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Abstract 

 

This thesis presents solid phase extraction (SPE) methodologies based on mixed-mode polymeric 

sorbents; a mixed mode strong anion exchanger (Agilent SampliQ SAX) and a mixed mode 

strong cation exchanger (Agilent SampliQ SCX). Furthermore, dispersive-SPE based on a quick, 

easy, cheap, effective, rugged and safe (QuEChERS) method was assessed for applicability in 

the determination of drug residues. The mixed-mode polymeric sorbents were evaluated for the 

simultaneous fractionation of drugs that exhibit diverse polarities with acidic, basic and neutral 

functionalities in biological matrices (plasma and urine). The polymeric skeleton of these 

sorbents entails an exchanger group and therefore provides two retention mechanisms, strong 

cation or anion exchange retention mechanisms with hydrophobic interactions. It was 

demonstrated that with a sequential elution protocol for sample clean-up analytes were 

fractionated into acidic, basic and neutral classes.  The SAX was employed for analysis of 

ketoprofen, naproxen (acidic drugs), nortriptyline (basic) and secobarbital (neutral) from urine 

sample. The SCX was used for fractionating phenobarbital, p-toluamide (acidic), amphetamine, 

m-toluidine (basic) and acetaminophen (neutral drug) from plasma sample. QuEChERS method 

was employed for quantitative determination of 16 polycyclic aromatic hydrocarbons (PAHs) 

from fish fillets and soil; 9 sulfonamides (SAs) from chicken muscles and acrylamide (AA) in 

cooking oil. The analyte recoveries ranged from 79.6 - 109% with RSDs ranging from 0.06 - 

1.9% at three different fortification levels. Good linearity (r
2
 > 0.9990) was attained for most 

analytes. The limits of detection and quantification ranged from 0.03 - 0.84 µg/ml and 0.81 - 

1.89 μg/ml respectively for analytes in biological samples. LODs and LOQs for analytes in food 

and environmental samples ranged from 0.02 to 0.39 and 0.25 to 1.30 ng/g respectively. 
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CHAPTER 1 

 

Background 

 

1.1 Introduction 
 

Drugs, depending upon the point of use and their concentration have beneficial as well as 

detrimental effects. A variety of analytical instrumentation has been employed for qualitative and 

quantitative analysis of drugs in countless circumstances. These include clinical control for 

diagnosis and treatment of diseases, doping control to monitor the use of drugs that stimulate the 

build-up of muscles mass as well as forensic toxicology to test for abuse of illegal drugs [1]. In 

addition, the widespread use of pesticides in agriculture and of veterinary drugs with therapeutic 

or growth promoting effects in zootechnics is a cause for concern.  The effects of indirect 

exposure to food contaminated with drug residues have raised the demand for screenings of 

xenobiotics in foodstuffs before marketing [2]. Despite advances in sensitivity of analytical 

instrumentation for the end point determination of analytes in the environmental and other 

domains, sample handling is usually required to extract and isolate analytes of interest from 

complex matrices [3].  

 

The objectives of this thesis were to evaluate and optimise the application of sample handling 

techniques based on solid phase extraction (SPE). Mixed-mode polymeric SPE sorbents were 

assessed for the simultaneous extraction of drugs with a diverse polarity and acidic, basic or 

neutral functionalities from biological matrices. In addition, the QuEChERS (Quick, Easy, 

Cheap, Effective, Rugged, and Safe) method was assessed for the analysis of drug residues from 

food and environmental matrices. 
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1.2 Sample Handling 
 

Sample handling refers to any action applied to the sample before the analytical procedure [4]. 

Sample handling incorporates a number of processes that include: sampling and sample 

preparation (e.g. sample pretreatment, extraction, clean up and sample enrichment). Thorough 

sample handling is very important; it ensures the integrity of samples as well as prevents 

deterioration and cross contamination. Furthermore, it helps in maintaining sample tracking and 

in safety measures [5].  

 

Sampling and sample preparation generally account for about 80% of the whole analysis time 

[6]. 

 

1.2.1 Sampling 

 

Sampling is a process of collecting small portions (samples) that are representative of the whole 

population. By sampling only a fraction of the population, quality estimates can be obtained 

accurately, quickly, with less expense and time than if the whole population were measured. 

Since virtually no food material can be analyzed in its entirety, careful sampling techniques are 

required to obtain representative, laboratory-sized primary samples, in addition to subsequent 

subsamples, or secondary samples [7]. 

 

The size of the sample selected for analysis largely depends on the expected variations in 

properties within a population, the seriousness of the outcome if a bad sample is not detected, the 

cost of analysis and the type of analytical technique used.  Based on this information it is often 

possible to use statistical techniques to design a sampling plan that specifies the minimum 

number of sub-samples that need to be analyzed to obtain an accurate representation of the 

population [8]. 
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Furthermore, a checklist is usually devised as a guideline for carrying out an effective sampling 

strategy. The following checklist (see Table 1.2.1) was designed by Janusz Pawliszyn for drug 

analysis [9]. 

Table 1.2.1: Checklist in carrying out an effective sampling strategy for drug analysis [9] 

 

Checklist: 

1. What are the data quality objectives? 

2. Is specialized sampling equipment needed and/or available? 

3. Are the samplers experienced in the type of sampling required /available? 

4. Have all the analytes been listed? Have the detection level and methods been specified for each 

analyte? 

5. Are the entire analytes stable in the sample? Is a special preservation method needed after the 

sampling? 

6. Are there specific types of quality control samples? Does the instrument require optimization of its 

operating parameters? 

7. What type of sampling approach will be used? Random, systematic, judgmental or a combination of 

these? 

8. Will the type of sampling meet the data quality objectives? Is the sampling approach compatible 

with the data analysis method? 

9. How many samples are needed? How many methods are specified? How many test samples are 

needed for each method? 

10. What types of quality control samples are needed? How many exploratory samples are needed? How 

many supplementary samples will be taken? 
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1.2.2 Sample preparation 

 

Sample preparation brings about the extraction of chemical residues from a sample with 

subsequent purification of the extract. Additionally, the residues of interest are isolated and any 

matrix interferences that may affect the detection system removed. Even with the advancement 

of separation and detection techniques, sample preparation is still a vital part of the analytical 

process. An effective sample preparation is essential to achieve reliable results and maintain 

instrument performance. Use of ideally cleaned samples also reduces the time to maintain 

instruments and in turn the cost of assay [10].  

 

Sample preparation impacts nearly all the assayed steps and is hence critical for unequivocal 

identification, confirmation and quantification of analytes. Generally, a clean sample assists to 

improve separation and detection, while a poorly treated sample may invalidate the whole assay 

[11]. 
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Sample preparation and sampling entail a series of unit operations, each operation/process 

capable of a specific task. These processes are the fundamental building blocks for any analytical 

procedure that can be matched to an analytical challenge at hand [12]. Lists of typical operations 

that are usually employed for sample handling are given in Fig. 1.2.1.  

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 1.2.1: Classification of Sampling and Sample Preparation unit operations [12] 

 

 

 

 

 

 

    Sample collection 

 

• Suction 

• Drawing 

• Cutting 

• Pipetting 

 

 

    Drug release from matrix 

 

 

 Hydrolysis:    Acid 

                         Base 

                         Enzyme  

 

 



6 

 

                                                                                                                                                                             Chapter 1 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

…continuation of Fig. 1.2.1 [12] 

 

 

• Sonication 

• Centrifugation 

• Dilution 

• Evaporation 

• Filtration 

• Salting out 

 

 

 Removal of interfering 
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 Removal of endogenous 
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• Precipitation 

• Ultra-filtration 

• Dialysis 

• Liquid-liquid extraction 

• Supercritical fluid extraction 

• Solid phase extraction 

• Solid phase micro-extraction 

• Immunoaffinity extraction 
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enhancement of sensitivity 
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• Pre-column derivatization 

• Post-column derivatization 

 

 

  Liquid handling 
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1.2.2.1 Drug release from matrix 

 

Drugs that have been conjugated typically with proteins, glucuronides or sulphate moiety need to 

be released or be made available to the assay [13 - 14]. Biological matrices are usually 

hydrolysed to release the drugs. Hydrolysis can be performed either by enzymes, acids or bases. 

Acidic or basic hydrolysis usually presents harsher conditions i.e. extremes of both pH and 

temperature can be encountered but they take less time and give cleaner extracts relative to 

enzymatic hydrolysis [15 - 16]. Food matrices are at times subjected to hydrolysis by enzymes 

(e.g. protease) [17].  

 

1.2.2.2 Liquid handling Procedures 

 

The liquid handling procedures provide a link amongst the sample preparation operation units. 

Procedures for liquid handling include addition, mixing, removal or transfer of liquids. In both 

research and routine laboratory work the reliable measurement and dispensing of samples and 

reagents, which usually employs pipetting, is essential for the success of a quantitative analysis. 

Traditionally, pipetting has been done almost exclusively by suction using glass pipettes. Single- 

and multichannel mechanical pipettors and disposable tips were developed by the end of 1960s 

[18]. The observation was that mechanical air-displacement pipettors belong to the standard 

equipment of all laboratories and that new demands on more convenient and accurate pipetting 

devices have resulted in the development of electronic pipettors.  
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For drug residue analysis concentrations are in trace amount and a small error in pipetting can 

therefore cause a large error in the final result. The following are pointers on pipetting, as a 

precaution to minimize error [19]: 

 The pipettor/tip should be chosen in a manner that will allow minimal air 

space between the piston and the liquid. 

 The tip should not be placed too deep, but just under the surface of the 

liquid in the reservoir (2-3 mm). 

 Pre-wetting the tip improves both accuracy and precision. 

 The pipettor should be held vertically, not at angle. 

 The aspiration should be done slowly. 

 

Liquid handling is labor-intensive and often a rate-limiting step for sample preparation [9]. 

 

1.2.2.3     Removal of interfering matrix components 

 

The analysis of complex matrices (e.g. in environmental, pharmaceutical, biochemical, organic 

chemistry and food industries) requires sample handling steps aimed at the removal of unwanted 

matrix constituents from the sample. For the increasingly sensitive chromatographic analyses 

good sample preparation is essential, because it protects the chromatographic columns and it 

allows a greater sensitivity by removal of interfering matrix components. A selective and specific 

sample preparation thus is a prerequisite for reasonable, economical and sensitive analyses [20]. 
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A number of approaches to the removal of matrix interference have been reported. For instance, 

solid-phase extraction (SPE) is the predominant clean-up technique. However, the high matrix 

load of complex biofluids affects the efficiency of this extraction technique and gives rise to co-

elution of interfering substances. This is particularly true for proteins, because many 

commercially available SPE sorbents are not biocompatible and cause non-specific adsorption 

and/or precipitation of proteins. With on-line SPE this, in turn, causes a clogging of the SPE 

column and shortens its lifetime dramatically. As a result, most sample clean-up procedures 

include a protein precipitation step in order to prevent these effects [21]. 

 

Examples of some of the approaches that have been employed for the removal of interfering 

matrix components include; solid phase micro-extraction (SPME) [22, 23]; liquid–liquid–liquid 

microextraction (LLLME) [24]; stir-bar sorptive extraction (SBSE) [25]; supported liquid 

membrane extraction (SLME) [26]; supercritical fluid extraction (SFE) [27]; QuEChERS [28 – 

37] and microdialysis [38 – 39]. 
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1.2.2.4 Procedures for enhancement of sensitivity and selectivity 

 

 

In LC analyses, UV chromophores and fluorophores are often introduced into sample molecules 

to increase their sensitivity to UV absorption and fluorescence detection respectively. Benzoyl 

chloride, m-toluol chloride and p-nitrobenzoyl chloride are reagents that can add a benzene ring 

to a solute molecule and render it UV absorbing. To introduce UV chromophores into a solute 

containing a carbonyl group, 3, 5-dinitrophenylhydrazine and p-nitrobenzylhydroxylamine are 

probably the two most common and effective reagents. To prepare fluorescent derivatives of 

phenols, and primary and secondary amines, dansyl chloride (5-dimethyl aminonaphthalene-1-

sulphonyl chloride) is strongly recommended. Another fluorescent derivative is 4-chloro-7-

nitrobenz-2,1,3-oxadiazole (NBD chloride) which provides highly fluorescent derivatives of 

primary and secondary amines but aromatic amines, phenols and thiols only yield weakly or non 

fluorescent derivatives [40].   

 

For GC, non-volatile substances may be volatilized to render them amenable to detection. 

Silylating reagents are commonly used for GC derivatization. They have different functional 

groups (hydroxyl, carboxyl, amidic and amino groups) which render them versatile as 

derivatizing reagents [41 – 42].  
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CHAPTER 2 

 

Sample Preparation Techniques 

 

2.1 Overview 

 

The extraction of analytes is based on differences in their chemical and physical properties. 

These typically include molecular weight, charge, solubility (hydrophobicity), polarity, or 

differences in volatility. Some extraction methods, such as immunoaffinity and imprinted 

polymers, utilise selectivity for specific structural groupings or mimic a biological selectivity. 

Furthermore, extraction of analytes is influenced by the penetration of solvent into the sample 

(mass transfer) and matrix effects. Solid samples are usually prepared by grinding directly or 

after drying, followed by solvent or liquid extraction. Organic or aqueous solvents are used to 

extract the analyte of interest, mostly followed by concentration or additional clean-up. These 

extract solutions can then be treated as liquid samples. Liquid samples can be handled directly by 

solvent–solvent extraction methods or sorption methods [43]. 

 

The basis of extraction procedures is described by the Nernst Distribution law as shown by Eqn. 

2.1 [44].   
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Where; K = Nernst Distribution, C1/ C2 = ratio of concentration of analyte in the upper phase/ 

concentration of the analyte lower phase, w = Extraction efficiency, V = ratio of volume in the upper 

phase/ volume in the lower phase, n = Number of cycle.       

    

 At constant temperature, a solute distributes itself between two immiscible phases such that the 

ratio of its concentrations in the two phases is constant. The distribution ratio between the two 

phases is influenced by: choice of the extracting solvent, pH value of the aqueous phase and the 

ratio of the volumes of the organic to aqueous phases. The extraction efficiency (2.2) is deduced 

from Eq. (2.1). 

 

This chapter presents some of the sample preparation techniques employed for drug analysis and 

they include Soxhlet, supercritical fluid extraction, liquid-liquid extraction, solid-phase 

extraction based techniques (restricted access material, immunoaffinity extraction and 

molecularly imprinted polymers) and sorptive extraction (solid phase micro-extraction and stir 

bar sorptive extraction). 

 

 

(2.1) 

(2.2) 
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2.2 Soxhlet  
 

In 1879 Franz Soxhlet assembled a set of extraction apparatus that was named after him, to 

separate lipids from solid samples [45]. Many applications of Soxhlet extraction are for 

environmental samples, such as soils, but it has been used for analysis of food particularly fat 

content or as a preliminary extraction technique for fat soluble analytes followed by further 

clean-up [46, 47]. It has also been used for the extraction of antioxidants from herbs and 

spices [48]. The Soxhlet equipment stimulated a great deal of interest because lengthy 

extractions could be performed unattended. Since then, the extraction of the compounds of 

interest into a suitable organic solvent has gained popularity in food and environmental analysis. 

In addition, there is no filtration, the extraction temperature is elevated hence the sample is 

repeatedly brought into contact with fresh solvent. Both polar and non-polar solvents can be 

used. The disadvantages of this technique are that it requires large quantities of solvent (300–500 

ml). Furthermore, the solvent must be evaporated to concentrate analytes before determination. 

