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Abstract 

 

Marine brown algae (seaweeds) are a rich source of fucoxanthin, a xanthophyll carotenoid that is 

naturally, an accessory pigment in the process of photosynthesis of sea vegetation such as 

Sargassum incisifolium. Fucoxanthin has been exploited by nutraceutical companies for its anti-

obesity effects that has resulted in an increase of seaweed slimming preparations such as 

FucoThin™. The field is getting widespread consumer attention as interest in fucoxanthin has also 

transcended to its widespread biological potential which include cytotoxicity, anti-diabetic, anti-

oxidant, anti-inflammatory and anti-plasmodium effects. We therefore wanted to identify a reliable 

source(s) of fucoxanthin from diverse samples of South African marine brown algae in order to 

explore our medicinal chemistry interests around the cytotoxicity and anti-malarial potential of 

fucoxanthin.  

A known source, Sargassum incisifolium, was used to isolate (maceration in CH2Cl2/MeOH at 35 

°C followed by a hexane/EtOAc step gradient silica column of the crude extract and reversed phase 

semi-prep HPLC) and characterize (1D and 2D NMR) fucoxanthin (reference standard) in order 

to develop an analytical method for its determination in selected diverse brown algae commonly 

found in South Africa. The HPLC [Column: Phenomenex® Synergi™ (250 x 3.0 mm i.d); Mobile 

phase: ACN/H2O (95:5)] method developed for this analysis was validated according the 

guidelines set by the International Conference on Harmonization (ICH). Fifteen species were then 

assessed for fucoxanthin content (µg/g of dried weight) using the developed method. Stability 

studies on fucoxanthin were also carried out to assess photo- and pH degradation of fucoxanthin.  

Zonaria subarticulata (KOS130226-18) from Kenton-On-Sea beach and Sargassum incisifolium 

(PA130427-1) from Port Alfred beach were found to be the highest producers of fucoxanthin with 

0.50 mg/g and 0.45 mg/g dried weight respectively. Fucoxanthin was found to be both photo-labile 

and sensitive to both acidic and basic pH environments. However, the pigment was more 

photostable in pure as opposed to extract form and also showed to be more stable at pH 10.0.  

Our findings show that Z. subarticulata and S. incisifolium could be reliable sources of fucoxanthin 

and can be considered as the algae to use in optimized extraction procedures in further studies. 

Also, when working with fucoxanthin, it is important to protect it from light. Any consideration 



xvii 
 

of taking fucoxanthin preparation orally (as a nutraceutical) should consider protecting the active 

from the harsh conditions of the gastrointestinal tract. Any upscale production of fucoxanthin from 

seaweed should consider variations such as geographical, seasonal, lifecycle stage, etc. of 

identified algae as these may be important factors in obtaining effective concentrations of 

fucoxanthin. 
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Chapter 1 

General Introduction 

1.1. Natural Products 
 

A natural product may simply be defined as a molecule that is produced by an organism. Natural 

products have been divided into primary and secondary metabolites. Secondary metabolites are 

the class of natural products that has been significant in drug discovery. They have been defined 

to be any substance derived from nature and is produced from metabolic pathways that are not 

directly responsible for the organism’s growth and reproduction (Fraenkel, 1959). Their 

occurrence is sporadic but may be specific for a certain genus or family e.g. tannins, alkaloids, 

essential oils and carotenoids. It is difficult to separate the organisms’ metabolic pathways that 

produce secondary metabolites (natural products) and those that produce the primary metabolites 

responsible for growth and development of the organism e.g. sugar and proteins as both co-exist 

to enhance the organism hence the term “metabolome” which encompasses both (Hadacek, 2002).  

Nonetheless, humans over the ages have made use of their environment to sustain their existence. 

The reliance on nature for their basic needs is evident i.e. shelter, clothing, transportation and, 

equally important, medicine (Newman et al., 2000). Different cultures, based on their unique 

surrounding, developed traditional medicinal systems which have contributed to a rich folklore. 

The origins of the use of plants for medicinal purposes have been reported to belong to pre-Hellenic 

civilizations dating back to as early as 2900 BC (Newman et al., 2000). To touch on this briefly, 

Mesopotamia is one of the earliest civilizations to make use of over 1000 plant derived substances 

e.g. oils which include Cedrus spp. (cedar) and Papaver somniferum (poppy juice) while the 

Egyptian “Ebers Papyrus” dating back to 1500 BC contain over 700 drugs of plant origin 

according to Newman et al. (2000). In addition, China, India and the Arab world had remarkable 

contributions to medical folklore (Sneader, 2005). But what was probably a crucial turning point 

was the Greek’s rational development of the use of herbal medicines in the early centuries (AD) 

e.g. the writings of Galen and Ibn Sina which was progressively developed, challenged and 

bettered to give rise to the idea of single entity compounds characterized by the isolation of 

morphine in the 1800s (Newman et al., 2000). Pharmacologically active compounds from plants 
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became readily available in the beginning of the 19th century. The challenges of sustaining the 

production of natural products, overcoming the toxic side-effects, advances in organic and 

combinatorial chemistry etc. were some of the main reasons for the decreased reliance on nature 

for therapy. A number of research organizations maintained a presence in this field and as a result 

there is a resurgent interest in the use of nature to develop pharmaceuticals including new and 

better ways to manipulate the production of natural products (Ganesan, 2004).  

 

1.2. Seaweeds 

1.2.1. Classification 
 

Seaweed is a colloquial term given to a type of vegetation found in the sea. Vegetation in the sea 

is mainly divided biologically into two main groups, benthos (attached form and mainly 

multicellular) and phytoplankton (free living and mainly unicellular). There is some crossover but 

that will not be discussed in this text. Algae is another term given to sea vegetation as it is mainly 

found in this form and are subsequently divided into macroalgae (seaweeds) and microalgae 

(phytoplankton). Both types are photosynthetic organisms (Levring, 1979). What is mainly 

important however to our current study is the classification of seaweeds, “in order analyses may 

bear fruit, it is necessary that the right type of alga should be recognizable and recognized, its 

course of life understood and its reproductive periods utilized to the full” (Delf, 1943). 

In the old systematic classification of algae (early 19th century and prior), color was not allowed 

as a feature of distinction. Only in 1836, were algae classified into three main groups of green, 

brown and red algae. Today seaweeds fall into three main phyla i.e. Chlorophyta, Phaeophyta and 

Rhodophyta. Chlorophyta (first class Chlorophyceae) which comprises of the green algae, contains 

pigments that resemble those of the higher terrestrial plants. Phaeophyta (first class Phaeophyceae) 

comprises of the brown algae which are complicated multicellular bodies and are often of 

considerable size. This group is the focus of this study and does contain chlorophyll as the main 

photosynthetic pigment however; it is masked by high levels of yellow and brown pigments 

(Boney, 1966; Tilden, 1933). As a result of dominating carotenoids, the algae take a more brownish 

color. One such interesting dominating pigment is fucoxanthin, the primary focus of this study. 
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Rhodophyta (subclasses Bangioideae and Floriceae) have dominating red pigments and they are 

the most abundant of the three divisions (Bolton and Stegenga, 2002). There have been multiple 

sub-divisions, but the above mentioned divisions are accepted as the main divisions of seaweeds 

(Levring, 1979; Tilden, 1933). Pigmentation therefore plays a primary role in imparting color to 

algae and hence their classification. The varying quantity of pigments in algae as needed by the 

plant, has been described as heritable and can be traced taxonomically (Tilden, 1933). The 

photosynthetic products (controlled by pigments) are in turn a way of classification. Green algae 

produce starch, brown algae, laminarin and red algae, Rhodophycean starch. Other methods of 

classification i.e. ultrastructure, morphology, DNA homology, chromosome numbers etc. are also 

used by phycologists (Levring, 1979). 

 

1.2.2. Uses of seaweeds 
 

The extent of use of seaweeds in human society is remarkable and includes its use as food (e.g. 

“Kombu” in East Asian Laminaria spp., “Wakame” of Undaria spp., and the “Kelp meal” of 

Laminaria spp.), fodder, manure, industrial raw material (e.g. agar, carageenans, alginic acid, 

fucoidan, mannitol and iodine) and probably most relevantly its use for medicinal purposes. Brown 

algae have been part of medical folklore in many ways (Hoppe, 1979).  

 

Table 1.1: Selected seaweeds and their uses 

Seaweed Medicinal Purposes Reference 

Ascophyllum nodosum: A drug constituent in obesity preparations.  

 

 

 

Hoppe, 1979 

Eisenia bicyclis:  The crude extract possesses anti-inflammatory and anticurare activities. 

Laminaria spp.:  Used in Japanese folklore for lowering blood pressure and as “Hai-tai”, “Kai-wan” 

by the Chinese for menstrual difficulties. 

Laminaria japonica:  used in South China for producing a cooling and blood cleaning effect for treatment 

of glandular weakness and normalizing blood pressure. 

Sargassum natans:  Used in South America for medicinal preparations to cure goiter and renal disorders 

whilst Sargassum liniifolium in India is used for urinary and calculous diseases.   
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The use of seaweeds in medicine is therefore not new, neither is the discovery of the bioactives in 

seaweed responsible for their use in medical folklore. It is the continued discovery of bioactives, 

despite the abandonment of programs relating to drug discovery from natural sources (mid-20th 

century) that has opened new, perhaps important and potentially sustainable possibilities in the 

field. Not only did that resurgence bring back research in drugs from natural products, a new face 

emerged, the nutraceutical industry. It can be thought of as a merger, the use of plants (and 

seaweed) as food that not only provides nutrition but added health benefits (see section 1.3). Edible 

seaweeds that provide added health benefits in addition to their inherent nutritional value have 

sparked an enormous interest in the discovery and exploitation of what is now termed as 

nutraceuticals.  

 

1.3. Nutraceuticals 
 

From the time of Hippocrates (460 – 377 BC) through to the coining of the term “natural product” 

in scientific research, medicine consisted of an informed choice of natural food products (Andlauer 

and Furst, 2002). The use of seaweeds as food has been carried on over generations and has since 

developed a new face from the vantage point of taking seaweed meals for their health benefits. 

That is basically the concept of nutraceuticals defined. It was formerly defined in 1989 by Defelice 

and the foundation of innovative medicine as “any substance that may be considered a food or part 

of a food which provides medical or health benefits, including the prevention and treatment of 

disease” (DeFelice, 1992). Nutraceuticals may be seen as either an alternative or adjuvant to 

modern medicine and the market zeal has propagated resurgence of natural product programs from 

several companies (Ganesan, 2004). They comprise mainly of nutrients, herbal preparations and 

fortified foods.  

Today, India (Ayurveda medicine) is one of the largest homes of medicinal herbs and spices which 

support their large rural families from where they depend on this form of medicine for their 

wellbeing. China, another highly populous country, also use their traditional medicine to treat 

common ailments and for prevention and protective purposes (Newman et al., 2000). The use of 

traditional medicine is really without a doubt a global concept including here in South Africa but 

it is in countries like Canada and the USA where that concept has been modernized and 
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transformed into a booming nutraceutical industry estimated to be worth US $ 30 billion and 

potentially US $50 billion at a 5% growth per annum (Andlauer and Furst, 2002). The carotenoid 

market is expected to reach US $ 1.4 billion in 20181. The largest carotenoid market is that of β-

carotene worth US $ 261 million in 20101. Carotenoids have been recognized for their use as food, 

feed and in supplement industries (antioxidant and nutrition enhancing properties).1 

The industry has expanded its way of delivering these nutraceuticals i.e. extracts are now being 

formulated like their synthetic counterparts. We have seen on the current market, an increase in 

extracts being delivered in soft gels, capsules, patches, etc. something that has sparked not only 

more interest and excitement but also scrutiny from regulatory bodies. With the advent of the 

concept of nutraceuticals in the 1990s and the popularity they have gained on an industrial scale, 

questions and concerns have been raised regarding the safety, quality, efficacy and the regulation 

of their use by the public.  

 

1.4. Regulations of nutraceuticals  
 

It becomes a great concern for governments and regulatory bodies when consumers avoid 

allopathic medicine in favor of nutraceuticals to maintain and improve their health. Nutraceuticals 

are acquiring increasing global attention and currently, these products are not strictly monitored 

and do not undergo stringent testing and/or clinical trials as synthetic drugs do. The challenges of 

nutraceutical and natural product industries as a whole is that active constituents may vary as a 

result of a variety of factors such as climate, soil, season, humidity, etc. impacting significantly on 

collection, identification, quantification and standardization methods. The manufacturing process 

and storage may be a source of contaminants, heavy metals, solvent residues, etc. (Bagchi, 2006). 

Bagchi (2006) therefore highlighted the need to develop rigorous, standardized manufacturing 

procedures, quality control and assurance techniques.  

Clinical trials are a regulatory requirement for allopathic medicines but not for herbal medicines, 

a category within which algal preparations fall. But the need to establish the quality, safety and 

                                                           
1 Carotenoid Market Forecast: http://newhope360.com/supply-news-amp-analysis/carotenoid-market-forecast-grow-14-billion-

2018/ [Accessed 17 January 2014]. 

http://newhope360.com/supply-news-amp-analysis/carotenoid-market-forecast-grow-14-billion-2018/
http://newhope360.com/supply-news-amp-analysis/carotenoid-market-forecast-grow-14-billion-2018/
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efficacy profiles for these preparations is ever increasing. Multiple governments and relevant 

organizations all over the world have been revising and evaluating their approach in the 

population’s use of complimentary alternative medicines (CAMs) as they are known in South 

Africa. Several hurdles have been placed mainly in the development of nutraceuticals. In South 

Africa for instance, the Medicine Control Council (MCC) does not require the registration of 

CAMs in the same way they require for allopathic medicines. CAMs are not approved as safe 

and/or efficacious by the MCC, they are merely listed in a registry. This has been the position of 

the organization since 2011 when they passed guidelines that were asking for comments and 

contributions on the matter from the public and experts in the field2. It has since been updated in 

December 2013. According to their proposal they strictly recommend that the contents of all 

CAMs be categorically stated and allude to the introduction of stringent tests that allopathic 

medicines undergo including authentication and validation tests if the components are not in an 

MCC approved monograph.2 

The regulations of the MCC are similar to that of either foreign or international regulatory bodies 

such as Food and Drug Administration (FDA), European Medicines Agency (EMEA), World 

Health Organization (WHO) and notably guidelines provided by the International Conference on 

Harmonization (ICH). The guidelines for herbal preparations i.e. in consumer use, is still a work 

in progress. According to the aforementioned regulatory bodies, nutraceuticals are not required to 

go through clinical trials before being allowed for human consumption but manufacturers of such 

products are required to carry out basic analysis and categorically define their products according 

to the standard expected for pharmaceuticals2.  

 

1.5. Analysis and efficacy of nutraceuticals  
 

Several analytical procedures exist to explicitly define a compound. Most of these have been 

adopted in order to characterize nutraceuticals. From a regulatory point of view, using the MCC’s 

position on CAMs, a brief mention shall be made on some of these recommended procedures.  

                                                           
2 MCC Complimentary Medicines – Quality, Safety and Efficacy: 

http://www.mccza.com/genericDocuments/7.01_CAMs_QSE_Dec13_v2.pdf [Accessed 17 January 2014] 

http://www.mccza.com/genericDocuments/7.01_CAMs_QSE_Dec13_v2.pdf
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The MCC requires quality information where substance name, composition, structure and general 

properties, manufacturing details, characteristics and analytical test methods including; validation 

data, stability data and a proposed compositional guideline are to be included for the active and 

the finished product. Additional tests include the presence of isomers, optical rotation, microbial 

contamination, etc.3 What does this all mean for naturally derived products?  

The extent to which nutraceuticals are being analyzed has opened several opportunities for the 

resurgence of drug discovery from natural products; a concept once deemed a thing of the past and 

less favored in recent years. Some pharmaceutical companies albeit channeling most of their 

resources to synthetic and combinatorial chemistry routes for drug discovery and development, 

preserved their interest in natural product chemistry (Ganesan, 2004; Newman et al., 2000).  

 

1.6. Future prospects of nutraceuticals 
 

Nutraceuticals are gaining momentum in natural product research whilst grabbing consumer 

attention. All the techniques of the past and present industries, in particular seaweed harvesting 

and cultivation, may at a sustained level be expanded into a much more formidable industry around 

the world including South Africa. This sector of natural products could again become more 

attractive at commercial level like the community-based harvesting of Gelidium spp. 

(Rhodophyceae, red algae) in the Eastern Cape, South Africa for agar production (Lubke, 1998). 

This thesis has therefore drawn inspiration from the current activities around marine nutraceuticals 

and drug discovery. 

 

 

 

                                                           
3 MCC Complimentary Medicines – Quality, Safety and Efficacy: 

http://www.mccza.com/genericDocuments/7.01_CAMs_QSE_Dec13_v2.pdf [Accessed 17 January 2014] 

 

http://www.mccza.com/genericDocuments/7.01_CAMs_QSE_Dec13_v2.pdf
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1.7. Overview of thesis 

1.7.1. Rationale 
 

The research described in this thesis is focused on fucoxanthin, a natural pigment derived from 

brown seaweed. The bioactive potential of fucoxanthin and the interest generated in its use as a 

potent nutraceutical, has consistently been reported (see section 2.5.2 and section 2.6). The 

biological activity of the compound has been investigated and there are several suggestions 

regarding its combined and sole use in the treatment of identified conditions such as cancer and 

obesity (Maeda et al., 2008). Brown seaweeds and diatoms as previously mentioned, have been 

identified as the main producers of fucoxanthin and several techniques have been developed and 

are still being developed to isolate fucoxanthin from these sources and develop them into reliable 

raw materials.   

There are however so many unknowns and clarity is needed in several aspects of the interest that 

fucoxanthin has so far gathered. The aspects of the chemistry of fucoxanthin, optimized techniques 

to isolate the pigment and commercial use in nutraceutical formulations (slimming preparations) 

has been the mainstay of fucoxanthin research in the past decade. The focus could potentially be 

on the possibility of commercially maximizing sourcing of the raw material fucoxanthin from the 

known reservoirs (micro and macroalgae).  The production of carotenoids has been recognized as 

one of the most successful activities in algal biotechnology and the demand for natural sources is 

increasing (Christaki et al., 2013). South African algae have not yet been exhausted in this regard 

i.e. we do not know which algae produces the most fucoxanthin. Therefore, a study that can 

potentially place emphasis on the prospects of the commercial production of fucoxanthin from 

seaweed in South Africa, as a functional ingredient, is worthwhile. An opportunity was thus 

presented, to clarify critical aspects such as, a reliable local source of fucoxanthin and 

understanding potential factors that could influence effective harnessing of fucoxanthin from algae 

e.g. stability.  

The main aim of the current study was therefore to find out which of the brown algae common to 

South Africa was the best source of fucoxanthin. We wanted to achieve this using a simple, 

reproducible and effective analytical method to quantify the pigment from diverse South African 

marine brown algae. This knowledge could be a first step in establishing reliable sources of 
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fucoxanthin to support our medicinal chemistry interests especially antiplasmodial and 

cytotoxicity activities (Afolayan et al., 2008).  

 

Research objectives: 

 Isolation and characterization of fucoxanthin from Sargassum incisifolium as a reference 

standard. 

 Development of a simple and rapid HPLC method for the quantification of fucoxanthin from 

diverse samples of marine brown algae. 

 Analysis of brown marine algae for fucoxanthin content. 

 pH and photostability studies on fucoxanthin. 
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Chapter 2  

Fucoxanthin: A review 

 

2.1. Introduction  

 

Fucoxanthin is a naturally occurring pigment found more consistently in marine brown algae 

(macroalgae) and diatoms (microalgae). It is associated with a primary role of contributing to the 

process of photosynthesis in algae where it acts as an accessory pigment. Fucoxanthin is therefore 

found in the chloroplasts of relevant algae in close association with chlorophyll, the primary 

photosynthetic pigment in these organisms (Papagiannakis, 2005).  

Fucoxanthin is structurally classified as a carotenoid. Carotenoids are divided into two major 

categories based on their chemical composition. Carotenes contain predominantly carbon and 

hydrogen e.g. β-carotene whilst xanthophylls are oxygenated carotenes e.g. fucoxanthin. There are 

now between 600 and 800 known carotenoids that have been isolated and chemically 

characterized, making them one of the most diverse naturally occurring metabolites (Rodriguez-

Amaya and Kimura 2004; Guaratini et al., 2009). The carotenoids have adopted some unique 

structures relative to the long chained parent structure of lycopene. One such group is known as 

the allenic carotenoids. They bear a unique allene bond and fucoxanthin belongs to this particular 

class. 

Fucoxanthin is also a nutraceutical. It is purported to be a potent multifunctional biomolecule based 

on the numerous biological activities that have thus far been reported in literature (see section 

2.5.2). Based on the scientific evidence that is currently available, fucoxanthin is classified as an 

herbal preparation which greatly exerts its reputed health benefits in a crude form. The commercial 

value of fucoxanthin has been explored in western countries where fucoxanthin is currently being 

marketed as algal based crude extracts (rich in the pigment) found in slimming preparations e.g. 

FucoThin™, Fucoxanthin-Slim™ and Brown Seaweed Plus™ (see section 2.6).  
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2.2. Fucoxanthin’s most natural role in nature 
 

The brown algae have predominately been associated with the characteristic abundance of 

carotenoids.  In a classification of algae based on pigmentation, Tilden (1933), discussed the 

relative quantitative dominance of yellow pigments that masked chlorophyll; something that was 

evident in all Phaeophycean algae. Fucoxanthin as an accessory pigment is understood to function 

by absorbing blue-green light and passing it on to chlorophyll for the process of photosynthesis 

(Papagiannakis, 2005; Zigmantas, 2004). This is additional harnessed energy (blue-green 

wavelength region) from the electromagnetic spectrum that would have otherwise not been used 

by the plant/algae had it depended on chlorophyll (main photosynthetic pigment) alone during the 

food production process. In a marine environment, the further the light travels through water, the 

more filtered it becomes leaving blue light penetrating to larger depths. Brown algae can therefore 

keep on producing food at relatively deep levels of the sea away from the surface unlike green 

algae which lack brown pigments or red ones as in the case of some deep red algae that are able to 

also absorb blue light (Branch, 2000). The value of the pigment to brown algae was therefore 

investigated. Were the pigment’s light absorbing properties vital to the algae as much as 

chlorophyll? Did it insubordinate chlorophyll in the process of photosynthesis at some stage in the 

algal lifecycle or did it merely filter off light that would be otherwise harmful to the composition 

of the algae? (Blinks, 1954).  

 

2.3. The structure and physicochemical properties of fucoxanthin 
 

Fucoxanthin is a typical C40 tetraterpenoid, formed from the condensation of eight C5 isoprenoid 

units, where tail to tail linkage at the center of the molecule reverses the order resulting in a 

symmetrical molecule. One of the most important features resulting from this arrangement is an 

extended conjugated double bond system which forms the chromophore of the molecule (the basis 

for quantification) whilst imparting an attractive orange color (Rodriguez-Amaya and Kimura, 

2004). Fucoxanthin carries cyclic β-ionone end groups, one that is substituted by an epoxy group 

on positions 5 and 6 and the other coupled to an allenic bond at position 6', 7' and 8'. The two 

central methyl groups on the polyene chain are in a 1, 6 position relationship i.e. C-20 and C-20' 
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whilst the terminal methyl groups are in a 1, 5 position relationship with the respective central 

methyl i.e. C-19 and C-19' (Miyashita and Hosokawa, 2009). The systematic name is 3'-acetoxy-

5,6-epoxy-3,5'-dihydroxy-6',7'-didehydro-5,6,7,8,5',6'-hexahydro-β,β-caroten-8-ol.4 

The complete structure of fucoxanthin is shown in (Fig 2.1). The molecular formula is C42H58O6 

and the molecular weight is 658.91 Da. Highly conjugated systems such as fucoxanthin are prone 

to isomerization. The pigment occurs naturally as all-trans fucoxanthin and the cis-isomers are 

known to occur as well. Common cis isomers are 9', 13, 13', 15 and 15' isomers. Fucoxanthin in 

this study was found to occur as an orange amorphous powder depending on the quantity and 

extent of drying, it may otherwise occur as an orange paste and has been reported as orange-colored 

pigment (Peng et al., 2011). The solubility of fucoxanthin in dimethyl sulfoxide, methanol and 

acetone has been reported5. The molecule is freely soluble in these solvents forming a bright orange 

solution. Fucoxanthin has also been found, in this study, to dissolve readily in acetonitrile, 

dichloromethane and chloroform. It is insoluble in water. The CAS number is 3351-86 8 and it is 

marketed as a reference standard of 95 % purity by Sigma Aldrich.6  

 

 

Figure 2.1: The structure of fucoxanthin 

 

 

 

                                                           
4 Fucoxanthin MSDS (Sigma Aldrich): http://www.sigmaaldrich.com/catalog/product/sigma/f6932?lang=en&region=ZA/ [Accessed 19 January 2014] 
5 Fucoxanthin MSDS (Cayman chemicals): https://www.caymanchem.com/pdfs/13068.pdf/ [Accessed 19 January 2014] 
6 Fucoxanthin MSDS (Sigma Aldrich): http://www.sigmaaldrich.com/catalog/product/sigma/f6932?lang=en&region=ZA/ [Accessed 19 January 2014] 

 

http://www.sigmaaldrich.com/catalog/product/sigma/f6932?lang=en&region=ZA/
https://www.caymanchem.com/pdfs/13068.pdf/
http://www.sigmaaldrich.com/catalog/product/sigma/f6932?lang=en&region=ZA/
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2.4. Biosynthesis of fucoxanthin  
 

Fucoxanthin is regarded as one of the four major carotenoids occurring in nature alongside lutein, 

violaxanthin and neoxanthin. It has been estimated to account for >10% of total natural production 

of carotenoids. The carotenoid is largely present in chloroplasts of brown seaweeds but has been 

isolated in sometimes relatively larger quantities in diatoms (Peng et al., 2011). The biosynthesis 

of fucoxanthin is postulated to be based on the structure of carotenoids (Fig 2.2). The 

carotenogenesis pathways in phototrophs, like seaweeds, have also been the basis for the chemical 

synthesis of fucoxanthin which has shown to be very difficult (Yamano et al., 1995; Kanazawa et 

al., 2008).  

