## A CHEMICAL INVESTIGATION OF

 TULBAGHLA VIOLACEA THESISSubmitted in Fulfilment of the Requirements for the Degree of MASTER OF SCIENCE of Rhodes University by

## STEPHANIE GAIL BURTON

## January 1990

Department of Chemistry
Rhodes University
Grahamstown


#### Abstract

Tulbaghia violacea, a member of the family Alliaceae is indigenous to the Eastern Cape and is widely used as a herbal remedy for various febrile and gastro-enteric ailments, particularly in young children. Adverse effects, and even fatalities, have been reported following treatment with the plant extract. The project has involved synthesis of model compounds, chromatographic analysis of flavonoid and other constituents of the plant, and examination of the volatile components.


Some fifteen flavones were synthesised as chromatographic models and In the course of this work, the development of a new method for synthesis of carboxylic anhydrides was completed. Use of the flavone standards permitted identification of the flavonols kaempferol and quercetin in hydrolysed glycosidic plant extracts. In addition, several sugars were identified, viz., D-glucose, D-fructose, L-arabinose and D-galactose as free sugars, and D-glucose, D-galactose, L-rhamnose, D-fucose, D-xylose, L-arabinose and D-fructose as glycosidic sugars, by g.l.c. and g.c. - m.s. analysis of derivatives of isolated sugar mixtures. The presence in the plant extracts of steroidal saponins was also demonstrated.

The sulphur compounds, 2,4,5,7-tetrathiaoctane-2,2-dioxide and 2,4,5,7-tetrathiaoctane were isolated from the plant and characterised spectroscopically. This result, together with analysis of volatiles from the plant, has led to a proposal concerning the nature and origin of sulphur compounds in Tulbaghia violacea, showing close correlation with the sulphur compounds in Allium species.

Investigation of the biological activity of Tulbaghia violacea extracts showed bacteriostatic activity, particularly of extracts which had not been heated, and which had been prepared from mature plants. Treatment of isolated smooth muscle preparations with Tulbaghia violacea extracts indicated the presence of a $\beta$ adrenergic agonist having an inhibitory effect on normal muscle contraction.

The results of the investigations indicate that while there may be some basis for use of the plant as an antibacterial, or to treat colic, the adverse effects, caused possibly by the sulphur compounds and/or steroidal saponins present, may override the beneficial effects.

## TABLE OF CONTENTS

Page

1. Introduction ..... 1
1.1 Classification of Tulbaghia violacea ..... 2
1.2 Medicinal uses of Tulbaghia violacea and related plants ..... 3
1.3 Chemical constituents of plants related to Tulbaghia ..... 4 violacea
1.3.1 Steroidal saponins and cardiac glycosides ..... 4
1.3.2 Alkaloids ..... 7
1.3.3 Flavonoids ..... 8
1.3.4 Anthraquinones ..... 13
1.3.5 Sugars ..... 14
1.3.6 Sulphur compounds ..... 16
1.4 Objectives ..... 21
2. Results and Discussion ..... 22
2.1 Synthesis of Model Compounds ..... 22
2.1.1 Review of literature methods for flavone synthesis ..... 22
2.1.2 Synthesis of flavones and flavonols ..... 30
2.1.2.1 Synthesis of carboxylic acid anhydrides ..... 30
2.1.2.2 Synthesis of $\omega$-methoxyacetophenones ..... 39
2.1.2.3 The Kostanecki-Robinson synthesis of ..... 41 flavones
2.1.2.4 Demethylation of 0 -methylflavones ..... 42
2.1.2.5 Results of flavone syntheses by ..... 45 Kostanecki-Robinson method
2.1.2.6 Synthesis of rhamnetin and isorhamnetin ..... 60

### 2.2 Isolation and identification of chemical constituents of 65 Tulbaghia violacea

2.2.1 Methods of extraction ..... 65
2.2.1.1 Aqueous extraction ..... 65
2.2.1.2 Soxhlet extraction ..... 66
2.2.2 Isolation and identification of sugars ..... 67
2.2.2.1 Preliminary investigations ..... 67
2.2.2.2 Isolation of free and glycosidic sugars ..... 71
2.2.2.3 Gas-liquid chromatography of isolated ..... 71 sugars
2.2.2.4 G.c. - m.s. of PAAN derivatives of sugars ..... 76
2.2.2.5 G.c. - m.s. of alditol acetate ..... 78 derivatives of sugars
2.2.2.6 A carbohydrate component obtained by ..... 81 methanolic extraction
2.2.2.7 Summary of analysis of sugars in ..... 81 Tulbaghia violacea
2.2.3 Isolation and identification of flavone aglycones ..... 82
2.2.3.1 Preliminary investigations ..... 82
2.2.3.2 Chromatographic comparison of aglycones ..... 85 with model compounds
2.2.3.3 Correlation of the sugar and aglycone ..... 89 components of the glycosides
2.2.4 Isolation and identification of sulphur compounds ..... 91
2.2.4.1 Spectroscopic analysis of sulphur ..... 91 compound (117)
2.2.4.2 Spectroscopic analysis of sulphur ..... 97 compound (118)
2.2.4.3 G.1.c. and g.c. - m.s. analysis of ..... 100 sulphur compounds (117) and (118)
2.2.4.4 Discussion of possible origin of ..... 105 compounds (117) and (118) in
Tulbaghia violacea
2.2.5 Analysis of volatiles from Tulbaghia violacea ..... 110
2.2.5.1 G.1.c. and g.c. - m.s. analysis of ..... 110
volatiles from Tulbaghia violacea
2.2.6 Miscellaneous extractions of Tulbaghia violacea ..... 117
2.2.6.1 Examination of Tulbaghia violacea for ..... 117the presence of saponins
2.2.6.2 Examination of Tulbaghia violacea for ..... 117
the presence of alkaloids
2.2.6.3 Examination of Tulbaghia violacea for ..... 119
the presence of anthraquinones
2.2.7 Biological activity of Tulbaghia violacea extracts ..... 120
2.2.7.1 Bacteriostatic action of ..... 120
Tulbaghia violacea extracts
2.2.7.2 Pharmacological activity of Tulbaghia ..... 123
violacea extract
2.3 Conclusions concerning active principles in ..... 127 Tulbaghia violacea
3. Experimental ..... 129
3.1 General ..... 129
3.2 Synthesis of model compounds ..... 132
3.3 Isolation and chromatographic analysis of constituents of ..... 155
Tulbaghia violacea
3.4 Examination of biological activity of Tulbaghia violacea ..... 167 extracts
Appendix ..... 170
Bibliography ..... 226

## LIST OF SCHEMES, FIGURES AND TABLES

## Schemes

1.1 Classification of Tulbaghia violacea in the Lilifforae
1.2 Transformations of sulphur compounds from garlic ..... 18
1.3 Transformations of sulphur compounds from onion ..... 20
2.1 Flavone synthesis by Kostanecki et al (1) ..... 23
2.2 Flavone synthesis by Kostanecki et al (2) ..... 24
2.3 Flavone synthesis by Kostanecki and Lampe ..... 26
2.4 The Baker-Venkataraman rearrangement ..... 27
2.5 The Kostanecki-Robinson synthesis of flavones ..... 28
2.6 Flavone synthesis by Teoule et al ..... 29
2.7 The Hoesch synthesis of $\omega$-methoxyacetophenones ..... 40
2.8 The Wessely-Moser rearrangement ..... 44
2.9 The Elbs persulphate oxidation ..... 59
2.10 Synthesis of rhamnetin and isorhamnetin ..... 61
2.11 Extractions of Tulbaghia violacea ..... 66
2.12 Derivatisation methods for sugars ..... 73
2.13 Thermal reactions of alkylthiosulphinates ..... 106
2.14 Possible route for formation of sulphur ..... 108 compounds (117) and (118)
Figures
$2.1 \quad{ }^{1} \mathrm{H}$ n.m.r. spectrum of chrysin ..... 46
$2.21_{H}$ n.m.r. spectrum of $4^{\prime}$ - O-methylapigenin ..... 47
$2.3{ }^{1} \mathrm{H}$ n.m.r. spectrum of $3^{\prime}, 4^{\prime}$, -di- 0 -methylluteolin ..... 49
$2.4 \quad{ }^{1} \mathrm{H}$ n.m.r. spectrum of kaempferol ..... 51
$2.51^{1} \mathrm{H}$ n.m.r. spectrum of $3,3^{\prime}, 4^{\prime}$-tri- 0 -methylquercetin ..... 52
$2.6 \quad{ }^{1} \mathrm{H}$ n.m.r. spectrum of quercetin ..... 53
$2.7{ }^{1} \mathrm{H}$ n.m.r. spectrum of $3,3^{\prime}, 4^{\prime}$-tri-O-methylfisetin ..... 55
$2.8 \quad{ }^{1} \mathrm{H}$ n.m.r. spectrum of fisetin ..... 56
$2.9{ }^{1}$ H n.m.r. spectrum of $3,3^{\prime}, 4^{\prime}, 5^{\prime}$-tetra-O-methylmyricetin ..... 57
2.10 T.1.c. of aqueous extract $I$ ..... 68
2.11 2-d t.1.c. with hydrolysis, of extracts $I$ and $V$ ..... 69
2.12 T.1.c. and p.c. of hydrolysed extract I for analysis of ..... 70 sugars
2.13 T.1.c. of free and glycosidic sugar samples72
2.14 Gas chromatograms of peracetylated aldononitriles ..... 75
2.15 G.c. - m.s. analysis of PAAN derivatives of sugars ..... 77
2.16 G.c. - m.s. analysis of alditol acetate derivatives of ..... 79 sugars
2.17 T.l.c. of extracts $I$ and III on cellulose ..... 83
2.18 T.l.c., with hydrolysis, of extracts $I$ and $V$ ..... 84
2.19 T.l.c. comparison of aglycones and model compounds ..... 86
$2.20 \quad 2-D$ t.l.c. to confirm identity of aglycones in extract $V$ ..... 90
2.21 N.m.r. spectra of sulphur compound (117) ..... 92
2.72 I.r. spectrum of sulphur compound (117) ..... 95
2.23 N.m.r. spectrum of sulphur compound (118) ..... 98
2.24 I.r. spectrum of sulphur compound (118) ..... 99
2.25 G.l.c. analysis of sulphur compounds (117) and (118) ..... 101
2.26 M.s. analysis of sulphur compounds (117) and (118) ..... 102
2.27 G.l.c. comparison of volatiles from Tulbaghia violacea, ..... 111Allium cepa and Allium sativum
2.28 Mass spectra of components of volatiles from ..... 113Tulbaghia violacea
2.29 T.l.c. analysis of Tulbaghia violacea extracts in ..... 118 examination for steroidal saponins
2.30 Photograph of example of bacteriostatic action of ..... 121Tulbaghia violacea extracts
2.31 Single dose responses of isolated smooth muscle on ..... 124treatment with Tulbaghia violacea extract
2.32 Dose response curves for isolated smooth muscle on ..... 126treatment with Tulbaghia violacea extract
3.1 Organ-bath used for isolated organ study ..... 168
Tables
1.1 Classes of less common flavonoids found in higher plants ..... 11
2.1 Precursors and products in synthesis of model compounds ..... 31
2.2 Preparation of carboxylic acid anhydrides ..... 37
2.3 Correlation of aglycones with standard flavones ..... 88
2.4 Spectral data for sulphur compound (117) ..... 96
2.5 Spectral data for sulphur compound (118) ..... 100
2.6 Components tentatively identified in m.s. analysis of ..... 104 sulphur compounds (117) and (118)
2.7 Assignment of fragments in mass spectra of sulphur ..... 105compounds (117) and (118)
2.8 Components of volatiles from Tulbaghia violacea, ..... 112 identified by g.c. - m.s.
2.9 Bacteriostatic action of Tulbaghia violacea extracts (1) ..... 122
2.10 Bacteriostatic action of Tulbaghia violacea extracts (2) ..... 122
3.1 Solvent systems used in t.l.c. analyses ..... 130
3.2 Spray reagents used in t.l.c. analyses ..... 132
3.3 Fractions from flash chromatography of extract $V$ ..... 163
3.4 Tyrode's solution ..... 168
3.5 Doses of ACh for doserresponse curves ..... 169

## Acknowledgements

In expressing my gratitude for assistance in carrying out this project, I wish to begin by thanking Professor Perry Kaye for the privilege of working under his supervision. His consistent support and wise advice have been of inestimable value to me throughout the course of my research. I thank my fellow researchers, and in particular Mr. Robin Learmonth, for help, support, and encouragement.

Mr. Neale Bell has been extremely helpful in assisting with obtaining data from the staff of local hospitals and finding information regarding the herbal remedy, and I wish to record my thanks to him. Dr. Santy Daya, Professor Don Hendry, Dr. Lesley Parolis and Mrs. Estelle Brink have generously given of their time and knowledge, to assist with some specialised aspects of my research, for which I thank them. For technical assistance, I record my gratitude to Mr. Aubrey Sonemann, Miss Moira Pogrund, and Mrs. Sally Morley of Rhodes University, Mr. Ivan Antonowitz of the CSIR, and Professor Vincent Brandt of U.O.F.S. Special thanks are due to Mrs. Joan Miles for typing this thesis with such willingness, patience, and efficiency.

Lastly, but perhaps most importantly, I must express my appreciation of the support and encouragement of my husband, Mike, and daughters, Justine and Leigh, who have sacrificed much during the period of my research.

## Note: Nomenclature of Flavones

Although comnon names are in general use for flavones, it is helpful to clarify the naming and numbering systems found in the literature.

Flavones are ketone derivatives of the 4 H -benzopyran (1) and hence are phenyl-4 H -benzopyranones. The systematic name for flavone itself (2) is 2-phenyl-4H-1-benzopyran-4-one. Substituted flavones are systematically named using the numbering shown. Compound (3), for example, is named 3,7-dihydroxy-2-(3,4-dihydroxypheny1)-4H-1-benzopyran-4-one. 1

A simpler convention treats the flavone molecule as the parent system. ${ }^{2}$ Thus, compound (3) would be named 3, 3', 4', 7 -
tetrahydroxyflavone. More often, however, this compound is called by Its common name, fisetin, a practice which will be followed in this thesis. When coamon names are used, substituents are specified using the numbering shown for $3,3^{\prime}, 4^{\prime}$-tri-0-methylfisetin (4). The aromatic rings in the flavone molecule are designated $A, B$ and $C$ respectively, as shown in structure (5).

(1)

(2)

(3)

(4)

(5)

## 1. INTRODUCTION

Traditional herbal medicine is an important and widely utilised resource for the indigenous people of South Africa and occasionally it is their only accessible source of medical treatment. The plants used for herbal remedies are drawn from a wide range of taxonomic groups, including many from the superorder Liliiflorae, in which Tulbaghia violacea is classified. ${ }^{3}$

The use of Tulbaghia violacea (Xhosa name "itswele lomlambo" meaning "evil winds") as a herbal remedy is common in the Eastern Cape, the region to which it is indigenous. An infusion of the plant is prepared by herbalists for use as an enema, in the treatment of conditions including colic, wind, restlessness, headache and fever, largely in young children. Reports, from the King William's Town and East London areas, ${ }^{4}$ of adverse effects after such treatment have indicated a variety of symptoms including abdominal pain, gastroenteritis, acute inflammation and sloughing of the intestinal mucosa, cessation of gastro-intestinal peristalsis, contraction of the pupils, and subdued reactions to stimuli. Some fatalities have been attributed to treatment with the herbal preparation.

The widespread use of the plant as a herbal remedy with apparently toxic, and even fatal, results has prompted this investigation into the chemical constituents of Tulbaghia violacea. The aim was to establish the identity of biologically active compounds present, and hence explain the adverse effects of the plant.

