
Remote Fidelity of Container-Based
Network Emulators

Submitted in fulfilment

of the requirements of the degree of

Master of Science

of Rhodes University

Schalk Willem Peach

ORCID 0000-0002-2451-2006

https://orcid.org/

Grahamstown, South Africa

January 2020

Abstract

This thesis examines if Container-Based Network Emulators (CBNEs) are able to instan-

tiate emulated nodes that provide sufficient realism to be used in information security

experiments. The realism measure used is based on the information available from the

point of view of a remote attacker.

During the evaluation of a Container-Based Network Emulator (CBNE) as a platform to

replicate production networks for information security experiments, it was observed that

nmap fingerprinting returned Operating System (OS) family and version results incon-

sistent with that of the host Operating System (OS). CBNEs utilise Linux namespaces,

the technology used for containerisation, to instantiate “emulated” hosts for experimental

networks. Linux containers partition resources of the host OS to create lightweight virtual

machines that share a single OS kernel. As all emulated hosts share the same kernel in

a CBNE network, there is a reasonable expectation that the fingerprints of the host OS

and emulated hosts should be the same.

Based on how CBNEs instantiate emulated networks and that fingerprinting returned

inconsistent results, it was hypothesised that the technologies used to construct CBNEs

are capable of influencing fingerprints generated by utilities such as nmap. It was predicted

that hosts emulated using different CBNEs would show deviations in remotely generated

fingerprints when compared to fingerprints generated for the host OS.

An experimental network consisting of two emulated hosts and a Layer 2 switch was in-

stantiated on multiple CBNEs using the same host OS. Active and passive fingerprinting

was conducted between the emulated hosts to generate fingerprints and OS family and

version matches. Passive fingerprinting failed to produce OS family and version matches

as the fingerprint databases for these utilities are no longer maintained. For active fin-

gerprinting the OS family results were consistent between tested systems and the host

OS, though OS version results reported was inconsistent. A comparison of the generated

fingerprints revealed that for certain CBNEs fingerprint features related to network stack

optimisations of the host OS deviated from other CBNEs and the host OS.

The hypothesis that CBNEs can influence remotely generated fingerprints was partially

confirmed. One CBNE system modified Linux kernel networking options, causing a devia-

tion from fingerprints generated for other tested systems and the host OS. The hypothesis

was also partially rejected as the technologies used by CBNEs do not influence the remote

fidelity of emulated hosts.

Acknowledgements

I would like to thank my family, especially my wife, for the support (and coffee) provided.

Without you, I would not have been able to maintain focus and complete this journey.

I would like to thank my supervisor, Prof. Barry Irwin, for his insight, guidance, support,

and patience throughout my research. Above all, I would like to thank Prof. Irwin for

the suggestion of a rather obscure set of tests to be conducted, that turned out to reveal

hidden secrets of computer systems.

ACM Computing Classification System Classification 2012

• Security and privacy → Virtualization and security

• Networks → Network experimentation

• Networks → Network security

• Networks → Network simulations

• Networks → Network architectures

• Networks → Network protocols

Contents

1 Introduction 1

1.1 Problem Statement . 2

1.2 Research Outline . 3

1.3 Research Method . 3

1.4 Document Conventions . 4

1.5 Document Structure . 5

2 Network Experimentation Platforms 6

2.1 A System of Abstractions . 7

2.2 Layered Virtualisation Model . 12

2.3 Network Experimentation Platform Types 20

2.4 Abstraction, Realism and Scalability . 25

2.5 Summary . 27

3 Container-Based Network Emulators 29

3.1 Background . 30

3.2 Linux Namespaces . 32

3.3 Implementations . 36

i

CONTENTS ii

3.4 Architecture . 40

3.5 Technology . 45

3.6 Summary . 49

4 Remote Fidelity of Abstracted Hosts 51

4.1 Operating System Fingerprinting . 52

4.2 Network Attack Models . 60

4.3 Remote Fidelity of Networked Hosts . 66

4.4 Summary . 70

5 Experimentation and Results 71

5.1 Network and Host Influences on Fingerprinting 72

5.2 Testing Environment . 78

5.3 Reported Kernel Versions . 83

5.4 Ping Latency Results . 85

5.5 Passive Fingerprinting Results . 93

5.6 Active Fingerprinting Results . 95

5.7 MiniNet Modification and Re-run . 101

5.8 Summary . 104

6 Conclusion 107

6.1 Future Work . 110

References 111

A ARP Delays in Ping Timings A1

CONTENTS iii

B Ping Latency Distribution Results B1

C Interpreting Fingerprints C1

C.1 p0f Fingerprint Details . C1

C.2 ettercap Fingerprint Details . C3

C.3 xprobe2 Fingerprint Details . C4

C.4 SinFP3 Fingerprint Details . C5

D Fingerprint Results Tables D1

D.1 xprobe2 ICMP Results . D2

D.2 nmap Results . D4

D.3 Fingerprint Results Post Modification . D4

List of Figures

2.1 Von Neumann Architecture . 8

2.2 A Typical Computer’s Functional Diagram 9

2.3 Harvard Architecture . 9

2.4 Original Protection Rings Sketch . 10

2.5 Intel x86 Architecture Privilege Rings . 10

2.6 Layered Model of Computer Virtualisation 13

2.7 Device Virtualisation Through Emulation 14

2.8 Virtual-Machine Monitor Types . 15

2.9 Operating System (OS) Level Virtualisation Architecture 16

2.10 Java™ Virtual Machine Architecture . 18

3.1 Container Creation Process . 34

3.2 Mininet MiniEdit Editor . 36

3.3 Marionnet User Interface . 37

3.4 IMUNES User Interface . 38

3.5 CORE User Interface . 38

3.6 VNX Emulation Output . 39

iv

LIST OF FIGURES v

3.7 Netkit Lab Generator Interface . 40

3.8 CBNE Architecture Comparison Framework 41

3.9 CBNE Technology Comparison Framework 45

4.1 Operating System Fingerprinting Taxonomy 53

4.2 Active Scanning Taxonomy . 56

4.3 Generalised Network Attack Model . 61

4.4 Network Attack Models Focused on Penetrating Networks 62

4.5 Multistage Computer Network Attack Model 63

4.7 The Cyber Kill Chain . 64

4.6 Extended Attack Models . 65

4.8 Active SONAR Block Diagram . 67

4.9 xprobe2 Active Fingerprinting Block Diagram 68

4.10 Passive SONAR Block Diagram . 68

4.11 Passive Fingerprinting Block Diagram . 69

5.1 Basic Routed Network . 73

5.2 Corporate Network with a DMZ . 74

5.3 Packet Entering A Computer System . 75

5.4 Hook points for iptables . 77

5.5 Experimental Network . 79

5.6 xprobe2 Output on Ubuntu 19.04 AMD64 84

5.7 Ping Latency Distribution - Run 1 . 89

5.8 Ping Distribution Histograms - Run 1 . 90

5.9 Ping P-P Plot Host Comparison Sample 91

5.10 Ping P-P Plot CBNEs Comparison Sample 92

List of Tables

2.1 Platform Characteristics for Reproducible Network Experiments 25

2.2 Virtual Laboratory Feature Comparison 26

2.3 DETERlab Testbed Node Densities . 26

2.4 Influence of Abstraction on Network Scale 27

2.5 Characteristics of Experimental Platforms 27

3.1 Container-Based Emulator Implementations 31

3.2 Linux Namespace Availability According to Kernel Version 32

3.3 CBNE User Interface Architecture . 41

3.4 CBNE Application Architecture . 43

3.5 CBNE Remote Control Architecture . 43

3.6 CBNE Virtualisation Architecture . 45

3.7 CBNE Node Emulation . 46

3.8 CBNE Network Device Emulation . 47

3.9 CBNE Link Emulation . 49

4.1 Operating System Fingerprinting Utilities 54

4.2 Observable Behavioural Differences for IP and TCP Network Traffic 57

vi

LIST OF TABLES vii

4.3 Typical Initial IP TTL Values and TCP Window Sizes of Common OSs . . 58

4.4 Web Browser User Agent String to OS Match 59

5.1 Systems Under Test . 78

5.2 System Under Test Emulation Components 79

5.3 Fingerprint Utility Versions . 80

5.4 Fingerprinting Utility Database Dates . 81

5.5 Active Fingerprinting Commands . 82

5.6 Passive Fingerprinting Commands . 82

5.7 CBNE Kernel Version . 83

5.8 SinFP3 Passive Reported Operating Systems 84

5.9 nmap Reported Operating Systems . 84

5.10 SinFP3 Active Reported Operating Systems 85

5.11 Ping Statistics, Initial . 87

5.12 Ping Statistics, Confirmation . 87

5.13 Ping Statistics . 88

5.14 Ping Quartiles . 89

5.15 Ping Distribution Visual Correlations . 92

5.16 p0f v3.09b Fingerprints . 93

5.17 ettercap v0.82 Fingerprints . 94

5.18 SinFP3 Passive Fingerprints . 94

5.19 Passive Fidelity Scores . 95

5.20 xprobe2 Results - Condensed . 96

LIST OF TABLES viii

5.21 xprobe2 PortSpec Results - Condensed 97

5.22 xprobe2 PortSpec Results - Extract . 97

5.23 SinFP3 Active Fingerprints . 98

5.24 nmap Scan Execution Time . 99

5.25 nmap UDP Ports Detected Summary . 99

5.26 nmap Sequence Generation Test Results 100

5.27 nmap Fingerprint Results . 100

5.28 Active Fidelity Scores . 101

5.29 sysctl Configuration Results . 101

5.30 sysctl Configuration Results After Modification 103

5.31 Remote Fidelity for Modified MiniNet . 103

List of Listings

4.1 Apache & PHP Information Leakage . 56

5.1 SYN Packet Pre & Post Router . 73

5.2 SYN Packet Pre & Post Switch . 74

5.3 Example uname Command Output . 80

5.4 Round Trip Time and Statistics for the ping Utility 80

5.5 Round Trip Time and Statistics for the ping Utility - Extended 86

5.6 MiniNet sysctl Configuration Changes 102

5.7 MiniNet sysctl Configuration Changes Modified 102

ix

Acronyms

API Application Programming Interface

ARP Address Resolution Protocol

BSD Berkeley Software Distribution

CBE Container-Based Emulator

CBNE Container-Based Network Emulator

CLI Command Line Interface

CORE Common Open Research Emulator

CPU Central Processing Unit

DMZ Demilitarised Zone

EDVAC Electronic Discrete Variable Automatic Computer

EMANE Extendable Mobile Ad-hoc Network Emulator

GENI Global Environment for Network Innovations

GNS3 Graphical Network Simulator 3

GUI Graphical User Interface

HAL Hardware Abstraction Layer

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

ICMP Internet Control Message Protocol

ICS Industrial Control System

IDPS Intrusion Detection and Prevention System

IMUNES Integrated Multiprotocol Network Emulator/Simulator

x

Acronyms xi

IOS Internetwork Operating System

IoT Internet of Things

IP Internet Protocol

ISA Instruction Set Architecture

KVM Kernel-Based Virtual Machine

L3 OSI Layer 3

L7 OSI Layer 7

LAN Local Area Network

LXC Linux Containers

MAC Media Access Control

MIPS Microprocessor without Interlocked Pipelined Stages

MSS Maximum Segment Size

Multics Multiplexed Information and Computing Service

NEP Network Experimentation Platform

NGFW Next Generation Firewall

NIC Network Interface Controller

OS Operating System

RAM Random Access Memory

RFC Request for Comment

RPC Remote Procedure Call

RTT Round Trip Time

SCADA Supervisory Control and Data Acquisition

SDN Software Defined Networking

SONAR Sound Navigation and Ranging

TCP Transmission Control Protocol

TTL Time To Live

UDP User Datagram Protocol

Acronyms xii

UI User Interface

UML User Mode Linux

UTM Unified Threat Management

VDE Virtual Distributed Ethernet

VM Virtual Machine

VMM Virtual Machine Monitor

VNUML Virtual Network User Mode Linux

VNX Virtual Networks over Linux

Chapter 1

Introduction

Anyone who considers protocol unimportant

has never dealt with a cat.

Robert A. Heinlein

As long as communications technologies have been available, intrusions into the private

communications of others have been a goal of malicious actors. The first recorded intru-

sion into secure communications through the exploitation of technology occurred during a

demonstration of Guglielmo Marconi’s wireless telegraphy technology (Marks, 2011) . As

John Ambrose Fleming was in the final stages of preparing one side of a 300 mile transmis-

sion demonstration with Guglielmo Marconi, the letters “R A T S” repeatedly printed

out on Fleming’s machine. The perpetrator, Nevil Maskelyne, a competing inventor, had

devised a method to interfere with Marconi’s demonstration.

As communication technology became more sophisticated, attack methodologies on these

technologies became more sophisticated, and the first known and recorded intrusion into a

computer network occurred in 1967 (Falkoff, 1991). A group of students were given access

to IBMs APL laboratory, and by learning the internals of the systems, the students were

able to take control of major parts of the system. This intrusion into the computer

network led to a testing methodology where hackers are used to test the security of a

network. This methodology later became known as network penetration testing.

Conducting network penetration testing on production networks is risky and could disrupt

services (Türpe and Eichler, 2009). An alternative solution is to use a testbed, which is

a physical copy of the production network. Replicating large networks using physical

hardware is impractical due to both size and cost constraints. However, advances in the

1

2

virtualisation of computer and network equipment has enabled physical machines to be

partitioned into multiple virtual systems (Smith and Nair, 2005). Contemporary Network

Experimentation Platforms (NEPs) - such as MiniNet (Heller, 2013) - have evolved to

exploit these technologies, increasing the number of experimental network nodes that a

single physical machine can instantiate. The introduction of kernel virtualisation and

link emulation technologies in Linux and FreeBSD presented an opportunity to create

NEPs using a single commodity desktop computer. These systems became known as

Container-Based Emulators (CBEs) (Handigol et al., 2012) and enabled experimentation

with network protocols and distributed system design using consumer laptops. To prevent

confusion with other types of emulators, these systems will be referred to as Container-

Based Network Emulators (CBNEs).

A selection of open source CBNEs using Linux kernel virtualisation and network virtu-

alisation technologies were selected as the test platforms for this study. An initial study

of the technologies and architectures of the selected CBNEs indicated that a variety of

open source containerisation and network virtualisation technologies that can have an in-

fluence on network traffic were used to construct the individual systems. To confirm that

Operating System (OS) fingerprinting is used by remote attackers, four classes of network

attack models were reviewed. From the reviewed literature it was established that there

is a reasonable expectation for fingerprinting of OSs to be used in attacks targeted at

specific machines and during penetration testing. The techniques and technologies used

to construct a fingerprint for an OS from network traffic were investigated for the ability

to detect changes brought on by abstracting a computer system. Most of the features ex-

tracted by fingerprint utilities relate to changes in the source code of an OS. Knowing that

the construction of CBNEs can influence OS fingerprints and that fingerprinting utilities

are capable of detecting certain changes, it was predicted that different CBNE platforms

instantiating the same experimental network would deliver different fingerprints for hosts

in the network.

1.1 Problem Statement

The scale and complexity of modern computer networks, as well as the diversity of soft-

ware packages that make up such networks, presents a challenge for testing the security of

the overall system. Conducting penetration tests on “live” networks may be detrimental

to the functioning of the network. Testing the security of such large systems typically re-

quires playgrounds or sandboxes that can replicate critical components and a large enough

segment of the operational network to represent realistic operational environments. These

3

playgrounds and sandboxes must have the ability to accurately replicate the conditions of

the network, taking into account the distribution of network and end-user device types.

Testbeds and virtualisation systems are viable solutions in circumstances where the size

or cost of constructing a physical sandbox is a prohibiting factor.

Simulated networks do not necessarily present a network penetration testing team with

sufficient realism to conduct a network penetration test or train staff. A stochastic model

of a computer system is not capable of accounting for variations and flaws that could

creep in during the implementation of network protocols, performance metrics, and OSs

(Rampfl, 2013; Sharif and Sadeghi-Niaraki, 2017). An alternative technology in the form

of CBNEs - training and experimentation networks created using OS level virtualisation

(Section 2.2.3) - presents a middle ground in terms of cost and realism when a Unix based

network is subjected to a penetration test.

The primary question that arises for this research is whether or not a CBNE can emulate

a network of Linux devices with sufficient realism to be used as a platform for information

security experiments.

1.2 Research Outline

The research conducted was structured to address the following three research objectives:

1. Conduct literature surveys on the techniques and technologies used to:

(a) create abstracted computer systems such as virtual machines and containers.

(b) remotely fingerprint a computer system.

2. Develop a model that can measure the realism of an abstracted computer system

using fingerprints generated by active and passive fingerprinting utilities.

3. Apply the model to a selection of open source CBNEs based on Linux namespaces

and assess the suitability of these systems to be used as experimental platforms for

information security research, education, and training.

1.3 Research Method

To answer the question of whether or not a CBNE can accurately emulate a computer

network for information security experimentation, the research was conducted as a de-

scriptive and explanatory study based on action and experimental research methods. A

4

literature review was conducted in three parts. The first literature review was conducted

to assess the types of platforms that are used to create computer networks for research and

experimentation. The second literature review was conducted to assess the current state

of open source CBNEs that utilise virtualisation technologies of the Linux kernel. The

third literature review was conducted to assess the techniques and technologies used to

fingerprint computer systems from the perspective of a remote attacker. The information

gained from the literature reviews were used to create an abstract model that attempts

to define the fidelity of an abstracted machine as seen from the perspective of a remote

attacker. Finally, an experimental platform was built to enable testing and validation of

the research hypothesis and the model for remote fidelity.

1.4 Document Conventions

A monospace font will be used to indicate that an executable application is being referred

to. For example, the active fingerprinting utility nmap will always be rendered in a

monospace font.

An italic font will be used when referring to an item in a table or a component of a

diagram.

Port number and protocol pairings will be written in the short-hand form of port/protocol.

As an example when writing 22/tcp the port number is 22 and the Layer 2 protocol used

is TCP. The same convention will be applied to Layer 7 protocols, for example 80/tcp

refers to the OSI Layer 7 protocol HTTP over port number 80.

The term Container-Based Emulator (CBE) as defined by Handigol et al. (2012) will not

be used. In its place the term Container-Based Network Emulator (CBNE) will be used

to distinguish it from other types of emulator systems.

The term Network Experimentation Platform (NEP) will be used to refer to systems that

are used to construct and instantiate computer networks for experimentation, irrespective

of the abstraction technology used.

Throughout the document certain technical terms could have different meanings based

on the context within which these terms are used. Utilisation of these terms will have

a particular interpretation in Chapter 2, and a general interpretation in the rest of the

document. These terms are defined below.

5

Emulation: In Chapter 2 the term emulator will be used to refer to Instruction Set

Architecture (ISA) level virtualisation. Throughout the rest of the document the terms

emulator and emulated will be used to refer to CBNEs and hosts instantiated by CBNEs,

respectively.

Virtualisation: In Chapter 2 the term virtualisation and virtual machine will exclusively

be used to refer to machines created using Type I and Type II Virtual Machine Monitors

(VMMs). Throughout the rest of the document the terms virtualisation will be used to

refer to any type of abstraction system or mechanism, and virtual machine will refer to

any abstracted computer system instantiated using an abstraction system or mechanism.

Simulated computer systems are excluded from this use.

1.5 Document Structure

The remainder of this thesis is structured as follows:

Chapter 2 introduces the concept of Network Experimentation Platforms (NEPs). NEPs

exploit the hierarchical nature of computer systems and the opportunities for abstraction

created by this hierarchical organisation. This chapter explores how different abstraction

techniques influence the realism of abstracted hosts.

Chapter 3 presents an overview of a selection of open source CBNEs, a type of NEP

that utilises Linux containerisation technologies. The architecture and technologies used

to construct these systems are investigated for the ability to modify network traffic and

influence remotely generated fingerprints.

Chapter 4 explores the techniques used by remote attackers to construct a fingerprint

for a targeted machine. The techniques and technologies used by a remote attacker to

generate fingerprints are then used to construct a model for measuring the realism of an

abstracted host as seen from the perspective of a remote attacker.

Chapter 5 presents results obtained from generating active and passive fingerprints for

selected open source CBNEs and findings on the ability of CBNEs to alter remotely

generated fingerprints are reported.

Chapter 6 gives a conclusion on the work conducted during this research and discusses

opportunities for future work related to specific discoveries made during experimentation.

Chapter 2

Network Experimentation Platforms

Two elements are needed to form a truth

—a fact and an abstraction.

Remy de Gourmont

Securing computer networks, from small scale Local Area Networks (LANs) to global Con-

tent Distribution Networks, is a daunting yet crucial task. Techniques and technologies

used by network penetration testers and security researchers to secure computer networks

against attacks have the capability to disrupt entire networks, even when used with proper

care (Türpe and Eichler, 2009). Network Experimentation Platforms (NEPs) (Pediadi-

takis et al., 2014) originated as physical test beds of computer and networking equipment

that replicated production networks to assist developers in testing systems and applica-

tions in “real world” conditions. These systems have found an application in education

and network security testing (van Heerden et al., 2013; Browne et al., 2018) to combat the

disruption of network services during experimentation and testing. By using experimen-

tation platforms that replicate the topologies and configurations of production networks,

security professionals can apply testing procedures to replicated networks without fear of

disrupting critical services. Testing of networks can be done using more aggressive tech-

niques, increasing the probability of finding weaknesses that will only present themselves

under extreme circumstances. Mitigations to weaknesses and vulnerabilities discovered in

the replicated network can then be applied to the production network.

Replicating an enterprise network using physical hardware is often impractical and pro-

hibitively expensive. Advances made in hardware and software technologies that abstract

computer systems, such as virtualisation (Section 2.2.2) and containerisation (Section

6

7

2.2.3), have enabled NEPs to increase the density (number of abstracted machines per

physical machine) at which experimentation networks can be built. Virtualisation tech-

nologies have enabled single physical machines to be partitioned into multiple abstracted

machines and network virtualisation technologies have enabled physical networking de-

vices to replicate the functions and behaviour of many of networked devices (Handigol

et al., 2012).

In Section 2.1, three models for abstracting a computer system at hardware layer are

introduced. These abstractions enable a single physical machine to be partitioned into

multiple abstract machines. Each of these abstracted machines can replicate a subset of

the features of the original machine.

Section 2.2 expands on the opportunities for abstracting a computer system by exploring

the software systems that realise abstracted machines. Using a layered model, six abstrac-

tion techniques are investigated. The layered virtualisation model captures the different

techniques employed by programmers to create software systems capable of emulating

partial or whole computer architectures.

Four broad classes of NEP construction methodologies are introduced in Section 2.3. Each

of the four types of classical NEP was designed to address specific requirements for testing

and experimentation activities in computer networks. In this section the construction and

motivation for the development of each type of NEP is discussed, including how classical

NEPs employ abstraction techniques to realise experimental networks.

In Section 2.4 the influence that abstracting a computer system has on realism is inves-

tigated. The metrics and parameters used to define realism, within the context of NEPs,

are explored based on available literature. This chapter concludes with a summary in

Section 2.5.

2.1 A System of Abstractions

Computer systems are designed as a hierarchical system of abstractions (Smith and Nair,

2005). In this section three abstraction models are introduced. These abstraction models

are explored as enablers for the virtualisation technologies used by NEPs to construct

experimental networks. The first model to be explored is the von Neumann architecture

(von Neumann, 1945), a model designed to capture the output of designing the Electronic

Discrete Variable Automatic Computer (EDVAC). The second model, the Privilege Ring

2.1.1 Von Neumann Architecture 8

model, presents the abstraction used in Operating Systems (OSs) where the hardware, the

operating system, and applications a user executes are separated into different privilege

levels, ensuring that management and control systems of the OS cannot be modified by

user applications. The third model is the Popek and Goldberg model for Instruction

Set Architecture (ISA) virtualisation. The Popek and Goldberg model ensures that a

virtual computer is in full control of the virtual hardware, that it is properly isolated

from the host machine, and that the virtual machine runs efficiently. The combination of

these three models enable OSs to be designed to make provisioning for further levels of

abstraction.

2.1.1 Von Neumann Architecture

The EDVAC computer (von Neumann, 1945; Gluck, 1953), delivered in 1945, was desig-

nated to replace the Electronic Numerical Integrator and Computer (ENIAC) (Goldstine

and Goldstine, 1946) and was based on binary instead of decimal mathematics (Koons

and Lubkin, 1949). This new computer system required a rethink of the base architecture

of the machine to reduce the bottlenecks of previous computer systems. An enhanced

input-output architecture was required to reduce the time required to program the sys-

tem. The resultant architecture was named after its designer: John von Neumann. The

architecture, shown in Figure 2.1, broke the design of the machine down into four logical

units: input devices, output devices, a Memory Management Unit (MMU), and a Central

Processing Unit (CPU) composed of a control unit and an Arithmetic/Logic Unit (ALU).

Central Processing Unit

Input Device Output Device

Memory Unit

Control Unit

Arithmetic/Logic

Unit

Central Processing Unit

Input Device Output Device

Memory Unit

Control Unit

Arithmetic/Logic

Unit

Figure 2.1: Von Neumann Architecture1, von Neumann (1945)

In How to Build a Working Digital Computer, Alcosser et al. (1967) guides the curious

reader in building a functional programmable computer system from “household” com-

ponents. The base architecture for the computer system being built is the von Neumann

1Adapted from image by Kapooht [CC BY-SA 3.0], from Wikimedia Commons

2.1.1 Von Neumann Architecture 9

architecture. Computer systems based on the von Neumann architecture are commonly

referred to as von Neumann machines. The detailed interaction between the components

of the home-made computer can be seen in Figure 2.2. These interactions are the same

as those of a von Neumann machine.

INPUT

UNIT

ARITHMETIC

UNIT

OUTPUT

UNIT

STORAGE

UNIT

ORDERS

PROGRAMMED INSTRUCTION

CALCULATED DATA

(TEMPORARY STORAGE)

CALCULATED DATAENCODED DATA

CONTROL

UNIT

ORDERS

ORDERS

ORDERS

STORED DATA

DATA

DECODED

ANSWER

INPUT

UNIT

ARITHMETIC

UNIT

OUTPUT

UNIT

STORAGE

UNIT

ORDERS

PROGRAMMED INSTRUCTION

CALCULATED DATA

(TEMPORARY STORAGE)

CALCULATED DATAENCODED DATA

CONTROL

UNIT

ORDERS

ORDERS

ORDERS

STORED DATA

DATA

DECODED

ANSWER

INPUT

UNIT

ARITHMETIC

UNIT

OUTPUT

UNIT

STORAGE

UNIT

ORDERS

PROGRAMMED INSTRUCTION

CALCULATED DATA

(TEMPORARY STORAGE)

CALCULATED DATAENCODED DATA

CONTROL

UNIT

ORDERS

ORDERS

ORDERS

STORED DATA

DATA

DECODED

ANSWER

Figure 2.2: A Typical Computer’s Functional Diagram, After Alcosser et al. (1967)

Modern microprocessors, as presented to the OS, are von Neumann machines. Internally,

the processor could be designed using either the von Neumann or Harvard (Aiken and

Hopper, 1946a,b,c) architectures. The primary difference between the architectures is

in the memory unit. The Harvard architecture (Figure 2.3) requires separate data and

program memory whereas the von Neumann architecture stores program code and data

in the same memory.

Arithmetic/Logic

Unit

Control UnitInstruction Memory Data Memory

Input/Output Devices

Arithmetic/Logic

Unit

Control UnitInstruction Memory Data Memory

Input/Output Devices

Figure 2.3: Harvard Architecture2

The von Neumann architecture defines the basic components that an abstracted machine

should provide: input and output mechanisms, program and data storage, and a way to

execute machine code. At any level of abstraction, the abstracted machine must expose

these elements to create a realistic environment that a user can interact with.

2Adapted from image by Nessa los [CC BY-SA 3.0], from Wikimedia Commons

2.1.2 The Protection Ring Model 10

2.1.2 The Protection Ring Model

The concept of separating resource access in a computer system according to privilege

originated within the Multiplexed Information and Computing Service (Multics) OS (Cor-

bató and Vyssotsky, 1965). In the build up to the Protection Ring model Dennis (1965)

developed methods and mechanisms to segment machine resources and Graham (1968)

developed a software layer that implemented an early Protection Ring model. The exper-

iments within the Multics OS development team to increase security by enforcing access

rules at the hardware layer resulted in the Protection Ring model (Schroeder and Saltzer,

1972). The original Protection Ring model as proposed by Graham (1968) provisioned

for an arbitrary number of rings, as shown in Figure 2.4.

Figure 2.4: Original Protection Rings Sketch, Graham (1968)

Contemporary processors based on the Intel x86 architecture implement the concepts of

the original Protection Ring model, but limits the number of rings to 4 (Intel Corporation,

2019, Section 5.5). An annotated illustration of the processes that occupy a particular ring

in the x86 architecture is shown in Figure 2.5. Ring 0 is assigned the most privileges and

allows modification of management and control systems within the CPU. Ring 0 is where

the kernel of the OS resides, allowing the OS to exercise control over all aspects of the

system. Rings 1 and 2 are commonly used for device drivers and system services, enabling

interaction between user space applications and the underlying hardware. Applications

that the user interacts with reside in Ring 3, the lowest privilege level.

Operating System

Kernel

Operating System

Services

Applications

Level 1

Level 2

Level 3

Level 0

Figure 2.5: Intel x86 Architecture Privilege Rings, After Intel Corporation (2019)

2.1.3 Hardware Assisted Virtualisation 11

2.1.3 Hardware Assisted Virtualisation

Computer virtualisation is the process of creating a virtual instance of a computer running

on another computer (Section 2.2.2). Early Virtual Machines (VMs) were implemented

in software. These software systems were responsible for creating a virtual environment

that is indistinguishable from real hardware. The OS executing in the virtual environment

could exact full control over the virtual environment just as it would on real hardware.

Software-based VMs are expensive in terms of system resources and clock cycles of the

CPU. To enable more efficient utilisation of the host hardware by guest VMs, hardware-

assisted virtualisation was introduced (IBM, 1972a).

Hardware-assisted virtualisation enabled guest OSs to control some aspects of the host

hardware. Virtual Machine Monitors (VMMs), systems that manage and control VMs,

had to intercept and safely handle instructions issued by guest OSs that requested a

state change of the host hardware that would conflict with the operation of the host

OS. In an attempt to solve this conflict between the host OS and guest OSs, Popek and

Goldberg defined a set of requirements for the host computer’s ISA that would enable

hardware assisted virtualisation capable of dealing with guest OSs attempting to set

sensitive machine states (Popek and Goldberg, 1974).

The protection ring model (Section 2.1.2) introduced boundaries between the OS and ap-

plications executed by a user. Attempting to create a VM in such an environment creates

a conflict, where both the host OS and guest OSs expect full Ring 0 privileges. Early

solutions to this conflict had the host OS intercept (trap) any sensitive calls that required

Ring 0 privileges and handled these in software (Adams and Agesen, 2006), however the

trap system is expensive in terms of CPU clock cycles. In 2005 Intel introduced extensions

to the x86 architecture with the release of the Intel Pentium 4 models 662 and 672 that

enabled hardware virtualisation comparable to the requirements of Popek and Goldberg.

The introduction of the Intel VT-x extensions moved the VMM from executing in Ring 0

to executing in a special mode called hypervisor mode (Asada, 2013), which was designed

specifically for VMMs, thus solving the conflict between the host and guest OSs. Recent

work on the ARM ISA (Penneman et al., 2013; Shuja et al., 2016) has enabled hardware

virtualisation for certain versions of the architecture.

Combining the various abstractions that exist in a computer system enables the creation

of various types of abstract machines. The abstraction of the minimal devices required

to create a computer system (Section 2.1.1) enables whole computer systems to be im-

plemented in software (Section 2.2.1). By abstracting the execution model of a computer

12

system, multiple operating systems can run on a single hardware platform (Section 2.2.2).

And finally, by providing hardware mechanisms to isolate executing processes’ access to

resources, virtual systems that execute as part of the OS kernel (Section 2.2.3) can be

created.

An example of how the various abstractions mechanisms can be combined to create virtual

machines can be found in Kata Containers. Kata Containers3 (a continuation of Intel

Clear Containers4) utilises virtualisation technologies to instantiate lightweight abstracted

machines called containers (Section 2.2.3). Kata Containers instantiate an optimised VM

based on Quick Emulator (QEMU) and Kernel-Based Virtual Machine (KVM) called

qemu-lite5 that serves as an isolated runtime for containers. Kata Containers enable

the end-user to instantiate containers that have isolation comparable to that of VMs

(Section 2.2.2).

2.2 Layered Virtualisation Model

In Distributed and Cloud Computing: From Parallel Processing to the Internet of Things,

Hwang et al. (2013) present a layered model of computer virtualisation. The model

categorises virtualisation technologies based on the level to which a computer system

is abstracted. By analysing the common abstraction mechanisms used by virtualisation

systems, they created the model shown in Figure 2.6. Each layer in the model describes

an aspect of a computer system’s hardware and software hierarchy that can be exploited

to create an abstracted machine. For the purposes of this study, the model presented in

Figure 2.6 has been extended to include simulation as a final layer of abstraction. The

model presented by Hwang et al. (2013) was chosen as the basis for this study due to the

match between the abstractions presented and the technologies and techniques used to to

construct experimental networks using abstracted machines.

In the context of NEPs, simulated computer systems replicate the behaviour of a com-

puter system interacting with network traffic. By leveraging the abstractions of the Lay-

ered Model, NEPs can be built to achieve higher node densities. The level at which each

component in the experimental network is abstracted is based on the “realism” require-

ment of the component. Components that require high realism can be instantiated using

physical machines, while components with lower realism requirements can be instantiated

3https://katacontainers.io/
4https://github.com/clearcontainers
5https://github.com/intel/qemu-lite

https://katacontainers.io/
https://github.com/clearcontainers
https://github.com/intel/qemu-lite

2.2.1 Instruction Set Architecture Virtualisation 13

using simulation. Examples of how virtualisation technologies and system can by utilised

by NEPs are shown in Section 2.2.7.

Application Level

JVM / .Net CLR / Parrot

Library Level (User-level API)

WINE / WABI / LxRun / Visual MainWin / vCUDA

Operating System Level

Jail / Virtual Environment / Ensim’s VPS / FWM

Hardware Abstraction Layer (HAL) Level

VMWare / Virtual PC / Denali / Xen / L4 /

Plex 86 / User Mode Linux / Cooperative Linux

Instruction Set Architecture (ISA) Level

Bochs / Crusoe / QEMU / BIRD / Dynamo

Simulation Level

OpNet / Omnet++ / ns-3

Application Level

JVM / .Net CLR / Parrot

Library Level (User-level API)

WINE / WABI / LxRun / Visual MainWin / vCUDA

Operating System Level

Jail / Virtual Environment / Ensim’s VPS / FWM

Hardware Abstraction Layer (HAL) Level

VMWare / Virtual PC / Denali / Xen / L4 /

Plex 86 / User Mode Linux / Cooperative Linux

Instruction Set Architecture (ISA) Level

Bochs / Crusoe / QEMU / BIRD / Dynamo

Simulation Level

OpNet / Omnet++ / ns-3

Application Level

JVM / .Net CLR / Parrot

Library Level (User-level API)

WINE / WABI / LxRun / Visual MainWin / vCUDA

Operating System Level

Jail / Virtual Environment / Ensim’s VPS / FWM

Hardware Abstraction Layer (HAL) Level

VMWare / Virtual PC / Denali / Xen / L4 /

Plex 86 / User Mode Linux / Cooperative Linux

Instruction Set Architecture (ISA) Level

Bochs / Crusoe / QEMU / BIRD / Dynamo

Simulation Level

OpNet / Omnet++ / ns-3

Figure 2.6: Layered Model of Computer Virtualisation, After Hwang et al. (2013)

2.2.1 Instruction Set Architecture Virtualisation

Instruction Set Architecture (ISA) emulators can operate in two modes: ISA interpreta-

tion, and dynamic ISA translation. Interpreters provide software-based implementations

of the target ISA and hardware components such as Random Access Memory (RAM),

storage, and I/O peripherals in a software defined virtual machine. These software-based

computer systems replicate the design of the von Neumann architecture (Section 2.1.1).

Interpreters re-implement the operations of the original hardware’s opcodes6 and apply

the operations to the software implementation of the machine. Interpreters are not de-

pendent on the host ISA. Translators provide abstractions for RAM, storage, and I/O

peripherals similar to interpreters. Translators replicate the operations of the source op-

codes in the target machine’s opcodes. The translated opcodes then apply the necessary

operations to segments of the host’s RAM dedicated to the virtual machine. Translators

are dependent on the host ISA and requires new translations when ported to a new target

ISA. A conceptual illustration of how systems emulated through ISA level virtualisation

relate to the host machine (Jones, 2011) is shown in Figure 2.7.

Bochs7 (Lawton, 1996), an interpreter, started as a project to run the DOS (an x86

based OS) and a set of applications on a SPARC ISA based computer. Bochs originally

6Operation Code, a mnemonic and human readable form of a machine language instruction.
7http://bochs.sourceforge.net/

http://bochs.sourceforge.net/

2.2.2 Hardware Abstraction Layer Virtualisation 14

Host Hardware

Virtual Machine

Emulator

Host Operating System

vDisk vNIC ...

Virtual Platform

vDisk vNIC ...

Guest Operating System

Host Hardware

Virtual Machine

Emulator

Host Operating System

vDisk vNIC ...

Virtual Platform

vDisk vNIC ...

Guest Operating System

Host Hardware

Virtual Machine

Emulator

Host Operating System

vDisk vNIC ...

Virtual Platform

vDisk vNIC ...

Guest Operating System

Figure 2.7: Device Virtualisation Through Emulation, After Jones (2011)

implemented a full Intel 286 machine and various peripherals in software. Over time Bochs

has been extended to include the x86-64 ISA as source architecture and has been ported

to multiple host OSs. Another example is Dynamips8 (Fillot, 2005) which was created to

provide a software implementation of the hardware required to run the Cisco Internetwork

Operating System (IOS) range of OSs. Dynamips interprets the Microprocessor without

Interlocked Pipelined Stages (MIPS) ISA on which classical Cisco IOS devices were based.

Neither Bochs nor Dynamips is host architecture dependent and can be compiled for a

wide array of host architectures.

A contemporary example of an ISA level virtualisation system that makes use of dynamic

translation is QEMU (Bellard, 2005; Chen et al., 2018). Originally created as a full

system emulator, QEMU has been extended to become a multi-method virtualisation

system. QEMUs user-mode emulation can execute a target ISA binary on a different host

ISA, provided the host OS is the same. QEMU intercepts system calls made by the binary

and passes these calls on to the host OS while the source machine code of the binary is

translated to the target machine code of the host. QEMU virtualisation mode makes use

of the KVM and Xen virtualisation systems and acts as a front end to these systems if

the source and target ISAs are the same. In full system emulation mode, QEMU provides

a full software defined system with pluggable peripherals, and uses dynamic translation

to emulate the CPU component of the source machine on the target machine.

2.2.2 Hardware Abstraction Layer Virtualisation

Systems that are known today as Virtual Machines (VMs) originated as ISA level simula-

tors. When a new computer was on the horizon, developers would implement a simulated

version of the new machine on the machine that was to be replaced. The software of the

current machine could then be ported to the architecture of the new machine (Goldberg,

8https://github.com/GNS3/dynamips/

https://github.com/GNS3/dynamips/

2.2.2 Hardware Abstraction Layer Virtualisation 15

1973, 1974) and reduce lead time to utilise the new machine. The IBM System/370 intro-

duced hardware level support for machine virtualisation (IBM, 1972a,b). A user would

access the System/370 from a terminal, authenticate, and then be presented with a “vir-

tual” instance of the machine. The IBM Virtual Machine Facility/370: Planning Guide

introduced the concept of a Virtual Machine (VM) as follows:

A virtual machine, as implemented by VM/370, is the functional equivalent

of an IBM System/370 and its associated devices. - (IBM, 1972b)

In contemporary usage, the systems that abstract the interface between the OS and the

hardware to enable multiple OSs to execute on the same hardware are commonly referred

to as VMMs or hypervisors. VMMs replicate the hardware of a complete computer system

(King et al., 2003) and present a system to the guest OS that is nearly or fully identical

to the host system. The emulated hardware as seen by the guest OS is in most cases

identical to that of the host. Virtualisation on the x86 and x86-64 platforms is hardware

assisted by extensions to the x86 architecture. Architectural extensions such as VT-x

on Intel CPUs and AMD-V on AMD CPUs provide hardware virtualisation comparable

(Adams and Agesen, 2006) to the virtualisation requirements of Popek and Goldberg

(Section 2.1.3).

VMMs are split into two categories: Type I and Type II. Type I VMMs do not rely on a

host OS and provide all the required functions and interfaces for system management and

machine virtualisation. Type II VMMs require a host OS and provides only the functions

and interfaces necessary for machine virtualisation. The differences in the architectures of

Type I and Type II VMMs are shown in Figure 2.8. Examples of open-source VMMs are

Xen (Barham et al., 2003) (Type I) and VirtualBox9 (Type II). Examples of commercial

VMMs are VMWare ESXi10 (Type I) and Parallels Desktop11 (Type II).

Guest

Application

Guest

Application

Guest

Application

Guest Operating System

Virtual-Machine Monitor (VMM)

Host Hardware

Guest

Application

Guest

Application

Guest

Application

Guest Operating System

Virtual-Machine Monitor (VMM)

Host Hardware

Host Operating System

Figure 2.8: Virtual-Machine Monitor Types, After King et al. (2003)

9https://www.virtualbox.org/
10https://www.vmware.com/products/esxi-and-esx.html
11https://www.parallels.com/products/desktop/

https://www.virtualbox.org/
https://www.vmware.com/products/esxi-and-esx.html
https://www.parallels.com/products/desktop/

2.2.3 Operating System Level Virtualisation 16

2.2.3 Operating System Level Virtualisation

OS level virtualisation, commonly referred to as containerisation, is a technology used to

create lightweight VMs (containers) by partitioning access to resources exposed by the

host OS. Containers do not dedicate blocks of resources to a single VM, instead access

to resources is controlled through resource management structures in the kernel. This

structural organisation results in VMs with very little overhead (Vaughan-Nichols, 2006).