Based on the structures of known carotenoids occurring in phototrophs (ranging from all types of 

seaweeds, diatoms and dinoflagellates to higher terrestrial plants) and on the genome sequence 

data for fucoxanthin producing algae, the biosynthetic pathway of fucoxanthin in brown seaweed 

has been postulated (Mikami and Hosokawa, 2013). Briefly, the absence of fucoxanthin in red and 

green algae suggests a unique pathway for brown algae which results in fucoxanthin becoming its 

major carotenoid. The distribution of xanthophylls, in essence is class-specific, for example, the 

lack of the xanthophyll cycle (violaxanthin cycle) in red algae explains why there is only the 

accumulation of a certain type of xanthophyll carotenoids i.e. zeaxanthin and lutein (Fig 2.2). 

The xanthophyll cycle involves the reversible conversion of zeaxanthin, antheraxanthin and 

violaxanthin by epoxidation and de-epoxidation reactions under various stress conditions. Brown 

seaweeds however seemed to have evolved further to have a diadinoxanthin cycle to produce novel 

xanthophylls including fucoxanthin. Diadinoxanthin is hypothesized to be the precursor to 

fucoxanthin although another competing hypothesis postulates the formation of fucoxanthin to be 

via neoxanthin (the allenic carotenoid found in terrestrial plants) albeit the enzymes of that process 

remain unknown (Mikami and Hosokawa, 2013). The biosynthetic pathway for fucoxanthin 

remains complicated and inconclusive.  
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Figure 2.2: Proposed biosynthetic pathway for fucoxanthin: Adapted from Mikami and Hosokawa (2013). 
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Scheme 2.1: Biosynthetic pathway for the synthesis of fucoxanthin including the formation of 

the allenic functional group in fucoxanthin. Adapted from Dambek et al. (2012). 
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The total chemical synthesis of fucoxanthin has been reported using oxo-metallic catalysts 

(Yamano et al., 1995). This multistep reaction involved several rearrangement reactions (α-

acteylinic alcohols), conversions of α-β-unsaturated ketones, preparation of 8-oxo and allenic 

Wittig salts and several reduction and isomerization reactions before the preparation of 

fucoxanthin skeletal compounds. Each step demanded time and varying conditions and the total 

time of the experiment was in an excess of 85 hours (experimental time). The reported result was 

a mixture of epoxides (16 mg, 36%) which included an optically active fucoxanthin (Yamano et 

al., 1995). Fucoxanthin has also been synthesized according to (Scheme 2.2) and the challenges 

identified were to do with the construction of the β-epoxy ketone coupled with polyene chain, 

which was shown to be extremely liable to alkali.  The synthesis of A-part (C15-8-oxo-compound) 

and B-part (C15-allenic phosphorium chloride) is shown in (see Appendix 2.1).  
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Scheme 2.2: Synthesis of fucoxanthin. Adapted from Ito et al. (1994). 
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On the other hand, there is the extraction of naturally occurring fucoxanthin which has been 

reported at length to produce pure fucoxanthin with better yields of as high as 3.7 mg/g (dried 

weight) of Sargassum horneri (Terasaki et al., 2009) when compared to total synthesis of (Yamano 

et al., 1995). Both methods have their fair share of challenges but extraction of seaweeds and other 

reported sources such as diatoms and dinoflagellates is currently preferred. The extraction of 

ready-made fucoxanthin from reliable and well known sources using highly efficient techniques 

may prove to be the more reasonable approach to acquiring fucoxanthin as a raw material 

(Kanazawa et al., 2008). The carotenoids isolated from marine algae in general are shown in (Fig 

2.3). 
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Figure 2.3: Selected carotenoids isolated from marine algae. Adapted from Takaichi (2011). 
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2.5. Biological activity of fucoxanthin  

2.5.1. Bioavailability, metabolism and safety of fucoxanthin  
 

Pharmacokinetic studies carried out in rodents have alluded to the occurrence of metabolites of 

fucoxanthin rather than the parent molecule itself in either the circulatory system or targeted tissues 

(Sugawara et al. 2002).  
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Scheme 2.3: Proposed mechanism for the metabolism of fucoxanthin in mice. Adapted from 

Moghadamtousi et al. (2014). 
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Sugawara et al. (2002) administered 40 nmol of fucoxanthin orally to mice and analyzed their 

blood plasma after 1 hour. No fucoxanthin was found, however, its metabolites were identified i.e. 

fucoxanthinol and amarouciaxanthin A (Sugawara et al., 2002; Asai et al., 2004). The distribution 

of fucoxanthin in mice was also investigated. After a single dose of fucoxanthin (160 nmol), 

fucoxanthin and metabolites were analyzed in plasma, red blood cells, fat tissue, liver, lung, heart, 

kidney and spleen (Hashimoto et al. 2009). Fucoxanthin was not detected but again fucoxanthinol 

and amarouciaxanthin A were detected after 1 hour administration. Fucoxanthin was then detected 

after continuous dosing in erythrocytes, adipose tissue, liver, lung, heart and spleen (Hashimoto et 

al., 2009). The conversion of fucoxanthin to two main metabolites, fucoxanthinol and 

amarouciaxanthin A is illustrated in (Scheme 2.3).  

Fucoxanthin has generally been reported as safe with no abnormal changes observed after larger 

doses of 10 mg/kg/day were given to rats over 28 days (Kadekaru et al., 2008; Peng et al., 2011).  

 

2.5.2. Reported health promoting effects of fucoxanthin 
 

The remarkable biological activities that have been reported have been attributed to the unique 

structure of fucoxanthin which is different from most common carotenoids such as β-carotene and 

astaxanthin (Sachindra et al., 2007). The ability to scavenge reactive oxygen species (ROS) and 

free radicals has contributed to its reported antioxidant activity. The MeOH extract of Hijikia 

fusiformis was tested against 1-diphenyl-2-picrylhydrazyl (DPPH) on a TLC plate and was shown 

to have 65% free radical scavenging activity. After further TLC analysis, the orange spot identified 

as fucoxanthin, contributed 30% of the total free radical scavenging activity. The other carotenoids 

β-carotene, β-cryptoxanthin, zeaxanthin and lutein did not show free radical scavenging activity. 

(Yan et al., 1999). Free radical scavenging may prevent potential mutations and in turn prevent 

the occurrence of heart disease and cancer (Sachindra et al., 2007). Extracts of brown seaweeds 

containing fucoxanthin and phenolics have shown increased antioxidant activities suggesting a 

synergistic effect (Airanthi et al., 2011). Other mechanisms such as the prevention of oxidant 

formation, scavenging superoxide anions and reduction of active intermediates (ex vivo) have been 

postulated. A comparison (in vitro) was made between fucoxanthin, halocynthiaxanthin, 

fucoxanthinol and α-tocopherol. With regards to scavenging free OH-radicals, generated by the 
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Fenton reaction system and evaluated by chemiluminescence and electron spin resonance (ESR), 

fucoxanthin (EC50 = 0.25 mg/mL) showed 13 times better activity than α-tocopherol. However in 

the same study, α-tocopherol (EC50 = 63 µM) showed stronger scavenging activity to that of 

fucoxanthin (EC50 = 164 µM) in a DPPH assay (Sachindra et al., 2007). Fucoxanthin has been 

shown to have secondary pathways to exert its antioxidant properties by increasing the activity of 

catalase which in turn leads to the inhibition of intracellular ROS formation, DNA damage and 

apoptosis (Ahn et al., 2007).  

One of the most studied aspects of fucoxanthin is probably its anti-cancer activity. Apoptosis 

induction, arresting the cell in the G0/G1 phase of the cell cycle and the inhibition of mammalian 

DNA polymerase has been reported as likely mechanisms (Peng et al., 2011). Fucoxanthin induced 

apoptosis and significantly decreased the cell viability in human promyelocytic leukemia (HL-60) 

and human prostate cancer cells (PC-3). Other related carotenoids (β-carotene) could not induce 

the same effect as it lacked the 5,-6-monoepoxide moiety found on fucoxanthin (Hosokawa et al., 

1999). Fucoxanthin was also found to decrease the viability of human colon cancer cell lines 

(Caco-2, HT-29 and DLD) in a dose dependent manner (Hosokawa et al., 2004). Cytostatic 

activity, rather than cytocidal, was observed when the G0/G1 phase of the cell cycle of 

hepatocellular carcinoma cells (HepG2) was targeted by fucoxanthin (Das et al., 2008). The 

regulative effect of fucoxanthin on biomolecules is therefore related to the cell cycle and apoptosis.   

The antiobesity effects of fucoxanthin relative to its cytotoxicity are equally interesting. The 

accumulation of fat in the body and white adipose tissue causes obesity but it also leads to cytokine 

disturbance which then increases the risk of many serious diseases such as type 2 diabetes, 

hyperlipidemia, hypertension and several cardiovascular diseases (Maeda et al., 2005). The 

reduction of excess white adipose tissue masses in rodents (Wistar rats) via adaptive thermogenesis 

owing to the expression of uncoupling mitochondrial proteins (UCP) has been demonstrated in 

white adipose tissue (WAT) of fucoxanthin fed mice (Maeda et al., 2005). The gene UCP1 results 

in thermogenesis, a process characterized by fatty acid oxidation, heat production and energy 

dissipation resulting in a decrease in abdominal fat (WAT). Interestingly enough, after being fed 

with extracts of L. japonica and L. ochotensis, lean mice were not affected by fucoxanthin whilst 

the decrease in visceral fat pad weight, white adipose tissue, and the size of adipocytes was 

observed in obese mice (Woo et al., 2009). Fucoxanthin was suggested to be the active component 
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within the extracts (Maeda et al., 2005). The effects of fucoxanthin on the lipid profile of tested 

mammals included the inhibition of fat absorption and decreased fatty acid synthesis. The 

carotenoid has therefore been referred to as the regulator of metabolism in fat tissues (Peng et al., 

2011). 

The issue of human clinical trials is a disputed one. There is little information available. A few 

reports have emerged and one comprises of a 16 week trial of orally administered xanthigen 

(fucoxanthin-containing mixture) and pomegranate seed oil (to improve absorption) in obese, non-

diabetic and premenopausal women presenting with normal liver fat or non-alcoholic fatty liver 

disease. The evaluated features included body weight, liver lipids, blood chemistry and resting 

energy expenditure. Significant losses in body weight, body fat and liver fat content are reported 

(Abidov et al., 2010).  

The attraction of large amounts of leucocytes (neutrophils, monocytes-macrophages and mast 

cells) to an inflamed area is characteristic of the process of inflammation. It is also known to 

involve the generation of superoxide anion and nitric oxide radicals which is self-damaging. 

Conventional anti-inflammatory agents suppress cytokine production e.g. tumor necrosis factor α, 

interleukin-1β and inflammatory mediators including nitric oxide and prostaglandin E2 

synthesized by nitric oxide synthase and cyclooxygenase which have been reported to be inhibited 

by fucoxanthin (Kim et al., 2010; Heo et al., 2010).  

A marked decrease in plasma glucose and insulin levels coupled with an improved insulin 

resistance has led to some suggestions that fucoxanthin possesses antidiabetic activity. KK-Ay 

mice (obese and diabetic) were used in a study to demonstrate the anti-diabetic effects of 

fucoxanthin. The mice were fed with 0.1% and 0.2% fucoxanthin and the result revealed a 

significant decrease in plasma glucose and insulin (Maeda et al., 2007). This has been, in part, 

explained by an up-regulation of glucose transporter 4 in skeletal muscles (Miyashita et al., 2011). 

The lipid metabolism induced by fucoxanthin has also contributed to hepato-protective effects 

after the hepatic lipid content was lowered and fecal lipids were significantly increased by 

inhibition of lipid absorption in C57BLN/6N mice that were on a high-fat diet (Park et al., 2011). 

This decreased the activity of hepatic fatty acid synthesis-related enzymes and normalized hepatic 

glycogen content which may also contribute, in part, to the antidiabetic properties exhibited by 
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fucoxanthin. The decrease in lipids may be due to the increase in docosahexaenoic acid (DHA) 

which increases the hepatic fatty acid β-oxidation in the liver (Maeda et al., 2008).   

Skin protective effects of fucoxanthin have also been reported in ultraviolet (UV) related damage 

of cellular constituents and some cutaneous diseases such as pigmentation, laxity, wrinkling, 

erythema and skin cancer. The antioxidant activity of fucoxanthin has been suggested as the likely 

mechanism (Urikura et al., 2011). Increased cell survival has also been linked to decreased 

intracellular ROS in human fibroblasts, inhibition of melanogenesis in melanoma, tyrosinase 

activity and UV-B-induced skin pigmentation (Urikura et al., 2011).  

The lesser reported activities of fucoxanthin include anti-angiogenic, cerebrovascular protective, 

bone-protective, ocular-protective and antimalarial effects. The suppression of the formation of 

new blood vessels may make fucoxanthin useful in the prevention of angiogenesis-related diseases 

such as cancer, atherosclerosis, psoriasis and diabetic retinopathy (Sugawara et al., 2006). The 

cerebrovascular protection was investigated in cultured neuronal cells from hypertensive rats and 

fucoxanthin was found to attenuate neuronal cell injury in hypoxia. It has therefore been suggested 

that the pigment may have a beneficial effect against ischemic neuronal cell death in stroke-prone, 

spontaneously hypertensive rats (Ikeda et al., 2003). A macrophage cell line RAW264.7 (able to 

differentiate into osteoclast-like cells when stimulated) and osteoblast-like cell line MC3T3-E1 

were used to investigate the effects of fucoxanthin. It was found to suppress osteoclastogenesis 

through inhibiting osteoclast differentiation and inducing apoptosis in osteoclasts without 

antagonizing bone formation. Fucoxanthin may therefore prevent bone diseases such as 

osteoporosis and rheumatoid arthritis (Das et al., 2010). Fucoxanthin isolated from Sargassum 

heterophyllum exhibited the highest antiplasmodial activity (IC50 = 1.5 µM) against a chloroquine-

sensitive strain Plasmodium falciparum (D10) parasite of all the metabolites isolated and tested 

(Afolayan et al., 2008).   

 

2.6. Recent progress and commercial application of fucoxanthin  
 

The sources and extraction techniques for fucoxanthin are well established. Efforts to 

commercialize its production using novel techniques such as enzyme assisted and pressurized 
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liquid extractions are ongoing (Kadam et al., 2013). More novel applications include the recently 

reported in vitro encapsulation of fucoxanthin in a microsphere composed of cetyl palmitate-based 

solid lipid core to protect the compound in simulated gastric conditions (Quan et al., 2012).  

To date, the biological activity of fucoxanthin that has been exploited at a commercial scale is its 

anti-obesity effects where it is reported to be present in several slimming preparations (Li and Liu, 

2013). Most products are still only available on the internet (health shops) and are based in the 

United States of America. Health supplement companies have developed formulations which 

deliver the brown seaweed crude extract in the form of soft gels, capsules and patches (Li and Liu, 

2013) some of the products are shown in (Fig 2.3);  

(i) Garden of Life® FucoThin™ consisting of pomegranate oil, Undaria pinnatifida 

(Wakame) and Laminaria japonica extracts containing fucoxanthin. The dose is 200 mg 

and it is recommended to take one soft gel three times a day. Ninety soft gels cost about 

US $42.7 

(ii) Only Natural® Brown Seaweed Plus™ consisting of unspecified brown seaweed 

containing fucoxanthin and green tree extract. The dose is 700 mg and it is recommended 

to take one capsule daily. Ninety capsules cost US $20.8 

(iii) Life Extension® Fucoxanthin-Slim™ also consists of xanthigen blend. It is branded as an 

“Optimized fucoxanthin extract, non-stimulant thermogenic...” The dose is 200 mg and 90 

soft gels will cost about US $40.9  

(iv) Smith Sorensen® FucoXanthin Diet Patch-CR™ is an easy adhesive patch that claims to 

drastically reduce cravings for food and increase metabolism to burn fat. It contains several 

actives which include concentrated brown seaweed (unspecified), pomegranate and 

Hoodia gordonii (appetite suppressant). It is sold as 10 patches applied daily and these cost 

about US $40.10 

                                                           
7 FucoThin™: www.fucothin.com/ [Accessed 17 January 2014] 
8 Brown seaweed plus™: http://www.onlynaturalinc.com/best-sellers/brown-seaweed-plus   [Accessed 17 January 2014] 

 
9 Fucoxanthin-Slim™: http://www.lef.org/Vitamins-Supplements/Item00993/Fucoxanthin-Slim.html [Accessed 17 January 2014] 

 
10 FucoXanthin Diet Patch-CR™: http://www.bettertotalhealth.com/fucoxanthinpatch.php [Accessed 17 January 2014] 

 

http://www.fucothin.com/
http://www.onlynaturalinc.com/best-sellers/brown-seaweed-plus
http://www.lef.org/Vitamins-Supplements/Item00993/Fucoxanthin-Slim.html
http://www.bettertotalhealth.com/fucoxanthinpatch.php
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Figure 2.4: Commercial slimming products containing fucoxanthin. 

 

These all too familiar statements have been found on the packaging;  

“These statements have not been validated by the Food and Drug Administration. This product is 

not intended to diagnose, cure or prevent any disease”.  

This winds all the way back to the regulation of herbal preparations discussed earlier (section 1.4). 

The future prospects of fucoxanthin may thus depend on regulation of naturally derived 

nutraceuticals, finding the best source of fucoxanthin and technological advancement in 

cultivation, fucoxanthin production and extraction.  

 

2.7. Future prospects with fucoxanthin 
 

The research on fucoxanthin is indeed leaning towards identifying good sources to sustain 

commercial production from both diatoms and brown seaweeds. There are reported 

biotechnological considerations to support this venture i.e. marine biotechnology applied to 

seaweeds and their secondary metabolites (Ibanez and Cifuentes, 2012). Human clinical studies 

are still pending for fucoxanthin and the future of the compound’s usefulness on a larger scale in 

the pharmaceutical industry will also depend on more reputable clinical studies that demonstrate 

the efficacy of this compound in humans.    
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Chapter 3 

The extraction, isolation and characterization of fucoxanthin from the 

marine brown alga Sargassum incisifolium (Turner) C. Agardh. 

 

3.1. Introduction  

3.1.1. Fucoxanthin found in Sargassum incisifolium (Turner) C. Agardh.  
 

Sargassum incisifolium11 (Turner) C. Agardh is from a family (Sargassaceae) of brown algae 

constituting one of the largest and complex seaweeds. The Sargasso Sea, situated in North Atlantic, 

is believed to have been named as such after the seaweed since the 14th century. It was so abundant 

as to appear to cover the entire sea as described in the accounts of early explorers, such as 

Christopher Columbus in 1492, sailing the Atlantic in search of new lands (Deacon, 1942). This 

is a shear demonstration of survival considering the Sargassum spp. are still found in that region 

which is dominated by Sargassum natans (De Széchy et al., 2012). Several species of Sargassum 

also occur away from temperate waters. The gullies and intertidal pools of South Africa are one 

such location where Sargassum spp. are one of the many brown seaweeds on the east and 

overlapping south coast of South Africa (Lubke, 1998). The Sargassum spp. in literature, are 

reported to produce large amounts of fucoxanthin as do several other Phaeophycean algae 

(Terasaki et al., 2009; Miyashita et al., 2009). Fucoxanthin has been the subject of study for over 

a century and it is now nearly 100 years since Willstatter and Page in 1914, isolated the pigment 

in crystalline state. There has been a mention of the presence of fucoxanthin in Sargassum flavican 

(Jeffrey, 1963, 1968). At the time, the author was attempting to purify chlorophyll c. There 

appeared to be traces of fucoxanthin in stage 1 of the column separation of pigments and reference 

was made to the earlier work of Strain et al. (1944) where fucoxanthin was isolated from Fucus 

serratus. The same feat was also achieved from the same alga in the earliest mentions of isolated 

fucoxanthin (Willstatter and Page, 1914). The presence of fucoxanthin in the South African brown 

                                                           
11 Sargassum heterophyllum is the heterotypic synonym. Sargassum incisifolium was used first in literature. (Personal 

Communication,  J.J. Bolton, 3 March 2014) 
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alga, Sargassum heterophyllum (Afolayan et al., 2008), has previously been reported making this 

alga a suitable source of this compound for our studies.   

Since the early studies, fucoxanthin has been extracted, isolated and purified from an array of 

Phaeophycean seaweed with improved yields owing to the technological advancement in isolation 

techniques (Table 3.1). But what has been equally interesting, is the versatility in terms of the 

potential biological activity of the pigment (see section 2.5.2). The traditional extraction of 

bioactives from macroalgae is generally characterized by initial techniques such as; soxhlet 

extraction (SOX), solid liquid extraction (SLE) with subsequent liquid-liquid partitioning.  

3.1.2. Previous methods used in the isolation of fucoxanthin from brown algae 
 

The majority of the earlier isolation studies resembles an era with the use of large volumes of 

organic solvents in time consuming procedures of traditional solid liquid extraction SLE (solvent 

steeping and maceration), liquid partitioning and soxhlet extraction SOX. Newer research is 

moving away from these procedures for what is believed to be more commercially viable state of 

the art techniques such as supercritical fluid extraction (SFE), pressurized fluid extraction (PLE), 

microwave assisted extraction (MAE) and ultrasound assisted extraction (UAE) among many other 

innovative procedures. Some of the procedures previously used in the extraction and isolation of 

fucoxanthin are highlighted in (Table 3.1). The use of organic solvents for the initial extraction of 

algal pigments (methanol and acetone), isolation and purification of fucoxanthin-rich fractions 

(hexane, ethyl acetate and acetone) using either solid-liquid or liquid-liquid separation techniques 

(silica/C18 open and HPLC, separating funnels, counter-current chromatography, etc.) are 

amongst the most common methods used in previous studies. There is a mix of bulk extractions of 

algal fronds in the order of kilograms (3 kg of Ecklonia bicyclis, 10 L acetone) using centrifugal 

partition chromatography (Kim et al., 2010), medium scale gram quantities (5 g Undaria. 

pinnatifida, 2 mL/min liquefied CO2) by supercritical fluid extraction at supercritical conditions 

of 40 MPa at 25 °C producing remarkable yields of ~80 mg/g dry weight (Quitain et al., 2013) and 

small scale milligram quantities (100 mg freeze dried U. pinnatifida, 15 mL methanol) by using 

hexane initially, then chloroform in a liquid-liquid extraction procedure (Fung, et al., 2013). 
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Table 3.1: Selected methods used previously in the extraction and isolation of fucoxanthin from brown algae.  

Sample Method of extraction/isolation Comments Ref. 

Sargassum heterophyllum (wet fronds) MeOH; CH2Cl2/MeOH (2:1); step gradient (hex/EtOAc).12 Bioactive fucoxanthin 

(antiplasmodial activity) 

Afolayan et al., 2008 

Fucus serratus (air dried, ground) Acetone/methanol (7:3) extraction; silica gel column 

chromatography; crystallization from acetone-hexane. 

0.04 mg/g dried alga Haugan and Liaane-

Jensen, 1989. 

 Padina australis (dried and ground) Acetone/methanol (7:3) extraction; liquid-liquid partitioning; 

silica gel column chromatography. 

 Yield 0.43 mg/g Jaswir et al., 2011. 

Fresh algae of 5 species including Turbinaria 

conoides, Sargassum filifpendula. 

Maceration in DMSO then dried in argon gas before silica gel 

separation using methanol/isopropyl alcohol. 

Fucoxanthin content 

0.158 – 0.26 mg/g. 

Zailanie and 

Purnomo, 2011. 

Freeze–dried Undaria pinnatifida from frozen 

storage. 

Solvent soaking in methanol, then hexane/water liquid-liquid 

extraction and centrifugation. 

The extraction was small 

scale (100 mg of freeze 

dried material). 

Fung et al., 2013. 

Wet fronds of Eisenia bicyclis previously 

stored at - 20°C. 

Soaked in acetone, partitioned in hexane/ethanol/water then 

CPC. 

Applicable to industrial 

production. 

Kim et al., 2010. 

Finely ground powder of Undaria pinnatifida. MAE and HSCCC and UV-guided collection of fractions. The extraction yield was 

0.726 mg/g.  

Xiao et al., 2012. 

Fresh fronds of Eisenia bicyclis from storage 

at  -20°C. 

PLE on fresh algae and HPLC analysis Purity not reported. 

Quantified as 0.39 mg/g. 

Shang et al., 2011. 

Powdered dried Undaria pinnatifida 

(commercial wakame) 

Supercritical carbon dioxide fluid extraction ~80 mg/g of dry weight. Quitain et al., 2013 

 

                                                           
12 This method was chosen for this study as we were more familiar with the technique in our lab. 
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Sufficient fucoxanthin of high purity was required for subsequent studies on the analysis of 

fucoxanthin in crude extracts as will be discussed in later chapters. Therefore a procedure that was 

efficient, with reasonable yields, one that did not cause degradation of the target compound and 

had relatively few manipulations was required. 

 

3.1.3. Chapter aims 
 

The first aim of the overall study, was to isolate sufficient fucoxanthin to support the analytical 

method used in the determination of its content, in diverse samples of South African brown algae 

(see chapter 4 and 5). The difficulty to obtain commercial standards of high purity was confirmed 

by Bidigare (1991) when the author stipulated the recommendations for the analysis of algal 

carotenoids. This is true even to this day simply because of the difficulty in synthesizing the 

carotenoid or extracting it in large quantities and high purity.13 Therefore fucoxanthin isolated and 

purified from S. incisifolium was elected as the reference standard for later studies (see Chapters 

3, 4 and 5).  