### 1.1 Classification of Tulbaghia violacea


#### Abstract

A recent classification ${ }^{3}$ (Scheme 1.1 ) separates members of the orders Liliales and Asparagales into several families, and places Tulbaghia violacea in the family Alliaceae. Previously Tulbaghia violacea was generally regarded as a member of the Liliaceae, and cognisance of this fact must be taken in references to the plant in the older literature. Also, in resolving some irregularities in the genus Tulbaghia, Vosa has noted that Tulbaghia cepacea Lf. is identical to Tulbaghia violacea Harv., and that Tulbaghia simmerleri Beauv. is the correct name for Tulbaghia fragrans. ${ }^{5}$


Scheme 1.1 Classification of Tulbaghia violacea in the Liliiflorae ${ }^{3}$

```
Superorder : LILIIFLORAE
```

Order : Asparagales Family:Alliaceae Genus : Tulbaghia
Other families relevant to the present study :
Order : Asparagales Family : Amaryllidaceae
Asphodelaceae
Hyacinthaceae
Convallariaceae
Dracaenaceae
Agavaceae
Order : Liliales
Family : Iridaceae
Colchicaceae
Liliaceae
Alstroemeriaceae
Order : Dioscorales Family : Dioscoraceae
Trilliaceae
1.2 Medicinal uses of Tulbaghia violacea and related plants

In their comprehensive survey of South African poisonous and medicinal plants, Watt and Breyer-Brandwijk ${ }^{6}$ give accounts of several species of Tulbaghia which are used medicinally. Tulbaghia violacea is used for the treatment of infant and mother in the case of a depressed fontanelle, and young plants are eaten as a vegetable. Feeding tests for toxicity of this species, on rabbits, were found to be negative. ${ }^{7}$ In the Transkei, the root of Tulbaghia alliacea Lf. is used for the treatment of rheumatism and paralysis, for reducing temperature, and as a purgative. ${ }^{6}$ Early Cape colonists are also reported to have used the bulb for treatment of high temperatures, and other uses of the bulb include treatment of pulmonary tuberculosis and as an antihelmintic. The bulb of Tulbaghia violacea (referred to by Watt and Breyer-Brandwijk in this case as Tulbaghia cepacea) is also used as a remedy for pulmonary tuberculosis and as an antihelmintic. The green parts of Tulbaghia violacea are eaten by the 2 ulu people as a peppery spinach, and the bulb is used for an emetic love potion. The zulu people also regard this species as having the property of protecting against snakes.

Species of the closely related Agapanthus are reported by the same authors to be used as an aphrodisiac, and various Allium species, valued in many regions of the world for their marked medicinal properties, are used medicinally for a wide range of purposes. ${ }^{8}$ In South Africa, for example, a syrup prepared by steeping onions in sugar is traditionally used to treat whooping cough, the Xhosa people use garlic to treat fever, and Allium porrum L. is an old Cape remedy for dropsy. ${ }^{6}$ The antibacterial action of some Allium species is well established, and Allium sativum in particular is used as an antiseptic. Accounts of toxicity to livestock due to various Allium species have been reported.6:9
1.3 Chemical constituents of plants related to Tulbaghia violacea

A wide range of biologically active compounds are present in numerous plants of the Liliiflorae, and Tulbaghia violacea is closely related to many of these plants. A survey of the different classes of biologically active compounds found in the plants of the superorder Liliiflorae gave some indication of the active principles which might be found in Tulbaghia violacea. The classes of the possible constituents are discussed here under the following headings :steroidal saponins and cardiac glycosides; alkaloids; flavonoids; anthraquinones; sugars; and sulphur compounds.

### 1.3.1 Steroidal saponins and cardiac glycosides

Frequently present in members of the order Asparagales, and to a lesser extent in the order Liliales, are steroidal saponins ${ }^{3}$ and their biosynthetic precursors, viz., the sterols. ${ }^{10 ; 11}$ The steroidal saponins are glycosidic compounds consisting of steroid skeletons (of the furostanol or spirostanol series ${ }^{3}$ ) bearing sugar units in varying substitution patterns. Examples from Allium cepa include compounds (6) and (7), 12


Alliofuroside A
Alliospiroside B

The presence of saponins in plants is evidenced by noticeable foaming of the aqueous extracts (and hence the name relating to soap). The saponin molecules being large, and bearing hydrophobic and hydrophilic portions, tend to form emulsions, colloidal suspensions, and foams. 13 Indeed, some saponin-containing plants such as Phytolacca dodecandra and Sapindus saponarla are used as soaps for washing clothes. ${ }^{14}$ In dilute solutions saponins are poisonous to fish and extracts of saponin-containing plants are used as fish polsons e.g. pods of Swartzia madagascarlensis. Saponins are also effective molluscicides, as illustrated by the example of Phytolacca dodecandra berries used in Ethiopia as a means of preventing Schistosomiasis, by interrupting the cycle of the disease at the snail-host stage. Recent research into sources of steroidal saponins (largely in response to recognition of their potential conversion to synthetic steroid hormones ${ }^{15}$ ) has revealed their presence in widely varying plants including many Allium species. ${ }^{16}$ Other saponin-containing plants related to Tulbaghia violacea include Agapanthus species, ${ }^{6}$ Dracaena nitens (used in several traditional African remedies e.g. for haemorrhoids and stomachache), ${ }^{17}$ Crinum species, ${ }^{6}$ Boophone species, ${ }^{6}$ Albuca species (used as a purge against venereal disease) ${ }^{18}$ and Eucomis antumnalis (used as an emetic and an enema, for urinary disease, and during pregnancy). ${ }^{18}$

Saponins as a group of compounds tend to be gastro-intestinal irritants and cause emesis if taken orally. ${ }^{19}$ They have a haemolysing effect resulting in symptoms such as hyperaemia of the Intestinal mucosa. ${ }^{18}$ Fortunately, they are poorly absorbed in the gastro-intestinal tract, since presence of haemolytic saponins in the blood stream causes haemolysis of erythrocytes and subsequent reduction in oxygen-carrying capacity of the blood. The primary action of saponins is one increasing cell membrane permeability, attributed in some reports to binding of the sapogenin to receptor sites on the membrane, and is thus dependent on initial hydrolysis of the saponin. ${ }^{20}$ By the same action, small quantities of saponins can assist in absorption of nutrients and drugs in the small intestine.

Saponins are also proposed to exert an inhibitory effect on tissue respiration and peristaltic action in intestinal muscle. ${ }^{20}$

An unusual group of compounds, the cardiac glycosides, are similar in structure to the steroidal saponins, but are distinguished from them by the presence of an unsaturated lactone ring at $\mathrm{C}-17$, a $14 \beta$ hydroxyl group, and cis-conformation between the $C$ and $D$ rings as shown for compound (8). ${ }^{13}$

(8)

Cardiac glycosides are of ten associated with unusual (eg. methylated) sugars which are always linked at C-3. They have a specific cardiotonic effect and some are used as ordeal and arrow poisons, ${ }^{13}$ while others e.g. digitalis glycosides are used medically in the treatment of cardiac disorders.

In South African herbal remedies, cardiac glycosides are found, for example, in extracts of Bowiea volubilis (Hyacinthaceae) (used for treating dropsy, barrenness, headaches, and as an emetic, but has caused at least one fatality) and Scilla nevosa (used for treatment of dysentery and rheumatic fever, but toxic). ${ }^{18}$ The cardiac glycoside is Convallaria majalis (commonly named lily-of-thevalley) is particularly toxic. ${ }^{21}$

### 1.32 Alkaloids

The toxicity of many plants is attributable to the presence in them of alkaloids. The chemical structures of the alkaloids are very diverse, as is their distribution in plants. In the Lilifiorae, members of the Liliales frequently contain alkaloids, and many members of this order are known to be toxic. For example, amongst South African members of the Amarylidaceae [typically containing the Amarylidaceae alkaloids of which compound (9) is an example 22] Amaryllis belladona L. is notoriously poisonous and Boophone disticha Herb., while also poisonous, is nevertheless used medicinally in various ways; Watt and Breyer-Brandwijk ${ }^{6}$ report many poisonings and fatalities attributable to these plants.

(9)

Lycorine

Alkaloids have also been associated with the toxicity of other local herbal remedies e.g. colchicine in Gloriosa superba (Colchicaceae), 18 cliviine in Clivia nobilis (Amarylidaceae), ${ }^{18}$ haemanthamine in Haemanthus natalensis, ${ }^{6}$ and ambelline in Nerine undulata, 6 to name but a few. Alkaloids have been reported to be present in Allium odorum L. ${ }^{23}$ and Allium ampeloprasum, ${ }^{24}$ but references in the literature to the presence of alkaloids in members of the Alliaceae appear to be rare.

The pharmacological activity of alkaloids is varied, as would be expected from such a diverse group of compounds, but in general, treatment with alkaloid-containing remedies affects the central nervous system. 25 Symptoms of alkaloid toxicity include convulsions, incoordination, pupil dilation and visual disturbances. As specific examples, Lycorine (9) in large doses causes ecchymosis of stomach, intestine, and endocardium; Veratrum alkaloids affect blood pressure and the neuromuscular system; ${ }^{19}$ and Solanum alkaloids cause nausea, vomiting, and haemolytic and haemorrhagic damage to the gastro-intestinal tract. ${ }^{26}$

In contrast with these toxic effects, many useful and common drugs are alkaloids (e.g. codeine and morphine), and numerous herbal remedies based on the activity of alkaloids are undoubtedly successful when administered appropriately.

### 1.3.3 Flavonoids

The flavonoids are a large class of phenolic compounds structurally derived from the flavone skeleton (10).

(10)

Flavones have hydroxyl or, less frequently, methoxyl groups as substituents on the benzene rings, and flavonols have analogous oxygenation patterns but always bear a hydroxyl group at C-3. Naturally occurring flavones and flavonols are found universally in vascular plants, and have substituents most commonly at the 5-, 7-, $3^{\prime}-, 4^{\prime}-$, and $5^{\prime}$-positions, but rarely at the $2^{\prime}-$ (or $6^{\prime}-$ )
positions. ${ }^{27}$ Most common are the flavones luteolin (85) and apigenin (83), and the flavonols kaempferol (87), quercetin (89), myricetin (93) and, to a lesser degree, isorhamnetin (103).27;28;29

(83)

(87)

(93)

(85)

(89)

(103)

All of these compounds are found in the Liliiflorae, ${ }^{30}$ where the distribution of the flavonoids has taxonomic significance. Certain families, for example, contain only flavones (e.g. the Wurmbaeoideae) while some contain only flavonols (e.g. the Lilioideae) and others contain both (e.g. the Scilloideae). ${ }^{30}$ Also, isorhamnetin derivatives are known only in the genera Lilium and Convallaria. In addition to other flavonoids in families of the Liliflorae, Williams ${ }^{30}$ also reports the presence of 5 -methylated flavones and 5deoxyflavones in members of the Liliaceae, thus linking them taxonomically with the families Juncaceae, Cyperaceae, Palmae, and Graminae .

In a comprehensive survey of phenolic constituents in the monocotyledons, Bate $S_{m i t h}{ }^{31}$ reported the presence of kaempferol (87) in Tulbaghia violacea.

Other classes of flavonoids which are less widely distributed in the higher plants are shown in Table 1.1.

As in the case with all plant phenolics, flavones and flavonols occur in plants as a wide range of 0 -glycosides, and the positions of the sugar units follow certain trends (see section 1.3 .5 for comment on the nature of the sugars). For the flavonols :- $3-0$-glycosides are most common; 3,7-di-O-glycosides are also common; 3, $4^{\prime}$-di- 0 glycosides are unusual; $3^{\prime}-0-g l y c o s i d e s ~ a r e ~ v e r y ~ r a r e ; ~ a n d ~ 5-0-~$ glycosides do not occur. ${ }^{27}$ For the flavones, the sugar is most commonly attached at position 7 , and somewhat less often at position 5; 4'-O-glycosides of flavones are also found. ${ }^{27}$

Table 1.1 Classes of less common flavonolds found in higher plants ${ }^{32}$

## Flavono id

Typical structure
Distribution

Pignents in leaves, petals, fruits

Biflavonols


Gymnosperms

Chalcones


Yellow flower pigments

Yellow flower pigments

Flavanones


Leaves and fruit. especially citrus

Leguminosae

Flavonol glycosides have been isolated and identified from many plant species, ${ }^{33}$ and in a few cases attempts have been made to identify all of the glycosides present. The flavonoids found in any one plant species are generally different glycosides of common aglycones. Allium cepa, for example, has been found to contain the flavonol quercetin as the $4^{\prime}-0$-glucoside, the $7,4^{\prime}-d 1-0-g l u c o s i d e$ and the 3,4'-di-0-glucoside. ${ }^{27}$

Glycoflavones, or flavone-C-glycosides, are found in a small number of families of plants. The sugar units in these flavonoids are linked by carbon-carbon bonds to the flavone skeleton, giving compounds which are characteristically difficult to hydrolyse to separate aglycones and sugars. ${ }^{2}$ The C-glycosidic link is always adjacent to a phenolic hydroxyl group, and is usually at position 8. Flavone-C-glycosides have been reported in three species of the Liliales viz., Narthecium ossifragrum (Melianthioideae), Paradaisia lileastrum (Asphodeleae), and Urginea maritima (Scilloideae). ${ }^{30}$

By virtue of their universal presence in higher plants, flavonoids are present in many foods, herbs, and spices, as well as medicinal preparations, and they are generally non-toxic (with the exception of some isoflavones which have been considered responsible for oestrogenic activity resulting in infertility of livestock ${ }^{34}$ ).

Their nutritive and medicinal value can be attributed partly to their inhibitory action on some enzyme systems, leading to fortification of connective tissue against penetration by invading agents such as cancer cells, viruses, and bacteria, and against the effects of some diseases, e.g. the weakening of capillary walls and consequent retinal and peripheral bleeding in diabetes mellitus. 35;36 Other reported beneficial effects of flavonoids include their action on cell membranes which reduces allergic reaction ${ }^{36}$ and regulates smooth muscle action. ${ }^{35}$

### 1.3.4 Anthraquinones

A further group of secondary metabolites found in the Liliflorae are the anthraquinones, naturally occurring quinones of which aloe-emodin (11) is a typical example. Like flavonoids, they generally occur as glycosides.

(11)

$R=$ Glucose (12)

Barbaloin

In the order Liliales, anthraquinone glycosides are found in the family Asphodeleaceae, members of which are valued, in the practice of traditional medicine, for their marked purgative action. Species of Aloe, Bulbine, Kniphofia and Haworthia are members of this family which are used in herbal remedies. ${ }^{30}$ The purgative principle in commonly available comercial aloes is a C-glycoside of aloeemodin (11), named barbaloin (12) ${ }^{37}$. In the order Agavales, Agave americana is used for its purgative action ${ }^{6}$ but is also reported to be toxic.

The physiological activity of plants containing anthraquinones is due to reduction of the anthraquinone glycosides by intestinal bacteria to anthranols [e.g. compound (13)] which are cathartics. The reason for storing purgative plants for up to a year before use is to allow slow hydrolysis of the glycosides giving increased anthranol content. ${ }^{13}$

(13)

### 1.3.5 Sugars

The sugars present in glycosides of various secondary metabolites are a large and varied group. In the phenolic glycosides, five monosaccharides are common, these being D-glucose, D-galactose, D-xylose, L-rhamnose, and L-arabinose, while ketohexoses are generally absent. ${ }^{21}$ D-glucuronic acid is found attached to some phenolic compounds. The sugars are generally present in the pyranose form (Larabinose is also found in the furanose form) and are generally $\beta$ linked to phenolic hydroxyl groups (with the exception of two known $\alpha$-arabinosides).