Thermally labile compounds can degrade due to elevated temperatures involved. The other 

limitation is that Soxhlet extraction is a single sample run that takes several hours or days to 

complete [49]. 

 

Most of the modifications have been aimed at bringing Soxhlet closer to that of the more recent 

techniques for solid sample preparation by shortening leaching times with the use of auxiliary 

energies and automating the extraction assembly [50]. High pressure, ultrasound or microwaves 

have been employed to minimise the negative characteristics of the conventional extractor (see 

Fig. 2.2.1). Further, automation of Soxhlet opened the door to commercialization of a number of 

different approaches such as the microwave assisted Soxhlet extraction. 
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Figure 2.2.1: Conventional Soxhlet extractor [49] 

 

 

 

Supercritical fluid extraction is one of the techniques that have emerged as an alternative to the 

traditional Soxhlet method.  
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2.3 Supercritical fluid extraction (SFE) 
 

SFE resembles Soxhlet extraction, but the solvent used is a supercritical fluid, a substance above 

its critical temperature and pressure, which provides an unusual combination of properties. 

Supercritical fluids diffuse through solids similarly to gases, but dissolve analytes comparably to 

liquids. The extraction rate is enhanced and less thermal degradation occurs [51, 52]. In addition, 

sample handling can be done with non-polluting, non-toxic supercritical fluids, such as carbon 

dioxide, which is an excellent alternative to the potentially hazardous and expensive solvents 

used in Soxhlet extraction. 

 

The high rate of penetration of the supercritical fluid in solid samples, such as food, even if 

slightly porous, permits fast back-diffusion of analytes, reducing extraction time. The complete 

step is performed in less than 20 min instead of several hours as required in traditional liquid-

solid extraction. The technique can also be applied to thermally unstable analytes when using 

supercritical fluids with low critical temperature. One of the most interesting properties of these 

fluids is the direct relationship of solvent strength to density. Since the density of the fluid is a 

function of its temperature and pressure, precise control of these parameters allows a solvent 

with a narrow window of solvating strength to be obtained. It is possible, therefore, to substitute 

a variety of conventional solvents with a single supercritical fluid [53]. Supercritical fluid 

extraction equipment is fairly simple, as outlined in Fig. 2.3.1. 
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Fig. 2.3.1: Schematic of SFE equipment: (a) modifier supply, (b) pump, (c) extraction cell, (d) 

furnace, (e) to collection, (f) flow restrictor, (g) fluid supply, (h) filter and (i) dual high-

pressure piston pump [53].  

 

Selectivity and sample enrichment capabilities are limited for most of the solid sample 

techniques such as Soxhlet and SFE and usually require further clean-up and/or concentration 

steps for the determination of trace analytes. Extraction methods for liquid samples are based on 

partitioning into an immiscible extracting phase and can be used for a further clean-up of 

sample extracts obtained from the extraction of solids [54]. Liquid-liquid extraction is one of the 

solvent extraction techniques that maybe employed for a further clean-up. 
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2.4 Liquid-liquid extraction 
 

Liquid–liquid extraction is based on the relative solubility of an analyte in two immiscible phases 

and is governed by the equilibrium distribution/partition coefficient (see Eqn. 2.3). Extraction of 

an analyte is achieved by the differences in solubilising power (polarity) of the two immiscible 

liquid phases. Liquid–liquid extraction is traditionally one of the most common methods of 

extraction, particularly for organic compounds from aqueous matrices [55].  

 

The behavioral pattern of two immiscible solvents, say ‘a’ and ‘b’, is essentially non-ideal with 

respect to one another. If a third substance is made to dissolve in a two-phase 

mixture of the solvents (i.e., ‘a’ and ‘b’), it may behave ideally in either phase provided its 

concentration in each individual phase is approximately small. Therefore, the ratio of the mole 

fractions of the solute in the two respective immiscible phases (‘a’ and ‘b’) will be a constant 

which is absolutely independent of the quality of the solute present. The constant (K) is known 

as the distribution coefficient or the partition coefficient [56].  

 

b

a

C

C
K                           (2.3)               

                    

Where; Ca = concentration of solute in solvent ‘a’, Cb = concentration of solute in solvent ‘b’ 

 

The Partition Law offers the following two limitations: 

(a) K is not thermodynamically rigorous i.e., it takes no cognizance of the activities of the 

different species. In other words, it is solely applicable to very dilute solutions in which case the 

ratio of the activities almost approaches unity, and 

(b) It does not hold good when the distributing substances encounters association or 

distribution in either phases (i.e., ‘a’ and ‘b’) 
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Liquid–liquid extractions are usually accomplished with a separating funnel. The two liquids are 

placed in the separating funnel and shaken to increase the surface area between the phases. When 

the extraction is complete, the liquids are allowed to separate; with the denser phase settling to 

the bottom of the separating funnel [Fig. 2.4.1].  

  

Figure 2.4.1: Liquid-liquid extraction [57] 

 

The main advantage of LLE is the wide availability of pure solvents and the use of low cost 

apparatus. However, the technique suffers from some major drawbacks which include: 

 Extracting with large amounts of toxic organic solvents results in the generation of 

vapors, which if not well vented to the atmosphere, could be hazardous.  

 Additional clean-up steps are necessary.  
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 The technique is not suitable for highly polar compounds. 

 The conditions used to evaporate the solvent may lead to low recovery of analytes due to 

degradation by heat, volatilization or adsorption to glass. 

 The possible formation of emulsions when the immiscibility of the two phases is 

insufficient.  

 The extraction and removing of waste solvent from a site are time consuming and 

expensive. 

 The procedure is also not amenable to automation because several disjointed steps are 

usually required. 

 

 

LLE is generally time consuming and labor intensive. Furthermore, LLE requires careful 

monitoring of extraction conditions such as temperature, pH and ionic strength. Due to these 

short comings, LLE tends to be replaced by solid phase extraction (SPE). SPE is attractive as it 

reduces consumption of and exposure to solvents, their disposal costs and extraction time [58].   
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2.5 Solid Phase Extraction 
 

 The principle of SPE is similar to that of LLE as it also involves partitioning of solutes between 

two phases. However, instead of two immiscible liquid phases, as in LLE, SPE involves 

partitioning between a liquid (sample matrix or solvent with analytes) and a solid phase (sorbent) 

[59]. SPE enables the concentration and purification of analytes from solution by sorption on a 

solid sorbent. The basic approach involves passing the liquid sample through a column, a 

cartridge, a tube or a disk containing an adsorbent that retains the analytes. After the entire 

sample has been passed through the sorbent, retained analytes are subsequently recovered upon 

elution with an appropriate solvent [60]. 

 

Basic SPE principles 

 

An SPE technique consists of four to five successive steps (see Fig 2.5.1). First, the solid sorbent 

should be conditioned using an appropriate solvent, followed by the same solvent as the sample 

solvent (equilibration). This step is crucial, as it enables the wetting of the packing material and 

the solvation of the functional groups. In addition, it removes possible impurities initially 

contained in the sorbent or the packaging. Furthermore, the equilibration step removes the air 

present in the column and fills the void volume with solvent. The nature of the conditioning 

solvent depends on the solid sorbent. Typically, for reversed phase sorbent (such as 

octadecyl bonded silica), methanol is frequently used, followed with water or aqueous buffer 

whose pH and ionic strength are similar to that of the sample. Care must be taken not to allow 

the solid sorbent to dry between the conditioning and the sample treatment steps, otherwise the 

analytes will not be efficiently retained and poor recoveries will be obtained. If the sorbent dries 

for more than several minutes, it must be reconditioned [61]. 
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Figure 2.5.1: SPE process [62] 

 

 

  

                                                                                          Key to the process      

 

 

The second step is the percolation of the sample through the solid sorbent. Depending on the 

system used, volumes can range from 1 ml to 1 l. The sample may be applied to the column by 

gravity, pumping, aspirated by vacuum or by an automated system. The sample flow-rate 

through the sorbent should be low enough to enable efficient retention of the analytes, and high 

enough to avoid excessive duration. During this step, the analytes are concentrated on the 

sorbent. Even though matrix components may also be retained by the solid sorbent, some of 

them pass through, thus enabling some purification (matrix separation) of the sample [62]. 
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The third step entails washing of the solid sorbent with an appropriate solvent having low elution 

strength. The washing step eliminates matrix components that have been retained by the solid 

sorbent, without displacing the analytes. A drying step may also be necessary, especially for 

aqueous matrices, to remove traces of water from the solid sorbent. This will eliminate the 

presence of water in the final extract. Water, in some cases, may hinder the subsequent 

concentration of the extract and/or the analysis. Pure solvents or mixtures of solvents differing 

significantly in polarity from the final eluent maybe useful wash solutions (see Table 2.5.1). 

The final step is the elution of the analytes of interest by an appropriate solvent, without 

removing retained matrix components. The solvent volume should be adjusted so that 

quantitative recovery of the analytes is achieved with subsequent low dilution. In addition, the 

flow-rate should be correctly adjusted to ensure efficient elution. It is often recommended that 

the solvent volume be fractionated into two aliquots, one aliquot before the elution to let the 

solvent soak the solid sorbent and the other to elute the analytes [63]. 
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Table 2.5.1: Characteristics of solvents commonly used in SPE [62] 

 

Polarity   Solvent Miscible in water 

Non-polar 

Strong 

Reversed 

Phase 

Weak Normal 

Phase 

Hexane No 

 Isooctane No 

Carbon 

tetrachloride 
No 

  Chloroform No 

Dichloromethane No 

Tetrahydrofuran Yes 

Diethyl ether No 

Ethyl acetate Poorly 

Acetone Yes 

Acetonitrile Yes 

Isopropanol Yes 

Methanol Yes 

Weak  

Reversed 

Phase 

Strong  Normal 

Phase 

Water Yes 

Acetic acid Yes 
Polar 
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2.5.1 SPE Mechanisms  

 

The selection of an appropriate SPE extraction sorbent is based on the binding interactions 

(retention mechanisms) between the sorbent and analyte of interest. Binding interactions include 

van der Waals forces (non-polar interactions), hydrogen bonding, dipole-dipole forces (polar 

interactions) and cation-anion interactions (ionic interactions) [64]. The energies associated with 

these binding forces vary considerably as shown in Table 2.5.2. 

Table 2.5.2: Energy associated with intermolecular forces [63] 

 

Interaction Type 
Energy 

(kJ/mol) 

Hydrophobic interaction 

van der Waals forces 
1 – 5 

Polar Interactions 

Dipole induced dipole 

Dipole - dipole                                                 

Hydrogen bonding                                                     

Ion – dipole 

2 – 7                                                                                  

5 – 10                                                                               

10 – 25                                                                           

10 - 50 

 

 

Ionic Interactions 

Electrostatic (ion-ion)                                      

Covalent bonding 

50 - 500                                                                        

200 - 1000 
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Selecting a mechanism for determining an SPE process is, in addition, based on considerations 

summarized in Fig. 2.5.1 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 2.5.1: Method guide for selection of SPE procedure [62] 
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matrix: 
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2.5.2 SPE Sorbents  

 

The physicochemical and thermodynamic dependencies between sorbents, analytes and solvents 

are used to optimise an SPE process during method development. The physical characteristics of 

the sorbent include: surface area, particle size, pore size or pore volume. Furthermore, the 

extraction ability of sorbents also depends on the bed capacity; the volume of sample loaded on 

the bed, the nature and volumes of conditioning solvents and eluents. The following are some 

SPE parameters to consider during method development: breakthrough volume, volume of 

rinsing solvent, elution volume, which depends on the kinetic properties of SPE bed, its hold-up 

volume and retention factor [65].  

The breakthrough volume (VB) is one of the parameters characterizing the sorbent bed. VB is 

defined as the sample volume which can be loaded on the sorbent bed without the loss of the 

analytes. VB depends on the concentration of the loaded analytes, becoming independent at lower 

concentrations, temperature, flow-rate and number of theoretical plates, a point which is often 

overlooked in experimental studies. VB can be experimentally determined by either on-line or 

off-line methods, however, off-line methods are time-consuming and somewhat subjective. A 

relationship between the breakthrough volume and the properties of the SPE devices: N, number 

of plates, VM, hold-up or dead volume of the bed and k, retention factor of the analyte can be 

deduced from the theory of frontal chromatography. Eqn. (2.4) is applicable to systems with a 

large plate number [66]. 
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                                              (2.4) 

 

 



27 

 

                                                                                                                                                                             Chapter 2 

 

There are basically five principle separation modes available for SPE sorbent chemistries (see 

Table 2.5.3). 

Table 2.5.3: Principle SPE separation modes [67] 

 

Mode Sorbent Sample matrix 

Non-polar C18, C8, C6,C4,C2, PH, CH, CN 

Aqueous/ moderately 

polar 

Polar CN, Si, NH2, Diol Non-polar 

Cation-exchange SCX, PRS, CBA Aqueous 

Anion-exchange SAX, NH2, PSA, DEA Aqueous 

Mixed-mode C8 + SCX, C8 + SAX, HLB Aqueous 

 

The common goals of sample clean-up processes are that it should: be effective and automated, 

perform a selective removal and quantitative depletion of undesired, i.e., highly abundant 

constituents, selectively enrich the target compounds, significantly reduce the complexity of the 

whole process and enhance the reproducibility, repeatability, robustness and reliability of the 

method. Sample clean-up procedures using restricted access material (RAM) bear a high 

potential to fulfill most of these challenges [54]. 
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2.5.2.1 Restricted Access Material (RAM) 

 

 

Mixed-mode sorbents incorporate the clean-up of sample in the SPE process, but the sequence is 

typically an off-line procedure and the deprotonation of biological samples (e.g. 

plasma and serum) is usually required before extraction. Moreover, there is an interest in 

employing on-line techniques for the handling of untreated biological samples [68]. Restricted 

access materials (RAMs) enable direct injection of the biological sample into flow-analysis 

systems without previous sample treatment. 

 

RAMs are porous chromatographic supports specifically designed for the removal of 

macromolecules, partially based on a size-exclusion mechanism. Only small molecules are able 

to penetrate into the pores and interact with a stationary phase bonded on the inner surface, while 

large molecules are eluted with the clean-up mobile phase [69]. Once this fractionation is 

achieved, the elution of the analytes is performed with another mobile phase composition. RAMs 

were initially designed to remove proteins in the analysis of drugs in biological matrices such 

as plasma or urine. They have also found applications in environmental analysis, basically for the 

removal of humic substances while applications to food analysis are still scarce [70].  

The first RAM support for the direct injection of biological matrices was named the internal 

surface reversed-phase (ISRP) [71]. It entails porous silica particles with the outer surface 

covered by a hydrophilic moiety limiting the adsorption of protein (diol-glycine groups) with a 

hydrophobic tripeptide partitioning phase (glycine-  -phenylalanine-  -phenylalanine or GFF) 

only on the internal surface. A schematic drawing of GFF material is presented in Fig. 2.5.2.1. 

The retention mechanism is mainly due to π-electron interactions [72]. 
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 Figure 2.5.2.1: Internal surface reversed-phase (ISRP) with GFF groups and alkyl-diol-silica (ADS) with alkyl 

chains [72]. 

 

There are five basic types of RAM, classified according to the nature of the barrier and surface 

structure of the sorbent [93] and they include: 

 mixed-functional phases and dual-zone materials; 

 internal surface reversed-phase packing; 

 shielded hydrophobic phases; 

 semi-permeable surfaces; and, 

 polymeric materials. 

