have an accurately known model. Bandpass corruptions are expected to change 

slowly with time, so they are solved using long solution time intervals. Phase delay and 

bandpass can sometimes be merged into a single step using an appropriate parametrisation.

• Complex gain calibration: This calibrator should be as close as possible to the target field 

so that it suffers approximately the same atmospheric effects. This calibrator is also called 

the secondary calibrator and is the most observed as it is used to track gain variations with 

time. The solutions obtained here are interpolated to match the target observation time 

before being applied.

The list above is not exhaustive, numerous other effects such as polarisation angles, astrometry 

and pointing errors could be corrected for during calibration. These effects vary for different 

arrays and fields, and the calibration strategy might slightly vary as well.
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2.2.3 Second Generation Calibration (2GC)

Even after performing 1GC, the data still needs to be further calibrated for numerous reasons. 

Sometimes it is not possible to find good calibrator sources next to the target field for 1GC. 

Hence the 1GC solutions are usually not applicable. Secondly, the calibrator and target fields 

are observed in different scans; therefore, rapid gain variations are not captured by the 1GC 

solutions. Second Generation Calibration (2GC), often referred to as self-calibration, entails 

using the target field to calibrate itself. During 2GC the type of Jones matrices we generally 

solve for highly depends on the array and the frequency of the observation. For example, at 

low frequencies, ionospheric effects are very dominant. 2GC methods, like 1GC, correct for 

direction independent effects. Hence the measured visibilities at a time, t, for the scalar case 

(single correlation) can be written as

Vpq (0  =  gp(0 vpq CO gOO +  epq CO, (2.18)

where vpq denotes the measured visibilities, vpq the true sky visibilities, gp is the direction in

dependent gain and epq is the additive Gaussian noise. 2GC can generally be performed using 

closure relations or a direct optimisation approach.

The first approach that was used when 2GC was invented was the closure relations approach 

and the method was called hybrid mapping (Cornwell & Wilkinson, 1981). Dropping the time 

dependence and taking the phase of Eq. (2.18) we have

0pq =  0pq +  Op -  0q +  noise term, (2.19)

where Vpq =  |Vpq |e-i<̂ q, Vpq =  |vpq |e- i^pq, gp =  |gp|e-i0p, and gq =  |gq|e-i0q. The lower case

symbols are used here to indicate scalar calibration where each visibility is a single complex 

number and not a 2 x 2 matrix as in the fully polarised case1. If we consider three antennas, 

p, q and r  say, and compute the sum of their phases in a closed loop, we obtain the following

1This convention is used throughout all the remaining sections. i.e. if Z is 2 x 2 visibility or Jones matrix in the 

fully polarised case, then its scalar counterpart is z.
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expression

Cpqr *fipq +  *fiqr +  0rpj (2.20)

=  (0pq +  Op -  Oq) +  (0qr +  Oq -  Or) +  (0rp +  Or -  Op) +  noise term, (2.21)

=  0 pq +  0 qr +  0 rp +  noise term, (2.22)

=  Cpqr +  noise term. (2.23)

(7pqr is called the closure phase and Eq. (2.23) tells us that for any 3 baselines forming a closed 

loop, the gains’ phases do not contribute to the closure phase. The closure phase of the measured 

and modelled visibilities only deviate by some additive noise term. A similar closure amplitude 

exists by considering the amplitudes of 4 baselines in a loop. For 4 antennas, p, q, r  and s say, 

we have

Tp,„ =  j M L ) , (2.24)v vI pr || qs |
where r pqrs is the closure amplitude. Initially closure phases were not very useful but with 

the advent of fast computers in the eighties, numerous techniques were developed to make radio 

maps with consistent closure phases and amplitudes (examples are Readhead & Wilkinson (1978) 

and Ekers (1984). The key ideas of closure phases revolves around the following procedure 

(Taylor e ta l., 1999)

1. Make an initial model of the target field or source.

2. Find all the closed loops baselines and compute their closure phases. Derive the true phases 

for two antennas using the model closure phase and the phase of the last antenna in the loop 

from the measured data closure phase.

3. Form a new model from the image of the visibility amplitudes and use that to derive visi

bility phases.

4. Repeat from step 2 until we are satisfied.

Various variants of this approach exist and later techniques were suggested on how to treat the 

additive noise term. Nowadays, self-calibration corresponds to an approach completely different
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from this approach but closure quantities are still widely used for redundant arrays (i.e. array 

with a large number of baselines measuring the same information) such as HERA (DeBoer et al., 

2017) under the name redundant self-calibration (see Marthi & Chengalur (2013) and Grobler 

et al. (2018)).

The direct optimisation approach which is currently the most widely used 2GC approach, is 

called self-calibration. It involves finding DI complex gains that minimise the square of residuals 

between the measured and modelled visibilities,

mir |Vpq(t) -  gp(t)vpq(%q*(t)|2-
pq,t|p<q

(2.25)

This is possible because for an array with N  antennas, at each time and frequency index we

have N  unknown parameters and =  N a (N ---- — visibilities. Hence Eq. (2.25) is an

overdetermined system of equations and can be solved if we have a good enough model for 

vpq. Self-calibration proceeds as follows:

1. Make an image of your 1GC calibrated data.

2. Make a sky model from the 1GC calibrated image by running a source finder such as 

PyBDSF (Mohan & Rafferty, 2015) or using the model components from your imaging 

tool.

3. Calibrate the data using the sky model from 2.

4. Compute new corrected visibilities and image them.

5. Check your corrected visibilities and residuals and if satisfied stop or repeat from step 2.

Self-calibration has proven to be quite successful over the years by considerably improving dy

namic range2 of radio maps (Noordam & Smirnov, 2010).

2 Image peak
2Dynamic range, D R = is a common metric used to check how good calibration was in radioImage rms

interferometry. Note that dynamic range can also be defined as the ratio of the image peak to brightest artefact in 

the image.
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2.2.4 Third Generation Calibration (3GC)

Radio interferometry has now transitioned to the 3GC era. Both 1GC and 2GC only correct 

for DI effects, but with the sensitivities and the wide-field imaging capabilities of the current 

and future generation telescopes (such as MeerKAT, the SKA and the Expanded Very Large 

Array (EVLA)), DD effects have become more prominent and need to be properly addressed. A 

classical DD problem will have its RIME formulated as follows

Vpq =  ^  JspF(Bpqs ) JsH, (2.26)
s=1

where each variable is defined as before. Because DD effects are different per direction in the 

sky, gains need to be solved separately for each direction. DD effects can be corrected either in 

the image domain or in the visibility domain. Solving for DD effects in the visibility domain 

entails dividing the sky into numerous directions or sources. This sometimes makes the problem 

intractable as we can not solve for one gain at every sky position. For example, faceting could be 

used where a wide-field of view is approximated with many small narrow field images for which 

the DD effects can be assumed to be constant (see Van Weeren et al. (2016) and Tasse et al. 

(2018)). Two common approaches are generally used for tackling DD effects namely Physics- 

based approaches and Heuristic approaches.

Physics-based approaches model the underlying phenomenon causing the DD effect. Tasse 

(2014b) for example is a calibration scheme which can be used to solve directly for physical 

quantities such as clock drifts or total electron content (TEC) that appear in the RIME instead of 

their resulting ionospheric Jones matrices. Such an approach significantly reduces the number of 

free parameters, thereby improving the conditioning of the problem. Others include modelling 

and applying the primary beam in the image plane and solving for antenna pointing errors (see 

for example Bhatnagar et al. (2004)).

Whenever no physics based model exists for the specific DD effect, the most affected sources 

are identified and complex gains solved for them. One of the first approaches proposed for this 

was Peeling (Noordam, 2004). Peeling solves for DD effects by correcting the effects towards 

each source separately in decreasing order of brightness. Every time a source is corrected, it
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is removed from data and the process is repeated with the next brightest source. Peeling is a 

computationally expensive process, and the gain solutions are usually contaminated by 1GC and 

2GC errors which are locked in as discussed by Smirnov (2011b). Smirnov (2011c) proposed 

the differential gains approach which reduces gain contamination by solving for the DI and DD 

effects simultaneously by using the following RIME model

A xspF(B pqs)A xfqj G f , (2.27)

where A x sp is the DD differential gain for antenna p in the direction s.

Ns
Vp, =  Gp ( Y

,s=1

2.3 Conventional Calibration Algorithms

In the preceding three sections, we described calibration without emphasis on the exact mathe

matical computations or expressions required to compute the gains from the measured and mod

elled visibilities. Following the RIME, one defines calibration as an optimisation process where 

we construct a model and try to find the optimal gains which fit the model. We discuss here a 

few traditional calibration algorithms for 2GC and 3GC.

2.3.1 Schwab & Thompson-D’Addario method

One of the first formulations of calibration as an optimisation problem was made by Schwab 

(1980). Schwab (1980) formulated the calibration problem using both 11 and 12 minimisation. We 

describe the 12 minimisation approach here since it is the most widely used approach. Schwab 

(1980) writes the calibration problem as

S =  Y  Y  Wpq(tk)|Vpq(ifc) -  gp(tk)vpq(tfc)g*(tfe) |2, (2.28)
k pq,ifc |p<q

where we seek to find the gains, g, that minimise S, wpq =  — represents the weights for each
apq

visibilities computed from its variance apq, vpq denotes the corrupted visibilties and vpq are the 

modelled visibilities. Note the presence of the k subscript on the time index to incorporate solu

tion intervals (see §5). One of the key steps to solving this problem was suggested by Thompson
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& d’Addario (1982), i.e. to divide all through by the modelled visibilities, thus rewriting Eq. 

(2.28) as

S =  Wpq(tk)|vpq(tk)|2|Xpq(tfc) -  gp(tk)g*(tfc)|2, (2.29)
k pq,tfc |p<q

Vpq (tk). Eq. (2.29) is identical to calibrating a single point source. Separating
vpq(tk)

the problem into real and imaginary parts, the solution for the complex gain as quoted from

where Xpq (tfc)

Schwab (1980) is given by

gp(tk)
^pq,tfc |p<q wpq (tk )xpq (tk )gq (tk)

Spq,tfc |p<q wpq (tk)gq (tk)

The gains are computed iteratively with updates given by Eq. (2.30).

(2.30)

2.3.2 Non Linear Least Squares (NLLS) methods

The standard approach by most current calibration packages nowadays is to employ NLLS algo

rithms such as the Levenberg-Marquardt (LM) and the Gauss-Newton (GN) (see Madsen et al. 

(2004)). Let’s start by modifying the optimisation problem, Eq. (2.29) as follows

S =  Wpq(tk)|dpq(tk) -  Vpq(tk)|2, (2.31)
k pq,tfc |p<q

where dpq represents the measured visibilities and vpq denotes the chosen RIME model. If we 

drop the weights, wpq, and the time indices, t k, and stack the data and model visibilities into 

vectors, i.e.

d dpq ,and, v v.pq (2.32)

where [ ] denotes a vector of stacked visibilities for all the baselines, then the optimisation prob

lem can be rewritten as

min | |r | |F  =  min ||d  -  v ||F , (2.33)
g g

where g is a vector containing the gains for all the antennas, r  are the stacked residual visibilities 

and | |. | |F denotes the Frobenius norm. In order to solve Eq. (2.33) using a NLLS method, we 

need to compute the Jacobian matrix, J  defined as

J j
dvi

d g /
(2.34)
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Because the gains are complex it is not possible to compute the derivatives in Eq. (2.34) using 

conventional calculus3. The problem is solved by splitting the data and all the variables involved 

in Eq. (2.33) into their real and imaginary parts. In other words, we transform the n complex

valued variables problem to a 2n real-valued variables problem. Thus we construct the following 

augmented vectors d, v, r  and g for the data, model, residuals and gains respectively

d  =

Ii____

, v = , r  =

1
__

__
l

, g =

1
05

i____

i
1—

i

"C
___

1

v 1

1

l~-H
1__

_

i
1—

i05
___

i

where the superscripts R and I  denotes the real and imaginary components of a complex number 

respectively. Using these augmented vectors, the optimisation problem is reformulated as

min ||V||F =  | | d -  V ||F, (2.36)

where it is now possible to compute the Jacobian matrix, J  where

dv •
Jij =  ^ . (2.37)

d gj

The GN and LM algorithms solves the problem iteratively using a gradient descent approach with 

the update step, Ag given by (see Appendix A for a review on the LM and the GN algorithms)

G N ; A g =  -  ( J TJ ) -1 J Tr ,  (2.38)

L M ; A g =  -  ( J TJ  +  ^D *ag(JTJ ) ) -1 J Tr ,  (2.39)

where ^  is the LM damping factor. The gains at the k-iteration, g [k] are computed as

g [k] =  g [k-1] +  aA g , (2.40)

where a  is the learning rate used to control the step size at every iteration. The exact forms of 

Eq. (2.37) and Eq. (2.40) depends on the RIME model. For DI calibration, for example, we have

Vpq =  gPm Pq g*, (2.41)

3 Since all real-valued functions of complex variables are not necessarily holomorphic.
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where m pq are the modelled visibilities. If we let vpq =  vR +  ivpq, m pq =  mRq +  impq,

gp =  gR +  igp and gq =  gR +  igp, then Eq. (2.41) can be rewritten as

vpq (gR +  *gp )(mRq +  impq )(gR -  *gp )>

(gRmRq gR -  gp mpq gR +  gRmpq gp +  gp mRq gp)

+  i(gR gR +  gpmRq gR -  gR mRq gp +  gp m pq gp)-

(2.42)

(2.43)

We can show that the Jacobian matrix, J , for this problem will consist of 4 matrix blocks given

by

J
J

J

R
R

J R

/
R

1—
1 1—

1 

!""5

where

[JR L  

[JR lab

[J R lab

[JI lab

dvR
dgR

dvR
dgp

dvi
dgR

dvi
dgp

(2.44)

Furthermore, using Eq. (2.43), we can give the explicit forms of the different blocks of J  as

[ J R L
dvRa^pq

dgR

P R L
dvRa^pq

Sgi

JR ]R ab
dv:pa^pq

dgR

[J[ lab
dvpa^pq

dgp

R R I I  
mpq gq +  mpq gq if b =  p,

R R p i
gp mpq -  gp mpq if b =  q,

1 tos ^ 
to +
 

S 
to tos if b =  p.

R I I R
gp mpq +  gp mpq if b =  q,

I R R I 
mpq gq -  mpq gq if b =  p,

R I I R
gp mpq +  gp mpq if b =  q,

R R I I  
mpq gq +  mpq gq if b =  p

1 ■« 
to

3 
to + if b =  q,

(2.45)

(2.46)

(2.47)

(2.48)
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where [J]ab =  0 whenever b is neither equal to p nor q. In a similar way, following some rigorous 

algebra, we can write down the exact analytic expressions for the GN an LM update equations 

(2.38) and (2.39). Although we used a scalar case for simplicity here, the fully polarised case will 

be solved in the same way by carefully constructing the augmented vectors, i.e. first vectorising 

the 2 x 2 matrices before splitting them into their real and imaginary components. Hence each 

2 x 2 matrix will contribute 8 elements to its corresponding augmented vector.

2.3.3 StEFCal

StEFCal is an alternating direction implicit method for solving DI gains. Mitchell et al. (2008) 

originally proposed the idea, but it became popular after its re-derivation and implementation by 

Salvini & Wijnholds (2014). We reformulate the optimisation problem as follows

g =  m in ||V  -  G V G H||F (2.49)
g

where V  is an Na x Na matrix representing the observed or measured visibilities, V  is an Na x Na 

matrix denoting the model visibilities, G  is an Na x Na diagonal matrix whose elements are the 

antenna gains, g.

StEFCal solves for G H by assuming G  is known, and likewise G  is computed by fixing G H. 

Since A =  V  -  G V G H is hermitian, the two steps are in fact identical and thus during each 

iteration only one of either G  or G H is computed. Therefore at the i-iteration we solve for

G[ i] =  min ]v g h ||F .
G[i] F

(2.50)

If we define Z [i] =  G [i]V , then A =  ||V  -  Z G H ||Hi i 2 F
\

| | £  G  -  Z:,pgp ||F
i=1

where {•}:,p denotes the pth column of the matrix {■}. Using the normal equation method the

gains at the ith iteration are readily given by

g | ]
( Z : t 1] )H .V j

(2.51)
(Z:[,;-1])H .Z:[,iT1]

StEFCal provides a considerable computational advantage over most NLLS calibration algo

rithms which scale as O (P 3) while StEFCal scales as O (P 2) where P  is the number of free
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parameters. There have been extensions to StEFCal to include DD calibration and polarisation 

(see Salvini & Wijnholds (2014) for more details).

2.4 Calibration Bottlenecks and Novel Calibration Algorithms

In practice, calibration is not a straightforward task. Several bottlenecks significantly limit the 

performance of conventional calibration algorithms and cause imperfections in the output images 

called calibration artefacts. These imperfections generally manifest in the images as spurious 

source components, deformations in the structures of extended sources and suppression of real 

emissions (Linfield, 1986; Wilkinson et al., 1988; Marti-Vidal & Marcaide, 2008). In this section, 

we describe some of these bottlenecks and a few frameworks which can help improve traditional 

algorithms.

2.4.1 Calibration Bottlenecks

Incomplete sky models

2GC and 3GC calibration necessitate that we build our calibration model from the imperfectly 

calibrated data. The idea is to start with an initial sky model containing only the bright emissions 

and to progressively improve it in successive calibration runs by including fainter ones. During 

this process, most faint emissions are generally not included. The unmodelled sources, as studied 

by Grobler et al. (2014); Wijnholds et al. (2016); Grobler et al. (2016); Patil et al. (2016) and 

Barry et al. (2016), will have their fluxes either suppressed or overestimated by the calibration. 

Flux suppression is a major bottleneck to the calibration process, as many interesting science 

results from weak signals, and it is practically impossible to have complete sky models. Fig. 2.2a 

shows one of the first and most striking sighting of ghost sources in real data. After calibration 

of a 92-cm Westerbork Synthesis Radio Telescope (WSRT) observation of J1819+3845 in 2004, 

the output image had numerous negative [point spread function like] artefacts. These artefacts 

appeared in a regular pattern along the line between the brightest source in the field and a distant 

bright source (Cygnus A) well away from the target field. Following investigations with the
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“Quality Monitoring Committee project” (QMC), Smirnov (2011) observed similar artefacts in 

different observations and simulations calibrated with incomplete sky models and having large 

pointing errors. Fig. 2.2b show similar artefacts to those in Fig. 2.2a from the QMC project.
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(a) Ghost sources in a 92-nforccm Westerbork Synthesis Radio Telescope (WSRT) observation of 

J1819+3845. The string of circular patterns are negative ghost sources. These artefacts occurred along 

the line joining the brightest source in the field (bottom right of the image) and Cygnus A which is 20 deg 

away from the field (outside the image on the top left) (Grobler et al., 2014).

(b) Ghost sources in a residual image from the Quality Monitoring Committee project. The red circles 

indicate the positions of model sources which have been subtracted from the data. The blue ellipse indicate 

regions with the faint ghost sources.