Chapter objectives:  

1. Isolate fucoxanthin of high purity from fresh alga S. incisifolium.  

2. Confirm the identity of  fucoxanthin using spectroscopic techniques such as 1D and 2D 

NMR  

 

 

 

 

                                                           
13 Standards in literature are mainly supplied by Sigma-Aldrich. The purity is reported as 95%. MSDS available online: 

http://www.sigmaaldrich.com/catalog/product/sigma/f6932?lang=en&region=ZA. [Accessed 19 February /2014].  This 

compound is relatively expensive (R585/mg) and would require additional purification before use as a reference standard. 

http://www.sigmaaldrich.com/catalog/product/sigma/f6932?lang=en&region=ZA


39 
 

3.2. Results and discussions  

3.2.1. Extraction and isolation of fucoxanthin 
 

Since the main objective of this part of the study was to isolate fucoxanthin as a reference standard, 

no attempts were made to optimize the isolation procedure. Instead, we adapted the extraction and 

isolation procedure from Afolayan et al. (2008). Furthermore, we also knew that fucoxanthin was 

a relatively minor constituent of S. incisifolium which could potentially complicate the isolation 

procedure (Afolayan et al., 2008).  The algae (NDK101124-5 and PA100331-3) used in the study 

had been in storage at -18 °C for three years.  

The partially thawed algae were first extracted with MeOH14 followed by repeated extraction with 

CH2Cl2-MeOH (2:1).  The solvent extracts were concentrated and re-extracted with CH2Cl2 to give 

MeOH extract (1.93 g) and CH2Cl2 extract (12.4 g). (Scheme 3.1).  

 

 

 

 

 

 

 

 

  

 

 

                                                           
14 The varying amounts of moisture present in the fresh/frozen algae often results in variable extraction yields.  The methanol 

extraction step partially dehydrates the algae and thus facilitates the extraction efficiency and also give rise to more consistent 

results.  

CH2Cl2 (100 mL) 

S. incisifolium 

(PA100331-3 & NDK101124-5) 

Fresh wet fronds

 

 

 

 

 

 

 

MeOH extract 

Initial MeOH soak 

[1.5 L] for 1 h 

S. incisifolium 

(PA100331-3 & 

NDK101124-5) pretreated 

fronds soaked in 

CH2Cl2/MeOH (2:1)  

[1.5 L] 

@ 35 °C for 30 min (x 3) 

 

 

 

 

 

 

Liquid-Liquid 

extraction 100 mL 

CH2Cl2 & sufficient 

water 

CH2Cl2/MeOH extract - 1 

CH2Cl2/MeOH extract - 3 

CH2Cl2/MeOH extract - 2 

S. incisifolium 

CH2Cl2 extract        

~ 12.4 g 

Dry weight ~ 139 g 

Scheme 3.1: The extraction of Sargassum incisifolium 
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The crude CH2Cl2 extract obtained above was further fractionated by column chromatography on 

silica gel using solvent combinations of increasing polarity. Gratifyingly, fraction 6, BM13_22 (6) 

(hexane-EtOAc, 4:6) eluting as a red band, gave almost pure fucoxanthin (Scheme 3.2).   

 

Scheme 3.2: The isolation of fucoxanthin from Sargassum incisifolium. 

 

The effectiveness of the above procedure is well illustrated when the 1H NMR (600 MHz) spectra 

of the different step-gradient fractions are compared (Fig 3.1).  Fucoxanthin is almost completely 

masked in the crude extract as shown by the dominant green color and the 1H NMR spectra of 

crude S. incisifolium, (BM13_16 (1)). 

Fucoxanthin-rich 



41 
 

 

 

Figure 3.1: Stacked 1H NMR spectra for the crude extract and step gradient fractions. (a) Crude 

extract, (b) fraction 5, hexane/EtOAc (6:4), (c) fraction 6, hexane/EtOAc (4:6), (d) fraction 7, 

hexane/EtOAc (2:8) with expansions showing regions between 6.0 and 7.2 ppm. 

 

The fucoxanthin-enriched column fraction obtained above was further purified by semi-

preparative HPLC. A comparison of semi-preparative HPLC chromatograms obtained for 

fucoxanthin under normal- and reversed phase conditions is shown in (Fig 3.2).  It appears that the 

fucoxanthin isolated under reversed phase conditions is more pure (by analytical HPLC15 and 1H 

NMR spectroscopy) than when it is purified by normal phase HPLC (Fig 3.3). The yields are also 

much improved and the run time is reduced significantly.  

   

                                                           
15 This part of the work was done after the analytical procedure developed in chapter 4.  At this stage we had identified a number 

of challenges regarding the stability of fucoxanthin under different conditions. In particular, we identified the formation of a 

fucoxanthin degradant (during the experimental work) which eluted after the main fucoxanthin peak.  This degradant was more 

easily “visualized” by analytical HPLC than 1H NMR spectroscopy. Therefore, particular attention was placed on reducing 

exposure of samples to light, air and heat.  

(b) BM13_22 (5) 

(c) BM13_22 (6) 

(d) BM13_22 (7) 

(a) BM13_16 (1) 
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Figure 3.2: Semi-preparative HPLC chromatograms for crude fucoxanthin (BM13_73 (6)) on (a) normal phase (b) reversed phase.  

Conditions. (a) Column: Whatman® Partisil 10 500 x 10 mm i.d., mobile phase: hexane/EtOAc (4:6), flow rate: 3 mL/min, detector: 

refractive index (b) Phenomenex® Luna™ 250 x 10 mm i.d., mobile phase: ACN/H2O (95:5). 
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The final purity of the fucoxanthin (BM13-73b) obtained was greater than 97% by HPLC and was 

used for the HPLC method validation (see chapter 4), quantification of fucoxanthin in brown 

macroalgae (see chapter 5) and stability studies (see chapter 6).  This compares well to the standard 

obtained from Sigma-Aldrich® which was only 94% pure (see Appendix 3.1). 

 

 

Figure 3.3: HPLC chromatogram of pure fucoxanthin (BM13-73b), 99% (HPLC).  Conditions: 

Phenomenex® Synergi™ C-18 250 x 3.0 mm i.d.; mobile phase: ACN/H2O (95:5). 

 

3.2.2. Characterization of BM13-73b  
 

Because of the number of related carotenoids that occur in marine algae and the possibility of 

isolating different isomers of fucoxanthin, we deemed a thorough characterization of our sample 

of fucoxanthin necessary. Furthermore, some discrepancies in the reported data for fucoxanthin 

have been observed.  In the section below we used a number of spectroscopic techniques to identify 

characteristic functional groups in fucoxanthin and to confirm the geometry of the double bonds 

as all-trans.  In addition, we assigned the complete structure using one- and two dimensional NMR 

experiments and compared chemical shift values to those in the literature (Table 3.2).   

 

 

All-trans-fucoxanthin 
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Figure 3.4: The structure of all-trans-fucoxanthin and its isomers. 

 

3.2.2.1. One- and two-dimensional NMR studies of BM13-73b 

 

The 1H NMR spectrum of fucoxanthin (BM13-73b) (Fig 3.5, Table 3.2) shows several well-

resolved and characteristic signals. The methine doublet at δH 7.15 (d, J = 11.70 Hz, H-10) is 

consistent with the -proton of an ,-unsaturated carbonyl system while the complex overlapping 

olefinic signals between δH 5.0 and 7.0 is characteristic of the unsaturated polyene chain of 

fucoxanthin.  Broad multiplets at δH 3.81 (H-3) and δH 5.37 (H-3') are characteristic to the hydroxy-

methine and the more deshielded acetoxy-methine protons in the molecule. The two mutually 

coupled doublets (2J = 18.3 Hz) at δH 2.59 and δH 3.60 were assigned to CH2-7 and confirmed by 

the HSQC NMR spectrum (HSQC correlations to δC 40.89).  The singlet at δH 6.05 (H-8', the 

allenic proton) is an unusual feature amongst carotenoids as it represents one of the unique features 

of fucoxanthin, the allenic functional group, making it key in identifying the pigment. The presence 

of ten methyl singlet signals between δH 2.05 and δH 0.90 is easily distinguished in the 1H NMR 

spectrum and confirmed by the HSQC data (Fig 3.6). The methyl singlet δH 1.98 (Me-20 and Me-

20') is shared by two methyl groups and overlaps with the methylene peak for H-2'.   

A comparison of the 1H NMR chemical shifts (Table 3.2) of BM13-73b with those of the reported 

isomers of fucoxanthin i.e. 9'-cis, 13- and 13'-cis confirmed that BM13-73b is indeed, all-trans-

fucoxanthin.  Table 3.3 summarizes the key chemical shift differences between the various 

fucoxanthin isomers.  

1

3

  trans-fucoxanthin: 13E, 13'E, 9'E
13-cis-fucoxanthin: 13Z, 13'E, 9'E
13'-cis-fucoxanthin: 13E, 13'Z, 9'E
  9'-cis-fucoxanthin: 13E, 13'Z, 9'Z

7

9 8'13
13' 9'

7'

3'
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Figure 3.5: 1H NMR spectrum for fucoxanthin (BM13-73b) (600 MHz, CDCl3). 

Residual CHCl3 

Residual CH3OH 
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Table 3.2: 1H NMR and 13C NMR chemical shift comparisons of BM13-73b, all-trans-fucoxanthin and cis-fucoxanthin isomers. 

All trans fucoxanthin (Kim et al., 2012) BM13-73b 13'-cis 16 13-cis 6 9'-cis 6 

C no. δC, type, 

(CDCl3, 100MHz) 

δH, mult, J (Hz) 

(CDCl3, 400 MHz) 

δC, type 17 

(CDCl3, 150 MHz) 

δH, mult, J (Hz)18 

(CDCl3, 600 MHz) 

δH, mult, J (Hz) 

(CDCl3, 400 MHz) 

δH, mult, J (Hz) 

(CDCl3, 400 MHz) 

δH, mult, J (Hz) 

(CDCl3, 400 MHz) 

        

1 35.60  35.25, C     

2 46.90 1.36 (dd, J = 8.7, 14.2 Hz, H-2ax), 
1.49 (dd, J = 2.9, 14.2 Hz, H-2eq), 

46.90, CH2 
 

1.37, m 19 
1.50, m 3 

1.36 ax 
1.50 eq 

1.36 ax 
1.50 eq 

1.35 ax 
1.50 eq 

3 64.20 3.80 (m, H-3), 64.42, CH 3.81, br m 3.82 ax 3.82 ax 3.82 ax 

4 41.50 

41.50 

1.77 (dd, J = 8.7, 14.2 Hz, H-4ax), 

2.29 (dd, J = 2.9, 17.8 Hz, H-4eq), 
41.71, CH2 

 

1.78 , m 3 

2.30, m 3 

1.79 ax 

2.32 eq 

1.79 ax 

2.33 eq 

1.79 ax 

2.32 eq 

5 66.00  66.32, C     

6 66.90  67.22, C     

7 40.60 2.59 (d, J = 20.4 Hz, H-7), 

3.64 (d, J = 20.4 Hz, H-7), 

40.89, CH2 2.59, (d, J = 18.3 Hz) 

3.66, (d, J = 18.3 Hz) 

2.60 

3.66 

2.61 

3.67 

2.60 

3.66 

8 170.40  197.70, C     

9 134.30  134.58, C     

10 139.00 7.14 (d, J = 12.8 Hz, H-10). 139.24, CH 7.15 (d, J = 11.70 Hz)  7.15 7.20 7.15 

11 123.20 6.58 (m, H-11). 123.38, CH 6.57, m 6.57 6.59 6.57 

12 144.90 6.66 (t, J = 12.8 Hz, H-12). 145.12, CH 6.67, m 6.70 7.23 6.67 

13 135.30  135.54, C     

14 136.60 6.40 (d, J = 11.6 Hz, H-14). 136.67, CH 6.40, (d, J = 11.60 Hz) 6.40 6.30 6.41 

15 129.30 6.67 (m, H-15). 129.42, CH 6.64, m 6.90 6.82 6.61 

16 24.90 1.02 (s, Me-16). 25.01, CH3 1.02, s 1.04 1.04 1.04 

17 28.00 0.95 (s, Me-17), 28.22, CH3 0.95, s 0.99 0.94 0.96 

18 21.00 1.21 (s, H-18). 21.26, CH3 1.21, s 1.23 1.23 1.22 

19 11.80 1.93 (s, H-19). 11.84, CH3 1.93, s 1.94 1.95 1.94 

20 12.60 1.98 (s, H-20). 12.80, CH3 1.98, s 1.99 1.99 1.99 

                                                           
16 1 H NMR data for the geometric isomers of fucoxanthin obtained from (Haugan et al., 1992) 
17 Carbons were assigned on the basis of HSQC, DEPT-135 NMR data and comparison to literature values (Kim et al., 2012) 
18 There are slight discrepancies in chemical shifts and coupling constants (e.g. Kim et al., 2012 and Imbs et al., 2013).  
19 Coupling constant could not be determined due to overlapping signals.  
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Table 3.2 continued 

1' 35.00  35.88, CH     

2' 45.20 
 

1.41 (dd, J = 10.4, 14.9 Hz, H-2'ax), 
2.00 (dd, J = 2.9, 14.9 Hz, H-2'eq). 

45.16, CH2 1.41, m 

 1.98, m 
1.42 ax 
1.99 eq 

1.41 ax 
1.99 eq 

1.40 ax 
1.99 eq 

3' 67.80 5.37 (tt, J = 8.8, 12.0 Hz, H-3'). 68.17, CH 5.37, br m 5.39 5.39 5.39 

4' 45.10 

 

1.53 (dd, J = 10.4, 14.9 Hz, H-4'ax), 

2.29 (dd, J = 2.9, 17.8 Hz, H-4'eq). 

45.37, CH2 

 

1.52, m 

2.29, m 

1.52 ax 

2.29 eq 

1.52 

2.29 

1.50 ax 

2.28 eq 

5' 72.60  72.79, C     

6' 117.30  117.53, C     

7' 202.20  202.48, C     

8' 103.20 6.04 (s, H-8'). 103.46, CH 6.05, s 6.07 6.06 6.58 

9' 132.40  132.65, C     

10' 128.40 6.12 (d, J = 11.6 Hz, H-10'). 128.62, CH 6.12, (d, J = 11.3 Hz) 6.18 6.14 6.01 

11' 125.50 6.71 (t, J = 12.0 Hz, H-11'). 125.69, CH 6.59, m 6.60 6.59 6.72 

12' 137.00 6.34 (d, J = 11.6 Hz, H-12'), 137.21, CH 6.34, (d, J = 15.0 Hz) 6.88 6.36 6.30 

13' 138.00  138.20, C     

14' 132.00 6.26 (d, J = 11.6 Hz, H-14'). 132.29, CH 6.26, (d, J = 11.70 Hz) 6.13 6.26 6.29 

15' 132.40 6.71 (dd, J = 12.0, 14.2 Hz, H-15').  132.62, CH 6.74,  (dd, J = 14.0, 12.0 Hz) 6.90 6.66 6.76 

16' 29.00 1.37 (s, Me-16'). 31.31, CH3 1.37, s 1.39 1.39 1.39 

17' 31.90 1.06 (s, Me-17'). 32.13, CH3 1.06, s 1.08 1.07 1.09 

18' 31.10 1.34 (s, H-18'). 31.39, CH3 1.34, s 1.36 1.36 1.38 

19' 13.90 1.80 (s, H-19'). 13.97, CH3 1.80, s 1.82 1.81 1.82 

20' 12.80 1.98 (s, H-20'). 12.80, CH3 1.98, s 2.00 1.98 1.99 

21' 197.70  170. 01, C     

22' 21.30 2.03 (s, Me, C-3'OAc). 21.51, CH3 2.03, s 2.04 2.04 2.04 
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Figure 3.6: HSQC NMR spectrum of BM13-73b showing eleven methyl signals. 

 

 

 

Table 3.3: Comparisons between chemical shifts of BM13-73b and isomers of fucoxanthin: 9', 13' and 13-cis. 

Proton  BM13-73b (δH) 9'-cis (δH) 13'-cis (δH) 13-cis (δH) 

     

H-8'  6.05 6.58 - - 

H-10' 6.12 6.01 6.18 - 

H-11' 6.59 6.72 - - 

H-12' 6.34 6.30 6.88 - 

H-14' 6.26 - 6.13 - 

H-15' 6.74 - 6.90 6.66 

H-10 7.15 - - - 

H-12 6.67 - 6.70 - 

H-14 6.40 - - - 

H-15 6.64 - 6.90 - 

H-17 0.95 - 0.99 - 

Me-19 

Me-20, 20' 

Me-19' 

Me-18 
Me-22' 

Me-16 

Me-17 

Me-16' 

Me-18' 
Me-17' 
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The 13C NMR spectrum of BM13-73b exhibiting forty two carbon signals, confirms yet more key 

features of fucoxanthin. The presence of the deshielded allenic bond that resonates at δC 202.2, the 

two deshielded carbonyl carbons (C-8-ketone and C-3'-acetate) at δC 197.70 and δ 170.01 

respectively, sixteen olefinic signals between δC 150 and δC 115, five oxymethine carbons between 

δC 60 and δC 70, ten methylene and eleven methyl signals between δC 50 and δC 10 are all key 

features demonstrated by the 13C NMR spectrum (Fig 3.7).  

 

 

Figure 3.7: 13C NMR spectrum of BM13-73b (150 MHz, CDCl3). 

 

Surprisingly, several publications reported the chemical shift for C-8 as C 170 and the acetate 

carbonyl as δC 197.70 (Kim et al., 2012; Imbs et al., 2013).  This intuitively appears incorrect.  

Analysis of the HMBC spectrum of BM13-73b (Fig 3.8) confirms this assignment, where strong 

correlations between the carbonyl δC 197.70 and methyl singlet (Me-19) as well as the H-7 

methylene and H-10 olefinic protons are observed. Correlations between the carbonyl δC 170.01 

and H-3' further supported the reassignment of these chemical shifts. 
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Figure 3.8: HMBC spectrum of BM13-73b showing the correlations used in the reassignment of 

chemical shifts for C-8 and the C-3' acetate. 

 

Table 3.4: NMR spectroscopic data for BM13-73b showing HMBC, NOESY correlations. 

C no. δC, type  

(CDCl3, 150 MHz) 

δH, mult, J (Hz) 

(CDCl3, 600 MHz) 

δC, type, 

(CDCl3, 

100MHz) 

HMBC (1H-13C) NOESY 

      

1 35.25, C  35.60   

2 46.90, CH2 

 

1.37, m  

1.50, m 

46.90 C-16, 17,  

C-1, 7 

 

3 64.42, CH 3.81, br m 64.20   

4 41.71, CH2 

 

1.78 , m  

2.30 , m  
41.50 

41.50 

C-3, 5 18 

C-3, 5, 6 

 

5 66.32, C  66.00   

6 67.22, C  66.90   

7 40.89, CH2 2.59, (d, J = 18.3 Hz) 

3.66, (d, J = 18.3 Hz) 

40.60 C-1, 6, 8, 18 

6, 8 

Me-16 

8 197.70, C  170.40   

9 134.58, C  134.30   

10 139.24, CH 7.15 (d, J = 11.70 Hz)  139.00 C-8, 11, 12, 19  

11 123.38, CH 6.57, m 123.20 C-10, 12, 13  

12 145.12, CH 6.67, m 144.90 C-10, 14, 20   

13 135.54, C  135.30   

δH 5.37, H-3';  

δC 170.01, C21' 

δH 7.15, H-10;  

δC 197.70, C8 

δH 3.66, H-7;  

δC 197.70, C8 

δH 1.93, Me-19;  

δC 197.70, C8 
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14 136.67, CH 6.40, (d, J = 11.60 Hz) 136.60 C-12, 20, 15'  

15 129.42, CH 6.64, m 129.30 C-11, 14', 20  

16 25.01, CH3 1.02, s 24.90 C-1, 2, 17, H-7 

17 28.22, CH3 0.95, s 28.00 C-1, 2, 16,  

18 21.26, CH3 1.21, s 21.00 C-4, 5  

19 11.84, CH3 1.93, s 11.80 C-8, 10, 12  

20 12.60, CH3 1.98, s 12.60 C-12, 14, 15  

1' 35.88, C  35.00   

2' 45.16, CH2 1.41, m 

 1.98, m 

45.20 

 

C-1',3', 16', 17' 

C-3' 

 

3' 68.17, CH 5.37, br m 67.80 C-2', 4', 21' Me-16' 

4' 45.37, CH2 

 

1.52, m 

2.29, m 

45.10 

 

C-2', 3', 5', 6' 

C-5' 

 

5' 72.79, C  72.60   

6' 117.53, C  117.30   

7' 202.48, C  202.20   

8' 103.46, CH 6.05, s 
 

103.20 C-1', 5', 6', 7', 10', 9', 19'  

9' 132.65, C     

10' 128.62, CH 6.12, (d, J = 11.3 Hz)  C-8', 11', 12', 13', 19'  

11' 125.69, CH 6.59, m  C-9', 10', 12', 13'  

12' 137.21, CH 6.34, (d, J = 15.0 Hz)  C-10', 11', 14' 13', 20'  

13' 138.20, C     

14' 132.29, CH 6.26, (d, J = 11.70 Hz)  C-12', 13', 20'  

15' 132.62, CH 6.74,  (dd, J = 14.0, 12.0 Hz)  C-12', 13', 14, 15  

16' 31.31, CH3 1.37, s  C-17', 1', 4', 6',   H-3' 

17' 32.13, CH3 1.06, s  C-3', 6', 16'  

18' 31.39, CH3 1.34, s  C-3', 5'  

19' 13.97, CH3 1.80, s  C-8', 10', 11', 12', 14', 15'  

20' 12.80, CH3 1.98, s  C-12',14', 15'  

21' 170. 01, C     

22' 21.51, CH3 2.03, s  C-21'  
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Figure 3.9: HMBC correlations about ring A and B characteristic to the molecule of fucoxanthin. 
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Key HMBC correlations were observed characteristic to the A and B ring of fucoxanthin. The 

strong correlations observed between H-7 and the α,β-unsaturated ketone at position 8 further 

substantiate the aforementioned correction we made to the assignment of δC 197.70 previously 

assigned to C-3''-acetate instead of C-8 as reported by Kim et al. (2012). More correlations also 

confirm the assignments of Me-16 to be on the same ring as the methylene protons of C-2 at δH 

1.37 and δH 1.50. The correlations observed between δH 5.37 and C-2' and C-4' further confirm 

that the more deshielded broad multiplet oxymethine is indeed on ring B and coupled to the acetate 

(Table 3.4; Fig 3.9). 

The assignment of the complex overlapping signals of the olefinic region were further 

substantiated by more key HMBC correlations shown in (Fig 3.10). Long range correlations 

between H-8' and C-11' i.e. (δH 6.05, δC 125.50) confirmed the proper assignments for close 

chemical shifts δH 6.57 and δH 6.59 to be H-11 and H-11' respectively. The methyl, methylene (δC 

11 – 50) and oxymethine signals (δC 60 – 70) confirmed the position of rings A, B and the allenic 

functional group (Fig 3.11; Fig 3.12). The methyl groups (Me-19' and Me-20') are confirmed by 

HMBC correlations between H-12' and H-10' and C-19' and C-20' (δH 6.26, δC 13.97 and δH 6.12, 

δC 12.80) as well as methyl group (Me-19) with correlations between H-10 and C-19 (δH 7.15 and 

δC 11.84) all shown in (Fig 3.12).  

 

Figure 3.10: HMBC spectrum for BM13-73b showing correlations from the olefinic region 

characteristic to the molecule of fucoxanthin. 



 

53 

 

 

Figure 3.11: HMBC spectrum for BM13-73b showing correlations from the methylene and 

methyl regions characteristic to the molecule of fucoxanthin. 

 

 

Figure 3.12: HMBC spectrum for BM13-73b showing correlations from the oxymethine signals 

and the allenic functional group on the molecule of fucoxanthin. 
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3.2.2.2. UV-Vis 

 

The UV-Vis profile of BM13-73b (Fig 3.13) was compared to that of Rajauria and Abu-Ghannam 

(2013) to further authenticate the isolated reference standard as fucoxanthin. The absorption 

maximum (λmax) of 446 nm agrees with reported values for fucoxanthin isolated from the brown 

seaweed Himanthalia elongata (Rajauria and Abu-Ghannam, 2013). It was also important to 

determine the λmax as it was going to be pivotal in the method development and validation 

experiments (see chapter 4) as well as subsequent studies in the quantification of fucoxanthin from 

several brown seaweed (see chapter 5) and stability studies (see chapter 6).  

 

Figure 3.13: UV-Vis spectrum for BM13-73b showing wavelength of maximum absorption (446 nm) 

 

3.2.2.3. IR 

 

Using IR (Fig 3.14), we were able to attribute the absorption bands that are characteristic to the 

functional groups present in BM13-73b to further authenticate the identity of the target compound, 

fucoxanthin. The absorption bands characteristic to fucoxanthin were identified in the FT-IR 

spectra of BM13-73b and the wave numbers listed (see section 3.3.4.2) compared well with those 

reported in literature (Rajauria and Abu-Ghannam, 2013; Haugan and Liaane-Jensen, 1992). 
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Rajauria and Abu-Ghannam (2013), showed a comparison of their purified fucoxanthin and 

standard fucoxanthin (see Appendix 3.2).  

 

 

Figure 3.14: FT-IR spectrum for BM13-73b showing key wave numbers characteristic to 

fucoxanthin. 

 

3.2.3. Conclusion 

Sufficient fucoxanthin of high purity (99% by analytical HPLC), that was evidently of better 

quality compared to the purchased standard from Sigma-Aldrich® (94%, see supplementary 

chapter), was successfully isolated from S. incisifolium. Traditional extraction techniques 

(maceration) followed by a hexane/EtOAc step-gradient fraction and reversed phase semi-prep 

HPLC were used to consistently obtain fucoxanthin (~11 mg/g dry weight) with each subsequent 

extraction. Characterization experiments including one- and two-dimensional NMR, UV-Vis and 

IR confirmed the authenticity of all-trans-fucoxanthin.  
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3.3. Experimental 

3.3.1. General procedures  

 

All NMR experiments to identify and characterize fucoxanthin were recorded on a Bruker® 

Avance™ 600 MHz spectrometer using CDCl3 as solvent. 1H NMR spectra were recorded at 600 

MHz and 13C NMR experiments at 150 MHz. All step-gradient column chromatography 

procedures were performed using silica gel 60 (0.040-0.063mm, 230-400 mesh) from Merck 

KGaA (Darmstadt, Germany). Organic solvents were used for the extraction and isolation of 

fucoxanthin. Methanol was of HPLC, UV and liquid scintillation grade (Methanol 215, Romil-

SpS™) from Romil LTD (Cambridge, UK) distributed by Microsep™ (South Africa). 