Most of the polar organic compounds cannot be determined at trace-level by LC as they co-

elution with humic and fulvic substances present in high amount. Evidence of these compounds 

is usually seen as an interfering matrix peak at the beginning of the chromatogram or a large 

hump in the first part of the chromatogram depending on the gradient shape. Additional clean-up 

procedures are usually required prior to the final chromatographic analysis.  
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There is an interest in having highly selective SPE sorbents that allow extraction, concentration 

and clean-up in a single step. That was achieved by using materials involving antigen–antibody 

interactions, thus providing selective extraction methods based on molecular recognition [82]. 

Antibodies are covalently bonded onto an appropriate sorbent to form an immunosorbent, which 

is packed into an SPE cartridge or precolumn. Since antibodies are highly selective towards the 

analyte they are able to initiate the immune response with a high affinity. The corresponding 

immunosorbent may then extract and isolate the analyte from complex matrices in a single step, 

and the problem of co-extraction of matrix interferences is therefore solved. 

 

                         

2.5.2.2 Immunoaffinity Extraction 

 

Immunoaffinity extraction (IAE) is based upon a molecular recognition mechanism where the 

high affinity and high selectivity of the antigen–antibody interactions allow the specific 

extraction and the concentration of the analytes of interest in one step [74]. IEA can efficiently 

eliminate the matrix contaminations and non-target compounds to enrich the target analyte. 

Immunoaffinity extraction has been applied in environmental monitoring [75], pharmaceutical 

and biomedical analyses [76], and food analysis [77]. As a cleanup and separation technique, 

IAE has been successfully used to enrich analytes in biological fluid prior to CE detection [78]. 

The principle of IAE is demonstrated in Fig. 2.5.2.2. The immunosorbent is packed on either a 

disposable cartridge or an LC pre-column. 
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Figure 2.5.2.2: Off-line procedure used for the immune-sample pretreatment on immunosorbents. (a) 

percolation of the sample; (b) washing to eliminate the non-retained compounds; (c) elution of 

compounds retained by the immobilized antibodies [75]. 

 

One of the major disadvantages of IAE is that immunosorbents, based on molecular recognition 

by antibodies, show high selectivity to target molecules, but because they are less stable, difficult 

to prepare, and expensive, their applications are to some extent limited [78]. In addition, the 

analyte-antibody interaction can also be affected by the sample matrix, leading to low extraction 

recoveries. Rather than being dependent on antibody production, attempts have been made to 

mimic the specificity of immunological products with synthetic molecularly imprinted polymers 

[79]. 

 

(a) (b) (c) 
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2.5.2.3 Molecularly Imprinted Polymers (MIPs) 

 

MIPs are tailor-made materials with high selectivity for a target molecule. Generally, MIPs are 

synthesized by assembling monomers around a template to form a complex through covalent or 

non-covalent interactions and joined by a cross-linking agent (Fig. 2.5.2.3). Then the template 

molecule is removed by chemical reactions or extraction, resulting in exposure of binding sites 

(‘imprints’) which are complementary to the template in size, shape, and position of the 

functional groups, and consequently allows its selective uptake [80, 81]. 

Imprinting techniques 

The most common approach to MIPs is non-covalent imprinting. In this process, the complex of 

template and functional monomer is formed in situ by non-covalent interactions, such as 

hydrogen bonding, electrostatic forces, van der Waals forces, or hydrophobic interactions. 

Moreover, the rebinding of template molecules with MIPs is also carried out by the same non-

covalent interactions. The advantages of this technique include; easy preparation of the 

template/monomer complex, easy removal of the templates from the polymers, fast binding of 

templates to MIPs and its potential application to a wide range of target molecules. 

   

Another preparation technique is the covalent imprinting. The complex is formed by covalent-

linkage of a functional monomer and template prior to polymerization. After the removal of the 

template by chemical reaction, the MIPs obtained rebind template molecules via the same 

covalent interactions. The main advantages of this technique are that the monomer/template 

complexes are stable and that a wide variety of polymerization conditions can be employed. The 

limitation of covalent imprinting is the slow release and binding of templates. 
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The third technique is the hybridization of covalent and non-covalent imprinting, also called 

semi-covalent imprinting. In this process, the polymers are prepared like those in covalent 

imprinting, while the guest binding employs non-covalent interactions. Semi-covalent imprinting 

combines the main advantages of the above two techniques, the stability of the complex in 

covalent imprinting and the fast guest binding in non-covalent imprinting [82]. 

 

                    

 

Figure 2.5.2.3: Synthesis of MIPs and its selective recognition to target molecule [82] 
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MIPs have been widely used as artificial receptors in separations, sensors, catalysis, chemical, 

pharmaceutical and biotechnological industries. They were employed for separation and 

purification of amino acids, DNA and RNA, peptides, hormones and carbohydrates, and for the 

recovery of flavor compounds. Furthermore MIPs were used in the environmental industry for 

the removal of pesticides, endocrine-disrupting compounds and heavy metals from waste and 

drinking water. Among these applications, is the common use for SPE, for which MIPs are 

commercialized [83]. 

 

In the light of green chemistry, innovations are towards solvent-free sample preparation for the 

extraction and enrichment of analytes of interest from aqueous matrices.  Most sample-

enrichment procedures employ adsorbent materials where good performances (e.g. high 

recoveries) are attained under many practical challenges. However, in some cases the 

applicability of adsorptive sample preparation falls short, especially for the enrichment of polar 

and/or high-molecular-weight compounds, particularly with thermal desorption. Furthermore, 

polar compounds readily undergo surface-catalyzed reactions and on desorption they yield 

compounds different from those originally sampled. The other challenge is that high-molecular-

weight compounds cannot be desorbed because of extremely strong interactions with the 

adsorbent and their low volatility. Sample preparation based on sorption extraction has been 

developed over the years as a means to overcome some of these challenges [84]. Typical 

examples for sorptive extraction include solid phase micro-extraction (SPME) and stir bar 

sorptive extraction (SBSE). 
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2.5.3 Sorptive Extraction 

 

Sorptive extraction is based on the distribution equilibria between the sample matrix and a non-

miscible liquid phase. Matrices are mostly aqueous and the non-miscible phase (e.g. 

polydimethylsiloxane, PDMS) is often coated onto a solid support. Analytes are ‘extracted’ from 

the matrix into the non-miscible ‘extracting’ phase. Unlike adsorption techniques (such as SPE), 

where the analytes are bound to active sites on the surface, the total volume of extraction phase is 

important. For SPME, the volume of polydimethylsiloxane is approximately 0.5 μl while 25- 125 

μl polydimethylsiloxane coatings are used in stir-bar sorptive extraction. Extraction of analytes 

depends on the partitioning coefficient of solutes between the phases [85]. The octanol-water 

distribution coefficient (Kow) can be used to demonstrate how well a given analyte will be 

extracted (see Fig.2.2.3).  

  

 

Fig. 2.5.3: Theoretical recovery (%) in function of solute log Ko/w for SPME (100 μm fiber, 0.5 μl 

PDMS) and SBSE (1 cm × 0.5 mm df, 25 μl PDMS) and 10 mL sample volume. Equilibrium sampling is 

assumed [84]. 
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The partitioning coefficient has been correlated with the octanol–water distribution coefficients 

(Ko/w). However, the octanol–water distribution coefficient only gives a good indication if and 

how well a given solute can be extracted with SPME or SBSE. It is very important in this respect 

to realize that the sorptive equilibrium is also dependent upon the phase ratio and thus on the 

amount of polydimethylsiloxane applied [86]. This relationship is shown in Eq. (2.4). 

 

w

PDMS
wPDMS

m

m
K /

 

 

 

 

        

 

Where; KPDMS/w = the distribution coefficient between PMDS and water, β = phase ratio (Eq. 2.5) 

mPDMS = mass of the solute in the PDMS phase, mw = mass of the solute in the aqueous phase, 

VPDMS= volume of PDMS, Vm = volume of aqueous phase. 

 

Illustrated in this thesis are the different profiles that can be obtained using the SPME and SBSE. 
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2.5.3.1 Solid-phase micro-extraction (SPME) 

 

SPME is a solvent-free extraction method first introduced by Arthur and Pawliszyn in 1990 [9]. 

It was mainly applied for the extraction of volatile and semi-volatile organic pollutants in water 

samples and has since been extended to various samples which include biological matrices, for 

example, whole-blood, plasma, urine and hair [87] as well as food samples [88]. 

 

SPME uses a short piece of a fused-silica fibre coated with a polymeric stationary phase placed 

on a syringe (see Fig. 2.5.3.1). During transport, storage and manipulation, the fibre is retracted 

into the needle of the device. SPME is a two step process, firstly the partitioning of analytes 

between the sample matrix (can be a liquid sample or headspace vapour) and the fibre coating, 

and then desorption of the (concentrated) extract from the fibre into the analytical instrument, 

usually a GC, where the sample components are thermally desorbed. The fibre can also be 

extracted (desorbed) into an LC eluent using a static or dynamic mode and several commercial 

interfaces are available [89].  

                                                               

Figure 2.5.3.1: Components of SPME device [90] 
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The affinity of fibres for the analyte relies on the principle of ‘like dissolves like’, therefore, non-

polar polydimethylsiloxane (PDMS) fibre will be preferred for the extraction of non-polar 

analytes, while the more polar polyacrilate (PA) fibre will be more appropriate for the extraction 

of polar analytes [91]. The amount of analyte extracted onto the fibre depends on the polarity and 

thickness of the stationary phase as well as on the extraction conditions and concentration of the 

analyte in the sample. Extraction of analyte is typically improved by agitation, addition 

of sodium chloride or other salt to the sample, changing the pH, and increasing the temperature 

[88]. 

 

At equilibrium the amount (n) of the analyte adsorbed by the fibre is related to the concentration 

of the analyte in the sample by the law of conservation of mass (see Eq. 2.6). 

 

sff

soff

VsVK

VCsVK
n


                                          (2.6) 

 

 

Where; n = mass of the analyte adsorbed by the fibre coating, Co = initial concentration of the 

analyte in sample, Kfs = partition coefficient for the analyte between fibre coating and the sample 

matrix, Vf = volume of coating, Vs = volume of sample. 
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The coatings used in SPME have strong affinities for the organic compounds they are intended to 

extract and therefore Kfs values for these analytes are large. Consequently, SPME has a very 

effective concentrating factor that leads to good sensitivity [92]. However, in SPME the quantity 

of extraction medium (e.g., the capacity of polydimethylsiloxane coated on the fibre) is very 

limited. For a typical 100 μm polydimethylsiloxane fibre, the volume of extraction phase is 

approximately 0.5 μl. Furthermore, for very polar compounds, competition can occur between 

the aqueous phase, the SPME fibre, the glass wall of the extraction vessel, and the surface of the 

polytetrafluoroethylene stir bar used to stir samples. Based upon these observations, an 

extraction method based on stir bars was developed [93]. 

  

Stir bars were coated with a layer of PDMS and used to stir aqueous samples, thereby extracting 

and enriching solutes into the PDMS layer. The extraction phase in SBSE is the same as that in 

SPME, although its quantity is 50–250 times larger. After extraction, the solutes are thermally 

desorbed and analyzed by GC in a similar manner to SPME. Alternatively, the analytes can be 

eluted by LC. Therefore, the basic principles of SPME and SBSE are identical [94]. 
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2.5.3.2 Stir bar sorptive extraction (SBSE) 

 

Stir bar sorptive extraction (SBSE) was introduced by Baltussen et al. in 1999 as a solvent-less 

sample preparation method for the extraction and enrichment of organic compounds from 

aqueous matrices [89]. The method is based on the same sorptive extraction principle as SPME 

whereby the solutes are extracted into a polymer coating on a magnetic stirring rod [95]. A 

suitable amount of sample is placed in a headspace vial or a container with a PDMS-coated stir 

bar and the sample is stirred for 30–240 min (Fig. 2.5.3.2). 

 

 

                                                             

 

Figure 2.5.3.2: SBSE set-up [95] 

 

 

SBSE consists of two major steps: extraction and desorption. 
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Extraction step 

 

During extraction the polymer-coated stir-bar is put in contact with the solutes by immersion or 

by headspace. In the immersion mode, which is usually abbreviated simply as SBSE, the 

polymer-coated stir-bar is added to a headspace vial that contains the liquid sample and the 

sample is stirred under controlled physical and chemical conditions. After extraction, the stir-bar 

is removed, rinsed with distilled water in order to remove salts, sugars, proteins or other sample 

components, dipped on a clean paper tissue to remove water, and submitted to desorption. The 

rinsing step is extremely important when analytes are thermally desorbed in order to avoid the 

formation of non-volatile material that can clog the desorption unit [96].  

 

Desorption step 

 

Most SBSE applications involve the use of thermal desorption (TD) followed by GC to recover 

the analytes accumulated in the coated stir-bar which implies not using organic solvents and 

allows the complete introduction of the extracted solutes in the chromatographic system [97]. 

Liquid desorption (LD) is an alternative to TD for thermally labile analytes, particularly when 

the separation is carried out using liquid chromatography (LC) or capillary electrophoresis (CE). 

During LD mode, the polymer-coated stir-bar is immersed in a stripping solvent or solvent 

mixture for the chemical desorption of the extracted solutes. The minimum stripping solvent 

volume must guarantee the complete immersion of the coated stir-bar and, obviously, the 

solvents or mixtures used in this step must be compatible with the polymer. Acetonitrile 

(MeCN), methanol (MeOH), mixtures of these solvents or mixtures with water or aqueous 

buffers are the most common desorption solvents [98]. 
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The extraction time is controlled kinetically; it is determined by the sample volume, the stirring 

speed and the stir bar dimensions, and must be optimized for a given application. Optimization is 

normally accomplished by measuring analyte recovery as a function of the extraction time. The 

optimum conditions are obtained when no additional recovery is observed even when the 

extraction time is increased further [95].  

 

The percentage recovery (%R) of a given SBSE setup can be calculated as follows [98]: 

 

100
/

/

0
0 




wPDMS

wPDMS

K

K
R

                                   (2.6) 

 

Where; KPDMS/w = the distribution coefficient between PMDS and water, β = phase ratio (Eq. 2.4) 

 

Although SBSE is widely applied in environmental, food and biomedical analysis, it has some 

limitations which include the fact that the coated stir bar cannot be directly desorbed in a simple 

split/splitless injection port of a gas chromatograph. Hence the analyte has to be back extracted 

into a fitting solvent, which adds an additional step to the overall analytical method. Another 

drawback is presented during extraction, as it takes long to reach equilibration time. Working 

under equilibrium guarantees maximum sensitivity and a better precision. However, sometimes, 

in order to minimize analysis time, sensitivity and precision are sacrificed by working under non-

equilibrium conditions [98]. 
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Two modern and environmentally friendly enrichment techniques, stir bar sorptive extraction 

and membrane-assisted solvent extraction (MASE) were compared for the determination of 18 

organic contaminant residues in Brazilian sugarcane juice. Stir bar sorptive extraction and 

thermal desorption coupled to capillary gas chromatography-mass spectrometry using the 

selected ion monitoring mode [SBSE-TD-GC-MS(SIM)] and membrane-assisted solvent 

extraction combined with large volume injection [MASE-LVI-GC-MS(SIM)] methods were 

assessed taking into account the time of extraction [SBSE (3h) and MASE (30min)].  It was 

concluded that, faster analyses and much better analyte recovery results were achieved with 

MASE, whereas greater sensitivity and repeatability were obtained with SBSE [99]. MASE is 

carried out by using a non-porous membrane as interface between the sample and the organic 

solvent which prevents mixing the two phases and provides selectivity and specificity in terms of 

permeation and transport through the membrane. 