Of the disaccharides found attached to phenolic compounds, the three most common are rutinose (rhamnose $\alpha 1 \rightarrow 6$ glucose), sophorose (glucose $\beta 1 \rightarrow 2$ glucose), and sambubiose (xylose $\beta 1 \rightarrow 2$ glucose), and all three are found frequently in association with flavonoids. [A less common but interesting disaccharide is that found in the flavonoid glycosides of Citrus, neohesperiodose (rhamnose $\alpha 1 \rightarrow 2$ glucose), which is largely responsible for the characteristic flavour of Citrus]. The presence of trisaccharides combined in phenolic glycosides is less well established, and less common.

Characteristically, they contain $1 \rightarrow 2$ or $1 \rightarrow 6$ links, and glucose is frequently present at the reducing end of the trimer. ${ }^{21}$

In flavonol glycosides, glucose and rhamnose are most common, and the di- and trisaccharides present generally contain these sugars. Flavones, on the other hand, are frequently associated with glucose and rutinose, and occasionally with apiosylglucose. ${ }^{27}$ The majority of other flavonoids (Table 1.1) are found in combination with glucose, or with glycosidic patterns similar to those of the flavones and flavonols. ${ }^{27}$

Anthraquinones occur in association with glucose, rhamnose, rutinose, gentiobiose (glucose $\beta 1 \rightarrow 6$ glucose), and primeverose (xylose $\beta 1 \rightarrow 6$ glucose). ${ }^{13}$ In saponins, sugars are often present as oligosaccharides, and differences between saponins are often due to variation of the sugars attached to one sapogenin. ${ }^{13}$ The usual sugars associated with cardiac glycosides include D-digitalose (14), D-cymarose (15), and D-sarmentose (16), and acetyl derivatives of these. ${ }^{13}$

(14)

(15)

(16)

Also present in higher plants, are free sugars e.g. in Allium species :- glucose, fructose, sucrose, maltose, arabinose, rhamnose, xylose, galactose, 38 and polysaccharides, such as glucofructans and fructans which may serve as a means of carbohydrate storage. Pectins, which are complex carbohydrate polymers, are found in association with cellulose in cell membranes.

### 13.6 Sulphur compounds

Perhaps the major feature distinguishing the secondary metabolites of the Alliaceae is the presence of low molecular mass sulphur compounds. The Alliums, in particular, contain $S$-alk(en)yl-Lcysteine sulphoxides, which give rise to the characteristic odours of the plants by a series of complex and interesting reactions. In the intact cells, these sulphoxides are present in the cytoplasm, and lyase enzymes capable of hydrolysing them are found in the vacuole. ${ }^{39}$ Crushing of the plant tissues causes disruption of cells and hence allows the action of the lyase enzyme on the sulphoxide substrates, resulting in the release of volatile sulphur compounds. The sulphoxide precursors are synthesised from glutathione via $\gamma$-glutamyl peptides, by a pathway involving the chloroplasts and stored in various parts of the plant. 39 The S-alkyl-L-cysteine sulphoxide Iyase enzymes of Allium cepa (onion) and Allium sativum (garlic) have been found to differ in physical and kinetic properties ${ }^{40}$ although they catalyse analogous reactions, viz., the hydrolysis of S-1-propeny1, S-propyl, and S-methyl cysteine sulphoxides in Allium cepa and of $S$-allyl, $S$-propyl, and $S$-methyl cysteine sulphoxides in Allium sativum.

In one of the few literature references to Tulbaghia violacea, Jacobsen et al. ${ }^{41}$ report the presence, in this plant, of a carbonsulphur lyase enzyme whose action is similar to that of the lyases in the various Allium species. The presence of three unidentified sulphoxide amino acids is reported by Jacobsen, ${ }^{42}$ who also referred to an unsuccessful attempt to analyse the volatiles from Tulbaghia violacea. These observations are of significance in the taxonomic relationships of the genera in the Alliaceae, and in fact give support to the modern classification of Tulbaghia in the Alliaceae rather than in the Liliaceae as previously. ${ }^{3}$

The biological activity of the Allium species, and in particular of Allium sativum (garlic) is renowned world-wide, and has been known since as long ago as 1550 B.C. when the ancient Egyptians valued garlic for its therapeutic properties in treating many ailments. 8 Alliums have been used in various commities for their antiseptic, antibiotic, antihelmintic, and antithrombotic properties, and a vast amount of research, mostly on garlic, in recent years ${ }^{43: 44}$ has led to the elucidation of a complex and remarkable set of chemical processes responsible for these properties. Some major results of this work are highlighted in this survey, and thus Scheme 1.2 shows the pathways by which alliin (17) (S-alkyl-L-cysteine sulphoxide) in garlic is transformed into various derivatives. Many of these products exhibit notable biological activity. As a point of interest, alliin (17) was the first isolated natural product to have chirality at a sulphur atom.

When garlic is extracted at room temperature, the major product is allicin (18) (alkyl-2-propene-1-thiosulphinate), ${ }^{45 ; 46}$ which is formed by enzymic action on alliin (17) in the crushed tissue, and which has marked antibacterial, antiviral, and antifungal activity. Allicin is very unstable and can undergo a variety of transformations ${ }^{47}$ which result in products such as the ajoenes (19) and (20). 48 These compounds are strongly antithrombotic due to their ability to inhibit platelet aggregation by binding sulphydryl groups and thus altering the platelet membranes. ${ }^{49}$. The dithiins (21) and (22) are also found to be mildly antithrombotic. Allyl disulphide (23), which is largely responsible for the odour of garlic, can itself be transformed thermally into allyl trisulphide and higher analogues, and into a range of products such as compounds (24), (25), and (26). ${ }^{50}$ Compounds such as these three, and the dithiins (21) and (22), are among the components which are responsible for the antioxidant and Iyoxygenase inhibitory activity of garlic oils. ${ }^{50}$

Scheme 1.2 Transformations of sulphur compounds from garilc ${ }^{46-51}$



(26)

This explains the fact that even aged or heated garlic extracts retain their antithrombotic activity in spite of no longer being antibacterial. These compounds are also responsible for the antiasthmatic and anti-allergic action reported for garlic oils. ${ }^{51}$

In onion, reactions similar to those of garlic constituents (Scheme 1.3) produce the lachrymatory factor (31) which itself is transformed by self-condensation into the dithietane dioxide (33). 52 The antiasthmatic compounds (34) and (35), also isolated from onion, are considered to be formed by rearrangement of 1-propenyl-1-propene thiosulphinate (32). 53

This compound (32) has not been isolated but recently ${ }^{53}$ the thiosulphinates (36) have been isolated, together with the antiasthmatic compounds (37) and (38). ${ }^{51}$ Since the alkyl thiosulphinates In the Alliums can be transformed into alkyl disulphides and other volatile products, analysis of these volatiles is a useful means of Identifying the precursors. ${ }^{54}$ Analyses of this type have indicated the presence of propyl, methyl and l-propenyl thiosulphinate compounds in various Allium species e.g. A. tuberosum, ${ }^{55}$ A. fistulosum varieties and $A$. chinense ${ }^{56}$ and $A$. cepa and $A$. sativum. ${ }^{57}$

Thus the long-standing medical use of Allium species has been substantiated by modern research, and the biological activity of the sulphur compounds in them has proved to be of great value and interest.

Scheme 1.3 Transformations of sulphur compounds from onions ${ }^{52 ; 53}$


Recently isolated
"cepaenes"
[Antlasthmatic]

### 1.4 Objectives

The aim of the project was to identify the active principles in Tulbaghia violacea and thus elucidate its effects as a herbal remedy. By reference to the chemical Iiterature on the presence of biologically active compounds in plants related to Tulbaghia violacea, certain classes of compounds were identified as possible chemical constituents of Tulbaghia violacea. In the light of this information, specific objectives were developed as detailed in the following paragraphs.

1. Having regard for the difficulties often encountered in the isolation of workable amounts of natural products, a primary objective was the synthesis of a range of model compounds to be used for chromatographic comparison with constituents extracted from the plant.
2. A second objective was the isolation and/or identification of constituents of Tulbaghia violacea using various chromatographic and spectroscopic techniques.
3. In view of the obvious presence of odorous volatile compounds in Tulbaghia violacea, the objective was set of analysing these volatiles and monitoring variation over an extended period of time.
4. Examination of the biological activity of Tulbaghia violacea extracts was to be carried out for comparison with the reported effects of the herbal remedy.

### 2.1 SYNTHESIS OF MODEL COMPOUNDS

A range of commonly occurring flavones and flavonols were required for chromatographic comparison with extracts from Tulbaghia violacea. Those selected for synthesis are detailed in Table 2.1 (p. 31). The available methods of synthesis were ascertained by survey of the chemical iiterature.

### 2.1.1 Review of literature methods for flavone synthesis

The development of syntheses for flavones was initiated in the late 1890 's. ${ }^{59}$ Ploneering work by Kostanecki ${ }^{60}$ involved formation of 0 acetylchalcones from o-hydroxyacetophenones and aromatic aldehydes. The chalcones were then brominated, and cyclisation with loss of hydrogen bromide afforded flavones (41) (Scheme 2.1; route a). However, a second product, the l-benzylidenecoumaran-2-one (42) could also be formed, via a different cyclisation (Scheme 1 ; route b). This is dependent on differences in the reactivity of the electrophilic centres [C-2 and C-3, (40)] arising from the presence of electron-withdrawing substituents in the 3 -phenyl group.

Cullinane and Philpott ${ }^{61}$ later showed that o-hydroxychalcones are converted to benzylidenecoumaranones (42) more readily than to flavones. Hutchins and Wheeler ${ }^{62}$ established that o-hydroxy and oalkoxy substituents in either aromatic ring of the intermediate (40) favour this conversion. Flavones are formed by heating the ohydroxychalcone dibromides (39) above their melting points, or by adding potassium cyanide. Bhagat and Wheeler ${ }^{63}$ recorded successful syntheses of flavones by treating chalcone dibromides (39) with hydrogen bromide in acetic acid.

A second approach by Kostanecki and co-workers, 64;65 11lustrated in Scheme 2.2, required formation of a $\beta$-diketone precursor (44) by Claisen condensation of the acetophenone (43) with an aromatic carboxylate ester (step (i) or ii1). Dealkylation and cyclisation were induced by treatment with hydriodic acid. In the case of the intermediate (45), however, nucleophilic attack by either of the two ortho-substituent oxygens is feasible, resulting in a mixture of

Scheme 2.1 Flavone synthesis by Kostaneck et al (1)




Reagents : f. Ar-CHO, $\mathrm{OH}^{-}$

Scheme 2.2 Flavone synthesis by Kostaneck et al (2)


Reagents: 1, $\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{O}-\mathrm{CO}_{-} \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{Na} / \mathrm{EtOH}$; il. HI ;
1i1. $\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{O}-\mathrm{CO}_{-} \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{OCOCH}_{3}\right)$. $\mathrm{Na} / \mathrm{EtOH}$
products (Scheme 2.2, route a; b). Kostanecki and Lampe ${ }^{66}$ used a nitrosation reaction at position 3 of a methoxyflavanone [(46); Scheme 2.3] to prepare kaempferol (86) via its trimethyl ether. The same authors also synthesised chrysin (80) and apigenin (83) ${ }^{67}$ by dibromination, and subsequent dehydrobromination, of methoxyflavanones (see Table 2.1, p. 31 for flavone structures).

In attempting to prepare 2,4-dibenzoylresacetophenone, Baker ${ }^{68}$ found that o-aroylacetophenones (47) rearrange in the presence of base, giving o-hydroxy- - -benzoylacetophenones (48). An intramolecular Claisen condensation mechanism was proposed for this transformation (Scheme 2.4). Ring closure of the $\beta$-diketones (48) produced flavones (49). This rearrangement was also described by Venkataraman and is known as the Baker-Venkataraman transformation. 98

By applying the findings of Baker ${ }^{68}$ and Kostanecki, ${ }^{64}$ Robinson and co-workers ${ }^{69}$ developed a direct and adaptable method for flavone synthesis (Scheme 2.5). An o-hydroxyacetophenone (50) is heated with the anhydride and the sodium salt of an aromatic carboxylic acid. Thermal condensation of the intermediate (51) is followed by alkaline hydrolysis to give flavones (53). The reaction may proceed by two possible pathways (routes a and b). ${ }^{68}$ Route a is regarded as the most likely, with the sodium salt of the acid catalysing the rearrangement. Intermediate (52) could be further acylated, affording access to flavonols (54), and leading to the possibility of mixtures of flavones (53) and flavonols (54).

Dunne and co-workers ${ }^{70}$ found that certain flavones could be synthesised by heating the o-aroylacetophenones (51) in anhydrous glycerol to $250^{\circ} \mathrm{C}$. They suggested that the Baker-Venkataraman transformation was initiated by thermally induced loss of the proton $\alpha$ to the carbonyl. More recent work by Teoule and others ${ }^{71 ; 72}$ led to the synthesis of flavones by condensation of phenols and benzoylacetates at very high temperatures and reduced pressures. The method can be extended to the synthesis of flavone glycosides by condensation of the o-benzylated flavone (56) with acetylated bromoglucose (Scheme 2.6). 73

## Scheme 2.3 Flavone synthesis by Kostaneckl and Lampe



Reagents : i, Amyl nitrite, HCl ; if, $\mathrm{AcOH}, \mathrm{H}_{2} \mathrm{SO}_{4}$

Scheme 2.4 The Baker-Venkataraman rearrangement


Reagents : 1. Base; 11, conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ or $\mathrm{ACOH}, \mathrm{NaOAC}$

Scheme 2.5 The Kostanecki-Robinson synthesis of flavones


Reagents : 1, $(\operatorname{ArCO})_{2} \mathrm{O}$; 11, $\mathrm{Na}^{+} \mathrm{ArCO}_{2}^{-}$; 111, heat (Baker-Venkataraman rearrangement); (55)
iv, base, $-\mathrm{H}_{2} \mathrm{O} ; ~ v,(\operatorname{ArCO})_{2} \mathrm{O} ; ~ v i$, base, $-\mathrm{H}_{2} \mathrm{O}$

## Scheme 2.6 Flavone synthesis by Teoule et al




iii. iv


Reagents : i, $230^{\circ}$, 18 mmHg ; ii, 2,3,4,6-tetra-O-acetyl-1-bromo-D-glucopyranose
111. $\mathrm{H}_{2}$-DHE : iv $\mathrm{OH}^{-} / \mathrm{H}_{2} \mathrm{O}$

### 2.1.2 Synthesis of flavones and flavonols

For most flavones required in the present investigation, the Kostanecki-Robinson synthesis was found to be the most suitable. The method is convenient and the starting materials, carboxylic acid anhydrides and substituted acetophenones, are readily accessible. The general synthetic approach is outlined in Scheme 2.5 ( $p .28$ ). Individual starting materials and products are shown in Table 2.1.

### 2.12.1 Synthesis of carboxylic acid anhydrides

Several different aromatic carboxylic acid anhydrides were required, and a method for their preparation was necessary.