Figure 2.9 shows the architecture of OS level virtualisation. Containers are created by

implementing a root file system, isolating RAM, and controlling access to system devices

in kernel through management structures. The primary restriction imposed by OS level

virtualisation is that only a single OS family, that of the host OS, can be used as a guest

OSs. Modern containerisation platforms such as Docker (Petazzoni and LeClaire, 2014)

provide root file systems for containers that can encapsulate different distributions of the

Linux OS while sharing the same kernel.

Guest

Application

Guest

Application

Guest

Application

Container Engine

Host Hardware

Host Operating System

Libraries Libraries Libraries

Guest

Application

Guest

Application

Guest

Application

Container Engine

Host Hardware

Host Operating System

Libraries Libraries Libraries

Guest

Application

Guest

Application

Guest

Application

Container Engine

Host Hardware

Host Operating System

Libraries Libraries Libraries

Figure 2.9: OS Level Virtualisation Architecture, After Bernstein (2014)

The FreeBSD OS introduced OS Level Virtualisation in the form of “Jails” in FreeBSD 4.0-

RELEASE (Kamp and Watson, 2000) in March 2000. Jails were developed as a method to

host multiple clients from a single machine while isolating disk access, network interfaces,

and processes between clients (Ohrhallinger, 2010). Jails formed the base management

and virtualisation system for Virtual Private Servers and enabled hosting providers to

increase the number of clients hosted per physical machine. The introduction of VIMAGE

(Zec, 2003), a subsystem to virtualise the FreeBSD network stack, allowed Jails to have

multiple network interfaces independent from the host OS. Jails were followed by Solaris

Zones (Price and Tucker, 2004). Solaris Zones extended resource isolation for containers

by providing pools of resources that could be shared by multiple Zones.

Linux namespaces (Biederman, 2006), a resource isolation system and the base mecha-

nism for OS Level Virtualisation in the Linux kernel, was introduced with the release of

version 2.4.19 of the Linux kernel in August 2002. Mount, the first Linux namespace,

2.2.4 Application Programming Interface Virtualisation 17

enabled applications to have isolated access to the file system, ensuring that an applica-

tion cannot modify files outside of its restrictions. The success of the Mount namespace

lead to the design of nine additional namespaces. Of the original ten namespaces only six

has been implemented (Rosen, 2013). A seventh namespace, the cgroups12 namespace

(Menage et al., 2008), was released with Linux 4.6. By combining the available names-

paces into groups through the use of croups (Rosen, 2013), a lightweight VM can be

instantiated. These lightweight VMs form the base technology used by Container-Based

Network Emulators (CBNEs) to construct experimental networks (Chapter 3).

The low overhead required for containers lead to quick adoption within the “Cloud Com-

puting” space. Container management engines such as Kubernetes (Crall, 2014), anal-

ogous to Type II VMMs, are used as resource management engines for “Function-as-

a-Service” offerings by cloud computing providers, a cloud computing technology that

allows individual software functions to be deployed as standalone units. CoreOS13 is a

container management engine that shares architectural similarities with Type I VMMs.

2.2.4 Application Programming Interface Virtualisation

Application Programming Interface (API) level virtualisation enables binaries from one

OS (the native OS) to be executed on another OS (the foreign or host OS), provided that

the same hardware architecture is used. API level virtualisation systems such as Wine

Is Not an Emulator (WINE) (Amstadt and Johnson, 1994) and Microsoft Corporation’s

Windows Subsystem for Linux (WSL) (Hammons, 2016; Microsoft Corporation, 2016) are

built to execute non-native binaries without the need for a virtualisation system. Such

systems enable non-native binaries to interact with local system resources, providing a

near seamless user experience. In the first phase of executing non-native binaries, API

level virtualisation systems provide facilities that enable the host OS to interpret the

binary structure of another OS and load required (foreign) libraries into the address

space of the binary. The second phase of executing non-native binaries involves the API

level virtualisation system intercepting system calls made by the binary. The intercepted

system calls are translated to the system calls of the host OS and re-issued. The intercept

and re-issue system enables non-native binaries to interact with resources of the host OS.

WINE14 is a OS level virtualisation system that enables Microsoft Windows15 binaries

12http://man7.org/linux/man-pages/man7/cgroups.7.html
13https://coreos.com
14https://www.winehq.org
15Hereafter referred to just as Windows

http://man7.org/linux/man-pages/man7/cgroups.7.html
https://coreos.com
https://www.winehq.org

2.2.5 Application Virtualisation 18

to be executed on Linux. WINE re-implements the functions in the Microsoft Windows

SDK. When a Windows binary is executed on Linux, WINE intercepts the execution of the

Windows Portable Executable (PE) binary and translates system calls for the Windows

environments to Linux system calls. Similarly, WSL is a ISA level virtualisation system

that intercepts system calls made by Linux binaries and translates these to Windows

specific system calls.

2.2.5 Application Virtualisation

Application level virtualisation systems, called Application Virtual Machines, enable

source code to be compiled to binaries that are OS and architecture agnostic. AVMs

such as the Oracle Java Virtual Machine (JVM) (Lindholm and Yellin, 1997) and the Mi-

crosoft .NET Common Language Runtime (CLR) (Box and Sells, 2002) act as a middle

layer between executables and the host OS. The JVM and the CLR are each complemented

by a set of libraries that provide a consistent programming environment for developers

across host OSs. These binaries are compiled to an intermediary form called bytecode.

The AVM interprets the bytecode and, through just-in-time compiling, emits machine

code of the host hardware. Applications programmed for an AVM interact with the host

OS through native interface bindings provided by the AVM. The AVM is compiled for

the specific host hardware and host OS and takes care of the intricacies of providing a

consistent execution environment.

In Figure 2.10 an interpretation of the JVM architecture as described in Lindholm and

Yellin (1997) shows the relationship between bytecode (Class Loader), the JVM memory,

the execution engine and the interfaces on the host OS. The JVM Execution Engine

translates bytecode to native machine instructions through a Just-in-Time (JIT) compiler.

The operation of an AVM is similar to that of ISA level virtualisation in that it translates

or interprets an ISA made for a different architecture to that of the host architecture.

AVMs do not provide a virtual platform, instead AVMs expose the native platform through

software bindings known as Native Method Interfaces.

JVM Memory

Class Loader

JVM Language

Stacks
PC RegistersHeapMethod Area

Native Method

Stacks

Execution Engine
Native Method

Interface

Native Method

Libraries

JVM Memory

Class Loader

JVM Language

Stacks
PC RegistersHeapMethod Area

Native Method

Stacks

Execution Engine
Native Method

Interface

Native Method

Libraries

JVM Memory

Class Loader

JVM Language

Stacks
PC RegistersHeapMethod Area

Native Method

Stacks

Execution Engine
Native Method

Interface

Native Method

Libraries

Figure 2.10: Java™ Virtual Machine Architecture16, After Lindholm and Yellin (1997)

2.2.6 Behavioural Abstraction 19

2.2.6 Behavioural Abstraction

At the highest level of abstraction a computer system is presented as a set of algorithms

that model the behaviour of computer systems. Network simulation systems such as

ns3 (Bonada et al., 2008) and Riverbed Modeler 17 (previously called OPNET Modeler,

Cohen, 1986) use deterministic and stochastic models to replicate the interaction of a host

in a simulated environment with network traffic. Implementations of network protocols

within simulated hosts are deterministic and follow the Request for Comments (RFCs)

specifications. Packet transmission metrics such as jitter and loss and bit errors in packets

are modelled using stochastic processes, and model fitting parameters are fine-tuned based

on observed network traffic.

Simulation assists in the development of new technologies. During development the be-

haviour of new technologies can be studied without full implementations. By studying the

behaviour of modelled versions of new technologies, reliability can be increased and main-

tenance of the technology can be reduced (Rampfl, 2013). In addition, the performance

and flexibility of the new technology can be assessed during simulation (Austin et al.,

2002). If a new technology is introduced into a computer network, simulation assists in

capacity planning and assessment of the impact of the new technology in the current net-

work (Heidemann et al., 2001; Heilmann and Fohler, 2018). Simulation systems can also

be implemented to provide high speed alternatives for specific functions, such as routing

exclusively (Herbert and Irwin, 2013).

The primary weakness of simulation is uncertainty. Each model used in a simulation

introduces a level of uncertainty in the results of a simulated network (Floyd and Paxson,

2001; Pujeri and Palanisamy, 2014) and might be a source of incorrect behaviour (Rampfl,

2013; Guo and Lee, 2018; Mazur, 2018).

2.2.7 Building Blocks for Network Experimentation Platforms

Each of the virtualisation mechanisms discussed in this section can serve as building blocks

for NEPs. The following examples illustrate how NEPs utilise these mechanisms.

ISA level virtualisation can be used by NEPs where a network component or computer

system needs to be used that has a different ISA to that of the host system. As an

16Adapted from image by Michelle Ridomi [CC BY-SA 3.0], from Wikimedia Commons
17https://www.riverbed.com/za/products/steelcentral/steelcentral-riverbed-

modeler.html

https://www.riverbed.com/za/products/steelcentral/steelcentral-riverbed-modeler.html
https://www.riverbed.com/za/products/steelcentral/steelcentral-riverbed-modeler.html

20

example: Graphical Network Simulator 3 (GNS3)18 uses DynaMIPS (Section 2.2.1) to

include certain Cisco IOS devices in experimental networks.

VMMs are used by NEPs where multiple OS families are required for an experimental

network. The limitation of using VMMs is that all OSs have to be for the same architecture

(ISA). Common Open Research Emulator (CORE), a CBNE discussed in Section 3.3.4,

utilises Xen (Section 2.2.2) to incorporate non-Linux OSs into experimental networks.

Container-Based Network Emulators (CBNEs) utilise OS level virtualisation (Section

2.2.3) as the primary virtualisation mechanism for nodes in an experimental network.

OS level virtualisation is used where different user-space applications are executed in a

network and the OS and architecture is the same as the host system. CORE can incor-

porate simulation tools such as GNS3 (Section 2.2.6) into experimental networks.

Behavioural level abstraction is used in network simulation systems such as Riverbed

Modeller, where a desktop analysis of large-scale network deployments or changes to

production networks are required. Simulation systems enable network engineers to model

the impact that changes to a network will have on traffic volume and QoS metrics before

rolling out the intended changes. The GNS3 network simulator can incorporate CBNEs

such as Mininet (Section 3.3.1) to provide realistic hosts for network simulations19.

In Section 2.3, NEPs that focus on utilising a single abstraction mechanism are explored,

illustrating the application of abstraction technologies in building NEPs.

2.3 Network Experimentation Platform Types

Network Experimentation Platforms (NEPs) are platforms composed of various computer

and networking systems that enable researchers, implementers, and operators to test inter-

action between computer systems in a networked environment. By exploiting the layered

virtualisation model of computer systems (Section 2.2), each layer can be used to create

an abstract machine. These abstract machines replicate enough of the behaviour of the

original machine to be usable within environments that do not require all the functionality

of the original machine. By combining abstracted and non-abstracted machines into a

networked environment, experiments can be conducted using hundreds or thousands of

computers at a fraction of the cost of recreating the environment using physical machines

18https://www.gns3.com
19https://docs.gns3.com/appliances/mininet.html

https://www.gns3.com
https://docs.gns3.com/appliances/mininet.html

2.3.1 Network Testbeds 21

alone. NEPs enable researchers to execute repeatable experiments, ensuring consistent re-

sults (Fall, 1999; Handigol et al., 2012; Heller, 2013). These platforms can be constructed

using various techniques (Davis and Magrath, 2013). This section presents an overview

of four broad technology classes that can be employed to create network experimentation

platforms.

2.3.1 Network Testbeds

Network testbeds are deployments of computer and networking hardware that aims to

replicate computer networks and the conditions in which network protocol and software

applications will be utilised. A key goal of a testbed is to recreate the expected condi-

tions of a network at the highest possible level of realism. An advantage of testbeds is low

to no abstraction of the components used to construct experimental networks. The use

of minimal abstraction aides in ensuring that results are reproducible (Nussbaum, 2017).

Depending on size, the hardware required to build testbeds can be prohibitively expensive

and can require large amounts of space. Testbeds present a low-cost alternative to dedi-

cated laboratories for education (Riga et al., 2015) and have become viable platform for

conducting Cyber Security20 experiments on Internet of Things (IoT) networks (Gunduz

and Das, 2018).

EmuLab21 (White et al., 2002) is a distributed testbed that supports bare-metal machines

and virtualisation technologies such as VMs. EmuLab was built for network protocol and

application experiments. EmuLab is used as the base framework for DeterLab and Global

Environment for Network Innovations (GENI). Most recently EmuLab has added support

for Docker as a management system (Johnson et al., 2018). EmuLab focuses on ensuring

that traffic flow within experiments is as realistic as possible (Syed, 2014; Syed and Ricci,

2015).

PlanetLab22 (Peterson et al., 2003) is an overlay network that supports the use of con-

tainerisation and VMs. PlanetLab pioneered the “sliceability” concept for testbeds, a

mechanism used to partition a testbed into multiple smaller testbeds to allow multiple ex-

periment to run concurrently. Measurement Lab (Dovrolis et al., 2010), dedicated to accu-

rately measure internet performance, and VICCI (Peterson et al., 2011), a programmable

cloud-computing research testbed, originated from work done within PlanetLab.

20The practice of protecting computer systems from unlawful access.
21https://www.emulab.net/
22https://www.planet-lab.org/

https://www.emulab.net/
https://www.planet-lab.org/

2.3.2 Virtualisation 22

DeterLab23 (Mirkovic et al., 2010), a testbed built on EmuLab, was built for furthering cy-

ber defence research and for education (Mirkovic and Benzel, 2012). Current and ongoing

research regarding the DeterLab system involves enhancing the repeatability of experi-

ments (Sharma et al., 2017), enabling Software Defined Networking (SDN) experiments

(Sivaramakrishnan et al., 2017), and developing standardised methods for instantiating

distributed experiments (Mirkovic et al., 2018).

GENI24 (Berman et al., 2014; McGeer et al., 2016) is a testbed for large scale research into

network and distributed systems with a deep focus on instrumentation and measurement

tools. It provides the ability to implement and experiment with custom Layer 2 proto-

cols. GENI is federated with various other testbeds including EmuLab and PlanetLab.

Users of the GENI testbed can utilise resources from federated testbeds. Repeatability

of experiments (Edwards et al., 2015) and management of experimental data (Nussbaum,

2018) are key concepts of the GENI testbed.

EdgeNet25 (Cappos et al., 2018) is a next-generation software-only testbed built on cloud

technologies (Mercan, 2018). EdgeNet has its origins in PlanetLab and GENI (Bavier

et al., 2018) and aims to enable “Testbed-as-a-Service” functionality.

2.3.2 Virtualisation

The cost of deploying a testbed can be reduced through the use of virtualisation. The

functional fidelity of virtualised computer hardware is near perfect, complementing the

repeatability of experiments. By replacing costly end user hardware with virtualised

instances, the total hardware required is reduced. Additional advantages of virtualisation

are reductions in physical space and maintenance requirements.

Virtualisation is used as an alternative to hardware-based laboratories for education

(Bullers et al., 2006; Schmidt et al., 2018) and can remove the risks involved with the

assessment of students in information security training (Willems and Meinel, 2012). By

combining network virtualisation technology with VM technology, experimental networks

consisting of several machines can be instantiated while isolating risks presented (Xu

et al., 2014). The cost and time requirements of educational and training experiments

involving IoT can be minimised using virtualisation (Liu et al., 2018).

23https://www.isi.deterlab.net/
24https://www.geni.net/
25https://edge-net.org/

https://www.isi.deterlab.net/
https://www.geni.net/
https://edge-net.org/

2.3.3 Containerisation 23

Conducting network and information security experiments on production Supervisory

Control and Data Acquisition (SCADA) and Industrial Control System (ICS) systems is

impractical due to the unknown effects experiments might have on these systems (Queiroz

et al., 2009). SCADA and ICS sandboxes use a hybrid approach to create experimental

environments. A mixture of simulation and physical hardware is used to model the effects

on physical components, while virtualisation is used to model the software aspects of

these environments. Using hybrid environments can reduce the reconfiguration time of

the experimental environment and result in repeatability of experiments (Lemay et al.,

2013; Urdaneta et al., 2018).

The use of virtualisation to replicate segments of a computer network provides capabilities

that testbeds cannot provide. The ability to capture the current state of virtualised

nodes, reset nodes to a previous state, and remove nodes at will is a major benefit of

using virtualisation (van Heerden et al., 2013). These capabilities, combined with the

ability to integrate any TCP/IP based device into the experimental network (Browne

et al., 2018) makes virtualisation an attractive environment for security experiments on

computer networks.

2.3.3 Containerisation

The introduction of containerisation and link emulation tools in Linux, FreeBSD and

Solaris introduced the possibility of creating experimental networks using OS components.

Containers have little overhead and provide node and network isolation methods to assist

in the creation of experimental networks. NEPs based on containerisation technology

exploit these components to provide the user with a lightweight and flexible environment

to create experimental network topologies. These systems are referred to as Container-

Based Network Emulators (CBNEs), and are discussed in detail in Chapter 3.

The reproducibility of network experiments is a key focus area of all NEPs. CBNEs enable

the publication of network research environments similarly to how research results are

published (Handigol et al., 2012). By controlling resource utilisation of nodes and applying

consistent network metrics to links, experiments can be published as configuration files

and the results of the experiment can be reproduced independently (Heller, 2013). CBNEs

can be extended to integrate with non-real time network simulation systems by contracting

or dilating the timing mechanisms of containers (Lamps et al., 2018).

CBNEs are used as platforms for information security experiments in research and educa-

tion. The lightweight nature of containers (Section 3.2) allows experimental networks to

2.3.4 Simulation 24

be constructed with tens to hundreds of “user” machines that can replicate the expected

behaviour of users (de Berlaere, 2018). This allows the quality of service that the end

users experience to be monitored during live attacks. The configurable and distributable

nature of CBNEs allows for the distribution of personalised scenarios during evaluation

of information security related skills (Thompson and Irvine, 2018).

Outside of CBNEs, containers are used as testing platforms for new network protocols

(Qu, 2018), monitoring network metrics in multimedia rich environments (Cinar et al.,

2016), and for generating realistic user traffic for emergent technologies (Gries et al., 2018;

Muelas et al., 2018).

2.3.4 Simulation

Simulation is used as an alternative to physical testing. Simulating the effects that an

attack has on a network enables better preparation and response procedures without

incurring loss in a production network. Simulation of attacks on computer networks is

particularly useful in education and training in information security concepts, where it is

used as a low cost alternative to physical testing (Saunders, 2001; Pastor et al., 2010).

In industrial applications, simulating computer networks as a component of the industrial

system is a complex task. Choosing the appropriate aspects to simulate as well as a

simulation platform that can respond to the requirements of industrial networks is not

trivial (Anton et al., 2018). In many cases simulating a cyber physical system will involve

more than one simulation platform. These simulations are broken down into simulators

for the physical systems, simulators for the communications network, and simulators for

management and control systems (Hammad et al., 2019).

Simulation of the information security ecosystem within the military context ranges from

simulation of the effect of attacks and responses on networks (DeLooze et al., 2004) to

simulating the behavioural and cognitive patterns of users (Veksler et al., 2018) during

an attack. In between these extremes the management and control of military opera-

tions during a cyber attack can be simulated by adapting classic Command and Control

methodologies (Grant et al., 2007; Grant, 2009).

25

2.4 Abstraction, Realism and Scalability

There’s no one universal way to scientifically describe the level of realism achieved in a

given abstraction of a host. The term fidelity is frequently used to describe the level at

which a specific component of an abstracted machine performs. During the development

of a NEP (SELENA) Pediaditakis et al. (2014) defined three metrics against which the

developed platform should be measured: fidelity, scalability, and reproducibility. The

main goal of the proposed platform was to enable reproducibility of network experiments.

Within this context, the ability of the platform to accurately model network traffic metrics

was used as a primary measure of fidelity. A second measure of fidelity was the ability to

accurately represent the topology of a network. These measures were well suited within

the goals of the project, but do not represent the measures that might be appropriate for

other types of systems.

When comparing fidelity measures across different types of NEPs, the impact that an

abstraction technology has on realism or fidelity is entirely dependent on the context of

both the platform and the types of experiments that the platform supports. In Handigol

et al. (2012) the MiniNet project was enhanced to support reproducible experiments. The

realism measures defined and used within this project (Table 2.1) were based on the ability

to execute binaries (Functional Realism), the time keeping mechanisms of the platform

(Timing Realism), and the ability of the platform to interact with real network traffic

(Traffic Realism).

The works of Pediaditakis et al. (2014) and Handigol et al. (2012) have similar goals

(reproducibility) and similar measures of realism, though within the contexts of these

platforms the way that fidelity is measured differs. Handigol et al. regard simulators as

not having Functional Realism, while Pediaditakis et al. regard simulation as having high

node fidelity. These measures are similar in concept, but are measured differently within

the respective experimental contexts.

Table 2.1: Platform Characteristics for Reproducible Network Experiments, After Hand-
igol et al. (2012).

Testbeds

Simulators Shared Custom Emulators

Functional Realism X X X

Timing Realism X X X ?

Traffic Realism X X X

Topology Flexibility X limited X

Easy Replication X X X

Low Cost X X

26

In Xu et al. (2014) VMMs were explored as a technology to enable isolated yet easy to use

information security experiments. The work of Xu et al. found both Physical Labs and

Multi-VM & Multi-Network Labs (Table 2.2) to have High Fidelity. These configurations

are analogous to testbeds. In contrast, Pediaditakis et al. (2014) found testbeds to have

medium node fidelity and low link speed fidelity. In Pediaditakis et al. (2014) the context

was based on experiments involving network traffic, while in Xu et al. (2014) the context

was based on experiments involving information security experiments, such as conducting

Man-in-the-Middle attacks.

Table 2.2: Virtual Laboratory Feature Comparison, Partial extract from Xu et al. (2014)

Lab Type Virtualisation Type Fidelity

Physical Lab None High
Simulation Lab Application Based Low
Virtual Application Lab Application Based Low
Shared Host Lab Session Based Low
Single VM Lab Single VM Medium
Multi VM Lab Multi VM Medium
Multi VM Lab & Multi-Network Lab Dedicated Multi VM & Virtual Networks High

Abstraction techniques do not only influence fidelity. Node density/scalability - the num-

ber of abstracted nodes per physical machine - is influenced by abstraction as well. An

example of how abstraction influences scalability is shown in Table 2.3. Within the context

of the DeterLab project (Mirkovic et al., 2010), the abstraction technology used shows an

inverse relation between fidelity and scalability - as abstraction is increased, node density

is increased and fidelity is decreased.

Table 2.3: DETERlab Testbed Node Densitiesa

Container Type Fidelity Scalability

Physical Machine Complete fidelity 1 per physical machine

Qemu virtual Machine Virtual hardware 10s of containers per physical machine

Openvz container Partitioned resources in one Linux kernel 100s of containers per physical machine

ViewOS process Process with isolated network stack 1000s of containers per physical machine

a Obtained from https://containers.deterlab.net/

In Rimondini (2007) a collection of NEPs was classified into a taxonomy based on scale

(Scalability) and emulation type (Abstraction). In Table 2.4 the original data is sum-

marised to illustrate how abstraction influences scale within the context of the original

work. A Small network is defined as “very few instances of virtual machines”, whereas

Large is defined as possibly being a distributed cluster. The scales reported by Rimondini

(2007) are confined to evaluated NEPs.

https://containers.deterlab.net/

27

Table 2.4: Influence of Abstraction on Network Scale, After Rimondini (2007)

Abstraction Layer Small Medium Large

Instruction Set Architecture •
Hardware Abstraction Layer • • •
Operating System • •
Application Programming Interface • •
Application None

Behavioural •
Hybrid •

EmuLab (White et al., 2002), the technology on which DeterLab is built, is a hybrid

testbed that utilises simulation, virtualisation, emulation, and real devices to construct

experimental networks. EmuLab aims to balance the advantages and disadvantages of

different abstraction technologies to enable researchers and experimenters to construct

an experimental network by using suitable technologies for each node. This balanced

approach is shown in Table 2.5.

Table 2.5: Characteristics of Experimental Platforms, Extract from White et al. (2002)

Metric Simulation Emulation Live Network Emulab

Ease of Use X ModelNet?a X

Performance X X X

Repeatability X X X

Packet-Level Control X X

Coarse-Grain Control X X X

Scalability varies w/ModelNet varies X

Parameter Space Exploration X ModelNet? X

Reuse of Models X ModelNet? X

Real Links X X

Real Router X X

Real Hosts X X X

Real Applications X X X

Real Users X X

a Vahdat et al. (2002)

2.5 Summary

In Section 2.1 the architectural choices made during the design of computer systems,

and how these choices enable abstraction, were investigated beginning with the primitive

constructs that defines a computer system as envisioned by John von Neumann during

the creation of the EDVAC (von Neumann, 1945). These primitive constructs have re-

mained the basis on which modern computer systems are built. Separating the control

28

that software, and thus the user, has over the underlying hardware has been a major

focus of microprocessor engineering. The privilege ring model created for the Multics OS

is a mainstay of contemporary processors to enable OSs to separate kernel and user pro-

cess. Incorporating an ISA that fulfils the Popek and Goldberg requirements, a computer

system can run multiple VMs efficiently and securely, while ensuring that the VMs are

functionally equivalent to the host machine. By combining these two models, modern

OSs enable a range of additional abstractions at various layers.

Opportunities for abstracting a computer system at the hardware layer (Section 2.1) en-

ables abstraction systems such as VMs and ISA emulators. In Section 2.2 a layered model

of virtualisation (abstraction) that encompasses the abstraction techniques presented by

both hardware and software was described. The layered model created by Hwang et al.

(2013) was extended to include behavioural abstraction (simulation) as a representation

of the full abstraction of computer systems. Simulation abstracts a computer system to

the extent that only the required component(s) of the system are presented. Each layer

of abstraction presents the end user with a choice in compromises that have to be made.

The mechanisms used to abstract computer systems are used by NEPs. In Section 2.3,

four types of NEPs were investigated. The typical (and documented) use of these plat-

forms were presented to the reader within the context of information security experi-

ments. Though these platforms were presented as “pure” representations, it is common

for NEPs to utilise multiple types of abstractions to enable an end user to construct a

“fit-for-purpose” testing environment. NEPs that use multiple abstraction technologies

combined with real hardware are referred to as hybrid platforms.

Section 2.4 detailed how abstraction influences the realism or fidelity of computer systems

within a NEP. Within the context of NEPs, the terms realism and fidelity do not have

an exact and encompassing definition. Instead, these terms are defined and measured

based on the context within which the platform is used. In research and experimentation

where network traffic metrics are the focus, fidelity is used in the sense of being able to

replicate measurable network metrics such as latency, throughput, and jitter. In research

and experimentation, where the interaction between computer systems through the use

of network protocols is of primary concern, the ability of an abstracted computer to

accurately interpret network protocols is used as a measure of fidelity.

Chapter 3

Container-Based Network Emulators

It’s not wise to violate rules

until you know how to observe them.

T. S. Eliot

Chapter 2 introduced Network Experimentation Platforms (NEPs) - systems designed

to replicate computer networks - as research and experimentation platforms for network

protocols and networked applications. This chapter delves deeper into a specific type of

NEP referred to as Container-Based Network Emulators (CBNEs) (Section 2.3.3). CBNEs

are software systems designed to abstract the complexity of creating computer networks

constructed using Operating System (OS) level virtualisation technologies.

CBNEs combine containers (Section 2.2.3) and in-kernel network virtualisation tech-

nologies such as Linux bridges (Böhme and Buytenhenk, 2001) to create networks of

lightweight Virtual Machines (VMs). The low resource requirements of these technologies,

and thus networks created using these technologies, allow end users to create complex re-

search and experimentation networks on commodity hardware such laptops (Bhatia et al.,

2008; Lantz et al., 2010). CBNEs provide a low cost and portable alternative to other

forms of NEPs such as network testbeds. These systems can be deployed as sand-boxed

platforms for research and education in fields that require computer networks.

Within the context of this study, a CBNE is defined as a purpose-made suite of utilities and

applications that abstracts the complexity of creating networked containers and enables

end users to define and instantiate a set of networked containers, with the ability to

define and control configuration values for each deployed component, through a single

User Interface (UI).

29

30

This chapter begins with an introduction to CBNEs (Section 3.1). CBNEs originated a

method to create small networks for research and experimentation on commodity hard-

ware. A brief overview is given of how CBNEs came into being and what the typical

applications of these systems are.

In Section 3.2 the abstraction mechanism used in CBNEs - Linux namespaces - is dis-

cussed. Understanding the technology used to create CBNEs is key to understanding how

realism, from the perspective of a remote attacker, will differ between the host machine

and virtualised hosts within an experimental network.

A selection of CBNEs built for the Linux OS is introduced in Section 3.3. The initial

goals for the creation of each CBNE are discussed and the applications and use cases for

each CBNE is detailed.

Section 3.4 explores the architecture of each of the selected CBNEs. The architecture

of a CBNE is driven by use cases and applications of the CBNE. Architectural choices

such the HMI and remote control capabilities of each CBNE as well as the organisation

of the core components, such as library design and choice of virtualisation technologies,

is discussed.

A wide selection of technologies that can be used to construct CBNEs exists within the

Linux ecosystem. In Section 3.5, the technologies and components that CBNEs use to

create the components of experimental networks are catalogued. The options for creating

computers through containerisation, network devices through virtual network software,

and manipulating link metrics such as jitter and packet loss through network emulation

systems are detailed. The chapter ends with a summary in Section 3.6.

3.1 Background

The origins of CBNEs can be traced back to systems designed for rapid network protocol

development. Predecessors to CBNEs such as ENTRAPID (Huang et al., 1999) and the

work of Wang and Kung (1999) utilised the Berkeley Software Distribution (BSD) net-

work stack to pass packets between applications to simulate networked computers. Alpine

(Ely et al., 2001) improved on the design by implementing virtual network devices and

interconnecting applications. In these designs, applications were interconnected to simu-

late computer networks and shared a single network stack. The Integrated Multiprotocol

Network Emulator/Simulator (IMUNES) (Zec and Mikuc, 2004) extended the concept by

31

implementing a cloneable network stack (Zec, 2003) that interconnected FreeBSD Jails

(Riondato, 2020), an OS level virtualisation technology, to create networks of lightweight

virtual machines (Section 2.2.3). These systems specialised in the rapid development of

network protocols and testing applications in real-world networking conditions.

User Mode Linux (UML) (Dike, 2006), an alternative technology to Linux namespaces

was utilised by Marionnet (Loddo and Saiu, 2007, 2008) to create a lightweight NEP.

The UML project ported the Linux kernel to a user-space application. UML VMs require

more resources, such as dedicated block of Random Access Memory (RAM), than Linux

containers, but less dedicated resources overall than VMs. Marionnet utilised UML VMs

to create networks of computers for education and student evaluation that could run on

commodity hardware.

The Common Open Research Emulator (CORE) CBNE (Ahrenholz et al., 2008) extended

IMUNES with support for Linux namespaces and redesigned the architecture to support

distributed emulation. CORE enhanced the functionality by including simulation com-

ponents for wireless communications with a plug-in called Extendable Mobile Ad-hoc

Network Emulator (EMANE) (Ahrenholz et al., 2011). EMANE integrated the simula-

tion of mobile wireless links into networked containers to explore the effects of wireless

networks on network protocols and applications.

The applications of CBNEs goes beyond protocol development and application testing.

The lightweight nature and isolation mechanisms of Linux containers enable CBNEs to

be used as platforms to study the effects of network attacks (Salopek et al., 2017), and

they can even be used as high interaction honeypots (Kuman et al., 2017).

In the rest of this chapter the architecture and technologies used by six open source CBNEs

are explored. Table 3.1 lists the evaluated CBNEs, along with their current version, the

evaluated version, and initial and latest release dates.

Table 3.1: Container-Based Emulator Implementations

Implementation Current Version Evaluated Version Initial Public Release Latest Release

MiniNet 2.3.0d6 2.2.2 2009-09-19 2019-06-12

Marionnet 0.94.0 0.90.6 2005-04 2018-01-31

IMUNES 2.3.0 2.3.0 2003-06-13 2019-05-09

CORE 5.4.0 5.3.1 2008-11-13 2019-09-24

VNX 2.0b 6604 2.0 2012-05-24 2019-08-28

Kathará 0.36.1 0.35.3 2017-10-31 2019-06-30

32

3.2 Linux Namespaces

Linux namespaces1 implement OS level virtualisation (Section 2.2.3) for the Linux kernel.

The implementation of the first Linux namespace, the Mount namespace, borrowed ideas

from the namespace implementations in Bell Labs’ Plan 9 OS (Pike et al., 1992). The

success of the Mount namespace lead to discussions regarding the inclusion of additional

namespaces to increase the versatility of the Linux kernel. The original plan was to imple-

ment ten namespaces (Biederman, 2006), though only 6 of these have been implemented.

Resource allocation and management of sets of namespaces are done through cgroups

(Menage et al., 2008). A seventh namespace, the cgroups namespace, was added to the

4.6 release of the Linux kernel. Table 3.2 lists the 7 implemented namespaces and the first

release of the Linux kernel in which the namespace was available. Continuous efforts went

into refining the management models and resource requirements of namespaces (Rosen,

2013). These improvements enabled containers to perform better in horizontal scaling

and request handling tests when compared to hypervisors (Joy, 2015). The low resource

requirements and performance capabilities of containers makes them an ideal base for the

creation of network experiment platforms. A brief overview of each of the seven current

namespaces is given below.

Table 3.2: Linux Namespace Availability According to Kernel Versiona

Shorthand Namespace Kernel Version Release Date

MNT Mount 2.4.19 2002-08-03

UTS UTS 2.6.19 2006-11-29

IPC IPC 2.6.19 2006-11-29

PID Process ID 2.6.24 2008-01-25

NET Network 2.6.29 2009-03-24

USER User ID 3.8 2013-02-19

CGROUP cgroup 4.6 2016-05-16

a http://containerz.info/

MNT The mount namespace2 isolates the filesystem mount points that can be seen by a

process. Any filesystem action taken within the namespace can thus not be seen by

any process not residing within the namespace. The mount namespace is used to

create the root filesystem for a container.

UTS The UTS namespace (Hallyn, 2006) enables each namespace to have a unique host-

name.

1http://man7.org/linux/man-pages/man7/namespaces.7.html
2http://man7.org/linux/man-pages/man7/mount_namespaces.7.html

http://containerz.info/
http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/mount_namespaces.7.html

33

IPC The IPC namespace isolates message queues used for Inter-Process Communication

(IPC). The IPC namespace enables all processes within the same namespace to

utilise System V IPC objects and POSIX message queues, while isolating these

message queues from any process not within the namespace.

PID The process ID namespace3 is used to create a child process tree associated with

the parent process that created the namespace. Processes within the namespace

can call functions like fork(2)4 to create new processes without affecting the host

OS. The first process for a namespace that used the PID namespace is the init

process. The process ID namespace is used to create a distinct process tree for each

container instantiated.

NET The network namespace5 enables each namespace to have an independently func-

tioning network stack and network interfaces. The network namespace allows each

namespace to set its own routing tables. Network namespaces and veth(4)6 pairs

are used to form the network links between containers, and are the primary names-

pace used to construct CBNEs.

USER The user namespace7 enables a namespace to have a set of user and group IDs

distinct to that of the parent process. The user namespace enables a process within

that namespace to have a privilege level other than that of the owner of the parent

process. A process within such a namespace can be owned by the user with ID

0 (privileged) and have all allowed capabilities of that user within the namespace,

while from the parent process’ view have no elevated privileges.

CGROUP cgroup namespace extends Linux cgroups to present a hierarchical view of re-

source control for each namespace. With the cgroup namespace extension, groups

of namespaces can share a set of resource limitations. The cgroup namespace en-

sures that each namespace can view only the /proc/self/cgroup that controls

its resource limitations.

The process of creating a container from namespaces is illustrated in Section 3.2.1.

3http://man7.org/linux/man-pages/man7/pid_namespaces.7.html
4http://man7.org/linux/man-pages/man2/fork.2.html
5http://man7.org/linux/man-pages/man7/network_namespaces.7.html
6http://man7.org/linux/man-pages/man4/veth.4.html
7http://man7.org/linux/man-pages/man7/user_namespaces.7.html

http://man7.org/linux/man-pages/man7/pid_namespaces.7.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man7/network_namespaces.7.html
http://man7.org/linux/man-pages/man4/veth.4.html
http://man7.org/linux/man-pages/man7/user_namespaces.7.html

3.2.1 Constructing a Container 34

3.2.1 Constructing a Container

The process of using cgroups and Linux namespaces to create a container is shown in

Figure 3.1. For simplicity the illustrated process utilises standard cgroups and not the

cgroups namespace and the IPC namespace is excluded. Setting up a root filesystem and

gathering the requirements for resource restrictions, needed kernel capabilities, and which

syscalls should be used is not discussed. The PID and NET namespaces are implicitly

enabled in this example during the Set Namespaces step and does not have additional

configuration requirements.

Child ProcessParent Process

Set Namespaces

Set Resource

Limits

Resource

Restrictions

Required

namespaces

Set Hostname

Mount /

Map GID, PID

Set Kernel

Capabilities

Disallow

syscalls

Create and

Connect veth

Required

Capabilities

Root

Filesystem

Blocked

syscalls

Figure 3.1: Container Creation Process

The process for creating a container starts off with setting resource utilisation limits

using cgroups. In multi-user and Cloud service environments resource limits have to be

applied to running containers to ensure that a single container does not starve the system

of resources. cgroups can be used to set the following limitations for a container:

• Central Processing Unit (CPU) time used

• The amount of RAM used

• Bandwidth utilisation of block devices (harddrives etc.)

3.2.1 Constructing a Container 35

• The number of processes that can be spawned in the container

• Creation of and access to devices

• Usage of Remote Direct Memory Access (RDMA) resources

Once limits for a container have been configured, the namespaces for the new container

can be configured. A container can be created using all of the available namespace, or

a minimal set that is sufficient. The choice of namespaces used depends on the security

and trust environment that container will be used in.

As part of the function that creates a new container, a function is passed that will configure

the individual containers. The first task of the child process is to execute the function.

The simplified steps for creating a container from namespaces are as follows:

1. The function that the child process executes starts with setting the hostname for

the new container using the UTS namespace.

2. The root filesystem for the new container is mounted. A directory that contains the

necessary file structure is mounted as the root (/) filesystem of the new container

using the MNT namespace.

3. A mapping of user and group IDs (UID, GID) are created for the container using

the USER namespace. User and group IDs within the container will map to the user

ID that owns the parent process.

4. The new container will start with a nearly full set of kernel capabilities8. Any kernel

capabilities that are not required or are deemed unsafe are disabled.

5. Any system calls that are deemed unsafe or unnecessary are blocked, preventing the

container from causing harm to the host OS.

The final step in setting up a container is connecting it to the outside world. The parent

process (or user with sufficient privileges) creates a pair of veth9 devices and attaches

one to the container and the other to a network interface or Linux bridge on the host

machine. In this scenario, the final step will be for the container to configure the network

interface.

8http://man7.org/linux/man-pages/man7/capabilities.7.html
9http://man7.org/linux/man-pages/man4/veth.4.html

http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man4/veth.4.html

36

CBNEs that utilise custom Linux namespaces will repeat this process for each node in

the experimental network and the veth pairs will be used to connect the containers into

the required topology. The tools used by CBNEs to construct network topologies are

discussed in Section 3.5.

3.3 Implementations

In this section a set of open-source CBNEs are reviewed and a brief overview of each CBNE

is given with regards to the reason for its creation, the history of the CBNE, and how

the CBNEs has been utilised since its inception. The driving requirement for the creation

of each CBNE and how it is utilised influences its development path and technological

choices. Changing operational requirements and a fast-moving technological landscape

influences how CBNEs evolve over time. This section attempt to capture this evolution.

For CBNE families, a single overview is given for the family, and not for individual projects

within the family.

3.3.1 Mininet

MiniNet (Lantz et al., 2010) started out as a project to enable large scale OpenFlow

(McKeown et al., 2008) experimentation on commodity hardware. The MiniNet project

was then expanded to increase functional realism of network simulations, which resulted in

MiniNet-HiFi (Handigol et al., 2012; Heller, 2013). The MiniNet Graphical User Interface

(GUI) (Figure 3.2) exposes a minimal set of components to construct a network topology.

The base components: a host, an OpenFlow switch and controller, a basic switch and

Figure 3.2: Mininet MiniEdit Editor

3.3.2 Marionnet 37

basic router is provided. The GUI offers options to provide minimal configuration of

each component. Constructing a network topology using the command line tools and

configuration files allows the user to exert greater control over network topology and

component configuration. MiniNet is used in experiments that study the effects of network

metrics such as delay and jitter (Qu, 2018). MiniNet is used in education to teach students

about the reproducibility of experiments (Yan and McKeown, 2017).

3.3.2 Marionnet

The Marionnet project (Loddo and Saiu, 2007, 2008) was developed by Jean-Vincent

Loddo as a teaching aid for his course in networking at the Université Paris 1310. Net-

work components in Marionnet are organised into virtual computers and virtual network

devices. The virtual computer components emulate networked machines on the emulated

network and virtual network devices emulates hubs, switches, routers and links in the

emulated network. A virtual external socket component is provided to link physical Eth-

ernet ports on the host machine to the emulated network. Marionnet provides a desktop

application with a GUI (Figure 3.3) that allows the end user to configure each component

in detail.

Figure 3.3: Marionnet User Interface

3.3.3 IMUNES

The IMUNES project (Zec and Mikuc, 2004) started out aiming to expand network em-

ulation on the FreeBSD OS in order to incorporate user space applications. The focus

on providing application compatibility and multiple network interfaces per Jail, required

10Now called Université Sorbonne Paris Nord

3.3.4 CORE 38

extensive modification to the FreeBSD kernel, in particular modifications to the network

stack (Zec, 2002, 2003). IMUNES utilises FreeBSD kernels compiled with VIMAGE sup-

port to create Jails with multiple network interfaces. By joining these Jails using the

netgraph system, complex emulated networks can be created. IMUNES has been used

as the base platform for studying various types of network attacks (Salopek et al., 2017)

and has been enhanced to replicate Industrial Control System (ICS) systems in a high

interactivity honeynet (Kuman et al., 2017). IMUNES has been ported to the Linux ker-

nel and utilises Docker containers and Open vSwitch to create experimental networks on

Linux.