Dichloromethane, hexane and ethyl acetate was of liquid chromatography grade (Lichrosolv®) 

from Merck KGaA (Darmstadt, Germany). Hexane and ethyl acetate for HPLC were also of liquid 

chromatography grade from Merck chemicals. Water used in any procedure was distilled (unless 

otherwise mentioned) and absolute ethanol was sourced from the chemistry stores (Rhodes 

University, South Africa) 

The HPLC procedures to purify fucoxanthin were carried out using a Waters® 1515 isocratic 

HPLC Pump and Waters® 2414 Refractive Index (RI) detector (Massachusetts, USA) distributed 

by Microsep™ (South Africa). The system was also fitted with a Rheodyne® injector. The 

reversed phase semi-prep column Phenomenex® C-18 Luna (2), 250 x 10.0 mm i.d. (California, 

USA) was used. Waters® Empower2™ computer software was used to assist the operation of the 

HPLC system and for all the necessary peak identification and peak area calculations. UV spectra 

were measured with a GBC® 916 Spectrophotometer with Cintra™ software (Connecticut, USA). 

Standard quartz UV cuvettes were used and the sample (BM13-73b, 2.85 x 10-5 M) was dissolved 

in MeOH. The experiment was done in triplicates, the absorbance recorded and the molar 

absorptivity estimated by calculation. IR spectra were recorded on a Perkin Elmer® Spectrum 100 

FT-IR Spectrometer. The sample (BM13-73b, ¼ full spatula) was placed onto the KBr crystal 

embedded on the machine’s sample platform and analyzed. Orange amorphous powder; IR (KBr) 

vmax cm-1: 3398, 2923, 1929, 1722, 1606, 1365, 1259, 1201-950.   
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3.3.2. Plant material 
 

S. incisifolium for this study was collected from two different beaches at low tide. PA100331-3 

(Port Alfred, South Africa on the 31st of March 2010) and NDK101124-5 (Noordhoek, Port 

Elizabeth, South Africa on the 24th of November 2010) and stored in the deep freezer at -18 °C in 

room G4 located in the Pharmaceutical Chemistry division (Rhodes University, South Africa). 

Work on these particular algae was commenced on the morning of the 14th of February, 2013 

which translates to approximately 3 years of storage. 

 

3.3.3. Extraction and isolation20 

Frozen algae PA100331-3 and NDK101124-5 (139 g) were thawed at room temperature and 

soaked in MeOH (1.5 L, 2 L glass conical flask) for 1 hour. The fronds, pretreated in MeOH, were 

re-extracted (x 3) in a mixture of CH2Cl2/MeOH (2:1, 1.5 L) and heated at a maintained 

temperature of 35 °C for 30 min. The three extracts were filtered (gravitational paper filtration) 

and then concentrated in reverse order by rotary evaporation. Any traces of water were removed 

from the organic phase by a phase separation procedure which involved extraction with CH2Cl2 

(100 mL). The polytop vials were sealed with parafilm, wrapped in aluminum foil and stored in 

the freezer at -18 °C. The initial procedure for the extraction of brown seaweed, S. incisifolium is 

detailed in (Scheme 3.1). The extracted fronds were left in the fume hood to dry. 

Silica gel column fractionation was carried out on a ten step gradient column using hexane, EtOAc 

and MeOH. The first step was 100 % hexane.21 The gradient of increasing polarity was initially 

designed to change by a factor of 10 % i.e. the second step had 90 % hexane and 10 % ethyl acetate. 

The gradient was then altered at step 4 to change by a factor of 20 % i.e. from a mixture of 

hexane/EtOAc (8:2) to (6:4) until step 8 which comprised 100% EtOAc. MeOH was introduced 

into the gradient in a (1:1) mixture with EtOAc for step 9 and was used as the column wash for 

                                                           
20 The extraction and isolation of fucoxanthin was as described according to literature (Afolayan et al., 2008) with slight modifications.  
21 The CH2Cl2 extract was poorly soluble in hexane (first step for the gradient column). Approximately 1 g of extract was therefore dissolved in 

sufficient CH2Cl2 and 2 spatula-full silica gel 60 (mesh 70-230) were added to the round bottom flask containing the extract. The mixture was 

homogenized by swirling before the solvent was carefully (low pressure) evaporated off by rotary evaporation. The extract adsorbed onto the 

silica was scraped off in preparation for the gradient column.  
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step 10 (100 % MeOH). Ten fractions were afforded, BM13_22 (1-10), dried under vacuum and 

analyzed by NMR (Fig 3.1, see Appendix 3.1). Fraction (6) obtained from a step gradient was 

further purified using reversed phase HPLC using ACN/H2O (95:5) to afford pure fucoxanthin,  

BM13-73b.22 

 

3.3.4. Characterization of BM13-73b 

3.3.4.1. NMR 

 

One-dimensional 1H NMR, 13C NMR and DEPT-135 NMR experiments were carried out on 

BM13-73b. The sample was then further analyzed by another set of two-dimensional NMR 

experiments i.e. Correlation Spectroscopy (COSY), Heteronuclear Single-Quantum Correlation 

spectroscopy (HSQC), Heteronuclear Multiple Bond Correlation spectroscopy (HMBC) and 

Nuclear Overhauser Effect spectroscopy (NOESY). 

 

 

 

 

 

 

 

 

 

 

 

                                                           
22 This procedure (Extraction and isolation) was repeated several times as needed. BM13-73b is from fraction 6, BM13_73 (6) 
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Chapter 4 

Analysis of fucoxanthin from the brown alga Sargassum incisifolium 

(Turner) C. Agardh by HPLC-UV/Vis: Method development and 

validation 

 

4.1. Introduction 

4.1.1. The analysis of herbal extracts including carotenoids 
 

Analytical procedures in the pharmaceutical industry, are in part useful in the categorical 

description of an active compound. It is as required by the main pharmaceutical regulatory 

authorities such as Food and Drug Administration (FDA), International Conference on 

Harmonization (ICH), European Medicines Agency (EMEA) and the World Health Organization 

(WHO). The EMEA expects phytochemical characterization of herbal substances and this includes 

qualitative (chromatographic fingerprinting) and quantitative analysis of active markers. The 

organization views quality to be independent of traditional use therefore all general guidelines 

pertaining to quality must apply for herbal preparations.23 The WHO in their quest to ensure the 

quality assurance of herbal preparations, recommended the use of HPLC amongst other 

spectroscopic instruments in a document released in 2007.24 The versatility and appropriateness of 

HPLC in the fingerprinting of herbal extracts has been widely reported and its numerous 

advantages highlighted (Table 4.1). One such advantage is demonstrated by the improvement of 

the quantification of single entities from crude extracts. In the 1960s, quantification of pigments 

was developed by spectrophotometric means. It became a standard procedure using equations such 

as that of Strickland and Parsons albeit being deemed to overestimate or underestimate pigment 

quantities e.g. carotenoids, chlorophylls a, b, c and derivatives because some pigments were 

difficult to differentiate adequately (Jeffrey, 1999). The advent of HPLC in the 1980s, surely for 

                                                           
23 EMEA guidelines for herbal preparations (2008): 

http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003211.pdf/ [Accessed 20 January 2014] 
24 WHO. Quality assurance of herbal preparations (2007): 

http://www.who.int/medicines/areas/quality_safety/quality_assurance/QualityAssurancePharmVol2.pdf/ [Accessed 20 January 2014]. 

http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003211.pdf/
http://www.who.int/medicines/areas/quality_safety/quality_assurance/QualityAssurancePharmVol2.pdf/
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algal chemistry, made it possible to simultaneously determine the concentrations of pigments and 

acquire information unattainable by other analytical procedures (UV, Fluorometry, etc.) in a single 

run making it ideal and very common (Bidigare et al., 2005). For emerging science, the view held 

by governments and regulatory authorities placed aside, the identification of actives from natural 

sources is fundamental and has not stopped the development of procedures to identify, authenticate 

and quantify secondary metabolites of herbs and algae alike. HPLC is an established, relevant and 

recommended analytical technique for the analysis of herbal preparations and this text will focus 

on fucoxanthin analysis (Table 4.1). 

Routine analyses of algal extracts and pigments is dependent on the characteristics of the 

compound(s) of interest. Ultraviolet/Visible (UV/Vis) HPLC for example, is predominately useful 

for compounds with a strong chromophore(s) and inherent delocalized electron systems. 

Fucoxanthin’s dominating carbon-carbon conjugated double bond system is responsible for the 

orange to brick-red color imparted to the molecule (Maoka et al., 2002). The color of a compound 

is somewhat indicative of the wavelength at which it absorbs energy. Orange/red colored 

substances for instance, absorb blue/violet light i.e. this is the color missing when the substance 

reflects light. Routinely so, fucoxanthin and related carotenoids have been previously analyzed by 

UV/Vis at wavelengths ranging from about 400 – 500 nm (blue/violet region). Selected methods 

used to analyze fucoxanthin (Table 4.1).  

 

4.1.2. Method development and validation characteristics for HPLC 
 

Developing an analytical procedure takes inspiration from previous attempts, what has been done 

before whether successful or not. It largely depends on the objective of the analysis. Manufacturers 

of analytical equipment however, usually spearhead the recommendations when they highlight the 

capability and operating parameters of their equipment. Agilent technologies® devised a general 

protocol for method development using their HPLC designs;  

- Describe the sample 

- Establish goals 

- Consider sample preparation 
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- Choose detector 

- Choose chromatographic mode 

- First isocratic run 

- Optimize separations 

- Predict problems 

- Validate and release method25 

The sample has to be adequately characterized in order to assess the plausibility of even 

considering the use of HPLC. The non-volatile and thermo-labile nature of most natural products 

warrants the use of HPLC in the both qualitative and quantitative experiments. Once established, 

the sample and goals of the analytical procedure in turn determine the detector and 

chromatographic mode to run the analysis under. The first isocratic and subsequent runs are 

monitored using factors that monitor the performance of the stationary phase specifically with 

respect to the both the sample and carrier (mobile phase). These include selectivity and capacity 

factors, peak resolution and peak symmetry.  

Selectivity factor: 

Selectivity is a measure of peak separation. It describes how differently two components behave 

in the same chromatographic mode. The larger the selectivity factor, the further apart the two peaks 

are from each other. It is a ratio of the capacity factors of two peaks. Selectivity must be greater 

than 1.0 (Ornaf and Dong, 2005).  

Capacity factor/Retention factor (k’):  

Retention depends on the different polarities of the mobile phase and the column stationary phase. 

It describes how far a peak is from the void volume as well as measure how many times an analyte 

is retained relative to an unretained compound. The capacity/retention factor is proportional to 

retention. An acceptable range is between 1 and 20 (Ornaf and Dong, 2005).  

 

 

                                                           
25 The LC Handbook – Agilent technologies: http://www.chem.agilent.com/Library/primers/Public/LC-Handbook-Complete-

2.pdf/ [Accessed 21 January 2014] 

http://www.chem.agilent.com/Library/primers/Public/LC-Handbook-Complete-2.pdf/
http://www.chem.agilent.com/Library/primers/Public/LC-Handbook-Complete-2.pdf/
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Peak resolution (Rs):  

Resolution describes how far apart two peaks are relative to how broad they are. A resolution of 

1.0 shows there is clear baseline differentiation. A resolution of 1.5 or greater is often required as 

it allows for a more robust separation and quantitation (Ornaf and Dong, 2005).  

The main aim for an analytical procedure is nothing more complicated than to analyze an expected 

or unknown response. However, an analytical method that is not reproducible is of not much use. 

One needs to be confident about scientific results obtained. The suitability for the intended purpose 

of any analytical procedure must therefore be demonstrated. This process is termed validation.  

There are several, necessary validation characteristics. The ICH provides a standard to follow 

when carrying out various tests on an analytical procedure. The characteristics often include; 

linearity, accuracy, precision, specificity, detection limits, quantitation limits, range and 

robustness. All these tests contribute to provide an overall sound knowledge of the capabilities of 

the analytical procedure. The following characteristics will be of relevance to this text; 

Specificity:  

The ICH defines specificity as “the ability to assess unequivocally the analyte in the presence of 

components which may be expected to be present”. In the case of HPLC, the resolution 

calculations of closely eluting peaks may be used to demonstrate the specificity of the analytical 

procedure, so does the visual inspection of the homogeneity of the peaks of interest (Huber, 2007)  

Linearity:  

The ICH defines linearity as “the ability (within a given range) to obtain results which are directly 

proportional to the concentration (amount) of the analyte in the sample”. A standard stock solution 

and serial dilutions may be used to demonstrate linearity and appropriate statistical methods are 

employed e.g. plot of the data, calculations for correlation and a calibration equation. A minimum 

of five concentrations is required (Huber, 2007).  
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Accuracy:  

“The closeness of agreement between the value which is accepted either as the true conventional 

value or an accepted reference value and the value found.” Accuracy may be reported as % 

recovery of known analyte applied to the analytical procedure (Huber, 2007).  

Precision:   

“The closeness of agreement (degree of scatter) between a series of measurements obtained from 

multiple sampling of the same homogenous sample under prescribed conditions”. There are three 

levels of precision; repeatability (intra-assay), intermediate precision (different days, different 

analyst and different equipment) and reproducibility (different labs). Precision may be 

demonstrated by standard deviation and coefficient variation i.e. the relative standard deviation 

(RSD) (Huber, 2007).  

Recovery:   

“An assay of a known amount of analyte added to the sample”. It assesses the extraction efficiency 

of the designed method (Huber, 2007).  

Limits of detection:  

“The lowest amount of analyte that can be reliably detected without necessarily being quantified 

as an exact value”. This may be determined by visual assessment, signal to noise ratio and standard 

deviation of the response and the slope (Huber, 2007).  

Limits of quantitation:  

“The lowest amount of an analyte in a sample that can be quantitatively determined with suitable 

accuracy and precision”. As is with limits for detection, visual assessment and/or estimation by 

calculation using the standard deviation of the response and the slope is sufficient to demonstrate 

this characteristic (Huber, 2007). 

 

4.1.3. Methods used previously in the quantitative analysis of fucoxanthin 
 

Selected methods used in the analysis of fucoxanthin are summarized in Table 4.1.  
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Table 4.1: HPLC methods used previously in the analysis of fucoxanthin/fucoxanthin containing algal extracts. 

Matrix 

analyzed 

Sample preparation 

 

Mobile Phase/conditions Columns 

 

Detection 

 

Reference  

      

Dried powder of 

Wakame Undaria 

pinnatifida 

Extraction with acetone followed by silica 

column (hexane/acetone) 

MeOH/ACN (70:30) 

Flow rate: 1 mL/min 

Develosil® ODS-UG-5; C-18 

250 x 4.6 mm i.d. 

5 µm particle size 

10 x 4.0 mm i.d. guard; C-18  

UV-Vis  

450 nm 

Maeda et al., 

2005 

Algal cultures 

Pavlova lutheri 

Acetone extraction under centrifugation 

 

Linear gradient  

ACN/H2O (90:10) to EtOAc 

100%, 2 mL/min for 20 min 

Rad-Pak® A Octadecyl silica x 2 in series 

5 µm particle size 

UV-Vis 

405-436 nm 

 

Wright and 

Jeffrey, 1987 

Lyophilized, milled 

Hijika fusiformis 

Acetone extraction followed by a silica gel 

column (hexane/ethyl acetate) then dark orange 

band separated by flash chromatography 

chloroform/acetone (10:1) 

CHCl3/Me2CO (9:1) 

Flow rate 1 mL/min 

Spherisorb® Silica gel column 

5 µm particle size 

250 x 4.6 mm i.d. 40⁰C 

UV-Vis 

450 nm 

Yan et al., 1998 

Dried, ground 

seaweed 

Sargassum binderi 

& Sargassum 

duplicatum 

Cold acetone/methanol (7:3) extraction  

followed by partitioning in hexane/methanol 

(1:9)  then a silica gel column (100% hexane - 

hexane/acetone (6:4)  

MeOH/ACN (7:3) 

Flow rate 1 mL/min 

HPLC prep double Develosil® (ODS) RP 

column (250 x 4.6mm i.d.)  

Guard column 10 x 4.0 mm i.d. 

under dim yellow light 

PAD 

450 nm 

Jaswir et al., 

2012 

 

Dried, milled 

Fucus serratus  

 

 

Silica gel column stepwise gradient 

hexane/ethyl acetate (10:0) - (4:6) 

flash chromatography for fuco-rich fraction 

LiChroprep® RP-18 (40-63 µm; 240 x 11 mm) 

acetonitrile/methanol/water (75:15:10) plus 

0.1 % ammonium acetate 

 

ACN/MeOH/H2O (75:15:10) 

1 g/L ammonium acetate 

Flow rate 1 mL/min 

 

 

 

TSK gel ODS 80Ts (Tosoh) 

250 x 4.6 mm i.d.  

Pelliguard® LC-C18 20 x 2 mm i.d. 

 

 

UV-Vis 

450 nm 

 

Sugawara et al., 

2002 

 

Purchased dry 

Undaria 

pinnatifida and 

Sargassum 

fusiforme and fresh 

Laminaria japonica 

 

 

2 g soaked in water (5min); Irradiated with 

microwaves; Concentrated extract was 

dissolved in hexane/ethyl acetate/ethanol/water 

(5:5:6:4) and introduced into the HSCCC 

system 

 

 

 

ACN (A)/H2O (B) gradient 

system.  

90 -100 % A (10 min) 

100 -100 % A (10 -12 min) 

90 - 90 % A (12 -18 min) 

Flow rate: 1 mL/min 

 

Kromasil C-18 

250 x 4.6 mm i.d. 5 µm 

Guard: 4.0 x 3.0 mm 5 µm 

 

 

UV-Vis  

450nm 

 

 

Xiao et al., 2012 
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The common feature in the studies reviewed show the extensive use of reversed phase HPLC with 

UV-Vis detection. Although the ICH guidelines for the validation of analytical procedures were 

chiefly designed for pharmaceutical substances these principles may also be applied to herbal 

products. To the best of our knowledge, fucoxanthin analysis in previous studies have not included 

validation. Only reports on carotenoid analysis have included validation of their methods (Kao et 

al., 2012).   

 

4.1.4. Chapter Aims 
 

The aim of the research in this chapter was to develop an HPLC method and validate its suitability 

for the quantification of fucoxanthin from crude extracts of diverse samples of South African 

marine brown algae (see chapter 5). The ability of HPLC to adequately produce separated pigments 

of higher purity in a continuous and repetitive manner, makes it an ideal analytical procedure to 

quantify fucoxanthin when compared to thin layer chromatography which was reported to be in 

turn, much better than column chromatography in this respect (Abaychi, 1979). Therefore HPLC 

was selected as a reliable analytical option over its almost sure alternative, a stand-alone UV-Vis 

procedure which is unable to distinguish between compounds in a continuous manner.  

Chapter objectives:  

1. Develop an HPLC analytical procedure (qualitative and quantitative) for the determination 

of fucoxanthin (isolated from marine brown algae S. incisifolium) and the quantification of 

the pigment from brown algal crude extracts (see chapter 5). 

2. Validate (external calibration) the aforementioned analytical procedure (1) by assessing 

linearity, accuracy and precision, recovery, detection and quantitation limits.  
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4.2. Results and Discussions 

4.2.1. Method development 
 

The use of methanol as a solvent was based on its ability to dissolve and efficiently extract 

fucoxanthin from algal biomass much better than acetone, ethanol and a combination of 

dichloromethane and methanol (see chapter 5). 

The relatively nonpolar nature of fucoxanthin limits the solvents that may be used as mobile phase 

in its analysis by reversed phase HPLC. Since most previous studies used a combination of MeOH 

and ACN as mobile phase (Jaswir et al., 2012) we explored the effect of these mobile phases on 

the retention behavior of fucoxanthin on an Xterra® 150 x 4.6 mm i.d. (Fig 4.1).   

RT = 2.03 min (92.8%); k’ = 0.35 

RT = 2.38 min (7.2%) 

Rs (USP) = 0.742 

(a) 

MeOH (100%) 

1 mL/min 

16/03/2013 (01:10pm) 

RT = 2.70 min (92.0%) 

k’ = 0.80 

RT = 3.17 min (8.0%) 

Rs (USP) = 0.87 

(b) 

ACN (100%) 

1 mL/min 

18/03/2013 (04:26pm) 

RT = 5.16 min (90.1%) 

RT = 6.06 min (9.9%) 

Rs (USP) = 0.87 

(c) 

ACN (100%) 

0.5 mL/min 

19/03/2013 (09:56am) 

Figure 4.1: (a) The first isocratic run in MeOH (100%) (b) ACN (100%); Sample: 

BM13-37c; Column: Xterra® 150 x 4.6 mm i.d.; Flow rate: 1 mL/min; Detection: 

UV-Vis at 450 nm; (c) ACN (100%, 0.5 mL/min) Injection volume: 20 µL. 
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Fucoxanthin eluted at 2.03 minutes, using MeOH as mobile phase (a), while a persistent unknown 

impurity eluted at 2.38 minutes. On changing the mobile phase to ACN (b) its retention time 

increased to 2.70 minutes (k’ = 0.80). That was a positive response and attention was briefly 

focused on to the side peak that was constantly being observed. This peak had already been 

observed during the semi-preparative chromatographic separations and is likely an isomer26 of 

fucoxanthin (Nakazawa et al., 2008). The size slightly increased over time. Fucoxanthin and 

‘isomer’ had peak areas of 92.8% and 7.2% respectively as shown in (Fig 4.1). 

A combination MeOH/H2O was attempted in anticipation of retaining the compound more (Le 

Lann et al., 2012). That was unsuccessful when MeOH/H2O (9:1) triggered an automatic safety-

fail system stall owing to excessive back pressure (4000 psi). Le Lann (2012) had attempted this 

mobile phase on a C-6 column.  

Decreasing the flow rate to 0.5 mL/min (c) increased the retention time to 5.16 minutes, however, 

no significant improvement in the resolution (Rs = 0.87)27 between fucoxanthin and the ‘isomer’ 

was observed.  A number of additional solvent combinations e.g. methanol and acetonitrile (d) 

were tested without any significant improvement in separation between fucoxanthin and its 

‘isomer’. In a final attempt to improve the resolution between fucoxanthin and the ‘isomer’ a small 

volume of water (5%) was added to acetonitrile (e). The Rs was improved to 1.13. The 

recommended resolution is Rs > 1.5, Rs > 2.0 is most ideal but if it is > 1.0 then two adjacent peaks 

can be successfully differentiated (Ornaf and Dong, 2005). The retention times were 2.94 minutes; 

k’ = 0.9628 (fucoxanthin) and 3.83 minutes (‘isomer’). This method was therefore satisfactory to 

test on a crude extract although the capacity factor was slightly under 1.0 (recommendation is 

between 1 and 20, Fig 4.2).  

 

 

                                                           
26 The stability of fucoxanthin under different conditions were studied in chapter 6. 
27 Resolution Rs (US) = 

∆tR

wb
  where ∆tR is the difference in retention times and wb is the width of the peak. 

28 Capacity/Retention factor: k’ = 
(tR – t0)

t0
 where tR (retention time of analyte) and t0 (void volume).  
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Figure 4.2: (d) ACN/MeOH (7:3) (e) ACN/H2O (95:5); Sample: BM13-37c; Column: Xterra® 

150 x 4.6 mm i.d.; Flow rate: 1 mL/min; Detection: UV-Vis at 450 nm; Injection volume: 20 µL. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At this stage we were concerned whether this method would adequately separate fucoxanthin from 

other components in crude extracts.  This was an important condition since we wanted to limit any 

“cleanup” steps prior to analysis. A crude extract of Sargassum incisifolium was analyzed under 

the optimized conditions. A number of co-eluting components (f) from the crude extract which 

would make quantitative analysis very difficult are clearly shown in (Fig 4.3).  It was therefore 

necessary to explore separation of the components in a different way.  At this point we decided to 

change the column to a Phenomenex® Synergi™ 250 x 3.0 mm i.d., 4 µm.  Fortunately this change 

significantly improved the separation of the various components and the resolution between 

fucoxanthin and its ‘isomer’ (Rs) increased to 2.0 (g), with concomitant increase in retention factor 

RT = 2.32 min (91.4%); k’ = 0.55 

RT = 2.86 min (8.6%) 

Rs (USP) = 0.95 

(d) 

ACN/MeOH (7:3) 

1 mL/min 

18/03/2013 (05:44pm) 

Rs (USP) = 1.13 

RT = 3.83 min (9.7%) 

RT = 2.94 min (90.3%); k’ = 0.96 
(e) 

ACN/H2O (95:5) 

1 mL/min 

19/03/2013 (10:15am) 
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(k’ = 1.3). The total run time for running pure fucoxanthin was 7 minutes and that of a methanolic 

crude extract was 10 minutes, an acceptable target run time making for a simple, rapid and 

economical method to analyze fucoxanthin content from a number of brown algae. Smaller particle 

sized and shorter diameter columns are known to improve resolution and lower detection limits 

(Ornaf and Dong, 2005).  