A literature review on the application of some of the sample preparation techniques described 

will be presented in chapter 3 of this thesis. The review includes applications in environmental, 

food and biomedical fields in analyzing for drugs selected as representatives of acidic, basic or 

neutral drugs, polycyclic aromatic hydrocarbons, sulfonamides and acrylamide. 
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CHAPTER 3 

 

Literature review on drug and organic 
pollutant residue analysis 

 

3.1  Overview 

 

This chapter presents background information on the analytes of interest in this thesis, with 

emphasis on the sample preparation aspect of the whole analytical protocol. The chapter is 

therefore divided into four sections: 

3.2  Acidic, basic and neutral drugs in biological matrices. 

3.3  Organic pollutants (PAHs) in food and environmental matrices. 

3.4  Veterinary drugs residues (sulfonamides) in food matrices. 

3.5  Acrylamide in food matrices. 

 

3.2 Acidic, basic and neutral drugs in complex/biological 

matrices 

 

In forensic toxicology, body fluids are monitored for therapeutic drugs that may have been 

abused and/or resulted in poisonings and death. One family of frequently monitored drugs that 

are characterized by acidic or neutral chemical properties is composed of non-opioid analgesics, 

anticonvulsants and barbiturates. Among the analgesics, paracetamol/acetaminophen is widely 

used as an over-the-counter drug for the reduction of pain and fever. 
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 The analgesics naproxen, ketoprofen, etodolac, diclofenac and aspirin belong to the group of 

non-steroidal anti-inflammatory drugs (NSAIDs). NSAIDs are generally used in the management 

of mild to moderate pain, fever and inflammation. While these are relatively safe drugs they may 

lead to severe toxic effects in the case of overdose or long term abuse [100]. The anticonvulsants 

(antiepileptic drugs, AEDs) are a heterogeneous group of substances that, among others include 

phenobarbital. These drugs are not usually abused, but they may impair the ability to drive a car 

and lead to accidental or suicidal poisonings. Barbiturates have been used extensively in the past 

to reduce anxiety, respiration, blood pressure, heart rate and rapid eye movement (REM). 

Sedative barbiturates compounds dispense into all tissue and organs in vivo, even cross 

the placenta barrier. However, barbiturates and their metabolites tend to accumulate in tissues. 

This accumulation could lead to tolerance, dependence, excessive sedation and cause anesthesia, 

coma and even death. Barbiturates have therefore been prohibited to men and to acting as animal 

feed additive and chemical protection drugs in animal. They could however, make animals 

(e.g. pig) drowsy and move-less, accelerate up-growth, and decrease feed cost. They are still 

being misused as animal feed additive and chemical protection drugs in animal butchery and in 

horse races. It is therefore necessary to monitor their residues to protect the consumer's health 

[101].  

 

Chromatographic techniques such as high performance liquid chromatography with diode array 

detection (HPLC-DAD) are often used to monitor the levels of therapeutic drugs in biological 

fluids [102]. However, for some drugs (e.g., diclofenac), the therapeutic concentrations are 

relatively low, making HPLC-DAD unsuitable as an analytical tool without pre-concentration 

and clean-up of the analyte extract. Methods based on LC–MS/MS have been published for the 

determination of some barbiturates [103], anticonvulsants and analgesics [104] in serum, plasma 

and urine [105, 106]. Most of these methodologies employed extraction methods such as LLE 

and SPE however, LLE proved to be tedious and time consuming. Alternatively, SPE extraction 

methods though efficient and reliable, were not rapid enough for emergency toxicological 

screening and required the preparation of various buffers and solutions [107,108].  
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For lower detection limits, sample pretreatment based on methods, such as SPME [109] and 

SBSE [110] have been employed before HPLC analyses. SBSE and liquid desorption followed 

by high performance liquid chromatography with diode array detection (SBSE-LD -HPLC/DAD) 

was assessed for the simultaneous detection of several steroid sex hormones (SSHs) in water and 

urine matrices [111]. An extraction method based on solid phase micro-extraction membrane 

(SPMEM) was employed to extract tetrahydrocannabinol (THC) and cannabidiol (CBD) from 

blood and brain of the injected male mice as well as in spiked human urine. SPMEM is an 

extraction technique that integrates sampling, extraction and concentration into a single step. In 

addition SPMEM combines the advantages of both the SPME and membrane separation. The 

extracted THC and CBD were further determined with LC–MS. The reported method was found 

to be simpler and more convenient than the conventional liquid–liquid and solid phase 

extractions [112]. 

 

Mixed-mode ion exchange solid phase extraction has been utilized extensively in the 

pharmaceutical industry. It was employed for the isolation, purification and concentration of 

pharmaceuticals from interfering biological matrices. Several examples of the use of mixed-

mode ion exchange solid phase extraction to illustrate the utility of this technique have been 

reported [113, 114]. 

 

For this thesis, ketoprofen, naproxen, phenobarbital and p-toluamide were selected to represent 

acidic drugs; amphetamine, m-touluidine and nortriptyline represented basic drugs while 

secobarbital and acetaminophen were neutral drug representatives see Tables 3.2.1 (a) and (b). 

The objective was to simultaneously fractionate acidic, basic or neutral drugs from urine and 

plasma with mixed-mode ion exchange polymeric resins, SampliQ-SAX and SampliQ SCX.  
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Table 3.2.1 (a): Characteristics of acidic, basic and neutral drugs from urine matrix 

 

Drug Pharmacology Classification Structure Log P pKa 

Secobarbital Sedative Neutral 

HN

O

NH

O O

 

1.97 7.90 

Nortriptyline Antidepressant Basic 

N
H

 

4.28 9.70 

Ketoprofen NSAID Acidic O

COOH

 

0.97 5.94 

Naproxen NSAID Acidic O

OH

O

 

3.18 4.53 
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Table 3.2.1 (b): Characteristics of acidic, basic and neutral drugs from plasma matrix 

 

 

Drug 

 

Pharmacology 

 

Classification 

 

              Structure 

 

Log P 

 

pKa 

Acetaminophen Analgesic Neutral 

O

H2N

 

0.92 3.59 

Amphetamine Stimulant Basic  1.71 9.8 

p-Toluamide (used for 

pigments) 

Acidic 
O

N
H

HO

 

1.31 5.05 

m-Toluidine Repellent Basic 

NH2  

- 9.8 

Phenobarbital Sedative Acidic O
H
N

NH

O

O

 

1.47 7.2 

 

 

                                                                                                                                                                                       

NH2
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3.3 Polycyclic Aromatic Hydrocarbons in food and 

environmental matrices 

 

Polycyclic aromatic hydrocarbons, or polynuclear aromatic hydrocarbons (PAHs), are fused ring 

aromatic compounds classified by the number of carbon rings as well as their carcinogenicity. 

The two and three ring PAHs are less potent relative to several of the four, five and six ring 

PAHs. The four ring PAHs include chrysene and benzo[a]anthracene; the five ring PAHs, 

benzo[a]pyrene, benzo[b]fluoranthene, benzo [k] fluoranthene and dibenzo [a,h] anthracene, 

while the six ring PAH include indeno [1,2,3-cd] pyrene. Benzo [a] pyrene is the most potent 

carcinogen among the PAHs [115]. The US-EPA and EU lists sixteen of these PAHs (Fig. 3.3.1) 

as hazardous compounds [116]. Generally PAHs are lipophilic compounds that show a high 

affinity for organic matter, nonetheless some of them can dissolve quite well in water [117]. 

 

Most PAHs in the environment derive from incomplete combustion of carbon containing 

materials such as oil, wood, garbage or coal. A maximum amount of PAHs is formed when 

materials burn at temperatures in the range 500 – 700 
o
C, as in wood and cigarettes [118]. 

Excluding smokers and occupationally exposed populations, most individuals are exposed to 

PAHs predominantly from dietary sources [119]. In the marine environment, PAHs are 

bioavailable to marine species via the food chain, as waterborne compounds and from 

contaminated sediments. Since PAHs are lipophilic compounds they easily cross lipid 

membranes and have the potential to bioaccumulate in aquatic organisms. Although for most 

people, fish and seafood represents only a small part of the total diet, the contribution of this 

food group to the daily intake of PAHs in some individuals may be comparatively important 

[120].  
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Figure 3.3.1: Chemical structures for the 16 polycyclic aromatic hydrocarbons  
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Several extraction methods (Soxhlet, LLE or SPE) have been investigated for sample preparation 

of soil and most of these involved an evaporation step. However, evaporation leads to the loss or 

low recoveries of the volatile PAHs such as naphthalene [120]. Microwave-assisted solvent 

extraction (MASE) and pressurized liquid extraction (PLE) are generally faster, less analyte- and 

matrix-dependent and provide cleaner extracts than conventional methods involving heat 

treatment. In a study to determine PAHs in soils and sediment a miniaturized PLE was employed 

in a static-dynamic extraction procedure. The procedure was optimised with regards to organic 

solvent choice, temperature and pressure. The performance of the set-up, which was combined 

at-line with gas chromatography–mass spectrometry (GC–MS), was evaluated. [121]. 

 

The extraction cell was built-in in a heatable 10 mm x 3.0 mm I.D. stainless steel holder (see 

Fig.3.3.2). It was sealed with a stainless-steel frit at its upper end (in the direction of solvent 

flow) to prevent clogging of the exit tubing and valve by soil/sediment particles. The reduced 

solvent volume, together with the use of large-volume injection (LVI), allowed the at-line 

coupling of the extraction and separation-plus-detection steps without the need for a 

concentration step prior to GC analysis.  

 

 

 

 

 

 

 

 

 

 

 

 



52 

 

                                                                                                                                                                             Chapter 3 

 

 

 

 

 

Figure 3.3.2: PLE device for extraction of solid and semi-solid samples [121] 
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PLE has also been employed for integrated exhaustive extraction of PAHs with fat removal from 

smoked fish [122]. The one-step procedure provided a more rapid and cost-efficient alternative 

with minimization of waste generation compared to the standard reference method that is based 

on a multi-step procedure. Furthermore, the integrated approach for extraction and cleanup was 

less prone to analytical errors (random and systematic) because of the fewer analytical steps.  

 

One of the traditional sample preparation techniques for the extraction of PAHs for fish analysis 

is Soxhlet [123] and SFE [124]. Size-exclusion chromatography (SEC) clean-up technique has 

also been employed for PAH analysis in non-fatty solid food [125] and plant matrices [126]. 

Non-polar high molecular compounds such as PAHs [127, 128] and PCBs [129, 130] were 

extracted with subcritical heated water (PLEHW) at temperatures greater that 250 
◦
C. 

 

The advantages and disadvantages of the extraction techniques frequently employed for PAH 

analyses are summarized in Table 3.3.1. 
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Table 3.3.1: Advantages and disadvantages of extraction techniques [116] 

  

Technique Advantage Disadvantage 

Ultrasonic extraction Short extraction time, simple Limited extraction efficiency 

Soxhlet  Simple 

Labor intensive, time and 

solvent consumption, analysis 

of numerous samples is 

limited by the extraction step, 

limited extraction efficiency 

Automated Soxhlet 

extraction 

Time saving, less solvent 

consumption, economical, 

reproducible, easy operation 

Instrument cost 

Pressurized fluid extraction 

Simple extraction protocol, 

less solvent and time 

consumption, short 

extraction time, easy 

operation 

Instrument cost, safety 

Pressurized hot water 

extraction 

Nil use of hazardous 

solvents, environmentally 

friendly, high extraction 

efficiency 

Instrument cost, safety 

Microwave assisted 

extraction 

Simple instrumentation, 

reduced solvent use, short 

extraction time 

Instrument cost, subjected to 

interference of microwave 

energy absorbing materials, 

requires filtration after 

extraction. 

Supercritical fluid 

extraction 

Environmental friendly, high 

speed of analysis 
High analytical cost 
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A method based on the advantages of a QuEChERS procedure (quick, easy, cheap, effective, 

rugged and safe) has been reported for the determination of 16 PAHs from fish samples. For a 

selective measurement of the compounds, extracts were analysed by LC with fluorescence 

detection. The overall analytical procedure was validated by systematic recovery experiments at 

three levels and by using the standard reference material [131, 132].  

 

This thesis presents a method for the analysis of PAHs at trace levels in fish tissue and soil with 

HPLC-FLD. The HPLC methods are useful for PAH analysis since UV and fluorescence 

detection offer enhanced selectivity over other techniques such as GC with flame ionization 

detection [131].The method includes sample preparation with SampliQ QuEChERS AOAC 

Buffered Extraction kit (p/n 5982-5755) and SampliQ AOAC Fatty Dispersive SPE 15 mL kit 

(p/n 5982-5158). 
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3.4 Sulfonamides in food matrices 

 

Sulfonamides (SAs) are a broad-spectrum of antimicrobial drugs used mainly in veterinary 

practice for therapeutic or prophylactic purposes in animals as well as in human beings [133]. In 

humans, sulfonamide antibiotics are commonly used for the therapy of infections. SAs maybe 

used in transplantation and for AIDS-related complications [134] alone or in combination with 

trimethoprim [135]. However, their use in human therapy has since become limited due to the 

advent of antibiotics [136]. They are a treatment of choice for disease control of coccidiosis in 

the poultry management [137]. SAs may also be used as additives in animal feed since prolonged 

ingestion of sulfonamides may have a growth-promoting effect [138]. 

 

 Conversely, there is a health risk associated with consumption of animal products contaminated 

with sulfonamide residues. The residues usually result from the inappropriate administration or 

withdrawal period from these drugs. The presence of sulfonamide residues can trigger adverse 

side effects such as allergic reactions in hypersensitive individuals and are potential carcinogens 

in the long term. Furthermore, prolonged exposure to sulfonamide residues may give rise to an 

increase in drug-resistant bacteria [139]. In order to protect consumers from risks related to the 

drug residues, maximum residue limits (MRL) have been established by law in many countries. 

In Europe (EU Regulation 1999), Canada and USA (FDA Regulation 1991) the MRL for the 

total sulfonamides concentration in edible tissue is 100 µg/kg while it is 20 µg/kg in Japan   [140, 

141].  

 

The basic chemical structure of sulfonamides is a common p – aminobenzoyl ring moiety with 

an aromatic amino group at the N1 – position. Fig. 3.4.1 shows the backbone and chemical 

structures of the sulfonamides described in this thesis. 
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   Sulfamerazine   (pKa 6.98, logP 0.44)                            Sulfamethazine (pKa 7.45, logP 0.43) 

 

                                                           

 Sulfamethizole (pKa 5.51, logP 0.53)                          Sulfamethoxypyridazinep (Ka 7.19, logP 1.01) 

                                                            

Sulfachloropyridazine (pKa 5.90, logP 1.36)                     Sulfamethoxazole (pKa 5.81, logP 1.58) 

 

                                                                        

  Sulfapyridine (IS)                                                      Sulfadimethoxine (pKa 6.21, logP 1.56) 

     

Figure 3.4.1:  Chemical structures for the sulfonamides 

 

  

  

 
Sulfonamide backbone structure 



58 

 

                                                                                                                                                                             Chapter 3 

 

 

Centrifugal ultrafiltration [142], SPME [143], microdialysis system [144], LLE [145], on-line 

clean-up restricted access media columns [146] and SPE [147, 148] are some of the popular pre-

concentration and matrix isolation techniques in analytical chemistry employed for the extraction 

of sulfonamides. Liquid-phase micro-extraction (LPME) has attracted increasing attention as a 

sample preparation technique. LPME is simple, low-cost, rapid, and requires only very 

small sample and solvent consumption [149]. In LPME, extraction normally takes place between 

small quantities of a water-immiscible solvent and an aqueous phase containing the analytes of 

interest. The volume of the acceptor phase is in the microliter or submicroliter range. Single-drop 

micro-extraction (SDME) has evolved from LPME, in which the extraction phase is in the form 

of a single drop suspended in the stirred aqueous solution. Several different operational 

techniques including static and dynamic-LPME [150, 151], hollow fibre membrane-

LPME [152], solvent bar micro-extraction [153], continuous micro-extraction [154] and drop-to-

drop solvent micro-extraction [155] have since been developed. 
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A salting-out assisted liquid extraction coupled with back-extraction by a 

water/acetonitrile/dichloromethane ternary component system combined with high-performance 

liquid chromatography with diode-array detection was developed for the extraction and 

determination of sulfonamides in solid tissue samples [156]. The procedure entailed 

homogenization of the swine muscle, centrifugation and back-extraction.  