Figure 3.4: IMUNES User Interface

3.3.4 CORE

The CORE (Ahrenholz et al., 2008; Ahrenholz, 2010) started off as a fork of IMUNES

by the United States Naval Research Laboratory (NRL) and Boeing, and is maintained

by the Networks and Communication Systems Branch of the NRL. The CORE project

Figure 3.5: CORE User Interface

3.3.5 VNX and VNUML 39

extended IMUNES with the ability to execute on Linux, a Remote Procedure Call (RPC)

Application Programming Interface (API), a Python library and various UI enhancements.

Additional goals of the CORE project are to allow wireless network experiments through

the EMANE (Ahrenholz et al., 2011), and the ability to distribute network emulation

across multiple hosts. Acosta et al. (2017) combined the OS level virtualisation features

of CORE with VirtualBox VMs to create an environment to capture network traffic that

shows the “inside-view” of Red and Blue team operations. The CORE GUI is shown in

Figure 3.5.

3.3.5 VNX and VNUML

Virtual Networks over Linux (VNX) (Fernández et al., 2011) is a continuation of the Vir-

tual Network User Mode Linux (VNUML) project (Galan et al., 2004). VNUML started

as an emulation platform to study the address assignment model in IPv6 (Fernandez

et al., 2004). The emulation platform used for the study was developed into VNUML

to support research projects related to computer networks. Development of the VNUML

platform was halted in 2009 and has been replaced by VNX. The goals of VNX is to

include virtualisation tools to support operating systems other than the host platform

in network experiments. It incorporates libvirt and DynaMIPS to achieve these goals.

VNX does not have a graphical user interface, however it can produce a graphical map of

the current emulation (Figure 3.6). VNX has been used as an interactive honeynet (Fan

et al., 2015) and as an experimental environment to test Software Defined Networking

(SDN) monitoring solutions (Mart́ınez-Casanueva, 2018).

Figure 3.6: VNX Emulation Output

3.3.6 Kathará and Netkit 40

3.3.6 Kathará and Netkit

NetKit (Rimondini, 2007; Pizzonia and Rimondini, 2008) is a project by the Computer

Networks Laboratory of the Roma Tre University to enable network experiments to be

executed on commodity hardware. NetKit-NG (Iguchi-Cartigny, 2014) is a fork of Netkit,

aiming to update the operating system version used. NetKit and NetKit-NG does not

provide a GUI, however 3rd party tools such as Visual Netkit (Fazio and Minasi, 2009)

are available. Netkit has been superseded by Kathará (Bonofiglio et al., 2018). Kathará

extended Netkit with support for Docker as a node emulation technology. The NetKit

Lab Generator (Figure 3.7), a web based experimental network topology configuration

tool, is now maintained by the Kathará developer. Kathará is used as a teaching aid for

computer network technologies at Rome Tre University.

Figure 3.7: Netkit Lab Generator Interface

3.4 Architecture

The architectural choices made during the implementation of each CBNE are analysed

and compared to better understand the current state of CBNEs as frameworks for network

experimentation. Each CBNE is analysed to assess choices regarding the human-machine

interface, how it exposes backend functionality, the design of the backend and the choice

of virtualisation technologies. An additional comparison that is included is the capability

of a CBNE to distribute an emulation across multiple host machines. In Figure 3.8, a

preliminary model is shown that will be used to analyse each CBNE.

3.4.1 User Interface 41

Virtualisation

Application Core

Remote Control

User Interface

Virtualisation

Application Core

Remote Control

User Interface

Figure 3.8: CBNE Architecture Comparison Framework

3.4.1 User Interface

The choice of Human-Machine Interface (HMI), such as GUI or Command Line Interface

(CLI), that CBNEs expose to end users is a balancing act between ease of use and control.

CBNEs that expose GUIs focus on ease of use and rapid design of experimental networks,

whereas CBNEs that expose CLIs focus on fine grained control and automation. The

interfaces that CBNEs expose are listed in Table 3.3. Marionnet, IMUNES, and CORE

are the only CBNEs that natively expose GUIs. It is important to note that the distinction

between graphical and command-line based CBNEs is not clear cut: CORE provides both

graphical and command line interfaces, while VNX provides a CLI for configuration and

initiation of networks and a GUI for interacting with experimental networks.

Table 3.3: CBNE User Interface Architecture

Human-Machine Interface

CBNE Graphical Command-Line

MiniNet Limited •
Marionnet • •
IMUNES • ×
CORE • •
VNX × •
Kathará ◦ •

• Built-in

◦ Configuration only

× Run-time only

MiniNet (Section 3.3.1) provides a GUI with a limited set of configuration options through

MiniEdit. MiniEdit allows for the creation of network topologies utilising standard switch-

ing and routing, as well as for network topologies making use of NFV through OpenFlow.

Advanced configuration of nodes can be done by manually editing configuration files

through the standard CLI.

3.4.2 Application Core and Remote Control 42

Marionnet (Section 3.3.2) provides a primary UI through an integrated UI. The Marionnet

UI can be used to create network topologies and configure nodes within an experimental

network. A secondary UI is provided in the form of a CLI. The CLI can be used to start,

stop, and monitor running experiments. The Marionnet GUI supports an exam mode

that is used during the evaluation of students.

IMUNES (Section 3.3.3) provides a GUI that allows end users to create network topologies

and configure nodes. Additional CLI tools are provided that enable experimenters and

researches to execute commands in nodes, copy files between emulated nodes and the

host, and to modify links settings during runtime.

CORE (Section 3.3.4) provides both an extensible GUI and a CLI. Additional applications

that run on emulated nodes can be integrated into CORE by extending the routines

that initialise nodes. Both the CORE GUI and CLI provide end users with extensive

configuration and customisation option for both the network topology and individual

nodes. The GUI and CLI acts as client-side utilities that interface with a remote daemon.

VNX (Section 3.3.5) provides the end user with a suite of CLI-based utilities to create

and stop network experiments, as well as a suite of utilities to interact with a running

experiment. XML configuration files are used to define nodes and network topologies for

VNX. The topology of a scenario can be visualised by rendering a raster image.

Kathará (Section 3.3.6) was designed as an upgrade of NetKit and provides a CLI to

the end user that maintains compatibility with the original NetKit CLI. Maintaining

compatibility with the NetKit CLI enables end users to utilise Kathará with third party

GUI utilities such as VisualNetkit (Fazio and Minasi, 2009) and NetKit Lab Generator.

3.4.2 Application Core and Remote Control

CBNEs can be used to create complex experimental networks on commodity hardware,

though situations arise where a single computer is starved of resources due to the number

of nodes instantiated in an experimental network. The design choices made during the im-

plementation of a CBNE determines whether an experimental network can be distributed

across a larger number of computers. In this section, an analysis of CBNEs focuses on the

design of the software and how remote control is achieved for distributing experimental

networks across multiple hosts.

The evaluated CBNEs can be group into modular and monolithic systems. Table 3.4 shows

the application architecture groupings of the evaluated CBNEs. The modular CBNEs are

3.4.2 Application Core and Remote Control 43

designed as sets of standalone libraries and executables. Each of these components handle

specific tasks during the design and instantiation of experimental networks. The modular

CBNEs are designed as layered libraries to create a unified Application Programming

Interface (API) that can be used to instantiate multiple types of nodes in an experimental

network. The unified API can then be used to define and configure nodes regardless of

the virtualisation mechanisms used. Monolithic CBNEs are built as a single application

that incorporates all aspects of network emulation. The only CBNEs that is monolithic

is IMUNES.

Table 3.4: CBNE Application Architecture

CBNE Modular Monolithic

MiniNet •
Marionnet •
IMUNES •
CORE •
VNX •
Kathará •

The ability of a CBNE to be remotely controlled and to create distributed network exper-

iments limits the applications of a CBNE. In situations where an experimental network

has to execute on fixed infrastructure and has to be controlled from a portable device, the

ability to remotely control an experiment is required. Remote control of a CBNE does not

imply that network experiments can be distributed over multiple sets of hardware. For

distributed emulation each CBNE is evaluated for its ability to fragment and instantiate

an experiment network topology on multiple disparate hardware platforms. A summary

of the analysis is shown in Table 3.5.

Table 3.5: CBNE Remote Control Architecture

CBNE Remote Control Distributed Emulation

MiniNet ×
Marionnet

IMUNES ◦ ×
CORE • •
VNX × ×
Kathará ◦

× 3rd party solution

◦ Implicit remote control

CORE is the only CBNE designed for remote control and distributed emulation. CORE

utilises a RPC control interface that issues instructions to a daemon that handles the

3.4.3 Virtualisation 44

lifecycle of nodes in an experimental network.

Kathará and IMUNES (on Linux) utilise Docker to instantiate nodes for an experimental

network (Section 3.4.3) and thus have implicit remote control of the instantiated network.

For these two CBNEs the hardware that executes network experiments is disjointed from

the hardware used to control an experiment. On FreeBSD, IMUNES has been extended

to enable distributed emulation (Puljiz and Mikuc, 2006).

VNX has no native remote control or distributed emulation capabilities, though third-

party solutions exist to enable these features. EDIV, a solution for distributed emulation

in NetKit, has been updated to support VNX (Fernández et al., 2011). Similar to VNX,

distributed emulation support for MiniNet v2.2.1 is supplied by a third-party solution

(Wette et al., 2014).

An alternative to distributed emulation is multi-instancing. In multi-instancing, the con-

figuration of an experimental network is broken up into more than one configuration, and

multiple instances of a CBNE are used to execute the experiment. Synchronisation of the

lifecycle of a running experiment is done manually. Multi-instancing can theoretically be

accomplished on any CBNE that supports incorporating physical devices.

3.4.3 Virtualisation

The following comparison of CBNE virtualisation techniques assesses the type of technol-

ogy used to instantiate nodes within the network topology. Each CBNE implementation

can either use containerisation on its own or use containerisation in combination with

virtualisation. The only CBNE that still maintains support for technologies other than

containerisation is VNX. VNX currently supports instantiating nodes in experimental

networks using containerisation, Hardware Abstraction Layer (HAL) level virtualisation,

and Instruction Set Architecture (ISA) level virtualisation through Dynamips. CORE

dropped support for Xen based nodes in v5.1. The current status of virtualisation mech-

anisms supported by the evaluated CBNEs is shown in Table 3.6.

45

Table 3.6: CBNE Virtualisation Architecture

CBNE Containerisation Virtualisation Other

MiniNet •
Marionnet •
IMUNES •
CORE •
VNX • • •
Kathará •

3.5 Technology

In this section, technologies used to implement the main features of a CBNE are enumer-

ated. A CBNE must address a minimum of two aspects - nodes and topology - the base

components for a computer network. A third aspect of a computer network, link metrics,

is addressed by some CBNEs. Built-in capability to generate background traffic in the

emulated network is not addressed. The three technological aspects of CBNEs that were

assessed are:

• Node Emulation - the technologies used to instantiate devices such as computers

• Network Device Emulation - the technologies used to create networking devices such

as switches and routers

• Link Emulation - the technologies used to apply network traffic metrics such as

jitter and packet loss

This comparison framework is shown in Figure 3.9.

Node Emulation

Link Emulation

Network Device

Emulation
Computer 1

Switch

Computer 2

Figure 3.9: CBNE Technology Comparison Framework

3.5.1 Node Emulation 46

3.5.1 Node Emulation

The first component that a CBNE needs to create is that of virtualised nodes within an

emulated network topology. Each CBNE is analysed with respect to the different tech-

nologies that it can use to instantiate nodes. The technologies used to instantiate nodes

can range from existing, well-known systems such as UML (Dike, 2006), to custom con-

tainerisation implementations that address needs specific to the CBNE. The technologies

used by the evaluated CBNEs to instantiate nodes are shown in Table 3.7 and discussed

below.

Table 3.7: CBNE Node Emulation

CBNE Virtualisation Subsystem(s)

MiniNet Linux namespaces

Marionnet UML

IMUNES Docker

CORE Linux namespaces, Xena,b

VNX Dynamipsc, Linux Containers (LXC), UMLd, VirtualBoxa

Kathará Docker

a HAL level virtualisation (Section 2.2.2)
b Support for virtualisation discontinued in v5.1
c ISA level virtualisation (Section 2.2.1)
d Support for UML is no longer maintained

UML is a project to port the Linux kernel to a user space process. UML allows a user

to start a full Linux OS as an executable. UML is not dependent on the host kernel and

can be used to instantiate a VM using a different kernel to that of the host OS. The UML

project was merged into the Linux kernel in January of 2002 (Boissiere, 2002).

LXC11 is a Linux containerisation project started in 2008. LXC is built on Linux names-

paces and provides a suite of utilities to create, manage, and maintain containers.

Docker (Petazzoni and LeClaire, 2014) is a container management and orchestration

system developed by a team at dotCloud (now defunct), a PaaS company, to provide

lightweight virtual machines (containers) to customers. The initial version of Docker used

LXC to handle the creation of virtual machines.

Dynamips (Fillot, 2005) is an ISA-level virtualisation system for the Microprocessor

without Interlocked Pipelined Stages (MIPS) architecture. It was created to provide an

11https://linuxcontainers.org/

https://linuxcontainers.org/

3.5.2 Network Device Emulation 47

emulation environment that can boot the Cisco Internetwork Operating System (IOS) for

training and experimentation using IOS.

Xen (Barham et al., 2003) is an open-source Type-I hypervisor (Section 2.2.2) developed

by the Linux Foundation.

VirtualBox is an open source Type-II hypervisor (Section 2.2.2) developed by Oracle

Corporation.

Certain CBNEs such as MiniNet and CORE do not rely on third-party virtualisation

systems. These projects implement virtualisation through Linux namespaces (container-

isation) by directly interacting with the Linux kernel, and also provide custom container

management utilities.

3.5.2 Network Device Emulation

The second component that a CBNE needs to address is the creation of a network topology

that links instantiated nodes. CBNEs can create network devices using instantiated nodes,

such as routers, using Linux and a routing package12. For switching networks, L2 switches

can be created using Linux bridges. The technologies used to create network devices by

the evaluated CBNEs are shown in Table 3.8.

Table 3.8: CBNE Network Device Emulation

CBNE Network Emulation Subsystem(s)

Mininet Open vSwitch, Indigo Virtual Switch, OpenFlow reference implementation

Marionnet VDE switch, Linux bridges, TUN/TAP

IMUNES Open vSwitch

CORE Linux bridges

VNX UML virtual switch, Open vSwitch, Linux bridges

Kathará Open vSwitch, BMv2

Linux bridges (Böhme and Buytenhenk, 2001) were created to bridge physical network

interfaces into a single network according to the IEEE 802.1D-2004 (2004) standard. Linux

bridges support the Spanning Tree Protocol (STP) as defined in the same standard.

TUN/TAP devices and the UML virtual switch were both created as part of the UML

project (Dike, 2000, 2006). TUN/TAP devices emulate packets arriving from an external

12A common package used for routing on Linux is quagga (https://www.quagga.net/)

https://www.quagga.net/

3.5.3 Link Emulation 48

source by injecting packets into the network stack of the host OS. TAP devices carry

ethernet (L2) frames and TUN devices carry Internet Protocol (IP) packets. The UML

virtual switch was created to connect UML VMs into a Local Area Network (LAN).

Open vSwitch (Pfaff et al., 2009, 2015) is an open-source software network switch.

Open vSwitch can function as a distributed switch, enabling hypervisors (Virtual Machine

Monitors (VMMs)) to create a single switch across multiple hardware instances. Open

VSwitch supports the OpenFlow (McKeown et al., 2008) specification.

Indigo Virtual Switch13 is a software switch that provides support for the Indigo Frame-

work and the OpenFlow protocol. The Indigo Virtual Switch was designed for use with

Kernel-Based Virtual Machine (KVM) VMs.

OpenFlow reference implementation is the original reference software switch created

during the creation of OpenFlow(McKeown et al., 2008). An archive of the original source

code can be found on GitHub14.

Virtual Distributed Ethernet (VDE) switch (Davoli, 2005) is an open-source dis-

tributed software switch. VDE switch was primarily developed to interconnect geograph-

ically distributed hardware into a single overlay network.

BMv215 (behavioural model, version 2) is the second iteration of the P4 language (Bosshart

et al., 2014) software switch reference implementation. BMv2 supports programmable

switching using the P4 language.

3.5.3 Link Emulation

The third component of implementation comparison is link emulation. Link emulation

addresses the need to control the characteristics of network traffic flowing in the instan-

tiated topology. The ability to control link metrics, such as throughput and packet loss,

increases the realism (fidelity) of the emulated network, allowing replication of real-world

conditions for network experiments. Table 3.9 lists the link emulation technologies used

by the evaluated CBNEs. A short description of each link emulation technology is given

below.

13http://www.projectfloodlight.org/indigo-virtual-switch/
14https://github.com/cl4u2/openflow-reference-implementation
15https://github.com/p4lang/behavioral-model/

http://www.projectfloodlight.org/indigo-virtual-switch/
https://github.com/cl4u2/openflow-reference-implementation
https://github.com/p4lang/behavioral-model/

49

Table 3.9: CBNE Link Emulation

CBNE Link Emulation Subsystem(s)

Mininet tc, netem

Marionnet wirefilter

IMUNES tc

CORE tc

VNX tc

Kathará

The Linux tc16 (Traffic Control) utility allows various network traffic control policies to

be enforced on a Linux OS. The tc utility allows a user to control shaping, scheduling,

policing, and dropping policies. Shaping controls the transmission rate of network traffic

on egress, scheduling controls the transmission priority of packets, policing allows policies

to be set on arriving traffic, and dropping allows packet to be dropped if bandwidth limits

are exceeded.

The Linux netem17 (Hemminger, 2005) utility extends the tc utility with the ability to

add network metrics such as delay, packet loss, duplication and corrupt network traffic.

The netem (Network Emulator) utility was created to expose networked applications to

real world conditions during stress testing.

VDE provides the wirefilter18 utility to emulate packet loss, delays, and duplication

between VDE components. VDE wirefilter can also impose bandwidth restrictions and

introduce errors into network packets. The VDE wirefilter utility can utilise user generated

Markov chains to vary chosen metrics over time.

3.6 Summary

Available network experimentation platforms give the end user a choice of fidelity level

that is most suited to experiments that are to be done. CBNEs as an alternative network

experimentation platform presents a middle ground in terms of node density and fidelity.

CBNEs are able to have hundreds of nodes in an experimental network while still having

access to an operating system kernel capable of executing real-world applications. This

allows for experimentation that requires interaction with real-world applications at a large

16http://man7.org/linux/man-pages/man8/tc.8.html
17http://man7.org/linux/man-pages/man8/tc-netem.8.html
18https://manpages.debian.org/stretch/vde2/wirefilter.1.en.html

http://man7.org/linux/man-pages/man8/tc.8.html
http://man7.org/linux/man-pages/man8/tc-netem.8.html
https://manpages.debian.org/stretch/vde2/wirefilter.1.en.html

50

scale. The open-source CBNEs reviewed vary in architecture and implementation. Vari-

ations in the architecture and implementation specifics of the different CBNEs allows the

end user to select the most appropriate system based on his or her requirements. For edu-

cation and training environments, the availability of a graphical user interface supersedes

the ability to programmatically control the experimental network. By contrast, experi-

mentation with large-scale networks that span multiple computers will benefit from the

ability to exercise remote programmatic control over the experimental network. CBNEs

present a viable, low cost alternative for network administration, education, and security

specialists. The specific requirements of an experimental setup will lead the end user

to select a Container-Based Emulator (CBE) that can function within constraints of the

environment that the experiment will be executed.

Chapter 4

Remote Fidelity of Abstracted Hosts

One sees qualities at a distance

and defects at close range.

Victor Hugo

In Chapter 3 Container-Based Network Emulators (CBNEs), were investigated to deter-

mine if any components used during the construction of these systems would be able to

alter the fingerprint of an abstracted host. As was shown, the technologies used in CBNE

systems have the ability to alter network traffic, confirming the hypothesis that from the

viewpoint of an attacker the fingerprints of hosts abstracted in CBNEs could differ from

the fingerprint of the host Operating System (OS) on which the CBNEs is executed.

OS fingerprinting (Trowbridge, 2003) is the process of identifying a remote OS by extract-

ing and analysing specific features from network traffic between a scanning entity and a

target entity. This extraction and analysis is based on the knowledge that each OS will

introduce artefacts into network traffic protocols based on assumptions and interpreta-

tions made during the implementation of standards governing these protocols. Classical

examples of the processes to build this body of knowledge can be found in Fyodor (1998)

and Lyon (2009).

This chapter starts off by exploring the techniques and technologies used in identifying

the OS and software of a remote computer using network traffic. The methods used to

construct fingerprints of remote hosts from network traffic are investigated. The artefacts

collected during fingerprint generation are investigated for their relation to both the ab-

stracted and host OSs. These artefacts are evaluated as to how an abstracted machine’s

fingerprint may differ from a real machine.

51

52

In Section 4.1 the primary techniques of OS fingerprinting were investigated to assess

the use of feature extraction and how this would relate to abstracted hosts on a network.

During the fingerprinting process artefacts are collected that relate to various components

of a computer system. Features extracted from collected artefacts mainly relate to the

network and OS, and these features have the most impact when identifying an OS from

a generated fingerprint.

Next, theoretical models that attempt to explain the patterns and practices of a remote

attacker were reviewed to assess the applicability of fingerprinting during such activi-

ties. By analysing these attack patterns, the utilisation and importance of fingerprinting

networked hosts during attacks on remote systems can be gauged. In Section 4.2 four

classes of network attack models were investigated to understand the processes that a

hacker will likely take to exploit and gain access to a networked computer. The models

that do rely on OS fingerprinting during target selection characterize the expected be-

haviour of attackers targeting a specific machine. Models that have no or little reliance

on OS fingerprinting characterize the behaviour of attackers attempting to gain access to

any exploitable machine within a network.

Lastly, remote fingerprinting technology is used as a basis for the construction of a model

for measuring the realism of an abstracted host. Fingerprinting of remote systems utilises

concepts similar to the concepts commonly used in Naval Sound Navigation and Ranging

(SONAR) systems in the physical world. This similarity is utilised to construct a model

to be used for the measurement of realism of the abstracted hosts. In Section 4.3 the

conceptual similarities between OS fingerprinting and SONAR are used as a basis to

construct a model for measuring the remote fidelity of an OS. If a fingerprint generated

from a host machine matches the fingerprint generated from an abstracted machine, the

abstracted machine is assumed to have perfect fidelity for the purposes of this study.

4.1 Operating System Fingerprinting

Contemporary OS fingerprinting utilities can be split into two main methods of operation:

active and passive (Spangler, 2003). Active fingerprinting utilities are designed to send

probes to a targeted entity that are crafted to solicit responses that contain features that

will enable the utility to determine a probable match for the OS and services. Passive

fingerprinting utilities (Lippmann et al., 2003) rely solely on the observation and analysis

of “legitimate” communications between two networked entities, using the assumption

53

that a sufficient number of features will be found in these communications to enable the

utility to find a probable match for the host OS or services. Albanese et al. (2016) created

a taxonomy of fingerprinting utilities (Figure 4.1), further refining active fingerprinting

utilities. The first refinement of active utilities was to split these utilities into those

extracting features from application traffic and those extracting features from network

protocols. In the original text, each bottom most layer of the taxonomy is associated to a

particular utility that serves as an example of the particular type of fingerprinting utility.

It is worthy to note that nmap is the only utility listed in Albanese et al. that falls into

more than one classification in the taxonomy in the original text.

Network Traffic

Analysis

OS

Fingerprinting

Banner Grabbing

Handshaking

TCP Responses

ICMP Responses

ISN Analysis

Time Analysis

TCP/IP Stack

Application

Level

Active

Passive
Network Traffic

Analysis

OS

Fingerprinting

Banner Grabbing

Handshaking

TCP Responses

ICMP Responses

ISN Analysis

Time Analysis

TCP/IP Stack

Application

Level

Active

Passive

Figure 4.1: Operating System Fingerprinting Taxonomy, After Albanese et al. (2016)

Identifying the OS and enumerating services on a remote computer is crucial to an attacker

attempting to penetrate a remote network. Successfully identifying the OS or services on

a remote computer enables an attacker to assess the vulnerability of the system, and the

hacker(s) may then proceed to use known exploits or create custom exploits to gain access

to the remote system. Without the knowledge of the OS or services on the remote system,

an attacker will most likely not be able to enumerate weaknesses in the system that can

be exploited.

The simplistic feature extraction methods of first-generation fingerprinting utilities have

evolved into techniques that exploit identifiable characteristics of protocol implementa-

tions. By soliciting responses that would leak tell-tale features, positive identification of

OSs can be performed. Similarly, banner grabbing has evolved, from simplistic string

matching to application data content analysis, to identify the services running on the

remote machine. Table 4.1 lists the first and current releases of a selection of OS finger-

printing utilities.

Queso (Hack Story, 2009), an active fingerprinting utility released in March of 1997, had

a major influence on the direction that active fingerprinting research would take. Queso

54

Table 4.1: Operating System Fingerprinting Utilities

Name Current Version Initial Release Last Update
Queso 980922 1997-04 1998-09-22
nmap 7.7 1997-09 2018-03-21
Siphon 2000-05-04
p0f 3.09b 2000-08-01 2016-04-18
ettercap 0.8.2-Ferri 2001-01-25 2015-04-14
X 0.0.1 2001-07-13
Ring 1.1 2002-04
xprobe2 0.3 2003-10-13 2005-07-27
SinFP 2.10 2005-06-20 2015-02-15
SinFP3 1.24 2012-09-22 2018-07-21

pioneered having a fingerprint database in a separate file. Prior to Queso, fingerprint

databases where compiled into the executable of fingerprinting utilities. Queso was soon

followed by the release of nmap (Lyon, 2009) in September of 1997. The feature set

and capabilities that nmap introduced quickly made it the de-facto active fingerprinting

utility. Queso and nmap represent the first of the active fingerprinting utilities.

In 2000, two passive scanning utilities were released. Siphon (bind, 2000) and p0f

(Zalewski, 2000). Both these utilities created fingerprints for OSs by extracting a specific,

but limited, set of features from packets of the Transmission Control Protocol (TCP)

handshake. Siphon extracted three features from SYN and ACK packets, whereas p0f

extracted eight features from the SYN packet (Lippmann et al., 2003). Ettercap1

(Ornaghi and Valleri, 2019), another passive fingerprinting utility, was released in 2001.

Ettercap expanded the number of features extracted to ten, and incorporated features

from SYN-ACK packets, thus utilising both the client and server packets to generate

fingerprints. Recent use of p0f has shifted from passive fingerprinting to conducting

MitM and Address Resolution Protocol (ARP) spoofing attacks (Salame, 2019). This

shift in focus could explain the lack of updates to the p0f passive fingerprint database

(Section 5.2.3, Table 5.4).

Both x (also named xprobe) and xprobe22 (Arkin and Yarochkin, 2002; Yarochkin

et al., 2009) introduced fuzzy algorithms to match features sets to OSs. Through the

use of fuzzy matching, xprobe2 can match an OS even if some tests failed to produce

results. RING (Veysset et al., 2002), released in 2002, created fingerprints for OSs without

violating any RFCs, effectively preventing fingerprinting activity from being detected by

Intrusion Detection and Prevention Systems (IDPSs).

SinFP (Auffret, 2008) and SinFP33 (Auffret, 2010) was designed to positively identify

1http://www.ettercap-project.org/
2https://sourceforge.net/projects/xprobe/
3https://metacpan.org/release/Net-SinFP3

http://www.ettercap-project.org/
https://sourceforge.net/projects/xprobe/
https://metacpan.org/release/Net-SinFP3

4.1.1 Active Fingerprinting 55

OSs in worst case scenarios. In active fingerprinting mode, SinFP aims to identify an

OS using three packets. In passive fingerprinting mode, SinFP can intercept live traffic

or conduct analysis on static captures.

4.1.1 Active Fingerprinting

Active fingerprinting utilities such as xprobe2 (Arkin and Yarochkin, 2002), nmap (Lyon,

2009) and SinFP3 (Auffret, 2010) are so called as they actively interrogate a remote host

to identify the OS and services available. This interrogation is conducted by sending

probes to a remote host and analysing the responses, or lack thereof, for features that

are typical to a class of OS. Interrogation of the remote system may optionally conduct

a “port scan”, an attempt at enumerating the open port and protocol pairings of the

remote machine.

During simplistic port scanning, TCP and User Datagram Protocol (UDP) connections

are attempted to a selection of ports on a remote host. Services that have well-known

protocol and port combinations (Cotton et al., 2011) can be identified through a simple

port scan, an example of this is 53/tcp or 53/udp that can likely be matched to a DNS

service. Service discovery can be conducted by inspecting return traffic from a protocol

and port combination to enumerate services remapped to uncommon ports, for example

Hypertext Transfer Protocol Secure (HTTPS) remapped from 443/tcp to 8443/tcp or

SSH remapped from 22/tcp to 8022/tcp. Aggressive service discovery can be conducted

by attempting to establish service specific connections to uncommon ports.

The probes that an active OS fingerprinting utility sends are aimed at exploiting known

characteristics such as ambiguities in Request for Comments (RFCs) and implementa-

tions of the TCP/IP stack within the remote host, thereby soliciting responses that will

confirm or refute a match against a known OS or service. The algorithms of contempo-

rary active OS fingerprinting utilities such as nmap are enhanced to only solicit responses

that will result in more information. Probes that will not solicit new information are

not utilised (Lyon, 2009, Chapter 7). Barnett and Irwin (2008) investigated the types

of scans performed by fingerprinting (scanning) utilities and created a taxonomy of the

types of scans that can be expected. OS identification and service enumeration is most

commonly associated with Layer 3 scanning. The taxonomy of Barnett and Irwin (Figure

4.2) illustrates the types of Layer 3 scans that can be used to solicit responses that will

contain features that can identify a particular OS.

4.1.1 Active Fingerprinting 56

TCP/IP Scan

TCP Scan

ICMP Scan

UDP Scan

TCP/UDP

Destination

Protocol/Port

with ACK Flag

with SYN Flag

with FIN Flag

Medium

Slow

Rapid

Medium

Slow

Rapid

Rapid

Many

One

Layer 2 Scan Layer 3 Scan Scanning Speed
Scan

Distribution

Figure 4.2: Active Scanning Taxonomy, After Barnett and Irwin (2008)

During an assessment of machine learning applied to automated fingerprinting, Richard-

son et al. (2010) investigated the relationship between features that can be extracted

from TCP/Internet Protocol (IP) traffic and how these features relate to OSs. Table 4.2

summarises their findings. Extracted features that relate to the OS source code definitely

(indicated by ×) influence the fingerprint of a target machine and extracted features that

relate to the network between the attacking and target machine probably (indicated by

•) influences the fingerprints of the target machine. In Table 4.2 non-determinism is

interpreted as being any action that a network device or OS can take with regards to

network traffic that is not deterministic, such as packet re-ordering, randomly generated

sequence numbers, or packet loss. Hidden state expresses the complexity of the machines

being modeled, specifically the ability of complex systems to change behaviour over time.

When an active OS fingerprinting utility has positive confirmation of a specific OS family

(Linux; Windows; BSD Family), the algorithms of the utility will be directed at crafting

probes that are capable of soliciting responses from the remote system that will enable the

utility to refine the matched OS (e.g. Linux Kernel 2.x, Linux Kernel 3.x or Linux Kernel

4.x4). The algorithms of active OS fingerprinting utilities include soliciting responses that

may result in information leakage, typically known as banner grabbing. Many services are

known to leak information regarding the host OS or the version of the service, a default

Apache HTTP Server and PHP (Listing 4.1) stack will leak software versions and details

of the host OS. This information enables the active OS fingerprinting utility to create a

positive match to a particular OS.

4The 4.x naming scheme was an administrative decision - Torvals (2015)

4.1.1 Active Fingerprinting 57

Table 4.2: Observable Behavioural Differences for IP and TCP Network Traffic, After
Richardson et al. (2010)

n
o
n

-d
et

er
m

in
is

m

h
id

d
en

st
a
te

n
et

w
o
rk

h
a
rd

w
a
re

a
p

p
li
ca

ti
o
n

s

sy
st

em
co

n
fi

g
u

ra
ti

o
n

O
S

so
u

rc
e

co
d

e

IP Field

version • • • ×
hdrlen • • • ×
tos • • • ×
len • • • ×
id × × • ×
flags • ×
frag • ×
ttl × × × × ×
proto • ×
chksum × × × × × × ×

TCP Field

seq × × • ×
ack • ×
dataofs • • • ×
reserved • ×
flags • • • ×
win size • • • • ×
chksum × × × × × × ×
urgptr • • • ×
op order • • • ×
op MSS • × × ×
opt wscale • × × × ×
opt tsval × × • × × ×
× Influences fingerprint
• Might influence fingerprint

Listing 4.1: Apache & PHP Information Leakage
HTTP/1.1 400 Bad Request
Date: Fri, 30 Mar 2007 09:59:37 GMT
Server: Apache/2.0.54 (Debian GNU/Linux) PHP/4.3.10-18
Content-Length: 337
Connection: close
Content-Type: text/html; charset=iso-8859-1

Active OS fingerprinting utilities are considered to be “noisy”. The volume of probes

sent to a remote system can be identified by modern Unified Threat Management (UTM)

(Sophos, 2018) and Next Generation Firewall (NGFW) (Cisco Systems, 2018) systems as

well as by host-based scan detection systems such as psad5 (Rash, 2001), alerting the

operators of the remote system or network that scanning activity is under way. Active

OS fingerprinting utilities such as nmap can be instructed to apply evasion techniques

(Lyon, 2009, Section 4.3.5) in order to minimise the chance of being detected.

5https://cipherdyne.org/psad/

https://cipherdyne.org/psad/

4.1.2 Passive Fingerprinting 58

4.1.2 Passive Fingerprinting

Passive fingerprinting utilities such as p0f (Zalewski, 2000) and ettercap (Ornaghi

and Valleri, 2019) are used in situations where an attacker prefers to avoid detection, or

to analyse historical network traffic captures. In contrast to active fingerprinting, passive

fingerprinting does not send any probes, but merely relies on “legitimate” communications

to generate a probable match for a remote system. Passive fingerprinting extracts features

from network traffic between the attacker and target that can be used to generate a

fingerprint for the remote system. The initial Time To Live (TTL) of an IP packet and

the TCP window size for a particular OS family will differ significantly from other OSs and

can be used to determine, at minimum, the family of the target machine’s OS (Hjelmvik,

2011; Chen et al., 2014). In Table 4.3, a sample of such pairing are shown, illustrating

the differences between a small selection of OSs.

Table 4.3: Typical Initial IP TTL Values and TCP Window Sizes of Common OSs, After
Hjelmvik (2011)

OS IP Initial TTL TCP Window Size
Linux (kernel 2.4 and 2.6) 64 5840
Google’s customised Linux 64 5720
FreeBSD 64 65535
Windows XP 128 65535
Windows 7, Vista and Server 2008 128 8192
Cisco Router (IOS 12.4) 255 4128
Ubuntu 18.04 (Linux 4.15) 64 87380
MacOS High Sierra (10.13.6) 64 131072

Older generation passive fingerprinting utilities such as p0f and ettercap (Spitzner,

2000) extract features of specific protocols only, relying on the limited set of features that

these protocols are able to provide. Features are extracted from the first connection made

by the attacker to the host and are then matched to a database of known fingerprints. For

protocols such as Hypertext Transfer Protocol (HTTP) and FTP, the initial connection

may contain a banner - a disclaimer indicating the version of the service running. This

banner is used by passive fingerprinting utilities to supplement the OS fingerprint and

enhance the quality of the result returned. When a user connects to a web service the

web browser in use typically sends a user agent string to the remote web server. Extracting

the user agent string can enable the web service to fingerprint the browser and host OS of

the user (Eckersley, 2010; Tanabe et al., 2019). In Table 4.4, a sample of platform tokens

and the corresponding OS is shown. If web traffic is sent unencrypted (HTTP and not

HTTPS), the user agent string can be intercepted and used to enhance the fingerprint for

a device (Hjelmvik, 2011). A comprehensive database of user agent strings can be found

at https://developers.whatismybrowser.com/useragents/.

https://developers.whatismybrowser.com/useragents/

4.1.3 Current Research 59

Table 4.4: Web Browser User Agent String to OS Match, After Hjelmvik (2011)

Platform Token Description
Windows NT 6.0 Windows Vista
Windows NT 6.1 Windows 7
Windows NT 10.0 Windows 10
Linux x86 64 Linux 64bit
Intel Mac OS X 10 13 6 macOS High Sierra (Safari)
Intel Mac OS X 10.13 macOS High Sierra (Firefox)
Intel Mac OS X 10 14 macOS Mojave (Safari)
Intel Mac OS X 10 14 1 macOS Mojave (Chrome)
Apple-iPhone7C2 iPhone 6 CDMA
Apple-iPad2C4 iPad 2 Wifi Only 16GB

Passive fingerprinting has various uses outside of hacking. These techniques are employed

in UTM and NGFW devices to identify device types and apply filtering rules based on

corporate policies (CDW Corporation, 2018). The application of filtering rules based on

device type is of particular interest and is used in “BYOD” environments, where employee

devices are segmented off from the corporate network, minimising the risk of data loss

due to devices infected with malware. Passive fingerprinting can be applied to historical

data; in Irwin (2012, 2013) and Hunter et al. (2012) passive fingerprinting was applied

to historical network telescope data to identify the distribution of OSs that fell victim to

the Conficker worm.

4.1.3 Current Research

Current research into passive fingerprinting is exploring multi-session fingerprinting (An-

derson and McGrew, 2017), protocol agnostic, and machine learning (Aksoy et al., 2017)

techniques to enhance the accuracy of OS matches. Multi-session fingerprinting uses all

network activity by a specific host to build up a living fingerprint of the device. As con-

nections are made, the fingerprint of a specific device will be augmented with any new

information, and the accuracy and granularity of the matched OS improved over time.

These multi-session fingerprints are analysed using Machine Learning (ML) techniques, a

subset of Artificial Intelligence (AI), such as genetic algorithms and expert systems, en-

abling modern passive OS fingerprinting utilities to respond to changes in the behaviour

of devices, and maintain accuracy of the matched OS across vendor updates to the base

OS. In Hunter et al. (2012) and Hunter (2017), multiple fingerprinting techniques are

combined through data fusion to track network entities, creating temporal situational

awareness. In Davis (2019), BigData techniques are explored to analyse and categorise

passively collected data. By utilising BigData tools and techniques, passively collected

data can be classified according to source entity type such as research institution, resi-

dential or reflected data.

60

4.2 Network Attack Models

An attacker’s view of a remote machine is limited to what can be sent and received over

a network. One way to verify that a host is exploitable is by fingerprinting the OS. The

components used to build CBNEs can influence the fingerprint of emulated hosts. Fan

et al. (2015) used Virtual Networks over Linux (VNX) to create high-interaction hosts

in a honeynet deployment called Honeybrid. Detectability was defined as one aspect of

measurement between various honeynet deployments. Boyd (2000) found that User Mode

Linux (UML) based honeynets could be detected by remote attackers. Chapman et al.

(2017) evaluated NetKit and Virtual Network User Mode Linux (VNUML) as systems to

create low overhead virtual machines that can be used to create realistic environments for

network security training. The work of Chapman et al. (2017) focused on the ability to

recreate the expected application in a network. The use of CBNEs passed all application

level validation tests. In this section, models describing attacks on networks are reviewed

to assess the applicability of fingerprinting during activities expected to be performed on

CBNEs.

In A Formalised Ontology for Network Attack Classification, van Heerden (2014) investi-

gated models describing the behaviour of attacks against networks. These attack models

can be divided into three broad classes: generalised models, models focused on penetrat-

ing a specific host, and complex and specialised models. The Cyber Kill Chain (Hutchins

et al., 2011, a registered trademark of the Lockheed Martin Corporation) is included as

a representative model of defensive network security operations. The Cyber Kill Chain

is an example of a militarised attack model. In this section, a brief overview of each of

these classes of model is given.

4.2.1 Generalised Attack Models

During an analysis of the network attack processes described in Cheswick (1992); Boyd

(2000); Schultze (2002); McClure et al. (2012); Teumim (2010) and Knapp and Langill

(2014), van Heerden (2014, Section 3.2) modelled the common overarching aspects of the

described processes. The resultant model is shown in Figure 4.3. The analysed models

attempted to describe the most general way that an attacker may go about selecting,

exploiting, and gaining access to a target host using commonly available tools and utilities.

4.2.2 Models Focusing on Penetration of Remote Hosts 61

Scan Enumerate

Disrupt

Recoinnaissance

Penetrate Infect

Scan Enumerate

Disrupt

Recoinnaissance

Penetrate Infect

Scan Enumerate

Disrupt

Recoinnaissance

Penetrate Infect

Figure 4.3: Generalised Network Attack Model, After van Heerden (2014)

The Scan and Enumerate phases of the generalised network attack model focuses on

gaining information regarding a target host operating system and remotely accessible

services. Terminology regarding when OS fingerprinting and when service enumeration

occurs is not consistent. Schultze (2002) and McClure et al. (2012) model a Footprinting

phase to contain both OS fingerprinting and service enumeration, whereas Boyd (2000)

uses the Reconnaissance phase to describe both. In contrast, the generalised attack

model of van Heerden (2014) separates these phases. In the work of van Heerden, the

Scan phase is used to describe actions taken by the attacker where scanning of a remote

computer occurs, and the Enumerate phase is used to describe gathering of information

from services.

The generalised attack model of van Heerden is primarily informed by the works of Teu-

mim (2010) and Knapp and Langill (2014), who analysed the design and construction of

industrial networks. A major part of the analyses focused on security considerations when

designing industrial networks. The theoretical attack models used in both these instances

modelled an attacker looking for Industrial Control System (ICS) or Supervisory Control

and Data Acquisition (SCADA) systems to penetrate. An attacker that wishes to specif-

ically target systems such as ICS or SCADA systems would require positive confirmation

that the selected target is such a system. The use of OS fingerprinting technologies is

indispensable during such an operation.

The generalised network attack model of van Heerden (2014) offers a succinct overview of

the general expected behaviour of attackers. The combination of the Scan and Enumerate

phases describes the actions of a conceptual attacker seeking out specific systems.