 

 

 

 

Fucoxanthin 

Fucoxanthin 
(f) 

(g) 

Figure 4.3: The analysis of S. incisifolium on the (f) Xterra® 150 x 4.6 mm i.d. (g) Phenomenex® 

Synergi™ 250 x 3.0 mm i.d., 4 µm; Sample: BM13-37c; Flow rate: 1 mL/min; Detection: UV-Vis 

at 450 nm; Injection volume: 20 µL. 
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4.2.2. Validation 

4.2.2.1. Linearity 

 

The linear range studies were repeated two times (Day 2 and Day 3) to fulfil the requirements of 

the ICH to have a total of nine determinations. Day 1 studies are shown in (Fig 4.4) and (Table 

4.2) whilst (Table 4.3) includes the linear ranges for Day 1-3. The linear relationship is 

demonstrated with correlation of 0.9998 in all determinations. Between concentrations of 0-50 

µg/mL the determinations are linear. The RSD is below the recommended 5%. 

 

Figure 4.4: Linearity studies on BM13-73b (Showing Day 1). 

 

The consistency in linearity throughout experiments carried from day 1 through day 3 is shown 

in (Table 4.2). 

 

Table 4.2: Linear ranges for BM13-73b (Showing Day 1- Day 3). 

y = 138497x + 9260
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BM13-73b 

Day 1 y = 138497x + 9260 0.9998 

Day 2 y = 145164x + 75905 0.9986 

Day 3 y = 144427x + 116105 0.9976 
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Table 4.3: Linearity studies for BM13-73b (Showing Day 1). 

 

 

4.2.2.2. Accuracy 

 

The accuracy studies were repeated twice (Day 2 and 3) to fulfil the requirements of the ICH to 

have nine determinations. Day 1 studies are shown in (Table 4.4) and are a true reflection of how 

accurate the method was. The overall range was 97% – 102%. As mentioned, the precision was 

for both linearity and accuracy studies was less than 5%, a limit set to demonstrate the 

reproducibility of the analytical procedure (Ornaf and Dolan, 2005). 

 

Table 4.4: Accuracy studies for BM13-73b (Converted to relevant concentrations). 

                    Accuracy Day 1       

  Conc. (µg/mL)       

Conc. (µg/mL) 1 2 3 Mean Std. dev. RSD % Accuracy 

        

50.0 (49.8) 48.6 47.7 48.2 48.1 0.45 0.93% 97% 

25.0 (25.4) 25.1 24.7 25.0 24.9 0.21 0.86% 98% 

5.0 (4.8) 5.0 5.0 4.9 4.9 0.08 1.69% 102% 

   Day 1    

 Conc. (µg/mL)   

Conc. (µg/mL) 1 2 3 Mean SD (n =3) RSD  

       

50.0 49.0 50.4 49.8 49.8 0.69 1.4% 

25.0 25.7 25.8 24.9 25.4 0.49 1.9% 

10.0 10.2 9.9 10.3 10.1 0.21 2.0% 

5.0 4.9 4.9 4.8 4.8 0.06 1.2% 

1.0 0.9 0.8 0.9 0.9 0.03 3.0% 

0.5 0.4 0.4 0.4 0.4 0.01 2.7% 
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4.2.2.3. LOD and LOQ 

 

For LOD and LOQ, the method of calculation using the standard deviation and slope was chosen 

because the chromatograms were not showing noise bands to adequately use signal to noise ratio 

as is commonly done. The idea was to pick concentrations at the very low end (Fig 4.5). The 

concentration was lowered until no significant peak could be detected by the software (Table 4.5). 

The lowest concentration of fucoxanthin that can be detected was estimated at 10 ng/mL and 

quantified at 30 ng/mL with reasonable precision. This makes the method relatively sensitive.  

 

 

 

Figure 4.5: LOD and LOQ determinations for BM13-73b by calculation using response, standard 

deviation and slope. 
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Table 4.5: LOD and LOQ determinations for BM13-73b (Corrected to relevant concentrations).    

 

4.2.2.4. Recovery 

 

The recovery experiment tested the extraction efficiency of the analytical method hence the crude 

extract from S. incisifolium was used (Table 4.6 and 4.7). The preliminary method was used to test 

a spiking method. The original intended purpose of the method was to determine the fucoxanthin 

content of a selected alga after a single methanol extraction. The extent and consistency of the 

recovery of fucoxanthin from the biomass was therefore very important to determine. The 

recovery, from the biomass, was about 92% tested on high (300 mg), medium (200 mg) and low 

(100 mg) to represent the varying amounts of fucoxanthin from different algae. Although the 

recovery was lower than expected, the extraction was consistent. The controls for low, medium 

and high showed concentrations of 11, 22 and 33 µg/mL of fucoxanthin for 100, 200 and 300 mg 

of algal biomass, respectively. When the biomass was doubled the amount of fucoxanthin extracted 

was doubled whilst tripling it achieved a similar effect. There was therefore no evidence of 

saturation in the extraction vessel (4 mL) solvent. This overall, was a good indication that the 

extraction method was adequate. The low recovery % was attributed to spiked fucoxanthin 

possibly “sticking” onto the biomass as there wasn’t any procedure employed to completely wash 

off the biomass. It was observed that it is important to spike with the reference standard after 

addition of the solvent (3 mL) to avoid sticking and inconsistent results.  

   LOD/LOQ determinations Day 1   

 Conc. (µg/mL)   

Conc. (µg/mL) 1 2 3 Mean Std.  Dev. RSD % 

       

1.06 1.07 1.07 1.06 1.06 0.01 0.49% 

0.53 0.50 0.53 0.53 0.52 0.01 2.72% 

0.11 0.11 0.11 0.11 0.11 0.00 2.70% 

0.05 0.05 0.05 0.05 0.05 0.00 2.26% 

0.011 0 0 0 0 0.00 0.00% 
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Table 4.6: Preliminary recovery procedure for BM13-73b from S. incisifolium. 

 

 

 

 

 

 

 

 

Table 4.7: Recovery studies for BM13-73b from S. incisifolium. 

 

 

 

 

1 2 3 Mean Spike Std. Dev. RSD

27.4

11.5

36.4 35.7 34.8 35.6 0.79 2.2%

92%

27.4

22.0

43.6 45.4 45.5 44.8 1.09 2.4%

91%

27.4

33.0

56.4 56.0 55.9 56.1 0.26 0.5%

93%

Recovery Studies 

Recovery %

Std. fxn (µg/mL)

Lo Cntrl (µg/mL)

Lo Spike (µg/mL)

Recovery %

Hi Cntrl (µg/mL)

Hi Spike (µg/mL)

Recovery %

Conc. (µg/mL)

Std. fxn (µg/mL)

Std. fxn (µg/mL)

Med Cntrl (µg/mL)

Med Spike (µg/mL)

Preliminary recovery procedure  

Sample Conc. (µg/mL) % Recovery 

   

Standard FXN 24.5 

104% Control in MeOH (0.39 µg) 18.9 

Spiked (0.39 µg + 0.31 µg) 45.1 
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4.2.3. Conclusion 

A simple, rapid and reproducible analytical HPLC procedure was successfully developed and 

validated according to the standards set by the ICH. This method was capable of consistently 

quantifying fucoxanthin in both pure form and when it is within an extract. The use of a reversed 

phase column, Phenomenex® Synergi™ 250 x 3.0 mm i.d. in mobile phase ACN/H2O (95:5) set up 

the best possible conditions to analyze fucoxanthin in diverse samples of South African marine 

brown algae (see Chapter 5).  

 

4.3. Experimental 

4.3.1. General procedures 
 

All analytical experiments were carried out on a Waters® 1525 binary pump and Waters® 2487 

dual wavelength absorbance detector (Massachusetts, USA) distributed by Microsep, (South 

Africa). Pump A and B were set to an isocratic mode. The injection was manual via a Rheodyne® 

injector which fed the samples into a 20 µL loop. The initial analytical column used was an X-

terra® C-18 5 µm (150 x 4.6 mm i.d.) fitted with a Phenomenex® C-18 guard column (4.0 x 3.0 

mm i.d.). The final adjustments to the initial method designed were carried out on a Phenomenex® 

Synergi™ C-18; 4 µm (250 x 3.0 mm i.d.) fitted with a guard cartridge containing a Phenomenex® 

C-18 (4.0 x 3.0 mm i.d.) guard column. The wavelengths were set at 254 nm (impurities and 

solvents) and 446 nm (maximum UV-Vis absorption for fucoxanthin as determined in section 

3.2.2.2). The computer interface was powered by Windows® XP™ and the software for 

controlling the instrumentation, peak identification, manipulation and calculation of data was a 

Waters® Breeze™ software. A 100 µL Hamilton® micro syringe was used for all injections.  

Organic solvents were of liquid chromatography grade filtered through 3.0 µm Millipore™ 

membrane filters from Merck (Darmstadt, Germany) and sonicated for 20 minutes per Liter of 

solvent. Methanol (Lichrosolv®) from Merck KGaA (Darmstadt, Germany), acetonitrile 

(HiPerSolv for HPLC™) from VWR International Ltd (Poole, England) and water was MilliQ® 

quality (milliQ dispenser) from the Biopharmaceutics Research Laboratory (Rhodes University, 

Grahamstown, South Africa).  
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4.3.2. Sample preparation 
 

The original sample for all analyses except crude extract experiments was the purified reference 

standard (see section 3.3.3), fucoxanthin BM13-37c. The stock solution of 1 mg/mL was prepared 

in methanol as well as subsequent serial dilutions. All samples were filtered through a 0.2 µm 

PTFE syringe-filter Lida® (Kenosha, West Indies) before injection into the HPLC system.  

 

4.3.3. Method development 
 

Initial method development was carried out on an X-terra® C-18 (150 x 4.6 mm i.d.) column using 

different ratios of MeOH, ACN, and water. The final analysis and validation was done on a 

Phenomenex® Synergi™ C-18 (250 x 3.0 mm i.d.) column using ACN/H2O (95:5) as mobile 

phase. 

 

4.3.4. Validation of analytical method  
 

Note: All analyses were carried out under diffuse light and all samples were covered with aluminum foil 

and stored at -20 °C between analyses. 

4.3.4.1. Linearity  

 

The procedure was carried out with the reference standard obtained in (see chapter 3) (all-trans 

fucoxanthin, BM13-73b) without an internal standard (external calibration method, see 

supplementary chapter). The standard solutions were prepared in methanol (100, 50, 25, 10, 5, 1 

and 0.5) µg/mL.  

Different concentrations of fucoxanthin were injected in triplicate and linearity was analyzed by 

plotting peak area (µVsec) against concentration (µg/mL). The calibration curve generated was 

used to determine the detected concentration. The regression coefficient (R2) and coefficient of 

variation (RSD) were also determined.  
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4.3.4.2. Accuracy  

 

Three concentrations (50, 25 and 5) µg/mL were selected to be the high (Hi), medium (Med) and 

low (Lo) concentrations.  

The concentrations were injected in triplicate and accuracy was assessed by calculating the 

observed concentration relative to the actual concentration (as a % of the relevant average 

concentrations as determined in the linearity study). The coefficient of variation (RSD) was also 

determined.  

4.3.4.3. Precision 

 

Precision was assessed from every repetitive procedure and expressed as the coefficient of 

variation i.e. relative standard deviation (RSD).  

 

4.3.4.4. Limits of detection (LOD) and quantitation (LOQ) 

 

BM13-73b was used for the determination of LOD and LOQ. This was done partially by 

calculation based on observed response at low concentrations between 1.06 µg/mL and 0.011 

µg/mL. The samples were prepared as in the previous validation procedures.  

Injections were made in triplicate at the lower end of the calibration curve until no significant peak 

could be detected. The LOD and LOQ were determined by calculation using a set of three 

calibration curves at the low concentration end using the standard deviation of the response and 

the slope.  

LOD = 
3.3𝜎

𝑆
  

LOQ = 
10𝜎

𝑆
 

Where σ is standard deviation of the response and S is the slope of the curve.29 

                                                           
29 Q2B Validation of analytical procedures: 

http://www.fda.gov/downloads/Regulator%20yInformation/Guidances/UCM128049.pdf/ [Accessed 22 January 2014] 

http://www.fda.gov/downloads/Regulator%20yInformation/Guidances/UCM128049.pdf/
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4.3.4.5. Recovery 

  
The recovery determinations were carried out using freeze-dried algal material (Sargassum sp., 

PA130427-2) and the reference standard (BM13-73b). A preliminary study was carried out to 

investigate the plausibility of this approach using 200 mg of algal material and 2 mL of solvent for 

which 50% of total solvent was spiked with the reference standard. For the final recovery study, 

three masses of alga material were used to represent low (Lo), medium (Med) and high (Hi) 

concentrations 100 mg (Lo), 200 mg (Med) and 300 mg (Hi).  

Sample preparation: 

Alga material (100, 200 and 300) mg was extracted with MeOH (4 mL) by sonication (30 min). 

The algal material was weighed out into a vial and suspended in MeOH (3 mL) after which the 

reference standard dissolved in MeOH (1 mL) was added. The mixture was sonicated for 30 

minutes and the supernatant (methanolic extract plus pure fucoxanthin) filtered through a 0.22 µm 

PTFE syringe filter before analysis. The control was un-spiked with the reference standard.  

Injections and analysis: 

The injections (3 sets) i.e. reference standard, control and spiked algal extract were done in 

triplicate. The calibration curve generated for the recovery experiment was used to calculate the 

concentration of the aforementioned injections. The equation was;  

y = 102215x + 259213 

The recovery was calculated to be the observed fucoxanthin in the spiked sample as a fraction of 

the total fucoxanthin spiked and extracted from the alga material (reference standard plus control). 
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Chapter 5 

Screening of brown algae commonly found in South Africa for 

fucoxanthin content 

 

5.1. Introduction 

5.1.1. Distribution of marine brown algae in South Africa 
 

South Africa possesses a large flora of seaweed (approximately 800 species) of which 98 reported 

brown algae species are found on the west, east and south coasts (Bolton and Stegenga 2002). 

According to Bolton and Stegenga (2002), the distribution of brown algae is such that most species 

are found on the north east coast, with marginally more species on the south coast as compared to 

the west which demonstrated low diversity. The simple brown algae e.g. the Zonaria spp. and 

Dictyopteris spp. are widespread on the east coast and overlap on to the south coast. The only 

reported kelp on the east coast, overlapping on to the south is Ecklonia radiata (the spiny kelp) 

while the rest of the kelps of South Africa are found on the west coast (Branch et al., 1994). 

Sargassum-like algae are found to almost span the whole coastline; north-east, east, south and 

south-west coasts. Bifurcariopsis spp. are found only on the south-west coast. Other algae not 

studied in detail are the bladders and stings e.g. Iyengara sp. may be found on the east coast/south 

coast overlap (Branch et al., 1994).  

5.1.2. Description and classification of the brown algae under study 
 

Color as already established (see section 1.2.1) is a key guiding criteria when distinguishing 

between macroalgae. This is very convenient albeit not always allowing for explicit distinction 

between seaweeds and may lead to a lot of confusion. Nonetheless, brown algae will tend to appear 

olive, dark green or brown and are mainly identified by a brown, yellow or yellow-green thallus 

(Branch et al., 1994). Other than color, morphological structure and reproduction have also been 

relied on in the description and classification of algae. Phycology has comprehensively provided 
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some sense of order in a group of organisms with a mixed evolutionary history. A list of the algae 

that were used in this study with taxonomical information that identify the species as brown algae 

is shown in (Table 5.1).  

Table 5.1: Algae used in the study. Taxonomical information adapted from Algae base™ online. 

Collection code  Genus & species Family  Order/Class 

KOS130226-18 Zonaria subarticulata  

(J.V. Lamouroux) 

Dictyotaceae Dictyotales 

Phaeophyceae 

KOS130226-9 Zonaria tournefortii 

 (J.V. Lamouroux) 

Dictyotaceae Dictyotales 

Phaeophyceae 

TS130227-2 Dictyopteris macrocarpa 

(Areschoug) 

Dictyotaceae Dictyotales 

Phaeophyceae 

TS130227-5 Dictyopteris sp.  Dictyotaceae Dictyotales 

Phaeophyceae 

PA130427-2 Sargassum incisifolium 

(Turner) 

Sargassaceae30  Fucales 

Phaeophyceae 

TS130227-8 Sargassum incisifolium 

(Turner) 

Sargassaceae Fucales 

Phaeophyceae 

TS130227-9 Sargassum incisifolium 

(Turner) 

Sargassaceae Fucales 

Phaeophyceae 

TS130227-10 Sargassum incisifolium 

(Turner)  

Sargassaceae Fucales 

Phaeophyceae 

KOS100329-1 Sargassum sp.  Sargassaceae Fucales 

Phaeophyceae 

KOS100329-2 Sargassum sp.  Sargassaceae Fucales 

Phaeophyceae 

KB100213-3 Bifurcariopsis sp.  Bifurcariopsidaceae Fucales 

Phaeophyceae 

GC120901-2 Bifurcariopsis capensis 

(Areschoug) 

Bifurcariopsidaceae Fucales 

Phaeophyceae 

TS130227-2 Oerstedtia scalaris 

(Suhr) 

Sargassaceae Fucales 

Phaeophyceae 

PA130427-3 Ecklonia radiata 

(C.Agardh) 

Lessoniceae  Laminarales 

Phaeophyceae 

                                                           
30 The most abundant brown algae along the southeast coast belong to the genus Sargassum.  However, it is not always easy to differentiate 

between the various Sargassum spp.  In addition, recent evidence suggests that there may be more Sargassum spp. along the South African coast 

than previously thought (John Bolton, Personal. Communication 03 March 2014.).  Therefore, all Sargassum spp. that appear morphologically 
different were collected and analyzed separately 
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The families of brown algae studied were Sargassaceae, Bifurcariopsidaceae, Dictyotaceae and 

Lessoniceae. 

5.1.2.1. Sargassaceae  

 

This family (order Fucales) is described as the brown thallus algae with air bladders (Fig 5.2, S7). 

The species have a distinct hold-fast, thickened stipe (stem/stalk) and flattened blades (Branch et 

al., 1994). Sargassum incisifolium also known as the differentiated-leafed Sargassum has a bushy 

yellow brown thallus (Fig 5.1, S2) that has a triangular stipe, lower oval-shaped ‘leaves’ with tooth 

margins and upper spear-shaped ‘leaves’ with smooth margins. The specie is common in deep 

gullies and warm pools and are approximately 25 cm long. S. incisifolium also thrives in high tide 

warm pools exposed to the sun. The Agulhas current brings warm water from the tropics raising 

the sea surface temperatures of the east coast to about 23-24 °C. The distribution is therefore 

largely on the eastern coastline of South Africa (Lubke, 1998).  

According to Algaebase™ online database31 there are about 524 species in the order Fucales and 

332 of those are from the genus Sargassum which is about 10 times more than any other genus 

belonging to the same family. Rightly so, the genus appears to be one of the most abundant of the 

seaweeds on the east coast of South Africa (see section 5.1.1). 

A related specie in South Africa known to occur on the south coast is known as Sargassum elegans. 

It is very similar to S. incisifolium but the thallus is cylindrical in section. More of the S. 

incisifolium species identified, were slightly different morphologically. The observed species had 

ovate upper leaves with marginal teeth of variable size. The upper third is without a midrib and 

they appeared spiny and flattened (Fig 5.1, S3) (Lubke, 1998).  

A not so frequently reported member of the family was also found Oerstedtia scalaris (Fig 5.2, 

S8). It is very large (may grow up to 70 cm) and hard textured (woody). It is the only species 

located on the south coast (Algaebase™ online).   

 

 

                                                           
31 Algaebase online: http://www.algaebase.org/browse/taxonomy/?id=8389/ [Accessed 21 January 2014] 

http://www.algaebase.org/browse/taxonomy/?id=8389/
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Figure 5.1: The algae belonging to the family Sargassaceae used in the study. 
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Figure 5.2: More algae belonging to the family Sargassaceae used in the study.
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5.1.2.2. Bifurcariopsidaceae  
 

The common name for this family is the wrack (Lubke, 1998). Two species are reported to exist 

on the west coast of South Africa, Bifurcariopsis capensis (upright wrack) and Bifurcaria 

brassicaeformis (hanging wrack). The alga with a conical disc-shaped holdfast which grows into 

a tough, upright and woody seaweed is B. capensis. It grows on the floors of the deep rock pools 

(Fig 5.3, B1). The hanging wrack (Fig 5.3, B2) however favors the wave pounded areas. They 

have creeping holdfasts and like the other member of their family, possess a tough matrix (Lubke, 

1998). 

 

Figure 5.3: The algae belonging to the family Bifurcariopsidaceae used in the study. 

 

5.1.2.3. Dictyotaceae  
 

This group is described as the simple branched and zoned brown algae. They exhibit a small 
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B2

11

11 

B1

111

1 



 

90 

 

family is subdivided into the fork branched type with midribs i.e. the Dictyopteris spp. (Fig 5.4, 

D4) and the Zonaria spp. that is zoned or fanned. Dictyopteris marcrocarpa has elongated blades 

with a mid-rib, wavy or split margins and streaks or dark patches and ~ 20 cm long. It is also 

described as ribbons with a mid-rib (Oliveira, et al., 2005). With Zonaria subarticulata (Fig 5.4, 

D2), the branches are fan-shaped and have pale tips. The thallus is thin and leathery with a hairy 

holdfast. It may reach up to 20 cm and is found in lower tidal regions. Z. tournefortii (Fig 5.4, D1) 

is very similar to Z. subarticulata but is only about 30 mm high and is multi-fanned (Branch, et 

al., 1994).  

  

Figure 5.4: The algae belonging to the family Dictyotaceae used in the study.
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5.1.2.4. Lessoniceae  

 

This family is one of about seven known families forming the largest and fastest growing brown 

algae (13 mm a day). They occur in what is commonly referred to as the kelp forests. They have 

sturdy root-like holdfasts. The kelp shown (Fig 5.5, L1) is the spined-kelp, Ecklonia radiata and 

it is the species common along the east-south coast with irregular prickly fronds. It occurs in deep 

pools as well as shallow gullies. Unlike the other kelps, it hardly forms a solid stand (Lubke, 1998).  

 

Figure 5.5: The alga belonging to the family Lessoniceae used in the study.
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5.1.3. Previous studies on fucoxanthin content of brown algae  
 

Terasaki et al., (2009) described the aspects relating to fucoxanthin, fucosterol and fatty acid 

content in fifteen algae including seasonal variations observed in selected algae from Hokkaido, 

Japan. The use of DMSO to extract five different brown algae species from Madura Islands of 

Indonesia and determining fucoxanthin content from their crude extracts was reported by Zailanie 

and Purnomo (2011). The majority of the reported studies involved pre-isolation and purification 

of fucoxanthin before analysis (Shang et al., 2011; Jaswir et al., 2012; Kim et al., 2010; Mori et 

al., 2004). The fucoxanthin content previously determined from crude extracts and after clean up 

steps is shown in (Table 5.2). The study by Terasaki et al. (2009) shows a much greater fucoxanthin 

content for the family Sargassaceae when compared to the one reported by Zailanie and Purnomo 

(2009) and Mori et al., (2004).  

The marked difference in fucoxanthin content between the aforementioned studies may be 

attributed to different species producing different amounts of the pigment. Geographical and 

seasonal variations are all possibilities that may play major roles in the amount of fucoxanthin 

produced by a particular seaweed. Cultured seaweed have been reported to produce more 

fucoxanthin when compared to their wild counterparts. S. horneri for example showed 3.7 mg/g 

fucoxanthin but the same seaweed (mono-cultured) produced 14.6 mg/g (Terasaki et al., 2009). 

Algae at young stages of their lifecycle showed higher fucoxanthin content, whilst female and 

male gametes of the Undaria pinnatifida showed higher fucoxanthin content as well compared to 

both the thallus of the seaweed and commercial U. pinnatifida (Mori et al. 2004). Therefore aspects 

of morphology, lifecycle and sex are factors that may determine fucoxanthin content. Sample 

preparation, extraction techniques used and the analytical procedures of choice could all be 

important factors to be reckoned in determining the amount of fucoxanthin in algae.  
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Table 5.2: Fucoxanthin content determined from (a) crude extracts and (b) purified fractions of 

brown algae. 

Family  Species  Fucoxanthin (mg/g) Reference  

    

(a) Determined from crude extracts  

  

Sargassaceae  Sargassum horneri 

Sargassum thunbergii 

Sargassum fusiforme 

Cystoseira hakodatensis 

Sargassum confusum 

3.7 ± 1.6 

1.8 ± 1.0 

1.1 ± 0.6 

2.4 ± 0.9  

1.6 ± 0.8  

 

 

 

 

Terasaki et al., 2009. 

Laminariaceae (Kelp) Saccharina sculpera 0.7 ± 0.4  

Alariaceae (Kelp) Alaria crassifolia 1.1 ± 0.4  

Chordariaceae (Kelp) Sphaerotrichia divaricata 0.2 ± 0.1  

    

Dictyotaceae Padina australis 0.27 ± 0.0  

Sargassaceae Turbinaria conoides  

Sargassum filipendula 

Sargassum echinocarpum 

Sargassum cinereum 

0.21 ± 0.1 

0.20 ± 0.1 

0.16 ± 0.0 

0.16 ± 0.0 

 

Zailanie and Purnomo, 

2009. 

    

(b) Determined from pre-fractionated samples  

  

Laminariaceae (Kelp) Eisenia bicyclis 0.39 ± 0.0 Shang et al., 2011.  

Sargassaceae  Sargassum binderi 

Sargassum duplicatum 

0.73 ± 0.2 

1.01 ± 0.1 

 

Jaswir et al., 2012.  

Alariaceae (Kelp) Undaria pinnatifida 4.2 ± 0.82 Fung et al., 2013.  

Alariaceae (Kelp) Undaria pinnatifida (male) 2.6  

Alariaceae (Kelp) Undaria pinnatifida (female) 1.6 Mori et al., 2009 
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5.1.4. Chapter Aims 
 

The aim of the research in this chapter was to determine which of the selected algae had the most 

fucoxanthin per gram of dried weight. The developed analytical method from the previous chapter 

may give an indication as to which of the algae are most likely the highest and lowest fucoxanthin 

producers and may allow further assessment as to which algae may be a more viable source for 

large scale fucoxanthin production.  

Chapter objectives:  

1. Determine the amount of fucoxanthin from fifteen samples of different brown algae 

commonly found in South Africa.  