 

A stir bar sorptive extraction coupled to high performance liquid chromatography with diode 

array detection has also been employed for the quantitative monitoring of sulfonamide 

antibacterial residues in milk [157]. The analytes were concentrated by SBSE based on poly 

(vinylimidazole–divinylbenzene) monolithic material as coating. The extraction procedure was 

very simple; milk was diluted with water then directly extracted without elimination of fats and 

protein in samples. To achieve optimum extraction for SAs, several parameters, including 

extraction, desorption time, desorption solvent, ionic strength and pH value of sample matrix 

were investigated. 

 

There are several analytical methods that include HPLC [158, 159], GC [160] and CE [161] for 

the determination of sulfonamides. In addition, mass spectrometry (MS), ultraviolet (UV) and 

fluorescence (FL) detectors have been used for SAs [162]. Higher sensitivity can be obtained on 

MS but higher cost will be paid in instrument and analysis procedure. Therefore, HPLC with UV 

or FL detection is most frequently applied [163, 164, 165, 166]. 

 

 

 

 

 

 

 



60 

 

                                                                                                                                                                             Chapter 3 

 

 

Fluorescence detector is a good alternative to MS, mainly due to its inherent sensitivity. 

However, the target compounds need prior derivatization with an appropriate reagent. In this 

way, post-column derivatization with fluorescamine has been mostly applied for the HPLC 

determination of sulfonamides [167]. 

 

Fluorescamine is a fluorogenic reagent specific for primary aliphatic and aromatic amines. It 

produces fluorophors of a high fluorescence yield and potential selectivity having an essentially 

similar excitation–emission spectral characteristic (λex=395–410 nm and λem=490–510 

nm). Fluorescamine and its hydrolysis products are non-fluorescent [168]. The concentration of 

fluorescamine and reaction time for the derivatization of SAs are factors to consider in order for 

results to be reproducible [169,170, 171]. Furthermore, at 2.5–3.5 pH range hydrogen bonding 

exists and the derivatives acquire fluorescence properties (see Fig. 3.4.3).  
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Figure 3.4.3: A depiction of a chemical reaction for the derivatization of sulfonamides [168]. 

 

 

A method for the determination of sulfonamide drugs in chicken muscle with HPLC-FLD after a 

pre-column derivatization with fluorescamine, is presented in this thesis. The method includes 

sample preparation with SampliQ QuEChERS AOAC Buffered Extraction kit (p/n 5982-5755) 

and SampliQ AOAC Fatty Dispersive SPE 15 ml kit (p/n 5982-5156).  

 

 

 

 

 

                                                                                                                          

                             

Sulfonamide 

Sulfonamide derivative 
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3.5 Acrylamide in food matrices 

 

Acrylamide (AA) is an organic compound that is odorless, soluble in water, ethanol and ether. It 

has the composition of an amide, with the chemical formula C3H5NO (Fig. 3.5.1). Acrylamide is 

used to manufacture plastic materials, paper, dyes as well as been used in the textile industry. It 

is also used for gel electrophoresis and has been used as a monomer in the synthesis of 

polyacrylamide.  Polyacrylamide is used in the purification of water and in the formulation of 

grouting agents. Acrylamide is known as a component in tobacco smoke [172].  

 

Acrylamide occurs naturally as a by-product of the cooking process and its presence in food was 

first confirmed by Swedish researchers in 2002 [173]. The Swedish findings about the high 

levels of acrylamide in heat treated foods were confirmed by the UK Food Standards Agency. 

The US Environmental Protection Agency (USEPA) found the limit for acrylamide in drinking 

water to be extremely low (0.5 µg/kg) [174]. Carbohydrate-rich foods such as French fries 

processed at high temperatures and under low moist conditions were of a great concern as high 

concentrations of acrylamides were produced [175]. Acrylamide, at high concentrations, has 

adverse effects.  It is a human neurotoxin and has also been classified as a probable carcinogen 

and genotoxicant [176]. Acrylamide vapors irritate the eyes and the skin and also cause paralysis 

of the cerebrospinal system [177].  

 

                             

 Figure 3.5.1: Chemical structure of acrylamide( pKa 5.5, logP 0.67) 
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The main approach for the formation of acrylamide in foods is through the Maillard reaction 

[178].  In summary, the mechanism involves the formation of a Schiff base. This is followed by 

the decarboxylation and elimination of either ammonia or a substituted imine to yield 

acrylamide. Mass spectral studies have shown that the three carbon atoms and the nitrogen atom 

of acrylamide are all derived from asparagines [179]. The first critical step is the amino-carbonyl 

reaction between asparagine and a carbonyl substance, preferably α-hydroxycarbonyls (e.g. 

reducing sugars). Finally a Schiff base, a key intermediate, is formed after dehydration under 

elevated temperatures (see scheme 3.5.1). 

Several methods have been developed to determine the acrylamide monomer, especially in 

water, biological fluids and food [180]. The majority of these methods were based on liquid (LC) 

or gas chromatographic (GC) techniques [181 - 184]. However, these methods lacked the 

selectivity to confirm the presence of a small molecule such as acrylamide in complex matrices.  

A more selective method based on size-exclusion chromatography coupled with electrospray 

mass spectrometry was developed for the determination of acrylamide in fried foods [185]. 
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Scheme 3.5.1: Formation and reduction of acrylamide [178] 
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Liquid chromatography coupled to diode array detection (LC–DAD) has also been used 

accurately and precisely, as an alternative to tandem LC–MS methods for the determination of 

acrylamide in potato-based foods at low levels [186]. The method entailed extraction of 

acrylamide with methanol, purification with Carrez I and II solutions, an evaporation step and 

clean-up with an Oasis HLB solid-phase extraction cartridge. The chromatographic separations 

were performed on a hydrophilic and a hydrophobic interaction columns having good retention 

of acrylamide (k 3.67 and 2.54, respectively). Clean-up steps often employ SPE procedures that 

are compatible with LC-MS/MS and GC-MS without any solvent exchange (evaporation) and/or 

derivatization prior to the determinative step [187]. 

 

A stepwise study was carried out on the common factors that influence the extraction of 

acrylamide from different food matrices [188]. The investigated extraction factors included 

sample particle size (fine or coarse), defatting, extraction solvent (water or water/methanol), 

homogenization, extraction temperature and extraction time. An optimised method comprised the 

use of fine particles (<1000 µm), water as the extraction solvent and shaking of the sample. This 

extraction method was suitable for all tested matrices (coffee, crisp-bread, mashed potatoes, milk 

chocolate and potato crisps).  

 

The analytical results (from LC-MS/MS analysis after SPE clean-up) correlated well with those 

obtained by the original, more labor-intensive and extraction procedure. There was excellent 

agreement with the assigned AA levels of several proficiency test samples analysed for 

evaluation. Defatting or the additional homogenisation did not have any observable effect on the 

AA yield. In general, the study revealed that incomplete extraction is the most likely cause of 

erroneous results. Incomplete extraction may occur when the food is not sufficiently macerated 

and when water/methanol is used as the extraction solvent. In addition, incomplete extraction 

may occur when using a short extraction time or when the extraction temperature is low. 

Formation of AA during the extraction procedure is another possible error source. 
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A sample preparation protocol that employed elements from the QuEChERS method, such as 

dispersive-SPE clean-up, was evaluated for the extraction of acrylamide from various food 

matrices [189]. The optimized procedure included solubilising the samples with hexane, addition 

of water and acetonitrile for the extraction of acrylamide. A salt mixture of anhydrous MgSO4 

and NaCl was added to induce solvent-phase separation. Fig. 3.5.2 depicts the arrangement of 

solvents after centrifugation. For clean-up the acetonitrile extract was added to a mixture of PSA 

and MgSO4 and the aliquot subsequently analysed with LC-MS/MS or GC-MS. 

 

 

 

                               

 

Figure 3.5.2: Schematic picture of the solvent layer arrangement in a FEP tube after the 

centrifugation of a food extract [189]. 
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The highest overall partition of acrylamide (>70%) was achieved after adding 4 g of MgSO4 and 

0.5 g of NaCl (Fig. 3.5.3), which was consistent to the previous findings.  A combination of 

MgSO4 and NaCl induced a distinct phase separation between water and MeCN. In addition, the 

salt combination stimulated most pesticides to partition into the upper MeCN layer (salting out 

mechanism) [190]. It was reported that in real sample analysis, salts and other polar food 

components can slightly influence acrylamide partitioning. However, the use of an isotopic 

labeled internal standard (d3-acrylamide) provided an effective compensation for potential 

variability in acrylamide partitioning efficiency. 

 

 

Figure 3.5.3: Partition of acrylamide and d3-acrylamide (in %) into the MeCN layer in the experiments 

involving addition of 4 g of MgSO4 and 0-4 g of NaCl to 50 ng/ml composite solutions of acrylamide 

and d3-acrylamide in water-MeCN [189] 

 

 

This thesis presents a method for the analysis of acrylamide in cooking oil with HPLC-DAD. 

The method includes sample preparation with SampliQ QuEChERS Extraction kit for 

acrylamides (p/n 5982-5850) and SampliQ EN for fruits and vegetables with fats and waxes 

Dispersive SPE kit (p/n 5982-5156). 
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Experimental 

 

4.1 Overview 

 

Commercial polymeric mixed-mode sorbents were employed for fractionating acidic, basic and 

neutral drugs;  secobarbital, nortriptyline, ketoprofen and naproxen from urine and amphetamine, 

acetaminophen, p-toluamide, m-toluidine and phenobarbital from plasma while the QuEChERS 

kits were employed for the analysis of PAHs (naphthalene , acenaphthylene,  acenaphthene, 

fluorene, phenanthrene, anthracene, fluoranthene, pyrene, 1,2-benza[a]anthracene, chrysene, 

benzo[e]pyrene, benzo[e]acenaphthylene, benzo[k]fluoranthene, dibenzo[a,h]anthracene, 

benzo[g,h,i]perylene and indeno[1,2,3-cd]pyrene) in fish and soil samples; for the determination 

of sulfonamide residues (sulfadiazine, sulfathiazole, sulfamerazine, sulfamethazine, 

sulfamethizole, sulfamethoxypyridazine, sulfachloropyridazine, sulfamethoxazole and 

sulfadimethoxine) in chicken and for the determination of acrylamide in cooking oil. 
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4.2 Chemicals, Reagents and Standards 
 

Chemicals and Reagents  

 

Ketoprofen, secobarbital, nortriptyline, naproxen, acetaminophen, phenobarbital, p-toluamide, 

amphetamine, m-toluidine, ranitidine (IS), the 16 polycyclic aromatic hydrocarbons, 10 

sulfonamides, acrylamide and methacrylamide were purchased from Sigma-Aldrich Chemicals 

(St. Louis, MO, USA). All reagents were analytical or HPLC grade. Acetonitrile, acetone, n-

hexane and glacial acetic acid (HAc) were purchased from Sigma-Aldrich (St. Louis, MO, 

USA). Phosphoric acid, formic acid and potassium hydroxide were from Merck Chemicals 

(Gauteng, South Africa) while the HPLC grade methanol (MeOH) was from Merck KGaA 

(Darmstadt, Germany).  Potassium hydrogen phosphate, potassium dihydrogen phosphate and 

sodium acetate were purchased from Saarchem Analytical (Krugersdorp, South Africa). 

Fluorescamine with a purity of 98% was purchased from Sigma-Aldrich (St. Louis, MO, USA).   

 

Standard Solutions 

 

The mobile phases were prepared with ultrapure water (18.2 MΩcm) from a MilliQ system by 

Millipore (Milford, Mass, USA) and filtered through a Whatman membrane filter (47 mm 

diameter and 2 µm pore size). The stock solutions (1 mg/ml) were prepared in either acetonitrile 

or methanol and kept at 4 °C while the working solutions were prepared daily by diluting the 

stock solutions, to appropriate concentrations, also in acetonitrile or methanol for all drugs with 

the exception of sulfonamides.  
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For the sulfonamides, a stock solution of 0.05 M sodium acetate was prepared by dissolving 4.1 

g NaOAc in 1 L ultrapure water and filtered through a Whatman membrane filter (47 mm 

diameter and 2 µm pore size). The pH was adjusted using HAc. Fluorescamine reagent (0.02%) 

was prepared by dissolving 20 mg Fluram in 10 ml acetone. The solution was stored at 4 °C. 1% 

HAc in MeCN was prepared by adding 10 ml HAc in 1 L MeCN while working solutions were 

prepared daily by serial dilution in 0.05 M NaOAc (pH 3.5). The solution vials were wrapped-up 

with an aluminum foil as some of the sulfonamide drugs are light sensitive.  

 

The urine sample was from a donor who is not using or has not used the drugs in the study and 

the plasma sample was from SANBS (Port Elizabeth, South Africa). Food samples were 

purchased from the local supermarkets while the soil sample was obtained from a botanical 

garden. 
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4.3 Equipment and Material 
 

The Agilent 1200 Series HPLC was equipped with a binary pump and different detection modes: 

a diode array detector (DAD) set at λ = 222 nm for drugs in urine; at λ = 210 nm for drugs in 

plasma; and at λ = 210 nm for acrylamide in cooking oil. Separation of the compounds in urine 

and plasma samples was achieved on an Agilent ZORBAX Eclipse Plus C18 column (4.6 mm x 

75 mm, 3.5 µm) while that of acrylamide and methacrylamide (IS) was achieved on an Agilent 

ZORBAX HILIC Plus column (4.6 mm x 50 mm, 3.5 µm). A fluorescence detector (FLD) set at 

varying excitation and emission wavelengths was employed for PAHs in the fish and soil 

samples while separation of the PAHs was achieved on an Agilent ZORBAX Eclipse PAH C18 

column (4.6 mm x 50 mm, 1.8 µm). For sulfonamides, FLD was set at λex = 405 nm and λem = 

495 nm and separation of SAs was achieved on an Agilent ZORBAX Eclipse Plus C18 column 

(4.6 mm x 75 mm, 3.5 µm). The esquire
™ 

series mass spectrometer was operated in positive 

electrospray ionisation mode (ESI (+)) for identification of SAs. The data was processed by 

Agilent Chemstation for LC/MS 2D system software. 

 

A Jenway 3510 pH meter (London, UK) was employed to monitor the pH of solutions and a 

Kenwood grinder (Grahamstown, South Africa) for homogenising the food sample. 
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The SPE materials were supplied by Agilent Technologies Inc. (CA, USA);  

 Agilent SampliQ SAX, 1 ml/30 mg containing a water-wettable polymeric anion 

exchanger with 25 - 35 μm average particle size. SampliQ SAX resin is a tertiary amine 

modified divinyl benzene polymer that exhibits a dual retention mechanism, strong anion 

exchange (for both acidic and neutral analytes over a range of hydrophobicity, log P) and 

a reversed phase behavior. 