Figure 2.2: Ghost sources in Westerbork Synthesis Radio Telescope (WSRT) observations.
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RFI

As discussed earlier, an important component of any data reduction pipeline is flagging, i.e. de

tection and excision of severely corrupted visibilities. As we will discuss throughout the thesis, 

RFI comes in numerous forms, ranging from different electronics systems to emissions from con

taminating astrophysical sources such as the moon and the sun, or even resulting radio emission 

accidentally generated by people working at observatories. State-of-the-art RFI flaggers such as 

Offringa et al. (2012) use the statistics of the visibilities to flag outliers. Flagging is a complex 

task and usually most ultra-faint RFI evades the flagging tool. Unflagged RFI is a major problem 

for calibration and imaging as this limits SNR and dynamic range. We expand on this issue in 

the upcoming chapters.

Inaccurate modelling of the different propagation effects

Wrong models for propagation effects such as antennas’ primary beams, antennas’ feeds, cor

relator errors, antenna pointing direction and ionospheric effects will lead to different sorts of 

calibration artefacts. The primary beam, for example, is particularly challenging to model and 

usually leads to severe DDEs. Most of the current primary beam models used for calibration are 

only accurate within their main lobe, thus can not be used to correct for sources outside the main 

lobe. Furthermore, primary beam effects are coupled with pointing errors (see §2.1.2), making it 

even more complicated to model. As recently shown by Iheanetu et al. (2019), reflector anten

nas like VLA’s antennas have a standing wave effect which causes small spectral variations in 

the primary beam. Though these variations appear to be small, they can significantly reduce the 

dynamic range of images if we do not model them correctly.

In addition to the above bottlenecks, calibration algorithms are also suffering from the high 

data rates of new telescopes. Astronomers want to have calibration solvers that produce images 

that are an accurate representation of the sky. However, they also want these solvers to process 

massive datasets very rapidly, i.e. if possible, perform real-time data reductions, and store only 

the corrected images. The latter is not always possible because having fast calibration algorithms 

generally requires us to make different kinds of assumptions on the data and propagation effects
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which can lead to various types of artefacts. For example, most of the time when performing 

DD calibration, we generally have to divide the sky or select specific sources for which we 

solve the DDEs. Such decisions, if not carefully taken, can have severe effects on the output 

images. Another such decision is the choice of the length of the solution intervals to use during 

calibration. As we will describe in §5, while solution intervals are an excellent regularising tool 

for calibration, inadequate solution interval width can significantly affect the output images from 

calibration and the indented science studies. While experienced astronomers are usually capable 

of making sound decisions during calibration, we need to develop robust and efficient calibration 

solvers with significant automation to facilitate the process of calibration for young astronomers 

with the capability of handling the massive data rates of new telescopes.

2.4.2 Novel Calibration Algorithms

In the next chapters, we will present our research on how to mitigate against some of these 

calibration bottlenecks for the robust calibration of radio interferometers. Before moving on 

to that, we conclude this chapter with a brief discussion of some of the recent algorithms and 

frameworks which have been suggested by different authors to improve calibration.

Regularized M axim um Likelihood algorithm s

In recent years, a few regularized maximum likelihood (RML) algorithms have been applied 

in radio interferometry using ideas from the field of compressed sensing (Candes et al., 2006). 

Initial applications were for image deconvolution leading to the development of packages such 

as PURIFY (Carrillo et al., 2014; Pratley et al., 2017). Because the deconvolution problem is 

ill-posed, it needs to be regularised in order to be solved. RML methods solves this problem by 

minimising, for example, the following objective function

min h (x ) +  | |x ||i ,  (2.52)
X

where h (x ) is a standard NLLS objective function called the data fidelity term and | |x | |1 is the 

regularizer. The regularizer, | |x | |1, defined using an /1-norm is a sparsity promoting prior and
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is a chosen regularization parameter which balances between the data fidelity term and the 

regularizer. Since regularizers are not always smooth functions, such optimisation problems are 

solved using forward-backward propagation (Combettes & Wajs, 2005). DD calibration can also 

be ill-posed, for example, whenever the number of parameters we are solving for exceeds the 

number of data points, i.e.

, ,  Na -  1 Nt Nv
Na NtNv < NdNa ,

2 A t Av

where Na is the number of antennas, Nd is the number of directions, Nt and Nv and the number 

of times and frequencies, respectively, and A t and Av are the chosen time and frequency solu

tion intervals. RML methods have now been extended to jointly solve both the calibration and 

imaging problem (see Kazemi et al. (2015), Repetti et al. (2017), (Chiarucci & Wijnholds, 2017), 

?). This is done by Repetti et al. (2017), for example, by adding an extra term to the objective 

function, Eq. 2.52, in order to enforce smoothness on the solved DD gains.

Bayesian methods

RML is limited in that it provides a maximum a posteriori (MAP) estimate for a fixed regularisa- 

tion parameter ft. Bayesian methods allow for a full posterior inference as well as the possibility 

of inferring the parameters of the prior from the marginal likelihood or evidence.

A promising approach that has been suggested for addressing the problem of outliers in the 

data (i.e. incomplete sky models and unflagged RFI during calibration) is the use of heavy-tailed 

distributions for the noise during calibration instead of a Gaussian distribution used by most al

gorithms (see Kazemi & Yatawatta (2013) and Ollier et al. (2017)). These algorithms have shown 

their superiority compared to conventional least squares methods in terms of reducing the amount 

of flux suppressed from unmodelled sources. These algorithms are generally implemented using 

Bayesian methods where we assign prior distributions to the data weights and solve for the gains 

and parameters of these prior distributions by maximising the Bayesian evidence of the resulting 

posterior distribution. We will elaborate more on this approach in §4 and §5 when we describe 

the robust solver and its implementation.
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BIRO (Lochner et al., 2015) is another example of the application of Bayesian methods in 

radio interferometry. BIRO relies on the software package Montblanc (Perkins et al., 2015). 

Montblanc is a tool which uses GPU acceleration to compute the RIME efficiently. By combin

ing Montblanc and Multinest (Buchner, 2016), BIRO makes full parametrised Bayesian infer

ence feasible, but this is still computationally far more expensive than getting MAP solutions. 

The reason is that we need to perform a discrete model selection which requires sampling and 

computing the evidence of each model. These algorithms also suffer from the curse of dimen

sionality, where it is not practical to sample the full posterior distribution.

Arras et al. (2019) recently showed that it is possible to use Information Field Theory (IFT) 

algorithms for RI calibration and imaging. IFT techniques fall into a class of approximate 

Bayesian inference, where we use a form of variational inference to approximate the posterior 

distribution around MAP solutions in order to compute approximate uncertainty bounds. Arras 

et al. (2019) specifically uses Gaussian Processes with smooth power spectrums as priors.

Consensus or Stochastic optimisation

Stochastic optimisation algorithms are required when the full data cannot fit into memory at once. 

A typical scenario where this can happen is when using parametric models during calibration. 

For example, if we are modelling gains using a polynomial function of frequency, we will need 

to have a large bandwidth of data in memory to be able to compute correct coefficients. Recently, 

Yatawatta (2015a) and Yatawatta et al. (2017) showed that parametric models could be imple

mented efficiently for a large dataset using consensus optimisation. In this framework, the data 

are split into small chunks which can fit into the memory, and the different chunks are calibrated 

separately using so-called compute agents. Next, the solutions from the different compute agents 

are combined at a fusion centre where the desired parametric model is enforced.

Another framework suggested for developing scalable RML algorithms is using primary-dual 

(Komodakis & Pesquet, 2015) methods. This framework splits the optimisation problem into 

smaller problems, each for every term in the RML objective function. The individual smaller 

problems are solved in parallel by simultaneously solving for a dual formulation of the original
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problem. Onose et al. (2016) present a good review on the application of these methods in radio 

interferometric algorithms with novel data structures for their implementations.



C H A P T E R  3

C a l i b r a t i o n  u s i n g  a  C o m p l e x  S t u d e n t - t  d i s t r i b u t i o n  a n d

W i r t i n g e r  d e r i v a t i v e s 1

As discussed in Chapter 2, radio interferometric gain calibration can be biased by incomplete 

sky models and RFI, resulting in calibration artefacts that limits the dynamic range of the output 

images and causes suppression in the fluxes of the sources. In this chapter, we present a cali

bration algorithm based on a Student’s t-distribution which leverages the framework of complex 

optimisation and Wirtinger calculus for efficient and robust interferometric gain calibration. The 

implemented algorithm is an extension to the algorithm derived in Kazemi & Yatawatta (2013) 

and it is integrated as an option in the calibration software package, CubiCal (Kenyon et al., 

2018). We begin this chapter by providing a brief introduction to Wirtinger calculus and discuss 

how to apply it in the context of RI calibration in §3.1. The details and implementation of the 

new algorithm are presented in §3.2.

3.1 Calibration as a complex optimisation problem

In §2.3.2, we described how calibration can be performed using NLLS methods. In order to 

apply these methods we had to split the data and the different propagation effects into their real 

and imaginary components to circumvent taking complex derivatives. Current developments in 

the field of complex optimisation allow bypassing this data transform (see for example Kreutz-

1The work presented in this chapter was originally published as part of Sob et al. (2019)
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Delgado (2009) and Sorber et al. (2012)) by using Wirtinger derivatives (Wirtinger, 1927). In this 

section, we present the Wirtinger formalism used to express calibration as complex optimisation 

problem, and the calibration suite in which the new solver is implemented. A more extensive 

description of Wirtinger calculus and its applicability for RI calibration is available in Smirnov 

& Tasse (2015) and Kenyon et al. (2018).

3.1.1 The Wirtinger approach

Wirtinger calculus relies on treating the complex variable z  and its conjugate counterpart z* as 

independent variables. Wirtinger derivatives are defined as

d 1 /  d . d \  d
dz 2 dx ’ d z*

1 /  _d_ ,d_
2 dx +  2dy

(3.1)

where z
dz

x ^
dz*

0 and
dz * 
dz

0.

Consider the following optimisation problem

min | |r ( z ,  z*)||F  =  min ||d  -  v (z , z* )||F , (3.2)
z z

where r ,  d, and v are complex variables and ||. ||F is the Frobenius norm. This problem is solved 

by simply extending any NLLS algorithm such as the LM and the GN (see Madsen et al. (2004)) 

to use Wirtinger derivatives. By treating z  and z * as independent variables, we construct the 

following augmented vector for the unknown parameters

z
z

z
(3.3)

Furthermore, we augment all the functions with their conjugates. Hence, we have the following 

for residuals, data and model respectively

r r ( z ) d (z)
> v =

v(z)

_r*(z)_
, d  =

d*(z) v*(z)_
(3.4)

Based on these definitions, the full Jacobian matrix, J , for the problem is defined as

J

d v d v
d v dz d z* J vz J vz*

d z dv* d v*

1

P1"̂
_____

1d z d z*.

(3.5)
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The terms J vz, J vz*, J v*z and J v*z* are called partial and partial conjugate Jacobians. A deeper 

look shows that the diagonally adjacent terms are element-by-element conjugates of each other. 

From these definitions, the update steps for the parameters are defined as follows for the GN and 

LM algorithms

G N ; £z =  ( J H J ) -1J H r ,  (3.6)

L M ; í z  =  ( J H J  +  AD)-1J h r ,  (3.7)

where A is the LM damping factor and D  is the diagonalised Hessian matrix, J H J.

For the full polarised case all that is required is to vectorise the 2 x 2 complex matrices and 

derive the update steps given above. In Appendix B of their paper, Smirnov & Tasse (2015) 

define an operator calculus which makes the manipulation of 2 x 2 complex variables more 

convenient. For 2 x 2 complex variables, Z, we define our augmented variables analogously to 

the scalar case i.e.

Z R  (Z) V  (Z)

Z *
, R  =

R  *(Z)
, Vi =

v  *(Z)
(3.8)

—* V_y

where Z denotes the vector of matrices formed from all the parameters Z. The quantities R  and 

V  are the augmented residuals and modelled visibilities respectively, expressed as functions of 

2 x 2 complex matrices. The superscript * denotes element-wise complex conjugation. The full 

Jacobian matrix naturally follows as

J

d V dV
d V dZ d Z *
d Z d V  * d V  *

5Z d Z *

(3.9)

The derivatives that appear in Equation (3.9) are matrix by matrix derivatives. These can be 

conveniently dealt with by using the operator calculus introduced by Smirnov & Tasse (2015) 

which can be consulted for further details. The crucial result is that for any 2 x 2 matrices A , B 

and C, we have

d (A B C )
dA r c r b ,

d(A B C )
dB LAR C,

d (A B C ) 
d C L AL B j (3.10)
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where LA and R A are matrix operators which act on 2 x 2 matrices called the left and right 

multipliers. They are defined such that for any 2 x 2 matrices A  and B:

La B — A B , 

R a B =  BA .
(3.11)

The key point here is that, even for 2 x 2 complex variables, by carefully vectorising and using 

Eq. (3.10) and Eq. (3.11), we end up with the following GN and LM update steps

G N ; 5Z  =  ( J H J ) -1J H R , (3.12)

L M ; $Z  =  ( J H J  +  AD)-1J h R . (3.13)

These are similar to those for the complex scalar case and can be implemented in an analogous 

way.

3.1.2 CubiCal overview

CubiCal (Kenyon et al., 2018) is a recently developed software package which exploits complex 

optimisation. We provide a brief discussion of the software package, as our algorithm has been 

implemented as one of its subroutines.

A common bottleneck when implementing any NLLS algorithm is inverting the linearised 

approximation of the Hessian matrix, J H J , appearing in (3.12) and (3.13). Smirnov & Tasse 

(2015) showed that, given a particular ordering of the solvable parameters (viz. antennas, direc

tions, and correlations), this matrix is sparse in nature provided the problem is approached using 

Wirtinger calculus. Consequently, it can be approximated by a diagonal matrix. CubiCal utilises 

this diagonal approximation to significantly reduce the computational cost of implementing the 

GN or LM update rules, albeit with slightly less accuracy. The algorithmic trade-off is that 

we usually require more of these significantly cheaper iterations to reach convergence. Kenyon 

(2019) shows that this results in significant performance benefits in real-life cases.

CubiCal’s modular structure makes implementing additional solvers, such as those presented 

here, relatively easy. In fact, all currently implemented CubiCal solvers (i.e. phase-only solvers, 

amplitude and phase solvers, parametrised slope solvers, and so on) could easily be augmented
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with Complex Student’s t implementations. CubiCal reads visibilities in the conventional Mea

surement Set data format. Model visibilities can be read from a Measurement Set or computed 

on-the-fly from a component sky model using the Montblanc package (Perkins et al., 2015). This 

flexibility allows CubiCal to be incorporated into various 2GC and 3GC schemes with ease.

3.2 Proper Complex Student’s t Calibration

This section details the implementation of the iteratively re-weighted complex NLLS solver 

(henceforth the robust solver). In particular, we give the form of the proper complex Student’s 

t-distribution (CST) as well as the update rules used for calibration. A full derivation is provided 

in Appendix B.

3.2.1 Proper CST

The Student’s t-distribution (ST) is well known in the field of optimisation for its robustness in 

the presence of data containing outliers (see Lange et al. (1989) for example), when compared 

with a Gaussian distribution. One way of constructing the ST is to visualise it as a mixture of 

random variables drawn from several Gaussian distributions with different standard deviations. 

We construct a CST by integrating a proper complex normal distribution over an unknown scale 

parameter t for which we prescribe a Gamma prior, i.e.

C ST (y |M, A, v) CN y |^ ,  (tA) Gam(T|v,v)dT

<x Dt D| A
— D-  ̂exp (- ( y  -  ^ )H (t A )(y  -  m)) 0 n
vv t v -1 e x p ( - vt )

X
r(v )

-dT

0
(3.14)

(3.15)

where CN (y |^ , (tA )- 1) is a proper complex normal distribution with mean n  e  CD and Her- 

mitian precision matrix (tA) e  CDxD. Gam(T|v,v) is a Gamma distribution in t e  R+ and 

acts as a prior on the unknown scale parameter that we want to marginalise over. The resulting



Robust solver 49

distribution takes the form

C ST (y |M, A, v)
r (v  +  D )|A | 
r(v )(v n )D

A 2
1 +  —

v

- v-D
(3.16)

Since this distribution is not a member of the exponential family, working with it directly is 

usually difficult. The standard way to overcome this difficulty is to utilise the Expectation Max

imisation (EM) algorithm (see Bishop (2006) for example). The EM algorithm iterates between 

estimating the expected value of the latent variables (missing or unavailable data) from their 

posterior distributions (E-step) and maximising the complete data likelihood function (M-step), 

which is generally easier to work with compared to the marginalised likelihood. For the full 

maximum likelihood solution, we need to solve for all the parameters of the CST distribution 

(viz. the means ^ , the precision matrix A and the number of degrees of freedom) during this 

step.

For the specific problem of robust regression with a CST, the latent variables correspond to 

the scale parameter t in Equation (3.14) whose posterior distribution is a Gamma distribution. As 

we show in Appendix B , the solution can be obtained using an iteratively re-weighted complex 

NLLS algorithm in which the weights are computed as the expectation of t under the Gamma 

posterior. An important aspect of the algorithm is that it adapts the likelihood used for calibration 

to the problem at hand by inferring the optimal number of degrees of freedom v. This parameter 

dictates the shape of the distribution. If the residuals are Gaussian, the inferred v parameter will 

be large and we essentially recover a Gaussian likelihood. If the residuals contain outliers, the 

inferred v parameter will be small and data points which could otherwise bias the optimisation 

procedure get down-weighted and therefore do not significantly affect the calibration solutions. 

Some further insight into this behaviour is provided below.

3.2.2 Robust Calibration

Consider the following form of the RIME for a field with sources

Nd
Vpqs =  ^  G Ps(d)XPqs(d)Gg(d) +  epqs, (3.17)

d=1
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where G ps is the gain for antenna p, Xpqs is the sky coherency in direction d, s is the corre

sponding time and frequency index and epqs is the noise which is assumed to be CST distributed. 

Thus calibration can be performed as described in Appendix B. Our goal is to find both the 

model parameters and the expectation values of the latent variables r  that minimise the joint 

log-likelihood function Q given by Eq. (B.19). For the model parameters the solution as de

scribed by Eq. (B.20) and Eq. (B.21) is a weighted NLLS where the weights are the expectation 

values E[tj] of the latent variables rp Hence given initial values for the weights, W , the Jones 

matrices, or gains, can be computed by minimising the following objective function

min ||W (R (G , G H))||F
V_y' -r T i-\

min ||W (D  -  V (G , G h ))||F , (3.18)

where G  is the gain matrix and H, D  and V  are the augmented residual, data and model vectors 

respectively. The elements of the W  matrix are updated at each iteration using the expectation 

values of the latent variables r  of the CST. Explicitly following Eq. (B.25), they can be written

as
v +  n c

wpqs
v +  R pqsS -1 R pqs'

(3.19)

where wpqs represents the weight of the 2 x 2 visibility matrix between antenna p and q at time 

and frequency index s, nc is the number of correlations in our data and R pqs =  vec(iRpqs) is the 

residual of the corresponding visibility. Note that Rpqs here is a 4 x 1 vector and not a 2 x 2 

matrix, as expected from the vectorisation. £  is the covariance matrix of the residual visibilities 

and it is a 4 x 4 matrix we generally assume to be diagonal. The number of correlations, nc, is 

important because, even though CubiCal assumes a data structure where each visibility is a 2 x 2

matrix, for scalar calibration or data with single correlations, the cross correlation terms are set 

to zero. Hence, nc, which represents the dimension of a single vectorised visibility, is effectively 

4 only when all the correlations are present. Note that the Rpqs£ -1R pqs term in the denominator 

will have an expectation value of nc if the data are Gaussian distributed with covariance matrix 

£ .