4.2.2 Models Focusing on Penetration of Remote Hosts

Van Heerden (2014) analysed five models focused on gaining access to a specific computer

system. The models of Nachenberg (2002); Tutănescu and Sofron (2003); Hansman (2003);

Gadge and Patil (2008), and Sharan (2010) vary in objectives for creating the model and

the motivation of the conceptual attacker, though all models expand on particular details

4.2.2 Models Focusing on Penetration of Remote Hosts 62

of the generalised network attack model in Section 4.2.1. A common aspect of the five

models above is an increased focus on the motives and objectives of the final phases of an

attack on a particular system.

A) Nachenberg (2002)

B) Tutănescu and Sofron (2003)

C) Hansman and Hunt (2003)

D) Gadge and Patil (2008)

E) Sharan (2002)

Footprinting Scanning Enumeration Penetration Advance Covering Tracks

Footprinting Scanning Enumeration Gaining Access
Privilege

Escalation
Acquisition Covering Tracks

Placing

Backdoors

Attacker

Motivation and

Objectives

Information

Gathering

Target

Selection

Attack

Selection

Attack

Execution

Performing

Reconnaissance

Scanning and

Enumeration
Gaining Access

Privilege

Escalation

Maintaining

Access

Covering Tracks

and Placing

Backdoors

Active

Reconnaissance

Passive

Reconnaissance

Scanning Gaining Access
Maintaining

Access
Covering Tracks

A) Nachenberg (2002)

B) Tutănescu and Sofron (2003)

C) Hansman and Hunt (2003)

D) Gadge and Patil (2008)

E) Sharan (2002)

Footprinting Scanning Enumeration Penetration Advance Covering Tracks

Footprinting Scanning Enumeration Gaining Access
Privilege

Escalation
Acquisition Covering Tracks

Placing

Backdoors

Attacker

Motivation and

Objectives

Information

Gathering

Target

Selection

Attack

Selection

Attack

Execution

Performing

Reconnaissance

Scanning and

Enumeration
Gaining Access

Privilege

Escalation

Maintaining

Access

Covering Tracks

and Placing

Backdoors

Active

Reconnaissance

Passive

Reconnaissance

Scanning Gaining Access
Maintaining

Access
Covering Tracks

Figure 4.4: Network Attack Models Focused on Penetrating Networks, After van Heerden
(2014)

The models presented by Nachenberg; Tutănescu and Sofron (2003); Gadge and Patil

(2008) and Sharan modelled scenarios where the attacker wishes to maintain access to

a particular system, and extended the generalised model to include the Covering Tracks

phase. These models were created to assist in attack detection. The model of Tutănescu

and Sofron (2003) (Figure 4.4 B) starts with the same phases as the generalised model,

but expanded the Penetrate - Infect branch of the generalised model into smaller “sub”

phases that would assist in attack detection. The research of Gadge and Patil (2008)

(Figure 4.4 D) focused on the development of port scan detection methodologies. The

Performing Reconnaissance phase of Gadge and Patil (2008) models Footprinting (Re-

connaissance in the generalised model) and Scanning as sub-phases where port scanning

occurs. The model of Sharan (Figure 4.4 E) follows a similar methodology to that of

Gadge and Patil (2008) but explicitly differentiates between Active Reconnaissance and

Passive Reconnaissance. The model of Nachenberg (Figure 4.4 A) is a condensed version

of the model found in McClure et al. (2012).

The model presented by Hansman (2003) (Figure 4.4 C) aimed not to model the execution

phases of an attack, but rather the higher level processes that the attacker would follow,

with the aim of creating a taxonomy that would accurately describe a wide variety of

attacks (including electromagnetic attacks). The taxonomy proposed by Hansman (2003)

uses four distinct dimensions (with the possibility to include more) to classify an attack.

4.2.3 Extended Attack Models 63

The actual process followed by an attacker is not modelled, as the taxonomy classifies an

attack that has happened.

During the development of a game theoretic model of Computer Network Exploitation

(CNE) campaigns, Mitchell and Healy based the actions of an adversary on the multistage

model shown in Figure 4.5. The model of Mitchell and Healy is modelled on an attacker

selecting a target (Survey) and implementing custom tooling and exploits (Tool) to infect

(Implant) a selected target. The model then differentiates from the models previously

mentioned, model allowing for an attacker to abort the campaign at any stage and for

an attacker to decide (Picot) which malicious activity to perform at a late phase in the

campaign.

Survey Tool Implant Pivot

Damage

Exfiltrate

Cleanup

Abort

Complete

Figure 4.5: Multistage Computer Network Attack Model, After Mitchell and Healy (2018)

The models focused on penetrating a remote host place high value on identifying a target

that can be exploited. Regardless of the naming convention used, each of the five models is

based on the assumption that an attacker would attempt to gather as much information

about a remote host as is feasible, and all five models incorporate the fingerprint as a

primary source during the “gathering of information”.

4.2.3 Extended Attack Models

Grant et al. (2007) and Janczewski and Colarik (2008) model in detail the required or

expected inputs and the expected outputs of the process that an attacker could take. The

common goal of these models is the incorporation of expected loss during an attack.

The model presented by Grant et al. (2007) furthers the research originally conducted

in Grant and Kooter (2005), and extends the well-known Observe-Orient-Decide-Act

(OODA) loop (Boyd, 1987) by incorporating various other operational process models

attempting to describe modern warfare, applying these process to cyber terrorism. The

4.2.4 Militarised Attack Models 64

resultant model (Figure 4.6a) details the inputs and outputs of each phase, and incorpo-

rates propagation of the attack and dissemination of information regarding the attack in

online and other media.

The model of Janczewski and Colarik (2008) (Figure 4.6b) expands on a basic attack

model by modelling the required inputs and expected outputs of each phase. The model

presented caters for both disrupting and maintaining a foothold once a target is com-

promised. Similar to the model of Grant et al. (2007), propagation of the attack from a

compromised target is included.

Wood (2018) applies the Cyber Kill Chain to attacks focused on stealing sensitive in-

formation from corporate environments. The model of Wood (Figure 4.6c) disregards

disruption or persistent backdoors and focuses exclusively on the exfiltration of sensitive

information.

The models described in this section focus on modelling the modus operandi of a cyber

terrorist. Focus is placed on the motivation for and outcomes of the attack. Information

gathering operations within these models place higher value on resources detailing the

software systems used and lesser value on techniques used in OS fingerprinting.

4.2.4 Militarised Attack Models

As a response to the nature and modus operandi of Advanced Persistent Threats, Hutchins

et al. (2011) created a model of APT behaviour to assist in the development of defensive

strategies that can deal with the sophisticated nature of APTs. The resulting model, the

Cyber Kill Chain (shown in Figure 4.7), aims to better enable defensive technologies to

detect the presence of APTs during any phase of an attack.

Weaponization DeliveryRecoinnaissance Installation
Command &

Control
Exploitation ExfiltrationWeaponization DeliveryRecoinnaissance Installation

Command &

Control
Exploitation ExfiltrationWeaponization DeliveryRecoinnaissance Installation

Command &

Control
Exploitation Exfiltration

Figure 4.7: The Cyber Kill Chain, After Hutchins et al. (2011)

The Cyber Kill Chain, developed by Lockheed-Martin, deviates from the generalised and

penetration focused models by expanding the Delivery phase to include alternative means

of delivery of malicious payloads such as email. The Reconnaissance phase of the Cyber

Kill Chain focuses mainly on finding exploitable wetware where the previous models focus

on the exploitability of hardware or software. In the Cyber Kill Chain, the Reconnaissance

65

Footprinting

Vulnerability

Identification

Penetration

Control

Embedding

Data Extraction

Attack Relay

Attack

Dissemination

Goal

Target

Company Records

Web Search

Target’s Website

HW/SW Suppliers

Vulnerability Websites

Intruder Blogs

Malware

Penetration Tools

Stealth Techniques

Backdoor

Data Commands

Network Map Commands

Intruder Blogs

Other Media

Network Topology

HW Configuration

SW Configuration

Vulnerabilities

Penetrated Target

Remote Control

Persistence

Network Map

SysAdmin E-mail

Extracted Data

List of New Targets

Methods Used

Target Features

Network Features

Footprinting

Vulnerability

Identification

Penetration

Control

Embedding

Data Extraction

Attack Relay

Attack

Dissemination

Goal

Target

Company Records

Web Search

Target’s Website

HW/SW Suppliers

Vulnerability Websites

Intruder Blogs

Malware

Penetration Tools

Stealth Techniques

Backdoor

Data Commands

Network Map Commands

Intruder Blogs

Other Media

Network Topology

HW Configuration

SW Configuration

Vulnerabilities

Penetrated Target

Remote Control

Persistence

Network Map

SysAdmin E-mail

Extracted Data

List of New Targets

Methods Used

Target Features

Network Features

(a) Network attack model of Grant et al. (2007)

Penetration

Identify

Vulnerabilities

Select/Tailor

Malware

Select/Tailor

Malware

Disrupt

Availability

Expanding

Capabilities

Damage System

Removal of

Evidence

Reconnaissance
Victim Identity

Normal Operations

Vulnerabilities

Exploits

Penetrated Target

Denial of Service

Usefull Information Such as:

-HW/SW

-Formatting

-Communications

Access to High-Value

Areas

Damage HW/SW

Modified Data

Confiscated Data

Log Files Toolset

Resource View Tool

Access Rights Tool

Data Manipulation Tool

Penetration

Identify

Vulnerabilities

Select/Tailor

Malware

Select/Tailor

Malware

Disrupt

Availability

Expanding

Capabilities

Damage System

Removal of

Evidence

Reconnaissance
Victim Identity

Normal Operations

Vulnerabilities

Exploits

Penetrated Target

Denial of Service

Usefull Information Such as:

-HW/SW

-Formatting

-Communications

Access to High-Value

Areas

Damage HW/SW

Modified Data

Confiscated Data

Log Files Toolset

Resource View Tool

Access Rights Tool

Data Manipulation Tool

(b) Network attack model of Janczewski and Colarik (2008)

Social

Engineering

Control

Endpoint

Explore

Network

Take

Control

Find Data

Steal Data

Spear Phising

Vishing

Physical Intrusion

User Credentials

User Data

Desktop Computer

Laptops

Printers

Remote Access Tool

Information Gathering

Utilities

Network Devices

User Group

User Privilege

Administrator Privileges

Objectives Sensitive Data

Compromised

Communications Channels

(VPN, e-mail, FTP)

Information

Gathering

Website

Domain Registrations

Physical Location

(c) Network attack model of Wood (2018)

Figure 4.6: Extended Attack Models

4.2.5 Applicability of Fingerprinting in Network Attacks 66

phase makes use of leaked Personally Identifiable Information (PII) (Swart, 2015) to

identify human beings that could be exploited to install malicious software. First contact

with computer systems occurs during the Delivery phase and relies on the targeted human

opening a document that contains a malicious payload. The abstraction level of the

computer system that the human uses will influence the success of the attack. The

requirement that a human interacts with a computer places the model outside of the scope

of this thesis. The Cyber Kill Chain highlights the changes in tactics of adversaries due to

enhanced perimeter security of computer networks. Defensive mechanisms in enterprise

networks are discussed in 5.1. These defensive mechanisms make the exploitation of hosts

behind a Demilitarised Zone (DMZ) from an external location an increasingly difficult

task. The delivery of APTs from inside such a network, whether by self-replication or by

an insider, could typically utilise one of the previous models.

4.2.5 Applicability of Fingerprinting in Network Attacks

From the reviewed models, the use of fingerprinting by remote attackers is applicable to

situations where specific networks or machines are targeted. The general and penetration

focused models attempt to describe such situations where attacks are focused on specific

machines, whereas the comprehensive models attempt to describe a “get in by any means

necessary” approach to gaining a foothold in the targeted network. Deploying educational

or experimental networks in CBNEs is associated with training exercises, where a Red

Team will attempt to break into infrastructure controlled by a Blue Team, a scenario

that matches the models where fingerprinting is used (Vykopal et al., 2017). This testing

methodology aligns with the expected use and application of Network Experimentation

Platforms (NEPs) within the context of this study.

4.3 Remote Fidelity of Networked Hosts

With the primary goal of assessing the fidelity of hosts within CBNE emulations from the

viewpoint of a remote attacker, it is necessary to establish a definition for fidelity, and

the techniques and technologies available to measure such fidelity. From the viewpoint of

an attacker, the only information available with regard to the target host OS is contained

within network traffic - either traffic broadcast by the target or responses solicited by the

attacker.

4.3.1 Network Traffic Modification 67

4.3.1 Network Traffic Modification

Apart from deliberate modification of network traffic by using the technologies listed in

Section 3.5.3, additional opportunities exist for CBNEs to modify network traffic.

The choice of namespaces used to construct a container and the capabilities and limitations

applied to the container (Section 3.2.1) can have an impact on how network traffic is

handled. If a container has certain capabilities, the way that network packets are handled

by the Linux kernel can be influenced. The nature of containers implies that the kernel

of the OS remains the same. As was shown by Richardson et al. (2010) the primary

component in a computer system that can influence fingerprints is the source code of the

OS (Table 4.2).

The primary technology used in CBNEs that could influence the features extracted by

fingerprinting utilities is the components used to emulate network devices (Section 3.5.2).

These devices live outside of the bounds of the kernel and can apply various optimisations

to traffic, and thus influence fingerprints generated from network traffic.

4.3.2 Active Hunting

In active SONAR, a “ping” signal is generated at a specific frequency and an array of

detectors listens for the ping signal’s return. The conceptual design of an active SONAR

system is shown in Figure 4.8. The returned signal is analysed for time delays and

frequency distributions for probable matches to a “contact”. In some cases, a signature

can be created from analysis of the returned signal.

Transducer Array
Synchronizer Transmitter

Duplexer

Switch

Beamforming

Processor

ReceiverDisplay

Transducer Array
Synchronizer Transmitter

Duplexer

Switch

Beamforming

Processor

ReceiverDisplay

Transducer Array
Synchronizer Transmitter

Duplexer

Switch

Beamforming

Processor

ReceiverDisplay

Figure 4.8: Active SONAR Block Diagram, After FAS Military Analysis Network (1998)

Analogous to active SONAR, in active fingerprinting an Internet Control Message Protocol

(ICMP) Ping packet (ICMP Type 8, Postel (1981)) is sent to a target address to establish

a “contact”, a host that is alive on the network. The active fingerprinting utility will then

4.3.3 Passive Stalking 68

proceed to send crafted probes to generate a “signature”, a fingerprint in OS fingerprinting

parlance. In Figure 4.9, the block diagram of xprobe2 (Yarochkin et al., 2009) is shown.

Active fingerprinting utilities can select what modules to activate and depending on the

modules selected, port scanning can be used to enhance the fingerprint of the target

device.

Module Selection

and Reordering
Network Discovery

Network Layer

Fingerprinting

[Optional]

Port Scanning
Service Discovery

Application Layer

Fingerprinting

Fuzzy Signature

Matching

Module Selection

and Reordering
Network Discovery

Network Layer

Fingerprinting

[Optional]

Port Scanning
Service Discovery

Application Layer

Fingerprinting

Fuzzy Signature

Matching

Module Selection

and Reordering
Network Discovery

Network Layer

Fingerprinting

[Optional]

Port Scanning
Service Discovery

Application Layer

Fingerprinting

Fuzzy Signature

Matching

Figure 4.9: xprobe2 Active Fingerprinting Block Diagram, After Yarochkin et al. (2009)

4.3.3 Passive Stalking

In passive SONAR an array of sensors is deployed to capture and analyse ambient “noise”

surrounding the array. The captured noise is then plotted on a time versus frequency

graph. The passive SONAR array, shown in Figure 4.10, can be configured to listen to

a specific bearing using direction finding arrays, enabling the SONAR signal processing

systems and operators to clean up the received signal. A cleaned signal can then be

analysed and matched to a set of known fingerprints for seafaring vessels.

Hydrophone Array

Frequency

Analyzer

Narrowband

Display

Beamforming

Processor

Broadband

Display

Hydrophone Array

Frequency

Analyzer

Narrowband

Display

Beamforming

Processor

Broadband

Display

Figure 4.10: Passive SONAR Block Diagram, After FAS Military Analysis Network (1998)

Passive OS fingerprinting utilises similar methods to create a fingerprint of networked

hosts. By intercepting legitimate communications to a target, a passive fingerprinting

utility can extract relevant features from the network traffic to generate a fingerprint and

create a possible match. Figure 4.11 shows the architecture used by Medeiros et al. (2010)

to enhance the matched OS from a fingerprint generated using a passive fingerprint utility

by adding a database of known fingerprints that can be queried.

4.3.4 Fingerprint Databases 69

Acquired Data

Service Discovery

Fingerprint

Fingerprint

Database

Fingerprint

Database

Fingerprinting

Matching

Acquired Data

Service Discovery

Fingerprint

Fingerprint

Database

Fingerprinting

Matching

Acquired Data

Service Discovery

Fingerprint

Fingerprint

Database

Fingerprinting

Matching

Figure 4.11: Passive Fingerprinting Block Diagram, After Medeiros et al. (2010)

4.3.4 Fingerprint Databases

The operation and functioning of SONAR is governed by the laws of physics. Any physical

objects must respond to acoustic stimuli according to the laws of physics and the acoustic

signature of a ship is most definitely different to that of a whale. These known responses

enable SONAR systems to create a database that assists in fishing out metal objects in

water.

In OS fingerprinting, the implementation of network stacks and networked services is

governed by the “Laws of the Internet”. Each implementation of a protocol RFC may

differ due to either ambiguity in the description of a protocol or interpretation of semantics

(Song et al., 2014). These interpretations of protocol RFCs (Paxson et al., 1999) are used

to create databases of known artefacts that can then be used to identify specific operating

system versions or families of operating systems.

SONAR systems build up a database of known acoustic signatures for seafaring vessels to

assist SONAR operators in creating a match for a contact. Similarly, OS fingerprinting

utilities builds up databases of features unique to specific OS families and OS versions.

These databases enable an attacker to identify a remote operating system.

4.3.5 Abstracted Host Fidelity

To define the fidelity of an abstracted host, whether virtualised, containerised or sim-

ulated, we can utilise the methodologies of SONAR. In SONAR, a class of vessel will

have an acoustic signature and any vessel in that class will match the signature with

accuracy even though each vessel will have minor deviations. For OS fingerprinting, we

can state that any family (class) of OS will have a set of features in common, and each

implementation or distribution will have some form of variance on this signature. A high

fidelity abstracted host will replicate the functioning of the host to such a degree that the

70

base host and the abstracted host are almost indistinguishable (for a given measurement

technique), while a low fidelity host will implement a partial set of features that replicates

the behaviour of the base host.

From this analogy we can define Remote Fidelity of an Abstracted Networked Host as

follows. The remote fidelity of an abstracted networked host is the level of accuracy at

which the abstracted host is able to replicate the behaviour and characteristic deviations

of network traffic generated by the real host.

4.4 Summary

In Chapter 3 it was established that CBNEs are constructed using technologies that could

influence fingerprints, confirming one part of the research hypothesis.

In Section 4.1 studies of fingerprinting remote hosts were analysed to identify techniques

used and how a fingerprint would be generated for a particular OS. It was discovered

that fingerprinting utilities have the ability to extract features from network traffic that

correlate to different types of OSs, and features that relate to networking environments.

In Section 4.2 four classes of network attack model were reviewed to gain a better un-

derstanding of how a “typical” hacker would operate. OS fingerprinting is predominantly

used in scenarios where an attacker targets a specific system; in scenarios where gaining

any form of access is desired OS fingerprinting is used to a lesser extent.

In Section 4.3 the similarities between SONAR and OS fingerprinting were used to create

a model for measuring the fidelity of an abstracted machine as seen from the perspective

of a remote attacker.

Knowing that CBNEs can influence fingerprints and that fingerprints are sensitive to

changes in the networking environment and OS subsystems, a model was created to assist

in the measurement of the fidelity of an abstracted host as seen from the point of view

of a remote attacker. In Chapter 5 this model is used as the basis for constructing

an experimental methodology to test the hypothesis. By applying this model to OS

fingerprinting of abstracted hosts, the extent to which such hosts will be able to “fool” a

remote attacker can be assessed.

Chapter 5

Experimentation and Results

The single biggest problem in communication

is the illusion that it has taken place.

George Bernard Shaw

The primary goal of this study was to evaluate if Container-Based Network Emulators

(CBNEs) (Chapter 3) can be used to construct experimental networks for information

security research, education, and training. From the perspective of a remote attacker

conducting Operating System (OS) fingerprinting and service enumeration (Section 4.2)

during target selection these fingerprints are crucial. The components used by CBNEs to

construct emulated networks can modify network traffic (Section 4.3.1) and influence the

features extracted by OS fingerprinting utilities. In this chapter fingerprints are generated

and analysed for a selection of Linux-based CBNEs to establish the fidelity of emulated

hosts according to the definition provided in Section 4.3.

This chapter starts off with an overview of components in a computer network that can

influence OS fingerprints generated by utilities such as nmap. Section 5.1 presents the

network and host-based components that can influence OS fingerprints and discusses how

these components can manipulate network traffic and thus cause fingerprinting utilities

to report false results.

Section 5.2 details the software environment, test network design, and process used for

testing. The CBNEs subjected to OS fingerprinting, and the design of the test network

are defined. The list of standard Linux utilities, and the suite of OS fingerprinting utilities

used for testing are discussed.

71

72

The first set of results, the Linux kernel versions reported, is presented in Section 5.3.

OS fingerprinting utilities often report human readable results. In this section the human

readable OSs reported are compared to the known OS version of the host to assess the

accuracy to which OS fingerprinting utilities can detect OSs. An attacker might rely on

the human readable OS reported and use this information during the target selection

process. Incorrect results could lead to failed attempts at penetrating a remote host.

Section 5.4 presents incidental findings on the effects that CBNE components had on

ping Round Trip Times (RTTs). Each of the combinations of node and network link

emulation technologies can influence processing time on network packets. This section

presents a cursory statistical analysis of the effects that combinations of components used

by CBNEs have on latency of packets in an emulated network.

The following two sections present an analysis of raw fingerprints generated during testing.

Section 5.5 presents the results obtained from passive fingerprinting and Section 5.6

presents the results obtained from active fingerprinting. By analysing raw fingerprints,

the different influences that CBNEs have on features extracted from network traffic can

be assessed and the fidelity of hosts in an emulated network can be determined.

In Section 5.7 the cause of a fingerprint deviation reported in Sections 5.5 and 5.6 is

investigated. The active and passive fingerprints generated for one CBNE deviated from

the fingerprints generated for the host and all other CBNEs tested and the cause of the

deviation was corrected and the CBNEs was subjected to an additional round of tests.

This chapter concludes with a summary of the findings, presented in Section 5.8.

5.1 Network and Host Influences on Fingerprinting

Fingerprinting utilities are sensitive to changes in the L2 and L3 headers of network traffic.

These sections are used to extract features that are used by fingerprinting utilities to

identify the OS of targeted systems. Modifications to L2 and L3 headers can be introduced

by networking devices such as NAT devices, firewalls, and routing equipment. Within the

context of this research, the design of the experimental network and the configuration

of the emulated hosts must take these influences into account. The experimental design

must therefore exclude devices that could bring unwanted influences in network, traffic

as the focus of the study is the measurement of the fidelity of emulated hosts themselves

and not how such devices can influence fidelity.

5.1.1 Network Based Influences 73

5.1.1 Network Based Influences

As a network packet traverses the network from the attacker to the target system, the

packet will pass through many network devices that can and will modify the packet. Each

device in a network can lead to loss of information during the packet’s traversal of the

network. The simplest example is that of a routed network, where a router will strip away

its own Media Access Control (MAC) address and replace it with the MAC address of the

next “hop” and decrease the Time To Live (TTL) of certain protocols by one. In Figure

5.1, an example routed network is shown. As a packet traverses the router the source

and destination MAC addresses are changed to those of the next segment in the network

and the TTL is decreased by one. Listing 5.1a shows the contents of a Transmission

Control Protocol (TCP) SYN packet before being routed, and Listing 5.1b shows the

same packet after being routed. The changes in the packet are highlighted as follows:

red indicates the destination MAC, the first bold section indicates the source MAC, the

second bold section indicates the TTL, and the last bolded section indicates the checksum

of the packet. In a routed network, the first level of loss of information affects vendor-

specific details regarding the Network Interface Controller (NIC) of the target host, as

this information will not reach the attacker and is network local only. Listing 5.2 shows

a TCP/SYN packet exiting a node in a local switched network and entering the target

node. As is shown, there are no differences in these packets. Local switched networks

apply no modifications to switched traffic.

Host n1

10.0.0.10

00:00:00:aa:00:01

Port 0

10.0.0.1

00:00:00:aa:00:00

Port 1

10.0.1.10

00:00:00:aa:00:02

Host n2

10.0.1.10

00:00:00:aa:00:03

Router

Host n1

10.0.0.10

00:00:00:aa:00:01

Port 0

10.0.0.1

00:00:00:aa:00:00

Port 1

10.0.1.10

00:00:00:aa:00:02

Host n2

10.0.1.10

00:00:00:aa:00:03

Router

Figure 5.1: Basic Routed Network

Routing devices are not the only components in a computer network that will modify

packets as they traverse a network. A corporate network being scanned may utilise a

Demilitarised Zone (DMZ) that incorporates perimeter security devices such as Next

Listing 5.1: SYN Packet Pre & Post Router

(a) Pre

00 00 00 aa 00 00 00 00 00 aa 00 01 08 00 45 00
00 3c d0 16 40 00 40 06 55 92 0a 00 00 0a 0a 00
01 0a aa ec 1f 40 34 b4 d2 16 00 00 00 00 a0 02
fa f0 30 6a 00 00 02 04 05 b4 04 02 08 0a 38 5e
fe 3b 00 00 00 00 01 03 03 07

(b) Post

00 00 00 aa 00 03 00 00 00 aa 00 02 08 00 45 00
00 3c d0 16 40 00 3f 06 56 92 0a 00 00 0a 0a 00
01 0a aa ec 1f 40 34 b4 d2 16 00 00 00 00 a0 02
fa f0 30 6a 00 00 02 04 05 b4 04 02 08 0a 38 5e
fe 3b 00 00 00 00 01 03 03 07

5.1.1 Network Based Influences 74

Listing 5.2: SYN Packet Pre & Post Switch

(a) Pre

00 00 00 aa 00 01 00 00 00 aa 00 00 08 00 45 00
00 3c 05 8b 40 00 40 06 21 1d 0a 00 00 0a 0a 00
00 0b 93 ce 1f 40 e7 8d 34 99 00 00 00 00 a0 02
72 10 e0 4f 00 00 02 04 05 b4 04 02 08 0a e9 3d
29 18 00 00 00 00 01 03 03 07

(b) Post

00 00 00 aa 00 01 00 00 00 aa 00 00 08 00 45 00
00 3c 05 8b 40 00 40 06 21 1d 0a 00 00 0a 0a 00
00 0b 93 ce 1f 40 e7 8d 34 99 00 00 00 00 a0 02
72 10 e0 4f 00 00 02 04 05 b4 04 02 08 0a e9 3d
29 18 00 00 00 00 01 03 03 07

Generation Firewalls (NGFWs), Intrusion Detection and Prevention Systems (IDPSs),

and Web Application Firewalls. Each of these devices can be configured to detect, analyse

and respond to OS fingerprinting utilities to a varying degree. These devices may simply

terminate connections or reroute OS fingerprinting probes to honeypot systems to lure

the attacker into a false sense of accomplishment. In the latter, an attacker will expose

themselves and gather information on systems designed to track and report on attacker

activity. Certain honeypots are designed to give responses to known scanning probes that

replicate the features of known vulnerable OSs and services. A conceptual DMZ and the

paths that network traffic can take through such a configuration, are shown in Figure 5.2.

DMZ

Internet

Services

Local Area

Network

Figure 5.2: Corporate Network with a DMZ

When attempting to fingerprint the OS and enumerate services of web hosts in a DMZ

(Internet to Services path) OS fingerprinting utilities may return strange results. The

host OS could be reported as FreeBSD, while the services on the host may be reported as

being Microsoft IIS. In these situations, one possible conclusion that can be made is that

the host is acting as a load balancer or reverse proxy. Fingerprinting targeted at any of

the services will return results that contain features of both the load balancer or proxy

(L2 and L3) and of the service itself (L7).

Thus for the purposes of this research, the experimental network must exclude any devices

that are known to manipulate network traffic. Any modifications to network traffic by

such devices can influence the measurement of the fidelity of emulated hosts.

5.1.2 Host Based Influences 75

5.1.2 Host Based Influences

Once a connection is established to a remote host that host has several opportunities

to manipulate the headers of response packets. Figure 5.3 shows a simplified sequence

diagram of a connection being established to a web server that serves active content.

As individual packets that form part of the connection makes their way back to the

requester each component in the stack can manipulate response packets. In addition to

manipulating outgoing packets each component can terminate the connection.

Figure 5.3: Packet Entering A Computer System

Each of the eight steps shown in Figure 5.3 represent unique opportunities to manipulate

responses or to terminate connections. These steps are divided into two groups: incoming

(1-4) and outgoing (5-8). The opportunities for each step to reject or manipulate packets

are discussed below:

1. Incoming - Network Interface (L2)

Each packet arriving at a host has to be validated by verifying its checksum. Certain

NICs can offload L2 and L3 processing and verification. If an OS fingerprinting

utility uses probes that violate Request for Comments (RFCs), these NICs can

terminate the connection before any packets are passed to the OS.

2. Incoming - Operating System (L3)

Before the payload of a connection is passed to the intended application, the net-

work stack of the OS can apply check and filters. Packets intended for a different

host, suspicious protocol versions (such as packets having an IP version of 5), or

connection attempts to closed ports can be rejected. The rejection strategy of an

OS can be to send a TCP reset packet or to drop the connection with no response.

5.1.2 Host Based Influences 76

3. Incoming - Web Server (L7)

Once a successful connection is established the OS passes the payload of the con-

nection to the Web Server. Common ways in which a Web Server can manipulate

connections include rewriting URIs and proxying connection to a next host. The

Web Server can scan payloads for malicious content and reject connections if such

content is found.

4. Incoming - Processing Engine (Payload)

Once the payload of a connection researches the Processing Engine the request is

interpreted and a response is generated. A Processing Engine could apply additional

validation on the request and reject it if validation fails.

5. Outgoing - Processing Engine (Payload)

The return path to the originator of a request starts with the Processing Engine

packaging a response. Responses from a Processing Engine might include details,

such as the version of the engine used. The Web Server can also rewrite sections of

the response prepared by the Processing Engine.

6. Outgoing - Web Server (L7)

The response from the Processing Engine is packaged into L7 traffic by the Web

Server. L7 (HTTP(S)) data includes various headers that help the requester process

responses and maintain the connection. The Web Server could leak information such

as the host OS, the Web Server version, and the version of the Processing Engine.

7. Outgoing - Operating System (L3)

The primary opportunity for an OS to manipulate packets is when a response is

prepared for transmission back to the requester. The default configuration and

optimisation of the network stack of the Operating System can be manipulated to

appear similar to a different OS.

8. Outgoing - Network Interface (L2)

Before transmitting a packet over physical or virtual infrastructure, the checksum for

the packet is calculated and inserted into the appropriate header. A miscalculation

of the checksum could result in networking equipment rejecting the packet.

The example above illustrates a very simplified view of network traffic entering a host

for processing. The Operating System can assert control over both L2 and L3 headers in

packets and can rewrite any content in the packet. The Linux kernel can apply any mod-

ification to network traffic through the use of the hooks provided by iptables. Figure

5.1.2 Host Based Influences 77

5.4 shows the paths that a packet can take through the iptables system. In the example,

each component has an opportunity to misinterpret a request or introduce anomalies into

network traffic, be it by design or coding error. Each of these components can influence

the remote fidelity of the networked host, compared to that of a real host. Many of these

anomalies are regarded as indicative of a particular OS or service, though each component

may introduce anomalies that will reduce the accuracy of the signature generated by OS

fingerprinting.

prerouting forward postrouting

input output

network

interface

network

interface

local process local process

Figure 5.4: Hook points for iptables, Adapted from Purdy (2004)

The L3 (Operating System) and L7 (Web Server) components in the example have ad-

ditional opportunities for intentional interference with network traffic. At L3, systems

such as iptables, UFW, and fail2ban can modify (honeypot), disallow (Firewall)

or re-route (port forward) network traffic based on pre-defined rule sets. These utilities

utilise the hooks shown in Figure 5.4 and use the abilities of each of these components to

intercept and manipulate network traffic. At OSI Layer 7 (L7), the service may impose

additional scrutiny on traffic through the use of plugins; Apache in particular utilises

mod evasive and mod security2 to defeat brute force attacks and reject suspicious

network traffic such as application enumeration. Common applications of OSI Layer 3

(L3) and L7 traffic manipulation techniques are found in load balancers applying Desti-

nation Network Address Translation (DNAT) at L3 and reverse proxies rerouting request

at L7.

Generating a fingerprint of a remote host can be complicated by utilities designed to

defeat OS fingerprinting. Utilities such as ip personalities (Roualland and Saffroy,

2002), morph (Wang, 2004), and SNOS (Huber, 2011) are designed to manipulate the

features in network traffic that OS fingerprinting utilities rely on to generate a fingerprint.

Stopforth (2007) and Kaur (2009) investigated techniques to counter the fingerprinting

techniques as part of their studies.

The nodes instantiated in the experimental networks will be subjected to fingerprinting

78

to assess remote fidelity. To gather responses from protocols such as TCP and User

Datagram Protocol (UDP) that are free of unwanted manipulation, minimalistic services

will be required on well-known ports.

5.2 Testing Environment

The objective of the evaluation methodology was to subject nodes in emulated networks

to active and passive fingerprinting. The fingerprints generated would then be used to

establish the remote fidelity of nodes in such networks according to the definition given in

Section 4.3. The testing procedure was designed to emulate the “reconnaissance” phase

of an attack targeting a specific host (Section 4.2).

5.2.1 Test Platforms

The host platform for testing was Ubuntu Linux 19.04 AMD64 (Disco Dingo) with the

current supported version of the Linux kernel (Torvalds, 2019, v5.0.0) installed. A laptop

running the same version of Ubuntu Linux with the same kernel version was used as the

attacker node during fingerprinting of the host. Of the six CBNE families evaluated in

Section 3.3, only four were evaluated. The versions of the evaluated CBNEs are listed

in Table 5.1. Kathará (Section 3.3.6) was excluded from testing as it uses Docker and

Open vSwitch, the same components as used by IMUNES (Section 3.3.3). Marionnet

(Section 3.3.2) was excluded from testing as it uses User Mode Linux (UML), a hardware

abstraction layer virtualisation system.

Table 5.1: Systems Under Test

Name Version

CORE 5.3.1

IMUNES 2.3.0

MiniNet 2.2.0

VNX 2.0

LXC 3.0.3

The CBNEs included in the evaluation use a mix of components for node and network em-

ulation, and are shown in Table 5.2. The evaluated CBNEs (CORE, MiniNet, IMUNES,

and VNX) make use of Linux namespaces, Docker, and Linux Containers (LXC) for node

5.2.2 Test Network 79

emulation (Section 3.5.1). Linux bridges and Open vSwitch are used for network emu-

lation (Section 3.5.2). LXC was included as it uses Linux bridges for networking. The

evaluated CBNEs were chosen for the mix between node and network emulation technolo-

gies.

Table 5.2: System Under Test Emulation Components

Name Node Emulation Network Device Emulation

CORE Linux namespaces Linux Bridges

IMUNES Docker Open vSwitch

MiniNet Linux namespaces Open vSwitch

VNX LXC Open vSwitch

LXC LXC Linux Bridges

5.2.2 Test Network

The design of the experimental network should consider the influences that network com-

ponents have on network traffic features used by OS fingerprinting utilities. Any compo-

nent added has an influence on the fingerprint generated by fingerprinting tools and care

should be taken to avoid components that will have an adverse effect on the generated

fingerprint.

The most simplistic design for a computer network is two computers connected using a

“crossover” cable - this has the benefit of excluding any and all influences that a network

device may have on generated fingerprints. Due to the construction of CBNEs, this design

is not feasible and at least one network component has to be included for the purposes of

this research. The most minimal feasible network design for evaluating the remote fidelity

of CBNEs is two emulated hosts connected through a given CBNE’s implementation of

an L2 switch. This design is illustrated in Figure 5.5. The only network component that

can have an influence on the generated fingerprints is the CBNE switch implementation.

As was shown in Listing 5.2 in Section 5.1.1, an L2 switch is not expected to apply any

modifications to network packets, and is thus expected to have no influence on generated

fingerprints. The design of the test network is in contrast to the expected network archi-

tecture between a remote attacker and a target. This design was chosen to eliminate any

influence outside of the CBNE systems evaluated as the focus of the study is not on the

influence of devices external to CBNE systems.

attacker switch target

Figure 5.5: Experimental Network

5.2.3 Test Suite 80

5.2.3 Test Suite

The test suite for the experiments conducted included standard Unix utilities such as

uname and ping as well as OS fingerprinting utilities. Listing 5.3 shows an example of

uname output. The uname utility is used to display the version and architecture of the

running kernel.

Listing 5.3: Example uname Command Output
$ uname -s -r -v
Linux 4.4.0-21-generic #37-Ubuntu SMP Mon Apr 18 18:33:37 UTC 2016

The ping utility was used to assess the differences in packet RTTs between the different

CBNE implementations. An example of the output of the ping utility is shown in Listing

5.4. The reported RTT of each echo request is shown at the end of each output line. The

reported statistics for all echo requests are shown at the bottom of the listing.

Listing 5.4: Round Trip Time and Statistics for the ping Utility
1 $ ping -4 -c 4 scanme.nmap.org
2 PING scanme.nmap.org (45.33.32.156) 56(84) bytes of data.
3 64 bytes from scanme.nmap.org (45.33.32.156): icmp_seq=1 ttl=41 time=305 ms
4 64 bytes from scanme.nmap.org (45.33.32.156): icmp_seq=2 ttl=41 time=304 ms
5 64 bytes from scanme.nmap.org (45.33.32.156): icmp_seq=3 ttl=41 time=304 ms
6 64 bytes from scanme.nmap.org (45.33.32.156): icmp_seq=4 ttl=41 time=304 ms
7
8 --- scanme.nmap.org ping statistics ---
9 4 packets transmitted, 4 received, 0% packet loss, time 3001ms

10 rtt min/avg/max/mdev = 304.281/304.710/305.096/0.625 ms

The active fingerprinting utilities (Section 4.1.1) used included nmap, xprobe2, and

SinFP3. The passive fingerprinting utilities (Section 4.1.2) used included p0f, ettercap,

and SinFP3. Table 5.3 list the version of the utilities used and the origin of the binary

used. The latest version of nmap was not available in the Ubuntu package repositories

at time of testing and was compiled from source. The SinFP3 utility is not available

through the Ubuntu package repositories and was compiled directly from the CPAN.

Table 5.3: Fingerprint Utility Versions

Utility Type Binary Origin Version

nmap active source 7.80

xprobe2 active repository 0.3

p0f passive repository 3.09b

ettercap passive repository 0.82

SinFP3 active/passive source 1.24

OS fingerprinting utilities require databases to match the fingerprints generated for a

target to a known OS. Table 5.4 shows the version of the fingerprinting utilities used and

5.2.4 Test Procedure and Scoring 81

the latest database for each utility. The databases for xprobe2, p0f, and ettercap

are very old. A possible cause is that these tools are no longer used for fingerprinting and

are currently being used for the non-fingerprinting capabilities they possess (Section 4.1).

Table 5.4: Fingerprinting Utility Database Dates

Tool Version Date

nmap 7.80 2018-09-27

xprobe2 0.3 2005-07-11

p0f 3.09b 2016-04-16

ettercap 0.82 2015-04-14

SinFP3 1.24 2018-07-21

5.2.4 Test Procedure and Scoring

The testing procedure for each of the CBNEs was as follows:

1. Each CBNE was installed on the host along with an accompanying filesystem for

emulated nodes that contained the suite of test utilities.

2. From a clean boot, the test network was instantiated on a CBNE.

3. The first series of tests conducted were the ping latency tests. Static Address Res-

olution Protocol (ARP) entries were inserted for each of the emulated nodes within

the network. This was done to prevent additional latency in ping RTTs due to an

ARP request. An explanation of how an ARP request influences the RTT of a ping

request is shown in Appendix A.

4. The second series of tests conducted were the active fingerprinting tests. The ncat

utility was used to simulate TCP and UDP services running the target node and the

active fingerprinting utilities were run from the attacker node. Active fingerprinting

utilities were informed of the ports used by the simulated services to ensure that

complete fingerprints can be generated.

5. The last series of tests conducted were the passive fingerprinting tests. The ncat

utility was used to establish TCP and UDP connections from the attacker node to

the target node. The tcpdump utility was used to capture the traffic for offline

analysis.

5.2.4 Test Procedure and Scoring 82

6. Scoring the remote fidelity of emulated nodes was done by comparing the raw fin-

gerprints generated by passive and active fingerprinting utilities to raw fingerprints

generated for the host. For each component of a fingerprint for an emulated node

where the fingerprint differed from the host, one was subtracted from the total

possible score for that particular fingerprinting utility.

The commands used for active fingerprinting are shown in Table 5.5. The TESTNAME for

each CBNE was the name of the CBNE and the TARGETADDRESS was the IPv4 address

of the target node.

Table 5.5: Active Fingerprinting Commands

Tool Command

nmap nmap -sS -sU -A -T4 -n -vv -dd \
--version-all --osscan-guess --top-ports 200\
-oA TESTNAME TARGETADDRESS

xprobe2 xprobe2 -v -F TARGETADDRESS > TESTNAME

xprobe2 PortSpec xprobe2 -v -F \
-p tcp:8000:open -p tcp:8001:closed \
-p udp:11487:open -p udp:8001:closed \
TARGETADDRESS > TESTNAME

SinFP3 sinfp3.pl -input-ipport -port 8000 -output-console \
-active-3 -target TARGETADDRESS > TESTNAME

For passive fingerprinting, the same TESTNAME and TARGETADDRESS were the same as

those used for active fingerprinting. Both p0f and SinFP3 only process TCP connec-

tions. The traffic captures produced for each CBNE had all traffic except a successful

TCP connection filtered out. The traffic capture detailed in this example1 was fed to

each of the passive fingerprinting utilities using the commands shown in Table 5.6. For

ettercap, the Graphical User Interface (GUI) version was used.