In their original work, Robinson and co-workers ${ }^{74 ; 75}$ found that boiling the carboxylic acid with acetic anhydride gave the aromatic carboxylic anhydride in acceptable yields. However, this method takes several days, and the possibility of mixed anhydride formation exists. Alternative methods involved use of carboxylic acid chlorides ${ }^{69}$ or phosgene. ${ }^{76}$

More recently, numerous anhydride syntheses have been developed, many of which utilise sophisticated reagents and conditions. A few examples are : use of homogenous palladium(ii), in the form of PdOAc, to catalyse carbonylation of aryl halides with carbon monoxide in DMF; ${ }^{77}$ treatment of carboxylic acids with thionyl chloride on a 4 vinylpyridine polymer support; ${ }^{78}$ reaction of $N, N, N^{\prime}, N^{\prime}$-tetramethylchloroformamidinium chloride in dichloromethane at $-30^{\circ} \mathrm{C} ;{ }^{79}$ and utilisation of the phosphorus reagent $\mathrm{PhOP}(0) \mathrm{Cl}_{3}$ in $\mathrm{POC1}_{3} .{ }^{80}$

A more convenient method for anhydride synthesis was considered desirable. Consequently, the opportunity was taken to extend earlier studies using a supported phosphorus pentoxide reagent. ${ }^{81 ; 82}$ Application of the reagent led to the development of a successful general method for the preparation of anhydrides. 83

Table 2.1 Precursors and products in synthesis of model compounds
m.p. ( ${ }^{\circ}$ C)
observed lit.


(61)

Anisic anhydride

(82)
$4^{\prime}$-O-Methylapigenin
$35 \quad 260-263$
261.74

(83)

Apigenin
$35 \quad 340-344$
$348-350^{74}$

(63)

(84)

Veratric anhydride
Phloracetophenone

(85)

Luteolin

Table 2.1 Precursors and products in synthesls of model compounds (contd)
m.p. ( ${ }^{\circ}$ C)
observed lit.

(74)

(86)

Anisic anhydride
$\omega$-Methoxyph loracetophenone

(87)

Kaempferol $90 \quad 276-278$
$279-280^{98}$

(88)

Veratric anhydride $\omega$-Methoxyphlor- 3.3'.4'-Tri-O-methylquercetin $39 \quad 238-240 \quad 240-245^{100}$ acetophenone

(89)

Quercetin $86 \quad 312-314 \quad 312-316^{100}$

(73)

(90)

[^0]Table 2.1 Precursors and products in synthesis of model compounds (contd)


(77)
$2^{\prime}$-Hydroxy-2,4 $\mathbf{4}^{\prime}$. trimethoxyacetophenone

Veratric anhydride

(79)

(94)
$2^{\prime}, 5^{\prime}$-Dihydroxy-2, $4^{\prime}, 6^{\prime}-\quad 3,3^{\prime}, 4^{\prime}, 5,7$-Pentatrimethoxyacetophenone $\quad 0$-methylquercetagetin

Table 2.1 Precursors and products In synthesls of model compounds (contd)
Flavone precursor $\quad$ Product $\quad$ Yfeld ( $\%$ m.p. $\left({ }^{\circ} \mathrm{C}\right)$
observed 1 ft.



Quercetin
$3,3^{\prime}, 4^{\prime}, 5,7$-Penta- 0 -acetylquercet in
$64 \quad 190-192 \quad 191-195^{100}$
(96)


3, $3^{\prime}, 4^{\prime}, 5$-Tetra-O-acetylrhamnetin $40 \quad 189-190 \quad 189-190^{103}$
(97)

(98)

Rhamnetin $\quad 56 \quad 291-294 \quad 294-296{ }^{103}$
(96)

(99)

$$
\begin{array}{llll}
3,3^{\prime}, 4^{\prime}, 5 \text {-Tetra- } 0 \text {-acetyi- } & 57 & 162-163 & 163^{103} \\
7 \text {-O-benzylquercetin } & & &
\end{array}
$$

(99)

$\begin{array}{llll}3^{\prime} \text {-O-Acetyl-3.4' }, 5,7- & 34 & 175-176 & 176 \\ \text { tetra-O-benzylquercetin } & & & \end{array}$

Table 2.1 Precursors and products In synthesis of model compounds (contd)

Flavone precursor
Product
Yield (\%) m.p. ( ${ }^{\circ}$ C)
observed 1it.
(100)


3,4',5,7-Tetra-O-benzylquercetin
$73 \quad 165-166 \quad 166.5^{103}$


3,4' ,5,7-Tetra-O-benzyl-
$3^{\prime}$ - 0 -methylquercet in
$37 \quad 117-120 \quad 126-127^{103}$


Isorhamnetin

79 303-305 305-306 103

The procedure involved addition of a supported phosphorus pentoxide reagent (SICAPENTB) to a solution of a carboxylic acid in dry solvent, and heating the stirred mixture for one hour at $\mathrm{ca} .100^{\circ} \mathrm{C}$. Typical experimental details are given in the Experimental section (pp.132-6). In each case, 0.1 moles of the carboxylic acid was dissolved in $60-90 \mathrm{ml}$ of solvent, and 15 g of Sicapent was then added. The general applicability of the method was established by use of various carboxylic acid substrates, as shown in Table 2.2, including aliphatic, unsaturated, and aromatic analogues.

The suitability of three different solvent systems was investigated, viz, benzene, 1,2-dimethoxyethane (DME), and toluene. Use of toluene, or preferably benzene, resulted in less charring of the reaction mixtures and afforded cleaner products after filtration and evaporation. However, the toxicity of benzene is a disadvantage, and although toluene is more difficult to remove owing to its higher boiling point, it was the solvent of choice in most cases. DME was only useful in certain cases, due to the insolubility of some carboxylic acids in this solvent.

In each case, after heating, the reaction mixture was filtered and a small amount of anhydrous potassium carbonate was added to the filtrate in an attempt to remove residual carboxylic acid as the insoluble potassium salt. Charcoal was added to decolourise the filtrate. Filtration through celite was followed, in some cases, by further filtration through alumina to remove unreacted carboxylic acid. Products were recovered by evaporation of the solvents under reduced pressure, and recrystallised or distilled to afford the anhydrides.

The conversion of carboxylic acids to anhydrides was followed using ${ }^{1}$ H n.m.r. spectroscopy, by monitoring the disappearance of carboxylic acid proton signals. In certain cases the ${ }^{1} \mathrm{H}$ n.m.r. spectra were used to calculate the percentage conversion of carboxylic acid to anhydride. [(65), (67); Table 2.2]

Table 2.2 Preparation of Carboxylic Acid Anhydrides

$$
2 \mathrm{RCO}_{2} \mathrm{H} \longrightarrow(\mathrm{RCO})_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}
$$

| Product $(\mathrm{RCO})_{2} \mathrm{O}$ | Solvent | Yield <br> m.p. $\left({ }^{\circ} \mathrm{C}\right)$ or b.p. $\left({ }^{\circ} \mathrm{C} / \mathrm{mmHg}\right)$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $(t)$ | observed | 1 ft. |


| $R=$ | Compound |  |  |  |
| :---: | :--- | :--- | :--- | :--- |
|  | (60) | benzene 77 <br> toluene 74 | $40-41$ | $42-43^{85}$ |


toluene 69
96-97 $99^{85}$

(62)
toluene
60
66-67
$97^{84}$

(63)
toluene
$62 \quad 122-124$ 124-125 ${ }^{86}$

toluene 23 158-159
$159^{87}$


DME 75 135-137 $138^{86}$

toluene 56 70 $71-72^{85}$
DME
$\left[\left(\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}\right)\right]_{2} \mathrm{O}$
benzene
49
118/0.05
$186 / 15^{85}$
DME
57

The identity of the products was established by i.r. and ${ }^{1} \mathrm{H}$ n.m.r. spectroscopy, and by their melting points. The i.r. spectra of carboxylic acid anhydrides show two strong characteristic absorption bands in the region $1870-1725 \mathrm{~cm}^{-1}$ separated by $c a .60 \mathrm{~cm}^{-1}$, with aromatic and $\alpha, \beta$-unsaturated carboxylic acid anhydrides absorbing at slightly lower frequencies than saturated analogues. In addition, the lack of a broad absorption band at $c a .3000 \mathrm{~cm}^{-1}$ confirmed the absence of the carboxylic acid.

Although the procedures had not been optimised, yields for the isolated products varied from moderate to good, as shown in Table 2.2. In the case of $3,4,5$-trimethoxybenzoic acid anhydride,(64) the carboxylic acid starting material did not dissolve fully in the toluene initially, and this may account for the low yield obtained.

In preparations where DME was used as the solvent, the crude product was found, in each case, to contain a contaminant which was tentatively identified as the methyl ester of the carboxylic acid. This was evident from an additional peak in the ${ }^{{ }^{1} H} n$ n.m.r. spectra of . the crude products, at ca. 3.6-3.8 ppm (the region typical for methyl ester proton signals). Percentages of these contaminants were estimated from the relative integrals to be : methyl anisate ( $8 \%$ ), methyl cinnamate (12\%), methyl octanoate (9\%), and methyl phenylacetate (ca. 30\%).

In the preparation of 2,3-dimethoxybenzoic anhydride (62), the product was recrystallised from three different solvent systems, viz., ethyl acetate, ether, and ether-hexane, and in each case the melting point of the recrystallised material was found to be 66 $67^{\circ} \mathrm{C}$. Although this is not in agreement with the literature value, $93^{\circ} \mathrm{C},{ }^{84}$ the i.r. and ${ }^{1} \mathrm{H}$ n.m.r. spectra of the product confirmed its identity.

### 2.1.2.2 Synthesis of $\omega$-methoxyacetophenones

The ketone precursors required in flavonol syntheses, substituted $\omega$ methoxyacetophenones, can be prepared by the Hoesch reaction ${ }^{87} ; 88$ (Scheme 2.7). A nitrile is added to a solution of a phenol such as $1,3,5$-trihydroxybenzene (68) in dry ether, and the mixture is then saturated with hydrogen chloride gas. Storage at $0^{\circ} \mathrm{C}$ enhances the yield of the ketimine hydrochloride salt (70). Hydrolysis in boiling water gives the ketone (71) in good yields. The mechanism proposed by Hoesch Involves initial formation on an imino chloride (69), and subsequent electrophilic acylation of the phenol (68), to afford the ketone (71). 89
$\omega$-Methoxyresacetophenone (73) and $\omega$-methoxyphloracetophenone (74) (Table 2.1, p. 31) were prepared in this investigation by application of the Hoesch reaction, following the method of Slater and Stephen. ${ }^{88}$ In both cases the ketimine hydrochloride salt crystallised after several hours of bubbling with hydrogen chloride, at $0^{\circ} \mathrm{C}$, in yields of $30 \%$ and $56 \%$ respectively. Hydrolysis was facilitated by prior removal of as much ether as possible. (Yields could be reduced by loss of material to any ether layer present.) Yields for the hydrolysis were $56 \%$ for $\omega$-methoxyresacetophenone (73) and $76 \%$ for $\omega$ methoxyphloracetophenone (74).

Yields in the Hoesch synthesis are generally increased by addition of Lewis acid catalysts such as zinc chloride, aluminium chloride or ferric chloride. ${ }^{89}$ In certain cases, however, the nature of the product itself is found to depend on the catalyst employed. In the reaction between dimethoxyphenol and piperonylonitrile, ${ }^{89}$ both products (75) and (76) are possible. In the presence of ferric chloride both products are formed, but in the presence of zinc chloride, only compound (75) is formed.

(75)

(76)

## Scheme 2.7 The Hoesch synthesis of $\omega$-methoxyacetophenones


(68)

(69)

(70)


(71)

Reagents : $1, \mathrm{RCN}, \mathrm{HCl}$, dry ether, $\mathrm{ZnCl}_{2} ; 11, \mathrm{H}_{2} \mathrm{O}$, reflux

Various factors could be considered to influence this situation, e.g. Lewis acid strength, steric factors relating to the size of side chains and the Lewis acid, and electronic effects of hydroxyl and methoxyl groups which may preferentially activate ortho- or parapositions.

In the reaction between 3,5 -dimethoxyphenol and methoxyacetonitrile, the two products (77) and (78) are possible, the former being required for the synthesis of quercetagetin. 90

(77)

(78)

Contrary to the results of Rao and Seshadri, ${ }^{90}$ it was found in this Investigation that in this reaction, compound (78) is the major product in the presence of zinc chloride. The ratio of products (77) and (78) was found to be $1: 5$.

### 2.1.2.3 Synthesis of flavones by the Kostanecki-Robinson method

This method lends itself to the preparation of many different flavone products, since the benzene rings of the precursors [(50), (55); Scheme 2.5, p. 28] may have a variety of substitution patterns. A selection of 0 -methylflavones, flavones and flavonols were prepared, with structures varying in the number and position of hydroxyl or methoxyl substituents [ranging from chrysin, 5,7-dihydroxyflavone (80), to myricetin, $3,3^{\prime}, 4^{\prime}, 5,5^{\prime}, 7$-hexahydroxy flavone (93), as shown in Table 2.1, p. 31].

Use of methoxy-substituted aromatic carboxylic acid anhydrides allows preparation of flavones with protected hydroxyl groups. These can be deprotected later by cleavage of the methyl ether linkages. Since polyphenolic compounds are generally susceptible to oxidation, this protection is a most useful aspect of the synthetic method. Products were characterised first as 0 -methylflavones, and later demethylated.

Experimental conditions for the different preparations followed the same general procedure, with variations in duration of heating and in the relative reactant ratios in the reaction mixture. In reactions where the final product is a flavonol, the ketone precursor (50) (Scheme 2.5, p. 28) has an $\omega$-methoxyl group. The inductive effect of this group enhances the acidity of the $\alpha$-methylene protons, facilitating formation of the anion and subsequent nucleophilic attack at the ester carbonyl function. In cases where this methoxyl group is absent, for example in the preparations of chrysin (80), apigenin (83), and luteolin (85), longer periods of heating and larger amounts of anhydride were called for. ${ }^{74 ; 75}$ Yields in such cases can be expected to be lower than those for flavonols.

The synthesis involves thermal condensation at high temperatures ( $180-200^{\circ} \mathrm{C}$ ) and a certain amount of charring was found to be unavoidable, particularly in cases where the reaction mixture thickened to a paste, requiring additional heating to maintain mobility, as in the syntheses of chrysin (80), kaempferol (87), and luteolin (85). Flash chromatography was found useful for separation of products from oxidised or charred material.

### 2.1.2.4 Demethylation of 0 -methylflavones

As a final step in the synthesis of certain flavones [eg. (83), (85) Table 2.1, p. 31] the removal of 0 -methyl groups was necessary. The classic method for cleavage of ethers is hydrolysis with strong acids such as hydriodic or hydrobromic acids, a reaction which has been widely used for several decades. ${ }^{91}$ Hydriodic acid was used by Robinson and co-workers to demethylate flavone ethers, with satisfactory results. $74 ; 75$

The advantage of using hydriodic acid is that all the methoxyl groups in the flavone ether substrate molecule are hydrolysed, while partial demethylation is common with use of certain other reagents. There is, however, a disadvantage in using hydriodic acid, in some cases. Thus, Wessely and Moser ${ }^{92}$ reported a rearrangement of 7 -hydroxy-5,8dimethoxyflavone (104) involving ring opening and cyclisation to yield

5,6,7-trihydroxyflavone [(105); Scheme 2.8], and it is possible for this to occur in other cases where the A-ring has 5- and 8- methoxyl substituents.