The v-term is computed by solving the following equation (see the derivation of Eq. (B.24)
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for more details)

- ^ ( v )  +  log(v) +  1 +  ^ (v  +  n c) -  log(v +  nc) +  N  ^ ( lo g (w p gs) -  wP?s) =  0, (3.20)
pq

where ^  is called the digamma function (logarithmic derivative of the gamma function) and 

N  is the total number of visibilities. Eq. (3.20) has no closed form solution and has to be 

solved numerically. We find that, in practice, it is sufficient to restrict v to be an integer and 

to simply do a grid search between 2 <  v <  50 since, as already mentioned, the ST is almost 

indistinguishable from a Gaussian when v >  30 or so. Finally, at each iteration, the covariance 

matrix £  is computed as follows

£  =  N  (R pqsR pqswpq^ , (3.21)
pqs

where N  is again the total number of visibilities.

A closer look at Eq. (3.19) can provide some insight into the workings of the robust solver. 

Clearly, the solver assigns small weights to visibilities with large residuals and large weights 

to visibilities with small residuals2. When the residuals follow a Gaussian distribution with 

covariance £ ,  the v-term is large and all the visibilities end up having approximately equal 

weights. On the other hand, for visibilities containing outliers, the v-term is small and the outliers 

can be effectively down-weighted. Finally, suppose that the covariance has been under-estimated 

(as will be the case if the residuals also contain a realistic unmodelled point source distribution). 

In this case, the Rpqs£ -1Rpqs term in the denominator will be much larger than nc and these 

points will be down-weighted, thus discouraging over-fitting.

3.2.3 Implementation details

Algorithm 1 shows the details of the new algorithm which we have dubbed the robust solver. 

The robust solver implementation was greatly simplified thanks to CubiCal’s object-oriented 

programming approach. CubiCal provides an abstract class interface with preset attributes and

2Note the upper bound on the weights is finite and equal to
v + nc

v
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functions which need to be inherited and defined to develop any new solver. In CubiCal termi

nology, we refer to this as a Gain Machine. The new solver is invoked in CubiCal by setting the 

solver’s option gain-type to robust-2x2. The expected thermal noise level for the observation is

Algorithm 1 : Robust Solver Algorithm 

Require: Data D , Model V , Jacobian'func, imax 

Initialisation: G 0 ^  1, wpqs ^  1, v ^  2, i ^  0 

while (not converged or not stalled or i <  imax) do

W  ^  D iag(w pqs) {# Diagonal matrix with weights}
^ ^

J  ^  Jacobian'func ( D , V , G i - 1)
w w w

R  ^  D  -  V

£  ^  Update £  using R , W  and Eq. (3.21)

$G ^  ( J HW J ) - 1J HW R

G temp ^  G i - 1 +  $G

if i mod 2 = 0  or DD calibration 

then
1

G i ^  2 G temp +  G i - 1

else

G  i temp

end if

for all baselines do
v +  nc

wpqs ^

end for
v +  R pqs£  1Rpqs

v ^  Compute v using Eq. (3.20) 

i ^  i +  1 

end while

used to pre-whiten the data. This means that the weights can be initialised to 1 during the first 

iteration. We treat them as scalar real variables meaning all correlations have the same weight. 

Furthermore, the weights are assigned per visibility, independently of time, frequency or base
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line. As is customary in radio interferometry, the weights of flagged data are set to zero from the 

start. The computation of the weights involves the residual covariance matrix, £ ,  which is not in

cluded in Kazemi & Yatawatta (2013) but just assumed to be I. We do not make this assumption. 

Instead, we implement two variants of the algorithm, one with £  computed using Eq. (3.21), and 

another where we set £  to I. A setting is made available to the user to decide whether or not 

they want £  to be computed during every iteration or simply set it to I. The default behaviour 

of the solver is to compute £  as it is more consistent with our derivation of the algorithm (see 

Appendix B). Furthermore, we also provide an option to fix the number of degrees of freedom at 

the outset without inferring it using Eq. (3.20).

It has been observed that averaging the gain solutions every second iteration improves the 

convergence speed of the algorithm (see Salvini & Wijnholds (2014)). Smirnov & Tasse (2015) 

explain that this averaging corresponds to alternating between the GN and LM algorithms. This 

is very helpful when calibrating for DD effects as these generally converge slowly. For the 

CubiCal solver, we average solutions at every iteration for DD calibration, and at even iterations 

for DI calibration.

3.2.4 Computational cost

The main additional operations performed by the robust solver are the computations of the 

weights and the numerical solution for the degrees of freedom, v. Assigning the weights relies on 

computing the residual visibilities and the covariance matrix £ .  The algorithm is implemented 

such that the residuals are computed only once during every iteration. The residuals computed 

for the weight updates are stored in memory and reused during the gain updates. For DI cali

bration, the default solver does not compute residual visibilities at every iteration. This is made 

possible thanks to an observation from Tasse (2014a). For DI calibration, we have the following 

RIME form

V  =  G  M  G H, (3.22)

where M  corresponds to the true or modelled visibilities. Tasse (2014a) states,

1
V  =  J lG  =  2 J G , (3.23)
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where (-)L denotes the left half of a matrix and G
G

G h
. Substituting Equation (3.23) in

Equation (3.12), we have the update rule for DI calibration below

<SG =  ( J HJ ) -1J H(D  -  J lG) 

=  ( J HJ ) -1J HD  -  G ,

(3.24)

(3.25)

where (-)u  stands for the upper half of a matrix. This implies that

Gi =  G i_i +  £G

=  ( J H J )_ 1J H D .

(3.26)

(3.27)

Hence, residuals are not required for updating the gains. In the case of DD calibration Equation 

(3.23) does not hold, and both solvers have to compute residuals at each iteration. Fortunately, 

CubiCal employs various levels of parallelism, and we script the most expensive tasks in the 

Cython programming language (note that, in the latest version, Cython has been replaced with 

Numba). These dramatically improve the speed for generating the necessary residual visibilities. 

Additionally, in CubiCal, only the diagonal of the Hessian is computed and the full Jacobian 

matrix is never loaded into memory but is instead implemented as an operator.

CubiCal uses the below data structure

0 D 12 D 13 • a __
_

i

d hd 12 0 D 23 • • • D 2Na

d hd 13 d hd 23 0 • • • D 3Na , (3.28)

d hD 1Na d hD 2Na d hD 3Na • • • 0

where N  is the number of antennas and each element is a 2 x 2 complex matrix. Half of the data 

is just the conjugate transpose of the other half. This implies only half of the data is required 

to compute the covariance matrix £ .  Similarly, half of the weights are sufficient to solve for 

v. Another optimisation strategy is to update v only after a specific number of iterations. The 

number of iterations after which to recompute v is a setting which can be modified by the user.
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Moreover, we restrict the search space for v by assuming it is an integer and performing a grid 

search between 2 and 50. We do this by computing the function at different v integer positions 

and take the v position with the minimum value as the solution. We avoid using numerical solvers 

as they may introduce convergence issues or slow the solver since we only need an estimate of 

this value.
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A p p l i c a t i o n s  o f  t h e  R o b u s t  S o l v e r 1

Chapter 3 described the implementation of a robust algorithm for radio interferometric calibra

tion. In this chapter, we follow up by demonstrating that the implemented algorithm can mitigate 

some of the biases introduced by incomplete sky models and radio frequency interference by ap

plying it to both simulated and real data. Our results show significant improvements compared to 

a conventional least-squares solver which assumes a Gaussian likelihood function. Furthermore, 

we provide some insight into why the algorithm outperforms the conventional solver and dis

cuss specific scenarios for both DI and DD self-calibration where this is expected to be the case. 

§4.1 describes different simulations demonstrating how the implemented solver outperforms tra

ditional solvers based on the amount of flux suppressed from unmodelled sources for both DD 

and DI calibration. We show that the implemented solver improves on the results from Kazemi 

& Yatawatta (2013) because the residual covariance matrix is estimated from the data and not 

assumed to be equal to the identity matrix. In §4.2, the algorithm is applied to synthetic and real 

data from the Karl G. Jansky Very Large Array (VLA) for low-level RFI mitigation.

1The chapter is based on Sob et al. (2019), hence most of the tests, figures and formulations are drawn fromOn 

therein.
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4.1 Robust solvers and flux suppression

This section uses simulated data to identify some regimes in which the robust solver can be 

expected to improve the results of calibration. Our main aim is to compare how much of the 

unmodelled flux gets suppressed during calibration with the different solvers. For brevity, we 

refer to them as follows:

• “complex solver” : a conventional least-squares solver employing the Wirtinger formula

tion (identified as “cp” in figure legends).

• “robust solver” with covariance iteratively recomputed (identified as “rb” in figure leg

ends).

• “robust-I solver” for the robust solver with covariance set to I (identified as “rb-I” in figure 

legends).

To aid our understanding of when the robust solver can be expected to out-perform the traditional 

solver, we start with a simple illustration of how unmodelled sources affect the statistics of the 

residual visibilities. The tools used to perform all the simulations in this chapter and the next are 

fully described in Appendix D.

4.1.1 Statistical properties of visibilities

Calibration with incomplete sky models implies that the residuals which we attempt to minimise 

during the optimisation process (calibration) still contain the contribution of numerous unmod

elled sources. To understand how this affects the solver (which assumes that the residuals consist 

of pure noise) we simulate some data and plot a histogram of the real and imaginary parts in Fig. 

4.1. If we consider a field consisting of a single 1 Jy source at its centre, the visibilities for this 

sky have no phase component, and all the visibilities are equal to 1 in this case. The histogram 

for these visibilities will have two peaks, one at 1 Jy for the real part of the visibilities and the 

other at 0 Jy for the imaginary component of the visibilities. If we move the source to an offset 

position from the field centre, the visibilities now have a phase which depends on the offset. Fig.
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Figure 4.1: (a): Histogram of simulated visibilities of a 1 Jy source at an offset position from 

the phase centre of the field. (b): Histogram of simulated visibilities for 100 sources drawn 

from a realistic sky model. The red curve in each plot is the corresponding Gaussian probability 

function computed using the mean and standard deviation of the visibilities. The mean, ^, and 

standard deviation, a , are shown respectively on the figure titles.
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4.1a is the histogram of simulated visibilities for a 1 Jy source at an offset position from the 

centre. The distribution in this case also has two peaks, one at 1 Jy and one at -1 Jy. In between 

these peaks, the distribution is almost uniform.

Fig. 4.1b shows the histogram of the visibilities for a field consisting of 100 sources having 

uniform positions and fluxes drawn from a power law distribution (Pareto distribution with a  =  

1) with peak flux set to 1 Jy. Clearly, the distribution of the visibilities approaches a Gaussian. 

This implies that, given a sufficiently large number of unmodelled point sources with random 

positions and fluxes (as is usually the case for the fainter sources which do not end up in the 

model), the distribution of residuals remains Gaussian. Unmodelled point sources therefore tend 

to simply increase the variance of the residuals above that of the thermal noise contribution. This 

suggests that unmodelled sources with a flux level below a certain noise-dependent threshold 

will have almost no effect on the gain solutions.

In contrast to point sources, extended sources are usually challenging to model, both during 

calibration and imaging. Conventional imaging algorithms such as CLEAN (see Schwab (1984) 

for example) models the sky as a combination of point sources. The latter makes it very difficult 

to construct a model for an extended source during calibration. Fig. 4.2a is a histogram of 

the visibilities of an extended source. The distribution is centred around a few values. We can 

model an extended source as a Gaussian with a large radius in the image domain, hence in the 

in uv domain, the visibilities are Gaussian with a tiny radius. In other words, the visibilities of 

extended sources are concentrated around the short baselines. We illustrate this with a plot of 

amplitude against the baseline length for the visibilities of an extended source (see Fig. 4.2b). 

The extended source here is simulated to be elliptical with minor and major axis 200 and 300 

arcseconds respectively. Fig. 4.2b confirms that the visibilities from extended structures only 

contribute to the short baselines.
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Since a typical selfcal procedure begins by constructing a sky model from a 1GC-calibrated 

image, down to a certain flux threshold, the unmodelled source fraction will tend to consist of 

multiple faint sources, and therefore will follow Fig. 4.1b. The properties of the modelled source 

fraction will, on the other hand, strongly depend on the spatial distribution of flux across the field. 

Here, we can identify two contrasting regimes. In a field dominated by a bright source, most of 

the modelled flux will be concentrated in that source, and the distribution of model visibilities 

will look like Fig. 4.1a. We’ll call this the concentrated model regime. In a field with no bright 

sources, model flux will be spread between multiple fainter sources (we’ll call this a dispersed 

model regime), and the visibility distribution will resemble that of Fig. 4.1b.

We can define the effective SNR of the sky model in terms of the visibilities, as

SNR 10 log (V ■ V *)v,t,p^
<N' ■ N'*)v,t,pq ’

(4.1)

where ()v,t,pq denotes averaging over frequency, time and baseline, V  represents the modelled 

visibilities, and N ' is the effective noise, i.e. the sum of the unmodelled visibilities and the noise. 

Clearly, SNR is a function of both the total model flux, and the model concentration. For a 

maximally concentrated model consisting of a single source, V  ■ V* will be equal to the source 

flux squared. For a disperse model, (V ■ V*) will contain contributions from many interfering 

fringes. A dispersed model with the same total flux will therefore have much lower SNR. We can 

then ask whether model concentration, as well as SNR, affects the degree of source suppression.

Conventional intuition for the workings of selfcal is honed in the “classic regime” of high- 

SNR, concentrated models, typically associated with targeted observations of individual sources. 

With the advent of blind large-area surveys, we are seeing more and more fields lacking a 

dominant source: these need to be calibrated in a low-SNR, dispersed model regime. Finally, 

direction-dependent calibration deals with concentrated models almost by definition, but these 

can be quite low SNR. The next section shows marked differences in flux suppression across 

these regimes.
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4.1.2 SNR, model concentration, and flux suppression

In this section, we investigate how flux suppression of direction-independent calibration behaves 

with varying effective SNR and model concentration. We determine under which circumstances 

we can expect the robust solver to deliver an improvement over the traditional solver. To do 

this, we simulate a series of observations containing point sources and thermal noise. The point 

sources are split between a fainter “unmodelled fraction” (i.e. assumed unknown for the purposes 

of calibration), and a brighter known fraction (i.e. included in the calibration sky model). We cal

ibrate the mock observations using the calibration sky model, and then measure flux suppression 

at the position of the unmodelled sources. More specifically:

1. For the unmodelled source fraction, we generate a sky model containing 100 random point 

sources as before, and then rescale the fluxes so that their total flux comes to 1 Jy. We call 

this the faint sky.

2. For the modelled fraction, we generate a variety of calibration sky models corresponding 

to different model concentrations and effective SNR levels:

(ii-a) We fix the total flux in the modelled fraction at 1 Jy, and vary the number of sources 

from 1 to 50. This corresponds to diluting the model and decreasing SNR simultane

ously.

(ii-b) Concentrated model, varying SNR: we use a modelled fraction of one source, and 

scale its flux to achieve different SNR levels.

(ii-c) Dispersed model, varying SNR: we use a modelled fraction of 50 sources, and 

scale their fluxes to achieve different SNR levels.

(ii-d) Fixed SNR, varying concentration: we generate models of 1, 10, 20, 30, 40 and 

50 sources. We scale the fluxes of each model to achieve an effective SNR of 10 dB 

in each case.

3. We combine the faint sky and the calibration sky model for each experiment, and simulate 

visibilities corresponding to the combined sky model using the MeerKAT (Jonas & Team,
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2018) array layout. We simulate a single-channel observation at 1 GHz, with a bandwidth 

of 1 MHz, a total synthesis time of 2 hours, and an integration time of 10 seconds.

4. We add Gaussian noise with an rms of 10 mJy to the simulated visibilities. This value 

is approximately 3 times the expected rms using MeerkAT system equivalent flux density 

(SEFD) at frequencies around 1 GHz. This rms corresponds to an image noise rms of 6 

^Jy/beam using natural weighting. This value will be used in all simulations unless stated 

otherwise.

5. We perform DI calibration on the data with all three solvers using only the calibration 

sky model to compute the model visibilities. Since no gains are applied to the visibilities 

during the simulation, we expect a perfect calibration to return unity gain solutions.

6. We compute the residuals (by applying the gain solutions to the model visibilities and 

subtracting them from the data) and image these to get a residual image.

7. We deconvolve the resulting images using WSCLEAN (Offringa et al., 2014) in single 

scale mode with natural weighting to try and recover the faint source distribution.

We are now in a position to study the degree of flux suppression of the unmodelled sources. 

Since our simulations consist of point sources only, the recovered fluxes are estimated by simply 

measuring the pixel values at the position of the sources in the respective restored deconvolved 

images.

To quantify how a reduction in SNR affects source suppression, we have to create a statistic 

to measure it with. For this purpose we use the average suppression (AS), which is defined as

AS 1 |-% —
NS % 1 ~%

(4.2)

where Ns is the number of sources and 1% and 1% are the true and recovered flux of the source 

respectively.

Fig. 4.3 shows the AS as a function of SNR and model diluteness, following scenarios (a) -  

(d) outlined above. These plots reveal a number of very interesting trends:
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• The robust solver (blue) curve always outperforms (in the sense of reducing flux suppres

sion) both the robust-I (green curve) and standard solvers (red curve), in some regimes by 

a very significant margin. The robust-I solver outperforms the standard solver in almost 

all cases, but this improvement is not always significant.

• For a concentrated model (Fig. 4.3b), flux suppression increases with decreasing SNR. 

At high SNR (the “classical regime” of selfcal), the performance of all solvers tends to 

converge (Figs. 4.3a and 4.3b, right end of the plot), to a value of slightly below 7%.2

• Flux suppression increases significantly (to over 25%!) with model dispersion (Fig. 4.3d), 

at least with the standard and robust-I solvers.

• For a highly dispersed model (Fig. 4.3c), flux suppression with the standard and robust-I 

solvers is quite high, and almost independent of SNR. The robust solver offers much better 

performance in all but the lowest SNR regimes.

• There is an interesting downturn in flux suppression at low SNR in Figs. 4.3a, 4.3c (left 

end of the plots). We can only speculate as to its ultimate cause. Grobler et al. (2014) 

showed that flux suppression comes about through a combination of ghost sources (see 

e.g. Eq. 35 therein), and that the intensity of the ghost response has a complex relationship 

to modelled/unmodelled flux ratios, even in the simplest, two-source case studied in that 

work. Perhaps pertinently, Fig. 15 ibid. shows a distinct downturn in the ghost response 

towards low SNR (i.e. higher flux ratios in the figure). We speculate that we are seeing the 

same mechanism at work here. Furthermore, from continuity considerations, it is obvious 

that there must be a downturn in flux suppression at very low SNR -  after all, an empty 

calibration model cannot suppress flux at all. Since calibration in such a low SNR scenario 

is pointless, we won’t pursue this puzzle further here.

The crucial conclusion of this section is that, in principle, the robust solvers outperform the 

traditional complex solver in all the cases we have considered (at least as far as flux suppression

2Previous studies (Grobler et al., 2014; Nunhokee, 2015) have shown that flux suppression is highly dependent 

on array layout and other factors, so the particular value of 7% is only significant to this series of simulations.
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is concerned). The actual degree of improvement is highly dependent on model concentration and 

SNR. In the extreme regimes, the performance of the solvers appears to converge, so a robust 

solver may not be worth the extra computational cost. However, as we illustrate in the next 

section, robust calibration is particularly important for DD calibration, where we are unlikely to 

operate in a high-SNR regime.