 Agilent SampliQ SCX, 1 ml/30 mg and a polymeric strong cation exchanger with 25 – 35 

μm average particle sizes. The polymeric backbone, sulfonic acid modified divinyl 

benzene is also water-wettable with strong cation exchange and hydrophobic mechanism. 

  Agilent SampliQ Buffered QuEChERS AOAC Extraction kit, p/n 5982-5755 and 

SampliQ QuEChERS AOAC Dispersive SPE kit, p/n 5982-5058. 

 Agilent SampliQ QuEChERS Extraction kit for acrylamides, p/n 5982-5850 and SampliQ 

QuEChERS EN Dispersive SPE kit, p/n 5982-5165.  
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4.4 Chromatographic conditions 

 

Table 4.4.1:  HPLC conditions for drugs in urine 

____________________________________________________________________ 

Column    Agilent ZORBAX Eclipse Plus C18 4.6 x 75 mm, 3.5 µm 

Flow rate   1.5 ml/min 

Column temperature 30 
◦
C 

Injection volume  5 µl 

Mobile phase    Isocratic elution  

                           A: 55% CH3OH 

                           B:  45% 25 mM KH2PO4     pH 2.7 

Run time   8 min              

 

Table 4.4.2:  HPLC conditions for drugs in plasma 

_______________________________________________________________________ 

Column   Agilent ZORBAX Eclipse Plus C18 4.6 x 75 mm, 3.5 µm 

Flow rate   1.5 ml/min 

Column temperature  35C 

Injection volume  5 l 

Mobile phase   Isocratic elution:  

A:  30% CH3OH 

                                        B:  70% 25 mM KH2PO4 / K2HPO4   pH 7 

Run time                         6 min                                               
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Table 4.4.3: HPLC conditions for PAHs in fish and soil 

 

Column                                  Agilent ZORBAX Eclipse PAH C18 4.6 x 50 mm, 1.8 m 

Flow rate                    0.8 ml/min 

Column temperature  18 C 

Injection volume                     5 l 

Mobile phase                          A = Deionized H2O          B = CH3CN 

Gradient 

T (min) % B 

0 60 

1.5 60 

7 90 

                                                                       13                          100 

                         

Detection                          UV at 230 nm (Acy) and varying fluorescence excitation and emission  

                    Wavelengths: 

Time (min) Ex / Em Wavelengths (nm) PAH detected 

0 – 5 260 / 352 Nap, Ace, Flu, Phe, Chr 

0 – 14 260 / 420 Ant, Pyr, BeP, DahA, BghiP 

0 – 14 260 / 460 Fln, 1,2-BaA,BeA, BkF, InP 
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Table 4.4.4 (a):  HPLC conditions for sulfonamide residues in chicken muscle 

 

Column                                  Agilent ZORBAX Eclipse Plus C18 4.6 x 75 mm, 3.5 m 

Flow rate                    1 ml/min 

Column temperature            25 C 

Injection volume                     5 l 

Mobile phase                          A = 0.05 M Sodium Acetate pH 4.5          B = CH3CN 

 Gradient 

 

 

 

 

 

Detection                               Ex = 405 nm               Em = 495 nm 

 

 

 

 

 

 

 

 

T (min) % B 

0 35 

35 41 

50 55 
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Table 4.4.4 (b): Conditions for separation and analysis 

 

 HPLC conditions 

Column                                  Agilent ZORBAX SB- C18 2.1 x 30 mm, 3.5 m 

Flow rate                    0.3 ml/min 

Column temperature            40 C 

Injection volume                     5 l 

Mobile phase                          A = 10 mM formic acid          B = CH3OH 

Gradient 

T (min) % B 

0 – 3 5 

10 15 

10.10 5 

Detection                              λ = 270 nm       

MS conditions 

Polarity                          positive 

Gas Temperature           350 C 

Gas Flow                       9 L/ml 

Nebulizer                        40 psi 

Capillary                         4000 V 

 

 



77 

 

                                                                                                                                                                            Chapter 4 

 

 

Table 4.4.5: HPLC conditions for acrylamide in cooking oil 

 

 

Column                                 Agilent ZORBAX HILIC Plus 4.6 x 50 mm, 3.5 m 

Flow rate          0.2 ml/min 

Column temperature 30 C 

Injection volume                   5 l 

Mobile phase                         Isocratic elution: A = 3% 5 mM Acetic acid   B = 97% CH3CN 

Run time                                10 min 

Post time                                3 min 

Detection                               DAD @ 210 nm 
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4.5 Sample preparation 

 

4.5.1 Sample pretreatment for urine analysis 

 

The urine (5 ml) was hydrolyzed with 1 M KOH at 60 ºC for 15 min and diluted with 10 mM 

CH3COONa (1:1 v/v) and the pH adjusted to 2 with phosphoric acid. The urine sample, spiked 

with drugs, was loaded onto the SampliQ SAX cartridges, as shown in Scheme 4.5.1. 

 

 

 

Scheme 4.5.1: SPE procedure (urine)     
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4.5.2 Sample pretreatment for plasma analysis 

 

The plasma sample (1 ml) was hydrolysed with 1% formic acid (3 ml) for 30 min. An internal 

standard, 50 l ranitidine was then added. The sample, spiked with drugs, was then loaded onto 

the SampliQ SCX cartridges, as described in Scheme 4.5.2 below: 

 

 

 

  Scheme 4.5.2: SPE procedure (plasma) 
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4.5.3 Sample preparation for PAHs in fish analysis 

 

The fish fillets were minced and deep frozen until analysis.  

Extraction 

 

5 g fish sample homogenate was placed into a 50 ml centrifuge tube from the SampliQ 

QuEChERS AOAC Extraction kit and the tube centrifuged for 20 s. Samples were then spiked 

with appropriate spiking solutions to yield working solutions for recoveries and reproducibility 

studies. A 2000 µl spiking solution was added to the samples except the blank. After shaking 

vigorously for 1 min, 8 ml CH3CN was added, then an Agilent SampliQ QuEChERS AOAC 

extraction salt packet (p/n 5082-5755) was added. The packet contained 6 g of anhydrous 

MgSO4 and 1.5 g of anhydrous NaOAc. The sample tubes were hand shaken vigorously for 1 

min and then further centrifuged at 4000 rpm for 5 min.  

 

Dispersive SPE cleanup 

 

6 ml of the upper CH3CN layer was transferred into a SampliQ QuEChERS AOAC Dispersive 

SPE 15 ml tube. This SPE tube contained 400 mg of PSA and 1200 mg of anhydrous MgSO4. 

The tubes were then centrifuged at 4000 rpm for 5 min. 4 ml of the extract was filtered through a 

0.45 µm PVDF syringe filter, then 1000 µl extract was placed in an autosampler vial foe an 

HPLC-FLD analysis. The QuEChERS protocol for PAHs in fish is shown in Scheme 4.5.3: 
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Scheme 4.5.3:  Flow chart of QuEChERS AOAC sample preparation   procedure (fish)                                                                                                                                                                                

 

 

 



82 

 

                                                                                                                                                             Chapter 4 

 

4.5.4 Sample preparation for PAHs in soil 

 

The soil sample was air dried at ambient temperature then sieved to obtain a homogeneous 

sample. 

Extraction 

 

5 g soil sample homogenate was placed into a 50 ml centrifuge tube from the SampliQ 

QuEChERS AOAC Extraction kit. Samples were spiked with appropriate spiking solutions to 

yield appropriate working solutions for recoveries and reproducibility studies. 2000 µl spiking 

solution was added to the samples except the blank. 5 ml water was then added to the tube. After 

shaking vigorously for 1 min, 8 ml CH3CN was added, then an Agilent SampliQ QuEChERS 

AOAC extraction salt packet (p/n 5082-5755) was added. The packet contained 6 g of anhydrous 

MgSO4 and 1.5 g of anhydrous NaOAc. The sample tubes were hand shaken vigorously for 1 

min then further centrifuged at 4000 rpm for 5 min.  

Dispersive SPE cleanup 

 

6 ml of the upper CH3CN layer was transferred into a SampliQ QuEChERS AOAC Dispersive 

SPE 15 ml tube. This SPE tube contained 400 mg of PSA and 1200 mg of anhydrous MgSO4. 

The tubes were then centrifuged at 4000 rpm for 5 min. 4 ml of the extract was filtered through a 

0.45 µm PVDF syringe filter, then 1000 µl extract was placed in an autosampler vial for an HPLC-

FLD analysis. Flow chart for the QuEChERS AOAC sample preparation procedure for PAHs in 

soil is shown in scheme 4.5.4: 
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Scheme 4.5.4: Flow chart of QuEChERS AOAC sample preparation procedure (soil) 
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4.5.5 Sample preparation for Sulfonamide residues in chicken muscle 

 

The chicken muscle was minced and deep frozen until analysis.  

Extraction 

 

2 g chicken muscle homogenate was placed into a 50 ml centrifuge tube from the SampliQ 

QuEChERS AOAC Extraction kit and the tube centrifuged for 20 s. Samples were then spiked 

with appropriate spiking solutions to yield 50, 100 150 ng/g sample concentrations for recoveries 

and reproducibility studies. A 100 µl IS spiking solution was added to all the samples except the 

blank. After shaking vigorously for 1 min, 8 ml Milli-Q water was added followed by shaking 

the mixture for 30 s. 10 ml 1% HAc in CH3CN was then added, after which an Agilent SampliQ 

QuEChERS AOAC Extraction salt packet (p/n 5082-5755) was added. The packet contained 6 g 

of anhydrous MgSO4 and 1.5 g of anhydrous NaOAc. The sample tubes were hand shaken 

vigorously for 1 min then futher centrifuged at 4000 rpm for 5 min.  

 

Dispersive SPE cleanup (HPLC-FLD) 

 

6 ml of the upper CH3CN layer was transferred into a SampliQ QuEChERS AOAC Dispersive 

SPE 15 ml tube. This SPE tube contained 400 mg of PSA and 1200 mg of anhydrous MgSO4. 

The tubes were then centrifuged at 4000 rpm for 5 min. 4 ml of the extract was transferred to a 

test tube and dried with N2 gas at 35 ºC. Samples (200 µl) were reconstituted into 600 µl of 0.05 

M NaOAc (pH 3.5). 
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Derivatization 

  

Aliquots of 200 µl working standard mixtures of sulfonamides, dissolved in 600 ml 0.05 M 

acetate buffer (pH 3.4) were filtered through a 0.45 µm PVDF syringe filter then transferred to 

reaction vials and 200 µl 0.02% w/v fluorescamine solution in acetone added. The mixtures were 

shaken for 1 min and the reaction left to proceed for 60 min at ambient temperature. Aliquots of 

1000 µl of the derivatized solutions were directly injected into the chromatograph. Scheme 4.5.5 

(a) shows the flow chart for the QuEChERS AOAC sample preparation procedure. 

 

 

Dispersive SPE cleanup (LC-MS/MS) 

6 ml of the upper CH3CN layer was transferred into a SampliQ QuEChERS EN Dispersive SPE 

15 ml tube. This SPE tube contained 150 mg PSA, 150 mg C18EC and 900 mg anhydrous 

MgSO4. The tubes were then centrifuged at 4000 rpm for 5 min. 4 ml of the extract was 

transferred to a test tube and dried with N2 gas at 35 ºC. Samples were reconstituted into 500 µl 

of 1: 9 CH3CN / 0.1% formic acid (Scheme 4.5.5b). 
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Scheme 4.5.5 (a):  Flow chart of QuEChERS AOAC procedure (LC-FLD analysis) 
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Scheme 4.5.5 (b):  Flow chart of QuEChERS AOAC procedure (LC-MS/MS analysis) 
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4.5.6 Sample preparation for acrylamide in cooking oil 

 

Extraction 

 

1 g cooking oil was placed into a 50 ml centrifuge tube from the SampliQ QuEChERS Extraction 

kit. Samples were spiked appropriately to yield working solutions for recoveries and 

reproducibility studies. Samples, in exception of the blank, were fortified with 1000 µl spiking 

solution and mixed with 9 ml water. After shaking vigorously for 1 min, 10 ml CH3CN was 

added, followed by an addition of Agilent SampliQ QuEChERS extraction salt mixture for 

acrylamides (p/n 5082-5850). The QuEChERS extraction packet contained 4 g of anhydrous 

MgSO4 and 0.5 g NaCl. The sample tubes were hand shaken vigorously for 1 min and then 

centrifuged at 4000 rpm for 5 min.  

Dispersive SPE clean-up 

 

6 ml of the upper ACN layer were transferred into a SampliQ QuEChERS AOAC Dispersive 

SPE 15 ml tube. This SPE tube contained 400 mg of PSA and 1200 mg of anhydrous MgSO4. 

The tubes were then further centrifuged at 4000 rpm for 5 min. 1000 µl extract were placed in an 

autosampler vial for an HPLC-DAD analysis. Flow chart for the QuEChERS sample preparation 

procedure for acrylamides in cooking oil is depicted in Scheme 4.5.6. 
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Scheme 4.5.6: QuEChERS Flow chart for acrylamide in cooking oil 
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CHAPTER 5 

 

Results and Discussions 

 

5.1 Acidic, basic and neutral drugs in urine and plasma matrices 

 

An isocratic reversed phase HPLC method was developed for the separation of analytes in the 

urine and plasma samples. Different chromatographic conditions (columns, gradients, mobile 

phases and flow rates) were investigated to optimize the separation of analysed drugs in the 

shortest time. The buffer concentration (25 mM) was low enough to minimize the abrasive effect 

on the pump seals, consistent to previous results [191]. The analytes were well separated, with 

good peak resolutions; sharpness and symmetry. Typical chromatograms of a standard mixture 

containing secobarbital (10 µg/ml) nortriptyline (5 µg/ml), ketoprofen (5 µg/ml) and naproxen (2 

µg/ml) for urine analysis under conditions shown in Table 4.4.1 and standard mixture (7 µg/ml) 

of acetaminophen, amphetamine, ranitidine (IS), p-toluamide, m-toluidine and Phenobarbital 

(plasma analysis) under chromatographic conditions shown in Table 4.4.2 are shown in Fig. 

5.1.1 (A) and (B) respectively. 
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 Figure 5.1.1:  Typical RP-HPLC-DAD chromatograms of standard mixtures: (A) drugs in 

urine; secobarbital (10 µg/ml) nortriptyline (5 µg/ml), ketoprofen (5 µg/ml) and naproxen 

(2 µg/ml): (B) drugs in plasma (7 µg/ml). 

 

 

 

m-toluidine 

 

Secobarbital 

Notriptyline 

Ketoprofen 
Naproxen 

Standard mixture (B) 

Standard mixture (A) 
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Due to the diverse polarities and pH characters of the compounds used each one of them was 

monitored at its maximum absorption wavelength (Table 5.1.1).  Secobarbital gave a weak 

response compared to other drugs in the standard mixture and its concentration was adjusted 

upward to provide a stronger signal. 

 

Table 5.1.1: Chemical and physical characteristics of the drugs in urine 

 

Drug Classification Log P pKa Λmax (nm) 

Secobarbital Neutral 1.97 7.90 222 

Nortriptyline Basic 4.28 9.70 242 

Ketoprofen Acidic 0.97 5.94 258 

Naproxen Acidic 3.18 4.53 230 
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In order to enhance method selectivity and prolong the column lifetime matrices, human plasma 

and urine, were hydrolysed. The samples were hydrolysed by either an acid or base hence they 

were deprotonated. Mixed-mode cation- and anion-exchange SPE columns were employed, 

separately, in the extraction method. SampliQ SAX, a polymeric mixed-mode strong anion, 

exchanger and SampliQ SCX, a mixed-mode strong cation exchange sorbent were successfully 

employed. The acidic, basic and neutral drugs from a spiked urine and plasma samples were 

simultaneously extract using the SPE procedures shown in Scheme 4.5.1 and 4.5.2 respectively. 