Of the various alternative reagents available for cleavage of alkyl aryl ethers, Lewis acids such as boron trifluoride, boron tribromide and aluminium chloride have found wide application. An alternative, albeit expensive, reagent is trimethylsilyl iodide (TMSI) which efficiently cleaves alkyl aryl ethers to yield alkyl halides and aryl trimethylsilyl ethers. An in situ method of generating the TMSI from sodium iodide and trimethylsilyl chloride has made the method more generally accessible, and faster. ${ }^{93}$ Methyl phenyl ethers have also been cleaved by the sodium salt of $N$-methylaniline in hexamethylphosphorus triamide, ${ }^{94}$ by diphenyllithium phosphide, 95 and by sodium cyanide in dimethylsulphoxide. ${ }^{96}$

Since the preparations of some flavones [(80), (83), (85), (87), (89), (91), and (93); Table 2.1] followed the methods of Robinson and co-workers, hydriodic acid was used to demethylate the ethers, using acetic anhydride as co-solvent. In general, the reactions were successful, although yields varied widely, as illustrated by Table 2.1 (p. 31). In each reaction, the quantity of hydriodic acid added was calculated so as to be in ca. $50 \%$ excess, according to the number of 0 -methyl groups to be hydrolysed. A very large excess was not desirable as (a) this may allow unfavourable side reactions and (b) unused reagent may interfere with isolation of the product. ${ }^{97}$ Acetic anhydride was added in a ca. 1 : 3 molar ratio with the hydriodic acid.

## Scheme 2.8 The Wessely-Moser rearrangement




### 2.1.2.5 Synthesis of chrysin (74)

Chrysin (80) was prepared directly from phloracetophenone (72) and benzoic anhydride ( 60 ), in 817 yield. As confirmation of the structure of the product, a portion was acetylated to give di-0acetylchrysin (81) in 40\% yield.

The infra-red spectrum of chrysin (80) shows absorption due to the carbonyl group stretch at $1655 \mathrm{~cm}^{-1}$, which is within the characteristic region ( $1660-1640 \mathrm{~cm}^{-1}$ ) for flavones. ${ }^{1}$ The broad peak centred at ca. $3000 \mathrm{~cm}^{-1}$ is due to hydroxyl groups which are intramolecularly bonded.

The n.m.r. spectra of flavones are frequently measured in DMSO- $\mathrm{d}_{6}$ due to lack of solubility in chloroform or methanol. As an alternative, the tri-methylsilyl ethers of flavones can be prepared for n.m.r. spectroscopy. ${ }^{2}$ Characteristic features of the ${ }^{1} H$ n.m.r. spectra of flavones are : two doublets $(J 2.5 \mathrm{~Hz})$ in the range $6-6.5 \mathrm{ppm}$, due to the 6 - and $8-H$ nuclei in 5,7 -disubstituted flavones and a singlet at $c a$. 6.3 ppm due to the $3-H$ nucleus. ${ }^{2}$ The $\mathrm{B}-\mathrm{ring}$ protons generally have signals downfield from the protons of the A-ring, in the range 6.7-7.9 ppm. In keeping with these trends, the ${ }^{1} \mathrm{H}$ n.m.r. spectrum of chrysin (Figure 2.1 ) shows signals at 6.25 and 6.45 ppm due to the 6 - and $8-H$ nuclei, at 6.72 ppm for the $3-H$ proton and a multiplet at 7.55 ppm for the B-ring protons.

Synthesis of Apigenin (83)
$4^{\prime}$ - 0 -Methylapigenin (82), commonly named acacetin, was prepared in 35\% yield. Considerable charring of the reaction mixture was apparent after the 6 hour heating period, and flash chromatography and recrystallisation of 1.4 g of the crude product afforded only 0.6 $g$ of the purified product.

In the ${ }^{1} \mathrm{H}$ n.m.r. spectrum of $4^{\prime}-0$-methylapigenin ( 82 ), the B-ring protons constitute an $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ system. At 60 MHz , however, the signals resemble an $A B$ quartet of two doublets, at $\delta 7.4$ (Figure 2.2 ). The $3^{\prime}$ - and $5^{\prime}-H$ nuclei resonate upfield from the $2^{\prime}$ - and $6^{\prime}-H$ nuclei. ${ }^{2}$
Figure $2.160 \mathrm{MHz}{ }^{1} \mathrm{H}$ n.m.r. spectrum of chrysin (80)


Figure $2.260 \mathrm{MHz}{ }^{1} \mathrm{H}$ n.m.r. spectrum of $\mathbf{4}^{\prime}-0$-methylapigenin (82)

(80 $2.2 \mathrm{MHz}^{1} \mathrm{H}$ n.m.r. spectrum of 4' -0-methylapigenin (82)

During hydrolysis of $4^{\prime}$-O-methylapigenin (82) with hydriodic acid, difficulty was experienced in obtaining a crystalline product. After heating the aqueous solution on a steam bath, the volume was reduced considerably before crystallisation occurred, and since this
concentration was effected under reduced pressure, some contaminating fodine was removed by sublimation. The product was found to be clean by thin layer chromatography (t.l.c.), and after recrystallisation, gave a melting point of $340-344^{\circ} \mathrm{C}$ (lit., ${ }^{98} 348^{\circ} \mathrm{C}$ ).

Synthesis of Luteolin (85)

The synthesis of $3^{\prime}, 4^{\prime}$-di-O-methylluteolin (84) in 337 yield followed a course similar to that of $4^{\prime}$ - 0 -methylapigenin (82). Purification of the crude product required repeated flash chromatography to remove impurities.

Since this product has a $3^{\prime}, 4^{\prime}$-dioxygenation pattern, its $60 \mathrm{MHz}{ }^{1} \mathrm{H}$ n.m.r. spectrum is more complex than that of $4^{\prime}$ - O-methylapigenin (82). For flavones with this substitution pattern the $5^{\prime}-H$ nucleus typically resonates in the range $6.7-7.3 \mathrm{ppm}$ as a doublet ( $J 8.5$ $\mathrm{Hz}),{ }^{2}$ and in this case the signal is at 7.3 ppm (Figure 2.3). The $2^{\prime}$ - and $6^{\prime}-H$ nuclei should given rise to overlapping signals in the range 7.2 - 7.9 ppm , and for compound (84) they are, in fact, found at ca. 7.6 ppm.

The demethylation step to prepare luteolin (85) was complicated by the precipitation of a brown non-flavonoid material during the heating of the aqueous solution. This was filtered off, and concentration of the filtrate under reduced pressure gave the crude brown product. Preparative layer chromatography (p.l.c.) resulted in significant loss of product due to oxidation on the plate, and only a small sample of a yellow oil was obtained. Analytical thin layer chromatography (t.l.c.) showed this to contain one major component (yellow in visible light and purple under ultra violet light) which was assumed to be the required product. Further purification was precluded by the low yield of product and its susceptibility to oxidation.

Figure $2.360 \mathrm{MHz}{ }^{1} \mathrm{H}$ n.m.r. spectrum of $3^{\prime}, 4^{\prime}-0$-methylluteolin (84)



(84)

1

3,4'-Di-O-methylkaempferol (86) was prepared in $40 \%$ yield without complication. The presence of the $\omega$-methoxyl group in the ketone precursor, $\omega$-methoxyphloracetophenone (74) enhances the rate of this thermal condensation (p. 42) and consequently a shorter period of heating ( 3 h ) was required.

As in the case of $4^{\prime}$ - O-methylluteolin (84), the $60 \mathrm{MHz}{ }^{1} \mathrm{H}$ n.m.r. spectrum of this methyl ether (86) shows an apparent $A B$ quartet for the four B-ring protons, the two signals in this case appearing at 6.8 and 7.9 ppm respectively.

Demethylation of compound (86) gave kaempferol (87) in $90 \%$ yield. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum of this flavonol (87) (Figure 2.4) shows a broad peak due to four hydroxyl protons at 3.3 ppm in addition to signals for the meta-coupled A-ring protons (6- and 8-H) at 6.2 and 6.4 ppm , and the B-ring protons at 6.9 and 8.1 ppm .

## Synthesis of Quercetin (89)

The synthesis of $3,3^{\prime}-4^{\prime}$-tri- O-methylquercetin (88) proceeded smoothly in $39 \%$ yield. As in previous examples, purification of the crude product led to considerable reduction in yield as a result of significant charring.

In common with $3^{\prime}, 4^{\prime}$-di- O-methylluteolin (84) the ${ }^{1} \mathrm{H}$ n.m.r. spectrum of this methyl ether (88) (Figure 2.5) shows typical signals, viz., two doublets at 6.2 and 6.4 ppm for the A-ring aromatic protons, a doublet at 7.1 ppm due to the $5^{\prime}-\mathrm{H}$ nucleus and a multiplet at 7.6 ppm due to the $2^{\prime}$ - and $6^{\prime}-H$ nuclei.

The hydrolysis of the methyl ether (88) afforded quercetin (89) in $86 \%$ yield. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum of the flavone (89) (Figure 2.6) shows no methoxyl group protons, and the 5 ' -H nucleus is shown to be slightly less deshielded than it is in the ether (88). The melting point of quercetin (89) was found to be in closer agreement with that found by Robinson ${ }^{100}$ than that reported by Gripenberg. ${ }^{98}$ This variation may possibly be attributed to the decomposition of the product near its melting point.


Figure $2.660 \mathrm{MHz}{ }^{1} \mathrm{H}$ n.m.r. spectrum of quercetin (89)

(89)
53.


Synthesis of Fisetin (91)

Fisetin (91) and its trimethyl ether (90) differ from other flavonols in this study, since they lack a 5 -hydroxyl group in the A-ring. Their syntheses did not differ in procedure from other flavonol aynthesea, but the ketone precursor $\omega$-methoxyreaacetophenone [(73); Table 2.1, p. 31] was used in place of $\omega$-methoxyphloracetophenone (74). Since the former precursor has a lower melting point than the latter (74), the reaction was carried out at a slightly lower temperature $\left(175^{\circ} \mathrm{C}\right) .{ }^{100}$ Although the thermal cyclisation reaction afforded the ether product (90) in low yield (23\%), the demethylation reaction gave fisetin (91) in $69 \%$ yield with no difficulties.

The ${ }^{1} \mathrm{H}$ n.m.r. spectra of products (90) and (91) differ from those of 5,7-dihydroxyflavonols in that a signal for the $5-H$ nucleus is present. Since this proton is strongly deshielded by the C-4 carbonyl group, the signal is found at ca. 8.0 ppm. (Figures 2.7 and 2.8) It is of interest to note that these products (90) and (91), in common with other flavones lacking $5-0 H$ groups, ${ }^{2}$ give a characteristic. pale fluorescent blue colour under u.v. light, in contrast with 5,7dihydroxyflavones which give a dark purple colour.

## Synthesis of Myricetin (93)

The synthesis of $3,3^{\prime}, 4^{\prime}, 5^{\prime}$-tetra-O-methylmyricetin (92) from $\omega$ methoxyphloracetophenone (74) and 3,4,5-trimethoxybenzoic anhydride (64) was carried out in the same way as other flavonol syntheses, following the method of Kalff and Robinson, 101 but flash chromatography of the crude product afforded only a small quantity of amorphous yellow product. T.l.c. of other fractions from the column revealed the presence of starting materials (as well as brown oxidation products) indicating that the shorter period of heating ( 3 hours) was perhaps insufficient. The product decomposed near its melting point.

The ${ }^{1} H$ n.m.r. spectrum of product (92) showed methoxyl proton signals, the characteristic $6-H$ and $8-H$ proton doublets, and a singlet at 7.4 ppm due to the two B-ring protons, $2^{\prime}$ - and $6^{\prime}-\mathrm{H}$. (Fig 2.9)



Figure $2960 \mathrm{MHz}^{1}{ }^{1} \mathrm{H}$ n.mr. spectrum of $3,3^{\prime}, 4^{\prime}, 5^{\prime}$-tetra- 0 - methylmyricetin (92)

(92)

Preparation of myricetin (93) by demethylation of the ether (92) afforded a small amount of the crude flavone. In the course of purification by p.l.c. some loss of product occurred because of oxidation on the plate. The recovered sample was shown by t.l.c. to contain one major component (yellow in visible light and purple in ultra violet light) assumed to be myricetin (93). Time did not permit a further attempt to synthesise myricetin.

## Synthesis of Quercetagetin (95)

The synthesis of quercetagetin (95) required, as a precursor, $2^{\prime}, 5^{\prime}$-dihydroxy-2, $4^{\prime}, 6^{\prime}$-trimethoxyacetophenone (79) which in turn was prepared from $2^{\prime}$-hydroxy-2, $4^{\prime}, 6^{\prime}$-trimethoxyacetophenone (77) (see p. 4I).

Transformation of compound (77) to the dihydroxy product (79) was effected using the Elbs persulphate oxidation, in which potassium persulphate, $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$, is slowly added to an alkaline solution of a phenol under controlled temperature conditions. 102 Yields for the reaction are known to be low (15-20\%) and in this investigation the reaction gave a $7 \%$ yield.

The mechanism for the oxidation has been suggested ${ }^{102}$ to involve slow attack by a sulphate ion-radical (107) on the phenoxide ion (106) (Scheme 2.9). Para- substitution appears to be favoured but if the para position is occupied, ortho- substitution is observed to occur in even lower yields. ${ }^{102}$ Oxidative coupling of phenyl groups is also possible and may account for the observed darkening of the reaction mixture.

The crude product was used without further purification for the next stage, the synthesis of $3,3^{\prime}, 4^{\prime}, 5,7$-penta- 0 -methylquercetagetin (94) The thermal condensation of the ketone precursor (79) with the anhydride (63) was carried out on a small scale and preparative layer chromatography was necessary to isolate the pentamethyl ether product (94). A small amount of product (94) was obtained as an oil, but no attempt was made to demethylate it.

## Scheme 2.9 The Elbs persulphate oxddation



Reagents : i, $\mathrm{OH}^{-}, \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$; ii, $\mathrm{H}^{+}$
2.1.2.7 Synthesis of rhamnetin and isorhamnetin

Many naturally occurring flavones bear methoxyl groups as aromatic substituents, and their synthesis from existing hydroxyflavones can be performed by selective alkylation reactions.

The 5-hydroxyl group is least amenable to alkylation because of intramolecular hydrogen bonding as shown in the flavonol (89) (Scheme 2.10) but complete alkylation of flavones is possible in the presence of a large excess of alkyl halide. Reactions are most successful when carried out in acetone, ${ }^{1}$ using potassium carbonate as a base. Dimethyl sulphate is suitable for complete methylation, while diazomethane is used for methylation of all hydroxyl groups other than at the 5 - position. ${ }^{98}$ Partial methylation can be achieved by protecting certain hydroxyl groups before methylation and by careful control of reaction conditions. 103

Rhamnetin (98) was successfully synthesised by acetylation of quercetin (89), and subsequent selective hydrolysis and methylation of the penta-acetate (96) at the 7 - position only (Scheme 2.10). This was achieved, following the method of Jurd, ${ }^{103}$ by carrying out the reaction in refluxing acetone (b.p. $56^{\circ} \mathrm{C}$ ), and using methyl iodide as the methylating agent.

Isorhamnetin (103) was prepared by a similar series of reactions ${ }^{103}$ (Scheme 2.10). Use of 2-butanone (b.p. $80^{\circ} \mathrm{C}$ ) as the solvent in step $v$ allowed the reaction to proceed at a slightly higher temperature, leading to replacement of O-acetyl groups with O-benzyl groups in all
but the $3^{\prime}$-position and giving product (100). Hydrolysis of this $3^{\prime}$ -O-acetyl group to give compound (101), and methylation at this position followed by removal of the protecting benzyl groups by acid hydrolysis, proved to be a very satisfactory route to the desired product, isorhamnetin (103).

Although a multi-step linear synthesis such as this inevitably leads to reduced overall yields, the products at each stage were readily obtained in a pure state as indicated in the following discussion.