(a) Varying SNR and number of model sources
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Figure 4.3: The average flux suppression for all the sources in different simulations against the 

SNR of the data or the number of sources in the model. The red curve is for the complex solver, 

the blue curve is for the robust solver, and the green curve is the robust-I solver.
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4.1.3 Flux suppression in DD calibration

§4.1.2 shows that the robust solver significantly improves calibration in a low SNR regime and 

with a concentrated model. This is expected to be the case for DD calibration, since direction- 

dependent model components tend to be both concentrated, and low in SNR. Consequently, in 

this section, we extend the simulations in §4.1.2 to DD calibration.

4.1.3.1 Simulation setup

We perform two simulations with a similar setup to Kazemi & Yatawatta (2013), illustrating two 

characteristic regimes of the solvers. The difference between the simulations is the flux level of 

the sources relative to the thermal noise and the flux level of the unmodelled sources. Henceforth 

we refer to them as high-SNR and low-SNR.

The data were simulated using the same setup as before i.e. MeerKAT array configuration 

with a single frequency channel at 1 GHz with 1 MHz bandwidth, an integration time of 10 

seconds and total synthesis time of 2 hours. For the high-SNR simulation, the noise added to the 

visibilities has an rms of 10 mJy which results in an image noise rms of 6 ^Jy/beam using natural 

weighting. For the low-SNR simulation, we add noise with an rms of 0.1 mJy (0.06 ^Jy/beam 

image noise rms). Changing the noise rms may be counter-intuitive, but this is done in order to 

have high enough SNR for calibration. Additionally, we should note that low-SNR and high- 

SNR in this context refer to the ratio of the power of the model sources to the power of the 

unmodelled sources.

For both simulations, we generate sky models containing 100 sources with the positions and 

fluxes generated as before. In the high-SNR simulation, we scale the fluxes of the sources such 

that the brightest source has a flux of 20 Jy, while for the low-SNR simulation, we scale the 

fluxes so that the brightest source has a flux of 0.05 Jy. We choose a peak flux of 20 Jy for the 

high-SNR regime in order to replicate one of the setups in Kazemi & Yatawatta (2013) where 

the modelled sources are very bright (i.e.> 5 Jy) and the unmodelled sources are also relatively 

bright (reaching values even up 3 or 4 Jy). This simulation is similar to the high-SNR end of 

Fig. 4.3b. In the low-SNR simulation, we seek to investigate a different regime where fluxes of
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model sources are very low and comparable to the faint sky. Here we expect a scenario similar 

to the low SNR part of Fig. 4.3b.

We assume that the 10 brightest sources are included in the calibration model, and the re

maining 90 are unmodelled. We corrupt the 10 brightest sources with DD gains (technically, such 

gains will affect all sources and not just the brightest ones, but for reasons of computational econ

omy, we restrict DD gains to the modelled sources) and add Gaussian noise to the corrupted vis

ibilities. We apply smoothly varying DD gains generated from a circularly symmetric Gaussian 

process with a Squared Exponential covariance function with parameters (a/ =  0.2 , l = 300) 

for both the amplitude and phase of the gains (see Appendix D).

4.1.3.2 Results

We perform DD-calibration on the corrupted visibilities, with only the 10 brightest sources mod

elled, using a solution interval of 150 s. Calibration is performed using the complex, robust and 

robust-I solvers. As in the previous simulation, after calibration, we produce residual images to 

study the suppression in the fluxes of the unmodelled sources.

We show the results of the high-SNR simulations in Fig. 4.4. Fig. 4.4a shows the recovered 

flux against the input flux for the different algorithms. We observe that both robust solvers out

perform the complex solver, with the robust-I solver producing marginally better results than the 

robust solver. We show the difference map, i.e. the image recovered by the robust-I solver, minus 

the image recovered by the complex solver in Fig. 4.4b. The difference image has numerous 

bright, positive peaks corresponding to the additional flux recovered by the robust-I solver. The 

low-SNR simulation, by contrast, shows the robust solver produces the best results (see Fig. 

4.5). The difference maps in Fig. 4.5b further emphasise this. We also note the negative peaks 

which occur at the positions of the modelled sources in both Fig. 4.4b and Fig. 4.5b. These peaks 

imply that the complex solver residuals contain more flux at the model source positions. Since 

the modelled sources (with DD-gains applied) have been subtracted from the residual maps, 

this, in turn, implies that, in the presence of unmodelled sources, the complex solver tends to 

underestimate the modelled sources to a greater extent than the robust solvers.
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The reason why the robust-I solver performs well in the high-SNR simulation compared to 

the low-SNR simulation is that for the high-SNR simulation, the covariance of the residuals is 

higher than I. Hence, in this simulation, visibilities are adequately weighted. However, for the 

low-SNR simulation, the variance is over-estimated (true residual covariance is smaller than I) 

effectively assigning equal weights to all visibilities and hence results in a similar performance 

as the complex solver.

4.1.3.3 Solution intervals

One of the most critical decisions during calibration is the choice of solution intervals. So

lution intervals are generally employed to improve the SNR, to make the system of equations 

overdetermined. Ideally, solution intervals are chosen such that they are shorter than the time 

and frequency scales of the gains' variability, but long enough to provide significant SNR. For 

differential gains (or DD calibration), longer solution intervals are thus necessary (since the SNR 

in per-direction models is lower); somewhat fortuitously, physical intuition suggests that in most 

regimes, the DD component of the gain (e.g. primary beam rotation) should vary slower in fre

quency and time relative to the DI component (e.g. atmospheric phase). In order to investigate 

the effects of solution intervals on gain solutions, we repeat the experiments above while varying 

the solution intervals.

The average suppression (AS) as a function of solution interval is shown in Figs. 4.6a and 

4.6b. The figures show that, as the solution interval increases, flux suppression goes down, which 

is consistent with the results of Nunhokee (2015). At sufficiently large time intervals, all three 

solvers eventually reach an asymptotic level of flux suppression.

This clearly illustrates the benefits of a robust solver (at least in the sense of lower flux sup

pression) only kick in in specific regimes. In particular, in the low-SNR regime, if the gains 

are sufficiently stable for long solution intervals to give acceptable results, the [computation

ally cheaper] complex solver produces almost equivalent results to the [more expensive] robust 

solvers. With shorter solution intervals, the robust solvers tend to produce markedly lower flux 

suppression. We note that gain (in)stability is not the only reason to choose shorter solution in-
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Figure 4.4: (a): Recovered flux against input flux for the high-SNR simulation. (b): Difference 

map between the corrected residuals of the robust-I solver and the complex solver.
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Figure 4.5: (a): Recovered flux against input flux for the low-SNR simulation. (b): Difference 

map between the corrected residuals of the robust solver and the complex solver.
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tervals: there may also be purely operational reasons. In particular, the amount of data produced 

by new arrays such as MeerKAT (and the future SKA will push this up by orders of magnitude) 

drives a requirement for data parallelism, while at the same time increasing the memory footprint 

of existing algorithms. This implies that the data needs to be processed in smaller chunks, thus 

constraining the size of a practical solution interval for this class of algorithms, and potentially 

opening a precious niche for robust solvers.3

3For completeness, we should note other approaches to the small-chunk problem, such as consensus optimisation 

(Yatawatta, 2015b), filtering (Tasse, 2014b) and, recently, stochastic LBFGS (Yatawatta et al., 2019).
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(a)

(b)

Figure 4.6: The average flux suppression (AS) across all sources in the simulation. (a): High- 

SNR regime (b): Low-SNR regime.
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4.1.4 Flux suppression from extended sources

We observed in §4.1.1 that the visibilities from large extended structures only contribute to visi

bilities of short baselines. A common trick in radio interferometry is to exclude short baselines 

(uv-cut) during calibration in order to avoid suppressing the emission from extended sources 

which are complicated to model. By construction, the robust solver will implicitly do this, by 

giving low weights to the visibilities dominated by the extended emission, hence obviating the 

need to choose a cutoff baseline length for our calibration. We demonstrate this with the follow

ing simulation:

1. Simulate visibilities of a field containing a 0.05 Jy point source at its phase centre and a 

faint extended emission (200" x 300") with peak flux 0.015 Jy at an offset position. We 

show the image of the simulated field in Figure 4.7a.

2. Calibrate the simulated visibilities using a model consisting of the phase centred point 

source only with the robust and complex solver. For the robust solver we do not apply any 

uv-cut. In the case of the complex solver we use baselines length cutoffs of 0 m (i.e not 

cutoff), 50 m , 80 m, 100 m and 200 m.

3. After calibration subtract the modelled point source and image the residual visibilities. 

Ideally, this should contain the unmodelled extended source only. The images are shown 

in Fig. 4.7.

Fig. 4.7c shows that the robust solver performs as expected. The extended source is well recov

ered even without any baseline cutoff. For the complex solver, we observe a high suppression of 

the extended emission when no cut-off (see Fig. 4.7b) is applied or when the cut-off is low (see 

Fig. 4.7d). In these cases we observe, as in the previous simulations, suppression in the flux of 

the model source due to the unmodelled extended emission. Increasing the cutoff length allows 

the complex solver to completely recover the extended emission since this is now effectively 

excluded from the calibration (see Fig. 4.7e and Fig. 4.7f). Hence the robust solver can effi

ciently be used to preserve the flux of diffuse and extended sources with complicated structures
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during calibration. It is also important to note that the uv-cut approach throws away a lot of data, 

particularly in dense-core arrays like MeerKAT.
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Figure 4.7: (a) Image of the simulated field showing both the modelled point source and the 

unmodelled extended emission. (b), (c), (d), (e) and (f) are residuals after calibration with the 

modelled point source subtracted showing the recovered extended emission for the robust and 

the complex solver with the different uv-cut thresholds. All images are plotted with a colormap 

set to the maximum and minimum of the extended emission, and regions without the point and 

extended emission have been masked out.
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Fig. 4.8 is a plot of the ratio of the total flux of the extended source (i.e. the sum of all non

negative pixels in the region around the source) to its true flux. Fig. 4.8 shows that the optimal 

cutoff for MeerKAT is «  200 m. For this cutoff length the complex and the robust solver show 

almost 100 % recovery rate. We also observe a strange drop for a cutoff of 50 m when compared 

to not applying any cutoff, but we do not have an explanation.
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Figure 4.8: Flux ratio of the total recovered flux of the extended source to the true total flux for 

calibration with the different solvers and uv-cut thresholds. The numbers next to the solver’s 

labels indicates cutoff lengths when uv-cuts are applied.The horizontal red line indicates the flux 

ratio of 1.
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4.2 Robust solvers and RFI mitigation

The robust solver works by iteratively recomputing weights based on how far our modelled vis

ibilities are from the observed visibilities. During calibration, the robust solver will tend to 

suppress the effect of remaining outliers in data such as those caused by low-level RFI, which 

is particularly difficult to remove using conventional data flagging. This is conceptually similar 

to the approach of Bonnassieux et al. (2018), where uncertainties from calibration solutions are 

used as weights during imaging to reduce the effects of outliers. Note that here, however, the 

weights from the robust solver shouldn’t be used for imaging, as these will tend to suppress the
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unmodelled sources. We demonstrate this behaviour in a simulation, and then on real observa

tional data.

The dataset in question is a 1.2 hours 2013 VLA observation of the VIDEO deep field (J2000, 

RA=02h11m21.09s, Dec=-04d11m13.5s). VIDEO was deliberately chosen as a field relatively 

free from bright sources (so as to minimise the level of deconvolution and DDE-related artefacts), 

with the brightest object in the field being only «  0.02 Jy. This particular observation covers 

a frequency range of 0.9-2.6 GHz, with 16 spectral windows each having 64 channels. The 

integration time on average is 9 seconds. It employs 28 VLA antennas, with a maximum baseline 

of 36.4 km. For this experiment, we first transform the measurement set to have a single spectral 

window by combining all spectral windows. We obtained the data after initial flagging and 1GC 

calibration using the CASA software (see Heywood et al. (submitted) for more details). We then 

image the 1GC-corrected data, and extract a component-based sky model using the PyBDSF 

package (Mohan & Rafferty, 2015). This sky model is used as a basis for the simulations in this 

section.

Before testing our solvers on real data, we first discuss the qualitative effects of unflagged 

RFI on data processing, and present some simulations to illustrate our predictions. For the sake 

of simplicity, we restrict the discussion and our simulations to stationary terrestrial RFI sources; 

we note, however, that other types of RFI (e.g. self-RFI, aircraft and satellite RFI) also manifest 

themselves as outliers in the data (see Offringa et al. (2015) for a few examples).

4.2.1 Simulating low-level RFI

Let’s consider a single narrow-band (and, possibly, on/off or time-variable) RFI source. Station

ary (terrestrial) RFI sources are fixed with respect to the baselines, and therefore have a nominal 

fringe rate of zero. Radiation from a stationary RFI source is (as far as the interferometer is 

concerned, in a given timeslot and frequency channel, and assuming the receiver chain is not sat

urated by the RFI signal) indistinguishable from a real source at either celestial pole, modulo the 

primary beam gains, modulo a constant phase offset. Delay tracking in the correlator, being more 

rapid for longer baselines, consequently imposes a higher fringe rate for such sources on longer
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baselines, which attenuates the RFI response on longer baselines due to time and bandwidth 

averaging.

If we consider only the imaging problem, the net effect of an (unflagged) RFI source is 

then very similar to that of a bright source at a celestial pole. Images of the target field will 

be contaminated by a structure that is modulated by the PSF sidelobes of a polar source. For 

low-level RFI, and a field sufficiently far from a pole, these can be ignored, or even lost in the 

noise. This is especially true in the case of continuum imaging. One can think of it in terms of 

RFI occupancy: a narrow-band, on/off source contributes to relatively few of the visibilities that 

go into a Fourier transform (i.e. has low occupancy), therefore its effect on the image is diluted.

The effect on calibration can be far more insidious, particularly if short time/frequency inter

vals are employed. Within a particular short time/frequency interval, an RFI source can happen 

to have high occupancy, thus significantly biasing the gain solutions for that interval. In the worst 

case, the gain solutions are biased low, and applying their inverse then “blows up” some of the 

corrected visibilities. Let’s consider the following RIME model as an example

Vpq G pC pq +  €pq +  np pq q lpq> (4.3)

where V pq denotes the corrupted visibilities, G p represents the gains for antenna p, C pq is the 

sky coherency, epq and npq are the noise and RFI corruptions respectively. The corrected data 

after calibration, Vpq, is obtained by applying the inverse of the estimated gains, G , to the data 

as follows

Vpq =  G  - 1 Vpq G ~qH , (4.4)

=  G - 1 (G pC pqGH +  epq +  npq) G - H. (4.5)

Consequently, if the gains of antenna p, for example, are biased low by RFI, the application of 

their inverses not only amplifies the RFI but also the noise. Since the noise is present on all 

baselines containing antenna p, the amplified noise now has a high occupancy, and results in 

strong imaging artefacts.

We now perform a simulation in order to illustrate these arguments. We replicate the “VIDEO” 

observation by using the MeqTrees package (Noordam & Smirnov, 2010) to simulate the visi
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bilities corresponding to the sky model for the “VIDEO” deep field derived above. We then 

inject a mock low-level RFI source into the data by simulating a 3.5 Jy point source at the South 

Celestial Pole4. We simulate the visibilities corresponding to the RFI source separately, again 

using MeqTrees, with time and bandwidth smearing enabled, which effectively attenuates power 

on the longer baselines, as would be expected for a real RFI source. In order to replicate the 

narrow-band and on-off behaviour of RFI, we inject the simulated RFI visibilities into the sim

ulated sky data at a randomly sampled subset of timeslots and frequency channels. We also add 

thermal noise at a level of 0.16 Jy (which corresponds to the rms estimated from the real data 

measurement set). We do not add any other effects to the simulation, as the objective of the 

experiment is to study the impact of the RFI in isolation.

Having simulated our mock-RFI-contaminated data, we perform full amplitude and phase 

DI calibration on the data with both the complex and the robust solver using a time interval of 

9 seconds and a frequency interval 128 MHz. Fig. 4.9 shows maps of a field-centre patch of 

the simulated data, as well as the corrected data obtained after calibration with both solvers. In 

Fig. 4.9a, the RFI source manifests itself as faint linear structure in the background. In Fig. 

4.9b, some gain solutions from the complex solver have been biased by RFI, as predicted by 

the discussion above, resulting in significant image degradation. By contrast, with the robust 

solver (Fig. 4.9c), no such contamination occurs, as the robust solver effectively excludes the 

RFI-affected visibilities via its weighting scheme.

4.2.2 Application to real data

Having demonstrated the success of the robust solver on simulated data we now attempt to cal

ibrate the real VIDEO data set. This data set is an excellent test case because it is a deep field 

with low SNR and the data is contaminated by low-level RFI which is difficult to remove using 

conventional flagging. Fig. 4.10 is a waterfall plot of the average visibilities. The bright spots 

are the visibilities that are corrupted by the low-level RFI. Since the data was already bandpass

4The flux value was deliberately chosen to illustrate the effects above. Note that our simulation does not include 

primary beam attenuation, so the quoted brightness of the RFI source is unattenuated.
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(a) RFI Data

(b) complex solver time-int = 9 secs

(c) robust solver time-int = 9 secs

Figure 4.9: Images of a patch at the centre of the field for simulated RFI-corrupted data, and 

corrected data after calibration with both solvers. (a) RFI-corrupted data, (b) after calibration 

using the complex solver with a time interval of 9 secs, (c) after calibration using the robust 

solver with the same time interval. RFI-induced artefacts are clearly visible in case (b).
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Figure 4.10: A waterfall plot of the visibilities for the VIDEO observation before self-calibration, 

averaged across all baselines and correlations. This is an image of a chunk of data containing 

128 frequency channels. The gains plotted in Fig. 4.12 correspond to the same data chunk. 

The purples stripes correspond to previously flagged data, and the bright spots correspond to 

low-level RFI.

calibrated during 1GC, we perform self-calibration with solution intervals of 9 sec and 7.5 min, 

using both the robust and the complex solver.

Images of the 1GC-corrected and post-2GC data are shown in Fig. 4.11. The strong artefacts 

present in Fig. 4.11a, which are not visible in the simulated data (see Fig. 4.9a), are caused 

by the primary beam: as the earth rotates during an observation, the sources move through the 

beam and produce these artefacts. Fig. 4.11b and 4.11c show that the robust solver removes 

the beam-related artefacts in the data (see Fig. 4.11a) without introducing more RFI-related 

artefacts. In contrast, the solutions from the complex solver are similar to the predictions of the 

RFI simulation. On the other hand, at a time interval of 7.5 mins, both solvers produce good 

results and the artefacts are effectively removed. A look at the gain plots in Fig. 4.12 provides
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Figure 4.11: An image of the centre of the VIDEO field before and after calibration with different solution intervals: 

(a) before self-calibration; (b) after calibration using the complex solver with a time interval of 9 secs. The image 

gets worse because RFI contaminates some gain solutions; (c) after calibration using the robust solver with a time 

of interval 9 secs. Most artefacts from the uncalibrated image are gone, but the noise level is increased due to the 

low SNR of the solutions; (d) after calibration using the complex solver with a time interval of 7.5 mins. The RFI- 

induced artefacts are gone because they have been averaged out by the long solution interval; (e) after calibration 

using the robust solver with a time interval of 7.5 mins. (f) Source counts, showing no detections for the complex 

solver-calibrated image with a time interval of 9 secs.
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additional insight. At a time interval of 9 secs, the RFI occupancy in some of the time intervals 

is rather high, leading to biased gain solutions derived from the complex solver. These biased 

solutions propagate errors into the corrected visibilities, resulting in strong imaging artefacts. 