The undissociated compounds were retained in the hydrophobic portion of the sorbents and 

eluted in the neutral fractions.  The ionised drugs were retained by either the strong anion or 

cation exchange interactions with the sorbent and eluted in the acidified or ammoniated fraction.  

The chromatograms of a blank urine extract from a healthy volunteer and of the spiked urine 

extract are shown in Fig. 5.1.3 (a) and (b), respectively. The neutral (secobarbital) and basic 

(nortriptyline) drugs were eluted in the neutral fraction (Fig. 5.1.3b) as they were retained 

through hydrophobic interactions. Chromatograms of the acidic fractions, the urine blank and 

spiked urine extract are shown in Fig 5.1.3 (c) and (d) respectively. The acidic drugs (naproxen 

and ketoprofen) were retained by the strong anion exchange functionalities of the sorbent. 

However, traces (< 10%) of the neutral/basic drugs could be seen in the acidic fraction. A larger 

volume of methanol in the prior step (first elution) could have been used to improve extraction 

efficiency. As can be seen {Fig. 5.1.3 (a) and (c)}, no interference from the matrix were present 

and all peaks were still well resolved. 

For the spiked plasma samples, the neutral and acidic drugs were eluted in the neutral fraction 

(see Fig. 5.1.4 b); they were retained through hydrophobic interactions.  The basic drugs were 

retained by the strong cation exchange functionalities of the sorbent and eluted separately in the 

basic fraction, as shown in Fig. 5.1.4 (d). As with the SAX sorbent, traces (< 10%) of the 

neutral/acidic drugs were found in the basic fraction. Similarly, an increase in the methanol 

volume could have improved the extraction efficiency. 
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Figure 5.1.3: Eluate 1 chromatograms of (a) blank urine sample; (b) spiked urine sample 

 

 

Secobarbital 

Nortriptyline 

Urine blank (A) 

Basic and neutral drugs (B) 
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Fig. 5.1.3: (continuation) Eluate 2 Chromatograms of (c)  blank urine sample; (d) spiked urine sample; 

Chromatographic conditions: stationary phase, ZORBAX C18 column (4.6 mm × 75 mm i.d., 3.5 μm); mobile 

phase, methanol /25 mM phosphate buffer containing pH 2.7; flow rate, 1.5 ml/min; injection volume, 5 μL; 

detection wavelength, 222 nm.                                                                               

       

Ketoprofen 

Naproxen 

Urine blank (C) 

Acidic drugs (D) 

mAu 
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Figure 5.1.4: Eluate 1 chromatograms of (a) blank plasma extract; (b) spiked plasma extract 

 

Plasma blank (A) 

Acidic and neutral drugs (B) 
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Fig. 5.1.4: (continuation) Eluate 2 Chromatograms of (c)  blank plasma extract; (d) spiked plasma extract; 

Chromatographic conditions: stationary phase, ZORBAX C18 column (4.6 mm × 75 mm i.d., 3.5 μm); mobile 

phase, methanol /25 mM phosphate buffer containing pH 7; flow rate, 1.5 ml/min; injection volume, 5 μL; 

detection wavelength, 210 nm.  

 

Plasma blank (C) 

Basic Drugs (D) 
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Aliquots of working solutions at seven different concentrations, containing the IS at a constant 

concentration 50 µl for plasma analysis, were added to the urine or plasma blank. The resulting 

concentration ranges in urine were 0 - 8 µg/ml for nortriptyline and ketoprofen, 0 - 7 µg/ml for 

naproxen and 0 - 35 µg/ml for secobarbital. For plasma analysis, the concentration range was 0 – 

10 µg/ml for all the analytes. Calibration curves were produced by plotting the analyte/IS peak 

area ratios against the corresponding concentrations of the analytes. Good linearity (r
2
 > 0.9990)   

was attained for all the analytes in exception of ketoprofen and naproxen which showed linearity 

from 0 – 4.5 µg/ml. Linearity parameters are shown in Tables 5.1.2 and 5.1.3 

 

Table 5.1.2: Linearity parameters (urine analysis) 

 

Drugs Linear equation 
Correlation 

coefficient (r2) 

Secobarbital y = 1.5841x r
2
 = 0.9994 

Nortriptyline y = 19.065x r
2 

= 0.9996 

Ketoprofen y = 12.505x r
2 

= 0.9994 

Naproxen y = 61.461x r
2 

= 0.9996 
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Table 5.1.3: Linearity of amphetamine, acetaminophen, p-toluamide, m-toluidine and 

Phenobarbital in plasma 

 

Analyte Regression 

Equation 

R2 

Acetaminophen Y = 0.0692x 0.9993 

Amphetamine Y = 0.0699x 0.9994 

p- Toluamide Y = 0.1145x 0.9992 

m-Toluidine Y = 0.1842x 0.9991 

Phenobarbital Y = 0.1072x 0.9995 

 

 

The recoveries were calculated by comparing the peak area of the analyte concentration in the 

spiked samples (urine and plasma) after SPE to that of the standard solution at the same 

concentration level. To demonstrate reproducibility the samples were analysed at three different 

concentration levels (n = 6).  High recoveries (> 85%) were obtained with RSD values ranged 

from 0.06 to 1.12 for n = 6 runs (Figs. 5.1.5 and 5.1.6). 
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Figure 5.1.6: Recoveries for Amphetamine, Acetaminophen, p-Toluamide, m-Toluidine and 

Phenobarbital in plasma 

 

 



101 

 

                                                                                                                                                                             Chapter 5 

 

Equations (5.1) and (5.2) were used to calculate LOD and LOQ, where Syx = standard error of 

the regression line and b = gradient (see Tables 5.1.4 and 5.1.5) 

 

)1(.......
b

Syxx3.3
LOD   

 

)2.........(
b

Syxx0.10
LOQ         

 

 

Table 5.1.4: LOD and LOQ for the analytes in urine 

 

Drug LOD (µg/ml) LOQ (µg/ml) 

Secobarbital 0.21 0.81 

Nortriptyline 0.04 0.12 

Ketoprofen 0.03 1.04 

Naproxen 0.03 2.74 

 

 

(5.1) 

(5.2) 
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Table 5.1.5: LOD and LOQ for the analytes in plasma        

 

Drug LOD (µg/ml) LOQ (µg/ml) 

Acetaminophen 0.39 0.85 

Amphetamine 0.71 1.87 

p-Toluamide 0.66 0.70 

m-Toluidine 0.35 1.06 

Phenobarbital 0.82 1.89 
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The method linearity after SPE as well as the limits of detection (LOD) and quantification 

(LOQ) were determined. The urine samples were spiked in the concentration range 0-25 µg/ml 

for secobarbital and 0 – 10 μg/ml for nortriptyline, ketoprofen and naproxen. These mixtures 

were subjected to the previously described SPE procedure (see Scheme 4.5.1) and injected into 

the HPLC system. The procedure was carried out in triplicate for each concentration. 

 Secobarbital and nortriptyline were linear in the chosen range while ketoprofen and naproxen 

showed linearity from 0 – 4.5 µg/ml. Table 5.1.6 shows the linearity equations and correlation 

coefficients.  

Table 5.1.6: Linearity of the method employing SPE 

Drugs Linear equation 
Correlation coefficient 

(r2) 

Secobarbital y = 1.3325x r
2
 = 0.9993 

Nortriptyline y = 17.595x r
2 

= 0.9991 

Ketoprofen y = -1.2748x
2  

+
 
17.896x r

2 
= 0.9991 

Naproxen y = -1.9003x
2 

+ 33.527x r
2 

= 0.9993 
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The plasma blanks spiked with the analytes at five different concentrations were subjected to the 

SPE procedure (Scheme 4.5.2). 50 µl of the internal standard was added and then each spiked 

plasma sample was prepared in triplicate. The analyte/IS peak area ratios were plotted against the 

corresponding concentrations. All the analytes were linear in the chosen concentration range (0 – 

8 µg/ml) with r
2
 > 0.999. Precision was determined by reproducibility studies expressed in 

percent relative standard deviations (% RSD) which were less than 10%. The analytical 

parameters for SCX SPE protocol are shown in Table 5.1.7. 

 

Table 5.1.7: Linearity of the method employing SPE 

 

Parameter SPE 

Linearity 0 – 8 

R2 0.9990 – 0.9999 

% RSD 1.10 – 6.05 
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5.2 Polycyclic Aromatic Hydrocarbons in fish and soil matrices 

 

The analysis of organic and veterinary drug residue contaminants in food and environmental 

samples is usually hampered by interfering compounds present in these complex matrices. 

Therefore the challenge was to maximize recovery of analyte and minimize the accompanying 

interferences by proper extraction and clean-up procedures. The original QuEChERS method 

which used neutral extraction conditions [192] and the one that uses buffered acidic extraction 

conditions [193, 194] were adapted for this work. The recovery and reproducibility data 

demonstrate that neutral extraction conditions were effective for PAHs and acrylamide. The 

acidic extraction conditions were more effective for recovering sulfonamides.  There are many 

different permutations of the QuEChERS approach which serve a useful purpose to improve 

results or practical efficiency for the given analyte (s)/matrix (es) applications [195]. The use of 

CH3CN as an extracting solvent eliminated the need to add co-solvents.  High extraction yields 

for all the analytes, as shown by the recovery data, were attained (see Tables 5.2.2, 5.2.3, Fig. 

5.5.2 and 5.6.1).  

 

Furthermore, CH3CN solvent was compatible with the HPLC – FLD/DAD procedures employed 

for PAHs and acrylamide. Therefore no evaporation or reconstitution solvent was required. This 

was particularly important as acrylamide and some of the extremely volatile PAHs (naphthalene, 

acenaphthene and fluorene) may have been lost during an evaporation step. In addition, CH3CN 

is immiscible with hexane and this resulted in a simple clean-up protocol. The analytes were 

extracted into a water soluble solvent (neutral CH3CN or 1% (v/v) acetic acid in CH3CN). They 

were then partitioned into organic solvent in the presence of a salt mixture (salting out effect). 

The acetonitrile phase was further cleaned up and dried by mixing with the SPE sorbents and 

anhydrous MgSO4.  The QuEChERS method employed PSA sorbent for d-SPE. PSA is a weak 

anion exchanger which strongly interacts with polar organic acids, sugars and fatty acids. The 

addition of acid in the CH3CN partitioning step impeded the performance of PSA in the 

dispersive step preventing the loss of analytes [196]. 
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The separation of the 16 PAHs was attained on a PAH C18 column (4.6 mm x 50 mm, 1.8 µm) by 

gradient elution with a binary system of acetonitrile – water. The chromatograms for the standard 

mixture at level 1concentrations of PAHs (see Table 5.2.1) are presented in Fig. 5.2.1 while Fig. 

5.2.2 (a) and (b) for the blank fish extract and overlay chromatograms of the spiked fish; Fig 

5.2.3 (c) and (d) represent soil blank extract and overlay chromatograms of the spiked soil 

extract respectively at level 1. The fluorescence detector was set at varying emission 

wavelengths (see Table 4.4.3) for detection and quantification to accommodate the diverse 

absorption intensities of the PAHs. However, due to lack of a flourophore, UV detection at 230 

nm was employed for acenaphthylene.  

 

 

Figure 5.2.1: Overlay HPLC – FLD chromatograms of the standard mixture containing: 1. Nap 2. Acy 3. 

Ace 4. Flu 5. Phe 6. Ant 7. Fln 8. Pyr 9. BaA 10. Chr   11. BeP 12. BeA 13. BkF 14. DahA 15. BghiP  16. InP  
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Figure 5.2.2:  (A) Chromatogram of the blank fish extract; (B) Overlay HPLC – FLD chromatograms of the 

spiked fish sample containing: 1. Nap   2. Acy 3. Ace 4. Flu 5. Phe 6. Ant 7. Fln 8. Pyr 9. BaA 10. Chr 11. BeP 12. BeA 

13. BkF 14. DahA  15. BghiP  16. InP  

  

 

 

Fish blank extract (A) 

Spiked fish extract (B) 
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Figure 5.2.3: (C) Chromatogram of the blank soil extract; (D) Overlay HPLC – FLD chromatograms of 

the spiked soil sample containing: 1. Nap  2. Acy 3. Ace 4. Flu 5. Phe 6. Ant 7. Fln 8. Pyr 9. BaA 10. Chr 

11. BeP 12. BeA 13. BkF 14. DahA 15. BghiP  16. InP  X = unknown 

 

 

X 

Soil blank extract (C) 

Spiked soil extract (D) 
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Table 5.2.1:  PAHs spiking levels (preparation of working standard solutions) 

 

PAH 

Spiking level (ng/g) 

1 2 3 

Naphthalene 20 100 200 

*Acenaphthylene 20 100 200 

Acenaphthene 10 50 100 

Fluorene 10 50 100 

Phenanthrene 10 50 100 

Anthracene 10 50 100 

Fluoranthene 10 50 100 

Pyrene 10 50 100 

1,2-Benzanthracene 5 20 50 

Chrysene 10 50 100 

Benzo[e]pyrene 5 20 50 

Benz[e]acenaphthylene 5 20 50 

Benzo[k]fluoranthene 5 20 50 

Dibenzo[a,h]anthracene 5 20 50 

Benzo[g,h,i]perylene 5 20 50 

Indeno[1,2,3-cd]pyrene 5 20 50 

      * UV detection at 230 nm          
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Table 5.2.2: Recovery and repeatability for PAHs in spiked fish sample (n = 6) 

 

PAH 

Level of spiking (ng/g)  

(n = 6) 

1 2 3 

%Rec %RSD %Rec %RSD %Rec %RSD 

Naphthalene 94.7 1.4 97.9 1.1 93.8 1.4 

*Acenaphthylene 87.8 1.7 96.3 1.2 85.6 0.8 

Acenaphthene 92.1 1.5 93.0 1.8 96.7 0.8 

Fluorene 98.1 1.5 89.9 1.0 97.2 0.9 

Phenanthrene 90.6 0.9 93.8 0.8 83.1 1.7 

Anthracene 96.7 1.0 87.6 0.8 92.1 0.6 

Fluoranthene 83.4 1.3 93.9 1.5 95.9 1.2 

Pyrene 93.5 1.8 86.1 1.3 95.0 1.4 

1,2-Benzanthracene 94.5 1.3 89.6 1.6 94.9 1.0 

Chrysene 101.0 1.4 97.8 1.7 87.2 1.6 

Benzo[e]pyrene 88.8 1.5 85.2 1.9 95.0 1.4 

Benz[e]acenaphthylene 95.5 0.7 92.7 0.7 89.2 0.9 

Benzo[k]fluoranthene 93.5 0.8 94.6 0.9 98.9 0.8 

Dibenzo[a,h]anthracene 88.2 0.9 97.3 1.1 97.1 0.6 

Benzo[g,h,i]perylene 98.4 0.8 95.5 1.6 98.2 0.7 

Indeno[1,2,3-cd]pyrene 91.5 1.5 97.9 0.9 94.3 0.7 

* UV detection at 230 nm    Rec = recovery 
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Table 5.2.3: Recoveries and RSDs for the sixteen polycyclic aromatic hydrocarbons in soil 

sample (n = 6) 

 

PAH 

Level of spiking (ng/g) 

1 2 3 

%Rec %RSD %Rec %RSD %Rec %RSD 

Naphthalene 96.5 0.7 86.2 1.4 92.8 1.4 

*Acenaphthylene 87.3 0.7 90.0 1.3 91.7 1.6 

Acenaphthene 91.0 1.8 89.2 1.1 89.7 1.4 

Fluorene 95.2 0.8 91.4 1.3 86.0 1.2 

Phenanthrene 93.0 1.0 94.6 0.7 98.1 0.9 

Anthracene 91.9 1.1 90.0 0.8 97.6 0.7 

Fluoranthene 93.5 1.7 94.7 1.3 87.9 1.5 

Pyrene 96.3 1.3 89.4 0.9 91.2 1.9 

1,2-Benzanthracene 92.9 1.7 87.8 1.5 92.8 0.7 

Chrysene 98.0 1.4 92.4 1.2 95.8 1.0 

Benzo[e]pyrene 97.2 1.0 97.5 0.7 90.3 0.8 

Benz[e]acenaphthylene 93.2 0.9 93.1 0.6 98.0 0.7 

Benzo[k]fluoranthene 94.1 1.1 97.6 0.7 91.4 1.1 

Dibenzo[a,h]anthracene 89.2 1.0 99.2 1.7 90.8 1.3 

Benzo[g,h,i]perylene 91.0 0.9 96.7 0.8 97.3 1.6 

Indeno[1,2,3-cd]pyrene 86.0 1.2 97.8 0.8 94.3 1.3 

* UV detection at 230 nm          Rec = recovery 

 

The linearity of the PAHs method was determined by extracting samples spiked at concentration 

range of 0 – 300 ng/g. The linear calibration curves were obtained by plotting the peak area for 

each analyte versus its concentration. All the analytes were linear in the chosen concentration 

range with r
2
 > 0.9990. 
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The limits of detection and quantification were estimated from the concentration of analytes of 

interest required to give a signal-to-noise ratio of 3 and 10 respectively. Tables 5.2.4 and 5.2.5 

show the regression equations, correlation coefficients, limits of detection and quantification for 

analysis in fish and soil respectively. 