Table 5.6: Passive Fingerprinting Commands

Tool Command

p0f p0f -r TESTNAME.conntest.filtered.pcap

sinfp3.pl sinfp3.pl -mode-passive -search-passive -input-pcap -output-console -target

TARGETADDRESS -pcap-file TESTNAME.conntest.filtered.pcap

1TESTNAME.conntest.filtered.pcap

83

5.3 Reported Kernel Versions

Kernel version analysis for this research was done to establish the accuracy which each of

the fingerprinting tools reported the kernel version of emulated hosts. For each CBNE,

the uname command was run on the target emulated host to retrieve the kernel version.

This was done to confirm that the kernel version reported by CBNE emulated hosts were

the same as the host machine. The kernel version of each CBNE was then compared

to the kernel version reported by each of the passive and active fingerprinting utilities

to assess the ability of fingerprinting utilities to detect kernel versions. Table 5.7 lists

the kernel versions as reported by the uname utility. As expected, due to the design of

containers, all containerised hosts reported the same kernel version as the host OS.

Table 5.7: CBNE Kernel Version

CBNE Linux Kernel Version

CBNE Host 5.0.0-29-generic

CORE 5.0.0-29-generic

IMUNES 5.0.0-29-generic

MiniNet 5.0.0-29-generic

VNX 5.0.0-29-generic

LXC 5.0.0-29-generic

As discussed in Section 4.1, the fingerprinting of emulated hosts was conducted using two

different methodologies. Passive fingerprinting was conducted offline using traffic captured

during testing. Passive fingerprinting was conducted using p0f v3.09b, ettercap v0.82,

and SinFP v1.24. Active fingerprinting was conducted on emulated hosts using nmap

v7.80, xprobe2 v0.3, and SinFP v.1.24.

5.3.1 Passive Kernel Version Results

The passive fingerprinting tests conducted delivered poor results. The p0f and ettercap

utilities did not resolve any information regarding the kernel of the target node. The fin-

gerprint databases of these two utilities are very old (Table 5.4) and were not expected to

contain signatures for the latest releases of the Linux kernel. The SinFP utility resolved

the OS of the target node as an unknown version of the Android mobile OS (Table 5.8) for

all CBNEs except for MiniNet, for which no match could be found. The SinFP passive

fingerprint database contains only 49 entries. The latest version of the Linux kernel for

which passive fingerprints have been generated is the Linux 3.2.0 kernel.

5.3.2 Active Kernel Version Results 84

Table 5.8: SinFP3 Passive Reported Operating Systems

Platform Reported OS Version Score

Host Android (Unknown Version) 94%
CORE Android (Unknown Version) 94%
IMUNES Android (Unknown Version) 94%
MiniNet Unknown —
VNX Android (Unknown Version) 94%
LXC Android (Unknown Version) 94%

5.3.2 Active Kernel Version Results

Active fingerprinting against CBNE emulated nodes was conducted using nmap, xprobe2,

and SinFP. The commands used for these utilities are shown in Table 5.5. The nmap util-

ity delivered consistent results across all CBNEs (Table 5.9) but identified the target nodes

as being part of the Linux 2.6 or Linux 3.2 - 4.9 series kernels with equal probability.

Table 5.9: nmap Reported Operating Systems

Platform Reported OS Version

Host Linux 2.6.32 (96%) Linux 3.2 - 4.9 (96%)
CORE Linux 2.6.32 (96%) Linux 3.2 - 4.9 (96%)
IMUNES Linux 2.6.32 (96%) Linux 3.2 - 4.9 (96%)
MiniNet Linux 2.6.32 (96%) Linux 3.2 - 4.9 (96%)
VNX Linux 2.6.32 (96%) Linux 3.2 - 4.9 (96%)
LXC Linux 2.6.32 (96%) Linux 3.2 - 4.9 (96%)

The xprobe2 utility was run in two different configurations. The first configuration

(Table 5.5, xprobe2) was run without specifying known ports, whereas the second con-

figuration (Table 5.5, xprobe2 PortSpec) was run with known port statuses for both

open and closed states for both TCP and UDP. For both the configurations OS versions

were reported with varying degrees of confidence. The readable output from the tool

was indecipherable as it appeared to print out raw binary data to the command line. A

sample of this output is shown in Figure 5.6. In preliminary testing conducted on an

earlier version of Ubuntu (17.04 AMD64), the xprobe2 utility did show readable output

for the OS guess.

Figure 5.6: xprobe2 Output on Ubuntu 19.04 AMD64

Active fingerprinting conducted using the SinFP utility matched all emulated nodes

against older versions of the Linux kernel. Emulated nodes for all the CBNEs except

5.3.3 Kernel Version Findings 85

MiniNet were reported as running the Linux 2.6.22 kernel with a confidence score of 79.

SinFP matched the target node for MiniNet against Linux kernel versions 2.4.18 through

3.2.0 with equal scores of 73(†). The latest version of the Linux kernel in the active

fingerprint database for SinFP is the Linux 3.2.0 kernel.

Table 5.10: SinFP3 Active Reported Operating Systems

Platform Reported OS Version Score

Host Linux: 2.6.x (2.6.22) 79

CORE Linux: 2.6.x (2.6.22) 79

IMUNES Linux: 2.6.x (2.6.22) 79

MiniNet Linux: 3.2.x (3.2.0) 73†

VNX Linux: 2.6.x (2.6.22) 79

LXC Linux: 2.6.x (2.6.22) 79

5.3.3 Kernel Version Findings

In the kernel version tests, none of the fingerprinting tools were able to report the exact

kernel version of the tested platforms. Active fingerprinting tools fared better at identi-

fying the OS family than passive fingerprinting tools. In Table 5.4 (repeated below), the

last update date for each of the fingerprinting tool’s databases are shown. From this it

can be seen that the entries in the database of a fingerprinting tool are of crucial value,

regardless of the accuracy of a fingerprint. If the database that is used by a fingerprinting

utility is outdated, the reported kernel version cannot reflect the actual kernel version

for an OS released after the database date. The Linux kernel used in testing (v5.0.0)

was released in March of 2019 and the databases of all the fingerprinting utilities used

pre-dates the release of this kernel. The most recent version of the Linux kernel reported

by the fingerprinting utilities is v4.9, released December 2016 (Torvals, 2016), which pre-

dates the databases of both nmap and SinFP. There is no reasonable expectation that the

fingerprinting utilities will include fingerprints for the kernel version used. This anomaly

will require investigation into patches applied2 to the original source for changes that

could affect printing of OS results to a terminal.

5.4 Ping Latency Results

To assess the influence that the different components used in the construction of CB-

NEs have on packet latency the ping utility was used to test the timings of Internet

2https://launchpad.net/ubuntu/+source/xprobe/+changelog

https://launchpad.net/ubuntu/+source/xprobe/+changelog

5.4.1 Ping Statistics 86

Control Message Protocol (ICMP) packets between emulated hosts. The ping utility re-

ports statistics such as minimum RTT (min), average RTT (avg), maximum RTT (max),

and standard deviation (mdev) for all ping requests sent (ICMP Type 8) and responses

received (ICMP Type 0) during one session. Listing 5.5 show an example of the data

extracted from the output of the ping utility. The statistics reported by the ping utility

was extracted and used for initial assessment of the timings for CBNEs in Section 5.4.1.

The timing of each response were extracted and used for comparisons between the CBNEs

and the host in Section 5.4.2.

Listing 5.5: Round Trip Time and Statistics for the ping Utility - Extended
1 $ ping -c 100 10.0.1.10
2 PING 10.0.1.10 (10.0.1.10) 56(84) bytes of data.
3 64 bytes from 10.0.1.10: icmp_seq=1 ttl=63 time=0.115 ms
4 64 bytes from 10.0.1.10: icmp_seq=2 ttl=63 time=0.093 ms
5 64 bytes from 10.0.1.10: icmp_seq=3 ttl=63 time=0.098 ms
6 64 bytes from 10.0.1.10: icmp_seq=4 ttl=63 time=0.083 ms
7 .
8 .
9 .

10 .
11 64 bytes from 10.0.1.10: icmp_seq=97 ttl=63 time=0.072 ms
12 64 bytes from 10.0.1.10: icmp_seq=98 ttl=63 time=0.044 ms
13 64 bytes from 10.0.1.10: icmp_seq=99 ttl=63 time=0.098 ms
14 64 bytes from 10.0.1.10: icmp_seq=100 ttl=63 time=0.103 ms
15
16 --- 10.0.1.10 ping statistics ---
17 100 packets transmitted, 100 received, 0% packet loss, time 433ms
18 rtt min/avg/max/mdev = 0.044/0.085/0.127/0.016 ms

5.4.1 Ping Statistics

Immediately after emulated nodes booted for each CBNEs, two pings with a count 4 were

run in quick succession to gather data on the ARP resolution timings for each CBNE.

The statistics reported by the ping utility for these tests are shown in Tables 5.11a and

5.11b. As can be seen from the max column of the two tables, the maximum ping RTT was

significantly higher in the first run for all CBNEs. The first time that a node establishes

a network connection in a switched Local Area Network (LAN) the node has to request

the MAC addresses that corresponds to an IP address of the remote node. The effect

that an ARP resolution has on ping timings is discussed in Appendix A. Directly after

the second 4 count ping test, static ARP entries were created for both the attacker and

target nodes in the emulated networks to prevent further ARP queries from influencing

the next series of ping tests, where a ping count of 100 was used.

5.4.1 Ping Statistics 87

Table 5.11: Ping Statistics, Initial

(a) Run 1

Time (ms)

Platform min avg max mdev

Host 0.360 0.421 0.572 0.090

CORE 0.070 0.097 0.162 0.039

IMUNES 0.063 0.284 0.943 0.380

MiniNet 0.067 0.298 0.988 0.398

VNX 0.055 0.283 0.950 0.385

LXC 0.070 0.085 0.122 0.023

Ping count = 4

(b) Run 2

Time (ms)

Platform min avg max mdev

Host 0.267 0.299 0.360 0.042

CORE 0.067 0.073 0.089 0.013

IMUNES 0.065 0.189 0.528 0.195

MiniNet 0.031 0.180 0.562 0.221

VNX 0.054 0.062 0.074 0.010

LXC 0.070 0.073 0.077 0.008

Ping count = 4

With static ARP entries created for each of the emulated nodes, an additional set of ping

tests were conducted, with a total count of 100 pings. These tests were conducted to

confirm that the ARP entries had the desired effect. The results from these tests are

shown in Tables 5.12a and 5.12b. The min and max results for all CBNEs for both runs

were within close range of the results obtained for the second 4 count ping test.

Table 5.12: Ping Statistics, Confirmation

(a) Run 1

Time (ms)

Platform min avg max mdev

Host 0.245 0.350 0.398 0.041

CORE 0.050 0.067 0.090 0.011

IMUNES 0.032 0.072 0.535 0.048

MiniNet 0.025 0.062 0.593 0.057

VNX 0.039 0.070 0.633 0.058

LXC 0.028 0.072 0.094 0.012

Ping count = 100

(b) Run 2

Time (ms)

Platform min avg max mdev

Host 0.238 0.352 0.397 0.031

CORE 0.028 0.065 0.089 0.013

IMUNES 0.029 0.069 0.547 0.049

MiniNet 0.050 0.061 0.472 0.043

VNX 0.029 0.071 0.585 0.053

LXC 0.027 0.059 0.084 0.011

Ping count = 100

The max result for Integrated Multiprotocol Network Emulator/Simulator (IMUNES),

MiniNet, and Virtual Networks over Linux (VNX) remained significantly higher than the

avg result for these CBNEs. Initially the cause was thought to be incorrect or failed static

ARP entries and that an ARP resolution caused the delays. A traffic capture from one of

the tests showed that no ARP resolution occurred during the N=100 tests. No additional

investigations were conducted into the cause of these anomalies, though it was noted

that all three CBNEs utilise Open vSwitch (Table 5.2) to construct emulated network

components. The CBNE that utilises Linux bridges, Common Open Research Emulator

(CORE), and LXC itself had max results much lower than those of the CBNEs that use

Open vSwitch.

5.4.2 Ping Latency Distribution 88

5.4.2 Ping Latency Distribution

As an extension to the 100 count ping tests, extended ping tests with a ping count of 1000

were conducted. The 1000 count was arbitrarily chosen to ensure a sufficient sample size

for exploratory statistical data analysis (Turkey, 1977) of ping RTTs. Using the same

methodology as the tests conducted in Section 5.4.1, the ping utility was used to send

1000 pings from the target to the attacker node in two rounds. The output from the

commands was parsed to extract the reported statistics and the RTTs of the individual

pings. The statistics reported by the ping utility for the two runs are shown in Tables

5.13a and 5.13b. The min and max RTTs for each CBNE for both runs corresponded to

the statistics reported for the 100 count ping tests.

Table 5.13: Ping Statistics

(a) Run 1

Time (ms)

Platform min avg max mdev

Host 0.235 0.347 0.405 0.040
CORE 0.025 0.068 0.101 0.010
IMUNES 0.027 0.060 0.506 0.015
MiniNet 0.020 0.060 0.506 0.015
VNX 0.029 0.056 0.549 0.017
LXC 0.018 0.057 0.096 0.007

Ping count = 1000

(b) Run 2

Time (ms)

Platform min avg max mdev

Host 0.228 0.346 0.405 0.037
CORE 0.025 0.067 0.116 0.013
IMUNES 0.022 0.060 0.586 0.018
MiniNet 0.025 0.066 0.530 0.017
VNX 0.016 0.057 0.502 0.018
LXC 0.018 0.057 0.096 0.007

Ping count = 1000

The statistics shown in Tables 5.13a and 5.13b detail the expected behaviour of the

tested systems within switched networks with no other traffic. The reported statistics do

not enable one to establish if similarities exist between the latency of the CBNEs. The

individual timings extracted from the output of the ping utility were then analysed for

the distribution of the packets. The quartiles for the two runs can be seen in Tables 5.14a

and 5.14a. For all the tested CBNEs, the first and second quartiles differ marginally and

in some cases these values are the same. The same can be seen for the second and third

quartiles.

For the rest of this section only graphs for the first run will be shown for readability. The

complete set of graphs for the first and second runs can be found in Appendix B. The

closeness of the quartiles for the CBNEs indicates that half of all RTTs will be placed

within these incredibly tight bounds. Figure 5.7 visualises the tight clustering of RTTs

as box plots, with outliers omitted. The box plot for the host is based on the left-hand

y-axis and the box plot for the CBNEs are based on the right-hand y-axis. The box plot

illustrates that though there is a very tight clustering of the RTTs around the median

(second quartile), there are large tails at the lower and higher ends for all the CBNEs.

5.4.2 Ping Latency Distribution 89

Table 5.14: Ping Quartiles

(a) Run 1

Quartile

Platform Min 1st 2nd 3rd Max

Host 0.235 0.322 0.361 0.369 0.405
CORE 0.025 0.068 0.070 0.071 0.101
IMUNES 0.027 0.057 0.058 0.061 0.506
MiniNet 0.02 0.065 0.066 0.068 0.294
VNX 0.029 0.054 0.054 0.055 0.549
LXC 0.018 0.055 0.055 0.057 0.096

Ping count = 1000, time in ms

(b) Run 2

Quartile

Platform Min 1st 2nd 3rd Max

Host 0.228 0.349 0.358 0.364 0.405
CORE 0.025 0.068 0.069 0.071 0.116
IMUNES 0.022 0.057 0.058 0.061 0.586
MiniNet 0.025 0.065 0.067 0.068 0.53
VNX 0.016 0.054 0.054 0.056 0.502
LXC 0.018 0.054 0.055 0.057 0.096

Ping count = 1000, time in ms

To illustrate this distribution of data across the full range of RTTs, histograms, were used.

Like the box plots, the histograms (Figure 5.8) show that RTTs are concentrated at the

median for all CBNEs. An immediate observation that can be made from the histograms

and the box plots is that the spread of RTTs of the host significantly differs to those of

the CBNEs. The same difference can be observed for the second run (Appendix B).

The aim of this study was to compare CBNE emulated nodes to the host. To test for

similarities in the distribution of RTTs between the host and the CBNEs Q-Q plots (Wilk

and Gnanadesikan, 1968) can be used.

 0.25

 0.3

 0.35

 0.4

Host CORE IMUNES MiniNet VNX LXC

 0.02

 0.04

 0.06

 0.08

 0.1

R
o
u
n
d

T
r
i
p

T
i
m
e

(
m
s
)

R
o
u
n
d

T
r
i
p

T
i
m
e

(
m
s
)

Figure 5.7: Ping Latency Distribution - Run 1

90

 0

 100

 200

 300

 400

 500

 600

0.25 0.3 0.35 0.4

F
r
e
q
u
e
n
c
y

Round Trip Time (ms)

(a) Host

 0

 100

 200

 300

 400

 500

 600

0.02 0.04 0.06 0.08 0.10

F
r
e
q
u
e
n
c
y

Round Trip Time (ms)

(b) CORE

 0

 100

 200

 300

 400

 500

 600

0.02 0.04 0.06 0.08 0.10

F
r
e
q
u
e
n
c
y

Round Trip Time (ms)

(c) IMUNES

 0

 100

 200

 300

 400

 500

 600

0.02 0.04 0.06 0.08 0.10

F
r
e
q
u
e
n
c
y

Round Trip Time (ms)

(d) MiniNet

 0

 100

 200

 300

 400

 500

 600

 700

 800

0.02 0.04 0.06 0.08 0.10

F
r
e
q
u
e
n
c
y

Round Trip Time (ms)

(e) VNX

 0

 100

 200

 300

 400

 500

 600

0.02 0.04 0.06 0.08 0.10

F
r
e
q
u
e
n
c
y

Round Trip Time (ms)

(f) LXC

Figure 5.8: Ping Distribution Histograms - Run 1

5.4.2 Ping Latency Distribution 91

Q-Q plots (quantile-quantile plots) are used to compare the distributions of datasets. For

the RTT datasets gathered, this technique enables an indirect comparison of the “shape”

of the returned data. Specific, P-P plots (Q-Q plots using percentiles) were used to assess

whether or not any form of correlation exists between the RTTs for different CBNEs.

To generate a P-P plot the first to ninety-ninth percentiles are calculated for each set of

RTTs. These percentiles can then be represented as a scatter plot between pairings of

CBNEs. The premise of P-P plots is that if any similarity exists between two datasets,

plotting the percentiles against one another will result in a straight line on the diagonal.

The P-P plots for each CBNE-host pairing visually (Figures B.4 and B.5 in Appendix

B) confirms that no correlation exists between the RTTs for CBNEs and the host. An

extract of the P-P plots for two CBNE-host pairings is shown in Figure 5.9. As is shown

in the two plots, the plotted data significantly deviates from the diagonal and neither of

the plots show a linear relationship. It can therefore be concluded that no correlation

exists between the RTTs of the CBNEs and the host.

0.02

0.04

0.06

0.08

0.1

0.25 0.3 0.35 0.4

C
O

R
E

Host

(a) Host - CORE

0.02

0.04

0.06

0.08

0.1

0.25 0.3 0.35 0.4

I
M

U
N

E
S

Host

(b) Host - IMUNES

Figure 5.9: Ping P-P Plot Host Comparison Sample

P-P plots for CBNE-CBNE pairings delivered interesting results, and can be split into

two groups. The first group of pairings shows no correlation, while the second group of

pairings shows definitive correlation. An extract of the plots is shown in Figure 5.10.

Figure 5.10a shows a similar pattern to that of the CBNE-host plots, whereas Figure

5.10b shows a remarkably linear correlation between the RTTs for the VNX CBNE and

LXC. The complete list of P-P plots for both runs and all test platform combinations can

be found in Appendix B, Figures B.4 through B.9. Additional findings are discussed in

Section 5.4.3 and a summary of the findings based on the P-P plots is shown in Table

5.15.

5.4.3 Ping Latency Findings 92

0.02

0.04

0.06

0.08

0.1

0.02 0.04 0.06 0.08 0.1

M
i

n
i

N
e

t

IMUNES

(a) IMUNES - MiniNet

0.02

0.04

0.06

0.08

0.1

0.02 0.04 0.06 0.08 0.1

L
X

C

VNX

(b) VNX - LXC

Figure 5.10: Ping P-P Plot CBNEs Comparison Sample

5.4.3 Ping Latency Findings

The statistics reported (Section 5.4.1) by the ping utility indicated that CBNEs using

Open vSwitch to construct emulated switches have higher ping RTTs for the first ping on

networks with low traffic. The increased RTT is not related to ARP resolution.

The exploratory statistical data analysis conducted on the 1000 count ping tests in Sec-

tion 5.4.2 indicated that no similarity exists between the distribution of RTT of CBNEs

and the host. Comparisons between the RTT distributions of pairings of CBNEs indi-

cated that the technologies used for node emulation have an influence on packet timings.

CBNEs that use managed containers like Docker and LXC have very strong similarities

in the distribution of RTT. CBNEs that use custom Linux namespace implementations to

instantiate emulated nodes also share a very strong similarity in the distribution of ping

RTTs. A summary of the correlations between tested platforms is shown in Table 5.15.

Table 5.15: Ping Distribution Visual Correlations

CORE IMUNES MiniNet VNX LXC

Host × × × × ×
CORE × • × ×
IMUNES × • •
MiniNet × ×
VNX •

• Linear correlation

× No correlation

93

5.5 Passive Fingerprinting Results

The reported kernel version results of Section 5.3 gave some hints, such as a single CBNEs

reported as running a different OS, that there might be a difference in the fidelity of the

MiniNet CBNE. The reported kernel version results are, however, not sufficient to make

any deductions on the remote fidelity of CBNEs. In this section a detailed analysis of the

fingerprints generated by passive OS fingerprinting utilities is presented.

Guides on how to interpret fingerprints for the passive OS fingerprinting utilities are

available in Appendix C. Section C.1 details the fingerprints generated by p0f, Section C.2

details the fingerprints generated by ettercap, and Section C.4 details the fingerprints

generated by SinFP3 passive fingerprinting.

5.5.1 p0f Fingerprint Analysis

Fingerprints generated by the p0f utility (discussed in Sections 4.1.2 and C.1) are based

on features extracted from the TCP handshake exclusively. The passive fingerprints

generated from the CBNE packet captures by the p0f utility are shown in Table 5.16.

Table 5.16: p0f v3.09b Fingerprints

Platform Fingerprint

Host 4:64+0:0:1460:mss*45,7:mss,sok,ts,nop,ws:df:0

CORE 4:64+0:0:1460:mss*45,7:mss,sok,ts,nop,ws:df:0

IMUNES 4:64+0:0:1460:mss*45,7:mss,sok,ts,nop,ws:df:0

MiniNet 4:64+0:0:1460:mss*30,9:mss,sok,ts,nop,ws:df:0

VNX 4:64+0:0:1460:mss*45,7:mss,sok,ts,nop,ws:df:0

LXC 4:64+0:0:1460:mss*45,7:mss,sok,ts,nop,ws:df:0

Passive fingerprint generation for all CBNEs returned the same results except for MiniNet.

The TCP window size and TCP window scaling factor for MiniNet differed from the other

CBNEs, as highlighted in Table 5.16

5.5.2 ettercap Fingerprint Analysis

The ettercap passive fingerprinting utility, similar to p0f, utilises features extracted

from the TCP handshake. The functioning of ettercap is discussed in Section 4.1.2

5.5.3 SinFP3 Passive Fingerprint Analysis 94

and a guide on how to interpret fingerprints generated by ettercap is available in

Section C.2. The fingerprints generated by ettercap (Table 5.17) from packet captures

created during testing returned results similar to those of p0f. The fingerprints generated

indicated that MiniNet uses a different TCP windows size and TCP window scaling factor.

These differences are highlighted in the table below.

Table 5.17: ettercap v0.82 Fingerprints

Platform Fingerprint

Host FE88:05B4:40:07:1:1:1:1:A:3C

CORE FE88:05B4:40:07:1:1:1:1:A:3C

IMUNES FE88:05B4:40:07:1:1:1:1:A:3C

MiniNet A9B0:05B4:40:09:1:1:1:1:A:3C

VNX FE88:05B4:40:07:1:1:1:1:A:3C

LXC FE88:05B4:40:07:1:1:1:1:A:3C

5.5.3 SinFP3 Passive Fingerprint Analysis

The SinFP3 fingerprinting utility can generate both passive and active fingerprints (Sec-

tions 4.1.1 and 4.1.2). As with ettercap and p0f, SinFP3 utilises features extracted

from the TCP protocol. The passive fingerprints generated by the SinFP3 utility are

shown in Table 5.18.

Table 5.18: SinFP3 Passive Fingerprints

Platform TF TWS TO MSS TWSF TOL

Host F0x02 W64240 O0204ffff...03ff† M1460 S7 L20

CORE F0x02 W64240 O0204ffff...03ff† M1460 S7 L20

IMUNES F0x02 W64240 O0204ffff...03ff† M1460 S7 L20

MiniNet F0x02 W42340 O0204ffff...03ff† M1460 S9 L20

VNX F0x02 W64240 O0204ffff...03ff† M1460 S7 L20

LXC F0x02 W64240 O0204ffff...03ff† M1460 S7 L20

† O0204ffff0402080a........00000000010303ff

As with the other passive fingerprinting utilities, SinFP3 reported that MiniNet utilised

a TCP windows size and TCP windows scaling factor different to the other CBNEs. These

differences are highlighted in Table 5.18.

5.5.4 Passive Fingerprinting Findings 95

5.5.4 Passive Fingerprinting Findings

All the passive fingerprinting utilities reported that MiniNet used a different TCP window

size and TCP window scaling factor. All three passive fingerprinting utilities calculated

the TCP window size used by MiniNet differently, p0f calculated it as 43800, ettercap

calculated it as 43440, and SinFP3 calculate it as 42340. All passive fingerprinting

utilities did record the TCP window scaling factor used by MiniNet as 9. All other tested

systems used a TCP window scaling factor of 7. Table 5.19 shows the passive remote

fidelity of the tested systems based on the scoring system defined in Section 5.2.4. All

CBNEs scored perfectly except for MiniNet, which scored 27/33. The reduced passive

fidelity score of the MiniNet CBNE is a direct result of the TCP window size and window

scale option used. Based on the scoring system, MiniNet had the lowest passive remote

fidelity of all the tested systems.

Table 5.19: Passive Fidelity Scores

Platform p0f ettercap SinFP3 Score

CORE 0 0 0 33/33

IMUNES 0 0 0 33/33

MiniNet -2 -2 -2 27/33

VNX 0 0 0 33/33

LXC 0 0 0 33/33

5.6 Active Fingerprinting Results

Passive fingerprinting makes use of “legitimate” TCP connections to a target host. In

the passive fingerprinting tests, all utilities reported the same deviations for MiniNet

- that a different TCP window size and TCP window scale factor were used. Active

fingerprinting utilities extend the protocol usage beyond the TCP protocol. xprobe2

utilises TCP, ICMP, and SNMP probes to generate fingerprints. In the test network

configuration target nodes did not have SNMP services enabled. SinFP3 utilises only

the TCP protocol and generates fingerprints based on three TCP probes. nmap uses TCP,

UDP, and ICMP probes to generate fingerprints, however nmap uses multiple probes per

protocol to enumerate the possible combinations of protocol options that a target node

might use. In this section the results obtained from active fingerprinting against emulated

target nodes is presented.

5.6.1 xprobe2 Fingerprint Analysis 96

Guides on how to interpret fingerprints for the active OS fingerprinting utilities are avail-

able in Appendix C. Section C.3 details the fingerprints generated by xprobe2, Section

C.4 details the fingerprints generated by SinFP3 fingerprinting. The fingerprints gener-

ated by nmap are the largest of all the fingerprinting utilities used. A detailed overview

of the fingerprinting methods used by nmap and how an nmap fingerprint is structured

can be found in Lyon (2009, Chapter 8 - Remote OS Detection), specifically the sections

titled TCP/IP Fingerprinting Methods Supported by Nmap and Understanding an Nmap

Fingerprint.

5.6.1 xprobe2 Fingerprint Analysis

The xprobe2 utility was used in two configurations. The first configuration relied on

xprobe2 to discover and fingerprint open ports on target nodes. For the second con-

figuration, the command used to execute xprobe2 included information regarding TCP

and UDP in both the open and closed states. The second configuration is referred to as

xprobe2 PortSpec within the text.

Table 5.20 presents a condensed version of the fingerprints generated using the first con-

figuration of xprobe2. Tests that returned results returned the same values for all

CBNEs; a full set of results can be found in Appendix D in Table D.1. Two test sys-

tems, the Host and VNX, failed to return results for the tcp rst test, indicating that the

default list of ports scanned by xprobe2 did not find a closed TCP port on these sys-

tems. The icmp echo failed to return results for VNX. Due to the guesswork required by

the xprobe2 utility to generate fingerprints, the results of the first configuration were

excluded from the remote fidelity score.

Table 5.20: xprobe2 Results - Condensed

Test Host CORE IMUNES MiniNet VNX LXC

icmp echo • • • • × •
icmp timestamp reply • • • • • •
icmp addrmask reply • • • • • •
icmp info reply × × × × × ×
icmp unreach • • • • • •
icmp unreach echoed • • • • • •
tcp syn ack (1) × × × × × ×
tcp syn ack (2) × × × × × ×
tcp rst × • • • × •

• Test returned results - same as host

× Test did not return results

For the xprobe2 PortSpec tests, the ports of the simulated services were included as part

of the command used to execute xprobe2 (Table 5.5). The results of the PortSpec test

5.6.2 SinFP3 Fingerprint Analysis 97

are shown in condensed form in Table 5.21, and the full results are shown in Appendix D,

Table D.2. All CBNEs returned results for all tests except for the icmp info reply test,

where no CBNE returned results. For the PortSpec tests all test systems returned the

same results expect for MiniNet.

Table 5.21: xprobe2 PortSpec Results - Condensed

Test Host CORE IMUNES MiniNet VNX LXC

icmp echo • • • • • •
icmp timestamp reply • • • • • •
icmp addrmask reply • • • • • •
icmp info reply × × × × × ×
icmp unreach • • • • • •
icmp unreach echoed • • • • • •
tcp syn ack (1) • • • • • •
tcp syn ack (2) • • • ◦ • •
tcp rst • • • • • •

• Test returned results - same as host

◦ Test returned results - differs from host

× Test did not return results

An extract of the full results where the test systems returned different test values is shown

in Table 5.22. For the tcp syn ack window size and tcp syn ack wscale tests MiniNet

returned a result inconsistent with the rest of the systems. Similar to the results from the

passive fingerprinting tests, xprobe2 indicated that MiniNet uses a TCP windows size

of 43440 and a TCP window scale option of 9.

Table 5.22: xprobe2 PortSpec Results - Extract

Test Host CORE IMUNES MiniNet VNX LXC

tcp syn ack ack 1 1 1 1 1 1

tcp syn ack window size 65160 65160 65160 43440 65160 65160

tcp syn ack options order MSS SACK TIMESTAMP NOP WSCALE

tcp syn ack wscale 7 7 7 9 7 7

tcp syn ack tsval !0 !0 !0 !0 !0 !0

tcp syn ack tsecr !0 !0 !0 !0 !0 !0

5.6.2 SinFP3 Fingerprint Analysis

SinFP3 uses three TCP packets to generate a fingerprint of a host. Each of the three

packets are designed to solicit responses that contain features that can be used to finger-

print a remote host. The fingerprints of SinFP3 are detailed in Section C.4. Like the

test results for xprobe2, all test systems except for MiniNet returned the same finger-

prints. Table 5.23 lists the results of the SinFP3 test probes. For the S1 probe MiniNet

was reported as having a TCP window size of 42340 and for the S2 probe MiniNet was

5.6.3 nmap Fingerprint Analysis 98

reported as having a TCP window size of 43440 and a TCP windows scale factor of 9.

The S3 probe did not report any differences between the test systems.

Table 5.23: SinFP3 Active Fingerprints

Test Platform BF TF TWS TO MSS TWSF TOL

S1

Host B10113 F0x12 W64240 O0204ffff M1460 S0 L4

CORE B10113 F0x12 W64240 O0204ffff M1460 S0 L4

IMUNES B10113 F0x12 W64240 O0204ffff M1460 S0 L4

MiniNet B10113 F0x12 W42340 O0204ffff M1460 S0 L4

VNX B10113 F0x12 W64240 O0204ffff M1460 S0 L4

LXC B10113 F0x12 W64240 O0204ffff M1460 S0 L4

S2

Host B10113 F0x12 W65160 O0204ffff...03ff† M1460 S7 L20

CORE B10113 F0x12 W65160 O0204ffff...03ff† M1460 S7 L20

IMUNES B10113 F0x12 W65160 O0204ffff...03ff† M1460 S7 L20

MiniNet B10113 F0x12 W43440 O0204ffff...03ff† M1460 S9 L20

VNX B10113 F0x12 W65160 O0204ffff...03ff† M1460 S7 L20

LXC B10113 F0x12 W65160 O0204ffff...03ff† M1460 S7 L20

S3

Host B10120 F0x04 W0 O0 M0 S0 L0

CORE B10120 F0x04 W0 O0 M0 S0 L0

IMUNES B10120 F0x04 W0 O0 M0 S0 L0

MiniNet B10120 F0x04 W0 O0 M0 S0 L0

VNX B10120 F0x04 W0 O0 M0 S0 L0

LXC B10120 F0x04 W0 O0 M0 S0 L0

† O0204ffff0402080affffffff44454144010303ff

5.6.3 nmap Fingerprint Analysis

The nmap active fingerprinting utility (Section 4.1.1) uses the widest range of tests (Lyon,

2009, Chapter 8) of all the fingerprinting utilities used throughout testing, and has the

largest number of components that make up a fingerprint. The structure of an nmap

fingerprint and a discussion on how to decode a fingerprint can be found in Lyon (2009,

Chapter 8). In the interest of saving space, only the fingerprint components that pointed

to differences between the tested systems and the host are discussed. The results for

components that returned the same values for all tests systems can be found in Appendix

D.2.

The command to fingerprint the test systems using nmap can be found in Table 5.5. In

Table 5.24, the execution times for fingerprinting the test systems using nmap is shown.

Fingerprinting took roughly 8 minutes for the host and 11 minutes for the other test

systems except for IMUNES. The test execution time for IMUNES was 88 seconds in

both runs, significantly less than any of the other test systems.

5.6.3 nmap Fingerprint Analysis 99

Table 5.24: nmap Scan Execution Time

Time (ms)

Platform Run 1 Run 2

Host 496.31 565.37

CORE 653.05 645.33

IMUNES 88.02 88.14

MiniNet 662.77 654.08

VNX 652.00 640.31

LXC 664.62 656.60

Table 5.25 lists the total number of UDP ports reported as Open, Open|Filtered or Closed

by nmap for the tested systems. UDP ports are reported as Open if a response is received

to a probe, Open|Filtered if no response is received, and Closed if an ICMP Type 3

Code 3 (Destination port unreachable) is returned. UDP ports reported as Open or

Open|Filtered are subjected to 48 service discovery probes. The image used by IMUNES

for node emulation explicitly responded with ICMP Destination port unreachable when

probed by nmap on unused ports and was subjected to fewer service discovery tests,

explaining the difference in total test time.

Table 5.25: nmap UDP Ports Detected Summary

Port State

Platform Open Open|Filtered Closed

Host 1 27 172

CORE 1 43 156

IMUNES 2 0 198

MiniNet 1 44 155

VNX 1 43 156

LXC 1 44 155

The nmap sequence generation tests attempt to fingerprint the Internet Protocol (IP) ID

sequence generation algorithms used by operating systems. This process can be compli-

cated by OSs that send the IP ID field in host byte order and not in network byte order.

The results of the sequence generation tests are shown in Table 5.26. The TCP ISN se-

quence predictability index (SP) and TCP ISN counter rate (ISR) tests showed different

results for all tested platforms, except for the ISR of VNX being the same as the host.

The SP and ISR values are encoded as ranges for fingerprints in the nmap database. At

the time of writing, the nmap fingerprint database did not contain a fingerprint for the

Linux 5.0.0 kernel, and thus no SP and ISR ranges were available to use for comparing

the tested systems.

5.6.3 nmap Fingerprint Analysis 100

Table 5.26: nmap Sequence Generation Test Results

Platform SP GCD ISR TI CI II TS

Host F9 1 109 Z Z I A

Core FE 1 10D Z Z I A

IMUNES 101 1 10B Z Z I A

MiniNet 100 1 10F Z Z I A

VNX 107 1 109 Z Z I A

LXC 103 1 10A Z Z I A

The nmap TCP Options, TCP Window Size, and Explicit Congestion Notification tests

(Tables 5.27a through 5.27c) showed the same deviations from the host fingerprint for

MiniNet as the other fingerprinting utilities. The nmap tests showed that MiniNet uses

a TCP window scaling factor of 9 and a TCP window size different to the other tested

systems.

Table 5.27: nmap Fingerprint Results

(a) TCP Options Test Results

Platform O1 O2 O3 O4 O5 O6

Host M5B4ST11NW7 M5B4ST11NW7 M5B4NNT11NW7 M5B4ST11NW7 M5B4ST11NW7 M5B4ST11

Core M5B4ST11NW7 M5B4ST11NW7 M5B4NNT11NW7 M5B4ST11NW7 M5B4ST11NW7 M5B4ST11

IMUNES M5B4ST11NW7 M5B4ST11NW7 M5B4NNT11NW7 M5B4ST11NW7 M5B4ST11NW7 M5B4ST11

MiniNet M5B4ST11NW9 M5B4ST11NW9 M5B4NNT11NW9 M5B4ST11NW9 M5B4ST11NW9 M5B4ST11

VNX M5B4ST11NW7 M5B4ST11NW7 M5B4NNT11NW7 M5B4ST11NW7 M5B4ST11NW7 M5B4ST11

LXC M5B4ST11NW7 M5B4ST11NW7 M5B4NNT11NW7 M5B4ST11NW7 M5B4ST11NW7 M5B4ST11

(b) TCP Window Size Test Results

Platform W1 W2 W3 W4 W5 W6

Host FE88 FE88 FE88 FE88 FE88 FE88

CORE FE88 FE88 FE88 FE88 FE88 FE88

IMUNES FE88 FE88 FE88 FE88 FE88 FE88

MiniNet A9B0 A9B0 A9B0 A9B0 A9B0 A9B0

VNX FE88 FE88 FE88 FE88 FE88 FE88

LXC FE88 FE88 FE88 FE88 FE88 FE88

(c) Explicit Congestion Notification Test Results

Platform R DF T W O CC Q

Host Y Y 40 FAF0 M5B4NNSNW7 Y —

CORE Y Y 40 FAF0 M5B4NNSNW7 Y —

IMUNES Y Y 40 FAF0 M5B4NNSNW7 Y —

MiniNet Y Y 40 0564 M5B4NNSNW9 Y —

VNX Y Y 40 FAF0 M5B4NNSNW7 Y —

LXC Y Y 40 FAF0 M5B4NNSNW7 Y —

5.6.4 Active Fingerprinting Findings 101

5.6.4 Active Fingerprinting Findings

Active fingerprinting tests delivered results similar to those of the passive fingerprinting

tests. Active fingerprinting on all tested CBNEs generated the same fingerprints as the

host except for MiniNet. As with the passive fingerprinting tests, MiniNet used a TCP

window size and TCP window scaling factor different to all other tested systems.

The active remote fidelity scores for the tested systems are shown in Table 5.28. Remote

fidelity scoring for nmap excluded the sequence generation (SEQ) tests. The ranges for

the SP (F9 to 107) and ISR (109 to 10F) values are within similar bounds to the ranges

of the nmap database entry for Linux 4.2.5-1-ARCH (SP=FE-108, ISR=100-10A) and

were not regarded as indicating differences between the tested systems.

Table 5.28: Active Fidelity Scores

Platform xprobe2 PortSpec SinFP3 nmap Score

CORE 0 0 0 153/153

IMUNES 0 0 0 153/153

MiniNet -2 -3 -13 135/153

VNX 0 0 0 153/153

LXC 0 0 0 153/153

5.7 MiniNet Modification and Re-run

The active and passive fingerprinting tests all showed that MiniNet utilises a TCP windows

size and TCP window scaling factor different to all other systems tested, including the

host. Table 5.29 shows the sysctl options for the host before (Host) and after (MiniNet

(Default)) initialising an experimental network using MiniNet.

Table 5.29: sysctl Configuration Results

sysctl Option Host MiniNet (Default)

net.core.netdev max backlog 1000 5000

net.core.rmem max 212992 16777216

net.core.wmem max 212992 16777216

net.ipv4.neigh.default.gc thresh1 128 4096

net.ipv4.neigh.default.gc thresh2 512 8192

net.ipv4.neigh.default.gc thresh3 1024 16384

net.ipv4.tcp rmem 4096 131072 6291456 10240 87380 16777216

net.ipv4.tcp wmem 4096 16384 4194304 10240 87380 16777216

102

The source of the changes to the sysctl options of the host and MiniNet’s Window

Scaling Factor of 9 was traced to a configuration applied before a simulation is started.

In the MiniNet source file mininet/mininet/util.py (Listing 5.6), the maximum

send socket memory (wmem max) and maximum receive socket memory (rmem max) of

the network stack is increased when an experiment is initialised.