The robust solver does not suffer from this effect because very low weights are applied to these 

visibilities, thus effectively flagging them during the computation of the gains. We observe more 

noise in Fig. 4.11c: at low SNR, if short time/frequency intervals are used for calibration, the 

solver fits noise instead of signal and this may result in an increase in the noise level of the 

corrected data. We elaborate on this subtle trade-off between solution interval width and SNR 

in §5. Note that as the solution interval increases, the performance of both solvers converges. 

The RFI contribution is averaged out by the long time interval, so the complex solver is able to 

perform adequately, as shown by the output gains plot (Fig. 4.12).

Finally, we conclude by presenting Fig. 4.11f, which shows a (log scale) plot of the source 

counts extracted from the different images. Fig. 4.11f gives us an insight into how such low-level 

RFI could affect our science. In particular, we don't detect any sources in the calibrated image 

when we use the complex solver with a time interval of 9 secs. Therefore, low-level RFI needs 

to be handled properly during calibration, even when it is not immediately obvious in the image 

domain. This final point is particularly relevant for mJy and ^Jy science targets.
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Figure 4.12: The amplitudes of the estimated gains for both solvers with time intervals 9 secs 

and 7.5 mins For the complex solver (a) we can see various peaks which are absent for the robust 

solver (b). These peaks appear exactly at the times where RFIs hugely dominate the visibilities 

(see Figure 4.10). The robust solver highly attenuates these peaks because of the weighting. (c) 

and (d) show that with a large time interval of 7.5 mins, the peaks are average out for the complex 

solver.

4.3 Discussion

This chapter and the preceding chapter presented the derivation and implementation of a novel 

algorithm for RI calibration based on a CST distribution. The different experiments in this 

chapter attempt to show different scenarios in which using such an algorithm will improve RI
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calibration. In this chapter, we mainly focussed on the problem of unmodelled sources and RFI 

present in visibilities during calibration.

In §4.1.2, we tried to identify different regimes based on the SNR and model concentration 

where flux suppression is most severe and robust calibration therefore advantageous. The results 

from this section showed similar performance for the robust solver and the traditional solver in 

high SNR regimes and for concentrated models. However, the robust solver hugely outperforms 

the traditional solver in low SNR regimes and for highly dispersed models. This result suggests 

that the robust solver, which is computationally more expensive, should be considered in low 

SNR regimes and for highly dispersed models.

The indications from §4.1.2 were confirmed in §4.1.3 and §4.1.4 based on the results of the 

two DD calibration simulations and the extended source simulation. Hence, a first take away 

from this chapter is that we can use the robust solver when performing DD calibration on faint 

sources. The performance of the robust-I solver in the high-SNR DD simulation implies that 

down-weighting the residuals covariance matrix can improve calibration, this requires further 

investigation. In §4.2, we showed that the robust solver could be used efficiently to mitigate 

against unflagged RFI during calibration. Both the RFI and flux suppression result showed the 

significance of solution intervals during calibration, and we will further investigate this in the 

next chapter.

Beside optimising, profiling and testing our current implementation, an interesting research 

from this chapter will be to extend the analysis in §4.1.1. Different probability distributions 

(heavy-tailed and non-heavy-tailed) could be fitted to corrupted and uncorrupted visibilities using 

a Bayesian approach. Then comparing the different Bayesian evidence would provide more 

statistical evidence on what is the best probability distribution to consider for the modelling of 

errors during calibration.



C H A P T E R  5

S o l u t i o n  I n t e r v a l s  C o n s i d e r e d  H a r m f u l 1

In Chapter 4, we highlighted how the choice of solution interval could improve flux suppression 

and reduce the effects of RFI during calibration. This interval is usually selected based on exper

tise using heuristic approaches. Often calibration has to be repeated several times until we find 

an adequate interval. This chapter presents an extensive study of the effects of solution intervals 

on calibration and imaging outputs. The main focus of the chapter is to describe different subtle 

factors which make the selection of an optimal solution interval problematic. We start by first 

reintroducing the calibration problem and discuss the concept of solution intervals used for gain 

parametrisation by most calibration packages in §5.1. This parametrisation is further analysed in 

§5.2 where we discuss the main factors which influence the choice of optimal solution intervals. 

Because solution intervals are the most widely used regularisation tool during calibration, we 

propose in §5.3 a practical algorithm for finding the optimal solution interval during calibration. 

The proposed algorithm is validated using simulations in §5.4 and then applied to VLA data in 

§5.5 to demonstrate its advantages. We conclude in §5.6 with more discussions on the difficulties 

of finding an optimal interval in practice and the possibility of doing calibration without solution 

intervals.

1The work presented in this chapter will be submitted for publication as Sob et al. (in preparation)

86
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5.1 Problem overview

This section presents an overview of the problem we want to address in this chapter, i.e. how to 

select the optimal solution interval during calibration? We first review some calibration concepts 

already discussed in Chapter 2 and Chapter 3 and then provide a concise definition of solution 

intervals and why they are necessary during calibration.

5.1.1 Calibration

In this chapter, we restrict the discussion to DI calibration where the aim is to solve for the time 

and frequency dependence of the gains only. In this case, the measurement model, or RIME, has 

the following simplified representation,

Vpq GpCPq GH +  ep pq q ■pqi (5.1)

where Cpq is the sky coherency term, V pq denotes the measured visibilities, G p is the DI gain of 

antenna p and we assume that the noise, epq, follows a circular complex Gaussian distribution. 

Note that we do not preclude the possibility of absorbing any known DDEs into the definition of 

C pq. Furthermore, we assume that the noise for the correlations are i.i.d. so that

rpq =  vec (epq) =  vec (Vpq -  GpCpqGf ) ~  CN (0, Epq) (5.2)

where 0 is a 4 x 1 zero vector, E pq is a diagonal 4 x 4 covariance matrix.

The discussion that follows is most relevant after 1GC has been performed and the gains 

have been transferred to the target field. Hence we assume we have an initial (partially complete) 

sky model with which to compute Cpq. Since (in the absence of auto-correlations) an array 

consisting of Na antennas measures Na(Na — 1)/2 pairs of visibilities for each observational 

time and frequency stamp, the DI calibration problem amounts to solving an overdetermined 

system for Na complex unknowns for each measured correlation. Following the discussions in 

Chapter 2 and Chapter 3 we aim to solve the following NLLS problem:

min ^  ||rpq||F > (5.3)
pq|p<q

where the gains are parametrised using 6 .
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5.1.2 Solution Intervals

Solving for an independent gain at each time and frequency, especially at low SNR, usually re

sults in overfitting as the reconstructed gains will not be smooth functions of time and frequency. 

Any algorithm that solves for an independent gain at each time and frequency will be fitting noise 

as well as the signal. The most common way to regularise the calibration problem is to introduce 

solution intervals over which the gains are assumed to be constant. This corresponds to having 

multiple measurements for each baseline across the chosen time and frequency intervals. The 

optimisation problem, Eq. (5.3), is then slightly modified as follows

min ^  ||rpqs||F > (5.4)
pqs|p<q

where s is an index for all the time and frequency samples that are part of the same solution 

interval. If the full domain of the problem is a Nt x Nv time/frequency grid, the solution interval 

approach parametrises the gains as a sum of boxcar functions, i.e.

gp(t ,u ,6p) =  6p,ij n t i ,ti+At ( t )  nv ,.,vj+A. ( v ) , ( 5 .5 )

where 6p,ij is a 4 x 1 vector containing the value of the gain for antenna p in an interval labelled 

by i j , A t is the resolution of the coarsened time grid, A v is the resolution of the coarsened 

frequency grid and the boxcar function is defined as

n a,b (x)
1 if x E [a, b), 

0 otherwise.
(5.6)

The units that discretise our grid are the integration time, 8t, and the channel width, 8v. Each 

solution interval therefore contains a multiple of 8t and 8V which we denote by nt and nv 2 such 

that
A A

(5.7)n t
At Av—  and n v =  — .
8t 8v

2Throughout the text, when employed without units, the term solution interval refers to the discrete units, n t and

nv .
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Thus, if the full grid consists of N  =  NtNv points, and each solution interval contains n =  n tn v

such points, there will be a total of Mt Nt
nt

time intervals and Mv Nv
nv

frequency

intervals giving a total of M  =  MtM v parameters for each gain.

To gain more intuition, let's assume we are calibrating a dataset with a low SNR. If we use 

a single discrete time interval, n t =  1 , we will mostly fit noise, and the estimated gains will be 

noisy as depicted by the blue curve in Fig. 5.1a. Hence we need to increase the size of the interval 

to reduce the variance of the gain solutions as depicted by the red, orange and green curves in 

Fig. 5.1a. Fig. 5.1b shows the mean squared error (MSE) between the true gains and the noisy 

estimated gains at different intervals. When we increase the interval, we reach a turning point 

where the MSE in the gains starts increasing because we can no longer keep track of the short 

scale variations of the gains.

s I"."I is the ceil function defined such that \x] is the smallest integer > x.

3
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(a) Plot of boxcar reconstructed gains with different intervals illustrating the definition of solution inter

vals.
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(b) Mean squared error (MSE) of the boxcar reconstructed gains shown in Fig. 5.1a at different solution 

intervals relative to the true gains.

Figure 5.1

The error in the estimated gains during calibration can thus be explained as being the contribution 

of two error terms: one from the uncertainties in the data, and the second from the solution 

interval boxcars approximation of the gains. Using the definition of the MSE of a parameter, 6 , 

and its estimate, 6, we have

MSE E

E

(6 -  6 )2 

6 -  e [6] +  E[6] -  6
2 2

Var(6 ) + Bias(6, 6 )2,

(5.8)

(5.9)

(5.10)
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where E is the expectation operator with respect to 6. The first term of Eq. (5.10) is the variance 

of the estimated parameter and represents the error in the estimated parameter due to the uncer

tainties in the measured data. This corresponds to the error in the gains because of the noise 

in the visibilities, unmodelled sources and RFI for the calibration problem. The second term 

is called the Bias and it results from the information lost when we approximate the gains as a 

sum of boxcars when using solution intervals. The focus of this chapter is to provide guidelines 

and discuss the difficulties on how to correctly identify the turning point of Fig. 5.1b, i.e. how 

long can we make solution intervals during calibration in order to have the highest SNR possible 

while still capturing time and frequency variations in the gains.

Note that, despite being suboptimal, the solution interval approach has some advantages over 

other parametrised approaches. Most notably, the problem is easy to formulate, even in the 

fully polarised case. Formulated in this way, the problem is also highly distributable. That 

said, piece-wise constant gains are not physical and finding the optimal solution interval is non

trivial. In principle, it is possible to parametrise gains as smooth functions (e.g. low order 

polynomials) of time and frequency (see for example Tasse (2014b); Yatawatta (2015a)). As with 

the solution interval approach, these methods also suffer from a discrete model selection problem. 

For example, using a polynomial prior, the order of the polynomial (and perhaps the mean and 

variance of the polynomial coefficients) would have to be specified in advance. Because of the 

computational advantages offered by the solution interval approach, we will not delve much 

further into these alternatives.

5.2 Gain Errors

Before moving on to discuss how to find optimal solution intervals, we first elaborate on the 

different factors that contribute to gain errors during calibration. In this section, we use results 

from simulations to describe how these factors (i.e. the noise in the visibilities, the intrinsic 

variability of the gains, the degree of model incompleteness and RFI) affect calibration and how 

their effects vary with solution intervals. In order to make the presentation simple, we summarise 

the setups for all the simulations in Table 5.1 (see Appendix D for more details).
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Identifier Setup

i Sky model: 100 sources (random positions)

Peak flux = 0.5 Jy

Input rms = 1 Jy (per-visibility)

Input gains from a GP (07 =  0.2, l =  100)

Single channel MS

a) Calibrate with the complete sky model

b) Calibrate with an incomplete sky model (50 % of total 

flux). Peak unmodelled flux = 0.05 Jy

ii Sky model: 1 source (phase centre)

Input rms = 2 Jy (per-visibility)

No input gains, i.e. unity gains

Array = KAT-7, VLA, VLA-14 and MeerKAT

Single channel MS

iii Sky model: 2 sources (1 at the phase centre and at 0.2 deg offset)

Fluxes = 0.05 Jy each

Input rms = 0.5 Jy (per-visibility)

Array = MeerKAT 

Single channel MS 

No input gains, i.e. unity gains

a) Calibration with the phase centre source only

iv Sky model: 1 source (phase centre)

Input rms = 0 Jy (no noise added)

Input gains from a GP (07 =  0.5, l =  200) 

Array = MeerKAT

v Sky model: 100 sources (random positions)

Peak flux = 1 Jy

Input gains from a GP

Input rms and GP parameters in Table 5.2

Single channel MS

Table 5.1: Summary of the parameters for the different simulations. Note that certain simulations are repeated with 

calibration performed using complete and incomplete sky models. We use a square exponential covariance function 

for the GP gains. The length scale employed is in units of seconds, for example, l = 100 implies the gains vary on 

scales of 100 secs, i.e. ten units of integration time (10 secs). We use the same parameters for the amplitude and 

phase of the gains.
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Simulation °  f l ^rms

a 0.3 100 0.2 Jy

b 0.1 200 0.8 Jy

c 0.1 100 2 Jy

d 0.3 100 0.6 Jy

Table 5.2: GP parameters used for the time only simulations (§5.4.1) and the rms of the noise 

added to the visibilities.

Each simulation is referred to as Simulation-X where X is the corresponding identifier in Table 

5.1. We generate all the gain corruptions using a Gaussian Process (GP). The full details on how 

we generate these gain corruptions are presented in §D.2. Additionally, all the combinations of 

GP parameters and input rms used in Simulation-v are given in Table 5.2.

Simulation-i provides a general summary of the effects of solution intervals on calibration 

outputs. Fig. 5.2a and Fig. 5.2b illustrate how the MSE of the estimated gains varies with 

solution intervals. Increasing the solution interval improves the SNR, by reducing the noise in 

the visibilities, but when the interval becomes too large, it becomes impossible to track the gain 

variations. The MSE then increases to an asymptotic value which depends on the gains’ intrinsic 

variability. Another quantity we can look at is the noise contribution from the calibration errors. 

Hence, we also show in Fig. 5.2a and Fig. 5.2b the rms of the artefact maps, rpq, which we 

define as

r Apq ■̂pq n pq i pq V.pq _  G C  G HG pC pq G q , (5.11)

where G  denotes the solution to Eq. (5.3), and n pq is the exact noise realisation added to the 

simulated visibilities, i.e. we subtract the exact input noise from the uncorrected residual visibil

ities to isolate the artefacts. The artefact rms follows a similar profile as the error in the gains but 

increases to larger values at longer intervals. We plot in Fig. 5.2c and 5.2d ratios of the fluxes 

recovered after calibration to the true fluxes for two sources namely:

src 0 -  the brightest source in the field (which has a flux of 0.5 Jy),

src 1 -  the brightest unmodelled source in the field (which has a flux of 0.05 Jy) for the incomplete
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sky model case.

For the complete sky model, we slightly overestimate the fluxes of the sources at the shortest 

interval because of the low SNR, but as we move to longer intervals, we start observing source 

suppression. For the incomplete sky model, the brightest source has a similar flux plot as in the 

case with a complete sky model, but here, source suppression in its flux is observed earlier and 

gets worse with increasing solution interval. On the other hand, the unmodelled flux has a more 

complicated flux profile. Initially, the flux is largely suppressed, the suppression reduces with 

the solution interval, and then suppression starts increasing again.
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Figure 5.2: (a) and (b) are plots of the MSE of estimated gains (blue solid line) against the solution interval used 

on the left y-axis and the rms of the artefact images (red dashed line) on the right y-axis. These plots illustrate the 

trade-off between the error due to noise on the visibilities and the intrinsic variability of the gains as we increase 

the solution interval. There is a strong correlation between the MSE and the artefact rms. When the sky model is 

complete, the minimum rms occurs at approximately the same point as the minimum MSE, which is not guaranteed 

when the sky model is incomplete. (c) and (d) are plots of the ratio of recovered to the actual fluxes for the brightest 

source (magenta) and a faint source (green) respectively. The black dashed line indicates the flux ratio of 1 for 

perfect reconstruction.

Isolating and understanding the effects of solution intervals is not a straightforward task, but Fig. 

5.2 summarises most of what can happen as a result of solution intervals. From the simulations, 

long solution intervals which do not capture the variations in the gains could cause a flux sup

pression of up to «  10 % even for modelled sources, while the variance in the gains due to the 

solution interval at low SNRs could increase the image rms by a factor of up to 3. Marti-Vidal 

& Marcaide (2008), for example, describes the formation of spurious sources when phase self
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calibration is done at low SNR and even derives an approximate expression for the fluxes of the 

spurious sources as a function of solution interval and number of antennas.

An appropriate definition for the optimal solution interval should then be one which min

imises source suppression and overestimation while maximising dynamic range. Based on the 

above discussion, we define the optimal solution interval as the one which minimises the rms of 

the artefact image. This metric is only available for simulations. For the rest of the chapter, we 

will use the MSE as a reference metric, and we will show in §5.3.2 that it is possible to derive a 

nearly equivalent metric which we can efficiently compute in practice.

5.2.1 Noise in the visibilities

Variance of estim ated gains

In this section, we use the Fisher Information matrix (FIM) introduced in the early 1920s by 

Fisher et al. (1920) to find an expression for the minimum expected variance of the error in 

gains resulting from the noise in the visibilities during calibration. In simple terms, the FIM can 

be thought of as the amount information from an unknown parameter than be obtained from a 

measured data. Given an optimisation problem

m m £ |y í -  f t |2,
t

where y t, f t and 0 are the measured data, the model and the unknown parameter vector respec

tively, if we assume a Gaussian likelihood function, then the elements of its FIM, F, are given 

by

F 1  f t  f t
t a 2 d0i d 0 j :L (5.12)

where a is the standard deviation of the errors in the measured data and t is a time index or data 

count index (the Gaussian noise approximation only holds for synthesis arrays like MeerKAT 

and VLA where the noise on each visibility is mutually independent, but this is generally not 

the case for aperture and phased arrays). From the Cramer-Rao bound (see Jansen & Claeskens 

(2011)), the inverse of the FIM is a lower bound on the variance of the estimated parameters. In
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the simplest case of DI calibration of unpolarised single channel visibilities, the RIME is given 

by

vpqt — gptm pqt gqt +  (5.13)

where m pqt is the coherency matrix, vpqt the measured visibilities, gpt is the gain of antenna p at 

time t . Let us assume a classical dish such as MeerKAT, operating in the frequency range where 

the noise is dominated by the system contribution rather than the sky (Tsys >> Tsky). The noise 

can then be seen as independent Gaussian:

e -  C N (0,a r2ms).