Scheme 2.10 Synthesis of rhamnetin and isorhamnetin


(97)

(98)




(103)

Reagents : 1, $\mathrm{Ac}_{2} \mathrm{O}$, pyridine; 11, MeI, $\mathrm{K}_{2} \mathrm{CO}_{3}$, dry acetone;
111. $\mathrm{NaOH}, \mathrm{MeOH}$; Iv, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Cl}, \mathrm{K}_{2} \mathrm{CO}_{3}$, dry acetone;
v. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Cl}, \mathrm{K}_{2} \mathrm{CO}_{3}$, dry 2-butanone; vi, $\mathrm{NaOH}, \mathrm{MeOH}$; vil, MeI, $\mathrm{K}_{2} \mathrm{CO}_{3}$, acetone;
vili, $\mathrm{AcOH}, \mathrm{HCl}$

This reaction involved a straightforward acetylation of all the hydroxyl groups of quercetin (89), and the yield after recrystallisation was $64 \%$.

Presence of the acetyl groups was confirmed by the strong carbonyl group absorbtion in the i.r. spectrum of product (96) at $1775 \mathrm{~cm}^{-1}$ (in addition to the flavone carbonyl group absorption at $1650 \mathrm{~cm}^{-1}$ ) and the lack of a broad hydroxyl absorption band.

The ${ }^{1}$ H n.m.r. spectrum of product (96) showed a 15 -proton signal at 2.35 ppm due to the five ester methyl groups and otherwise was similar to that of quercetin (89) (Figure 2.6, p. 53).

Synthesis of 3,3',4',5-tetra-0-acetylrhamnetin (97)

The selective replacement of the 7 - 0 -acetyl group by a methyl group was controlled by use of methyl iodide as the methylating agent (this being preferable to use of dimethyl sulphate which could also methylate at the $4^{\prime}$ - position with comparable ease ${ }^{103}$ ) in a 3 : 1 molar ratio.

The product (97) was obtained in $40 \%$ gield and its identity as a methyl ether was confirmed by the ${ }^{1} \mathrm{H}$ n.m.r. signal at 3.8 ppm , due to the 7 -methoxyl protons.

Synthesis of Rhamnetin (98)

Hydrolysis of $3,3^{\prime}, 4^{\prime}, 5$-tetra-0-acetylrhamnetin (97) was effected in alkaline solution to afford rhamnetin (98) in 567 yield after recrystallisation. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum differed from that of quercetin (89) only in the presence of a signal at 3.9 ppm due to the 7-methoxyl substituent.

The synthesis of this compound illustrates the ease of alkylation of the 7 -hydroxyl group in flavones. The use of benzyl chloride in a 4 : 1 molar ratio with $3,3^{\prime}, 4^{\prime}, 5,7$-penta-0-acetylquercetin (96) in dry acetone resulted in benzylation at the 7 - position only. The product (99) was obtained in 577 yield, and the benzyl group was shown to be present by the ${ }^{1} \mathrm{H}$ n.m.r. signals at 5.2 ppm (due to the benzyl methylene protons) and at 7.5 ppm (due to the benzyl aromatic protons).

Synthesis of $3^{\prime}-0$-acetyl-3,4',5,7-tetra-0-benzylquercetin (100)

Further benzylation of the preceding product (99) was carried out with the higher boiling 2-butanone as solvent, and a higher (10:1) reactant ratio, to afford the required product (100) in 347 yield. The additional benzyl groups in the molecule gave rise to ${ }^{1} \mathrm{H}$ n.m.r. signals at 5.2 ppm (benzyl methylene protons) and at 7.4 ppm (benzyl aromatic protons) with integrals in the ratio 8 : 20 respectively, and the one remaining acetyl group gave rise to a 3 proton singlet at 2.3 ppm .

Synthesis of 3,4',5,7-tetra-0-benzylquercetin (101)

The hydrolysis of the remaining 0-acetyl group of compound (100) was effected without difficulty, to afford product (101) in $73 \%$ yield. The presence of a broad absorbtion band centred at $c a .3300 \mathrm{~cm}^{-1}$ in the i.r. spectrum of the flavone (101) confirmed the presence of a hydroxyl group in the molecule.

Synthesis of 3,4',5,7-tetra-0-benzyl-3'-0-methylquercetin (102)

The $3^{\prime}$-hydroxyl group in compound (101) was methylated as previously, with methyl iodide, in dry acetone. The crude product was a sticky gum, and it was recrystallised with difficulty, to give the crude methylated product (102) in $37 \%$ yield.

The 1.r. spectrum of product (102) showed no hydroxyl absorption, and 1ts ${ }^{1} H$ n.m.r. spectrum showed signals for one methoxy group (at 3.7 ppm ) and four benzyl groups (at 5.2 and 7.4 ppm ), confirming that the methylation had been successful. Hence it was considered unnecessary to purify the product (102) further before using it for the next step of the synthesis.

## Synthesis of Isorhamnetin (103)

The final stage in the synthesis of isorhamnetin (103) was the hydrolysis in acid medium of the benzyl ether groups in 3, $4^{\prime}, 5,7-$ tetra-0-benzyl-3'-0-methylquercetin (102). The reaction proceeded without complication to give the desired product (103) in $79 \%$ yield.

### 2.2 ISOLATION AND IDENTIFICATION OF CHEMICAL CONSTITUENTS OF TULBAGHIA VIOLACEA

### 22.1 Methods of Extraction

When Tulbaghia violacea is used as a traditional remedy, it is extracted by aqueous infusion of the crushed plant. Since it was an objective of this study to investigate the active principles in the herbal medicine, initial extraction procedures followed the traditional approach (section 2.2.1.1). In addition, the possibility of alkaloids and other lipophilic secondary metabolites being present in the plant necessitated extraction with non-aqueous solvents (section 2.2.1.2). Vacuum distillation techniques were used to obtain samples of volatile constituents in the plant (section 2.2.5).

### 22.1.1 Aqueous extraction

Traditional methods of extracting Tulbaghia violacea appear to vary. In some cases, crushed plant material (typically the roots and white aerial parts) is boiled in water for up to half an hour before cooling, while in other cases boiling water is poured on to the crushed plant material and the mixture is then left to cool. Generally, the green parts of the plant are not used, and occasionally only the brown dried outer scales from the base of the plant are extracted.

In this investigation, aqueous infusions were usually obtained by grinding the washed plant, (excluding green leaves) with distilled water, and boiling it briefly (ca. 10 min ). For comparative biological activity studies (section 2.2.7) infusions were also prepared (a) without boiling the mixture and (b) using green leaves only.

Concentration of the infusion by freeze-drying gave a sticky powder (extract I; Scheme 2.11, p. 66), the colour of which depended on the age of the plant : older plants gave browner extracts due to the accumulation of brown outer scales, while young plants gave colourless extracts.

### 2.2.1.2 Soxhlet extraction

Successive extraction of chopped fresh plant material (excluding green parts) in a Soxhlet apparatus, using organic solvents of increasing polarity, gave extracts II and III (Scheme 2.11). Partitioning of extract III between water and ethyl acetate and then butanol gave fractions IV, V and VI.

Analysis of the extracts obtained by these methods is described in the following sections :- sugars (2.2.2); aglycones (2.2.3); sulphur compounds (2.2.4); volatiles (2.2.5); and miscellaneous constituents (2.2.6).

Scheme 2.11 Extractions of Tulbaghia violacea


### 2.2.2 ISOLATION AND IDENTIFICATION OF SUGARS IN TULBAGHIA VIOLACEA

### 2.2.2.1 Preliminary investigations

The presence of simple sugars in the aqueous plant extract was established initially by t.l.c. ${ }^{104}$ (Figure 2.10). When the anisaldehyde $-\mathrm{H}_{2} \mathrm{SO}_{4}$ spray reagent (1) was employed for visualisation of sugar components, the observed colours provided some information regarding the nature of the sugars present; ${ }^{104}$ the colours observed are recorded in Figure 2.12; A.

The presence of glycosidic material in the aqueous extract (I) was established by adapting a most useful technique reported by Heisig and Wichtl, 105 involving hydrolysis of glycosides directly on a t.l.c. plate. The components of extract $I$ were separated by t.l.c. in one direction initially. The plate was then placed in a 'reaction box', the lid of which comprised a p.l.c. plate previously sprayed with dilute hydrochloric acid. The box was heated briefly (ca. 10 min ) to vapourise the acid and hence effect hydrolysis of the material on the t.I.c. plate. Subsequent elution in the second direction with appropriate solvent systems allowed separation either of aglycones or of sugars. The results of this procedure are shown in Figure 2.11, where chromatogram $B$ represents a control experiment in which no hydrolysis was carried out before the second elution. [Chromatogram $C$ shows the results (obtained later) of hydrolysis following the same procedure, of fraction $V$ from the Soxhlet extraction. (Scheme 2.11, p. 66)].

In order to isolate the aglycones and sugars from these glycosides, a sample of extract I was hydrolysed (see Experimental section, p. 155) giving an aqueous layer containing sugars. This was shown by t.l.c. (Figure 2.12; A) and paper chromatography (p.c.) (Figure 2.12; B) to contain at least three sugar components.

Figure 2.10 T.l.c. of aqueous extract I


$$
\begin{array}{lll}
\text { Spot } & \text { if } & \text { Colour } \\
\text { a } & 0.90 & \text { Grey } \\
\text { b } & 0.84 & \text { Violet } \\
\text { c } & 0.78 & \text { Grey/green } \\
\text { d } & 0.71 & \text { Grey/green }
\end{array}
$$

Solvent system : EtOH - Prop $^{1} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}$ (6:2:1): spray reagent : anisaldehyde $-\mathrm{H}_{2} \mathrm{SO}_{4}$

Flgure 2.11 2-D t.L.c, with hydrolysis, of extracts I and V

Extract 1


Spot Sample Colour
a D-6lucose Grey/green
b D-Fructose Violet/black

| c | Sugars fron | Dark grey |
| :--- | :--- | :--- |
| d | hydrolysed | Grey/green |
| e | glycosidic | Grey/green |
| f | material | Dark grey/purple |
| g |  | Dark grey/purple |

Fraction V (see section 2.2.3.3)


Spot Sample Colour
a D-6lucose Grey/green
b D-Fructose Violet/black
c D-xylose
Green

| d | $\begin{array}{ll}\text { Sugars from } & \text { Grey/greem } \\ \text { hydrolysed } & \text { Grey/green } \\ \text { glycosidic } & \text { Dark Grey/purple }\end{array}$ gren |
| :--- | :--- | :--- | material

f Apparently Dark Grey/purple
free
D-Fructose

Solvent systems : $\mathrm{Bu}^{\mathrm{t}} \mathrm{OH}-\mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}$ (3:1:1) and BuOH $\mathrm{H} \mathrm{HOH}-\mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}(8: 8: 1: 1)$;
spray reagent : anisaldehyde $-\mathrm{H}_{2} \mathrm{SO}_{4}$

Flgure 2.12 T.l.c. and p.c. of hydrolysed extract Ifor analysis of sugars


Solvent systen : $\mathrm{BuOH}-\mathrm{MeOH}-\mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}$ (8:8:1:1); spray reagent : anisaldehyde $-\mathrm{H}_{2} \mathrm{SO}_{4}$


Solvent system : EtOAC - AcOH - $\mathrm{HCOOH}-\mathrm{H}_{2} \mathrm{O}$ (18:3:1:1); spray reagents : $1, \mathrm{AgNO}_{3}$ in acetone; i1, NaOH in EtOH; ii1. $\mathrm{NaOAC}-\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}-\mathrm{AcOH}$ in $\mathrm{H}_{2} \mathrm{O}$

| Spot | Sample | $R_{f}$ | Colour |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
| a | D-Glucose | 0.51 | Grey/green |
| b | D-Galactose | 0.48 | Grey/green |
| c | D-Hannose | 0.61 | Green |
| d | L-Rhammose | 0.75 | Green |
| e | D-Xylose | 0.69 | Grey/green |
| f | L-Arabinose | 0.61 | Yellow/green |
| g | D-Fructose | 0.48 | Blue/black |
| h | Hydrolysed | 0.71 | Grey/green |
|  |  | 0.63 | Grey/green |
|  |  | 0.52 | Blue/black |

Spot Sample $\quad R_{f}$
a Maltose 0.11
b L-Arabinose 0.41
c D-Glucose 0.25
d D-Fructose 0.37
e D-Mannose 0.32
f D-Xylose 0.45
h Hydrolysed I 0.47
0.37
0.26
0.10

### 2.2.2.2 Isolation of free and glycosidic sugars

Differentiation between free sugars in Tulbaghia violacea and those present as glycosides, and identification of these components, formed an integral part of the analysis of the glycosidic material extracted from the plant. In order to separate glycosidic and free sugars from extract $I$, the procedure suggested by Mabry, Markham, and Thomas ${ }^{2}$ was adapted for use with aqueous solutions. Glycosidic material in the aqueous solution of extract $I$ was adsorbed on to charcoal, leaving the free sugars in solution (FS). The glycosides were recovered by treatment of the filtered charcoal with a hot aqueous phenolic solution. After removal of the phenol by solvent extraction, hydrolysis of the glycosides gave an aqueous solution containing the glycosidic sugars (GS) (see Experimental section). Confirmation of the presence of sugar components in fractions (FS) and (GS), but absence of sugars in the glycosidic material before hydrolysis, was obtained by t.1.c. of these fractions (Figure 2.13).

### 2.2.2.3 Gas-liquid chromatography of isolated sugars

A sensitive method was required for detection of the small quantities of sugars present in the sample solutions and hence, g.c. techniques were employed. To facilitate volatilisation, the sugar samples and selected standard monosaccharides were derivatised, initially using the method of McGinnis ${ }^{106}$ in which aldoses were converted to peracetylated aldononitriles (PAANs). This method is suitable for aldoses, and the analysis for keto-sugars was carried out by an alternative method (see section 2.2.2.5).

The preparation of PAANs [Scheme 2.12; (110)] has advantages over the more usual method of derivatisation of sugars by trimethylsilylation, in that the PAANs are stable in the presence of water and may be stored. In addition, while gas chromatograms of TMS-ethers of sugars (111) have at least two peaks per sugar resulting from the different anomeric forms, each sugar forms only one PAAN and hence gives only one peak by g.1.c.

Figure 2.13 T.I.c. of free and glycosidic sugar samples


| Spot | Sample |
| :--- | :--- |
| a | D-Glucose |
| b | D-Galactose |
| c | D-Xylose |
| d | L-Rhamnose |
| e | L-Arabinose |
| f | Fraction FS |
| g | Fraction GS |
| h | Isolated glycosides |

Solvent system : $\mathrm{BuOH}-\mathrm{MeOH}-\mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}$ (8:8:1:1); spray reagent : anisaldehyde $-\mathrm{H}_{2} \mathrm{SO}_{4}$

## Scheme 2.12 Derivatisation methods for sugars

[Illustrated for D-glucose (109)]


Reagents : 1, THSCl; if, $\mathrm{NH}_{2} \mathrm{OH} . \mathrm{HCl}$, N -methylimidazole;
iii. $\mathrm{Ac}_{2} \mathrm{O} ; \mathrm{iv}, \mathrm{NaBH}_{4}, \mathrm{AcOH} ; v, \mathrm{Ac}_{2} \mathrm{O}$, pyridine

The synthesis of a PAAN is carried out by condensation of the sugar with hydroxylamine hydrochloride in $N$-methylimidazole (which acts as a catalyst and a solvent) to form the oxime. Dehydration and acetylation by acetic anhydride give the PAAN which is isolated by solvent extraction. The reaction is rapid (the rate of condensation depends on the amount of water present but generally the reaction is completed in ca. 5 minutes) and it is not affected by the presence of mineral acids or salts. This latter feature makes the method particularly suitable for derivatisation of hydrolysed plant extracts. Isothermal gas chromatography of PAAN derivatives typically results in good separation of components, 107 the dominant factor governing the g.l.c. retention times of the PAANs being the number of acetoxyl groups in the structures. Thus, pentose PAANs are eluted ahead of hexose PAANs. 107

PAAN derivatives were prepared from the free sugar sample (FS) and the glycosidic sugar sample (GS) obtained as described previously (p. 71). Standard aldoses were derivatised as a mixture and individually, facilitating identification of g.l.c. peaks as shown in Figure 2.14; A. Comparison of the gas chromatogram of the free sugar (FS) PAAN derivatives (Figure 2.14; B)* with that of the standard sugar derivatives showed glucose to be the major component of the free sugar mixture; peak (h) appeared to correspond with arabinose. The gas chromatogram of the glycosidic (GS) PAAN derivatives (Figure 2.14; C) showed components which clearly correlated with the PAAN derivatives of glucose (peak s), rhamnose (peak m), fucose (peak n), and xylose (peak $p$ ). In addition, the small peaks ( 0 ), ( $r$ ), and ( $t$ ) appear to correspond to arabinose, mannose and galactose, in this chromatogram.