 

5.2. Results and Discussions  

5.2.1. Preliminary studies 
 

The method developed for the quantification of fucoxanthin was designed to avoid additional pre-

fractionation and/or purification steps. The following factors were considered in the development 

of the extraction method: (i) extraction solvent (ii) extraction technique (iii) efficiency of the 

extraction method and (iv)  the complexity of the crude extract.  

The four most common solvents used in the extraction of fucoxanthin were assessed for their 

extraction capacity using S. incisifolium as a representative sample. These were ethanol, methanol, 

acetone and dichloromethane/methanol (2:1) which were assessed specifically for their extraction 

efficiency and the amount of fucoxanthin they were able to afford (Table 5.3). The preliminary 

extractions were done on fresh S. incisifolium (~ 200 mg) which were size reduced and extracted 

under sonication. The mass of the total extract and ratios of fucoxanthin content after three 

sequential extractions are shown in (Table 5.3. Methanol was selected as the solvent for the small 

scale extraction step in the analyses of the algae due to the larger amount of organic material and 

consequently, fucoxanthin isolated. In addition, the methanol extract chromatogram showed all 

the metabolites eluting within 10 minutes (Fig 5.6). 
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The assessment shown in (Fig 5.6) of the extraction efficiency exhibited by the different 

solvents/solvent combinations was done on an Xterra® 150 x 4.6 mm i.d. RP-column. The 

fucoxanthin peak eluting at ~3 minutes was the preliminary criteria for identifying methanol as the 

solvent of choice. Methanol was shown to effectively target fucoxanthin from S. incisifolium better 

than all the tested solvents. Using peak area ratios, we were able to (on a preliminary basis) 

compare and identify the best solvent to use for our determination of fucoxanthin content in diverse 

samples of brown seaweed (Table 5.3).   

Acetone extract 

Dichloromethane/ 

Methanol extract 

Ethanol extract 

Methanol extract 

Figure 5.6: Preliminary studies: The extraction efficiency of four solvents; 

Dichloromethane/methanol combination, ethanol, acetone and methanol. Conditions: Xterra® 

150 x 4.6 mm i.d. C-18 column. 
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Table 5.3: Solvent extraction efficiency exhibited by different solvents on the extraction of S. 

incisifolium (~200 mg). 

Extract type 

(2 mL) 

Total mass of extract afforded by 

200 mg biomass (crushed in N2) 

Peak area, ratios 

(after 3 extractions)32 

   

acetone 7.7 mg 60:30:10 

methanol 14.1 mg 47:41:12 

ethanol 3.3 mg 35:36:29 

dichloromethane/methanol (2:1) 9.3 mg 34:32:34 

 

The use of MeOH was satisfactory and has been reported in literature (Terasaki et al., 2009). The 

successful use of acetone has been reported in Zonaria and Padina species (Rowan, 1989). Several 

researchers however, have shown that acetone is less efficient compared to other solvents in the 

extraction of a full range of pigments and a combination of methanol and acetone has been reported 

to selectively target carotenoids (Sand-Jensen, 1976; Seely et al. 1972; Pechar, 1987). Preliminary 

results obtained with S. incisifolium and Zonaria tournefortii (data not shown) indicate that 

quantitative extraction of fucoxanthin from biomass will require three to five sequential 

extractions.  

In order to address concerns regarding saturation of the extraction solvent (MeOH), the solvent 

volumes were varied (2 mL, 11 mL, 20 mL) while the effect of different degrees of sonication 

were investigated (10 minutes, 35 minutes, 60 minutes) in the small scale extraction of ~200 mg 

of crushed S. incisifolium. The preliminary results (Fig 5.7) show that both solvent volume and 

extraction time may affect extraction efficiency. In addition to the above, consideration was also 

given to the stability of fucoxanthin during extended sonication times (because of the heat 

generated during sonication) and time required to evaporate the extraction solvent. As a result, a 

sonication time of 30 minutes and solvent volume of 4 mL was selected as adequate to carry out 

our investigation (as will be seen in the final study).    

 

                                                           
32 These ratios are for fucoxanthin content determined for each sequential extraction. 
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Figure 5.7: Fucoxanthin recovered on the first extraction (varying solvent volume and 

sonication time); Sample: crushed fresh S. incisifolium (~200 mg). 

 

 

5.2.2. Sample preparation 
 

The samples used were freeze dried and ground to a fine powder of uniform particle size to ensure 

consistency in each of the 200 mg biomass measurements. Preliminary studies indicated that the 

particle size may significantly influence the extraction efficiency and the use of chunks of crushed 

fresh algae may lead to difficulties in reproducing results.   

 For example, the alga Oerstedtia scalaris, made up of a tough matrix, showed a crude 1H NMR 

spectrum that suggested fucoxanthin to be the major component in the alga (data not shown). On 

preliminary assessment, extremely low fucoxanthin was recovered, but after pulverization, a 

considerable amount of fucoxanthin was obtained (estimated at 0.59 mg/g of dry weight, DW). By 

way of further comparison, the bulk extractions of (see chapter 3) afforded about 0.094% (DW) 

fucoxanthin from wet fronds of S. incisifolium whilst the same algae afforded 0.97% (DW) 

fucoxanthin after freeze drying and pulverization, a 100 times better yield. Preliminary studies for 

the extraction of a 200 mg biomass showed that the freeze-dried pulverized material released more 

fucoxanthin (HPLC) compared to the fresh sample. Bidigare et al, (2005) reported an improvement 

of extraction efficiency when algal samples were exposed to liquid N2 due to its ability to disrupt 

cells. Most reports suggest some form of drying before analysis of algae i.e. oven and air. (Haugan 
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and Liaane-Jensen, 1989).  We used freeze drying, a more rapid process which preserves the alga 

better (limiting degradation) and improves pulverization (Fig 5.8). Freeze drying removes all the 

water in the matrix by sublimation without exposing the alga to external agents which may 

contribute significantly to the degradation of pigments such as air, heat, electromagnetic radiation 

and moisture.  

The ultrasound assisted extraction of the algae was dependent primarily on the solubility of 

fucoxanthin in methanol. The induced energy improved migration of pigments out of the matrix 

and disruption of cells. The secondary factors expected to play a major role in the migration of the 

compound out of the matrix of the biomass were probably the presence of polysaccharides and 

water. Freeze drying removes water from the matrix of algae leaving that volume free to be 

occupied by just the extraction solvent (Rowan, 1989). We therefore managed to eliminate water 

as a limitation to our extraction procedure. 

 

Figure 5.8: Pulverized alga after freeze-drying. 
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5.2.3. HPLC analysis for quantification of fucoxanthin 
 

The chromatograms for the crude extracts showed that the fucoxanthin peak was accurately and 

adequately quantified without any interfering peaks. The chromatograms for the examined algae 

are shown in (Fig 5.9, Fig 5.10 and Fig 5.11). Fucoxanthin has the retention time of 4.2 minutes.  

 

Zonaria subarticulata 

KOS130226-18 

Bifurcariopsis capensis 

GC120901-2 

 

 

Oerstedtia scalaris 

TS130227-7 

KB100213-13 

Sargassum incisifolium 

PA130427-1 

Figure 5.9: HPLC chromatograms showing fucoxanthin content in tested algae. Conditions: Phenomenex® 

Synergi™ 250 x 3.0 mm i.d. in ACN/H2O (95:5).  
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Ecklonia radiata 

PA130427-3 

 

Dictyopteris spp. 

TS130227-5 

Bifurcariopsis spp. 

KB100213-13 

 

 

Sargassum incisifolium 

TS130227-10 

Dictyopteris macrocarpa. 

TS130227-2 

Zonaria tournefortii 

KOS130226-9 

Sargassum spp. 

TS130227-9 

Figure 5.10 (PA130427-3 – TS130227-5) and Figure 5.11 (TS130227-2 – KOS100329-1): HPLC chromatograms 

showing fucoxanthin content in tested algae. Conditions: Phenomenex® Synergi™ 250 x 3.0 mm i.d. in ACN/H2O 

(95:5). 

Dictyopteris macrocarpa. 

TS130227-2 

Zonaria tournefortii 

KOS130226-9 

Sargassum spp. 

TS130227-9 

Sargassum spp. 

KOS100329-1 

Ecklonia radiata 

PA130427-3 

 

Dictyopteris spp. 

TS130227-5 

Bifurcariopsis spp. 

KB100213-13 

 

 

Sargassum incisifolium 

TS130227-10 

Fig. 5.10 

 

 

Fig. 5.11 
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The pigment concentrations are expressed in µg/g of dry lyophilized ground powder (200 mg). 

The results of triplicate analyses of fucoxanthin and % of crude extract obtained from 200 mg 

biomasses are shown in (Table 5.4). The content of the pigment was calculated from the equation 

derived from the calibration curve as previously discussed (see section 4.3.3.5).   

Moreover, the preliminary study showed that 30 minute extraction may not extract all the 

fucoxanthin out of the matrix. Using MeOH on 200 mg biomass afforded 47 % on the first, 41 % 

on the second and 12 % on the final extraction (Table 5.3). The analysis in this study was done 

based on the first extraction.  

The highest quantity of fucoxanthin was extracted from Z. subarticulata (KOS130226-18, 0.50 

mg/g), S. incisifolium (PA130427-1, 0.44 mg/g), S. incisifolium (PA130427-2, 0.35 mg/g) and the 

Dictyopteris sp. (TS130227-5, 0.33 mg/g). The lowest producers of fucoxanthin (according to our 

results) were the woody algae from Bifurcariopsidaceae family; Bifurcariopsis capensis 

(GC120901-2, 0.05 mg/g) and Bifurcariopsis sp. (KB100213-13, 0.11 mg/g; most likely 

Bifurcaria brassicaeformis). These algae lack any leaf-like structures. 

The other Sargassum species showing relatively low fucoxanthin recovery (in the range of 0.15 – 

0.20 mg/g) seemed to be at different life stages and were morphologically different. Some had 

smaller or less fronds, some filament-like branchlets and yet another looked older and shriveled. 

The morphology seemed to impact the amount of fucoxanthin within the alga. Terasaki et al. 

(2009) examined the distribution of fucoxanthin within selected algae (Sargassum confusum and 

Cystoseira hakodatensis). More fucoxanthin is distributed in the fronds and vesicles with 

considerable amounts in the main and lateral branches as well as the main axis (Terasaki et al., 

2009). There are seasonal variations to be considered that may affect fucoxanthin content. Winter 

and spring were reported to be the time when algae produces the most fucoxanthin as demonstrated 

by a study on Sargassum horneri, Cystoseira hakodatensis, Sargassum thunbergii and Sargassum 

fusiforme. Variations reported in literature were attributed to varying light intensities (Terasaki et 

al., 2009).  
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Table 5.4: Fucoxanthin content expressed in µg/g of dried biomass and % of crude extract. 

 

 

Note: The calibration equation used in the recovery experiment; y = 102215x + 259213 was used to quantify 

fucoxanthin from the crude extracts. 

 

The highest producing algae Z. subarticulata (0.50 mg/g) and Sargassum incisifolium (0.45 mg/g) 

specifically, show relatively low values of fucoxanthin content compared to reported algae (Table 

5.2) which showed Sargassum horneri to have 3.7 mg/g fucoxanthin content. Terasaki et al. (2009) 

used methanol for extraction for two overnights. We extracted for 30 minutes under sonication. 

As previously suggested, different species (even in the genus), geographical location, harvesting 

time and extraction methods may significantly impact on the fucoxanthin content of algae.  

 

 

Collection code Alga Mean µg/g RSD % fxn (crude extract) 

     

TS130227-2 Dictyopteris macrocarpa - - - 

KOS130226-9 Zonaria tournefortii 235.4 4.0% 0.67% 

TS130227-10 Sargassum incisifolium 243.4 1.1% 0.35% 

TS130227-9 Sargassum sp. 155.9 1.5% 0.52% 

KOS100329-1 Sargassum sp. 199.1 1.9% 0.32% 

TS130227-5 Dictyopteris sp. 332.1 2.5% 0.73% 

TS130227-7 Oerstedtia scalaris 276.6 3.9% 0.53% 

KB100213-13 Bifurcariopsis sp. 109.3 3.1% 0.24% 

GC120901-2 Bifurcariopsis capensis 48.5 3.4% 0.06% 

TS130227-8 Sargassum incisifolium 124.2 5.4% 0.20% 

KOS100329-8 Sargassum sp. 151.0 3.3% 0.34% 

PA130427-2 Sargassum incisifolium 350.0 2.5% 0.34% 

KOS130226-18 Zonaria subarticulata 449.8 1.5% 0.78% 

PA130427-3 Ecklonia radiata 170.0 1.7% 0.50% 

PA130427-1 Sargassum incisifolium 444.0 0.8% 0.49% 
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5.2.4. Conclusion 
 

The chapter directly addresses the research question, which of the brown algae commonly found 

in South Africa produces the most fucoxanthin? Fifteen different algae comprising eleven different 

species and four of the same species collected in different locations were analyzed for fucoxanthin 

content. The fucoxanthin content was determined (by HPLC; see chapter 4) directly from crude 

methanol extracts of the algae without prior fractionation and expressed in both µg/g of lyophilized 

ground dry alga powder and as a % of the crude extract. Zonaria subarticulata (KOS130226-18) 

from Kenton-On-Sea beach and Sargassum incisifolium (PA130427-2) from Port Alfred beach, 

Eastern Cape, South Africa, we found to produce the most fucoxanthin relative to all the brown 

seaweed tested. 

Although the alga producing the largest quantities of fucoxanthin can easily be determined from 

these results a number of other factors may have to be considered for commercial scale production 

of this compound.  The extraction method used here was developed using Sargassum incisifolium 

as a representative sample, however, one could optimize the extraction method for each individual 

alga.  The complexity of the crude extracts and the abundance of the source material are also 

factors that need to be considered.   

 

5.3. Experimental 

5.3.1. General procedures 

  
All HPLC analyses were done as described before in (see section 4.3.1.) i.e. the PTFE filtration 

(0.22 µm) and the HPLC-UV/Vis system. The organic solvent used in this procedure was MeOH 

(see section 4.3.1.1). Liquid nitrogen (liq. N2) was provided by Rhodes University Chemistry 

Department.  

A standard ceramic mortar and pestle was used to pulverize the algae. The freeze dryer used for 

all freeze drying processes was a Labconco® Freezone Drying System (Missouri, USA). The 

centrifuge was a Roto-Uni™ II BHG (Germany).  
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The algae were identified by Professor John J. Bolton of the Biological Sciences Department 

(University of Cape Town).  

 

5.3.2. Sample preparation 
 

Each alga (Table 5.4) was frozen in liquid N2 and crushed in a mortar and pestle. In most cases the 

outcome was small chunks of fronds which were then transferred into a round bottomed flask for 

freeze drying (overnight). After freeze drying, the dry chunks were placed back into the mortar, 

mixed with more liquid N2 and pulverized in a circular motion to a fine powder. The powder was 

then passed through a wooden shaker sieve (size 44 mesh). An example of the powdered 

Sargassum incisifolium is shown in (Fig. 5.8).   

 

5.3.3. Algal extraction and analysis 
 

Each sample was analyzed in triplicate as per (see Chapter 4, section 4.3.1). The fine powder (200 

mg) was weighed into a vial and methanol (4 mL) was added followed by sonication of the mixture 

for 30 minutes. The resultant mixture was centrifuged at 10 000 rpm for about 3 minutes.  An 

aliquot of the supernatant (3 mL) was removed and filtered through a PTFE syringe filter (0.22 

µm) before being transferred into a separate vial. 20 µL of the extract was then injected and 

analyzed by the HPLC. A further 2 mL of the remaining extract was measured out and transferred 

into yet another separate pre-weighed vial. The extract was evaporated under reduced pressure and 

the mass of the extract determined.  
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Chapter 6 

Stability studies on fucoxanthin 

 

6.1. Introduction 

6.1.1. Photostability and ICH guidelines  
 

Fucoxanthin is light sensitive and this aspect has been briefly discussed in previous studies (Hii et 

al., 2010; Piovan et al., 2013). The ability of fucoxanthin to withstand degradation from light or 

not may impact greatly on its biological activity.  

It has been almost two decades since the inception of guidelines for harmonization on the 

procedures for photostability testing of drug products. However, there are still some lingering 

questions, concerns and problems associated with the current guidelines. Tonnesen (2007), was 

convinced that due to the complexity of photo-exposure, photostability tests were rather non-

straightforward when compared to thermal stability for instance. Issues pertaining to irradiation 

sources, exposure levels, irradiation level and temperature effects, containers, presentation of 

samples and interpretation of data were stated as major guideline problems (Drew, 1998).  

Irradiation sources:  

The ICH recommended two options for irradiation sources. Option 1 was revised to simulating 

outdoor daylight (D65) or indoor window-filtered daylight (ID65). These are internationally 

recognized standards. There is an issue of standardizing photo-testing when the building for 

instance, where the medicinal product is handled or stored, has generally less natural light, less 

windows, a combination of natural light and fluorescent lamps etc. It makes it difficult to 

standardize the irradiation to accommodate such scenarios. It is however most likely that the ID65 

is best appropriate source of irradiation and is preferred to option 2, a cool white fluorescent and 

near ultraviolet lamp (Tonnesen, 2007). A xenon or metal halide lamp provides that sort of 

irradiation with satisfactory spectral energy distribution. The lamps give off light in the UV-Vis 

regions and proprietary lamp suppliers include filters which are capable to exclude irradiation of 
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less than 320 nm according to the standards for window glass (international organization for 

standardization 10977).33 

Exposure level:  

The irradiation levels are difficult to simulate and there is the likelihood that a drug product is 

exposed to varying intensities of light when inside a pharmacy for example. Tonnesen (2007) 

argues that the standard indoor indirect daylight (ID65) conditions are harsher than natural light. 

The recommended exposure is an energy of not less than (NLT) 200 W/m2 in the UV range of 320 

– 400 nm (equivalent to 1-2 days on the window-glass filtered daylight on a sunny day). The 

recommendation for an ID65 lamp in the visible region is a total exposure of 1.2 million lux-hours 

(equivalent to 3 days on a window sill on a sunny day). According to the author a test run to achieve 

1.2 million lux-hours will exceed the stated energy standard of 200 W/m2 by 2.5 – 3 times i.e. it 

will require energy of between 500 and 600 W/m2.34 Higher irradiation levels will allow for less 

exposure time but may also introduce unwanted temperature effects because irradiance and 

temperature are dependent variables (Thatcher et al., 2001).  

Irradiation and temperature effects:  

The irradiation level is not explicitly specified by the ICH guidelines. It is therefore dependent on 

the individual test requirements. When considering irradiation levels, the unwanted effects of 

temperature must be taken into consideration. Temperature will increase whilst irradiation is 

increased, therefore in an attempt to reach overall ICH illumination exposure levels of 1.2 million 

lux-hours one must be careful of temperature effects. The best compromise would be a high enough 

irradiance level to accelerate the procedure without causing unwanted temperature effects whilst 

a system that keeps internal ambient temperature in the test chamber at desired levels could be best 

(Tonnesen, 2007). The cooling system in available equipment may be useful as it is monitored e.g. 

using a black standard thermometer (BST).  

 

                                                           
33 ISO is an organization that coordinates the development and adoption of numerous international standards. ISO 10977 (1993) is 

the international standard for describing test equipment, test procedures and analytical procedures for predicting image stability. It 

has been revised to ISO 18909 (2006). 
34 These opinions guided the selection of irradiation energy as described in (see section 6.3.2.2).  
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Presentation of samples:  

Most importantly, maximum and equal irradiance is critical in obtaining accurate and reliable 

results. The containers used, the distance from the light source and the sample preparation are all 

important factors to consider. Solid samples for example are reported to degrade only on the 

surface and are therefore spread in a single layer as recommended by the ICH guidelines 

(Tonnesen, 2007). Liquid samples are exposed in clear glass vials or quartz cuvettes. It has been 

alluded to that liquids offer more uniform irradiation of light when compared to solids and 

suspensions. Containers must be considered in terms of transmittance characteristics. Quartz for 

example does not filter off any radiation but glass vials are acceptable (Tonnesen, 2007).  

Interpretation of data:  

The end goal of photostability tests is to identify the need to take precautions when handling a 

drug substance during manufacture, packaging and storage.  In any case, if there is no change in 

the test product or sample after exposure then there is no need to have concerns over excluding 

light during synthesis, packaging and storage. Conversely, if there is such change, then there is 

every chance that during handling and storage of the sample, protection from light is necessary to 

preserve the quality of the compound. According to ICH guidelines, if a compound is stable to 

visible light exposure, then it meets the ICH criteria for a photostable compound. Instruments that 

satisfy the requirements of the ICH guidelines have been developed and are commercially 

available.35  

 

6.1.2. Basic principles for photostability testing 
 

Photo-lability may be imparted to a molecule because of the chromophoric property and weak 

covalent bonds in some functional moieties such as carbonyl (C=O), alkene (C=C), polyenes and 

hydroxyl (O-H) groups. This is much related to the bond energies and corresponding wavelengths 

of maximum absorption. The chemistry of photo degradation is in susceptible functional groups 

that make up a molecule. If a molecule absorbs photons having a wavelength equal to 257 nm or 

                                                           
35 ICH guidelines Q1B: http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q1B/Step4/Q1B_Guideline.pdf/ 

[Accessed 24 January 2014] 

http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q1B/Step4/Q1B_Guideline.pdf/
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shorter for example, the O-H bond it bears absorbs enough energy for it to undergo photoreaction. 

The complexity and unpredictable nature of photoreactions is evident because, if this principle 

holds true then most chemicals in nature would dissipate instantly. There are a variety of 

competitive dissipative pathways for absorbed energy to compensate for photodegradation. Allen 

(2007) presents this phenomena concisely;  

D + hv   D* 

D*  degradation products  

D*  D + heat (internal conversion)  

D*  D + hv' (fluorescence)  

D*  D + hv '' (phosphorescence)  

D* + M  D + M* (energy transfer)  

Where D = drug molecule; D* = drug in electronically excited state; hv = electromagnetic radiation at a 

given energy, frequency and wavelength, M/M* = acceptor molecule in ground and electronically excited 

state.  

A compound may absorb light strongly but if there are efficient mechanisms present such as 

fluorescence or transfer of energy to another molecule within the same system, then it may not 

undergo photoreactions or photodegradation rather. Indirect photosensitization including reactive 

free radicals and molecular oxygen is a possibility (Allen, 2007). Samples used in drug 

photostability testing may be of either a dilute solution (uniform exposure to radiation), 

suspensions and/or solid material (thin layer of molecules absorbing radiation at the surface of the 

sample). Liquids allow samples to be maximally exposed to radiation because of minimized scatter 

and reflection. A drug stable in liquid form, is most likely stable in solid form but the reverse is 

not always true (Allen, 2007).  
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6.1.3. Previous studies on photostability of fucoxanthin 
 

There are only a handful of studies regarding the photostability of fucoxanthin (Hii et al. 2010; 

Piovan et al., 2013). There is no mentioning of the explicit use of the ICH guidelines in these 

studies. This is problematic and difficult to correlate the information provided in literature. Zhao 

(2014) exposed samples of fucoxanthin (95%) purified from Costaria costata in an oven 

maintained at 25 °C and exposed them to an 18 W fluorescent lamp (300 lux and 2000 lux) for 10 

weeks. The fucoxanthin was sampled weekly following an extraction procedure on the oil-

fucoxanthin mix (0.5 g) by HPLC (C30 YMC; 250 x 4.6 mm i.d; 3 µm) using a gradient mobile 

phase (MeOH-Water and MTBE). The starting material was approximately 165 µg/mL and after 

10 weeks of 2000 lux light with no air only 21.9% of the all-trans fucoxanthin had degraded. This 

is an estimated 3.36 million lux-hour total exposure. The recommended 1.2 million lux-hour was 

achieved after about 3.5 weeks. At that time only 3.1% fucoxanthin had degraded. The authors 

alluded to the possibility of the 13 and 13'-cis isomers converting to all-trans form in the early 

stages of the treatment as an explanation to the initial increase in all-trans fucoxanthin in the first 

week. An increase in the 9'-cis was reported as significant. The degradation was about four times 

greater when exposed to both 2000 lux and air which in both cases, illumination resulted in the 

formation of cis isomers of the compound.  

The other study was carried out on an acetone-methanol extract of Sargassum binderi containing 

fucoxanthin. The details of how the procedure was carried out are absent making the results 

difficult to comprehend. Fucoxanthin as a carotenoid is expected to be susceptible to light and may 

lead to a loss of color owing to the disruption of the conjugated double bond system (Hii. et al., 

2010).  

Another recent study investigated the stability of fucoxanthin to photo-exposure using acetone, 

methanol and acetonitrile crude extracts of Undaria pinnatifida. The study assessed the effect of 

the different constituents owing to the slightly different chemical profiles from each extract on the 

stability of the pigment (Piovan et al., 2013). The fucoxanthin content was diminished by 90 % at 

the end of their 5 hour study on exposure to direct day light measured as 2500 lux.36 

                                                           
36 The most likely limitation is the lack of standardization i.e. varied exposure of energy from direct sunlight and unregulated 

temperatures. A controlled environment complying with international standards (ISO and ICH) may give more reliable results e.g. 

Suntest chamber that has controlled temperature and irradiation energy.  
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6.1.4. pH stability 
 

The human gut, the immediate environment for all orally taken substances is predominately 

aqueous and varies in pH. How fucoxanthin behaves under various pH conditions may shed some 

much needed light on oral formulations containing fucoxanthin and their bioavailability.  

pH stability studies are part of stress testing that pharmaceuticals have to undergo to assess their 

susceptibility to hydrolysis across a wide range of pH values. A conventional way of exposing the 

sample to various pH conditions suffices as the ICH mention the need for testing under these 

conditions but do not provide a proper guideline of the procedure (Qui et al. 2013).  

Carotenoids are mainly used in food industries and are isolated to act as nutraceutical ingredients. 