Listing 5.6: MiniNet sysctl Configuration Changes
1 def fixLimits():
2 "Fix ridiculously small resource limits."
3 debug("*** Setting resource limits\n")
4 try:
5 rlimitTestAndSet(RLIMIT_NPROC, 8192)
6 rlimitTestAndSet(RLIMIT_NOFILE, 16384)
7 #Increase open file limit
8 sysctlTestAndSet(’fs.file-max’, 10000)
9 #Increase network buffer space

10 sysctlTestAndSet(’net.core.wmem_max’, 16777216)
11 sysctlTestAndSet(’net.core.rmem_max’, 16777216)
12 sysctlTestAndSet(’net.ipv4.tcp_rmem’, ’10240 87380 16777216’)
13 sysctlTestAndSet(’net.ipv4.tcp_wmem’, ’10240 87380 16777216’)
14 sysctlTestAndSet(’net.core.netdev_max_backlog’, 5000)
15 #Increase arp cache size
16 sysctlTestAndSet(’net.ipv4.neigh.default.gc_thresh1’, 4096)
17 sysctlTestAndSet(’net.ipv4.neigh.default.gc_thresh2’, 8192)
18 sysctlTestAndSet(’net.ipv4.neigh.default.gc_thresh3’, 16384)
19 #Increase routing table size
20 sysctlTestAndSet(’net.ipv4.route.max_size’, 32768)
21 #Increase number of PTYs for nodes
22 sysctlTestAndSet(’kernel.pty.max’, 20000)

The mininet/mininet/util.py source was modified to reflect the sysctl options

of the host before experimental networks were instantiated on MiniNet. Listing 5.30 shows

the modified version of the source file. The modifications made to the functions that set

the net.core.wmem max, net.core.rmem max, net.ipv4.tcp rmem, and net.ipv4.tcp wmem

sysctl options are highlighted in lines 10 to 13.

Listing 5.7: MiniNet sysctl Configuration Changes Modified
1 def fixLimits():
2 "Fix ridiculously small resource limits."
3 debug("*** Setting resource limits\n")
4 try:
5 rlimitTestAndSet(RLIMIT_NPROC, 8192)
6 rlimitTestAndSet(RLIMIT_NOFILE, 16384)
7 #Increase open file limit
8 sysctlTestAndSet(’fs.file-max’, 10000)
9 #Increase network buffer space

10 sysctlTestAndSet(’net.core.wmem_max’, 212992)
11 sysctlTestAndSet(’net.core.rmem_max’, 212992)
12 sysctlTestAndSet(’net.ipv4.tcp_rmem’, ’4096 131072 6291456’)
13 sysctlTestAndSet(’net.ipv4.tcp_wmem’, ’4096 16384 4194304’)
14 sysctlTestAndSet(’net.core.netdev_max_backlog’, 1000)
15 #Increase arp cache size
16 sysctlTestAndSet(’net.ipv4.neigh.default.gc_thresh1’, 128)
17 sysctlTestAndSet(’net.ipv4.neigh.default.gc_thresh2’, 512)
18 sysctlTestAndSet(’net.ipv4.neigh.default.gc_thresh3’, 1024)
19 #Increase routing table size
20 sysctlTestAndSet(’net.ipv4.route.max_size’, 32768)
21 #Increase number of PTYs for nodes
22 sysctlTestAndSet(’kernel.pty.max’, 20000)

Post modification of the MiniNet source, when initialising an experimental network, the

sysctl options of the host remained the same as before initialising a network. Table

5.7.1 Summary 103

5.30 shows the sysctl options for the host before (Host) and after (MiniNet (Modified))

initialising an experimental network using the modified version of MiniNet.

Table 5.30: sysctl Configuration Results After Modification

sysctl Option Host MiniNet (Modified)

net.core.netdev max backlog 1000 1000

net.core.rmem max 212992 212992

net.core.wmem max 212992 212992

net.ipv4.neigh.default.gc thresh1 128 128

net.ipv4.neigh.default.gc thresh2 512 512

net.ipv4.neigh.default.gc thresh3 1024 1024

net.ipv4.tcp rmem 4096 131072 6291456 4096 131072 6291456

net.ipv4.tcp wmem 4096 16384 4194304 4096 16384 4194304

5.7.1 Summary

The active and passive fingerprinting tests were re-run on the modified version of MiniNet,

and all test results showed that post modification MiniNet generated the same fingerprints

as the other test systems. The results of fingerprinting an emulated node instantiated by

the modified version of MiniNet are shown in Appendix D, Section D.3. The active and

passive remote fidelity scores for MiniNet were updated based on the post modification

fingerprinting results. The updated remote fidelity scores are shown in Table 5.31, showing

that the modified MiniNet achieved the same perfect remote fidelity score as the other

tested systems.

Table 5.31: Remote Fidelity for Modified MiniNet

(a) Passive

Platform p0f ettercap SinFP3 Score

CORE 0 0 0 33/33

IMUNES 0 0 0 33/33

MiniNet -2 -2 -2 27/33

VNX 0 0 0 33/33

LXC 0 0 0 33/33

MiniNet† 0 0 0 33/33

† Modified version of MiniNet

(b) Active

Platform xprobe2 PortSpec SinFP3 nmap Score

CORE 0 0 0 153/153

IMUNES 0 0 0 153/153

MiniNet -2 -3 -13 133/153

VNX 0 0 0 153/153

LXC 0 0 0 153/153

MiniNet† 0 0 0 153/153

† Modified version of MiniNet

The differences between the fingerprints of the default MiniNet and the host was not

related to the components used by MiniNet to instantiate emulated nodes and network

components. The differences were related to sysctl changes applied to the kernel of the

host.

104

5.8 Summary

Section 5.1 presented an overview of the components in a computer network that can

influence the ability of active and passive fingerprinting utilities to generate accurate

fingerprints of a remote host. Network devices such load balancers and firewalls can strip

away or modify L2 and L3 headers and prevent fingerprinting utilities from generating

accurate fingerprints and server applications such as web servers can implement protection

mechanisms that prevent fingerprinting. The test network used for fingerprinting was a

basic switched network, and the target node did not have any applications or utilities

installed capable of interfering with the fingerprinting process. Section 5.2 detailed the

fingerprinting utilities, the CBNEs selected for testing and the process used to test and

evaluate the remote fidelity of CBNEs.

The OS families and versions reported during active and passive fingerprinting were pre-

sented in Section 5.3. The passive fingerprinting utilities used did not return OS family

and version results that reflected the known OS used. In part, the results were due to the

age of the fingerprint databases used by these utilities. The active fingerprinting utilities

used returned a mixed set of results. The xprobe2 active fingerprinting utility did not

return readable results. The OS version printed appeared to be a random set of ASCII

characters. The nmap and SinFP3 utilities accurately identified the OS family of the

target nodes’ OSs but could not identify the OS version. This can be attributed to the

age of the fingerprinting databases used. Though the latest version of the fingerprint-

ing databases for these tools were used, they pre-dated the release of the kernel version

used during testing, and as such did not contain fingerprints for the kernel and could not

identify the version.

Section 5.4 presented the findings of the ping (ICMP Type 8 - echo request) RTT latency

tests. Through the use of exploratory data analysis techniques it was established that

the distribution of RTTs for each CBNE was related to the networking subsystems used.

P-P plots were used to test for similarities in the distributions of RTTs between pairings

of test systems. None of the ping RTT distributions for none of the CBNEs could be

correlated to the host, however clear correlations could be established between CBNEs

that used the same networking subsystem.

The results for active and passive fingerprint tests were presented in Sections 5.5 and

5.6, respectively. All the fingerprinting utilities used showed that emulated hosts in

experimental networks instantiated by MiniNet used a TCP window size and TCP window

scaling factor different to the other systems tested. Both fingerprinting methodologies

5.8.1 Major Findings 105

showed that all tested CBNEs except MiniNet had perfect remote fidelity as defined in

Section 4.3 and scored according to the method in Section 5.2.

The results of an investigation into the cause of the fingerprint differences for nodes

emulated using the MiniNet CBNE were presented in Section 5.7. The origin of the

fingerprint deviations was traced to performance optimisations applied to the host OS by

MiniNet before an experimental network was instantiated. MiniNet increases the read and

write buffers of the network stack of the host to increase the packets per second that the

kernel can handle during experimentation. The source code for MiniNet was modified to

reflect the sysctl options of the host OS. When instantiating an experimental network

with the modified version of MiniNet, no changes were applied to the host OS. The

test procedure was re-run on the modified version of MiniNet. Emulated nodes in the

modified version of MiniNet returned fingerprinting results that were the same as all the

other tested systems and had a perfect remote fidelity score.

5.8.1 Major Findings

The major findings of the experimental component of the research conducted are presented

below.

The hypothesis that components used to construct CBNEs can influence the features

extracted by OS fingerprinting utilities such as nmap when scanning emulated nodes was

shown to be false. In one exceptional case, that of MiniNet, deviations in the fingerprints of

emulated nodes where caused by the CBNE applying network performance optimisations

to the network stack of the host OS. After disabling the optimisations applied to the host

OS by MiniNet, fingerprints generated for MiniNet emulated nodes returned the same

results as all other tested CBNEs.

The behaviour of emulated nodes during fingerprinting can possibly assist in identifying

the type of CBNE used. For one specific CBNE a behavioural difference, when compared

to all other tested systems, was detected. The base image used for instantiating nodes

using the IMUNES CBNE was configured to send explicit ICMP Type 3 Code 3 (Destina-

tion port unreachable) to nmap UDP port scans. The result of this behavioural difference

was a significantly reduced scan time and zero reported open UDP ports. A report of

zero open UDP ports is an unexpected result. Such subtle behavioural differences can by

used to identify the CBNE used to construct research and experimentation networks.

5.8.1 Major Findings 106

Through the use of exploratory statistical analysis of the round trip times (RTTs) of ping

packets (ICMP Type 8) between nodes emulated in a CBNE, it was discovered that these

independent data sets could be used to identify CBNEs that use the same networking

sub-system. A comparison of the distribution of ping packet RTTs of the tested CBNEs

was conducted using P-P plots (percentile-percentile plots). This pair-wise comparison

of the ping RTT of CBNEs revealed that CBNEs using the same networking sub-system

had strong correlation, and that ping RTTs can be used to identify these systems.

Chapter 6

Conclusion

The world is still a weird place,

despite my efforts to make clear and perfect sense of it.

Hunter S. Thompson

The research presented in this document investigated the viability of Container-Based

Network Emulators (CBNEs), a type of Network Experimentation Platform (NEP), as

platforms for information security research, experimentation, and training. The abstrac-

tion mechanisms used by NEPs were investigated to assess the impact that abstraction

techniques could have on the realism of experimental networks. CBNEs were investigated

in detail. A selection of open-source CBNE implementations were analysed with respect

to the architectural choices made during development and the technologies used to create

experimental networks.

Remote attackers utilise fingerprinting utilities such as nmap to discover a target’s Oper-

ating System (OS) and to enumerate remotely accessible services. The techniques used to

fingerprint a remote OS and how fingerprinting would conceptually be used by attackers

were investigated. Based on the investigation, a model for measuring the remote fidelity

of an emulated host was created and used to measure the remote fidelity of emulated

nodes for a selection of CBNEs.

The design of a computer system as a system of abstractions was introduced in Chapter

2. These abstractions can be used to implement fully functional computer systems, and

serve as building blocks for different types of virtualisation systems. The types of network

experimentation platforms constructed using different kinds of virtualisation technologies,

and how these systems are currently used, where discussed. This chapter showed how the

107

108

definition of fidelity for emulated computer systems varied depending on the context of

how the systems are used as well as the experiments being performed.

Chapter 3 provided an overview of the origins of CBNEs and how these systems utilise

Linux containers to create networks of lightweight virtualised computers for research,

experimentation, and training. The chapter gave an overview of namespaces in the Linux

kernel and how namespaces are used to construct lightweight virtual machines called

containers. A selection of open-source CBNEs for the Linux OS was introduced, and

the history and typical uses of each system was discussed. This chapter also detailed

the architecture of each CBNE and the technologies used by each system to construct

emulated networks.

The concepts and techniques used by active and passive OS fingerprinting utilities were

reviewed in Chapter 4. Models that describe the various processes used by remote attack-

ers attempting to penetrate a remote host were investigated to assess the applicability of

fingerprinting during attacks on remote systems. The concept of extracting features from

network traffic that can be used identify OSs was used to construct a model to remotely

measure the fidelity of a host emulated by CBNEs.

Chapter 5 began with an overview of the components in a computer network and software

systems on a computer that can influence the features extracted by active and passive OS

fingerprinting utilities to generate fingerprints. The test network for experimentation was

designed to exclude any components that can interfere with the fingerprinting process.

Details of the fingerprinting utilities and CBNEs used during testing were listed. Analysis

of the results obtained from testing started off with an analysis of the kernel versions

reported by active and passive fingerprinting utilities. An additional analysis was done

on the distribution of Round Trip Times (RTTs) of ping requests to assess whether or

not the components used by CBNEs influence latency within emulated networks. The

fingerprints generated by active and passive OS fingerprinting utilities indicated that

emulated nodes for one of the CBNEs differed from the host. An investigation into the

cause of the differences revealed that an optimisation to the network stack of the host OS

was the cause.

The objectives of the research conducted are listed in Section 1.2. The first objective was

to review the technologies used by CBNEs to create emulated networks as well as to review

the techniques used to remotely fingerprint computer systems. Open-source CBNEs for

the Linux OS use a wide array of technologies to construct experimental networks (Section

3.5). Though Linux namespaces form the base technology for constructing nodes in a

network, a mix of pre-existing tools and custom techniques are used to construct containers

109

from namespaces. To discover what OS a remote computer is using OS fingerprinting

utilities such as nmap can be used (Section 4.1). OS fingerprinting can be conducted

through direct interaction using active fingerprinting, or through indirect means using

passive fingerprinting. Both active and passive fingerprinting utilities extract artefacts

from network traffic that can be used to identify the family and version of a remote

computer.

The second objective was to create a model to measure the remote fidelity of emulated

nodes in an experimental network. The artefacts extracted from network traffic by fin-

gerprinting utilities can be modified by networking equipment and by OSs. CBNEs in-

stantiate emulated nodes in experimental networks using abstraction mechanisms such as

containerisation. Through this process of abstraction the fidelity of emulated nodes could

be decreased. A model for testing how well an emulated node replicates the base OS was

created in Section 4.3.

The third objective was to use the model to measure the remote fidelity of emulated

nodes for a selection of open-source CBNEs within the context of information security

research, experimentation, and training. Passive (Section 5.5) and active (Section 5.6)

fingerprinting conducted on emulated nodes showed that nodes emulated by MiniNet had

fingerprints that differed from all other test systems. Once the source of the deviation was

corrected and the test suite was re-run, emulated nodes returned the same fingerprints as

the other test systems (Section 5.7). The test results indicated that the emulated nodes

have perfect fidelity when measured according to the model created in Section 4.3.

The significance of this study is that it has shown that Container-Based Network Emu-

lators (CBNEs) can be used to create small scale information security research, exper-

imentation, and training networks using commodity hardware. Analyses of the experi-

mental data collected has shown that nodes instantiated in emulated networks do present

valid and viable targets for information security experimentation, research, and education.

When measured according to the definition of remote fidelity for abstracted hosts, nodes

instantiated in emulated networks present targets that cannot be distinguished from the

host system.

Computers are complex systems made up of multiple systems and sub-systems. Each of

these systems can leak identifying information to remote attackers in unexpected ways.

Data such as the time taken for a ping packet to traverse a network appears not to give

away information that can be used to identify a system. As was shown, if a large enough

sample of data is collected, even seemingly insignificant and irrelevant information can be

used to gain deeper insights into the components of complex systems.

110

6.1 Future Work

This section lists additional research avenues that fell outside of the scope of this docu-

ment, as well as future research avenues to be explored.

6.1.1 Extended Experimentation

The experimental component of this research covered a limited set of CBNEs. Only

open-source CBNEs for the Linux OS were considered and experimental networks were

limited to L2 networking equipment. Extensive testing of CBNEs for both the Linux and

FreeBSD OSs, inclusive of L3 networking equipment, will quantify the effects that CBNEs

could have on network traffic and the artefacts that sub-systems of CBNEs may introduce

into traffic generated on experimental networks.

6.1.2 Ping RTT Distibution Correlation on Physical Networks

During the analysis of the ping round trip time data, it was discovered that the distribution

of the round trip times can be used to identify CBNEs that utilise the same network

sub-systems. Testing should be expanded to include physical networking devices to assess

whether the same phenomena are present within the physical space, or if these phenomena

are localised to virtualised networking systems. The informal correlation techniques used,

that of P-P plots, should be developed into formal techniques. Formalising the techniques

used to identify networking systems from round trip time distribution data will assist in

generating a new class of device fingerprint.

References

Acosta, J. C., McKee, J., Fielder, A., and Salamah, S. A platform for evaluator-

centric cybersecurity training and data acquisition. In 2017 IEEE Military Communi-

cations Conference, pages 394–399. Oct 2017. doi:10.1109/MILCOM.2017.8170768.

Adams, K. and Agesen, O. A Comparison of Software and Hardware Techniques

for x86 Virtualization. ACM SIGOPS Operating Systems Review, 40(5):2–13, October

2006. ISSN 0163-5980. doi:10.1145/1168917.1168860.

Ahrenholz, J. Comparison of CORE network emulation platforms. In 2010 IEEE

Military Communications Conference, pages 166–171. Oct 2010. ISSN 2155-7578. doi:

10.1109/MILCOM.2010.5680218.

Ahrenholz, J., Danilov, C., Henderson, T. R., and Kim, J. H. CORE: A real-time

network emulator. In 2008 IEEE Military Communications Conference, pages 1–7. Nov

2008. ISSN 2155-7578. doi:10.1109/MILCOM.2008.4753614.

Ahrenholz, J., Goff, T., and Adamson, B. Integration of the CORE and EMANE

Network Emulators. In 2011 IEEE Military Communications Conference, pages 1870–

1875. Nov 2011. ISSN 2155-7578. doi:10.1109/MILCOM.2011.6127585.

Aiken, H. H. and Hopper, G. M. The Automatic Sequence Controlled Calculator —

I. Electrical Engineering, 65(8-9):384–391, Aug 1946a. ISSN 0095-9197. doi:10.1109/

EE.1946.6434251.

Aiken, H. H. and Hopper, G. M. The Automatic Sequence Controlled Calculator —

II. Electrical Engineering, 65(10):449–454, Oct 1946b. ISSN 0095-9197. doi:10.1109/

EE.1946.6439869.

Aiken, H. H. and Hopper, G. M. The Automatic Sequence Controlled Calculator —

III. Electrical Engineering, 65(11):522–528, Nov 1946c. ISSN 0095-9197. doi:10.1109/

EE.1946.6439921.

111

REFERENCES 112

Aksoy, A., Louis, S., and Gunes, M. H. Operating system fingerprinting via auto-

mated network traffic analysis. In 2017 IEEE Congress on Evolutionary Computation,

pages 2502–2509. June 2017. doi:10.1109/CEC.2017.7969609.

Albanese, M., Battista, E., and Jajodia, S. Cyber Deception: Building the Scientific

Foundation, chapter Deceiving Attackers by Creating a Virtual Attack Surface, pages

167–199. Springer, 2016. ISBN 978-3-319-32699-3. doi:10.1007/978-3-319-32699-3 8.

Alcosser, E., Phillips, J. P., and Wolk, A. M. How to Build a Working Digital

Computer. Hayden Book Company, Inc., New York, NY, USA, June 1967. ISBN

978-0-810407-480. Last accessed: 2019-03-18.

URL https://archive.org/details/howtobuildaworkingdigitalcomputer_

jun67

Amstadt, B. and Johnson, M. K. Wine. Linux Journal, 1994(4), August 1994. ISSN

1075-3583.

Anderson, B. and McGrew, D. OS Fingerprinting: New Techniques and a Study of

Information Gain and Obfuscation. In 2017 IEEE Conference on Communications and

Network Security, pages 1–9. Las Vegas, NV, USA, October 2017. doi:10.1109/CNS.

2017.8228647.

Anton, S. D., Fraunholz, D., Krummacker, D., Fischer, C., Karrenbauer, M.,

and Schotten, H. D. The Dos and Don’ts of Industrial Network Simulation: A Field

Report. In Proceedings of the 2nd International Symposium on Computer Science and

Intelligent Control, ISCSIC ’18, pages 6:1–6:8. ACM, Stockholm, Sweden, 2018. ISBN

978-1-4503-6628-1. doi:10.1145/3284557.3284716.

Arkin, O. and Yarochkin, F. Xprobe v2.0 A “Fuzzy” Approach to Remote Active

Operating System Fingerprinting. August 2002. Last accessed: 2019-03-18.

URL http://ouah.org/Xprobe2.pdf

Asada, T. Implements BIOS Emulation Support for BHyVe: A BSD Hypervisor. In

AsiaBSDCon 2013 Proceedings, pages 63–73. Tokyo, Japan, March 2013.

Auffret, P. SinFP, unification de la prise d’empreinte active et passive des systèmes

d’exploitation. In Symposium sur la sécurité des technologies de l’information et des

communications. June 2008. Last accessed: 2019-03-24.

URL https://www.sstic.org/2008/presentation/SinFP_

unification_de_la_prise_d_empreinte_active_et_passive_des_

systemes_d_exploitation/

https://archive.org/details/howtobuildaworkingdigitalcomputer_jun67
https://archive.org/details/howtobuildaworkingdigitalcomputer_jun67
http://ouah.org/Xprobe2.pdf
https://www.sstic.org/2008/presentation/SinFP_unification_de_la_prise_d_empreinte_active_et_passive_des_systemes_d_exploitation/
https://www.sstic.org/2008/presentation/SinFP_unification_de_la_prise_d_empreinte_active_et_passive_des_systemes_d_exploitation/
https://www.sstic.org/2008/presentation/SinFP_unification_de_la_prise_d_empreinte_active_et_passive_des_systemes_d_exploitation/

REFERENCES 113

Auffret, P. SinFP, Unification of Active and Passive Operating System Fingerprinting.

Journal in Computer Virology, 6(3):197–205, August 2010. ISSN 1772-9890. doi:10.

1007/s11416-008-0107-z.

Austin, T., Larson, E., and Ernst, D. SimpleScalar: an infrastructure for computer

system modeling. Computer, 35(2):59–67, Feb 2002. ISSN 0018-9162. doi:10.1109/2.

982917.

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neuge-

bauer, R., Pratt, I., and Warfield, A. Xen and the Art of Virtualization.

In Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles,

pages 164–177. ACM, Bolton Landing, NY, USA, 2003. ISBN 1-58113-757-5. doi:

10.1145/945445.945462.

Barnett, R. J. and Irwin, B. Towards a Taxonomy of Network Scanning Techniques.

In Proceedings of the 2008 Annual Research Conference of the South African Institute

of Computer Scientists and Information Technologists on IT Research in Developing

Countries: Riding the Wave of Technology, SAICSIT ’08, pages 1–7. ACM, New York,

NY, USA, 2008. ISBN 978-1-60558-286-3. doi:10.1145/1456659.1456660.

Bavier, A., Berman, M., Brinn, M., McGeer, R., Peterson, L., and Ricart, G.

Realizing the Global Edge Cloud. IEEE Communications Magazine, 56(5):170–176,

May 2018. ISSN 0163-6804. doi:10.1109/MCOM.2018.1700131.

Bellard, F. QEMU, a Fast and Portable Dynamic Translator. In Proceedings of the

FREENIX Track: 2005 USENIX Annual Technical Conference, pages 41–46. USENIX

Association, April 2005. Last accessed: 2019-03-18.

Berman, M., Chase, J. S., Landweber, L., Nakao, A., Ott, M., Raychaudhuri,

D., Ricci, R., and Seskar, I. GENI: A federated testbed for innovative network

experiments. Computer Networks, 61:5 – 23, 2014. ISSN 1389-1286. doi:10.1016/j.bjp.

2013.12.037. Special issue on Future Internet Testbeds – Part I.

Bernstein, D. Containers and Cloud: From LXC to Docker to Kubernetes. IEEE Cloud

Computing, 1(3):81–84, September 2014. ISSN 2325-6095. doi:10.1109/MCC.2014.51.

Bhatia, S., Motiwala, M., Muhlbauer, W., Mundada, Y., Valancius, V.,

Bavier, A., Feamster, N., Peterson, L., and Rexford, J. Trellis: A Platform

for Building Flexible, Fast Virtual Networks on Commodity Hardware. In Proceedings

of the 2008 ACM CoNEXT Conference, pages 72:1–72:6. ACM, Madrid, Spain, 2008.

ISBN 978-1-60558-210-8. doi:10.1145/1544012.1544084.

REFERENCES 114

Biederman, E. W. Multiple Instances of the Global Linux Namespaces. In Proceedings

of the Linux Symposium, volume 1, pages 101–112. Ottawa, ON, Canada, July 2006.

bind. Passive Network Mapping. Online, May 2000. Last accessed 2019-10-23.

URL http://lwn.net/2000/0511/a/siphon.html

Böhme, U. and Buytenhenk, L. Linux BRIDGE-STP-HOWTO, January 2001. Last

accessed: 2019-09-15.

URL http://www.losurs.org/docs/LDP/HOWTO/pdf/BRIDGE-STP-

HOWTO.pdf

Boissiere, G. STATUS 2.5. Online, January 2002. Last accessed 2019-10-23.

URL http://lkml.iu.edu/hypermail/linux/kernel/0201.2/0331.

html

Bonada, E., Cavic, D., and Sala, D. Implementation of a Layer 2 Bridge in Ns-3. In

Proceedings of the 1st International Conference on Simulation Tools and Techniques for

Communications, Networks and Systems & Workshops, Simutools ’08, pages 49:1–49:1.

Institute for Computer Sciences, Social-Informatics and Telecommunications Engineer-

ing (ICST), ICST, Brussels, Belgium, Belgium, 2008. ISBN 978-963-9799-20-2.

Bonofiglio, G., Iovinella, V., Lospoto, G., and Battista, G. D. Kathará: A

container-based framework for implementing network function virtualization and soft-

ware defined networks. In 2018 IEEE/IFIP Network Operations and Management Sym-

posium, pages 1–9. April 2018. ISSN 2374-9709. doi:10.1109/NOMS.2018.8406267.

Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J.,

Schlesinger, C., Talayco, D., Vahdat, A., Varghese, G., and Walker, D. P4:

Programming Protocol-independent Packet Processors. SIGCOMM Comput. Commun.

Rev., 44(3):87–95, July 2014. ISSN 0146-4833. doi:10.1145/2656877.2656890.

Box, D. and Sells, C. Essential .NET, Volume I: The Common Language Run-

time. Microsoft .NET Development Series. Addison-Wesley Professional, 2002. ISBN

9780201734119.

Boyd, I. M. The Fundamentals of Computer Hacking. Online, December 2000. Last

accessed: 2019-03-24.

URL http://www.sans.org/reading_room/whitepapers/hackers/

fundamentals-computer-hacking_956

http://lwn.net/2000/0511/a/siphon.html
http://www.losurs.org/docs/LDP/HOWTO/pdf/BRIDGE-STP-HOWTO.pdf
http://www.losurs.org/docs/LDP/HOWTO/pdf/BRIDGE-STP-HOWTO.pdf
http://lkml.iu.edu/hypermail/linux/kernel/0201.2/0331.html
http://lkml.iu.edu/hypermail/linux/kernel/0201.2/0331.html
http://www.sans.org/reading_room/whitepapers/hackers/fundamentals-computer-hacking_956
http://www.sans.org/reading_room/whitepapers/hackers/fundamentals-computer-hacking_956

REFERENCES 115

Boyd, J. R. Organic Design for Command and Control. A Discourse on Winning and

Losing, 1987. Unpublished lecture notes.

Browne, A. F., Watson, S., and Williams, W. B. Development of an Architecture

for a Cyber-Physical Emulation Test Range for Network Security Testing. IEEE Access,

6:73273–73279, 2018. ISSN 2169-3536. doi:10.1109/ACCESS.2018.2882410.

Bullers, W. I., Jr., Burd, S., and Seazzu, A. F. Virtual Machines - an Idea Whose

Time Has Returned: Application to Network, Security, and Database Courses. In

Proceedings of the 37th SIGCSE Technical Symposium on Computer Science Education,

SIGCSE ’06, pages 102–106. ACM, New York, NY, USA, 2006. ISBN 1-59593-259-3.

doi:10.1145/1121341.1121375.

Cappos, J., Hemmings, M., McGeer, R., Rafetseder, A., and Ricart, G. Ed-

geNet: A Global Cloud That Spreads by Local Action. In 2018 IEEE/ACM Symposium

on Edge Computing (SEC), pages 359–360. Oct 2018. doi:10.1109/SEC.2018.00045.

CDW Corporation. Securing BYOD, March 2018. Last accessed: 2018-10-29.

URL https://webobjects.cdw.com/webobjects/media/pdf/

solutions/security/BYOD-Security-G.pdf

Chapman, S., Smith, R., Maglaras, L., and Janicke, H. Can a Network Attack

Be Simulated in an Emulated Environment for Network Security Training? Journal

of Sensor and Actuator Networks, 6(3):16, Aug 2017. ISSN 2224-2708. doi:10.3390/

jsan6030016.

Chen, I., King, C., Chen, Y., and Lu, J. Full System Emulation of Embedded

Heterogeneous Multicores Based on QEMU. In 2018 IEEE 24th International Confer-

ence on Parallel and Distributed Systems (ICPADS), pages 771–778. Dec 2018. ISSN

1521-9097. doi:10.1109/PADSW.2018.8645045.

Chen, Y.-C., Liao, Y., Baldi, M., Lee, S.-J., and Qiu, L. OS Fingerprinting and

Tethering Detection in Mobile Networks. In Proceedings of the 2014 Internet Measure-

ment Conference, IMC ’14, pages 173–180. ACM, Vancouver, BC, Canada, 2014. ISBN

978-1-4503-3213-2. doi:10.1145/2663716.2663745.

Cheswick, B. An Evening with Berferd in Which a Cracker is Lured, Endured, and Stud-

ied. In Proceedings of the Winter 1992 USENIX Conference, pages 163–174. USENIX

Association, San Francisco, CA, USA, January 1992.

URL http://www.cheswick.com/ches/papers/berferd.pdf

https://webobjects.cdw.com/webobjects/media/pdf/solutions/security/BYOD-Security-G.pdf
https://webobjects.cdw.com/webobjects/media/pdf/solutions/security/BYOD-Security-G.pdf
http://www.cheswick.com/ches/papers/berferd.pdf

REFERENCES 116

Cinar, Y., Melvin, H., Pocta, P., and Alahmadi, M. Containerisation in Multime-

dia Research Test Beds. In Proceedings of the 5th ISCA/DEGA Workshop on Perceptual

Quality of Systems (PQS 2016), pages 142–145. 2016. doi:10.21437/PQS.2016-30.

Cisco Systems. Firepower Management Center Configuration Guide. Cisco, 170 West

Tasman Drive San Jose, CA 95134-1706 USA, June 2018. Last accessed: 2018-10-29.

URL https://www.cisco.com/c/en/us/td/docs/security/firepower/

620/configuration/guide/fpmc-config-guide-v62.pdf

Cohen, A. J. Simulating Virtual Circuits in Mobile Packet Radio Networks. Bachelor’s

thesis, Massachusetts Institute of Technology, June 1986.

URL http://hdl.handle.net/1721.1/14904

Corbató, F. J. and Vyssotsky, V. A. Introduction and Overview of the Multics Sys-

tem. In Proceedings of the November 30–December 1, 1965, Fall Joint Computer Con-

ference, Part I, pages 185–196. ACM, November 1965. doi:10.1145/1463891.1463912.

Cotton, M., Eggert, L., Touch, J., Westerlund, M., and Cheshire, S. Internet

Assigned Numbers Authority (IANA) Procedures for the Management of the Service

Name and Transport Protocol Port Number Registry. RFC 6335 (Best Current Prac-

tice), August 2011. doi:10.17487/RFC6335.

Crall, C. Configuration in a World of Containers. In 2014 USENIX Release Engineering

Summit West. USENIX Association, Seattle, WA, USA, 2014. Last accessed: 2019-03-

18.

URL https://www.usenix.org/conference/ures14west/summit-

program/presentation/configuration-world-containers

Davis, J. and Magrath, S. A Survey of Cyber Ranges and Testbeds. Technical Re-

port ADA594524, Defence Science and Technology Organisation, Cyber and Electronic

Warfare Division, Edinburgh, Australia, October 2013. Last accessed: 2019-03-23.

URL http://www.dtic.mil/dtic/tr/fulltext/u2/a594524.pdf

Davis, M. R. Categorising Network Telescope Data Using Bigdata Enrichment Tech-

niques. Master’s thesis, Rhodes University, Grahamstown, South Africa, January 2019.

Davoli, R. VDE: Virtual Distributed Ethernet. In First International Conference on

Testbeds and Research Infrastructures for the DEvelopment of NeTworks and COMmu-

nities, pages 213–220. Feb 2005. doi:10.1109/TRIDNT.2005.38.

https://www.cisco.com/c/en/us/td/docs/security/firepower/620/configuration/guide/fpmc-config-guide-v62.pdf
https://www.cisco.com/c/en/us/td/docs/security/firepower/620/configuration/guide/fpmc-config-guide-v62.pdf
http://hdl.handle.net/1721.1/14904
https://www.usenix.org/conference/ures14west/summit-program/presentation/configuration-world-containers
https://www.usenix.org/conference/ures14west/summit-program/presentation/configuration-world-containers
http://www.dtic.mil/dtic/tr/fulltext/u2/a594524.pdf

REFERENCES 117

de Berlaere, T. V. G. Containerised Cybersecurity Lab for Rapid and Secure Evalua-

tion of Threat Mitigation Tactics. Master’s thesis, Ghent University, 2018.

DeLooze, L. L., McKean, P., Mostow, J. R., and Graig, C. Incorporating

simulation into the computer security classroom. In 34th Annual Frontiers in Edu-

cation, 2004. FIE 2004., pages S1F/13–S1F/18 Vol. 3. Oct 2004. ISSN 0190-5848.

doi:10.1109/FIE.2004.1408699.

Dennis, J. B. Segmentation and the Design of Multiprogrammed Computer Systems.

Journal of the ACM, 12(4):589–602, October 1965. doi:10.1145/321296.321310.

Dike, J. A user-mode port of the Linux kernel. In Proceedings of the 4th Annual

Linux Showcase & Conference. The USENIX Association, The USENIX Association,

Atlanta, Georgia, USA, October 2000.

URL https://www.usenix.org/legacy/publications/library/

proceedings/als00/2000papers/papers/full_papers/dike/dike_

html/

Dike, J. User Mode Linux. Prentice Hall, 1st edition, April 2006. ISBN 0-13-186505-6.

URL http://www.informit.com/store/user-mode-linux-

9780131865051

Dovrolis, C., Gummadi, K., Kuzmanovic, A., and Meinrath, S. D. Measurement

Lab: Overview and an Invitation to the Research Community. SIGCOMM Computer

Communication Review, 40(3):53–56, June 2010. ISSN 0146-4833. doi:10.1145/1823844.

1823853.

Eckersley, P. How Unique Is Your Web Browser? In Privacy Enhancing Technologies,

pages 1–18. Springer Berlin Heidelberg, 2010. ISBN 978-3-642-14527-8.

Edwards, S., Liu, X., and Riga, N. Creating Repeatable Computer Science and Net-

working Experiments on Shared, Public Testbeds. SIGOPS Operating System Review,

49(1):90–99, January 2015. ISSN 0163-5980. doi:10.1145/2723872.2723884.

Ely, D., Savage, S., and Wetherall, D. Alpine: A User-Level Infrastructure for

Network Protocol Development. In Proceedings of the 3rd USENIX Symposium on

Internet Technologies and Systems. USENIX, San Francisco, CA, United Stated of

America, March 2001.

Falkoff, A. D. The IBM family of APL systems. IBM Systems Journal, 30(4):416–432,

1991. ISSN 0018-8670. doi:10.1147/sj.304.0416.

https://www.usenix.org/legacy/publications/library/proceedings/als00/2000papers/papers/full_papers/dike/dike_html/
https://www.usenix.org/legacy/publications/library/proceedings/als00/2000papers/papers/full_papers/dike/dike_html/
https://www.usenix.org/legacy/publications/library/proceedings/als00/2000papers/papers/full_papers/dike/dike_html/
http://www.informit.com/store/user-mode-linux-9780131865051
http://www.informit.com/store/user-mode-linux-9780131865051

REFERENCES 118

Fall, K. Network Emulation in the VINT/NS Simulator. In Proceedings IEEE Inter-

national Symposium on Computers and Communications (Cat. No.PR00250), pages

244–250. July 1999. doi:10.1109/ISCC.1999.780820.

Fan, W., Fernández, D., and Du, Z. Adaptive and Flexible Virtual Honeynet. In

Boumerdassi, S., Bouzefrane, S., and Renault, É., editors, Mobile, Secure, and

Programmable Networking, pages 1–17. Springer International Publishing, Cham, 2015.

ISBN 978-3-319-25744-0.

FAS Military Analysis Network. ES310 Introduction to Naval Weapons Engineering:

SONAR Systems. Online, January 1998. Last accessed: 2018-10-29.

URL https://fas.org/man/dod-101/navy/docs/es310/asw_sys/asw_

sys.htm

Fazio, A. D. and Minasi, P. VisualNetkit. Online, March 2009. Last accessed: 2018-

03-27.

URL https://code.google.com/archive/p/visual-netkit/

Fernandez, D., de Miguel, T., and Galan, F. Study and emulation of IPv6 Internet-

exchange-based addressing models. IEEE Communications Magazine, 42(1):105–112,

Jan 2004. ISSN 0163-6804. doi:10.1109/MCOM.2004.1262169.

Fernández, D., Cordero, A., Somavilla, J., Rodriguez, J., Corchero, A., Tar-

rafeta, L., and Galán, F. Distributed virtual scenarios over multi-host Linux envi-

ronments. In 2011 5th International DMTF Academic Alliance Workshop on Systems

and Virtualization Management: Standards and the Cloud (SVM), pages 1–8. Oct 2011.

doi:10.1109/SVM.2011.6096467.

Fillot, C. Cisco 7200 Simulator. Online, 2005. Last Accessed: 2019-03-18.

URL https://web.archive.org/web/20130430014653/http://www.

ipflow.utc.fr/blog/

Floyd, S. and Paxson, V. Difficulties in Simulating the Internet. IEEE/ACM

Transactions on Networking, 9(4):392–403, August 2001. ISSN 1063-6692. doi:

10.1109/90.944338.

Fyodor. Remote OS detection via TCP/IP Stack FingerPrinting. Phrack Magazine,

Volume 8(54), December 1998. Last accessed: 2018-10-29.

URL http://phrack.org/issues/54/9.html

https://fas.org/man/dod-101/navy/docs/es310/asw_sys/asw_sys.htm
https://fas.org/man/dod-101/navy/docs/es310/asw_sys/asw_sys.htm
https://code.google.com/archive/p/visual-netkit/
https://web.archive.org/web/20130430014653/http://www.ipflow.utc.fr/blog/
https://web.archive.org/web/20130430014653/http://www.ipflow.utc.fr/blog/
http://phrack.org/issues/54/9.html

REFERENCES 119

Gadge, J. and Patil, A. A. Port Scan Detection. In 16th IEEE International Con-

ference on Networks, pages 1–6. Dec 2008. ISSN 1531-2216. doi:10.1109/ICON.2008.

4772622.

Galan, F., Fernandez, D., Ruiz, J., Walid, O., and de Miguel, T. Use of vir-

tualization tools in computer network laboratories. In Information Technology Based

Proceedings of the FIfth International Conference onHigher Education and Training,

2004. ITHET 2004., pages 209–214. May 2004. doi:10.1109/ITHET.2004.1358165.

Gluck, S. E. The electronic discrete variable computer. Electrical Engineering, 72,

February 1953. doi:10.1109/ee.1953.6438502.

Goldberg, R. P. Architecture of Virtual Machines. In Proceedings of the Workshop

on Virtual Computer Systems, pages 74–112. ACM, New York, NY, USA, July 1973.

doi:10.1145/800122.803950.

Goldberg, R. P. Survey of Virtual Machine Research. Computer, 7(6):34–45, June

1974. ISSN 0018-9162. doi:10.1109/MC.1974.6323581.

Goldstine, H. H. and Goldstine, A. The Electronic Numerical Integrator and Com-

puter (ENIAC). Mathematical Tables and Other Aids to Computation, 2(15):97–110,

July 1946. doi:10.2307/2002620.

Graham, R. M. Protection in an Information Processing Utility. Communications of

the ACM, 11(5):365–369, May 1968. ISSN 0001-0782. doi:10.1145/363095.363146.

Grant, T. Modelling Network-Enabled C2 using Multiple Agents and Social Networks.

In Proceedings of the Social Networks and Multi-Agent Systems Symposium (SNAMAS-

09), pages 13–18. The Society for the Study of Artificial Intelligence and the Simulation

of Behaviour, Edinburgh, Scotland, April 2009.

Grant, T. and Kooter, B. Comparing OODA & Other Models as Operational View

C2 Architecture. International Command and Control Research and Technology Sym-

posium, June 2005.

Grant, T. J., Venter, H. S., and Eloff, J. H. P. Simulating Adversarial Interactions

Between Intruders and System Administrators Using OODA-RR. In Proceedings of the

2007 Annual Research Conference of the South African Institute of Computer Scientists

and Information Technologists on IT Research in Developing Countries, SAICSIT ’07,

pages 46–55. ACM, Port Elizabeth, South Africa, 2007. ISBN 978-1-59593-775-9. doi:

10.1145/1292491.1292497.

REFERENCES 120

Gries, S., Meyer, O., Ollesch, J., Wessling, F., Hesenius, M., and Gruhn, V. De-

veloping a Convenient and Fast to Deploy Simulation Environment for Cyber-Physical

Systems. In 2018 IEEE 38th International Conference on Distributed Computing Sys-

tems (ICDCS), pages 1551–1552. July 2018. ISSN 2575-8411. doi:10.1109/ICDCS.2018.

00166.

Gunduz, M. Z. and Das, R. A comparison of cyber-security oriented testbeds for

IoT-based smart grids. In 2018 6th International Symposium on Digital Forensic and

Security (ISDFS), pages 1–6. March 2018. doi:10.1109/ISDFS.2018.8355329.

Guo, L. and Lee, J. Y. B. On TCP Simulation Fidelity in Ns-2. In Proceedings of

the 14th ACM International Symposium on QoS and Security for Wireless and Mobile

Networks, Q2SWinet’18, pages 55–62. ACM, New York, NY, USA, 2018. ISBN 978-1-

4503-5963-4. doi:10.1145/3267129.3267132.

Hack Story. Savage. Online, August 2009. Last accessed 2019-10-23.

URL https://hackstory.net/Savage

Hallyn, S. E. uts namespaces: Introduction. Online, April 2006. Last accessed 2019-

10-23.