For a given solution time interval, nt, using Eq. (5.12), the diagonal elements of the Fisher matrix 

for this process are given by

F
1 nt Na

pp ar (m pqtgqt)2 (5.14)
t=l p=q

where Na is the number of antennas in our array. Assuming that the Hessian matrix is diagonally 

dominant, as in the preceding chapters, the inverse of the Fisher matrix becomes F -1  — -1  (for
F

all non zero entries). Hence

F-p1 — Var(gp)
a

En= 1 EN=q (mpqtgqt)2 '
(5.15)

Eq. (5.15) can be simplified if we consider a field with a single source having flux S  located at 

the phase centre with constant gains 1 +  0 j . Using these simplifications, the error in the estimated 

gains resulting from the noise in the visibilities is given by

2

Var(gp)
a (5.16)

nt(Na -  1 )S 2‘

Additionally, for a multichannel observation with solution frequency interval, nv, Eq. (5.16)

becomes

Var(gp)
a a

n vnt(Na -  1)S2 n(Na -  1)S2’
(5.17)
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where n — nvn t. Eq. (5.17) is an already known result in the field of radio interferometry and is 

stated in Taylor et al. (1999) in the following forms for phase-only and full-complex calibration 

respectively

Var(gp)
a2

Var(gp)
a2

n(Na -  2)S2 p  n(Na -  3)S2'

The factor Na -  1 is replaced by the factors Na -  2 and Na -  3 in order to account for the extra 

degrees of freedom required for phase-only and full-complex calibration respectively. In what 

follows and in the rest of this chapter, we will use Eq. 5.17 with the factor Na -  1 as an estimated 

of the expected variance on gains solutions resulting from the noise the visibilities.

We check the validity of Eq (5.17) using Simulation-ii. VLA-14 in Table 5.1 denotes a sub

array made using only 14 of the 27 VLA antennas. Fig. 5.3 is a plot of the MSE against solution 

interval for the different datasets. The plot shows that the estimated MSE are in close agree

ment with Eq. (5.17). These plots show the importance of having a large number of antennas. 

The predicted and measured MSE is close for MeerKAT even at the smallest time interval of 

1. For the VLA and KAT-7 arrays, a much longer time interval is required to match theoretical 

expectations.
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Hco

Figure 5.3: MSE of estimated gains against solution interval on a log scale. In this simulation, 

the input gains are all set to 1. The solid lines are the measured values while the dashed lines 

are the error values predicted using Eq. (5.17). Eq. (5.17) is a close fit for MeerKAT because of 

its large number of antennas. For the other arrays, the predicted and measured values only start 

agreeing after a certain time interval.

Effects of noisy gains on corrected visibilities

Similarly as in §4.2, we can decompose the corrected visibilities into several components,

c o -1  o
V pq G p V pq G q

—H

G -1 H o -H  o -1 op GpCpqG q G q +  G p cpqG q H

G - 1 (G p(C £  +  Cp7)GH +  epq) Gq H

G - 1g  c mGHg —h I g  — 1G c umGHG-HGp GpCpqG q G q +  G p G pC pq G q G q +  G - €pq G q H

(5.18)

(5.19)

(5.20)

(5.21)
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after splitting the coherency, C pq, into a modelled and an unmodelled component C™ and Cp™, 

respectively. Eq (5.21) consists of three terms which we refer to as the Modelled4, the Unmod

elled5 and the Noise6 terms respectively. If the calibration is perfect, G p = G p and G —1G p — I. 

Thus, the Modelled and Unmodelled terms correspond to the true sky visibilities, and the Noise 

term is the noise in the visibilities slightly modified by the inverse of the gains. However, at 

low SNR, the solver fits noise rather than the model, thereby transferring the model flux into the 

gains. When such gains are applied to the noise, the resultant Noise term contains ghost sources 

which lead to overestimation of sources’ fluxes. This problem is not only related to solution 

intervals but forces us to re-assess our definition of corrected visibilities. How exactly should 

we apply the gains to the data without modifying the underlying structure of the noise in the 

data? We performed a two source simulation (Simulation-iii) to investigate the contribution of 

the different terms in Eq. (5.21) to the corrected visibilities at low SNRs.

Fig. 5.4 shows images of the various components of the corrected visibilities after calibration. 

Alongside these, we have plotted the following quantities called the distilled modelled and the 

distilled unmodelled terms.

distilled modelled — G —1G pC™ G f G —H -  C™, 

distilled unmodelled — G —1GpCpqmG f  G —H -  C puqm.

Each 2x3 block corresponds to a specific time interval. On the top row, from left to right, we have 

the images of the corrected visibilities, the Modelled and the Unmodelled terms, respectively. 

On the bottom row, from left to right, we have the Noise, distilled modelled and the distilled 

unmodelled terms, respectively. The blue and black circles indicate the position of the modelled 

and unmodelled source, respectively. The red circle indicates a position at which we expert a 

ghost source to form because of the unmodelled source.

When the time interval is 1 (see Fig. 5.4a), the SNR is very low. Hence we fit noise instead

of the modelled visibilities. In this case, the flux of the model source is absorbed into the gains. 4 5 6

4Modelled = G ^ G p C ^  G f  G
5 Unmodelled = G -1 GpCpgmG f  G
6Noise = G -1 epq G
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Applying these gains to the data suppresses the model source from the Modelled term and its 

signature instead appears in the Noise term. Because of the strong influence of the noise, in this 

case, the corrected visibilities look very similar to the Noise term. Similarly to the Modelled term, 

the unmodelled source appears to be largely suppressed in the Unmodelled term. In images of 

both the Modelled and the Unmodelled terms, we can see artefacts caused by the presence of the 

unmodelled source. As discussed in Grobler et al. (2014) and Grobler et al. (2016), unmodelled 

sources will lead to the formation of a string of ghost sources along the line between the model 

and the unmodelled source. Because of the short time interval used here, the noise dominates the 

calibration, and the ghost sources are too faint to see their signatures in the distilled maps.

When the time interval is 8 (see Fig. 5.4b), the SNR is improved. This causes the unmodelled 

source to have more influence on the calibration, hence the ghost sources are brighter, and we can 

even see a ghost source in the corrected visibilities. Likewise, the amount of flux transferred to 

the Noise term is significantly reduced, and some of the ghost sources are visible in the distilled 

maps. Using an interval of 720 (see Fig. 5.4c), both the effects of the noise and the unmodelled 

source are entirely averaged out. The corresponding images look exactly like what we expect 

from a perfect calibration. Such a long interval is only possible in such a case because we did 

not put any gain corruptions into the data to start with.
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(a) Time interval = 1 ( 1 0  secs)

Because of the low SNR in this case, we fit noise instead of modelled visibilities. The modelled source is 

absorbed into the gains and its signature appears in the blue circle of the Noise term. In the Modelled and 

Unmodelled terms, we can see ghost sources appearing in the red and blue circles respectively. These ghost 

sources results from the unmodelled source and causes further suppression in the fluxes of the sources. 

Due to the large suppression caused by the noise in the distilled modelled and the distilled unmodelled 

terms, we can only see negative peaks in the blue and black circles at the position of the sources confirming 

that their fluxes have been hugely suppressed.
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(b) Time interval = 8 (80 secs)

Here the SNR is higher, hence the unmodelled source has a stronger influence on the calibration. This 

results in brighter ghost sources which we can see in the corrected visibilities (red circle), the Modelled 

term (red circle) and the Unmodelled term (blue circle). Also, we can see positive peaks in the red and blue 

circles of the distilled modelled and the distilled unmodelled terms respectively confirming the stronger 

influence of the unmodelled source in this case.
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(c) Time interval = 720 (2 hours)

In this case, the effects of the noise and the unmodelled source are ultimately average out because of the 

very long solution interval. Hence in the corrected visibilities, Modelled and Unmodelled terms, we see 

that the model and unmodelled source in the blue and black circles have not been suppressed. The Noise 

term is entirely noise like as we expect, while the distilled modelled and the distilled unmodelled term 

images are almost blank except for some remaining PSF structures.

Figure 5.4: Images of the different terms in Eq. (5.21) and the distilled modelled and the distilled 

unmodelled terms. Each 2 x 3 block corresponds to a specific time interval. On the top row, from 

left to right, we have the images of the corrected visibilities, the Modelled and the Unmodelled 

terms respectively. On the bottom row, from left to right, we have the Noise, distilled modelled 

and the distilled unmodelled terms respectively. The blue and black circles indicate the position 

of the modelled and unmodelled source, respectively. The red circle indicates a position at which 

we expert a ghost source to form because of the unmodelled source. (a): 1 (10 secs), (b): 8 (80 

secs) and (c): 720 (2 hours) respectively.
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5.2.2 Intrinsic variability of the gains

The expressions derived in §5.2.1 rely on the assumption that we have an unbiased estimator, 

the residuals visibilities or noise is normally distributed and the Hessian is diagonally dominant. 

This is almost never true because the gains are neither constant in time nor in frequency. This 

section focuses on the bias term of Eq. (5.10). This term is the error in the estimated gains due 

to the chosen solution interval. This term is complicated to understand and to model analytically 

because, in practice, we do not have any information about the variability of the gains. To acquire 

more insights on the bias term, we plot in Fig. 5.5 a similar MSE curve to Fig. 5.1b for non-noisy 

gains.

Figure 5.5: This plot shows the error in the gains caused by the averaging as a function of the 

solution interval. This error term, contrary to that from the noise, increases with increasing 

solution intervals.

As expected, the error increases with the solution interval. The bumpiness in the curve is as 

a result of the fact that not all intervals divide the data equally, i.e. all the solution interval 

blocks do not have the same number of visibilities. This effect increases with solution intervals
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as we get more and more unequal divisions with longer intervals. This is an additional overhead 

which makes it difficult to formulate the solution interval problem as an optimisation problem. In 

practice, this might even be more complicated, since observations are usually in scans (switching 

between numerous fields) each having a different number of visibilities and different time stamps.

We use Simulation-iv to visualise the effects of the intrinsic variability of the gains on cor

rected visibilities. We simulate a 1 Jy phase centred source using MeerKAT and corrupt it with 

rapidly varying gains. We add no noise to the data to ensure a high SNR and avoid hiding the 

effects of the gain variations in the noise. The results are plotted in Fig. 5.6.

Observed
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0 .0 1 0
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Figure 5.6: Left is an image of the artefacts introduced by the gains (corrupted visibilities mi

nus model visibilities). The middle and right images are the artefacts maps after calibration 

(corrected visibilities minus model visibilities) with time intervals of 1 and 720 respectively.

The leftmost image shows the artefacts added to the data by the gains. This image is computed by 

subtracting the model visibilities from the corrupted visibilities. For the middle and the rightmost 

images, we subtract the model visibilities from the corrected visibilities. These images show how 

well we have removed the artefacts introduced by the gains. With a time interval of 1, almost all 

the artefacts introduced by the gains are removed because we have the highest time resolution 

possible to track all gain variations in time. On the other hand, if a time interval of 720 is used, 

we have low resolution, and cannot track the gain variations. As seen earlier in Fig. 5.2, this leads 

to artefacts that increase the noise in the image, particularly around sources. The artefact’s noise 

is not necessarily Gaussian or follows a symmetric i.i.d distribution, and thus will not go down 

with averaging. Hence, even if we perform multi-frequency observations over a long period, if
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the solver does not accurately capture the variations in the gains, the noise in the averaged image 

will be higher than expected.

5.2.3 Model Completeness & Radio Frequency Interference

In §5.2.1, we saw that the effects of unmodelled sources depend on their brightness relative 

to the noise in the visibilities. Hence an unmodelled source with flux ^  noise rms will have 

minimal impact on calibration especially in the case of DI calibration. For DD calibration, given 

the low number of constraints per free parameter, the faint sources may have a stronger impact. 

On the other hand, a source relatively bright compared to the noise and the model flux will 

have a substantial contribution. This is precisely what we observe in §5.2.1 for Simulation- 

iii. Furthermore, we demonstrated in §4.1.1 that the main effect of numerous unmodelled point 

sources is to make the data seem noisier, i.e. it increases the variance of the residual visibilities, 

and that their effects could be mitigated using the robust solver.

Another parameter which complicates the task of selecting an optimal solution interval is 

the presence of RFI in RI data. We saw in §4.2 that if the RFI is local to few time chunks 

and frequency channels, then using long solution intervals can significantly reduce the effects 

of the RFI, with the preferred solution being to employ the robust solver which downweights 

contaminated visibilities.

5.3 Searching for optimal solution intervals

After discussing the concept of solution intervals, and most of its effects in different calibra

tion scenarios, we now present a brute force optimal solution interval search algorithm. Before 

describing the algorithm in §5.3.2, we first discuss the idea of a calibration minor cycle in §5.3.1.

5.3.1 Calibration minor cycle

The process of finding an optimal solution interval for calibration requires repeating calibration 

numerous times and identifying the interval which produces the best residuals. Given the large
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size of RI datasets, this is not a practical approach, and any inference method which requires 

repeating the calibration and computing residual visibilities will be extremely inefficient. We 

suggest a framework termed the calibration minor cycle in analogy to the major/minor cycles 

used by deconvolution algorithms such as Schwab (1984). The minor cycle here refers to pro

jecting the problem from the high dimensional visibility space to the low dimensional gain space 

for computational efficiency. If we solve for the gains using the full time and frequency reso

lution, then, because of the high number of degrees of freedom, the gain solutions will be very 

noisy. However, once we have a maximum likelihood estimate of g, g, the equivalence

P  (g |V )
P (V |g , S )P (g ) 

P  (V) p  (g| g)
p  (g|g, S  )P  (g) 

P  (g)
(5.22)

is approximately true. The reason for this is that g is a stationary point of Eq. (5.3) and 

is the Cramer-Rao bound and plays a similar role as the point spread function during imaging. 

Hence, following Eq. (5.22), given an initial noisy estimate of the gains, the search for an optimal 

interval can be done directly in gain space without having the computational cost of manipulating 

visibilities. Using the solution interval parametrisation below

gp(0p) =  X  ep, (5.23)

where X 7 is a suitable design matrix, we seek to find

min x 2, where x 2 =  (g -  X 0 )H S - 1 (g -  X 0 )H , (5.24)

i.e. we assume that the gain solutions are normally distributed around their true value (that we 

wish to approximate with a boxcar model) with noise drawn from CN (0, ). This formulation

is per antenna and correlation allowing one to parallelise over these dimensions. This is important 

because we have to solve the problem many times in order to find the optimal solution interval.

5.3.2 Optimal solution interval search algorithm

Following up from §5.3.1, our goal is to find solution intervals for which the gains parametrised 

by Eq. (5.23) minimises the x 2 in Eq. 5.24. Because a Bayesian evidence approximation will

7See the Appendix C for the explicit form of X .
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computationally be very expensive, we suggest the following simplistic procedure to find ade

quate solution intervals for calibration.

The first step in the process is identifying a minimum solution interval for which the max

imum likelihood problem gives a per-antenna SNR of approximately 38. Thus, for a field with 

peak flux, P , observed with an interferometer consisting of Na antennas, having visibilities with 

noise orms per baseline, we want, from Eq. (5.17), an interval satisfying

Oa <
P
3"

where oa Orms
7 N T - Ï

(5.25)

For a given interval containing n =  n tn v combined time and frequency grid points, we have

o 9o2rms
Oa

V/n(N a -  1 )
n

P 2(Na -  1) '
(5.26)

Once the minimum solution interval has been obtained, the next step is to perform calibration 

with this minimum interval to obtain a maximum likelihood solution, 0 , and an updated noise 

covariance, S g. By using a relatively short interval, the maximum likelihood solution is unlikely 

to be significantly biased and can be used to map the problem into gain space.

To avoid having to specify informative priors, we attempt to identify an easily computable 

statistical inference criterion for our model selection problem of finding the optimal interval 

given an initial maximum likelihood estimate. We choose the Akaike Information Criterion 

(AIC; see Akaike (1974, 1998)) defined as

AIC 2Np m £ o 2

2r i +
2Np +  2Np 

Ng -  Np -  1 ’
(5.27)

where r  is the difference between the estimated gains and reconstructed boxcar gain vector sepa

rated into its real and imaginary parts, Ng and Np are the number of real terms in the gains at full 

resolution and the boxcar parameter vector respectively, and oi is the uncertainty in the gain with 

index i. The AIC is a model selection criterion that minimises the information loss by connecting

8This value being arbitrary and entirely up to the user to specify. The most common value used by calibration 

packages such as CASA (McMullin et al., 2007) to check valid solutions is 3 (see Brogan et al. (2018) for more 

discussions on how to chose to this threshold).
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the Kullback-Leibler measure (see Kullback & Leibler (1951)) and the maximum likelihood es

timation method. The AIC is a robust statistic for this specific model selection problem because 

it corrects for the low number of degrees of freedom and sample sizes. Precisely, the last term 

of Eq. (5.27) is a penalty term which corrects for the low number of degrees of freedom. The 

best model when using the AIC is the one with the minimum AIC. We summarise the proposed 

search algorithm as follows:

1. Read the observation parameters from a measurement set, i.e. integration time, channel 

width, number of channels, number of antennas, flags, and scans information.

2. Estimate the noise in the visibilities from the Data and Model or using the System Equiv

alent Flux Density.

3. Estimate the number of points, n, necessary to reach a certain minimum SNR (for example, 

3 or 5).

4. Define the minimum solution interval by first choosing the largest frequency interval, 

which matches n (i.e. set nv =  n and nt =  1). Ideally, anyone performing self-calibration 

should have already done bandpass calibration. Hence, the variations in frequency are ex

pected to be slow compared to time. We can also do the contrary (i.e. set nv =  1 and 

n t =  n) if we expect the specific gain to vary faster in frequency compared to time. A 

conservative approach will be to use \ fn  for both time and frequency (i.e. set nv =  \fn  

and n t =  \fn). In the case n >  the total number of channels possible, m ax(nv), then we

and
n

, and likewise we will use nv =
n

m ax(nv) m ax(nt)
set n v =  m ax(nv) and n t 

n t =  m ax(nt) when we expect more rapid variations in frequency compared to time.

5. Perform calibration with the selected minimum interval and using the estimated gains, 

search for the optimal interval using the AIC.
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5.4 Application on simulated data

In this section, we test the proposed method on simulated datasets. We only perform simulations 

for DI calibration. For DD calibration, solution intervals play a slightly different role, i.e. long 

solution intervals are generally employed not only to improve the SNR but more importantly to 

make the calibration well posed since the number of unknown parameters increases rapidly with 

the number of directions. §5.4.1 focuses on single frequency simulations, and its main objective 

is to examine how the AIC performs in just finding optimal time intervals using gains at their 

full time resolution. §5.4.2 presents a more realistic multi-channel observation based on the 

“VIDEO” field dataset.

5.4.1 Time only simulations

For all simulations, we used the MeerKAT array with a bandwidth of 1 MHz and a start frequency 

of 0.9 GHz. All the simulations have 2 hours of synthesis time with 10 seconds integration time 

(720 timeslots). The parameters for these simulations correspond to Simulation-v in Table 5.1. 

We varied the gain and noise parameters across the simulations in order to vary from low to 

high SNR regimes as well as from slowly to rapidly varying gains. The corrupted data is then 

repeatedly calibrated with a range of solution intervals and the optimal solution intervals from 

the actual gains compared with that obtained using the boxcar constructed gains’ AIC.

Because of the entanglement between the gain variability and the SNR of the data, it is diffi

cult to cleanly separate the presentation here into low vs high SNR and slowly vs rapidly varying 

gains, but we will mention the specific regimes when describing the results. Table 5.2 shows the 

parameters of the squared exponential covariance function used for the gain realisations and the 

rms of the noise added to the visibilities (orms). The phases of the input gains for a few antennas 

are shown in Fig. 5.7. Here we made the amplitudes and phases to have similar variations but in 

practice the phases vary on shorter time scales compared to the amplitudes.