The biggest challenge with the incorporation of carotenoids into foods is their low water solubility 

and pH instability. The use of buffered solutions adjusted to the desired pH ranges using HCl and 

NaOH has been a method used in the testing of food technologies e.g. β-carotene enriched 

nanoemulsion exposed to various pH solutions (Qian et al., 2012).  

 

6.1.5. Previous studies on pH stability of fucoxanthin 
 

Fucoxanthin isolated from Sargassum binderi is one study to the best of our knowledge that 

exposed the pigment to various pH conditions to assess its stability. Using 1 M HCl and 1 M NaOH 

a pH range (pH 3, pH 5, pH 7, and pH 9) was prepared by adjusting the initial pH of the pigment 

extract. The analysis carried out in the dark over four weeks showed better stability and it was 

found that fucoxanthin exhibited greatest and least stability at pH 9 and pH 3 respectively (Hii et 

al., 2010).  

 

6.1.6. Chapter Aims 
 

The aim of the research in this chapter was to understand the extent of stability of fucoxanthin to 

photoexposure and pH. The pigment fucoxanthin, has a plethora of points of functionality likely 

to be susceptible to photo- and pH degradation to mention the polyene chain, the carbonyl and 
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hydroxyl functional groups. Given the chromophoric nature of fucoxanthin it is expected to have 

at least some photostability issues. The pigment’s vulnerability in aqueous conditions and varying 

pH was also anticipated. Stability is a functionally relevant quality attribute of any biologically 

active compound. The concerns of instability include a loss of the active component and sometimes 

bioavailability, formation of toxic degradation products and an almost certain compromised safety 

(Piechocki and Thoma, 2007). If fucoxanthin is to be pharmaceutically relevant, then the 

aforementioned factors must be addressed and the stability of the compound clearly established.  

Chapter Objectives:  

1. Evaluate the degree and possibly the course of photodegradation of fucoxanthin in different 

forms i.e. crude CH2Cl2/MeOH extract, step gradient hexane/EtOAc fraction (chapter 3), 

99% all-trans fucoxanthin (chapter 4) and MeOH extract of Sargassum incisifolium 

(chapter 5) according to ICH guidelines.  

2. Evaluate the integrity of fucoxanthin (99%) when exposed to varying relevant (to the 

human gastrointestinal tract) pH conditions (between pH 1.0 and pH 10.0).  

 

6.2. Results and Discussions 

6.2.1. Photostability  
 

The samples of fucoxanthin were prepared viz pure fucoxanthin37 (~100 µg/mL, A), step gradient 

fucoxanthin fraction (~113 µg/mL, B), methanol extract of Sargassum incisifolium (~78 µg/mL, 

C) and dichloromethane/methanol extract of Sargassum incisifolium (~100 µg/mL, D). These 

samples were exposed to xenon lamp irradiation whilst enclosed in a Suntest® chamber for a total 

of 16 hours of which sampling time intervals were 30 minutes, 1, 2, 4, 8 and 16 hours. We were 

interested in also investigating the sampling technique. One sample was left in the chamber for the 

entire duration of the test whilst sampling from it at each time interval. The rest of the samples 

were sacrificially sampled i.e. once sampled at each time interval, the sample was analyzed and 

not returned into the chamber. No notable difference was observed between the two techniques.  

                                                           
37 Isolated fucoxanthin (see chapter 3) 
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The fucoxanthin concentrations were monitored throughout the test period using the quantification 

method of (chapter 4). The changes in concentration of fucoxanthin after photo-exposure (16 

hours) are detailed in (Table 6.1) and (Fig 6.1 and 6.2). Over 16 hours, A showed the most overall 

resistance to degradation showing about 59 % loss of all-trans fucoxanthin when compared to B, 

C and D which showed a 100 %, 100 % and 88 % overall loss respectively. The differences in 

components of A – D must be defined. In A, no other component was present except for 

fucoxanthin. B was mainly fucoxanthin but with a few other components that elute close to the 

pigment i.e. compounds of similar polarity. We expected one other component together with the 

cis-forms of fucoxanthin as previously reported in literature (Nakazawa et al., 2008). In C, several 

polar components (not determined in this study) found in the alga were most likely present together 

with fucoxanthin. D was expected to contain almost all the components within the alga, from non-

polar to polar compounds (not determined in this study). The chemistry therefore and environment 

that fucoxanthin was being illuminated under, was significantly different from A – D. 

Surprisingly, pure fucoxanthin (A) was more stable over the 16 h period than the crude or partially 

purified fractions. After 16 hours of exposure, 40% of the original content was left. The 

degradation rate was steady and much slower than any other sample and the degradation was 

ascribable to cis-isomerization i.e. formation of more oxidizable cis-forms of fucoxanthin (Piovan, 

2013). In our study, slight formation of what we expect to be what Nakazawa, (2008) reported as 

isomers of fucoxanthin was observed (Fig 6.1) eluting after fucoxanthin. 
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Piovan et al. (2013) proposed that components present in conventional crude extracts containing 

fucoxanthin may accelerate the reactions leading to the degradation of fucoxanthin. Certainly, the 

crude and partially purified fractions (B – D) demonstrated a decreased stability of fucoxanthin on 

light exposure. The degradation of fucoxanthin was somewhat accelerated in crude extracts but 

rather steady in B and D. The protective effects of antioxidants were also investigated and were 

shown to play a major role in retardation of the degradation of fucoxanthin (Piovan et al., 2013). 

t0.5 

t2.0 

t4.0 
Isomer increasing in 

intensity 

Fucoxanthin 

Isomer(s) 

Fucoxanthin 

decreasing in intensity 

Figure 6.1: Progressive depletion of the fucoxanthin peak and slight increase in the "isomer(s)" 

peak. Conditions: Phenomenex® Synergi™ 250 x 3.0 mm i.d. in ACN/H2O (95:5). 

t8.0 
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Brown seaweed extracts have been found to contain at least one more identified carotenoid, β-

carotene and chlorophylls (Haugan and Liaaen-Jensen 1989). The same can be expected in extracts 

of S. incisifolium as was observed in the step-gradient fractionation of (see chapter 3). The effect 

of these compounds can be postulated and used to explain differing rates of fucoxanthin 

degradation between samples under study such the antioxidant properties of co-extractives 

reported by Afolayan et al. (2008). The major metabolites reported from the crude extracts of 

Sargassum heterophyllum38 are sargaquinoic acid, sargahydroquinoic acid and sargaquinal 

(Afolayan et al., 2008) and the antioxidant activity of these compounds has been reported and may 

play an immense role in providing some protection in the degradation of fucoxanthin as described 

by Piovan et al. (2013).39 However, crude extracts in this study seem to show accelerated 

degradation of fucoxanthin.  

 

Figure 6.2: A graphical representation of the extent of photodegradation of fucoxanthin in A (pure 

form, 99%), B (step-gradient fraction, ~87%), C (MeOH extract of freeze dried Sargassum 

incisifolium) and D (crude CH2Cl2/MeOH extract of Sargassum incisifolium). 

                                                           
38 The heterotypic synonym for Sargassum incisifolium 
39 There is however not enough evidence as to what was the cause of increased degradation amidst reports of the photo-protective 

effects different extracts may possess (Piovan et al., 2013) and the isomers have not been characterized. More investigations are 

required. The focus was placed mainly on the loss of fucoxanthin during photo exposure.  
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Table 6.1: Changes in fucoxanthin concentration after 16 hours of ID65 exposure in a Suntest 

CPS+ chamber. 

 

 

sample 

sample 

times 

th 

fucoxanthin 

mean conc. 

µg/mL 

 

%RSD 

 

%∆ 

 

sample 

sample 

times 

th 

fucoxanthin 

mean conc. 

µg/mL 

 

%RSD 

 

%∆ 

 

A  

 

t0 

102.6 2.08% 0% A  

 

t4.0 

82.2 0.57% 20% 

B 113.4 0.44% 0% B 59.8 0.38% 47% 

C 78.4 1.45% 0% C 30.5 1.23% 61% 

D 102.2 1.50% 0% D 64.3 1.17% 37% 

 

A  

 

t0.5 

89.3 4.47% 13% A  

 

t8.0 

61.4 1.20% 40% 

B 101.3 0.92% 11% B 2.7 4.54% 98% 

C 57.5 1.83% 27% C 20.3 1.27% 74% 

D 81.6 0.96% 20% D 58.7 0.59% 43% 

 

A  

 

t1.0 

 

87.9 1.86% 14% A  

 

t16.0 

42.3 2.57% 59% 

B 101.1 2.30% 11% B 0.0 0.00% 100% 

C 49.1 0.58% 37% C 0.0 0.00% 100% 

D 77.8 0.60% 24% D 12.2 0.79% 88% 

 

A  

 

t2.0 

85.1 3.11% 17% A  

 

tcntrl 

102.7 2% 0% 

B 89.2 0.37% 21% B 91.2 1% 20% 

C 40.1 2.20% 49% C 76.2 1% 3% 

D 72.7 0.27% 29% D 100.7 0% 1% 

 

Interestingly, B turned from a bright orange color to colorless after the duration of the test. 

Fucoxanthin has been reported in several studies to absorb light and transfer it to chlorophyll 

molecules in what is known as a fucoxanthin-chlorophyll protein complex (Papagiannakis, 2005). 

This is a light harvesting complex which exists in brown and other algae containing fucoxanthin 

(in vivo). Whether the same arrangement can be attained in vitro by solubilization of protein 
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complexes (during normal extraction of pigments) or having fucoxanthin molecules adjacent to 

chlorophyll molecules remains to be investigated. This phenomena may provide a different 

dimension in understanding fucoxanthin degradation, at least our ability to detect it at 446 nm. In 

addition to excitation energy transfer (EET) to chlorophyll a and c, carotenoids exhibit excitation 

state absorption (ESA) at higher wavelengths to cover the blue/green region where chlorophyll 

cannot absorb, all in part of their natural role as accessory pigments. Fucoxanthin specifically as a 

carotenoid with a carbonyl conjugated backbone, is characterized by a low-lying intramolecular 

charge transfer (ICT) state that results in an ESA at 600 nm in polar solvents (Zigmantas, 2004).  

The path of photoreactions is very complicated and sometimes unpredictable. Reports support the 

exhibition of a different absorption spectrum in the presence of chlorophyll on photoexposure 

which is known as a blue wavelength shift. If this kind of reaction and/or rearrangement occurred 

during the photo exposure then it is highly likely that detection of excited molecules was 

impossible at a wavelength of 446 nm further contributing to the decreased detection of 

fucoxanthin with time. Bleaching occurs with fucoxanthin on photoexposure and it may or may 

not return to ground state after excitation (leading to restoration of color) as observed with B which 

remained bleached.  

The initial path of degradation is understood to be via the conversion of fucoxanthin to its cis 

forms. The HPLC chromatograms for the progressive analysis revealed an increase in peak area 

of the isomers that coincided with a decrease in peak area of fucoxanthin peak by the same extent 

(Fig 6.1. The isomers of fucoxanthin have been identified and have been demonstrated to elute 

immediately after all-trans fucoxanthin, (9'-cis), and two conjoined peaks (13' and 13-cis). 

Systematic conversion to the 13 and 13'-cis isomers followed by conversion to 9-cis has been 

reported to be a consequence of photo exposure (Zhao, 2014).  
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6.2.2. pH stability  
 

The sample used was pure fucoxanthin (see chapter 3). Eight samples of concentration 1 mg/mL 

were prepared, one for each tested pH and the MeOH control. Fucoxanthin was solubilized in 

MeOH before being added to prepared pH solutions (pH 1.0, 2.0, 3.0, 7.0, 8.0, 9.0 and 10.0).  

  Materials   

 99% pure fucoxanthin  

1 mL 10 % MeOH aqueous solutions                                                                               

(pH1.0, pH2.0, pH3.0, pH7.0, pH8.0, pH9.0, pH10.0) 

        

Calibration equation: y=102215x + 259213 

 

The fucoxanthin concentration was also monitored using the HPLC analytical method developed 

in (see chapter 4). The changes in concentration after exposure to varying pH conditions are 

detailed in (Table 6.2) and (Fig 6.3). After overall exposure (8 hours), fucoxanthin was most stable 

at pH 10.0 and showed poor stability in almost all the other pH conditions tested. The nature of 

the instability was in that fucoxanthin was precipitating out of the solution into fluffy orange 

crystals. Fucoxanthin at pH 1.0 showed relatively rapid degradation. There was evidence of a 

unique reaction where the crystals turned from orange to blue. The instability of carotenoids has 

been reported and demonstrated by the reaction of fucoxanthin with strong acids (Haugan and 

Liaaen-Jensen, 1994). The reaction led to the formation of blue oxonium ions. At pH 2.0 the 

product was brownish in color whilst other pH conditions had an orange precipitate. A 

bathochromic shift of λmax to 720 nm has been reported confirming that fucoxanthin could not be 

detected at the set wavelength, 446 nm. An intermediate, isofucoxanthin is also reported. The 

active part of the molecule is reported to be the 5, 6-monoepoxide moiety (Haugan and Liaane-

Jensen, 1994, see Appendix 6.1).  
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Figure 6.3: A graphical representation of the extent of degradation owing to varying pH 

conditions. 

 

Table 6.2: Changes in fucoxanthin concentration owing to varying pH conditions over 8 hours. 

 

Note: Starting concentration before mixing with aqueous solutions = 124.1 µg/mL 

 sample 

times th 

fucoxanthin conc. 

µg/mL triplicates 

Mean conc. 

µg/mL 

std. 

dev. 

%RSD %∆ 

  1 2 3     

pH1.0  

 

 

 

t0 

86.6 87.1 86.3 86.7 0.4 0.47% 30% 

pH2.0 89.2 89.2 88.4 89.0 0.4 0.51% 28% 

pH3.0 94.9 94.2 95.1 94.7 0.5 0.49% 24% 

pH7.0 88.3 88.9 88.6 88.6 0.3 0.33% 29% 

pH8.0 73.2 75.1 73.6 74.0 1.0 1.41% 40% 

pH9.0 99.7 100.9 99.6 100.1 0.7 0.71% 19% 

pH10.0 104.2 105.8 104.6 104.9 0.8 0.78% 15% 
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pH1.0  

 

 

 

t1.0 

2.2 2.3 2.3 2.3 0.1 2.37% 98% 

pH2.0 25.7 25.6 25.7 25.6 0.1 0.20% 79% 

pH3.0 28.8 30.2 29.1 29.4 0.7 2.41% 76% 

pH7.0 6.3 6.2 6.5 6.3 0.2 2.49% 95% 

pH8.0 7.6 7.7 7.6 7.6 0.0 0.51% 94% 

pH9.0 8.2 8.5 8.4 8.4 0.1 1.27% 93% 

pH10.0 100.4 100.3 100.0 100.2 0.2 0.19% 19% 

         

pH1.0  

 

 

 

t2.0 

32.8 34.1 33.3 33.4 0.6 1.93% 73% 

pH2.0 42.6 40.2 40.6 41.1 1.3 3.10% 67% 

pH3.0 5.7 5.7 5.6 5.6 0.1 1.07% 95% 

pH7.0 3.4 3.4 3.4 3.4 0.0 0.38% 97% 

pH8.0 13.0 13.0 13.5 13.1 0.3 2.11% 89% 

pH9.0 -1.4 -1.5 -1.5 0.0 0.0 0.00% 100% 

pH10.0 92.1 92.0 92.8 92.3 0.4 0.47% 26% 

         

pH1.0  

 

 

 

t4.0 

1.0 0.9 1.0 1.0 0.0 1.96% 99% 

pH2.0 0.0 0.0 0.0 0.0 0.0 0.0% 100% 

pH3.0 0.0 0.0 0.0 0.0 0.0 0.00% 100% 

pH7.0 0.0 0.0 0.0 0.0 0.0 0.00% 100% 

pH8.0 1.7 1.7 1.8 1.7 0.1 3.60% 99% 

pH9.0 0.0 0.0 0.0 0.0 0.0 0.00% 100% 

pH10.0 77.0 77.0 78.2 77.4 0.7 0.89% 38% 

         

pH1.0  

 

 

 

t8.0 

0.0 0.0 0.0 0.0 0.0 0.00% 100% 

pH2.0 0.0 0.0 0.0 0.0 0.0 0.00% 100% 

pH3.0 0.0 0.0 0.0 0.0 0.0 0.00% 100% 

pH7.0 0.0 0.0 0.0 0.0 0.0 0.00% 100% 

pH8.0 0.0 0.0 0.0 0.0 0.0 0.00% 100% 

pH9.0 0.0 0.0 0.0 0.0 0.0 0.00% 100% 

pH10.0 1.5 1.5 1.5 1.5 0.0 0.41% 99% 

         

MeOH tcntrl 120.4 121.4 122.4 121.4 1.0 0.84% 2% 
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Fucoxanthin has previously been reported to be stable at pH 9 (Hii et al., 2010). In another study 

conducted by Chen et al. (1995) xanthophylls and carotenes showed slower degradation at pH 10 

and pH 8 compared to pH 5 and pH 6. Our study partially confirms these claims with fucoxanthin 

degrading extremely slowly at pH 10.0 and extremely quick in all the other pH conditions tested. 

There were some erratic concentrations observed in the first 2 hours or so but a general loss of 

pigment was observed. It was marquee to observe that after 4 hours all of the pigment had been 

lost except for pH 10.0 where only 38% of fucoxanthin had degraded. The alkali instability of the 

pigment has been reported where a complex mixture of products was observed when fucoxanthin 

was treated to differing concentrations of potassium hydroxide (KOH). The products found 

included fucoxanthinol, fucoxanthin hemiketal, isofucoxanthin and isofucoxanthinol which may 

be what we observe as the orange precipitate in the alkaline vessels (Haugan et al., 1992, see 

Appendix 6.1). No further studies of our own have been done to analyze these products at this 

stage.  

 

6.2.3. Conclusion 
 

The chapter was on the stability of fucoxanthin when exposed to external environmental agents 

e.g. light, heat, air and pH. The focus was on light (photostability) and acid/base conditions (pH 

stability). These type of studies attempt to establish a sense on how handling and storage of 

fucoxanthin may have an impact on its quality. The stability of the pigment was compared at 

different stages of extraction i.e. the crude CH2Cl2/MeOH extract, step-gradient fucoxanthin rich 

fraction (see Chapter 3), pure fucoxanthin from Sargassum incisifolium (see Chapter 4) and the 

MeOH extract from (see Chapter 5) to ascertain how other components contribute to the stability 

of fucoxanthin. The samples were exposed to a controlled light source for a reasonable period of 

time (16 hours) in compliance with ICH guidelines as much as possible to determine the degree 

and certainly the course of photodegradation. The purified fucoxanthin was also exposed to 

varying acidic and basic pH conditions in order to possibly predict the stability of the compound 

within a biological system before absorption by simulating the stomach and small intestines.  

Fucoxanthin from the results obtained, is clearly photo-labile and unstable across wide range of 

pH conditions. Our investigations showed that in all stages of extraction, protection of fucoxanthin 
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from light should be an important consideration. This precaution including protection from air and 

elevated temperatures (not in this study), may contribute significantly to improved isolation of 

fucoxanthin in terms of yield and limiting isomerization. The pH studies confirm that any 

contemplation of orally taking fucoxanthin as is currently being suggested by nutraceutical 

developers (see section 2.6), should be extended to the protection of fucoxanthin during its transit 

in the gastro-intestinal tract which may prove to be a harsh environment for the pigment. More 

work is however required to further understand the differences observed in the rates of degradation 

and the products thereof, in both the photostability and pH stability tests carried out.  

6.3. Experimental 

6.3.1. General procedures 
 

The photostability testing for samples of fucoxanthin was carried out in a controlled stability 

chamber, an ATLAS® Suntest CPS+™ (Linsengericht, Germany). The instrument was fitted with 

a xenon lamp, optical quartz filters, sensor for measurement and control of black standard 

temperature (BST) at specimen level and program controller. The pH stability of fucoxanthin was 

carried out in solutions comprised of buffer tablets from UNILAB® buffer tablets for pH 7.0 and 

pH 4.0, Saarchem (Pty) Ltd (Krugersdorp, South Africa) and standard bench reagents of HCL (0.1 

M) and NaOH (0.1 M). Organic MeOH described in (see section 4.3) was used for all samples in 

photostability testing and solubilization required in pH stability testing. All the pH readings were 

recorded by a PCSTestr 35™ Waterproof Multi parameter Tester (pH meter), (Australia).  

All samples for photostability testing were in Supelco® 4 mL screw cap glass vials from Sigma 

Aldrich® (Germany). All pH stability testing were carried out in Eppendorf tubes® (1.5 mL), 

(Hamburg, Germany).  

 

6.3.2. Photostability testing 

6.3.2.1. Sample preparation  

 

The samples for photostability testing (A - D) were designed to have as much fucoxanthin as 

possible within an absorbance of 1.00 as per the criteria set in the analytical procedure described 
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in (see chapter 4). For A (pure fucoxanthin) and B (step-gradient fraction), a stock solution 

targeting 100 µg/mL (10 mL) fucoxanthin was prepared. For C (methanol extract), 464 mg from 

freeze dried S. incisifolium and 1.2 mg of D (CH2Cl2/MeOH extract) from fresh S. incisifolium 

obtained from the storage discussed in (see chapter 3) were also prepared.  

6.3.2.2. Photoexposure  
 

The experiment was designed to run initially for eight hours with six sampling points at 0.5, 1.0, 

2.0, 4.0 and 8.0 hours. Seven replica samples for A – D (1 mL) were prepared to account for the 

six time points and a control (vial covered in aluminum foil). The stock solution for each sample 

was first injected into the HPLC (triplicate) to obtain t0. A visual perspective of how the samples 

were arranged into the Suntest chamber is given in (Fig 6.4). After the first 30 min, the (t0.5) 

samples were taken out of the Suntest and were immediately analyzed by HPLC. The same 

procedure was repeated for (t1.0 – t8.0) at the relevant times. The t0.5 samples however, were returned 

back into Suntest chamber immediately after sampling for the duration of the test period. These 

samples were periodically sampled (100 µL) the same way as t1.0 – t8.0. At the end of the 8 hour 

phase, the t0.5 samples were exposed for another 8 hour phase to provide t16.0 and represent an 

extended exposure. At the end of the test period, the control samples were also sampled in the 

same way as described for the other samples.  

 

 

Figure 6.4: Suntest CPS+ and presentation of samples in the test chamber. 

Parameters for Suntest CPS+ 

Lamp: Xenon 

Energy: 700 W/m2 

Filter: G (Solar ID65) a simulation of solar radiation 

behind a 6 mm window glass (ICH guideline for 

pharmaceuticals). 

Wavelength: 380 – 800 nm 

Exposure time: 16 hours 

BST: 35 °C 
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6.3.3. pH stability testing 

6.3.3.1. Sample preparation 

 

A stock solution (100 µg/mL; 10 mL) was prepared. Aliquots (1 mL) were transferred to seven 

size 6 Pu vials and dried using a rotavapor. Each vial contained approximately 100 µg fucoxanthin. 

A stock solution of pH 4.0 and pH 7.0 was prepared by dissolving a buffer tablet (pH 4.0) and 

(7.0) respectively in 100 mL of deionized water. An aliquot of pH 4.0 solution was adjusted with 

HCl (0.1 M) to give separate solutions of pH 1.0, pH 2.0 and pH 3.0 whilst an aliquot of pH 7.0 

solution was adjusted with NaOH (0.1 M) to give solution of pH 8.0, pH 9.0 and pH 10.0. To each 

of the aforementioned vials containing 100 µg fucoxanthin, 100 µL of MeOH (carrier) was added 

and 900 µL of the respective pH solutions. The control was 100 µg fucoxanthin dissolved in 1 mL 

MeOH. Each of the 1 mL solutions were quantitatively transferred into the Eppendorf tubes (1.5 

mL) for the duration of the test.  

6.3.3.2. pH exposure 

 

Note: The final preparation of the samples was staggered with 7 min (HPLC run time) in between them. 

The experiment was designed to run for an 8 hour period with sampling from times t0, t1.0, t2.0, t4.0, 

and t8.0. After sample preparation, each sample was immediately analyzed for fucoxanthin content 

(t0) before being transferred into the freezer. After the first hour the first sample was centrifuged 

at 10 000 rpm for 5 min before being analyzed by HPLC (t1.0). The same procedure was carried 

out for the rest of the samples in sequence (t1.0 – t8.0). The samples are shown below (Fig 6.5).  

 

(a)     (b)  

Figure 6.5: pH stability samples (a) during testing (b) post testing. 
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Chapter 7 

 

7.1. Conclusions  
 

The changing face of natural products has probably been responsible for the increased resurgence 

of not a new, but refreshed and revitalized interest in naturally derived bioactives. Algae is 

currently receiving attention as potential sources for not only raw materials (as we have come to 

expect from industries such as those that produce algin for example) but pharmaceutically relevant 

bioactive compounds. A considerable number of brown algae are edible and metabolites such as 

fucoxanthin have been attributed to the additional health benefits discovered from consuming 

brown seaweeds. The concept of nutraceuticals inspired by societies such as from within Japan, 

China, India etc. has since developed into a standalone industry which could potentially be worth 

up to US $ 50 billion with the carotenoid market alone being projected at US $ 1.4 billion (2018). 

40 The increased market and industrial zeal has resulted in several concerns being raised regarding 

the safety, quality and efficacy of nutraceuticals, something that has triggered some form of 

regulation from the main regulatory bodies such as the WHO, USA’s FDA, Europe’s EMEA, the 

ICH and South Africa’s MCC. Regulation of herbal preparations is still a work in progress but it 

is inclined to treating nutraceuticals as allopathic medicines at least in terms of their preparation 

and analysis. Nutraceuticals still do not need to go through clinical trials, neither are they registered 

as safe or effective. Nutraceuticals and natural products from marine resources as a whole, may 

have a new lease of life after all, considering they still possess structural novelty, diversity, binding 

efficiency and the propensity to interact with molecular targets.  