URL https://lwn.net/Articles/179345/

Hammad, E., Ezeme, M., and Farraj, A. Implementation and development of an

offline co-simulation testbed for studies of power systems cyber security and control

verification. International Journal of Electrical Power & Energy Systems, 104:817 –

826, 2019. ISSN 0142-0615. doi:10.1016/j.ijepes.2018.07.058.

Hammons, J. Windows Subsystem for Linux Overview. Online, April 2016. Last

accessed 2019-02-25.

URL https://blogs.msdn.microsoft.com/wsl/2016/04/22/windows-

subsystem-for-linux-overview/

Handigol, N., Heller, B., Jeyakumar, V., Lantz, B., and McKeown, N. Re-

producible Network Experiments Using Container-based Emulation. In Proceedings of

the 8th International Conference on Emerging Networking Experiments and Technolo-

gies, CoNEXT ’12, pages 253–264. ACM, Nice, France, 2012. ISBN 978-1-4503-1775-7.

doi:10.1145/2413176.2413206.

Hansman, S. A Taxonomy of Network and Computer Attack Methodologies. Master’s

thesis, University of Canterbury, Christchurch, New Zealand, November 2003.

https://hackstory.net/Savage
https://lwn.net/Articles/179345/
https://blogs.msdn.microsoft.com/wsl/2016/04/22/windows-subsystem-for-linux-overview/
https://blogs.msdn.microsoft.com/wsl/2016/04/22/windows-subsystem-for-linux-overview/

REFERENCES 121

Heidemann, J., Mills, K., and Kumar, S. Expanding confidence in network simula-

tions. IEEE Network, 15(5):58–63, Sep 2001. ISSN 0890-8044. doi:10.1109/65.953234.

Heilmann, F. and Fohler, G. Impact of Time-triggered Transmission Window Place-

ment on Rate-constrained Traffic in TTEthernet Networks. SIGBED Rev., 15(3):7–12,

August 2018. ISSN 1551-3688. doi:10.1145/3267419.3267420.

Heller, B. Reproducible Network Research with High-Fidelity Emulation. Ph.D. thesis,

Stanford University, 2013.

Hemminger, S. Network Emulation with NetEm. In Linux Conference Australia.

Canberra, Australia, April 2005. Last accessed: 2019-09-15.

URL https://www.rationali.st/blog/files/20151126-jittertrap/

netem-shemminger.pdf

Herbert, A. and Irwin, B. A kernel-driven framework for high performance internet

routing simulation. In 2013 Information Security for South Africa, pages 1–6. Aug

2013. ISSN 2330-9881. doi:10.1109/ISSA.2013.6641048.

Hjelmvik, E. Passive OS Fingerprinting. Online, November 2011. Last accessed: 2018-

10-29.

URL https://www.netresec.com/index.ashx?page=Blog&month=2011-

11&post=Passive-OS-Fingerprinting

Huang, X. W., Sharma, R., and Keshav, S. The ENTRAPID Protocol Development

Environment. In Proceedings of the Conference on Computer Communications (IEEE

Infocom), volume 3, pages 1107–1115. IEEE, New York, NY, United States of America,

March 1999. doi:10.1109/INFCOM.1999.751666.

Huber, K. E. Host-Based Systemic Network Obfuscation System for Windows. Master’s

thesis, Air Force Intitute of Technology, Wright-Patterson Air Force Base, Ohio, June

2011.

URL https://apps.dtic.mil/docs/citations/ADA545766

Hunter, S. O. A Framework for Malicious Host Fingerprinting Using Distributed Net-

work Sensors. Master’s thesis, Rhodes University, Grahamstown, South Africa, Decem-

ber 2017.

Hunter, S. O., Stalmans, E., Irwin, B., and Richter, J. Remote Fingerprinting

and Multisensor Data Fusion. In 2012 Information Security for South Africa, pages

1–8. IEEE, Aug 2012. ISSN 2330-9881. doi:10.1109/ISSA.2012.6320449.

https://www.rationali.st/blog/files/20151126-jittertrap/netem-shemminger.pdf
https://www.rationali.st/blog/files/20151126-jittertrap/netem-shemminger.pdf
https://www.netresec.com/index.ashx?page=Blog&month=2011-11&post=Passive-OS-Fingerprinting
https://www.netresec.com/index.ashx?page=Blog&month=2011-11&post=Passive-OS-Fingerprinting
https://apps.dtic.mil/docs/citations/ADA545766

REFERENCES 122

Hutchins, E. M., Cloppert, M. J., and Amin, R. M. Leading Issues in Information

Warfare and Security Research, volume 1, chapter Intelligence-driven Computer Net-

work Defense Informed by Analysis of Adversary Campaigns and Intrusion Kill Chains,

pages 78–104. Academic Publishing International, 2011. ISBN 978-1-908272-08-9.

Hwang, K., Fox, G. C., and Dongarra, J. J. Distributed and Cloud Computing:

From Parallel Processing to the Internet of Things. Morgan Kaufmann, 2013. ISBN

978-0-12-385880-1.

IBM. IBM Virtual Machine Facility/370: Introduction. Internation Business Machines

Corporation, 1st edition, July 1972a.

IBM. IBM Virtual Machine Facility/370: Planning Guide. Internation Business Machines

Corporation, 1st edition, August 1972b.

IEEE 802.1D-2004. Standard for Local and Metropolitan Area Networks: Media Access

Control (MAC) Bridges. June 2004. doi:10.1109/IEEESTD.2004.94569.

Iguchi-Cartigny, J. Netkit-NG. Online, 2014.

URL https://netkit-ng.github.io/

Intel Corporation. Intel® 64 and IA-32 Architecutures Software Developer’s Manual

Volume 3 (3A, 3B, 3C & 3D): System Programming Guide. Online, January 2019.

Last accessed: 2019-03-18.

URL https://www.intel.com/content/www/us/en/architecture-and-

technology/64-ia-32-architectures-software-developer-system-

programming-manual-325384.html

Irwin, B. A Network Telescope Perspective of the Conficker Outbreak. In 2012 In-

formation Security for South Africa, pages 1–8. IEEE, August 2012. ISSN 2330-9881.

doi:10.1109/ISSA.2012.6320455.

Irwin, B. A Source Analysis of the Conficker Outbreak from a Network Telescope.

SAIEE Africa Research Journal, 104(2):38–53, June 2013. ISSN 1991-1696. doi:10.

23919/SAIEE.2013.8531865.

Janczewski, L. J. and Colarik, A. M. Cyber Warfare and Cyber Terrorism, chapter

Introduction to Cyber Warfare and Cyber Terrorism, pages xiii–xxx. IGI Global, 2008.

ISBN 978-1-59140-991-5.

https://netkit-ng.github.io/
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html

REFERENCES 123

Johnson, D., Grubb, E., and Eide, E. Supporting Docker in Emulab-Based Network

Testbeds. In 11th USENIX Workshop on Cyber Security Experimentation and Test

(CSET 18). USENIX Association, Baltimore, MD, 2018.

URL https://www.usenix.org/conference/cset18/presentation/

johnson

Jones, M. T. Platform emulation with Bochs. Technical report, IBM developerWorks,

January 2011. Last accessed: 2019-03-10.

URL https://www.ibm.com/developerworks/library/l-bochs/l-

bochs-pdf.pdf

Joy, A. M. Performance Comparison Between Linux Containers and Virtual Machines. In

2015 International Conference on Advances in Computer Engineering and Applications,

pages 342–346. March 2015. doi:10.1109/ICACEA.2015.7164727.

Kamp, P. and Watson, R. N. M. Jails: Confining the omnipotent root. In Proceedings

of the 2nd International System Administration and Networking Conference (SANE

2000). Maastricht, The Netherlands, May 2000.

Kaur, R. Hardening Linux Operating System to Mask Against Fingerprinting. Master’s

thesis, Thapar University, July 2009.

King, S. T., Dunlap, G. W., and Chen, P. M. Operating System Support

for Virtual Machines. In Proceedings of the General Track: 2003 USENIX Annual

Technical Conference, pages 71–84. USENIX Association, USENIX Association, San

Antonio, TX, USA, June 2003. Last accessed: 2019-03-18.

URL https://www.usenix.org/legacy/events/usenix03/tech/king.

html

Knapp, E. D. and Langill, J. T. Industrial Network Security: Securing Critical In-

frastructure Networks for Smart Grid, SCADA, and Other Industrial Control Systems.

Syngress, August 2014. ISBN 978-1597496452.

Koons, F. and Lubkin, S. Conversion of Numbers from Decimal to Binary Form in the

EDVAC. Mathematical Tables and Other Aids to Computation, 3(26):427–431, 1949.

ISSN 08916837.

Kuman, S., Groš, S., and Mikuc, M. An experiment in using IMUNES and Conpot

to emulate honeypot control networks. In 2017 40th International Convention on In-

formation and Communication Technology, Electronics and Microelectronics (MIPRO),

pages 1262–1268. May 2017. doi:10.23919/MIPRO.2017.7973617.

https://www.usenix.org/conference/cset18/presentation/johnson
https://www.usenix.org/conference/cset18/presentation/johnson
https://www.ibm.com/developerworks/library/l-bochs/l-bochs-pdf.pdf
https://www.ibm.com/developerworks/library/l-bochs/l-bochs-pdf.pdf
https://www.usenix.org/legacy/events/usenix03/tech/king.html
https://www.usenix.org/legacy/events/usenix03/tech/king.html

REFERENCES 124

Lamps, J., Babu, V., Nicol, D. M., Adam, V., and Kumar, R. Temporal Inte-

gration of Emulation and Network Simulators on Linux Multiprocessors. ACM Trans-

actions on Modeling and Computer Simulation (TOMACS), 28(1):1:1–1:25, January

2018. ISSN 1049-3301. doi:10.1145/3154386.

Lantz, B., Heller, B., and McKeown, N. A Network in a Laptop: Rapid Prototyping

for Software-defined Networks. In Proceedings of the 9th ACM SIGCOMM Workshop

on Hot Topics in Networks, pages 19:1–19:6. ACM, Monterey, California, 2010. ISBN

978-1-4503-0409-2. doi:10.1145/1868447.1868466.

Lawton, K. P. Bochs: A Portable PC Emulator for Unix/X. Linux Journal, 1996(29),

September 1996. ISSN 1075-3583. Last accessed: 2019-03-18.

URL https://www.linuxjournal.com/article/1310

Lemay, A., Fernandez, J., and Knight, S. An Isolated Virtual Cluster for SCADA

Network Security Research. In Proceedings of the 1st International Symposium on ICS

& SCADA Cyber Security Research 2013, ICS-CSR 2013, pages 88–96. BCS, UK, 2013.

ISBN 978-1-780172-32-3.

Lindholm, T. and Yellin, F. The Java™ Virtual Machine Specification. Addison-

Wesley, 1997. ISBN 0-201-63452-X.

Lippmann, R., Fried, D., Piwowarski, K., and Streilein, W. Passive Operating

System Identification from TCP/IP Packet Headers. In ICDM Workshop on Data

Mining for Computer Security, pages 40–49. 2003.

URL https://www.biostat.wisc.edu/˜page/ICDM_Workshops/

dmsec03-workshop.pdf

Liu, K., Liu, P., Wang, C., and Fu, T. Remote Virtual Experiment and Simulation

Platform for IoT Related Courses. In 2018 13th International Conference on Computer

Science Education (ICCSE), pages 1–6. Aug 2018. ISSN 2473-9464. doi:10.1109/ICCSE.

2018.8468820.

Loddo, J.-V. and Saiu, L. Status Report: Marionnet or “How to Implement a Vir-

tual Network Laboratory in Six Months and Be Happy”. In Proceedings of the 2007

Workshop on Workshop on ML, ML ’07, pages 59–70. ACM, Freiburg, Germany, 2007.

ISBN 978-1-59593-676-9. doi:10.1145/1292535.1292545.

Loddo, J.-V. and Saiu, L. Marionnet: A Virtual Network Laboratory and Simulation

Tool. In Industry Track to The First International Conference on Simulation Tools and

https://www.linuxjournal.com/article/1310
https://www.biostat.wisc.edu/~page/ICDM_Workshops/dmsec03-workshop.pdf
https://www.biostat.wisc.edu/~page/ICDM_Workshops/dmsec03-workshop.pdf

REFERENCES 125

Techniques for Communications, Networks and Systems. ACM, 5 2008. doi:10.4108/

ICST.SIMUTOOLS2008.3102.

Lyon, G. F. Nmap Network Scanning: The Official Nmap Project Guide to Network

Discovery and Security Scanning. Insecure, USA, 2009. ISBN 9780979958717.

Marks, P. Dot-dash-diss: The gentleman hacker’s 1903 lulz. New Scientist,

212(2844/2845):48–49, December 2011. ISSN 70989-30690.

Mart́ınez-Casanueva, I. D. Development, Deployment and Analysis of a Software

Defined Networking Test Environment for Network Traffic Monitoring. Master’s thesis,

Universidad Politécnica de Madrid, February 2018.

URL http://oa.upm.es/49587/

Mazur, D. A Validation Method of a Real Network Device Model in the Riverbed Mod-

eler Simulator. In Computer Networks, pages 26–39. Springer International Publishing,

2018. ISBN 978-3-319-92459-5.

McClure, S., Scambray, J., and Kurtz, G. Hacking Exposed: Network Security

Secrets and Solutions. McGraw-Hill Education, 7th edition, August 2012. ISBN 978-

0071780285.

McGeer, R., Berman, M., Elliott, C., and Ricci, R., editors. The GENI Book.

Springer International Publishing, 2016. ISBN 978-3-319-33767-8. doi:10.1007/978-3-

319-33769-2.

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L.,

Rexford, J., Shenker, S., and Turner, J. OpenFlow: Enabling Innovation in

Campus Networks. SIGCOMM Computer Communication Review, 38(2):69–74, March

2008. ISSN 0146-4833. doi:10.1145/1355734.1355746.

Medeiros, J. P. S., Júnior, A. M. B., and Pires, P. M. Using Intelligent Techniques

to Extend the Applicability of Operating System Fingerprint Databases. Journal of

Information Assurance and Security, 5:554–560, 01 2010. ISSN 1554-1010.

Menage, P., Jackson, P., and Lameter, C. cgroups. Online, October 2008. Last

accessed: 2019-03-25.

URL https://www.kernel.org/doc/Documentation/cgroup-v1/

cgroups.txt

http://oa.upm.es/49587/
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt

REFERENCES 126

Mercan, S. Cloud Assisted Overlay Routing. In 2018 Tenth International Conference on

Ubiquitous and Future Networks (ICUFN), pages 410–414. July 2018. ISSN 2165-8536.

doi:10.1109/ICUFN.2018.8436951.

Microsoft Corporation. Windows Subsystem for Linux Documentation. Online,

November 2016. Last accessed 2019-10-23.

URL https://docs.microsoft.com/en-us/windows/wsl/about

Mirkovic, J., Bartlett, G., and Blythe, J. DEW: Distributed Experiment Work-

flows. In 11th USENIX Workshop on Cyber Security Experimentation and Test (CSET

18). USENIX Association, Baltimore, MD, 2018.

URL https://www.usenix.org/conference/cset18/presentation/

mirkovic

Mirkovic, J. and Benzel, T. Teaching Cybersecurity with DeterLab. IEEE Security

Privacy, 10(1):73–76, Jan 2012. ISSN 1540-7993. doi:10.1109/MSP.2012.23.

Mirkovic, J., Benzel, T. V., Faber, T., Braden, R., Wroclawski, J. T., and

Schwab, S. The DETER project: Advancing the science of cyber security experimen-

tation and test. In 2010 IEEE International Conference on Technologies for Homeland

Security (HST), pages 1–7. Nov 2010. doi:10.1109/THS.2010.5655108.

Mitchell, R. and Healy, B. A game theoretic model of computer network exploitation

campaigns. In 2018 IEEE 8th Annual Computing and Communication Workshop and

Conference (CCWC), pages 431–438. Jan 2018. doi:10.1109/CCWC.2018.8301630.

Muelas, D., Ramos, J., and de Vergara, J. E. L. Software-Driven Definition of

Virtual Testbeds to Validate Emergent Network Technologies. Information, 9(2):45,

February 2018. ISSN 2078-2489. doi:10.3390/info9020045.

Nachenberg, C. Hacking. Online, October 2002. Last accessed: 2019-01-14.

URL https://www.encyclopedia.com/science-and-technology/

computers-and-electrical-engineering/computers-and-computing/

hacking

Nussbaum, L. Testbeds Support for Reproducible Research. In Proceedings of the

Reproducibility Workshop, Reproducibility ’17, pages 24–26. ACM, New York, NY,

USA, 2017. ISBN 978-1-4503-5060-0. doi:10.1145/3097766.3097773.

Nussbaum, L. Experiment Data Management. In Global Experimentation for Future

Internet. Tokyo, Japan, October 2018. Last accessed: 2019-03-23.

URL https://hal.inria.fr/hal-01944472

https://docs.microsoft.com/en-us/windows/wsl/about
https://www.usenix.org/conference/cset18/presentation/mirkovic
https://www.usenix.org/conference/cset18/presentation/mirkovic
https://www.encyclopedia.com/science-and-technology/computers-and-electrical-engineering/computers-and-computing/hacking
https://www.encyclopedia.com/science-and-technology/computers-and-electrical-engineering/computers-and-computing/hacking
https://www.encyclopedia.com/science-and-technology/computers-and-electrical-engineering/computers-and-computing/hacking
https://hal.inria.fr/hal-01944472

REFERENCES 127

Ohrhallinger, K. P. Virtual Private Systems for FreeBSD. In Proceedings of EuroBS-

DCon 2010. Karlsruhe, Germany, October 2010. Last accessed: 2019-09-12.

URL https://2010.eurobsdcon.org/fileadmin/fe_user/klaus/

37R5uB.pdf

Ornaghi, A. and Valleri, M. Ettercap Home Page. 2019. Last accessed 2019-01-16.

URL http://www.ettercap-project.org/about.html

Pastor, V., Dı́az, G., and Castro, M. State-of-the-art simulation systems for

information security education, training and awareness. In IEEE Global Engineer-

ing Education Conference, pages 1907–1916. April 2010. ISSN 2165-9559. doi:

10.1109/EDUCON.2010.5492435.

Paxson, V., Allman, M., Dawson, S., Fenner, W., Griner, J., Heavens, I.,

Lahey, K., Semke, J., and Volz, B. Known TCP Implementation Problems. RFC

2525 (Informational), March 1999. doi:10.17487/RFC2525.

Pediaditakis, D., Rotsos, C., and Moore, A. W. Faithful Reproduction of Network

Experiments. In Proceedings of the Tenth ACM/IEEE Symposium on Architectures for

Networking and Communications Systems, ANCS ’14, pages 41–52. ACM, New York,

NY, USA, 2014. ISBN 978-1-4503-2839-5. doi:10.1145/2658260.2658274.

Penneman, N., Kudinskas, D., Rawsthorne, A., De Sutter, B., and De Boss-

chere, K. Formal Virtualization Requirements for the ARM Architecture. Journal of

Systems Architecture: the EUROMICRO Journal, 59(3):144–154, March 2013. ISSN

1383-7621. doi:10.1016/j.sysarc.2013.02.003.

URL http://dx.doi.org/10.1016/j.sysarc.2013.02.003

Petazzoni, J. and LeClaire, N. Introduction to Docker. November 2014.

URL https://www.usenix.org/conference/lisa14/conference-

program/presentation/turnbull

Peterson, L., Anderson, T., Culler, D., and Roscoe, T. A Blueprint for Introducing

Disruptive Technology into the Internet. SIGCOMM Computer Communication Review,

33(1):59–64, January 2003. ISSN 0146-4833. doi:10.1145/774763.774772.

Peterson, L., Bavier, A., and Bhatia, S. VICCI: A Programmable Cloud-Computing

Research Testbed. Techreport TR-912-11, Princeton University, September 2011. Last

accessed: 2019-03-23.

URL http://www.cs.princeton.edu/research/techreps/TR-912-11

https://2010.eurobsdcon.org/fileadmin/fe_user/klaus/37R5uB.pdf
https://2010.eurobsdcon.org/fileadmin/fe_user/klaus/37R5uB.pdf
http://www.ettercap-project.org/about.html
http://dx.doi.org/10.1016/j.sysarc.2013.02.003
https://www.usenix.org/conference/lisa14/conference-program/presentation/turnbull
https://www.usenix.org/conference/lisa14/conference-program/presentation/turnbull
http://www.cs.princeton.edu/research/techreps/TR-912-11

REFERENCES 128

Pfaff, B., Pettit, J., Koponen, T., Amidon, K., Casado, M., and Shenker, S.

Extending Networking into the Virtualization Layer. In Proceedings of the 8th ACM

Workshop on Hot Topics in Networks (HotNets-VIII). New York, NY, United States of

America, October 2009.

Pfaff, B., Pettit, J., Koponen, T., Jackson, E., Zhou, A., Rajahalme, J.,

Gross, J., Wang, A., Stringer, J., Shelar, P., Amidon, K., and Casado, M.

The Design and Implementation of Open vSwitch. In 12th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 15), pages 117–130. USENIX

Association, Oakland, CA, 2015. ISBN 978-1-931971-218.

URL https://www.usenix.org/conference/nsdi15/technical-

sessions/presentation/pfaff

Pike, R., Presotto, D., Thompson, K., Trickey, H., and Winterbottom, P. The

Use of Name Spaces in Plan 9. In Proceedings of the 5th ACM SIGOPS European

Workshop: Models and Paradigms for Distributed Systems Structuring. ACM, Mont

Saint-Michel, France, 1992. doi:10.1145/506378.506413.

Pizzonia, M. and Rimondini, M. Netkit: Easy Emulation of Complex Networks on

Inexpensive Hardware. In Proceedings of the 4th International Conference on Testbeds

and Research Infrastructures for the Development of Networks & Communities, Tri-

dentCom ’08, pages 7:1–7:10. Institute for Computer Sciences, Social-Informatics and

Telecommunications Engineering, ICST, Brussels, Belgium, Belgium, 2008. ISBN 978-

963-9799-24-0.

Plummer, D. An Ethernet Address Resolution Protocol: Or Converting Network Pro-

tocol Addresses to 48.bit Ethernet Address for Transmission on Ethernet Hardware.

RFC 826 (Internet Standard), November 1982. doi:10.17487/RFC0826. Updated by

RFCs 5227, 5494.

Popek, G. J. and Goldberg, R. P. Formal Requirements for Virtualizable Third

Generation Architectures. Commun. ACM, 17(7):412–421, July 1974. ISSN 0001-0782.

doi:10.1145/361011.361073.

Postel, J. Internet Control Message Protocol. RFC 792 (Internet Standard), September

1981. doi:10.17487/RFC0792. Updated by RFCs 950, 4884, 6633, 6918.

Price, D. and Tucker, A. Solaris Zones: Operating System Support for Consolidating

Commercial Workloads. In Proceedings of the 18th USENIX Large Installation System

https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff

REFERENCES 129

Administration Conference, pages 241–254. USENIX Association, Atlanta, GA, USA,

November 2004. Last accessed: 2019-03-18.

Pujeri, U. and Palanisamy, V. Survey of Various Open Source Network Simulators. In-

ternational Journal of Science and Research (IJSR), 3(12):2064–2079, December 2014.

ISSN 2319-7064.

Puljiz, Z. and Mikuc, M. IMUNES Based Distributed Network Emulator. In 2006

International Conference on Software in Telecommunications and Computer Networks,

pages 198–203. Sept 2006. doi:10.1109/SOFTCOM.2006.329743.

Purdy, G. N. Linux iptables Pocket Reference. O’Reilly, September 2004. ISBN 978-

0596005696.

Qu, W. Congestion Control Tuning of the QUIC Transport Layer Protocol. Bachelor’s

thesis, Universitat Politecnica de Catalunya, April 2018.

Queiroz, C., Mahmood, A., Hu, J., Tari, Z., and Yu, X. Building a SCADA

Security Testbed. In 2009 Third International Conference on Network and System

Security, pages 357–364. Oct 2009. doi:10.1109/NSS.2009.82.

Rampfl, S. Network Simulation and its Limitations. In Carle, G., Pahl, M.-O.,

Raumer, D., Schwaighofer, L., Baumgarten, U., and Sollner, C., editors,

Proceedings of the Seminars Future Internet (FI), Innovative Internet Technologies and

Mobile Communications (IITM), and Autonomous Communication Networks (ACN),

pages 57–64. Chair for Network Architectures and Services Department of Computer

Science, Technische Universität München, Munich, Germany, August 2013.

URL https://www.net.in.tum.de/fileadmin/TUM/NET/NET-2013-08-

1.pdf

Rash, M. Detecting Suspect Traffic. Linux Journal, 2001(91):22–25, November 2001.

ISSN 1075-3583.

Richardson, D. W., Gribble, S. D., and Kohno, T. The Limits of Automatic

OS Fingerprint Generation. In Proceedings of the 3rd ACM Workshop on Artificial

Intelligence and Security, AISec ’10, pages 24–34. ACM, Chicago, IL, USA, 2010. ISBN

978-1-4503-0088-9. doi:10.1145/1866423.1866430.

Riga, N., Thomas, V., Maglaris, V., Grammatikou, M., and Anifantis, E.

Virtual Laboratories. In Proceedings of the 7th International Conference on Computer

Supported Education - Volume 1, CSEDU 2015, pages 516–521. SCITEPRESS - Science

https://www.net.in.tum.de/fileadmin/TUM/NET/NET-2013-08-1.pdf
https://www.net.in.tum.de/fileadmin/TUM/NET/NET-2013-08-1.pdf

REFERENCES 130

and Technology Publications, Lda, Portugal, 2015. ISBN 978-989-758-107-6. doi:10.

5220/0005496105160521.

Rimondini, M. Emulation of Computer Networks with Netkit. Technical Report

RT-DIA-113-2007, Dipartimento di Informatica e Automazione, Università degli Studi

Roma Tre, Via della Vasca Navale, 79 – 00146 Roma, Italy, January 2007.

Riondato, M. FreeBSD Handbook, chapter 14: Jails. 2020. Last accessed: 2020-01-03.

URL https://www.freebsd.org/doc/handbook/

Rosen, R. Resource Management: Linux Kernel namespaces and cgroups. Online, May

2013. Last accessed: 2019-03-18.

URL www.haifux.org/lectures/299/netLec7.pdf

Roualland, G. and Saffroy, J.-M. IP Personality. 2002.

URL http://ippersonality.sourceforge.net

Salame, W. How to use Ettercap. Online, April 2019. Last accessed 2019-10-23.

URL https://www.kalitut.com/2019/04/how-to-use-ettercap.html

Salopek, D., Vasić, V., and Mikuc, M. Security research and learning environment

based on scalable network emulation. Tehnički vjesnik: znanstveno-stručni časopis

tehničkih fakulteta Sveučilǐsta u Osijeku, 24(Supplement 2):535, 2017.

Saunders, J. H. The Case for Modeling and Simulation of Information Security. Online,

October 2001. Last accessed: 2019-03-23.

URL http://www.johnsaunders.com/papers/securitysimulation.htm

Schmidt, M., Stovkmayer, A., Heimgaertner, F., and Menth, M. A Semi-

Virtualized Testbed Cluster with a Centralized Server for Networking Education. In

2018 30th International Teletraffic Congress (ITC 30), volume 01, pages 200–208. Sep.

2018. doi:10.1109/ITC30.2018.00038.

Schroeder, M. D. and Saltzer, J. H. A Hardware Architecture for Implementing

Protection Rings. Communications of the ACM, 15(3):157–170, March 1972. ISSN

0001-0782. doi:10.1145/361268.361275.

Schultze, E. Thinking Like a Hacker. Online, March 2002. Last accessed: 2019-03-24.

URL http://pdf.textfiles.com/security/thinkhacker.pdf

Sharan, R. The Five Stages of Ethical Hacking. Online, December 2010. Last accessed:

2019-03-24.

https://www.freebsd.org/doc/handbook/
www.haifux.org/lectures/299/netLec7.pdf
http://ippersonality.sourceforge.net
https://www.kalitut.com/2019/04/how-to-use-ettercap.html
http://www.johnsaunders.com/papers/securitysimulation.htm
http://pdf.textfiles.com/security/thinkhacker.pdf

REFERENCES 131

URL http://hack-o-crack.blogspot.com/2010/12/five-stages-of-

ethical-hacking.html

Sharif, M. and Sadeghi-Niaraki, A. Ubiquitous Sensor Network Simulation and

Emulation Environments: A Survey. Journal of Network and Computer Applications,

93:150–181, 2017. ISSN 1084-8045. doi:10.1016/j.jnca.2017.05.009.

URL https://www.sciencedirect.com/science/article/pii/

S1084804517302059

Sharma, S., Hussain, A., and Saran, H. Towards repeatability & verifiability in

networking experiments: A stochastic framework. Journal of Network and Computer

Applications, 81:12 – 23, 2017. ISSN 1084-8045. doi:10.1016/j.jnca.2016.07.001.

Shuja, J., Gani, A., Bilal, K., Khan, A. U. R., Madani, S. A., Khan, S. U.,

and Zomaya, A. Y. A Survey of Mobile Device Virtualization: Taxonomy and State

of the Art. ACM Computing Surveys, 49(1):1:1–1:36, April 2016. ISSN 0360-0300.

doi:10.1145/2897164.

Sivaramakrishnan, S. R., Mikovic, J., Kannan, P. G., Choon, C. M., and

Sklower, K. Enabling SDN Experimentation in Network Testbeds. In Proceedings

of the ACM International Workshop on Security in Software Defined Networks #38;

Network Function Virtualization, SDN-NFVSec ’17, pages 7–12. ACM, New York, NY,

USA, 2017. ISBN 978-1-4503-4908-6. doi:10.1145/3040992.3040996.

Smith, J. E. and Nair, R. The Architecture of Virtual Machines. Computer, 38(5):32–

38, May 2005. ISSN 0018-9162. doi:10.1109/MC.2005.173.

Song, J., Cadar, C., and Pietzuch, P. SYMBEXNET: Testing Network Proto-

col Implementations with Symbolic Execution and Rule-Based Specifications. IEEE

Transactions on Software Engineering, 40(7):695–709, July 2014. ISSN 0098-5589. doi:

10.1109/TSE.2014.2323977.

Sophos. Sophos UTM: Understanding Portscan Detection. Online, May 2018. Last

accessed: 2018-10-29.

URL https://community.sophos.com/kb/en-us/115153

Spangler, R. Analysis of Remote Active Operating System Fingerprinting Tools.

Technical report, University of Wisconsin - Whitewater, May 2003. Last accessed:

2019-03-24.

URL https://www.cs.bgu.ac.il/˜denat/documents/analysis_

operating_system.pdf

http://hack-o-crack.blogspot.com/2010/12/five-stages-of-ethical-hacking.html
http://hack-o-crack.blogspot.com/2010/12/five-stages-of-ethical-hacking.html
https://www.sciencedirect.com/science/article/pii/S1084804517302059
https://www.sciencedirect.com/science/article/pii/S1084804517302059
https://community.sophos.com/kb/en-us/115153
https://www.cs.bgu.ac.il/~denat/documents/analysis_operating_system.pdf
https://www.cs.bgu.ac.il/~denat/documents/analysis_operating_system.pdf

REFERENCES 132

Spitzner, L. Passive Fingerprinting. Online, May 2000. Last accessed: 2019-03-24.

URL https://www.symantec.com/connect/articles/passive-

fingerprinting

Stopforth, R. Techniques and Countermeasures of TCP/IP OS Fingerprinting on Linux

Systems. Master’s thesis, University of KwaZulu-Natal, December 2007.

Swart, I. P. Pro-active Visualization of Cyber Security on a National Level: A South

African Case Study. Ph.D. thesis, Rhodes University, Grahamstown, South Africa,

January 2015.

URL http://research.ict.ru.ac.za/SNRG/Theses/Swart%202015%

20Phd.pdf

Syed, A. Realistic Traffic Shaping in the Dummynet Link Emulator. Master’s thesis,

University of Utah, 2014.

Syed, A. and Ricci, R. Realistic Packet Reordering for Network Emulation and Sim-

ulation. In Proceedings of the 11th ACM Conference on Emerging Networking Exper-

iments and Technologies, CoNEXT ’15, pages 25:1–25:7. ACM, New York, NY, USA,

2015. ISBN 978-1-4503-3412-9. doi:10.1145/2716281.2836110.

Tanabe, K., Hosoya, R., and Saito, T. Combining Features in Browser Finger-

printing. In Advances on Broadband and Wireless Computing, Communication and

Applications, pages 671–681. Springer International Publishing, 2019. ISBN 978-3-030-

02613-4.

Teumim, D. J. Industrial Network Security. International Society of Automation, 2nd

edition, January 2010. ISBN 978-1-936-00707-3.

Thompson, M. F. and Irvine, C. E. Individualizing Cybersecurity Lab Exercises

with Labtainers. IEEE Security & Privacy, 16(2):91–95, March 2018. ISSN 1540-7993.

doi:10.1109/MSP.2018.1870862.

Torvalds, L. Linux 5.0. Online, March 2019. Last accessed 2019-10-23.

URL https://lkml.org/lkml/2019/3/3/236

Torvals, L. Linux 4.0-rc1 out.. Online, February 2015. Last accessed 2019-10-23.

URL http://lkml.iu.edu/hypermail/linux/kernel/1502.2/04059.

html

Torvals, L. Linux 4.9. Online, December 2016. Last accessed 2019-10-23.

URL https://lkml.org/lkml/2016/12/11/102

https://www.symantec.com/connect/articles/passive-fingerprinting
https://www.symantec.com/connect/articles/passive-fingerprinting
http://research.ict.ru.ac.za/SNRG/Theses/Swart%202015%20Phd.pdf
http://research.ict.ru.ac.za/SNRG/Theses/Swart%202015%20Phd.pdf
https://lkml.org/lkml/2019/3/3/236
http://lkml.iu.edu/hypermail/linux/kernel/1502.2/04059.html
http://lkml.iu.edu/hypermail/linux/kernel/1502.2/04059.html
https://lkml.org/lkml/2016/12/11/102

REFERENCES 133

Trowbridge, C. An Overview of Remote Operating System Fingerprinting. Online,

July 2003. Last accessed: 2019-03-24.

URL https://www.sans.org/reading-room/whitepapers/testing/

overview-remote-operating-system-fingerprinting-1231

Turkey, J. W. Exploratory Data Analysis. Addison-Wesley Publishing Company, 1977.

ISBN 978-0201076165.

Türpe, S. and Eichler, J. Testing Production Systems Safely: Common Precautions in

Penetration Testing. In 2009 Testing: Academic and Industrial Conference - Practice

and Research Techniques, pages 205–209. September 2009. doi:10.1109/TAICPART.

2009.17.

Tutănescu, I. and Sofron, E. Anatomy and Types of Attacks Against Computer

Networks. In Proceedings of the Second RoEduNet International Conference, pages

264–270. June 2003. Last accessed: 2019-03-24.

URL http://193.226.6.174/roedunet2003/html/pgid66_site_EN.

html

Urdaneta, M., Lemay, A., Saunier, N., and Fernandez, J. A Cyber-Physical

Testbed for Measuring the Impacts of Cyber Attacks on Urban Road Networks. In

Staggs, J. and Shenoi, S., editors, Critical Infrastructure Protection XII, pages 177–

196. Springer International Publishing, 2018. ISBN 978-3-030-04537-1.

Vahdat, A., Yocum, K., Walsh, K., Mahadevan, P., Kostić, D., Chase, J., and

Becker, D. Scalability and Accuracy in a Large-scale Network Emulator. SIGOPS

Oper. Syst. Rev., 36(SI):271–284, December 2002. ISSN 0163-5980. doi:10.1145/844128.

844154.

URL http://doi.acm.org/10.1145/844128.844154

van Heerden, R., Pieterse, H., Burke, I., and Irwin, B. Developing a Virtualised

Testbed Environment in Preparation for testing of Network Based Attacks. In 2013

International Conference on Adaptive Science and Technology, pages 1–8. Nov 2013.

ISSN 2326-9448. doi:10.1109/ICASTech.2013.6707509.

van Heerden, R. P. A Formalised Ontology for Network Attack Classification. Ph.D.

thesis, Rhodes University, Grahamstown, South Africa, 2014.

Vaughan-Nichols, S. J. New Approach to Virtualization Is a Lightweight. Computer,

39(11):12–14, Nov 2006. ISSN 0018-9162. doi:10.1109/MC.2006.393.

https://www.sans.org/reading-room/whitepapers/testing/overview-remote-operating-system-fingerprinting-1231
https://www.sans.org/reading-room/whitepapers/testing/overview-remote-operating-system-fingerprinting-1231
http://193.226.6.174/roedunet2003/html/pgid66_site_EN.html
http://193.226.6.174/roedunet2003/html/pgid66_site_EN.html
http://doi.acm.org/10.1145/844128.844154

REFERENCES 134

Veksler, V. D., Buchler, N., Hoffman, B. E., Cassenti, D. N., Sample, C.,

and Sugrim, S. Simulations in Cyber-Security: A Review of Cognitive Modeling of

Network Attackers, Defenders, and Users. Frontiers in Psychology, 9(691), 2018. ISSN

1664-1078. doi:10.3389/fpsyg.2018.00691.

Veysset, F., Courtay, O., Heen, O., Team, I. et al. New Tool and Technique for

Remote Operating System Fingerprinting. Intranode Software Technologies, 4, 2002.

von Neumann, J. First Draft of a Report on the EDVAC. Technical Report, University

of Pennsylvania, June 1945.

Vykopal, J., Vizvary, M., Oslejsek, R., Celeda, P., and Tovarnak, D. Lessons

Learned from Complex Hands-on Defence Exercises in a Cyber Range. In 2017 IEEE

Frontiers in Education Conference, pages 1–8. Oct 2017. doi:10.1109/FIE.2017.8190713.

Wang, K. Frustrating OS Fingerprinting with Morph, 2004. DEFCON 12.

URL https://www.defcon.org/images/defcon-12/dc-12-

presentations/Wang/dc-12-wang.pdf

Wang, S. Y. and Kung, H. T. A Simple Methodology for Constructing Extensible

and High-Fidelity TCP/IP Network Simulators. In Proceedings of the Conference on

Computer Communications (IEEE Infocom), volume 3, pages 1134–1143. IEEE, New

York, NY, United States of America, March 1999. doi:10.1109/INFCOM.1999.751669.

Wette, P., Dräxler, M., and Schwabe, A. MaxiNet: Distributed emulation of

software-defined networks. In 2014 IFIP Networking Conference, pages 1–9. June 2014.

doi:10.1109/IFIPNetworking.2014.6857078.

White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M.,

Hibler, M., Barb, C., and Joglekar, A. An Integrated Experimental Environment

for Distributed Systems and Networks. SIGOPS Operating System Review, 36(SI):255–

270, December 2002. ISSN 0163-5980. doi:10.1145/844128.844152.

Wilk, M. B. and Gnanadesikan, R. Probability Plotting Methods for the Analysis

of Data. Biometrika, 55(1):1 – 17, March 1968. doi:10.1093/biomet/55.1.1.

Willems, C. and Meinel, C. Online Assessment for Hands-On Cyber Security

Training in a Virtual Lab. In Proceedings of the 2012 IEEE Global Engineering

Education Conference (EDUCON), pages 1–10. April 2012. ISSN 2165-9567. doi:

10.1109/EDUCON.2012.6201149.

https://www.defcon.org/images/defcon-12/dc-12-presentations/Wang/dc-12-wang.pdf
https://www.defcon.org/images/defcon-12/dc-12-presentations/Wang/dc-12-wang.pdf

REFERENCES 135

Wood, P. Trends in Cyber Attack Vectors. ITNOW, 60(2):40–41, May 2018. ISSN

1746-5702. doi:https://doi.org/10.1093/itnow/bwy049.

Xu, L., Huang, D., and Tsai, W. Cloud-Based Virtual Laboratory for Network

Security Education. IEEE Transactions on Education, 57(3):145–150, Aug 2014. ISSN

0018-9359. doi:10.1109/TE.2013.2282285.

Yan, L. and McKeown, N. Learning Networking by Reproducing Research Results.

SIGCOMM Comput. Commun. Rev., 47(2):19–26, May 2017. ISSN 0146-4833. doi:

10.1145/3089262.3089266.

Yarochkin, F. V., Arkin, O., Kydyraliev, M., Dai, S. Y., Huang, Y., and Kuo,

S. Y. Xprobe2++: Low Volume Remote Network Information Gathering Tool. In 2009

IEEE/IFIP International Conference on Dependable Systems Networks, pages 205–210.

June 2009. ISSN 1530-0889. doi:10.1109/DSN.2009.5270338.

Zalewski, M. p0f - Passive OS Fingerprinting Tool. Online, Jun 2000. Last accessed:

2019-01-16.

URL https://seclists.org/bugtraq/2000/Jun/141

Zec, M. BSD Network stack virtualization. In BSDCon Europe, volume 2. Amsterdam,

The Netherlands, Nov 2002.

Zec, M. Implementing a Clonable Network Stack in the FreeBSD Kernel. In Proceedings

of the FREENIX Track: 2003 USENIX Annual Technical Conference, pages 137–150.

USENIX Association, June 2003. Last accessed: 2019-03-18.

URL https://www.usenix.org/legacy/events/usenix03/tech/

freenix03/zec.html

Zec, M. and Mikuc, M. Operating System Support for Integrated Network Emulation

in IMUNES. In Proceedings of the 1st Workshop on Operating System and Architectural

Support for the On-Demand IT Infrastructure (OASIS). Boston, MA, USA, October

2004.

https://seclists.org/bugtraq/2000/Jun/141
https://www.usenix.org/legacy/events/usenix03/tech/freenix03/zec.html
https://www.usenix.org/legacy/events/usenix03/tech/freenix03/zec.html

Appendix A

ARP Delays in Ping Timings

The Address Resolution Protocol (ARP) (Plummer, 1982) was designed to help systems

translate between various network addressing methods available at the time to a “wire”

address, or more commonly the Media Access Control (MAC) address of the network

interface. In switched Local Area Networks (LANs), machines can be addressed directly

by the address of the network interface. The Address Resolution Protocol (ARP) assists

with translating Internet Protocol (IP) addresses to MAC addresses.