Fig. 5.8 shows plots of the MSE of the estimated gains and the AIC of the boxcar recon

structed gains at different time intervals based on the solution at time interval 1. These plots 

depict the following:
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(a) (b)

(c) (d)

Figure 5.7: Plots of the different gain realisations for a few selected antennas (phase against time 

index). The colours blue, red, black and green are for antenna 0, 4, 8 and 15 respectively. The 

GP parameters used to simulated these gains are shown in Table 5.2. All the figures are plotted 

on the scale to illustrate the differences in variability across the different experiments clearly. 

(a) and (d) corresponds to rapidly varying gains with high variation. (b) corresponds to slowly 

varying gains with low variation while in (c) we show relatively rapidly varying gains with low 

variation.
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Figure 5.8: Plots of the MSE of the estimated gains at different time intervals (blue) and the AIC 

of the reconstructed boxcar gains at different intervals based on the gains (black dashed lines). 

(a) is a high SNR regime with rapidly varying gains. Thus a short time interval is required for 

calibration, which is well predicted by the AIC. (b) is a case with medium SNR and slow varying 

gains and thus, a longer time interval can be used for calibration as suggested. (c) is a scenario 

with a low SNR and rapidly varying gains. The AIC agrees with the minimal MSE for a slightly 

longer interval. (d) is a simulation with highly varying gains on a short time scale and a medium 

SNR. The prediction is again very close to the minimal MSE of the gains. Note the shape of AIC 

curves for (a) and (d). This is as a result of the rapid variability of the gains in these simulations.
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1. Fig. 5.8a is a high SNR simulation with rapidly varying gains. Here, the optimal interval 

is short, and this is well predicted by the AIC.

2. Fig. 5.8b is a medium SNR regime with rapidly but not highly varying gains. A longer 

time interval can be used, and this is correctly predicted.

3. Fig. 5.8c is a case with a low SNR and slowly varying gains. Because of the low SNR, we 

need a long time interval in this scenario. The stability of the gains also favours this. The 

AIC accurately predicts the optimal interval.

4. Fig. 5.8d is a case of extremely high variability (these are shown in Fig. 5.7d). Here, 

a f =  0.3 suggests high variability in the gains and l =  100 (10 units since the integration 

time in our data is 10 seconds) implies variability at a relatively short time scale. The AIC 

prediction is close to the minimal MSE of the gains.

Fig. 5.8 confirms that it is possible to define how long we can make our solution intervals using 

the AIC computed from the gain solutions [at the shortest possible intervals] and their boxcars 

approximations.

5.4.2 Time and frequency

After demonstrating that it is possible to search for optimal interval using the AIC on single 

frequency simulations, we now proceed to multi-frequency observations, since most continuum 

radio observations are made over a large bandwidth consisting of multiple channels. We attempt 

in this section to replicate the VLA observation of the “VIDEO” field we used in §4.2 and, in 

the next section, we apply our brute force approach to find the optimal solution interval for the 

calibration of the real “VIDEO” dataset.

We recall that this observation covers a frequency range of 0.9-2.6 GHz split into 16 spectral 

windows with 64 channels each. The integration time was «  9 seconds on average. 28 anten

nas were used for the observation with a maximum baseline of 36.4 km. The target field was 

observed in 9 different scans with three groups of consecutive scans which can be calibrated as
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single chunks. After initial flagging and calibration using CASA (McMullin et al., 2007) (see 

Heywood et al. (submitted) for more details), we imaged the 1GC-corrected data and extracted a 

component-based sky model using PyBDSF (Mohan & Rafferty, 2015). The sky model consists 

of over 200 Gaussian sources with the brightest source of «  0.02 Jy using an island and pixel 

threshold of 5 and 10 a for the source extraction using PyBDSF. Note that this is an apparent sky 

model since no primary beam correction has been done.

We then used the MeqTrees software package (Noordam & Smirnov, 2010) to replicate the 

observation and simulate visibilities corresponding to the “VIDEO” apparent sky model. We 

corrupt the simulated visibilities with gains drawn from a GP with a Matern covariance func- 

tion9. The gains are rapidly varying in time compared to frequency. Furthermore, the gains are 

constructed to have rapidly varying phases and slowly varying amplitudes. We add Gaussian 

noise with an rms value of 0.16 Jy to the corrupted visibilities. The added rms corresponds to the 

estimated rms from the real dataset. The real data contains RFI but we do not include RFI here 

since this was already treated in Chapter 4 using this dataset.

Following the steps described in §5.3.2, we first compute the solution interval that provides a 

minimum SNR of at least 3. For this computation, we use the simulated noise rms of 0.16 Jy and 

estimate the Peak flux as the mean of the absolute value of the model visibilities. The latter is 

used to estimate the peak flux since the sky model consists of numerous sources. The estimated 

peak flux is 0.029 Jy. Hence, using Eq. (5.26), we get the minimum combined frequency and 

time interval, n, to be 64 using a per-antenna SNR threshold of 3. Because the gains are slowly 

varying in frequency compared to time, we set the minimum frequency and time intervals to 64 

channels (64 MHz) and 1 (9 secs) respectively. We perform calibration using this interval, and 

from the estimated gains, we only search for the optimal time interval. Fig. 5.9a shows a plot 

9The following parameters are used

• Amplitude: (a f , v, 1) = (0.5,3/2,0.2) for time and (a f , v, 1 = (0.1,7/2,1) for frequency.

• Phase: (a f , v, 1) = (0.5,3/2,0.08) for time and (a f , v, 1) = (0.1, 7/2,1) for frequency.

Here the units of the length, 1, have been normalised to the range [0,1]. See Appendix D for the definition of the 

Matern covariance function.
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of the AIC obtained using the minimum possible frequency and time interval. From this plot, 

the suggested optimal time interval is (32, i.e. 4.8 mins). Next we calibrate using the suggested 

optimal interval. We also calibrate using the longest possible time interval (151, i.e. 23 mins). 

In both case we keep the frequency interval to the 64 MHz initially computed from the per- 

antenna SNR. After calibration, we show residual images similar to Fig. 5.6 for a patch at the 

field centre around a source in the field in Fig. 5.10. Fig. 5.10a shows the artefacts introduced 

by the gains (i.e. the image of the difference between the corrupted and the model visibilities). 

Fig. 5.10b is the residual image with the lowest solution time interval of 1; this image appears 

noisier compared to all the other images because the SNR is not high enough. At the suggested 

optimal time interval (see Fig. 5.10c), we see that the artefacts have been considerably attenuated 

and the noise in the image appears much lower. Fig. 5.10d shows the output at the highest time 

interval, in this image we still have most of the background structures from the artefacts because 

we cannot track the short time variations of the gains using such a long time interval. These 

images confirm that solution intervals of 64 MHz in frequency and 4.8 mins in time are the most 

adequate in this context for this simulated dataset. It is important to note that such a brute force 

technique only suggests appropriate solution intervals for the given dataset. Depending on the 

variability of gains and noise in the data, different combinations of time and frequency intervals 

may be possible for a given dataset. For example, if we have constant gains, high-SNR and no 

unmodelled sources using long or short solution interval will not produce significantly different 

results.

5.5 Application to Real Data

Following the successful application of the proposed method to synthetic data, we test its per

formance on the real “VIDEO” dataset. This section demonstrates some prominent practical 

limitations in defining optimal solution intervals. Firstly, examining the dataset we see that, it 

contains flagged visibilities because of the RFI present in the data. Fig. 5.11 shows a plot of 

estimated rms per scan chunks (i.e. the three groups of consecutive scans) at all frequencies. 

Fig. 5.11a shows the rms of time chunks at individual frequencies, while Fig. 5.11b is the rms
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(a) simulated datasets
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Figure 5.9: Plots of the AIC against time interval for the simulated and real VLA datasets. The 

optimal solution interval suggested by the per-antenna SNR and the AIC for the simulated dataset 

is 32 (4.8 mins) and 64 MHz for time and frequency respectively, while that for the real dataset 

is 11 (1.65 mins) and 128 MHz for time and frequency respectively.
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Figure 5.10: Residuals images for patch at the field-centre of the simulated “VIDEO” field. (a) 

corrupted visibilities minus model visibilities, showing the artefacts introduced by the gains. (b), 

(c) and (d) are images of corrected visibilities minus model visibilities, at different time solution 

intervals with a frequency solution interval of 64 MHz.
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with all the frequencies in the time chunk combined. Using the rms per scan chunk, we estimated 

the minimum required interval for each chunk. We used an SNR of 5 because of the flagged data 

(this reduces the SNR because the valid number of visibilities at each time is now less than what 

it should be). Similarly as in §5.4.2, because the data is already bandpass calibrated, we set the 

frequency interval equal to the combined time and frequency interval, n, and only search for op

timal time interval. For the three scan chunks, we found the minimum frequency intervals of 112 

MHz, 118 MHz and 128 MHz respectively. Hence, we selected the highest frequency interval 

(128 MHz). Using this interval, we performed amplitude and phase calibration on the data. We 

then searched for the optimal interval using the estimated gains.

We show the AIC obtained from the estimated gains with the minimum possible interval in 

Fig. 5.9b. The suggested optimal time interval is 11 (1.65 mins). We then calibrate the data 

using the suggested time interval, as well as the longest possible time interval. Fig. 5.12 shows 

images of the same patch at the field-centre around a bright source as in §5.4.2 for the 1GC data, 

and the corrected data after calibration. Every calibration in this section is performed using the 

robust solver because of the unflagged RFI still present in the data. The images show similar 

results as in the simulations. At the lowest time interval (9 secs), even though the artefacts have 

been removed, the noise is slightly increased. Also, the effects of the RFI are also slightly visible 

in the map (see Fig. 5.12b). At the optimal interval (1.6 mins), the artefacts are removed, and 

the noise is lowered (see Fig. 5.12c). On the other hand, for the longest time interval (23 mins), 

despite some of the artefacts being removed, we can still see some background structures around 

the source (see Fig. 5.12d).
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Figure 5.11: (a) is the estimated rms for the 3 different scan groups, per channel. The white 

blocks are flagged visibilities. The numbers on the y-axis next to the scan indices are the total 

number of visibilities in each scan (k denotes 1000). (b) is the estimated rms for each scan, using 

visibilities of all frequencies. The average estimated rms is «  0.16 Jy.



Solution Intervals 122

35°15'00" 14'00" 13'00" 12'00" ll'OO"

DEC
35°15'00" 14'00" 13'00" 12'00" ll'OO''

DEC

(a) before calibration (b) time-int = 9 secs

35°15'00" 14'00" 13'00" 12'00" ll'OO''

DEC
35°15'00" 14'00" 13'00" 12'00" ll'OO''

DEC

(c) time-int =1 .6  mins (d) time-int = 23 mins

Figure 5.12: Images for patch at the field-centre around a corrupted source in the “VIDEO” field. 

(a) is an image of the corrupted visibilities before calibration. (b), (c) and (d) are images of the 

corrected visibilities after calibration with a frequency interval of 128 MHz and a short time 

interval of 9 secs, the optimal time interval of 1.6 mins and the longest time interval of 23 mins 

respectively.

5.6 Discussion

We presented an analysis of the various impacts of the choice of solution intervals on calibra

tion and science goals. Furthermore, we proposed a practical statistical approach for choosing 

adequate solution intervals during calibration, and demonstrated this on simulated and real data.
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The analysis presented here focused on DI calibration only, but Eq (5.26) can also be used for 

DD calibration. For DD calibration, the model is per direction, hence a conservative approach 

will be to utilise the flux of the faintest source in the model as the peak flux, for example.

In the real data application, when searching for the optimal solution interval, we used the 

robust solver to mitigate against the RFI still present in the data. This makes the selection of 

solution intervals during calibration complicated. Generally, RFI is localised to few time chunks 

and frequency channels, hence can we perhaps use different intervals for different chunks of the 

same dataset? However, we can only utilize this approach if we know in advance which data 

chunks are corrupted. Another factor we did not consider here is the spectrum of the sources. 

Ideally, we should take this into account when choosing solution intervals during calibration. 

We can also use multiple solution intervals in this case, but again this requires us to know the 

spectrum of the sources beforehand.

In summary, solution intervals can significantly improve calibration results, but it is not trivial 

to select the optimal solution interval during calibration. Ultimately, we have to encourage the 

use of fully parametric and regularised maximum likelihood calibration algorithms.



CHAPTER 6

General Conclusions

In this thesis, we explored robust calibration techniques that mitigate against the effects of un

modelled sources and RFI during calibration. We presented the implementation of a robust cal

ibration algorithm (Chapter 3) which uses the framework of complex optimisation as discussed 

by Tasse (2014a) and Smirnov & Tasse (2015) and a Student’s t likelihood function. The imple

mented robust solver is now a subroutine in the latest release of the radio interferometric cali

bration suite, CubiCal (Kenyon et al., 2018). We demonstrated that the robust solver effectively 

reduces the amount of flux suppressed from unmodelled sources during calibration (Chapter 4). 

Statistical analysis of the visibilities showed that the main effect of unmodelled sources is to 

increase the perceived variance of the residual visibilities. This increased variance reduces the 

effective SNR of the data. The robust solver, which employs an interactive weighting scheme, 

significantly reduces flux suppression by down weighting baselines with high deviations from 

the estimated data covariance.

Furthermore, we successfully showed that the robust solver (Chapter 4) helps mitigate against 

the effects of low-level RFI (which can be missed by the flagger) on calibration. By adequately 

downweighting the RFI-contaminated visibilities, the robust solver prevents them from blowing 

up the calibration solutions and propagating the RFI into the corrected visibilities. The use of 

solution intervals as regularising tool for the calibration problem, already mentioned in Chapter 

4, was thoroughly investigated in Chapter 5. We showed that there is a link between flux sup

pression, effects of RFI and solution intervals used during calibration. We discussed the different

124
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factors that influence the choice of solution intervals and proposed a brute force algorithm for 

finding optimal solution intervals. We successfully applied this algorithm to both simulated and 

real data.

In summary, the thesis discusses and provides guidelines for robust calibration of radio in

terferometers, which is essential for the future SKA and the new generation of radio telescopes, 

with the primary objective to reduce flux suppression and the effects of RFI. We now discuss 

several ways in which we can extend the material presented in this thesis.

The flux suppression results (particularly Chapter 4, Fig. 4.3) showed some surprising trends. 

For example, why do we have more flux suppression from traditional solvers when calibrating 

with dispersed sky models? This strong link between flux suppression and model concentration 

needs to be properly investigated. This involves revisiting and extending the calibration artefact 

studies of Grobler et al. (2014) and Wijnholds et al. (2016).

While we briefly discussed extended emission, the simulation in §4.1.4 is relatively simplis

tic, and only serves as a proof of concept for the applicability of the robust solver to preserve 

the signal of extended sources and diffuse emission during calibration. Hence, future work will 

entail performing more realistic simulations for diffuse emission. Furthermore, the robust solver 

needs to be tested on a variety of different data sets. An interesting example will be polarisation 

calibration, which generally requires very complicated models. Future research will include ex

tending the analysis in §4.1.1 using a Bayesian approach and different heavy-tailed distributions 

in order to find the best probability distributions for visibilities. Such an approach will provide 

more statistical evidence to why using heavy-tailed distributions can improve calibration for data 

containing outliers.

On the implementation side, proper benchmarking and profiling needs to be performed in 

order to identify the optimal settings for the robust solver and the different scenarios under which 

it improves calibration. The fact that the robust-I solver performs remarkably well in the high 

SNR simulation (when the covariance of the residuals is much higher than I) suggests that by 

scaling down the covariance, we can improve the results of the robust solver. This aspect needs 

further investigation. Because the robust solver is entirely independent of the RIME model, 

extending it to CubiCal’s different specialised solvers should be a straightforward task.
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Regarding the question of finding optimal solution intervals, we highlighted some future 

perspectives in §5.6. While solution intervals are an excellent tool for regularising the calibration 

problem, solution intervals have two significant limitations. Firstly, because of the different 

factors such as variability of the gains, RFI in the data and unmodelled sources, it is not an easy 

task to find the optimal solution interval during calibration. Secondly, because of the enormous 

data rates of the new radio telescopes, we are seeking more data parallelism with distributed 

systems for calibration. This approach requires splitting datasets into small chunks which we can 

calibrate and process in parallel on different computing resources. This approach is a limitation 

for solution intervals, since solution intervals will be constrained by the size of the small data 

chunks. Hence, we need to think beyond solution intervals, and implement solvers that do not 

need solution intervals for regularisation (see Yatawatta (2015b) and Yatawatta et al. (2019) 

for few examples already in that direction). These approaches, however, are also limited by a 

continuous model selection problem as opposed to a discrete model selection problem.



A P P E N D I X  A

N o n  L i n e a r  L e a s t  S q u a r e s  ( N L L S )  m e t h o d s

The objective of any optimisation or minimisation problem is to find a real variable x* G Rn 

such that

x* =  min Q(x), (A.1)X

where n >  1 and Q : Rn— > R is a smooth function called the objective function (Nocedal & 

Wright, 2006). If there exists x* which satisfies Eq. (A.1), then x* is called the global minimiser 

of Q. If x+ satisfies Eq. (A.1) in a limited domain, then x+ is called a local minimiser, i.e.

x+ =  min Q(x), V |x — x + |<  8,X (A.2)

where 8 defines the region for which x+ is a local minimiser of Q. An optimisation problem 

is termed least squares if the objective function is defined as the sum of the residual squares 

between the data and model, i.e.

x* =  min F (x), (A.3)

where F (x) =  ^  ^ 1/ (x*) — y*|2, /  (x) is the model function, y denotes the measured data to
i=1

1
be fitted and m  is the total number of data points. Note that the factor ^  is only included for 

convenience and it has no effect on the solution.

Least squares optimisation problems can be divided into categories, namely: linear and non 

linear depending on whether the model is a linear function of the parameters or not. Optimisation 

problems are usually solved iteratively. We start by making an initial guess x0 for x*, and at every

X

127



Appendix A. NLLS methods 128

kth iteration we update x* as

xk =  xk- 1 +  h , (A.4)

where h is the size of our update step. The process is repeated until x* converges,

i.e. |xk — x k -1 |<  e or |F (x ) |<  e,

where e is a chosen threshold. Different optimisation algorithms exist, but they all follow the 

above approach, the main difference being how we compute the update step h.

Gauss-Newton (GN) algorithm

Consider the following objective function

1 m 1 1

F  (x) =  2  ^ |n (x ) |2 =  2 | |r ( x ) | |F =  2 r(x)T  r ( x ) ’ (A.5)
2 i=1

where r  is the residual function and ||F denotes the Frobenius norm. If r  has continuous second 

order partial derivatives, then its Taylor series approximation is

r (x  +  h) =  r(x ) +  J (x )h  +  O (h2), (A.6)

where J  G Rmxn is the Jacobian matrix of the problem with it elements defined as

d r  •
J(x )ij =  (x).