Fucoxanthin is an inherent pigment in brown algae. It is both important (for photosynthesis) and 

characteristic (marker compound) to brown algae, making this type of seaweed an ideal source of 

the xanthophyll carotenoid. Fucoxanthin is purported to be a multifunctional biomolecule 

interacting with several targets within a biological system. This claim has emanated from the 

                                                           
40 Carotenoid Market Forecast: http://newhope360.com/supply-news-amp-analysis/carotenoid-market-forecast-grow-14-billion-

2018/ [Accessed 29 January 2014] 

http://newhope360.com/supply-news-amp-analysis/carotenoid-market-forecast-grow-14-billion-2018/
http://newhope360.com/supply-news-amp-analysis/carotenoid-market-forecast-grow-14-billion-2018/
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multiple tests that have been carried out in rodents and cultured human cells where the antiobesity, 

anticancer, antidiabetic and antioxidant activities have consistently been reported (Peng et al., 

2011) from the past two decades. Several other potential bioactivities have been identified such as 

antiplasmodial, cerebrovascular, hepatotoxic and ocular protection (Peng et al., 2011). The unique 

structure of fucoxanthin might as well be responsible for some of the superior biological activities 

exhibited by the molecule. There are only a couple of human studies reported where its antiobesity 

effects have been investigated (Abidov et al., 2010). These studies however have not gained 

official recognition from the main regulatory bodies because nutraceutical companies still claim 

that their specifications have not yet been approved by the FDA, neither have they been 

corroborated by any other regulatory body. However, since it is not required for herbal preparations 

to undergo the stringent clinical trials allopathic or synthetic medicine do, nutraceutical companies 

have developed and marketed formulations containing crude plant extract in the form of soft gels, 

capsules and patches to deliver fucoxanthin for slimming purposes. Examples are products such 

as FucoThin™.  

The synthesis of fucoxanthin has so far proved challenging in terms of time, resources and yields. 

There has thus been a lack of highly stable or high quantity reference standards. Extraction of the 

pigment from natural sources on the other hand, has proved reliable and relatively effective 

(Kanazawa et al., 2008). We needed a reference standard for the development of the analytical 

method that would be used to quantify fucoxanthin from diverse samples of different brown 

seaweed extracts. Fucoxanthin (BM13-73b) of high purity (99%) was successfully isolated from 

Sargassum incisifolium and kept stable by improved handling and storage conditions. The 

precautions when isolating fucoxanthin, have to be adhered to from the plant material and crude 

extracts to the final product. These include, working under reduced light, exclusion of air and light 

by flushing storage vessels with inert gas and covering them with aluminum foil whilst maintaining 

storage temperatures of -20°C. The use of step gradient chromatography followed by reversed 

phase semi-preparative HPLC was effective in repeatedly isolating and purifying high quality 

fucoxanthin. The NMR, IR, UV characteristics confirmed the isolated product, BM13-73b, to be 

authentic fucoxanthin when compared to both literature and when the same tests were carried out 

on the standard acquired from Sigma Aldrich® (see chapter 3).  
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A simple, rapid, and reproducible HPLC analytical procedure for the quantification of fucoxanthin 

in crude extracts was successfully developed and validated following the standards set by the ICH. 

HPLC-UV/Vis in a continuous and repetitive manner, is able to distinguish between components 

(including pigments) in an alga crude extract (methanolic or dichloromethane) and quantitate the 

individual components in a manner that is both simple to interpret and communicate. The 

versatility of the equipment (HPLC) demonstrated by the ability to change columns and effect a 

desired outcome, makes it a very ideal analytical procedure to determine the amount of fucoxanthin 

produced by different brown algae common to South Africa. The use of hyphenated systems may 

be very useful, especially coupling the HPLC system with an atmospheric pressure chemical 

ionization mass spectrum (HPLC-UV/Vis-APCI-MS) to confirm the identity of both fucoxanthin 

and of other components detected at the same wavelength (see Chapter 4).  

The main species commonly found in large enough masses on the coastline of South Africa are 

from the genera Sargassum, Zonaria, Ecklonia, Bifurcariopsis, Dictyopteris and Oerstedtia. A lot 

more other species (kelps) can be found on the south west coast. However from the selected 

species, Zonaria subarticulata (KOS130226-18) and Sargassum incisifolium (PA130427-1) from 

Kenton-on-Sea and Port Alfred respectively were found to have high fucoxanthin content. 

Sargassum spp. have been a reliable source of fucoxanthin from previous studies our research 

group has embarked on, but Zonaria spp. sometimes occurring in very simple structures relative 

to the Sargassum spp., may prove to be an equally good source. However to fully determine the 

best source of the pigment, several factors have to be considered. The life stage of the algae 

(Sargassum spp.), the morphology (leafy algae versus branchlike algae), growth rate 

(Laminariaceae and Kelp forests) and the season in which the identified algae produces peak levels 

of fucoxanthin may be some of the important factors. An independent study solely focusing on 

these factors, may be very important before targeting a particular algae for innovative and/or 

commercial production of fucoxanthin (cultivation) (see Chapter 5).  

The stability of fucoxanthin affects this study quantitatively in that if the compound degrades 

during handling, unreliable results are obtained especially during the method development and 

validation procedures. Degradation from external agents can be averted but it has to be understood 

and the rate at which it occurs, established. Our selected factors (light and pH) shed some much 

needed light on the degradation of fucoxanthin and how to control it. Fucoxanthin is light sensitive 
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and must be protected from light at every stage from extract to pure form. It is however more 

photostable in pure form than in extract form. The initial degradation products are cis isomers of 

the pigment before unknown species dominate which are possibly responsible for the accelerated 

degradation of fucoxanthin we observed with time. Fucoxanthin is unstable in aqueous 

environments. Alkaline conditions (specifically, pH 10) however, may impart some stability to the 

molecule. The behavior of the molecule in acidic conditions may impact significantly on the 

application of fucoxanthin in oral formulations where the conditions of the stomach are acidic for 

instance. Other external agents to concurrently protect fucoxanthin from, include air and high 

temperatures (see Chapter 6).  

The overall aim of the study was to find out which of the brown algae common to South Africa 

was the best suitable source of fucoxanthin. We wanted to achieve this using a simple, reproducible 

and effective analytical method to quantify the pigment from diverse samples of South African 

marine brown algae. The objectives to this aim where achieved and the knowledge gained opened 

up opportunities for future studies;  

1. To reliably source, harness and handle fucoxanthin (in appropriate conditions) in order to 

support our medicinal chemistry interests such as antiplasmodial and cytotoxicity 

activities. These may involve trying to understand the molecule’s pharmacophoric pattern 

and whether potent analogs can be synthesized.  

2. To analyze several commercial products of fucoxanthin e.g. FucoThin™ in order to 

determine how much fucoxanthin is actually being delivered in available formulations and 

whether this is consistently being achieved.  

3. To explore the possibility of manipulating the production of fucoxanthin from brown algae 

i.e. cultivation of seaweed for the purposes of harnessing larger amounts of fucoxanthin.  
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“The real voyage of discovery consists not in new landscapes, but in having new eyes”.  

Marcel Proust 



Appendix 1.1 

Footnote websites 

Carotenoid market 

 

 

Figure A1.1: Carotenoid market projection to US$1.4b in 2018 

 

 

 

 

 

 

 

 

 

 

 



Complimentary medicines and the MCC. 

 

 

Figure A1.2: The MCC and standard expected for complimentary medicines. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Physicochemical properties from Sigma-Aldrich® 

 

 

Figure A1.3: MSDS for fucoxanthin from Sigma-Aldrich®. 

 

 

 

 

 

 

 

 

 

 

 

 



Physicochemical properties of fucoxanthin from Cayman-Chemicals® 

 

 

Figure A1.4: Physicochemical data for fucoxanthin from Cayman-chemicals®. 

 

 

 

 

 

 

 

 

 

 

 

 



FucoThin™  

 

 

Figure A1.5: FucoThin website. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Brown seaweed plus™ 

 

 

Figure A1.6: Brown seaweed plus™. 

 

 

 

 

 

 

 

 

 

 

 



 

 

Fucoxanthin-Slim™ 

 

 

Figure A1.7: Fucoxanthin-Slim™ website.  

 

 

 

 

 

 

 

 

 

 

 



 

 

Fucoxanthin Diet Patch 

 

 

Figure A1.8: Fucoxanthin Diet Patch. 

 

 

 

 

 

 

 

 

 

 

 



 

 

EMEA guidelines regarding herbal products. 

 

 

Figure A1.9: EMEA guidelines for herbal products. 

 

 

 

 

 

 

 

 

 

 

 



 

 

WHO recommendation of HPLC in herbal extract analysis 

 

 

Figure A1.10: HPLC recommendation by the WHO for herbal extract analysis. 

 

 

 

 

 

 

 

 

 

 

 



 

 

HPLC method development with Agilent technologies 

 

 

Figure A1.11: Guiding principles during HPLC method development by Agilent technologies 

 

 

 

 

 

 

 

 

 

 

 



 

 

Analytical procedures: Method validation.  

 

 

Figure A1.12: Quantitation limit equation. 



Appendix 2.1 

The synthesis of fucoxanthin (Adapted from Ito et al., 1994) 

 

Formation of the C15-8-oxo compound 

(i) Synthesis of the C15-α-acetylenic alcohol from (4R, 6R)-4-hydroxy-2, 2, 6-trimethyl-

cyclohexanone:  
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Figure A2.1: Synthesis of the C15-α-acetylenic alcohol 

  

(ii) Reaction of the α-acetylenic alcohol (2) with tris (triphenylsilyl) 

vanadate/triphenysilylsilanol in refluxing xylene containing small amounts of benzoic acid. 

This reaction converts the α-acetylenic alcohol to an α-β- and β-γ-unsaturated ketones. 

The α-β-unsaturated ketone (3) is converted to β-γ-unsaturated ketone (4) by treatment in 

iodine in refluxing heptane.  
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Figure A2.2: Synthesis of the α-β- and β-γ-unsaturated ketones 



(iii) Formation of the C15-8-oxo-Wittig salt (A part in scheme 2.2). The β-γ-unsaturated ketone 

undergoes mild hydrolysis by potassium carbonate (K2CO3) followed by lithium chloride-

methane sulfonyl chloride complex (LiCl-MsCl) then triphenylphosphine (PPh3) refluxed 

in chloroform.  
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Figure A2.3: Synthesis of the C15-8-oxo-Wittig salt 

 

 

Formation of the C15-allenic phosphonium chloride 

(i) The C15-α-acetylenic alcohol/acetylenic diacetate (13) was converted into an allenic di-

hydroxy aldehyde before being acetylated and reduced by NaBH4 to give the allenic 

alcohol. The alcohol was treated with (LiCl-MsCl) and reacted with PPh3 to give the C15-

allenic phosphonium chloride.   
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Figure A2.4: Synthesis of the C15-allenic phosphonium chloride 

 



 

Synthesis of optically active fucoxanthin 

(i) The Wittig salt (A-part) was condensed with a C10 di-aldehyde in the presence of sodium 

methoxide (NaOMe) followed by the hydrolysis with 5% sodium hydroxide (NaOH). A 

mixture of (all-E)-8-oxo-apocarotenal and the 11Z-isomer was afforded. The latter was 

isomerized to the former on treatment with bis (acetonitrile) dichloropalladium (II) (PdCl2 

(CH3CN)2)  
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Figure A2.5: Synthesis of the (all-E)-8-oxo-apocarotenol 

 

(ii) The hydroxyl on the (all-E)-8-oxo-apocarotenol (21) was protected by triethylsilyl 

trifluoromethanesulfonate/γ-collidine (TESOtf/γ-collidine) and then condensed with C15-

allenic phosphonium chloride (B-part) with sodium methoxide as a base. The condensed 

products where acetylate and desilylated with tetra-n-butylammonium fluoride (n-bu)4 NF 

(TBAF) to provide (all-E)-fucoxanthin skeleton. The skeleton was then epoxidized with 

meta-chloroperoxybenzoic acid (MPCBA) to give a mixture of the syn-epoxide and anti-

epoxide in the ratio of 7:2.  
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Figure A2.6: Synthesis of the syn- and anti-epoxide fucoxanthin 

 

In summary, the synthesis of fucoxanthin follows the building principle of condensing C15 (A 

part) + C10 (di-aldehyde) + C15 (B Part) to give a C40 backbone (see section 2.4). 
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Figure A2.7: Summary of the synthesis of (all-E)-fucoxanthin 

 

Reference 

Ito, M., Yamano, Y., Sumiya, S. and Wada, A. Recent progress in carotenoid and retinoid 

synthesis. Pure and Applied Chemistry 1994, 66: 939-939. 



Figure A3.1: 1H NMR for S. incisifolium crude extract (CDCl3, 600 MHz) 

Appendix 3.1.  

NMR spectra for fucoxanthin  

 

Preliminary step-gradient fractions for Sargassum incisifolium (BM13-crude (16) 

 

 

    

 

 

 

 

Figure A3.2: 1H NMR for fraction 1 (CDCl3, 600 MHz) 
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Figure A3.3: 1H NMR for fraction 2 (CDCl3, 600 MHz) 

 

 

 

 

 

Figure A3.4: 1H NMR for fraction 3 (CDCl3, 600 MHz). 
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Figure A3.5: 1H NMR for fraction 4 (CDCl3, 600 MHz) 

 

 

 

 

 

 

Figure A3.6: 1H NMR for fraction 5 (CDCl3, 600 MHz) 

 

 

BM13_5 (16) 

Hexane/EtOAc (6:4) 

BM13_4 (16) 

Hexane/EtOAc (8:2) 



 

Figure A3.7: 1H NMR for fraction 6 (CDCl3, 600MHz) 

 

 

 

 

Figure A3.8: 1H NMR for fraction 7, fucoxanthin rich (CDCl3, 600 MHz).  
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Figure A3.9: 1H NMR for fraction 8 (CDCl3, 600 MHz) 

 

 

 

 

 

Figure A3.10: 1H NMR for fraction 9 (CDCl3, 600 MHz) 
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Figure A3.11: 1H NMR for fraction 10 (CDCl3, 600 MHz) 

 

 

 

 

 

 

 

 

 

 

 

 

BM13_10 (16) 

100% Methanol 



More step gradient fractions (used in the study) for Sargassum 

incisifolium BM13_ (22) 

 

 

Figure A3.12: 1H NMR for fraction 1 (CDCl3, 600 MHz) 

 

 

 

 

Figure A3.13: 1H NMR for fraction 2 (CDCl3, 600 MHz) 
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Figure A3.14: 1H NMR for fraction 3 (CDCl3, 600 MHz) 

 

 

 

 

 

Figure A3.15: 1H NMR for fraction 4 (CDCl3, 600 MHz) 
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Figure A3.16: 1H NMR for fraction 5 (CDCl3, 600 MHz) 

 

 

 

 

 

Figure A3.17: 1H NMR for fraction 6, fucoxanthin-rich (CDCl3, 600 MHz) 
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Figure A3.18: 1H NMR for fraction 7 (CDCl3, 600 MHz) 

 

 

 

 

 

Figure A3.19: DEPT-135 spectrum for BM13-73b (CDCl3). 
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Figure A3.20: COSY spectrum for BM13-73b (CDCl3). 

 

 

 

Figure A3.21: HSQC spectrum for BM13-73b (CDCl3).  

 



 

 

 

Figure A3.22: HMBC spectrum for BM13-73b (CDCl3).  

 

 

 

Figure A3.23: NOESY spectrum for BM13-73b (CDCl3). 



Appendix 3.2  

UV/Vis and FT-IR spectra for fucoxanthin  

(Adapted from Rajauria and Abu-Ghannam, 2013).  

 

Rajauria and Abu-Ghannam (2013) compared standard fucoxanthin to the sample they had isolated 

from Himanthalia elongata. Our sample BM13-73b, agreed with their findings (see section 

3.2.2.2).  

 

Figure A3.24: UV-Vis and FT-IR comparisons of fucoxanthin isolated from Himanthalia 

elongata and a standard. Adapted from Rajauria and Abu-Ghannam (2013).  
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Appendix 4.1 

Method Validation 

 

Some of the studies i.e. linearity, accuracy, LOD and LOQ tests were carried out over three days 

in order to fulfill the requirements of the ICH guidelines. All these studies require nine 

determinations therefore each concentration was replicated 3 x 3 times. Day 1 results are shown 

in the main manuscript (see section 4.2.2.1, 4.2.2.2 and 4.2.2.3). Data for Days 2 and 3 and shown 

here. 

 

Linearity Studies 

 

 

Figure A4.1: Linearity studies for BM13-73b – Day 2. 
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Table A4.1: Linearity studies for BM13-73b – Day 2. 

 

 

 

 

 

 

 

Figure A4.2: Linearity studies for BM13-73b – Day 3. 
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      Day 2       

       Conc. (µg/mL)       

Conc. 

(µg/mL) 1 2 3 Mean  SD (n =3) RSD 

                

50.0 50.4 48.7 48.8 49.3 0.95 1.93 

25.0 27.2 25.6 26.1 26.3 0.81 3.07 

10.0 10.1 10.2 10.3 10.2 0.12 1.17 

5.0 5.3 4.8 5.0 5.0 0.24 4.83 

1.0 0.9 1.0 0.9 0.9 0.02 2.45 

0.5 0 0 0 0 0 0.00 



Table A4.2: Linearity studies for BM13-73b – Day 3 

      Day 3       

       Conc. (µg/mL)       

Conc. 

(µg/mL) 1 2 3 Mean  SD RSD 

                

50.0 51.3 51.0 50.6 51.0 0.34 0.66 

25.0 25.1 25.1 25.7 25.3 0.33 1.31 

10.0 10.5 10.6 10.7 10.6 0.12 1.09 

5.0 5.1 5.0 4.9 5.0 0.09 1.71 

1.0 1.0 1.0 1.0 1.0 0.03 2.73 

0.5 0.5 0.5 0.53 0.5 0.00 0.42 

 

 

Accuracy studies  

 

Table A4.3: Accuracy studies for BM13-73b – Day 2 

                               Accuracy Day 2  

Conc. 

 µg/mL Conc. (µg/mL) Mean Std. dev. RSD Accuracy % 

  1 2 3     

         

50 (49.3) 48.8 48.6 48.1 48.5 0.37 0.76 98.3 

25 (26.3) 26.5 27.0 26.3 26.6 0.37 1.39 101.1 

5 (5.0) 5.0 4.9 4.9 4.9 0.02 0.47 98.9 

         

 

 

Table A4.4: Accuracy studies for BM13-73b – Day 3 

Accuracy Day 3 

  Conc. (µg/mL)     

Conc. µg/mL 1 2 3 Mean Std. dev. RSD Accuracy % 

        

50 (51.0) 50.2 49.9 50.1 50.1 0.14 0.28 98.2 

25 (25.3) 25.2 25.5 24.8 25.2 0.37 1.45 99.4 

5 (5.0) 5.0 4.9 4.9 4.9 0.05 1.09 100.9 



LOD and LOQ studies 

 

 

Figure A4.3: LOD and LOQ determinations for BM13-73b using response, standard deviation 

and slope – Day 2.  

 

 

Table A4.5: LOD and LOQ determinations for BM13-73b – Day 2 

 LOD/LOQ determinations Day 2  

Conc. µg/mL  Conc. (µg/mL) Mean Std. dev.  RSD 

      

1.06 1.06 1.06 1.06 1.06 0.002 0.17 

0.53 0.52 0.52 0.53 0.52 0.004 0.75 

0.11 0.11 0.11 0.11 0.11 0.002 1.95 

0.05 0.05 0.05 0.05 0.05 0.001 1.13 

0.01 0.01 0.01 0.01 0.01 0.000 0.00 
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Figure A4.4: LOD and LOQ determinations for BM13-73b by calculation using response, 

standard deviation and slope – Day 3. 

 

 

Table A4.6: LOD and LOQ determinations for BM13-73b – Day 3 

 LOD/LOQ determinations Day 3  

Conc. µg/mL Conc. µg/mL Mean Std. dev.  RSD 

     

1.06 1.06 1.06 1.06 1.06 0.001 0.07 

0.53 0.52 0.53 0.53 0.53 0.005 0.85 

0.11 0.11 0.11 0.11 0.11 0.001 0.82 

0.05 0.05 0.05 0.05 0.05 0.000 0.34 

0.01 0.01 0.01 0.01 0.01 0.000 0.00 
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Appendix 6.1 

pH degradation of fucoxanthin: Products 

 

Reactions of fucoxanthin in acidic conditions 

 

Fucoxanthin is extremely unstable in acidic conditions as discussed in (see section 6.2.2). Under 

pH 1.0 conditions, the product was a blue precipitate. The formation of blue oxonium ions has 

been reported in literature when fucoxanthin was exposed to strong acids. Weaker acids produce 

the yellow to orange hemiketal (Haugan and Leanne-Jensen, 1994; Leanne-Jensen and Andersen, 

2008).  
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Scheme A6.1: The formation of oxonium ions (blue) and hemiketals (yellow-orange) under acidic conditions 



Reactions of fucoxanthin in basic conditions 
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Scheme A6.2: The formation of the hemiketal under basic conditions 

 

Other products reported by Haugan et al., (1992) including fucoxanthinol and its hemiketal, 

isofucoxanthin and its isofucoxanthinol are shown in (Fig A6.1 – 6.5). 
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Figure A6.1: The structure of isofucoxanthin 
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Figure A6.2: The structure of isofucoxanthinol 
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Figure A6.3: The structure of fucoxanthinol. 
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Figure A6.4: The structure of fucoxanthinol hemiketal. 
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Figure A6.5: The structure of fucoxanthin hemiketal 
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Standard fucoxanthin from Sigma Aldrich® (94%) 
 

Fucoxanthin acquired from Sigma (R587/mg) was not used as a reference standard because it was 

possible to isolate and purify sufficient quantities of fucoxanthin (99%) from Sargassum 

incisifolium (see Chapter 3). Isolation of our own fucoxanthin was both cheaper and made it 

possible to have sufficient quantities for the method development process. 

 

 
Figure S1: Fucoxanthin from Sigma (94%) 

 

 

 



Standard β-carotene from Sigma Aldrich® (95%) 

 
β-carotene could not be used as an internal standard because the carotenoid is also found in most brown 

algae. The corresponding peaks would therefore interact and distort quantification (see Chapter 3). 

 

Figure S2: (a) Standard β-carotene from Sigma (b) Zonaria subarticulata methanol extract 

containing β-carotene 



Standard canthaxanthin from Sigma Aldrich® (94%).  

 
The use of canthaxanthin as an internal standard was also attempted. Solubility of both β-carotene 

and canthaxanthin in MeOH was poor and the best chromatogram for canthaxanthin required the 

use of 10% TCM or THF in ACN as a solvent. Two issues were identified (i) the use of 

canthaxanthin would require altering the developed method in terms of solvent and mobile phase 

and (ii) would result in long retention times. External calibration was therefore preferred. 

 

 
Figure S3: Canthaxanthin dissolved in MeOH. 

 

 



 
Figure S4: Canthaxanthin dissolved in THF: ACN (1:9) 

  



A crude methanol extract spiked with pure fucoxanthin 
A crude methanol extract of Sargassum incisifolium was spiked with pure fucoxanthin to 

demonstrate the presence of fucoxanthin in the extract. An summative peak height and area was 

observed.  

 

 

Figure S6: (a) Sargassum incisifolium MeOH extract (b) Sargassum incisifolium MeOH 

extract spiked with pure fucoxanthin 



A comparison of profiles from acetone, ethanol, methanol and 

dichloromethane/methanol extracts of Sargassum incisifolium  

 
A comparison was made on the extraction powers of different solvents. This was done to assess the best 

solvent for the extraction of fucoxanthin in a crude extract. MeOH (c)afforded the most fucoxanthin.  

                      

 

 

  
Figure S7: (a) Dichloromethane/Methanol extract (b) Acetone extract (c) Methanol extract (d) 

Ethanol extract 

a b c 

d 



Crude extract analysis of several brown algae 
The brown algae under study were screened for fucoxanthin content. In the preliminary study, the algae 

was simply crushed using liq. N2 whilst in the final study the algae were systematically size reduced by 

crushing using liq. N2, freeze dried and ground to a fine powder of uniform particle size. The effect of 

pulverization and changing columns was observed across all genera to improve analysis both qualitatively 

and quantitatively.   

 

Zonaria subarticulata  

 

 
 

 
Figure S8: (a) on an Xterra® 150 x 4.6 mm i.d. from crushed alga (b) on a Phenomenex® 

Synergi™ 250 x 3.0 mm i.d. from freeze dried pulverized alga 

a 

b 



Zonaria tournefortii 
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Figure S9: (a) on an Xterra® 150 x 4.6 mm i.d. from crushed alga (b) on a 

Phenomenex® Synergi™ 250 x 3.0 mm i.d. from freeze dried pulverized alga 



Sargassum incisifolium  
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Figure S10: (a) on an Xterra® 150 x 4.6 mm i.d. from crushed alga (b) on a 

Phenomenex® Synergi™ 250 x 3.0 mm i.d. from freeze dried pulverized alga. 



Ecklonia radiata  

 

  

 
Figure S11: (a) on an Xterra® 150 x 4.6 mm i.d. from crushed alga (b) on a Phenomenex® 

Synergi™ 250 x 3.0 mm i.d. from freeze dried pulverized alga. 

a 

b 



Bifurcariopsis capensis  

 

 

 

 

 

 

 

Figure S12: (a) on an Xterra® 150 x 4.6 mm i.d. from crushed alga (b) on a 

Phenomenex® Synergi™ 250 x 3.0 mm i.d. from freeze dried pulverized alga. 

a 
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Dictyopteris spp. 

 

 

 

a 

Figure S13: (a) on an Xterra® 150 x 4.6 mm i.d. from crushed alga (b) on a 

Phenomenex® Synergi™ 250 x 3.0 mm i.d. from freeze dried pulverized alga 



 

Oerstedtia scalaris  

 

 

 

Figure S14: (a) on an Xterra® 150 x 4.6 mm i.d. from crushed alga (b) on a Phenomenex® 

Synergi™ 250 x 3.0 mm i.d. from freeze dried pulverized alga 

b 

a 
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