Table 5.2.4: Linearity, LOD and LOQ for the sixteen polycyclic aromatic hydrocarbons (Fish) 

 

PAH Regression equation R
2 

LOD LOQ 

Naphthalene Y = 0.0222x + 0.1366 0.9991 0.62 2.07 

*Acenaphthylene Y = 0.0544x – 0.0130 0.9993 0.25 0.83 

Acenaphthene Y = 0.0184 x – 0.0204 0.9998 0.56 1.87 

Fluorene Y = 0.0323x – 0.1717 0.9990 0.12 0.40 

Phenanthrene Y = 0.0950x + 0.0086 0.9995 0.18 0.60 

Anthracene Y = 0.0838x – 0.1265 0.9991 0.24 0.80 

Fluoranthene Y = 0. 0247x – 0.0237 0.9994 0.04 0.16 

Pyrene Y = 0.0218x - 0.0432 0.9998 0.09 0.30 

1,2-Benzanthracene Y = 0.0120x - 0.0103 0.9994 0.03 0.10 

Chrysene Y = 0.0052x + 0.0086 0.9990 0.28 0.93 

Benzo[e]pyrene Y = 0.0144x – 0.0037 0.9997 0.04 0.16 

Benz[e]acenaphthylene Y = 0.1186x – 0.032 0.9995 0.07 0.23 

Benzo[k]fluoranthene Y = 0.0464x + 0.0969 0.9997 0.05 0.16 

Dibenzo[a,h]anthracene Y = 0.0531x + 0.0001 0.9990 0.84 2.80 

Benzo[g,h,i]perylene Y = 0.0440x + 0.0722 0.9993 0.11 0.36 

Indeno[1,2,3-cd]pyrene Y = 0.0324x – 0.0912 0.9993 0.05 0.18 

* UV detection at 230 nm 
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Table 5.2.5: Linearity, LOD and LOQ for the sixteen polycyclic aromatic hydrocarbons (Soil) 

 

PAH Regression equation R
2 

LOD LOQ 

Naphthalene Y = 0.0266x + 0.1568 0.9992 0.48 1.6 

*Acenaphthylene Y = 0.0580x – 0.1323 0.9991 0.06 0.20 

Acenaphthene Y = 0.0176 x + 0.0122 0.9995 0.12 0.41 

Fluorene Y = 0.0358x – 0.1701 0.9991 0.24 0.79 

Phenanthrene Y = 0.1097x - 0.4277 0.9994 0.07 0.22 

Anthracene Y = 0.0884x – 0.096 0.9993 0.18 0.60 

Fluoranthene Y = 0. 0273x – 0.0069 0.9997 0.07 0.24 

Pyrene Y = 0.0284x - 0.1041 0.9993 0.005 0.02 

1,2-Benzanthracene Y = 0.0120x - 0.0249 0.9994 0.78 0.26 

Chrysene Y = 0.0067x + 0.0165 0.9992 0.007 0.02 

Benzo[e]pyrene Y = 0.017x – 0.0252 0.9995 0.008 0.03 

Benz[e]acenaphthylene Y = 0.1304x + 0.0727 0.9993 0.03 0.11 

Benzo[k]fluoranthene Y = 0.052x + 0.0165 0.9993 0.06 0.21 

Dibenzo[a,h]anthracene Y = 0.062x - 0.0346 0.9994 0.18 0.6 

Benzo[g,h,i]perylene Y = 0.0599x + 0.0779 0.9995 0.18 0.81 

Indeno[1,2,3-cd]pyrene Y = 0.0352x – 0.1588 0.9992 0.05 0.59 

* UV detection at 230 nm 

 

 



114 

 

                                                                                                                                                                             Chapter 5 

 

5.3 Sulfonamides in chicken muscles 

 

Sulfonamides were derivatized in the pre-column mode with fluorescamine in acetone. The 

optimal incubation period was between 60 – 100 min and for reproducibility 60 min was the 

chosen time. The derivatised sulfonamides were detected with a single pair of wavelengths, λex = 

405 nm and λem = 495 nm. Fig. 5.3.1 shows a typical chromatogram of the standard mixture of 

the sulfonamides.  

 

Figure 5.3.1: Chromatogram of the standard mixture of the sulfonamides (100 ng/g):                                 

1. Sulfadiazine 2. Sulfathiazole 3. Sulfapyridine (IS) 4. Sulfamerazine 5. Sulfamethazine                             

6. Sulfamethizole 7. Sulfamethoxypyridazine 8. Sulfachloropyridazine 9. Sulfamethoxazole                   

10. Sulfadimethoxine   
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For the QuEChERS method, PSA sorbent has a strong interaction with polar organic acids, 

sugars and fatty compounds. However, it also reacted with the analytes of interest, sulfonamides, 

which resulted in very low recoveries. The method that employed acidified acetonitrile for 

extraction was therefore adapted [197]. The addition of the acid in the CH3CN partitioning step 

slowed down the performance of PSA in the dispersive step [198] and as a result the recoveries 

were tremendously improved. 

 

Chromatograms of blank chicken muscle and spiked chicken muscle extract are shown 

in Fig.5.3.2 (a) and (b) respectively. The calibration curves of sulfonamides curves were 

obtained by plotting the relative responses of analytes (peak area of analyte / peak area of IS) to 

the relative concentration of analytes (concentration of analyte / concentration of IS). The curves 

were generated by spiking the sample blanks at a concentration range of 0 – 400 ng/g.  
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Figure 5.3.2: Chromatograms of (A) blank chicken muscle; (B) spiked chicken muscle at 50 
ng/g level: 1. Sulfadiazine 2. Sulfathiazole 3. Sulfapyridine (IS) 4. Sulfamerazine                          
5. Sulfamethazine 6. Sulfamethizole 7. Sulfamethoxypyridazine 8. Sulfachloropyridazine             
9.  Sulfamethoxazole 10.  Sulfadimethoxine (see Fig. 5.3.4 for the mass spectra of these SAs)  
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Linearity was attained for all sulfonamides with coefficients of regression > 0.9990 (see Table 

5.3.1).  The LODs ranged from 1.88 - 2.98 ng/g and were calculated at a signal-to-noise ratio 

(S/N) of 3.  LOQs ranged from 6.27 - 9.93 ng/g and were calculated at S/N ration of 10.  

Table 5.3.1:  Linearity, LOD and LOQ for the nine sulfonamides 

 

Sulfonamide Regression equation R
2 

LOD LOQ 

Sulfadiazine Y = 0.4154x + 0.0112 0.9995 2.00 6.67 

Sulfathiozole Y = 1.0231x – 0.0757 0.9991 1.88 6.27 

Sulfamerazine Y = 0.6735x + 0.0184 0.9993 2.49 8.30 

Sulfamethazine Y = 0.6735x + 0.0042 0.9996 1.98 6.60 

Sulfamethizole Y = 0.9751x + 0.0115 0.9995 2.30 7.67 

Sulfamethoxypyridine Y = 0.4713x – 0.0069 0.9994 1.94 6.46 

Sulfachloropyridazine Y = 0. 2769x + 0.0190 0.9992 1.88 6.27 

Sulfamethoxazole Y = 0.6996x + 0.0421 0.9991 2.23 7.43 

Sulfadimethoxine Y = 0.5008x + 0.0329 0.9991 2.98 9.93 
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Results shown in Fig. 5.3.3 indicate a high recovery range of 77.8 – 95.2% with relative standard 

deviations (RSD, n = 6) ranging from 1.5 to 4.7%. The chicken muscle samples were spiked at 

100, 50 and 150 ng/g.  
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Figure 5.3.3: Recoveries and RSDs (1.5 – 4.7%) for nine sulfonamides in chicken muscle          

(n = 6). These recoveries were evaluated on spiked chicken samples at MRL (100 ng/g), half 

MRL (50 ng/g) and one and a half MRL (150 ng/g).  
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ESI–MS/MS conditions (see Table 4.4.4) were used to identify the sulfonamides. The precursor 

ion of each sulfonamide was selected for collision-induce dissociation (CID) experiment, which 

generated product ions. Consequently, the one product ion with high intensity, representing the 

characteristic of each compound, was set to monitor the identification. Figure 5.3.4 shows the 

mass spectra of sulfonamides (200 ng/g) in a spiked chicken muscle sample. 

 

Figure 5.3.4:  Mass spectrum of chicken muscle sample spiked with sulfonamides (200 ng/g) using 

conditions described in Table 4.4.4                                                           
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MRM transition values used for the identification of sulfonamides are shown in Table 5.3.2. The 

molecular weights of the sulfonamides were concluded on the basis of their positive ion ESI 

mass spectra, which showed precursor ions [M+H]
+
 in MS1. The characteristic fragment ions 

were used in MS2 for confirmation of the sulfonamides.  

Table 5.3.2: MS/MS conditions 

 

TR (min) Sulfonamide 
Precursor 

ion 
Product ions 

1.19 Sulfadiazine 251.0 
155.9 

108.0 

1.56 Sulfathiazole 256.1 
155.9 

108.0 

2.30 Sulfamerazine 265.0 
189.8 

155.9 

4.50 Sulfamethazine 279.0 
203.9 

155.9 

4.50 Sulfamethizole 270.0 
155.9 

108.0 

5.36 Sulfamethoxypyridazine 280.9 
155.9 

126.0 

7.09 Sulfachloropyridiazine 285.0 
155.9 

108.0 

8.39 Sulfamethozaxole 253.9 
155.9 

108.0 
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5.4 Acrylamide in cooking oil 
 

The separation of acrylamide and methacrylamide was attained on an Agilent ZORBAX HILIC 

Plus column (4.6 mm x 50 mm, 3.5 µm). An isocratic elution, with 3% 5 mM acetic acid and 

97% acetonitrile mobile phase was employed. The column temperature was set at 30 °C with the 

flow rate maintained at 0.2 ml/min. Fig. 5.4.1 shows a typical chromatogram following the 

injection of the standard mixture. Different mobile phase polarity compositions, from 100% 

water to 100% acetonitrile, were evaluated. The best retention, with a shorter run time, was 

attained with 97% acetonitrile and 3% acetic acid.  

 

 

Figure 5.4.1:  Chromatogram of the standard mixture of acrylamide and methacrylamide (IS) 
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A salt combination of 4 g MgSO4 and 0.5 g NaCl was used to extract acrylamide from 1 g oil 

sample as well as to salt induce the acetonitrile – water phase separation. The samples were 

defattened with n-hexane to removed long chains of fatty acids that could create challenges in 

chromatographic. The fatty acid peaks usually overlap with the analyte or clogging the column 

[199]. The chromatograms of the oil blank and the spiked oil sample extract are shown in Fig. 

5.4.2 (A) and (B) respectively. The blank oil extract did not show any detectable amounts of 

acrylamide. This was consistent to previous findings where the frying oils did not contain any 

detectable amounts of acrylamide (0.02 µg/ml LOD) prior to processing food [200].  

 

A linear calibration curve (see Fig. 5.4.3) was obtained by plotting the relative responses of 

analyte (peak area of analyte / peak area of IS) to the relative concentration of analyte 

(concentration of analyte / concentration of IS). The curve was generated by spiking the sample 

blanks at a concentration range of 0 - 1500 ng/mL. Good linearity was demonstrated with r
2
 = 

0.9992. The LOD and LOQ were evaluated from the concentration of acrylamide required to 

give a signal- to-noise ratio of 3 and 10 respectively. The LOD was found to be 32.4 ng/mL 

while the LOQ was 108 ng/mL. 

 

 

The recovery and reproducibility (RSD) were evaluated on spiked samples at three different 

fortification levels: 500, 1000, and 2000 ng/mL. The analysis was performed in replicates of six 

(n = 6) at each level. Fig. 5.4.4 shows the recoveries and RSD values for acrylamide. 
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Figure 5.4.2: Chromatograms of; (A) blank oil extract and (B) spiked oil extract 

 

Acrylamide 

Methacrylamide (IS) 

Oil blank extract (A) 

Spiked oil extract (B) 
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Figure 5.4.3: Acrylamide calibration curve [LOD = 32.4 ng/ml LOQ = 108 ng/ml 
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 Figure 5.4.4:  Recoveries for the acrylamide in oil sample (n = 6) 
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CONCLUSIONS 

 

This thesis presented an evaluation on the applicability of different types of SPE sorbents. It was 

demonstrated that the sorbents had the potential to extract analytes of interest from complex 

matrices. Chromatographic conditions were optimized in order to obtain maximum sensitivity 

and selectivity. The optimized methods attained excellent results with regards recoveries, 

reproducibility, linearity, LODs and LOQs. 

A simultaneous extraction with subsequent fractionation of acidic, basic and neutral drugs in 

biological matrices was achieved with relatively simpler SPE protocols. The polymeric SPE 

sorbents, SampliQ-SAX and SampliQ-SCX allowed for high recoveries (> 80%) with reasonably 

low RSDs (< 5%, n = 6). The developed methods can therefore be applied for analysis of 

compounds that exhibit diverse polarity and acidic, basic or neutral functionalities. 

Furthermore, the applicability of simple and fast multi-residue methods based on SampliQ 

QuEChERS was evaluated. QuEChERS method was employed for the determination of sixteen 

polycyclic aromatic hydrocarbons in soil and fish samples, nine sulfonamides in chicken muscle 

and acrylamide in cooking oil. High extraction yields (≥ 76%) with excellent RSD (< 5%, n = 6), 

based on spiked matrices, were attained. These QuEChERS based methodologies maybe applied 

for quality control concerning PAHs, SAs and AA in real sample and are generally suitable for 

laboratory routine analysis. 
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