Listing A.1 shows an example ping between two machines on a switched network. The

first ping takes considerably more time to resolve than the remaining three. When the

first ping request (ICMP Type 8) is sent from the local machine, no translation exists

between the targeted IP address (10.0.0.11) and the MAC address of the machine’s

Network Interface Controller (NIC) (or simply stated, network card). If the local machine

was on a routed network, the request would have been sent to a default gateway, and the

gateway would have been responsible for forwarding the packet to the next hop in the

chain. A packet-by-packet account of the first 159ms, the time taken for the first ping to

resolve, is shown in Figure A.1.

Listing A.1: ARP Delay in ping RTT
1 $ ping -4 -c 4 10.0.0.11
2 PING 10.0.0.11 (10.0.0.11) 56(84) bytes of data.
3 64 bytes from 10.0.0.11: icmp_seq=1 ttl=128 time=159 ms
4 64 bytes from 10.0.0.11: icmp_seq=2 ttl=128 time=7.12 ms
5 64 bytes from 10.0.0.11: icmp_seq=3 ttl=128 time=7.63 ms
6 64 bytes from 10.0.0.11: icmp_seq=4 ttl=128 time=10.0 ms
7
8 --- 10.0.0.11 ping statistics ---
9 4 packets transmitted, 4 received, 0% packet loss, time 3004ms

10 rtt min/avg/max/mdev = 7.121/46.046/159.401/65.454 ms

A1

A2

Before the ping request can be sent, the local machine first has to resolve the MAC

address of the target host. Once the MAC address of the target has been resolved the

actual packet can be transmitted. Once the target machine has received the ping request,

a response to the request has to be sent. At this point in time, the target host knows the

IP address of the local machine, but not the MAC address. The remote machine resolves

the MAC address of the local machine using ARP. Once the MAC of the local machine

is known, the response (ICMP Type 0) is sent. At the end of the first 0.159ms, both the

local and remote machines have cached the IP to MAC translations. Subsequent pings

thus resolve significantly faster.

Figure A.1: Ping ARP Delay Message Sequence Diagram

The initial delay caused by ARP resolutions can have a negative impact on the metrics

for set of pings as was used with the ping latency tests (5.4.1). The long delay on the first

packet negatively influences the maximum and average statistics of ping runs. In order

to avoid these negative influences, for the ping latency tests static ARP entries were used

in emulated nodes.

Appendix B

Ping Latency Distribution Results

Section 5.4.2 showed a partial set of figures generated during exploratory statistical data

analysis of the ping latency distribution results. The full complement of figures that were

generated are presented in this appendix and a brief overview of the significance of each

set of figures is given.

Figure B.1 shows boxplots generated for both runs of the ping latency distribution tests.

These boxplots show that the middle 50% of timing distributions (P25 to P50) remain

consistent between runs.

Complementary to the boxplots are histograms. The histograms for the ping latency dis-

tribution tests (Figures B.2 and B.3) presents an estimate to the Probability Distribution

Function (PDF) for the data collected. The histograms were used to compare distribution

across runs, and shows that the distributions of ping latency timings remain consistent

between successive runs.

The final exploratory statistical data analysis tool used was Percentile-Percentile plots (P-

P Plots). These plots were used to test for correlation between the host and Container-

Based Network Emulators (CBNEs), and between pairings of CBNEs. If a P-P Plot

approaches a straight line, there is cause to assume a correlation between the data sets.

Figures B.4 and B.5 respectively show the P-P Plots for the Host-CBNE pairings for the

two runs. Both runs returned comparable plots and both showed no correlation. Figures

B.6 and B.7 shows the results for the two consecutive runs for CBNEs pairings that are

not correlated. Figures B.8 and B.9 shows the results for the two runs where the P-P

Plots approach a straight line.

B1

B2

 0.25

 0.3

 0.35

 0.4

Host CORE IMUNES MiniNet VNX LXC

 0.02

 0.04

 0.06

 0.08

 0.1

R
o
u
n
d

T
r
i
p

T
i
m
e

(
m
s
)

R
o
u
n
d

T
r
i
p

T
i
m
e

(
m
s
)

(a) Ping Latency Distribution Box Plots - Run 1

 0.25

 0.3

 0.35

 0.4

Host CORE IMUNES MiniNet VNX LXC

 0.02

 0.04

 0.06

 0.08

 0.1

R
o
u
n
d

T
r
i
p

T
i
m
e

(
m
s
)

R
o
u
n
d

T
r
i
p

T
i
m
e

(
m
s
)

(b) Ping Latency Distribution Box Plots - Run 2

Figure B.1: Ping Latency Distribution

B3

 0

 100

 200

 300

 400

 500

 600

0.25 0.3 0.35 0.4

F
r
e
q
u
e
n
c
y

Round Trip Time (ms)

(a) Host

 0

 100

 200

 300

 400

 500

 600

0.02 0.04 0.06 0.08 0.10

F
r
e
q
u
e
n
c
y

Round Trip Time (ms)

(b) CORE

 0

 100

 200

 300

 400

 500

 600

0.02 0.04 0.06 0.08 0.10

F
r
e
q
u
e
n
c
y

Round Trip Time (ms)

(c) IMUNES

 0

 100

 200

 300

 400

 500

 600

0.02 0.04 0.06 0.08 0.10

F
r
e
q
u
e
n
c
y

Round Trip Time (ms)

(d) MiniNet

 0

 100

 200

 300

 400

 500

 600

 700

 800

0.02 0.04 0.06 0.08 0.10

F
r
e
q
u
e
n
c
y

Round Trip Time (ms)

(e) VNX

 0

 100

 200

 300

 400

 500

 600

0.02 0.04 0.06 0.08 0.10

F
r
e
q
u
e
n
c
y

Round Trip Time (ms)

(f) LXC

Figure B.2: Ping Distribution Histograms - Run 1

B4

 0

 100

 200

 300

 400

 500

 600

0.25 0.3 0.35 0.4

F
r
e
q
u
e
n
c
y

Round Trip Time (ms)

(a) Host

 0

 100

 200

 300

 400

 500

 600

0.02 0.04 0.06 0.08 0.10

F
r
e
q
u
e
n
c
y

Round Trip Time (ms)

(b) CORE

 0

 100

 200

 300

 400

 500

 600

0.02 0.04 0.06 0.08 0.10

F
r
e
q
u
e
n
c
y

Round Trip Time (ms)

(c) IMUNES

 0

 100

 200

 300

 400

 500

 600

0.02 0.04 0.06 0.08 0.10

F
r
e
q
u
e
n
c
y

Round Trip Time (ms)

(d) MiniNet

 0

 100

 200

 300

 400

 500

 600

 700

 800

0.02 0.04 0.06 0.08 0.10

F
r
e
q
u
e
n
c
y

Round Trip Time (ms)

(e) VNX

 0

 100

 200

 300

 400

 500

 600

0.02 0.04 0.06 0.08 0.10

F
r
e
q
u
e
n
c
y

Round Trip Time (ms)

(f) LXC

Figure B.3: Ping Distribution Histograms - Run 2

B5

0.02

0.04

0.06

0.08

0.1

0.25 0.3 0.35 0.4

C
O

R
E

Host

(a) CORE

0.02

0.04

0.06

0.08

0.1

0.25 0.3 0.35 0.4

I
M

U
N

E
S

Host

(b) IMUNES

0.02

0.04

0.06

0.08

0.1

0.25 0.3 0.35 0.4

M
i

n
i

N
e

t

Host

(c) MiniNet

0.02

0.04

0.06

0.08

0.1

0.25 0.3 0.35 0.4

V
N

X

Host

(d) VNX

0.02

0.04

0.06

0.08

0.1

0.25 0.3 0.35 0.4

L
X

C

Host

(e) LXC

Figure B.4: Ping Distribution P-P Plots - CBNE to Host - Run 1

B6

0.02

0.04

0.06

0.08

0.1

0.25 0.3 0.35 0.4

C
O

R
E

Host

(a) CORE

0.02

0.04

0.06

0.08

0.1

0.25 0.3 0.35 0.4

I
M

U
N

E
S

Host

(b) IMUNES

0.02

0.04

0.06

0.08

0.1

0.25 0.3 0.35 0.4

M
i

n
i

N
e

t

Host

(c) MiniNet

0.02

0.04

0.06

0.08

0.1

0.25 0.3 0.35 0.4

V
N

X

Host

(d) VNX

0.02

0.04

0.06

0.08

0.1

0.25 0.3 0.35 0.4

L
X

C

Host

(e) LXC

Figure B.5: Ping Distribution P-P Plots - CBNE to Host - Run 2

B7

0.02

0.04

0.06

0.08

0.1

0.02 0.04 0.06 0.08 0.1

I
M

U
N

E
S

CORE

(a) CORE - IMUNES

0.02

0.04

0.06

0.08

0.1

0.02 0.04 0.06 0.08 0.1

M
i

n
i

N
e

t

IMUNES

(b) IMUNES - MiniNet

0.02

0.04

0.06

0.08

0.1

0.02 0.04 0.06 0.08 0.1

V
N

X

CORE

(c) CORE - VNX

0.02

0.04

0.06

0.08

0.1

0.02 0.04 0.06 0.08 0.1

L
X

C

CORE

(d) CORE - LXC

0.02

0.04

0.06

0.08

0.1

0.02 0.04 0.06 0.08 0.1

V
N

X

MiniNet

(e) MiniNet - VNX

0.02

0.04

0.06

0.08

0.1

0.02 0.04 0.06 0.08 0.1

L
X

C

MiniNet

(f) MiniNet - LXC

Figure B.6: Ping Distribution P-P Plots - Uncorrelated CBNEs - Run 1

B8

0.02

0.04

0.06

0.08

0.1

0.02 0.04 0.06 0.08 0.1

I
M

U
N

E
S

CORE

(a) CORE - IMUNES

0.02

0.04

0.06

0.08

0.1

0.02 0.04 0.06 0.08 0.1

M
i

n
i

N
e

t

IMUNES

(b) IMUNES - MiniNet

0.02

0.04

0.06

0.08

0.1

0.02 0.04 0.06 0.08 0.1

V
N

X

CORE

(c) CORE - VNX

0.02

0.04

0.06

0.08

0.1

0.02 0.04 0.06 0.08 0.1

L
X

C

CORE

(d) CORE - LXC

0.02

0.04

0.06

0.08

0.1

0.02 0.04 0.06 0.08 0.1

V
N

X

MiniNet

(e) MiniNet - VNX

0.02

0.04

0.06

0.08

0.1

0.02 0.04 0.06 0.08 0.1

L
X

C

MiniNet

(f) MiniNet - LXC

Figure B.7: Ping Distribution P-P Plots - Uncorrelated CBNEs - Run 2

B9

0.02

0.04

0.06

0.08

0.1

0.02 0.04 0.06 0.08 0.1

M
i

n
i

N
e

t

CORE

(a) CORE - MiniNet

0.02

0.04

0.06

0.08

0.1

0.02 0.04 0.06 0.08 0.1

V
N

X

IMUNES

(b) IMUNES - VNX

0.02

0.04

0.06

0.08

0.1

0.02 0.04 0.06 0.08 0.1

L
X

C

IMUNES

(c) IMUNES - LXC

0.02

0.04

0.06

0.08

0.1

0.02 0.04 0.06 0.08 0.1

L
X

C

VNX

(d) VNX - LXC

Figure B.8: Ping Distribution P-P Plots - Correlated CBNEs - Run 1

B10

0.02

0.04

0.06

0.08

0.1

0.02 0.04 0.06 0.08 0.1

M
i

n
i

N
e

t

CORE

(a) CORE - MiniNet

0.02

0.04

0.06

0.08

0.1

0.02 0.04 0.06 0.08 0.1

V
N

X

IMUNES

(b) IMUNES - VNX

0.02

0.04

0.06

0.08

0.1

0.02 0.04 0.06 0.08 0.1

L
X

C

IMUNES

(c) IMUNES - LXC

0.02

0.04

0.06

0.08

0.1

0.02 0.04 0.06 0.08 0.1

L
X

C

VNX

(d) VNX - LXC

Figure B.9: Ping Distribution P-P Plots - Correlated CBNEs - Run 2

Appendix C

Interpreting Fingerprints

This appendix serves as a guide to understanding how fingerprints are used to store fea-

tures extracted by Operating System (OS) fingerprinting utilities. Fingerprint “decoding”

guides are provided for p0f, ettercap, xprobe2, and SinFP3. No guide is provided

for nmap. The fingerprinting methods and structure of an nmap fingerprint is covered

extensively in Lyon (2009, Chapter 8 - Remote OS Detection).

C.1 p0f Fingerprint Details

Fingerprints for p0f v3.09b are stored in human readable form and are contained in the

p0f.fp file. Fingerprint entries are specified by a label indicating the OS and a signature

containing the fingerprint. A description of each field in the fingerprint is provided in Table

C.1. Signatures in the database have the following structure:

label = type:class:name:flavor

sig = ver:ittl:olen:mss:wsize,scale:olayout:quirks:pclass

The database entry for Mac OS X is shown in Listing C.1. In the example entry there

are seven different signatures for Mac OS X, illustrating the how an OS fingerprint can

vary based on connection parameters for different protocols.

C1

C2

Table C.1: p0f v3.09b Passive Fingerprint Structurea

Field Description

type The type of signature. s for specific, g for generic

class The family of the OS

name The common or human readable name of the OS

flavor The version of the OS

ver The Internet Protocol (IP) version for the fingerprint, * denotes both IPv4 and IPv6

ittl The IP Time To Live (TTL)

olen Length in bytes for Transmission Control Protocol (TCP) options

mss The TCP Maximum Segment Size (MSS) TCP option, * denotes variation dependant on sender network

wsize The TCP Window Size

scale The Windows Scale TCP option

olayout Ordering of TCP options

quirks A list of inconsistencies (“quirks”) found in intercepted packets

pclass The class of packet payload

a Adapted from http://lcamtuf.coredump.cx/p0f3/README

Listing C.1: p0f v3.09b Fingerprint Entry for Mac OS X
1 ; --------
2 ; Mac OS X
3 ; --------
4
5 label = s:unix:Mac OS X:10.x
6 sig = *:64:0:*:65535,0:mss,nop,ws:df,id+:0
7 sig = *:64:0:*:65535,0:mss,sok,eol+1:df,id+:0
8 sig = *:64:0:*:65535,0:mss,nop,nop,ts:df,id+:0
9 sig = *:64:0:*:65535,0:mss,nop,ws,sok,eol+1:df,id+:0

10 sig = *:64:0:*:65535,0:mss,nop,ws,nop,nop,ts:df,id+:0
11 sig = *:64:0:*:65535,0:mss,nop,nop,ts,sok,eol+1:df,id+:0
12 sig = *:64:0:*:65535,0:mss,nop,ws,nop,nop,ts,sok,eol+1:df,id+:0

As an example of how to interpret a signature, the last signature entry for Mac OS X

will be used. The label for the entry (s:unix:Mac OS X:10.x) indicates that it is a

specific (s) signature and that the class of OS is Unix-like (unix). The common name

of the OS is Mac OS X and cover all versions (10.x). The last signature for the Mac OS

X entry is unpacked in Table C.2.

Table C.2: p0f v3.09b Passive Fingerprint Decoding for Mac OS X

Field Value Description

ver * The signature is for both IPv4 and IPv6

ittl 64 The initial TTL is 64 hops

olen 0 IPv4 options length is 0

mss * Multiple MSS sizes are expected

wsize 65535 The windows size for connections is 65535 bytes

scale 0 The window scale is 0

olayout mss,nop,ws,nop,nop,ts,sok,eol+1 (discussed below)

quirks df,id+ The don’t fragment flag is set but the IPID is non-zero

pclass 0 The length of the payload is 0

http://lcamtuf.coredump.cx/p0f3/README

C3

The olayout field in the example contains a comma separated list of values. The ordering

of these values indicates the ordering of the TCP options in the analysed packets. For

the example signature the TCP options are shown in Table C.3.

Table C.3: p0f v3.09b TCP Options Decoding for Mac OS X

TCP Option Description

mss Maximum Segment Size (MSS)

nop No-option (padding)

ws Windows Scale

nop No-option (padding)

nop No-option (padding)

ts Timestamp

sok Selective Acknowledgement permitted

eol+1 Explicit end of option plus one No-option

For p0f v3.09b the olayout section of the fingerprint is considered the most imported

aspect of signatures. The options present as well as the ordering of the options is one of

the most reliable way to identify an OS or family of OSs. A full list of TCP options and

quirks that p0f can extract and identify can be found in section 5 of the p0f README1.

C.2 ettercap Fingerprint Details

Similar to p0f, ettercap (Ornaghi and Valleri, 2019) stores passive fingerprint infor-

mation in a human readable form. Each entry in the ettercap database2 consists of

eleven fields structured as WWWW:MSS:TTL:WS:S:N:D:T:F:LEN:OS. The description

of each field is shown in Table C.4.

Table C.4: ettercap v0.8.3 Passive Fingerprint Structurea

Field Description

WWWW The TCP Window Size

MSS The TCP MSS TCP option or MSS if it is unkown or omitted

TTL The IP TTL

WS The Windows Scale TCP option or WS if it is unkown or omitted

S 1 if the TCP Selective Acknowledgement (SACK) option is permitted, 0 otherwise

N 1 if the TCP options contain a No Option (NOP) byte, 0 otherwise

D 1 if the TCP Don’t Fragment (DF) flag is set, 0 otherwise

T 1 if the TCP timestamp is set, 0 otherwise

F S if the packet is a SYN packet, A if the packet is a SYN/ACK packet

LEN The length of the packet of LT if irrelevant or unknown

OS The name of the OS

a Adapted from the share/etter.finger.os2 source file

1http://lcamtuf.coredump.cx/p0f3/README
2https://github.com/Ettercap/ettercap/blob/master/share/etter.finger.os

http://lcamtuf.coredump.cx/p0f3/README

C4

As an example of how to “decode” a fingerprint, database entries for the Mac OS 9

operating system will be decoded. The Mac OS 9 operating system has two entries, one

for a SYN packet and one for a SYN/ACK packet. These entries are as follows:

FFFF:05B4:FF:01:0:1:1:0:A:30:Mac OS 9

FFFF:05B4:FF:01:0:1:1:0:S:30:Mac OS 9

For both entries all fields are the same except for the F field, which indicates the two

types of packets: A for a SYN/ACK packet and S for a SYN packet. Descriptions for the

fields that are the same for both packets is shown in Table C.5.

Table C.5: ettercap Passive Fingerprint Decoding for Mac OS 9

Field Value Description

WWWW FFFF The window size for TCP connections is 65535 bytes

MSS 05B4 The MSS for packets is 1460 bytes

TTL FF The initial TTL for packets is 255 hops

WS 01 The window scaling factor for TCP connections is set to 1

S 0 Selective Acknowledgement (SACK) is not permitted

N 1 TCP SYN and SYN/ACK packets contain No Option (NOP) bytes

D 1 Packets intended for the system must not be fragmented

T 0 No timestamp is present in TCP packets

LEN 30 The length for both the SYN and SYN/ACK packets is 48 bytes

OS Mac OS 9 The name of the OS is Mac OS 9

C.3 xprobe2 Fingerprint Details

Fingerprints for xprobe2 (Yarochkin et al., 2009) are split into separate sections for

each module that produces the specific section. As with p0f and ettercap, the finger-

print database for xprobe2 is human readable and stored in the etc/xprobe2.conf

text file. xprobe2 produces a complete fingerprint using eight modules and primarily

relies on the Internet Control Message Protocol (ICMP) protocol for OS identification.

Descriptions for the eight modules used to generate a fingerprint are shown in Table C.6:

Table C.6: xprobe2 v0.3 Probe Modulesa

Module Description

Module A The ICMP Echo test extracts specific features from an ICMP Echo reply

Module B, C, & D These modules test whether or not a response is received for ICMP timestamp, ICMP address

mask, and ICMP information reply probes

Module E The ICMP port unreachable test attempts to solicit an ICMP Type 3 Code 3 response by sending

a UDP request to a closed UDP port and tests if the response matches the request

Module F The TCP SYN/ACK response test extract features from a response on an open TCP port

Module G The TCP RST/ACK response test extract features from a response on an closed TCP port

a Adapted from the xprobe2 docs/new-fingerprints-howto.txt source file

C5

A sample fingerprint from the xprobe2 database for Mac OS 10.4.1 is shown in List-

ing C.2. An example “decoding” of the fingerprint is shown in Table C.7. The results

for Module B and Module C are shown in the fingerprint though both indicated that

no response was received. For these modules xprobe2 inserts default values into the

fingerprint.

C.4 SinFP3 Fingerprint Details

SinFP3 (Auffret, 2010) is the only fingerprinting utility utilised in testing that can gener-

ate both passive and active fingerprints. SinFP3 generates a single fingerprint for passive

fingerprinting and three fingerprints (based on three probes) for active fingerprinting. A

single fingerprint structure is used for all fingerprints and is shown in Table C.8.

Table C.8: SinFP3 Fingerprint Structure

Field Description

BFa Comparison of binary flags between request and response packets

TF TCP flags of response packet

TWS TCP windows size of connection

TO TCP options and ordering of response packet

MSS MSS for the connection

TWSF TCP window scaling factor

TOL Length of TCP options of the response packetb

a Active fingerprints only
b For passive fingerprinting, this is for the intercepted packet

Fingerprint decoding examples for SinFP3 will be done for both passive and active finger-

prints. An example fingerprint for Mac OS X 10 extracted from the SinFP3 fingerprint

database is shown below:

F0x02 W65535 O0204ffff0103....040200003 M1460 S1 L24

For active fingerprint decoding all three generated fingerprints will be used. Below is an

example fingerprint for Mac OS X 10.5 is shown below:

S1: B11113 F0x12 W65535 O0204ffff M1460 S0 L4

S2: F0x12 W65535 O0204ffff01034144040200004 M1460 S3 L24

S3: B11020 F0x04 W0 O0 M0 S0 L0
3Full TCP Options: O0204ffff010303ff0101080a................04020000
4Full TCP Options: O0204ffff010303ff0101080affffffff4445414404020000

C6

Listing C.2: xprobe2 v0.3 Fingerprint Entry for Mac OS X 10.4.1
fingerprint {

OS_ID = "Apple Mac OS X 10.4.1"
#Entry inserted to the database by: Ofir Arkin (ofir@sys-security.com)
#Entry contributed by: Ofir Arkin (ofir@sys-security.com)
#Date: 6 June 2005
#Modified:

#Module A [ICMP ECHO Probe]
icmp_echo_reply = y
icmp_echo_code = !0
icmp_echo_ip_id = !0
icmp_echo_tos_bits = !0
icmp_echo_df_bit = 1
icmp_echo_reply_ttl = <64

#Module B [ICMP Timestamp Probe]
icmp_timestamp_reply = n
icmp_timestamp_reply_ttl = <64
icmp_timestamp_reply_ip_id = !0

#Module C [ICMP Address Mask Request Probe]
icmp_addrmask_reply = n
icmp_addrmask_reply_ttl = <255
icmp_addrmask_reply_ip_id = !0

#Module E [UDP -> ICMP Unreachable probe]
#IP_Header_of_the_UDP_Port_Unreachable_error_message
icmp_unreach_reply = y
icmp_unreach_echoed_dtsize = 8
icmp_unreach_reply_ttl = <64
icmp_unreach_precedence_bits = 0
icmp_unreach_df_bit = 1
icmp_unreach_ip_id = !0

#Original_data_echoed_with_the_UDP_Port_Unreachable_error_message
icmp_unreach_echoed_udp_cksum = 0
icmp_unreach_echoed_ip_cksum = OK
icmp_unreach_echoed_ip_id = OK
icmp_unreach_echoed_total_len = OK
icmp_unreach_echoed_3bit_flags = OK

#Module F [TCP SYN | ACK Module]
#IP header of the TCP SYN ACK
tcp_syn_ack_tos = 0
tcp_syn_ack_df = 1
tcp_syn_ack_ip_id = !0
tcp_syn_ack_ttl = <64

#Information from the TCP header
tcp_syn_ack_ack = 1
tcp_syn_ack_window_size = 65535
tcp_syn_ack_options_order = MSS NOP WSCALE NOP NOP TIMESTAMP
tcp_syn_ack_wscale = 0
tcp_syn_ack_tsecr = !0
tcp_syn_ack_tsval = !0

#Module G
tcp_rst_reply = y
tcp_rst_df = 1
tcp_rst_ip_id_1 = !0
tcp_rst_ip_id_2 = !0
tcp_rst_ip_id_strategy = I
tcp_rst_ttl = <64

snmp_sysdescr = Darwin Kernel Version
}

C7

Table C.7: xprobe2 v0.3 Fingerprint Decoding

Field Value Description

Module A - ICMP Echo Probe

icmp echo reply y A response to an ICMP Echo request was received
icmp echo code !0 The echo code was non-zero
icmp echo ip id !0 The IP ID field of the response was non-zero
icmp echo tos bits !0 The type of service bit was non-zero
icmp echo df bit 1 The explicit do not fragment bit was set
icmp echo reply ttl <64 The upper bound for the time to live for the response packet was 64 hops

Module B - ICMP Timestamp Probe

icmp timestamp reply n No response was received for the ICMP timestamp probe
icmp timestamp reply ttl <64 [Default value as no response received]
icmp timestamp reply ip id !0 [Default value as no response received]

Module C - ICMP Address Mask Request Probe

icmp addrmask reply n No response was received for the ICMP address mask probe
icmp addrmask reply ttl <64 [Default value as no response received]
icmp addrmask reply ip id !0 [Default value as no response received]

Module D - ICMP Information Request Probe

Module D did not run during the test

Module E - ICMP Unreachable Request Probe

icmp unreach reply y A response was received to a probe packet sent to a closed UDP port
icmp unreach echoed dtsize 8 The size of the response packet was 8
icmp unreach reply ttl <64 The upper bound for the time to live for the response packet was 64 hops
icmp unreach precedence bits 0 The precedence bits of the IP ID header was set to 0
icmp unreach df bit 1 The explicit do not fragment bit was set
icmp unreach ip id !0 The IP ID field of the response was non-zero
icmp unreach echoed udp cksum 0 The response had no UDP checksum
icmp unreach echoed ip cksum OK The checksum for the IP component of the response was good
icmp unreach echoed ip id OK The response packet returned the same value for the don’t fragment bit as

the request packet
icmp unreach echoed total len OK The length of the response packet was 20
icmp unreach echoed 3bit flags OK The 3bit flags of the response packet echoed correctly

Module F - Open TCP Port Probe

tcp syn ack tos 0 The Type of Service bits were all set to 0
tcp syn ack df 1 The explicit do not fragment bit was set
tcp syn ack ip id !0 The IP ID field of the response was non-zero
tcp syn ack ttl <64 The upper bound for the time to live for the response packet was 64 hops
tcp syn ack ack 1 Expected to be 1 but can be any value
tcp syn ack window size 65534 The initial window size of the connection
tcp syn ack options order The ordering of TCP options for the connection was

MSS NOP WSCALE NOP NOP TIMESTAMP
tcp syn ack wscale 0 The TCP window scale factor for the connection was 0
tcp syn ack tsecr !0 The TCP timestamp echo reply was non-zero
tcp syn ack tsval !0 The TCP timestamp value was non-zero

Module G - Closed TCP Port Probe

tcp rst reply y A reply was received to a TCP reset request
tcp rst df 1 The explicit do not fragment bit was set
tcp rst ip id 1 !0 The IP ID field of the first response packet was non-zero
tcp rst ip id 2 !0 The IP ID field of the second response packet was non-zero
tcp rst ip id strategy I The identifier for the IP packet increases per packet, not randomly
tcp rst ttl <64 The upper bound for the time to live for the response packet was 64 hops

C8

Table C.9 illustrates how to decode a passive fingerprint generated by SinFP3 and Table

C.10 illustrates how to decode the three components of an active SinFP3 fingerprint.

The BF components of the fingerprints are not decoded as the author of SinFP3 makes

no explicit mention of how these values are computed.

Table C.9: SinFP3 Passive Fingerprint Decoding for Mac OS X 10

Field Value Description

TF F0x02 The packet is a SYN packet

TWS W65535 The initial window size of the packet is 65535

TO The ordering of the TCP options for the packet is as follows: MSS NOP WS NOP NOP TS SACK

MSS M1460 The maximum segment size for the connection is 1460bytes

TWSF S1 The window scaling factor for the connection is 1

TOL L24 The total length of the options for the intercepted packet is 24bytes

Table C.10: SinFP3 Active Fingerprint Decoding for Mac OS X 10.5

Field Value Description

Probe S1 Fingerprint

BF B11113a

TF F0x12 The packet is a SYN/ACK packet

TWS W65535 The initial window size of the packet is 65535

TO The ordering of the TCP options for the packet is as follows: MSS

MSS M1460 The maximum segment size for the connection is 1460bytes

TWSF S1 The window scaling factor for the connection is 0

TOL L4 The total length of the options for the intercepted packet is 24bytes

Probe S2 Fingerprint

BF B11113a

TF F0x12 The packet is a SYN/ACK packet

TWS W65535 The initial window size of the packet is 65535

TO The ordering of the TCP options for the packet is as follows: MSS NOP WS NOP NOP TS SACK

MSS M1460 The maximum segment size for the connection is 1460bytes

TWSF S3 The window scaling factor for the connection is 3

TOL L24 The total length of the options for the intercepted packet is 24bytes

Probe S3 Fingerprint

BF B11020a

TF F0x04 The packet is a RST packet

TWS W0 Not applicable

TO O0 Not applicable

MSS M0 Not applicable

TWSF S0 Not applicable

TOL L0 Not applicable

a No explicit mention is made in any SinFP3 documentation regarding the computation of the binary flags, thus no

interpretation is made

Appendix D

Fingerprint Results Tables

This appendix lists all results tables deemed too cumbersome to be included in the main

text. Brief descriptions of the tables listed in this appendix and the reason for being

excluded from the main text are given below.

The results for the xprobe2 tests where shown in an abbreviated from in Section

5.6.1 with specific extracts shown that illustrated the deviations found for the MiniNet

Container-Based Network Emulator (CBNE). The results for the two xprobe2 tests are

shown in Tables D.1 (no port specification) and D.2 (with port specification).

Section 5.6.3 presented results for the nmap tests where deviations were found. Table

D.3 shows the test for which no deviations were found. The UDP Probes (Table D.3a),

TCP Probe (Table D.3b), and ICMP Echo Tests (Table D.3c) returned the same results

for all tested systems. For the TCP Probe test results, Table D.3b lists the TCP probe

packets (T1 through T7) against the features extracted as all test systems returned the

same results.

Section 5.7 presented the main findings of the MiniNet modification tests. In Section D.3

extracts from the modification tests are shown where MiniNet deviations were corrected.

Section D.3.1 presents the results for passive scanning utilities and Section D.3.2 presents

the results for active scanning utilities. Each of the tables includes test results for the

host, MiniNet before modification (Default), and MiniNet after modification (Modified).

Deviations between results for the host and the default MiniNet are highlighted in bold.

D1

D2

D.1 xprobe2 ICMP Results

Table D.1: Fingerprint Results for xprobe2

Test Host CORE IMUNES MiniNet VNX LXC

icmp echo reply y y y y y

icmp echo code !0 !0 !0 !0 !0

icmp echo ip id !0 !0 !0 !0 !0

icmp echo tos bits !0 !0 !0 !0 !0

icmp echo df bit 0 0 0 0 0

icmp echo reply ttl <64 <64 <64 <64 <

icmp timestamp reply y n y y y y

icmp timestamp reply ttl <64 <64 <64 <64 <64 <64

icmp timestamp reply ip id !0 !0 !0 !0 !0 !0

icmp addrmask reply n n n n n n

icmp addrmask reply ttl <255 <255 <255 <255 <255 <255

icmp addrmask reply ip id !0 !0 !0 !0 !0 !0

icmp info reply

icmp info reply ttl

icmp info reply ip id

icmp unreach reply y y y y y y

icmp unreach echoed dtsize >64 >64 >64 >64 >64 >64

icmp unreach reply ttl <64 <64 <64 <64 <64 <64

icmp unreach precedence bits 0xc0 0xc0 0xc0 0xc0 0xc0 0xc0

icmp unreach df bit 0 0 0 0 0 0

icmp unreach ip id !0 !0 !0 !0 !0 !0

icmp unreach echoed udp cksum OK OK OK OK OK OK

icmp unreach echoed ip cksum

icmp unreach echoed ip id OK OK OK OK OK OK

icmp unreach echoed total len OK OK OK OK OK OK

icmp unreach echoed 3bit flags OK OK OK OK OK OK

tcp syn ack tos

tcp syn ack df

tcp syn ack ip id

tcp syn ack ttl

tcp syn ack ack

tcp syn ack window size

tcp syn ack options order

tcp syn ack wscale

tcp syn ack tsval

tcp syn ack tsecr

tcp rst reply y y y y

tcp rst df 1 1 1 1

tcp rst ip id 1 0 0 0 0

tcp rst ip id 2 0 0 0 0

tcp rst ip id strategy 0 0 0 0

tcp rst ttl <64 <64 <64 <64

D3

Table D.2: Fingerprint Results for xprobe2 with Port Specification

Test Host CORE IMUNES MiniNet VNX LXC

icmp echo reply y y y y y y

icmp echo code !0 !0 !0 !0 !0 !0

icmp echo ip id !0 !0 !0 !0 !0 !0

icmp echo tos bits !0 !0 !0 !0 !0 !0

icmp echo df bit 0 0 0 0 0 0

icmp echo reply ttl <64 <64 <64 <64 <64 <64

icmp timestamp reply y y y y y y

icmp timestamp reply ttl <64 <64 <64 <64 <64 <64

icmp timestamp reply ip id !0 !0 !0 !0 !0 !0

icmp addrmask reply n n n n n n

icmp addrmask reply ttl <255 <255 <255 <255 <255 <255

icmp addrmask reply ip id !0 !0 !0 !0 !0 !0

icmp info reply

icmp info reply ttl

icmp info reply ip id

icmp unreach reply y y y y y y

icmp unreach echoed dtsize >64 >64 >64 >64 >64 >64

icmp unreach reply ttl <64 <64 <64 <64 <64 <64

icmp unreach precedence bits 0xc0 0xc0 0xc0 0xc0 0xc0 0xc0

icmp unreach df bit 0 0 0 0 0 0

icmp unreach ip id !0 !0 !0 !0 !0 !0

icmp unreach echoed udp cksum OK OK OK OK OK OK

icmp unreach echoed ip cksum

icmp unreach echoed ip id OK OK OK OK OK OK

icmp unreach echoed total len OK OK OK OK OK OK

icmp unreach echoed 3bit flags OK OK OK OK OK OK

tcp syn ack tos 0 0 0 0 0 0

tcp syn ack df 1 1 1 1 1 1

tcp syn ack ip id 0 0 0 0 0 0

tcp syn ack ttl <64 <64 <64 <64 <64 <64

tcp syn ack ack 1 1 1 1 1 !

tcp syn ack window size 65160 65160 65160 43440 65160 65160

tcp syn ack options order MSS SACK TIMESTAMP NOP WSCALE

tcp syn ack wscale 7 7 7 9 7 7

tcp syn ack tsval !0 !0 !0 !0 !0 !0

tcp syn ack tsecr !0 !0 !0 !0 !0 !0

tcp rst reply y y y y y y

tcp rst df 1 1 1 1 1 1

tcp rst ip id 1 0 0 0 0 0 0

tcp rst ip id 2 0 0 0 0 0 0

tcp rst ip id strategy 0 0 0 0 0 0

tcp rst ttl <64 <64 <64 <64 <64 <64

D4

D.2 nmap Results

Table D.3: nmap Fingerprint Results - No Deviations

(a) nmap UDP Probe Packet Test Results

Platform R DF T IPL UN RIPL RID RIPCK RUCK RUD

Host Y N 40 164 0 G G G G G

CORE Y N 40 164 0 G G G G G

IMUNES Y N 40 164 0 G G G G G

MiniNet Y N 40 164 0 G G G G G

VNX Y N 40 164 0 G G G G G

LXC Y N 40 164 0 G G G G G

(b) nmap TCP Probe Packet Test Results

Test R DF T W S A F O RD Q

T1 Y Y 40 O S+ AS 0

T2 N

T3 N

T4 Y Y 40 0 A Z R 0

T5 Y Y 40 0 Z S+ AR 0

T6 Y Y 40 0 A Z R 0

T7 Y Y 40 0 Z S+ AR 0

(c) nmap ICMP Echo Test Results

Platform R DFI T CD

Host Y N 40 S

CORE Y N 40 S

IMUNES Y N 40 S

MiniNet Y N 40 S

VNX Y N 40 S

LXC Y N 40 S

D.3 Fingerprint Results Post Modification

D.3.1 Passive Fingerprinting Results After Modification

Table D.4: p0f v3.09b Fingerprints - Pre & Post Modification

Platform Fingerprint

Host 4:64+0:0:1460:mss*45,7:mss,sok,ts,nop,ws:df:0

MiniNet (Default) 4:64+0:0:1460:mss*30,9:mss,sok,ts,nop,ws:df:0

MiniNet (Modified) 4:64+0:0:1460:mss*45,7:mss,sok,ts,nop,ws:df:0

D.3.2 Active Fingerprinting Results After Modification D5

Table D.5: ettercap v0.82 Fingerprints - Pre & Post Modification

Platform Fingerprint

Host FE88:05B4:40:07:1:1:1:1:A:3C

MiniNet (Default) A9B0:05B4:40:09:1:1:1:1:A:3C

MiniNet (Modified) FE88:05B4:40:07:1:1:1:1:A:3C

Table D.6: SinFP3 Passive Fingerprints - Pre & Post Modification

Platform TF TWS TO MSS TWSF TOL

Host F0x02 W64240 O0204ffff...03ff† M1460 S7 L20

MiniNet (Default) F0x02 W42340 O0204ffff...03ff† M1460 S9 L20

MiniNet (Modified) F0x02 W64240 O0204ffff...03ff† M1460 S7 L20

† O0204ffff0402080a........00000000010303ff

D.3.2 Active Fingerprinting Results After Modification

Table D.7: xprobe2 PortSpec Test Results - Pre & Post Modification

Test Host MiniNet (Default) MiniNet (Modified)

tcp syn ack ack 1 1 1

tcp syn ack window size 65160 43440 65160

tcp syn ack options order MSS SACK TIMESTAMP NOP WSCALE

tcp syn ack wscale 7 9 7

tcp syn ack tsval !0 !0 !0

tcp syn ack tsecr !0 !0 !0

Table D.8: SinFP3 Active Fingerprints - Pre & Post Modification

Test Platform BF TF TWS TO MSS TWSF TOL

S1

Host B10113 F0x12 W64240 O0204ffff M1460 S0 L4

MiniNet (Default) B10113 F0x12 W42340 O0204ffff M1460 S0 L4

VNX (Modified) B10113 F0x12 W64240 O0204ffff M1460 S0 L4

S2

Host B10113 F0x12 W65160 O0204ffff...03ff† M1460 S7 L20

MiniNet (Default) B10113 F0x12 W43440 O0204ffff...03ff† M1460 S9 L20

MiniNet (Modified) B10113 F0x12 W65160 O0204ffff...03ff† M1460 S7 L20

† O0204ffff0402080affffffff44454144010303ff

D.3.2 Active Fingerprinting Results After Modification D6

Table D.9: nmap Fingerprint Results - Pre & Post Modification

(a) Sequence Generation Test Results

Platform SP GCD ISR TI CI II TS

Host F9 1 109 Z Z I A

MiniNet (Default) 100 1 10F Z Z I A

MiniNet (Modified) 100 1 10C Z Z I A

(b) Transmission Control Protocol (TCP) Options Test Results

Test Host MiniNet (Default) MiniNet (Modified)

O1 M5B4ST11NW7 M5B4ST11NW9 M5B4ST11NW7

O2 M5B4ST11NW7 M5B4ST11NW9 M5B4ST11NW7

O3 M5B4NNT11NW7 M5B4NNT11NW9 M5B4NNT11NW7

O4 M5B4ST11NW7 M5B4ST11NW9 M5B4ST11NW7

O5 M5B4ST11NW7 M5B4ST11NW9 M5B4ST11NW7

O6 M5B4ST11 M5B4ST11 M5B4ST11

(c) TCP Windows Size Test Results

Platform W1 W2 W3 W4 W5 W6

Host FE88 FE88 FE88 FE88 FE88 FE88

MiniNet (Default) A9B0 A9B0 A9B0 A9B0 A9B0 A9B0

MiniNet (Modified) FE88 FE88 FE88 FE88 FE88 FE88

(d) Explicit Congestion Notification Test Results

Platform R DF T W O CC Q

Host Y Y 40 FAF0 M5B4NNSNW7 Y —

MiniNet (Default) Y Y 40 0564 M5B4NNSNW9 Y —

Host (Modified) Y Y 40 FAF0 M5B4NNSNW7 Y —

	1 Introduction
	1.1 Problem Statement
	1.2 Research Outline
	1.3 Research Method
	1.4 Document Conventions
	1.5 Document Structure

	2 Network Experimentation Platforms
	2.1 A System of Abstractions
	2.2 Layered Virtualisation Model
	2.3 Network Experimentation Platform Types
	2.4 Abstraction, Realism and Scalability
	2.5 Summary

	3 Container-Based Network Emulators
	3.1 Background
	3.2 Linux Namespaces
	3.3 Implementations
	3.4 Architecture
	3.5 Technology
	3.6 Summary

	4 Remote Fidelity of Abstracted Hosts
	4.1 Operating System Fingerprinting
	4.2 Network Attack Models
	4.3 Remote Fidelity of Networked Hosts
	4.4 Summary

	5 Experimentation and Results
	5.1 Network and Host Influences on Fingerprinting
	5.2 Testing Environment
	5.3 Reported Kernel Versions
	5.4 Ping Latency Results
	5.5 Passive Fingerprinting Results
	5.6 Active Fingerprinting Results
	5.7 MiniNet Modification and Re-run
	5.8 Summary

	6 Conclusion
	6.1 Future Work

	References
	A ARP Delays in Ping Timings
	B Ping Latency Distribution Results
	C Interpreting Fingerprints
	C.1 p0f Fingerprint Details
	C.2 ettercap Fingerprint Details
	C.3 xprobe2 Fingerprint Details
	C.4 SinFP3 Fingerprint Details

	D Fingerprint Results Tables
	D.1 xprobe2 ICMP Results
	D.2 nmap Results
	D.3 Fingerprint Results Post Modification