Confirmation of these results was obtained by co-elution of the PAAN derivatives of the (FS) and (GS) samples with those of the standard sugars, establishing the identity of some component sugars by the following correlations : (j) - glucose; (k) - galactose; (m) rhamose; (n) - fucose; (p) - xylose; (s) - glucose; and (t) galactose.

[^1]Figure 2.14 Gas chromatograms of peracetylated aldononitrile derivatives


Peak
$a$
$b$
$c$
$d$
$e$
$f$
$g$


C Glycosidic sugars (GS)


Retention time (min) Sugar

| 7.39 | L-Rhamnose |
| :--- | :--- |
| 8.84 | D-Fucose |
| 9.43 | L-Arabinose |
| 11.51 | D-Xylose |
| 19.16 | D-Mannose |
| 22.90 | D-Glucose |
| 24.42 | D-Galactose |
| 9.82 | L-Arabinose |
| 17.50 | (Fructose) |
| 22.69 | D-Glucose |
| 24.51 | D-Galactose |
| 28.28 | (Fructose) |

7.27
8.46
9.74
10.92
17.28
18.67
22.37
24.01
29.62
9.61
17.14
20.64
26.84

L-Rhamnose
D-Fucose
L-Arabinose
D-Xylose
(Fructose)
D-Mannose
D-Glucose
O-Galactose
(Fructose)

Fructose
Fructose
Fructose
Fructose

Fructose was treated using the same derivatisation procedure to yield the peracetylated ketoxime (PAKO) (instead of the PAAN as afforded by aldoses), and the gas chromatogram of this derivative (Figure 2.14; D) showed several peaks presumed to be due to partially acetylated products. Comparison of the gas chromatogram of PAANs of samples (FS) and (GS) with that of the fructose PAKO derivative suggested that certain peaks [(h), (i), (1), (o), (q) and (n), Figure 2.14] could be attributed to the presence of fructose in these samples (FS) and (GS).

### 2.2.2.4 G.c. - m.s. of PAAN derivatives

In both the hexose and the pentose series, the mass spectra of diastereomeric PAAN derivatives are very similar, since the compounds have similar fragmentation patterns. However, variation in the proportions of the fragments from particular members of a series results in characteristic mass spectra for each of the diastereomers.

Mass spectra were obtained for the standard sugar PAAN derivatives and for the (GS) and (FS) PAANs, as shown in Figure 2.15. (Full data listings are given in the Appendix). This data was used to supplement the information obtained by g.l.c. analysis, which had been insufficient to fully establish the identity of components giving rise to peaks (h) and ( 0 ) in the gas chromatograms (Figure 2.14, p. 75) as being fructose derivatives or arabinose derivatives. The presence of arabinose in the (FS) sample was confirmed by visual comparison of the mass spectrum of the arabinose PAAN in the standard mixture, with that of the component in the (FS) PAAN sample which had the same retention time (Figure 2.15). (This result does not exclude the possibility that the arabinose was present in the free sugar sample owing to hydrolysis of a glycoside containing it, during the aqueous extraction procedure). The component in the glycosidic (GS) PAAN sample which was thought to be the arabinose PAAN, corresponded closely in elution time with the standard arabinose PAAN, but gave a mass spectrum in which there was less convincing correlation.

Figure 2.15 G.c. - m.s. analysis of PAAN derivatives of sugars

## A Standard sugars




## B Free sugars





C Glycosidic sugars



| L-Rhamnose | 6.170 |
| :--- | ---: |
| L-Arabinose | 8.781 |
| D-Xylose | 10.560 |
| D-Glucose | 23.313 |
| D-Galactose | 25.398 |

### 2.2.2.5 G.c. - m.s. of alditol acetate derivatives of sugars

The presence of the ketose, fructose, in extract $I$ as suggested by t.l.c., p.c., and g.l.c., required confirmation. While aldoses are readily identified by analysis of their PAAN derivatives, an alternative method is necessary for analysis of ketoses, since they cannot be converted to PAANs. The preparation of alditol acetates is a useful method for derivatising both aldoses and ketoses [Scheme 2.12, p. 73; (112)]. Reduction of an aldose produces an alditol, but a 2ketose yields a pair of $\mathrm{C}-2$ epimers, and hence two alditol acetates after acetylation. Fructose, for example, is converted by reduction to glucitol and mannitol. Thus, preparation of the alditol acetate derivatives of a mixture of glucose and fructose would result in a mixture of glucitol and mannitol hexa-acetates, and the relative proportions of the two components would be significant.

The procedure for derivatisation employs sodium borohydride for the reduction; after removal of unreacted borohydride, acetylation is carried out using acetic anhydride. ${ }^{108}$ Additol acetates were prepared from fructose, mannose, and the standard sugars used previously, as well as from the sugar samples (FS) and (GS).

The results of g.c. - m.s. analysis of these alditol acetate derivatives are shown in Figure 2.16. The presence of fructose in both samples (FS) and (GS) is confirmed by the occurrence of components corresponding in retention time to the mannose (and glucose) derivative in both cases, and by the correlation of the mass spectra of these derivatives. Co-elution of the alditol acetates of the (FS) and (GS) samples with that of fructose verified these results.

Flgure 2.16 G.c. - mas. se ijuls of alditol acetate derivatives of sughrs

## A Standard suzars <br> 

B Fructose


C Mannose




Figure 2.16 G.c. - m.s. analysis of alditol acetate derivatives of sugars (contd)

D Free sugars (FS)




## E Glycosidic sugars (GS)


2.2.2.6 A carbohydrate component obtained by methanolic extraction

During the methanolic Soxhlet extraction of Tulbaghia violacea and subsequent fractionation, a carbohydrate component was isolated. This solid material precipitated from the methanolic extract III (Scheme 2.11, p. 66). The material, (found to swell in water but to be insoluble) gave a positive Molisch test but did not give a blue colouration with iodine solution. Hydrolysis of the material gave glucose (as revealed by t.l.c.; see Experimental section, p. 161), and the material was presumed to be a polysaccharide.

## 2,2,2.7 Summary of analysis of sugars in Tulbaghia violacea

A range of different chromatographic techniques have thus confirmed the presence of the following sugars in Tulbaghia violacea :

Sugar | Technique used for |
| :---: |
| identification |

| Free sugars : | D-Glucose | p.c., t.l.c., g.l.c. |
| :---: | :---: | :---: |
|  | D-Fructose | p.c., t.l.c., g.c. - m.s. |
|  | L-Arabinose | t.l.c., g.l.c., g.c. - m.s. |
|  | D-Galactose | g.1.c. |
| Glycosidic sugars : | D-Glucose | p.c., t.l.c., g.1.c. |
|  | D-Fructose | p.c., t.l.c., g.c. - m.s. |
|  | L-Rhamnose | g.1.c. |
|  | D-Fucose | g.1.c. |
|  | L-Arabinose | g.l.c., g.c. - m.s. |
|  | D-Xylose | p.c., g.l.c. |
|  | D-Galactose | g.1.c. |

### 2.23 ISOLATION AND IDENTIFICATION OF FLAVONE AGLYCONES IN TULBAGHIA VIOLACEA

### 2.2.3.1 Preliminary investigations

The glycosides in both aqueous and methanolic extracts of Tulbaghia violacea were examined by two t.l.c. techniques.

Firstly, two-dimensional t.l.c. (following the method of Mabry, Markham, and Thomas ${ }^{2}$ and using aqueous eluants and micro-crystalline cellulose plates) gave the results illustrated in Figure 2.17. A comparison of these chromatograms with those illustrated in the reference suggested the possible presence of 3- and 7-0-glycosides of flavonols in the extracts.

A second two-dimensional technique, involving hydrolysis of material on the t.1.c. plate (described previously in section 2.2.2.1, p. 67) was applied to the aqueous extract $I$ and the butanol-soluble fraction $V$ of the methanolic extract III (Scheme 2.11, p. 66). After hydrolysis, standard flavones were spotted on the plates for comparison with components of the hydrolysed material. A solvent system appropriate for separation of aglycones [viz., ethyl acetatehexane (1:1)] was used for the second elution. The results of this chromatography are shown in Figure 2.18. These chromatograms also indicated the presence of aglycones; u.v. - fluorescent spots, similar to those of the standard flavone samples in appearance and $R_{f}$ value, were observed.

Separation of the glycosides was investigated with a view to hydrolysing isolated glycosides and thus obtaining isolated aglycones. Gel filtration (on Sephadex LH-20, using a peristaltic pump system and $u . v$. detector) was attempted, ${ }^{109}$ but poor separation of the 5 detected components, and the small quantities of material in the fractions obtained, made this method unsuitable for larger scale separation of the glycosides. Flash chromatography of the butanolsoluble fraction $V$ (Scheme 2.11, p. 66), using aqueous chloroformmethanol solvent systems of increasing polarity, resulted in the isolation of 6 fractions, but each was found to be contaminated and considerable loss of material occurred due to retention on the column.

Figure 2.17 TLc. of extracts I and III on celluiose


Solvent systems : $\mathrm{Bu}^{\mathrm{t}} \mathrm{OH}-\mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}$ (3:1:1) and 58 AcOH ; visualised with iodine

- See scheme 2.11, p
** Identified by position on the chromatogram. ${ }^{2}$

Figure 2.18 T.l.c., with hydrolysis, of extracts I and V


Solvent 1 : $\mathrm{Bu}^{\mathrm{t}} \mathrm{OH}-\mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}$ (3:1:1); hydrolys is with $5 \mathrm{M}-\mathrm{HCl}$;
solvent 2 : EtOAc - hexane (1:1).

The most effective method of obtaining aglycones involved extraction of hydrolysed glycosidic mixtures. Hydrolysis of a sample of extract I (Scheme 2.11, p. 66) was carried out (see Experimental section, p. 155), and solvent extraction was expected to separate sugars and aglycones. However, although the aqueous layer was found to contain sugars (see section 2.2.2.1, p. 67), the presence of aglycones in the organic layer was masked by the high concentration of degradation products of free sugars in the original extract. P.1.c. of the concentrated organic layer afforded, as major components, 5hydroxymethylfurfural (115) and 4-oxo-pentanoic acid (116) which were identified by ${ }^{1} H$ and ${ }^{13} \mathrm{C}$ n.m.r. spectroscopy (see Experimental section, p. 156). These products are commonly formed by hexoses under acidic conditions such as those used for the hydrolysis of extract I. 110

(115)

$$
\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{COOH}
$$

(116)

In order to obtain a fraction containing the glycosides but no free sugars, the methanolic extract of the plant material (extract III, Scheme 2.11, p. 66) was partitioned between butanol and water.

### 2.2.3.2 Chromatographic comparison of aglycones with model compounds

Samples of the methanolic extract III and the butanol-soluble fraction V (Scheme 2.11, p. 66) were hydrolysed (see Experimental section, p. 163), and ethyl acetate extracts of the hydrolysates were used to identify the aglycones. The aglycone fraction obtained by hydrolysis of the glycosides isolated after removal of free sugars (see Experimental, p. 157) was also chromatographed [labelled (r) in Figure 2.19]. The standard flavones and methoxyflavones prepared for the purpose (section 2.1) were used as chromatographic standards. T.l.c. using four different solvent systems, as illustrated in Figure 2.19, showed the possible correlations summarised in Table 2.3.

Figure 2.19 T.l.c. comparison of aglycones and model compounds


Figure 2.19 T.l.c. comparison of aglycones and model compounds (contd)
$R_{f}$ values in solvent
systems (7) - (10)
(7) (8) (9) (10)

Spot Standard

| a | $3,3^{\prime}, 4^{\prime}, 5^{\prime}$-Tetra-O-methylmyricetin (92) | 0.42 | 0.69 | 0.47 | 0.87 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| b | $3,3^{\prime}, 4^{\prime}$-Tri-O-methylquercetin (88) | 0.38 | 0.71 | 0.44 | 0.77 |
| c | $3,4^{\prime}$-Di-O-methylkaempferol (86) | 0.57 | 0.74 | 0.60 | 0.78 |
| d | $3^{\prime}, 4^{\prime}$-Di-O-methylluteolin (84) | 0.12 | 0.67 | 0.28 | 0.72 |
| e | $3,3^{\prime}, 4^{\prime}$-Tri-O-methylfisetin (90) | 0.15 | 0.52 | 0.17 | 0.59 |
| f | $4^{\prime}$-O-methylapigenin (82) | 0.46 | 0.65 | 0.52 | 0.74 |
| g | Rhamnetin (98) | 0.19 | 0.22 | 0.24 | 0.43 |
| h | Isorhamnetin (103) | 0.25 | 0.44 | 0.37 | 0.59 |
| f | Muricetin (93) | 0.20 | 0.13 | 0.24 | 0.26 |
| f | Quercetin (89) | 0.12 | 0.11 | 0.13 | 0.21 |
| k | Kaempferol (87) | 0.29 | 0.36 | 0.36 | 0.56 |
| l | Luteolin (85) | 0.11 | 0.14 | 0.18 | 0.18 |
| m | Fisetin (91) | 0.08 | 0.32 | 0.05 | 0.18 |
| n | Apigenin (83) | 0.11 | 0.33 | 0.25 | 0.27 |
| o | Chrysin (80) | 0.59 | 0.69 | 0.60 | 0.77 |

Sample

P Aglycones from extract III
q Aglycones from fraction $V$
$r$ Aglycones from hydrolysis of glycosides
after removal of free sugars
(see section 2.2.2.2.), called $X$

Chromatogram Solvent system
A
(7) EtOAc - hexane (1:1)
B
(8) $\mathrm{CHCl}_{3}$ - acetone (4:1)
C
(9) EtOAc - toluene ( $3: 2$ )
D
(10) $\mathrm{THF}-\mathrm{CHCl}_{3}(1: 4)$
88.

Table 2.3 Correlation of aglycones with standard flavones


* See Figure 2.19

It was evident from these chromatograms that all of the aglycone components (expected in the $R_{f}$ range 0.11 - 0.87 ) in the samples ( $p$ ) and ( $r$ ) were present in sample (q). Correlation of an aglycone component with a standard in all four solvent systems was taken to indicate the presence of that flavone in the aglycone mixture; this was the case for kaempferol and quercetin. To confirm these observed correlations, and to avoid possible aberrations due to interaction of components on the plates, two-dimensional t.l.c. was used. The aglycone sample (q) from fraction $V$ was chromatographed, using the same 4 solvent systems (for both elutions in each case) to give clearer separation as shown in Figure 2.20.