The Taylor series of r  can be written in the following form as a function l of h:

r (x  +  h) «  l(h) =  r(x ) +  J(x )h . (A.7)

Substituting Eq. (A.7) into Eq. (A.5) we have

F (x  +  h) «  L(h) =  2 l(h )Tl(h) (A.8)

=  2 r T r  +  hT J T r  +  2 hT J T J h  (A.9)

=  F  (x) +  hTJ T r  +  2 hT J TJh , (A.10)



Appendix A. NLLS methods 129

where /  =  /  (x) and J  =  J(x ). The update step for the GN algorithm h is defined such that 

L(h) is minimised (Madsen et al., 2004), i.e.

hGN =  min L(h).X

Taking the first and second derivatives of L(h), we have

L'(h) =  J T r  +  J T Jh , (A.11)

L” (h) =  J T J . (A.12)

If L '(hGN) =  0, then hGN is given by

hGW =  —(J TJ ) -1J T r .  (A.13)

Note that the presence of the negative sign in Eq. (A.12) depends on the convention used to define 

the residual function, i.e data - model or model - data. The algorithm is usually implemented with 

the full update for x* given as

xk =  xk- 1 +  ahGN, (A.14)

where a  is called the learning rate and it controls the size of the step we take at every iteration 

towards the solution.

Levenberg-Marquardt (LM) algorithm

The GN sometimes suffers from slow convergence issues, additionally the matrix J TJ  is not 

always full rank, and hence not guaranteed to be positive semi-definite. Hence, hGN may not 

always be the right step towards the global minimum. Suggested by both Levenberg (1944) and 

Marquardt (1963), the LM algorithm is a slight modification of the GN algorithm. Here the 

updated hLM is defined as

(J T J  +  ^ I)h LM =  —J T r  (A.15)

hLM =  —(J T J  +  ^ I ) -1J T r  (A.16)
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where ^  >  0 and it is called the damping factor. Note that different implementations exist. A 

popular one consists of replacing the term ^ I  by ^D , where D =  D iag(JTJ) is the diagonal 

matrix constructed using the leading diagonal elements of J TJ . The damping factor ensures 

that J T J  +  ^ I  is positive semi-definite. If ^  =  0 or is very small, we simply have the GN 

algorithm. Whenever ^  is very large, the LM algorithm is equivalent to the steepest gradient 

descent algorithm where h =  F '(x ). Different variants of this algorithm exist, depending on 

how we compute the damping factor ^  and the learning rate a.



A P P E N D I X  B

E x p e c t a t i o n  M a x i m i s a t i o n  f o r  N o n - l i n e a r  M o d e l s  w i t h  P r o p e r

C S T  N o i s e

Suppose we have a measurement model given by

y =  f  (x) +  e, where y  G CD, x  G CM, e ~  C S T (y |^  =  f  (x), A ,v) (B.1)

where f  : CM ^  CD is some non-linear function and we want to find the maximum likelihood 

(ML) estimate of x  given a set of data y. The ML solution requires solving for the parameters 

x , as well as the parameters defining the CST distribution, i.e. v and A. We will denote these 

as a single parameter vector, 0. Unfortunately, the CST is not part of the exponential family, and 

the log-likelihood is generally clumsy to work with. We will now illustrate how the ML solution 

can be obtained using an iteratively reweighted complex NLLS algorithm.

From §3.2, it is clear that we can view the distribution of each data point y* as an infinite 

mixture of proper complex normal distributions with variance drawn from a Gamma distribution 

i.e.

P (yi|0) =  CN (y i|^ i =  f  (x), (tíA )- 1) G am (ri|v ,v )drj, (B.2)
0

where we have left the dependence of f  implicit for notational simplicity. In this case, assuming
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conditional independence of the data, the likelihood given N  data points is simply

N

p  (y |0) =  n  p  <y*i0)'
i=1

N
P  (y|0) =  dz CN (y*|M*, (t*A)- 1) Gam (rj|v, v) (B.3)

i=1

where we have denoted z  =  [t i, t2, ■ ■ ■, tn ]t as the set of latent variables corresponding to the 

scale parameter for each data point, and used the fact that all the t  are independent to exchange 

the order of the product and the integral.

The form (B.3) can now be solved using using the expectation maximisation (EM) algorithm. 

For notational convenience, we denote the joint density (i.e. the integrand of (B.3)) by P  (y , z|0). 

The key idea behind EM is to identify latent variables Z, governed by a distribution q(z) for 

example, for which the joint density P (y , z |0) is easier to evaluate than the marginal in (B.3). 

The trick is then to decompose the log of the marginal density into two functionals viz.

log P ( y |0) =  dzq(z) log P  (y, z| 
q(z)

-  d zq(z) log
P  ( z |y ,0) 

q(z)

L (q(z),0) +  K L (q (z ) ||P (z |y ,0 ) ) .

(B.4)

(B.5)

Noting that the last term is the Kullback-Leibler divergence, which satisfies KL (q(z) || P ( z |y , 0)) > 

0 with equality holding iff q(z) =  P (z |y , 0), we see that L(q(z), x) is a lower bound on 

log P (y  |0). This implies that the optimal choice for q(z) is the true posterior distribution P ( z |y , 0) 

at the ML solution of 0 since then L(q(z), 0) =  log P (y |0 ). However, since we do not have this 

solution, we adopt an iterative procedure which involves setting q(z) =  P (z |y , 0k) at each step 

k. Substituting into the expression for L(q(z), 0) gives

L (q(z ) , 0) =  d z P  (z |y, 0k) log p  (y , z  |0) (B.6)

-  d z P  (z |y ,0k ) log P  (y, z |0 fc) ,

=  d z P  (z |y ,0 fc) log P  (y, z  |0) +  const.. (B.7)

Thus we see that to maximise L (q(z),0) at 0k we need to compute the expectation value of 

log P ( y , z|0) with respect to the posterior distribution P (z |y , 0k). This is known as the E-step
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and it defines a function which we can subsequently maximise viz.

Q (0,0fc) =  E p (z|y,ek) [P(y, z |0 ) ] . (B.8)

To solve the ML problem, we now need to solve each of the following problems in order

V*Q =  0, V a Q =  0, and Vv Q =  0. (B.9)

This is known as the M-step and we can iterate between the M-step and the E-step until conver

gence.

The required joint density (also known as the complete likelihood function) for all N  obser

vations Y is given by the integrand of (B.3) i.e.

N
P (y , z|0) =  ^  CN (y*|^i(x), (r^A)- 1) G am (rj|v ,v). (B.10)

í=i

The complete log-likelihood function is therefore given by

N N
log P  (y, z |0) K ^  D log Ti +  N  log | A | - ^  TiA2(x , A)

i=1 i=1
N

+  Nvlog(v) +  (v -  1) ^  log(Ti) -  N lo g (r(v ))
í=1

N
-  v ^  Ti, (B.11 )

i=1

Next, we need to compute the expectation value of log P (y , z |0) w.r.t. P (z |y , 0k). Using the 

product rule of probability, we see that

P (z |y '® ‘ ) =  P P f a iy o k} K P (z ' y |0k)• (B.12)

where we have used the fact that all terms independent of z  are irrelevant when computing the ex

pectation values in (B.8). We can therefore evaluate the conditional density up to a normalisation
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constant as

N ( )
P ( z |y ,0 fc) k  ^  CN (y i |^ i(x fc), (TiAfc)- 1) Gam(Ti|vfc,v fc), (B.13)

i=1
N

K ^  TD+Vk-1 exp (-T i(vfc +  Ak)) , (B.14)
i=1
N

k  ^  Gam(Ti|vfc +  D ,v fc +  A )2), (B.15)
i=1

where we have obtained the parameters of the Gamma distribution by inspection. This is actually 

very convenient, because the terms for which we need expectation values in (B.8) (i.e. 1, Ti 

and lo g ^ ) )  can all be obtained analytically using the well known properties of the Gamma 

distribution. They are1

E[1] =  1 , (B.16)

E[tí]
vk +  D

(B.17)
vfc +  A 2(x fc, A fc) ’

E[log(Ti)] =  ^ (v fc +  D) -  log(vfc +  A 2(x fc, A fc)). (B.18)

This implies that using (B.11) we can rewrite (B.8) as

Q (0,0k) =  D ^  E [l°g (Tí)] +  N lo g |A |+  ^  a 2(x , a )E N
i i

N
+  N v log(v) +  (v -  1) ^  E[log(Ti)] -  N  log(r(v))

i=1
N

-  v ^  E[tí]. (B.19)
i=1

Note that the dependence on 0k is implicit in the expressions for the expectation values. To solve 

the ML problem, we first need to solve

Vx Q =  0.

Since the dependence on x  is confined to the A 2 term, this amounts to solving

x  =  argmin
X in X !  (y i -  f  (x))H A (y i -  f  (x ))E N -

(B.20)

(B.21)

1Note specifically that the expression for E[log(ri )j differs from the real valued case.
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This is just a weighted NLLS problem. However, note that the objective function is a real valued 

function of complex variables, which is not holomorphic for all choices of f . Thus, we require 

the machinery of Wirtinger calculus to tackle it. With this solution in hand, the next step is to 

solve

V aQ =  0. (B.22)

It is not a fact that A is diagonal; we assume this to reduce the computational cost of this step. 

As it stands, the Hermitian symmetry of A implies that the diagonal part has to be real valued

and we can proceed as normal. The solution is available in closed form and is given by

N 1

A =  N  S  (y i -  f  (x ))(y i -  f  (x))H E n (B.23)
i=1

Finally, we need to update the value of v by solving

N N
VvQ =  0 =  N log(v) +  N  +  E[log(Ti)] -  N ^(v ) -  E[tí]. (B.24)

i=1 i=1

This last expression needs to be solved numerically using a root finding algorithm if v is con

tinuous or using grid search if v is assumed to be an integer. Once 9 has been obtained, we can 

re-evaluate the expectation values (B.17) and (B.18) (E-step) and perform another M-step. This

process is iterated until convergence, and we therefore refer to it as an iteratively reweighted 

complex NLLS algorithm.

Radio interferometric gain calibration

Let d  =  [dpq] and v  =  [vpq] respectively represent the vectorised observed and modelled visibil

ities. Using Equation (B.17), with D replaced by the number of correlations, n c, the weights are 

given by

where £  

become

v +  nc
wpq v +  (dpq -  Vpq)H£  1 (dpq -  Vpq)

(B.25)

A 1. If £  is assumed to be I (identity matrix of appropriate shape), the weights

wpq
v +  nc

v +  ||d pq -  vpq||2
(B.26)
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B o x c a r s  p a r a m e t r i s a t i o n  o f  t h e  g a i n s

Using a suitable choice of design matrix, Eq. (5.23) can be written as a linear matrix vector 

equation. For example, for each frequency, we may define

ones(nv, 1 ) 0

Rv =  0 ones(nv, 1)
Nv xMv

(C.1)

where ones(n, m) represents an n x m  matrix of ones. Next, we stack n t copies of R v on top of 

each other to define the design matrix for a single time and frequency interval i.e.

RntNv xMv

Rv

Rv (C.2)

Finally, for the full design matrix X , we simply stack Mt copies of R into the “diagonal” as 

follows

X
Nt Nv x Mt Mv

R 0 •••

0 R (C.3)

Thus, assuming we have a Mt x Mv matrix of parameters, 0 p say, the gain can be written as

gp — X 9p (C.4)

where 9p =  vec(0p) is the vector obtained when stacking rows of 0 p on top of each other.
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S i m u l a t i o n  T o o l s

This appendix presents the general framework and tools which we used to perform the simu

lations in the thesis. These tools are standalone recipes, which can be extended and used for 

different radio interferometric simulations. §D.1 describes the different components of our sim

ulation pipeline, while §D.2 describes how we generate realistic propagation effects (gains).

D.1 Simulation pipeline

Each simulation pipeline is built using the following components.

• Creating Measurement Sets (MS): Throughout the thesis, we create measurement sets us

ing the SIMMS1 tool. SIMMS is a Python wrapper around CASA that facilitates the cre

ation of empty measurement sets. These are created by passing the observational settings 

we want to simulate. We simulate visibilities for different arrays. The most employed 

arrays are MeerKAT and VLA. We simulated both single frequencies and multi-channel 

observations. Unless specified otherwise, the basic configuration in Table D.1 was used 

during simulations.

• Creating sky models: The sky models we use for simulations have positions drawn from a 

uniform distribution. The fluxes of the sources are drawn from a power law. In particular,

1 SIMMS: https://github.com/SpheMakh/simms
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Integration time 10 secs

Synthesis time 2 hours

Start frequency 1 GHz

Bandwidth 1 MHz

Number of channels 1

Array MeerKAT

Table D.1: Basic MS configuration

we used the Pareto distribution which has probability density function, p(x), defined as 

follows

p(x) =
am “
xa+1 (D.1)

where a is called the shape parameter and m  is the scale. We exclusively use a value of 

m  =  1 for the scale parameter. In the different simulations, we scaled the sampled fluxes 

such that the peak flux has different desired values. Thus, if s are the sampled fluxes, then 

scaled fluxes, denoted sp, with a peak, p, are given by

s
sp p ■ max(s)

Another scaling used in certain simulations is to scale fluxes in a model such that they sum 

to a certain value. This scaling is defined as

St =  T  ■

(D.2)

(D.3)
sum(s) ’

where sT are the fluxes scaled such that the total flux in the model is T . Except for §4.1.4 

all simulations are comprised entirely of point-like sources.

• Computing visibilities: Our simulation framework uses the software packages Montblanc 

(Perkins et al., 2015) and MeqTrees (Noordam & Smirnov, 2010) to compute the RIME. 

In our framework, we used Montblanc and MeqTrees only to compute uncorrupted visibil

ities. Montblanc uses GPU acceleration. Hence it is more efficient when a large number of 

sources, frequency channels and observation times are involved. MeqTrees, on the other
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hand, provides the possibility of including different sorts of possible effects such as smear

ing, and it is very effective for simulations, since it can also be used for calibration as 

well.

•  Corrupting visibilities: Visibilities are corrupted using functionalities of the CubiCal (Kenyon 

et al., 2018) package.

• The measurement set tool, Python-cascore2 is used to manipulate the data in the created 

measurement sets. Using this tool, we can read and write visibilities to arbitrarily created 

measurement set columns. Additionally, we added noise to the corrupted visibilities using 

Python-casacore script.

D.2 Generating realistic gains

This section focuses on the effects corrupting the visibilities, i.e gains. We simulate gains as 

stochastic processes with predefined statistical properties using Gaussian Processes (GP). The 

material presented is mostly taken from Rasmussen & Williams (2006).

Gaussian Processes (GP)

GP are a family of stochastic processes defined such that every finite subset of random variables 

drawn from it follows a multivariate normal distribution. A GP can be interpreted as a Gaussian 

distribution over functions defined on continuous domains called input fields (examples are time 

and space). Mathematically, a GP is specified by two functions, namely a mean and a covariance 

or kernel function. For a real process, f  (x), on an input field, x, the mean function, m (x), and 

the covariance function, k(x, x'), are given by

m (x) =  E [f (x)],

k(x, x') =  E [(f (x) — m (x ))(f  (x') — m(x')].

(D.4)

(D.5)

2Python-casacore: https://github.com/casacore/python-casacore

https://github.com/casacore/python-casacore
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Note that the covariance is a function of two input field locations represented by x and x' here. 

As we will discuss in §D.2, the covariance function determines the nature of the process and 

encodes all prior information about the specific process. We then write the GP, f  (x), as

f  (x) ~  N (m(x), k(x, x ')).

In order to sample a GP with a specific prior covariance, k(x, x'), and a mean function, m (x'), 

we first construct its Gram matrix, K , as

Kij =  k(x*,x*), (D.6)

where x* and x* are the ith and j th desired input field locations. Using the constructed Gram 

matrix, samples at input field points x* are simply drawn from the following Normal distribution,

f  (x*) -  N (m*, K ) , (D.7)

where m* =  m(x*) is the mean function evaluated at the desired field points. This can be done 

using random samples drawn from the standard normal distribution as follows.

If samples, u, are drawn from the distribution, N (0 ,1), where 0 is a vector with all entries 0 

and I is the identity matrix, then

f  (x*) =  m* +  K 1/2u , (D.8)

has mean m* and covariance K .

Covariance functions

The covariance function is a crucial component of any GP. It contains the assumptions on the 

statistical properties of the GP and describes how similar the data points are with respect to each 

other. GP are an example of semiparametric models where the model has latent parameters called 

hyper-parameters which parametrises the covariance function in some intuitive way. A function, 

k, of input pairs x and x ' is a valid covariance function if and only if its Gram matrix, K , is 

positive semidefinite, i.e.

W e  Rn vTK v 0.
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For this thesis, a specific class of covariance functions called stationary covariance functions 

are employed. A stationary covariance function is a function of the separation between input 

pairs only, r  =  x — x '. Stationary covariance functions are invariant under translation. Further

more if a covariance function is a function of the absolute separation, |t |=  |x — x '|, it is called 

isotropic. Isotropic covariance functions result in block-wise Toeplitz Gram matrices, which can 

be transformed into circulant3 Gram matrices when on a regular grid.

The Wiener-Khintchine theorem states that the Fourier transform of a stationary covariance 

function is its Power Spectrum, if the latter exists. Hence, if a kernel function, k ( r ), has a power 

spectrum, S(s), then

k ( r ) =  S (s)e2ni" r ds, S (s) =  fc(T)e- 2™-r dr. (D.9)

Converting between the power spectrum and the kernel function is an essential tool which allows 

us to accelerate computations by employing the Fast Fourier Transform (FFT) and the convo

lution property. Additionally, using a physically motivated spectrum, such as the Kolmogorov 

energy spectrum, it is possible to simulate processes like turbulence (Frisch & Kolmogorov, 

1995).

Squared Exponential Covariance function

The Squared Exponential (SE) covariance function is defined as

’ (x — x ')2'
k (r) =  k(x — x ' ) =  a j  exp (x 2/2x ) =  ^  exp 2_  . (D.10)

The two hyper parameters a /  and l define the standard deviation of the GP and its characteristic 

length scale (i.e. the input separation required for the GP to vary significantly) respectively. The 

SE covariance function is infinitely differentiable and hence samples drawn from processes with

3Circulant matrices are a special kind of Toeplitz matrix where each row vector or column vector is shifted one 

element of the preceding row or column (Davis, 2013). A discrete Fourier transform diagonalises circulant matrices. 

Hence, most operations containing them can be quickly performed using a Fast Fourier transform, if the data is on 

a regular grid.
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SE kernel are extremely smooth. Its power spectrum exists and is given by

S(s) =  a /
2 (2n /2) D/2 exp(—2n 2/2s2) (D.11)

where D represents the dimension of the input field vector.

The M atern Class of Covariance functions

The extreme smoothness of the SE covariance function makes it an unrealistic assumption for 

certain physical processes. The Matern class of covariance functions is less smooth and is defined 

as follows (Rasmussen & Williams, 2006)

rule as in the SE covariance function. The additional parameter v controls the smoothness of the 

GP. A GP with Matern covariance is v — 1 times differentiable. Extremely smooth processes 

are generated by using high values for v, while rough processes are generated using small values 

for v. Note that, as v approaches ro, the Matern covariance turns into the SE covariance. Its 

generalised power spectrum is given by

In our simulations we used Matern covariances with v =  3/2 and v =  5/2.

Fast sampling

Propagation effects in radio interferometry can be modelled as fields defined on time, frequency 

and spatial domains. Hence the gain realisations need to be sampled on a multi-dimensional 

input space. A common bottleneck with GP is the high time and memory complexity required 

by such algorithms. Sampling gains as described in §D.2 can be hugely hindered by the cost 

of computing the square root of the Gram matrix, K , and the product K  1/2u. To accelerate the 

sampling process, we used methods described in §5 of Saatci (2012).

(D.12)

where K v is the modified Bessel function, and r  is the Gamma function. a /  and l play the same

(D.13)
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