Thus, on the basis of the foregoing chromatographic evidence, the aglycone mixtures from Tulbaghia violacea contain the flavonols, kaempferol and quercetin.
2.2.3.3 Correlation of the sugar and aglycone components of the glycosides

The techniques of hydrolysing glycosides on a t.l.c. plate allowed some correlation of the aglycone and sugar components. Figures 2.11; A and 2.18; A show the results of analysis of extract $I$, for sugars and aglycones respectively. Correlation of the two chromatograms indicates that the aglycones kaempferol (d) and quercetin (e) in Figure 2.18; A were associated with D-glucose [spots (d) and (e) in Figure 2.11; A]. Similarly for the butanol- soluble fraction $V$, correlation of Figure 2.11; C with Figure 2.18; B suggested that the aglycones kaempferol and quercetin $[(d)$ and (e) in Figure 2.18; B] were associated with D-glucose [(d) and (c) in Figure 2.11; C]. The presence of xylose was suggested by some green colouration in spot (e). The spot (f) in Figure 2.11; C appeared to correlate with Dfructose in $R_{f}$ value and colour, and the absence of an associated aglycone, together with its low $R_{f}$ value in the first elution, suggest the presence of $D$-fructose as a free sugar.

Figure 2.20 2-D thec. to confirm identity of aglycones in extract $V$


Solvent systems : A, EtOAc - hexane (1:1); B, $\mathrm{CHCl}_{3}$ - acetone (4:1);
C. EtOAc - toluene (3:2); D, THF - $\mathrm{CHCl}_{3}(1: 4)$.

### 2.2.4 ISOLATION AND IDENTIFICATION OF SULPHUR COMPOUNDS FROM tULBAGHIA VIOLACEA

In the course of the Soxhlet extraction of Tulbaghia violacea, two sulphur compounds were isolated. They were identified, on the basis of n.m.r., i.r., and mass spectroscopic analyses, as 2,4,5,7-tetrathiaoctane-2,2-dioxide (117) and 2,4,5,7-tetrathiaoctane (118).

(117)
$\mathrm{CH}_{3}-\mathrm{S}-\mathrm{CH}_{2}-\mathrm{S}-\mathrm{S}-\mathrm{CH}_{2}-\mathrm{S}-\mathrm{CH}_{3}$
(118)
2.2.4.1 Spectroscopic analysis of sulphur compound (117)

Compound (117) was isolated as white crystals from the hexane extract II (Scheme 2.11, p. 66 ). The $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ n.m.r. spectrum of this compound shows four singlets (Table 2.4 and Figure 2.21) indicating two methyl and two methylene groups, isolated from one another. The 3-proton signal at $\delta 2.25$ is consistent with the presence of a $\mathrm{CH}_{3}-\mathrm{S}$ group, and that at $\delta 3.05$ is consistent with the presence of a $\mathrm{CH}_{3}$ $\mathrm{SO}_{2}$ group. The chemical shifts of the two methylene signals indicate that they are also adjacent to deshielding groups. The four signals in the ${ }^{13} \mathrm{C}$ n.m.r. spectrum (Table 2.4 and Figure 2.21) correspondingly indicate two non-equivalent methyl groups and two non-equivalent methylene groups. The chemical shifts of these signals are consistent with those cited in the literature for similar compounds. 47:49

Strong i.r. absorption bands at 1325 and $1140 \mathrm{~cm}^{-1}$ indicate the presence of the sulphone group adjacent to straight chain alkyl groups (as opposed to aromatic or branched chain alkyl groups) (Figure 2.22). This type of sulphone group typically shows two absorption bands, in the regions 1330-1317 and 1152-1136 $\mathrm{cm}^{-1}$. A typical feature of the sulphone absorption in the $1330-1317 \mathrm{~cm}^{-1}$ region is that the peak is split in the solid state, and this was, indeed, found to be the case in the i.r. spectrum of compound (117) The small peaks at 590 and $550 \mathrm{~cm}^{-1}$ are attributed to scissoring and wagging of the $\mathrm{SO}_{2}$ group.

Figure 2.21 N.m.r. spectra of sulphur compound (117)


Figure 2.21 N.m.r. spectra of sulphur compound (117) (contd)
$75 \mathrm{MHz}{ }^{13} \mathrm{C}$

${ }^{13} \mathrm{C}$ DEPT

Figure 2.21 N.m.r. spectra of sulphur compound (117) (contd)
$300 \mathrm{MHz}{ }^{1} \mathrm{H}$


Figure 2.22 I.r. spectrum of sulphur compound (117)


The mass spectrum (Figure 2.26 , p. 102) indicates a molecular ion, $m / z 218.15$ with an $M: M+2$ ratio of $100: 17.73$. This is in agreement with the theoretical relative abundance of the $M+2$ peak for a compound containing four sulphur atoms per molecule, viz., 100 : 17.76.* (Full data listings are given in the Appendix).

Table 2.4 Spectral data for sulphur compound (117)
${ }^{1}{ }_{\mathrm{H}}$ n.m.r. $\quad \delta$

| 2.25 | $(\mathrm{~s}, 3 \mathrm{H})$ | 15.47 | $\left(\mathrm{CH}_{3}\right)$ |
| :--- | :--- | :--- | :--- |
| 3.05 | $(\mathrm{~s}, 3 \mathrm{H})$ | 39.26 | $\left(\mathrm{CH}_{3}\right)$ |
| 4.12 | $(\mathrm{~s}, 2 \mathrm{H})$ | 45.25 | $\left(\mathrm{CH}_{2}\right)$ |
| 4.22 | $(\mathrm{~s}, 2 \mathrm{H})$ | 62.07 | $\left(\mathrm{CH}_{2}\right)$ |

I.r. $\quad \nu_{\text {max }}\left(\mathrm{cm}^{-1}\right)$

1325
1140
590
550
${ }^{13}$ C n.m.r. $\quad \delta$
M.s. $\quad m / z$

218 ( $\mathrm{M}^{+}, 3 \%$ )
111 (2)
93 (10)
61 (100)
45 (71)


```
where }\mp@subsup{P}{M}{}=\mathrm{ abundance of molecules with no heavy isotopes
    P}\mp@subsup{\textrm{M}+2}{}{\prime}=\mathrm{ abundance of molecules with y atoms of (M+2)
        isotopes }\mp@subsup{}{}{112
```

2.2.4.2 Spectroscopic analysis of sulphur compound (118)

The compound (118) was isolated as a pale yellow liquid, by p.1.c. of the ethyl acetate fraction IV from the methanolic extraction of Tulbaghia violacea (Scheme 2.11, p. 66).

The ${ }^{1} \mathrm{H}$ n.m.r. spectrum of compound (118) showed only two singlets (8 2.23 and 3.40 ) integrating in the ratio 3 : 2 respectively, as shown in Figure 2.23 and Table 2.5. As in the case of compound (117), the lack of coupling and the simplicity of the spectrum indicate the presence of isolated methyl and methylene groups. The chemical shifts of the signals are in keeping with those of $\mathrm{CH}_{3} \mathrm{~S}$ and S-CH2-S groups, respectively. ${ }^{47}$

In the i.r. spectrum (Figure 2.24) the absorption band at $680 \mathrm{~cm}^{-1}$ is consistent with the presence of $\mathrm{C}-\mathrm{S}$ bonds, and the $480 \mathrm{~cm}^{-1}$ absorption band indicates disulphide S-S stretching. The absorption band at $1190 \mathrm{~cm}^{-1}$ is probably attributable to a dithioester degradation product of compound (118), since this band is in the region characteristic of the -S-(CS)- group (1225 - $1190 \mathrm{~cm}^{-1}$ ). ${ }^{111}$ Disulphides bearing $\alpha$-protons are susceptible to $\alpha$-elimination reactions, and such a reaction for compound (118), shown by equation (x), would yield compound (119) which is a dithioester. ${ }^{47}$

(119)
G.c. - m.s. analysis of compound (118) (Figure 2.26) indicated a component with an apparent molecular ion, $m / z$ 186, which together with the $M$ : M+2 ratio of $100: 17.56$ supports the disulphide structure proposed for the compound. The component giving mass spectrum C (Figure 2.26) is likely to be the trisulphide (120), since disulphides are known to be readily converted to trisulphides when heated on the g.l.c. column (see section 2.2 .4 .3 ), as shown in equation (xi).
$\mathrm{R}-\mathrm{S}-\mathrm{S}-\mathrm{R} \longrightarrow \underset{(120)}{\mathrm{R}-\mathrm{S}-\mathrm{S}-\mathrm{S}-\mathrm{R}}+\mathrm{R}-\mathrm{S}-\mathrm{R} \quad$ (xi)
(120) $\mathrm{R}=\mathrm{CH}_{3} \mathrm{SCH}_{2} \mathrm{~m} / \mathrm{z}, \mathrm{M}^{+} 218$
98.
.

## Figure 2.24 I.r. spectrum of sulphur compound (118)



Spectrum obtained for $\mathrm{CCl}_{4}$ solution of sample, with $\mathrm{CCl}_{4}$ reference

Table 2.5 Spectral data for sulphur compound (118)

|  | 2.23 | (3H) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3.40 | (2H) |  |  |  |
|  | $\nu_{\text {max }}\left(\mathrm{cm}^{-1}\right)$ |  | M.s. |  | $m / z$ |
|  | 1190 |  |  | 186 | ( $\left.\mathrm{M}^{+}, 148\right)$ |
|  | 680 |  |  |  | (2) |
|  | 480 |  |  | 61 | (100) |

2.2.4.3 G.l.c. and g.c. - m.s. analysis of sulphur compounds (117) and (118)

The disproportionation of alkyl disulphides and related compounds on a g.l.c. column is commonly recognised, 49;50 and the structures of the products depends on the operating conditions. For example, a mixed dialkyl disulphate RSSR' $^{\prime}$ may disproportionate to give sulphide and trisulphide products such as $R S R^{\prime}, R_{3} R^{\prime}, R S R$ and $R^{\prime} S_{3} R^{\prime}$, as well as the disulphides $\mathrm{RS}_{2} \mathrm{R}$ and $\mathrm{R}^{\prime} \mathrm{S}_{2} \mathrm{R}^{\prime}$ 。 47 ;114 Further disproportionation may lead to the formation of tetrasulphides and sulphides, from trisulphides.

This is apparent in the chromatograms obtained in the g.l.c. analysis of the isolated compounds (117) and (118), and in the chromatogram obtained for a sample of component (117) which had previously been heated, in a sealed tube, to the maximum temperature employed in the gas chromatograph, viz., $200^{\circ} \mathrm{C}$ (Figure 2.25). M.s. and g.c. - m.s. analyses of these samples (Table 2.6 and Pigure 2.26 ) were used to identify possible components.

Figure 2.25 G.l.c. analysis of sulphur compounds


Compound (118)


Compound (117) after pyrolysis


Figure 2.26 M.s. analysis of sulphur compounds (117) and (118)



Figure 2.26 Ms. analysis of sulphur compounds (117) and (118) (contd)








Table 2.6 Components tentatively Identified in m.s. analysis of sulphur compounds (117) and (118)

| Sample | Conditions | $m / z, M^{+}$ | Tentative structure | No. of S atoms per molecule* , |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{CH}_{2} \mathrm{SSCH}_{2} \mathrm{SCH}_{3} \\ (117) \end{gathered}$ | Solid probe | 218 | $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{CH}_{2} \mathrm{SSCH}_{2} \mathrm{SCH}_{3}$ | 4 |
| $\mathrm{CH}_{3} \mathrm{SCH}_{2} \mathrm{SSCH}_{2} \mathrm{SCH}_{3}$ | g.c - m.s. | 186 | $\mathrm{CH}_{3} \mathrm{SCH}_{2} \mathrm{SSCH}_{2} \mathrm{SCH}_{3}$ | 4 |
| (118) |  | 172 | $\mathrm{CH}_{3} \mathrm{SSSCH}_{2} \mathrm{SCH}_{3}$ | 4 |
|  |  | 218 | $\mathrm{CH}_{3} \mathrm{SCH}_{2}-\mathrm{SSSCH}_{2} \mathrm{SCH}_{3}$ | 5 |
| Mixture of products | g.c. - m.s. | 108 | $\mathrm{CH}_{3} \mathrm{SCH}_{2} \mathrm{SCH}_{3}{ }^{* *}$ | 2 |
| obtained by pyrolysis |  | 140 | $\mathrm{CH}_{3} \mathrm{SSCH}_{2} \mathrm{SCH}_{3}$ | 3 |
| of compound (117) |  | 154 | $\mathrm{CH}_{3} \mathrm{SCH}_{2} \mathrm{SCH}_{2} \mathrm{SCH}_{3}$ | 3 |
|  |  | 172 | $\mathrm{CH}_{3} \mathrm{SSSCH}_{2} \mathrm{SCH}_{3}$ | 4 |
|  |  | 186 | $\mathrm{CH}_{3} \mathrm{SCH}_{2} \mathrm{SSCH}_{2} \mathrm{SCH}_{3}$ | 4 |

* Calculated from relative abundance of M+2 peak. ${ }^{112}$
** Components postulated to have been formed by disproportionation of the sulphone (117) in a manner analogous with that of thiosulphinates. ${ }^{49}$

Similar fragmentation patterns were observed in the mass spectra of the various components in these samples (Figure 2.26), and some frequently occurring fragments can be tentatively assigned as shown in Table 2.7.

Table 2.7 Assignment of fragments in mass spectra of sulphur compounds (117) and (118)

| $m / z$ | Fragment |  |
| :---: | :---: | :---: |
| 139 | $\mathrm{CH}_{3} \mathrm{SCH}_{2} \mathrm{SCH}_{2} \mathrm{SI}^{+}$or | $\mathrm{CH}_{3} \mathrm{SSCH}_{2} \mathrm{SCH}_{2}{ }^{+}$ |
| 125 | $\mathrm{CH}_{3} \mathrm{SCH}_{2} \mathrm{SS}^{+}{ }^{+}$or | $\mathrm{CH}_{3} \mathrm{SSCH}_{2} \mathrm{Sl}^{+}$ |
| 93 | $\mathrm{CH}_{3} \mathrm{SCH}_{2} \mathrm{Sl}^{+}$ |  |
| 79 | $\mathrm{CH}_{3} \mathrm{SS}_{7}{ }^{+}$ |  |
| 61 | $\mathrm{CH}_{3} \mathrm{SCH}_{2}{ }^{+}$ |  |
| 47 | $\mathrm{CH}_{3} \mathrm{~S}^{+}$ |  |
| 45 | CHS ${ }^{+}$ |  |

2.2.4.4 Discussion of possible origin of sulphur compounds (117) and (118)
in Tulbaghia violacea

Dialkylthiosulphinates, $R S(0) S R^{\prime}$, have been shown ${ }^{47}$ to undergo a variety of reactions resulting from indtial thermal transformation to sulphonic acids, as shown in Scheme 2.13. The initial step (i) involves $\beta$-elimination reaction to give an alkanesulphenic acid (121) and a thioaldehyde (122). 49 This is followed by an intermolecular thioalkylation step (iii) which results in formation of a sulphonium Ion intermediate (124), and this intermediate can react in various ways. The products may be the alkanesulphinic acid (125) and the disulphide (126), the trisulphide (127), or, by a further $\beta$ elimination reaction, the $\alpha$-dithiocarbocation (128). This intermediate (128) may react with an alkanesulphenic acid (129) to form the $\alpha$-alkylsulphinyl disulphide (131), or with an alkanesulphinic acid (130) to produce the $\alpha$-alkylsulphonyl disulphide (132).

In cases where more than one alkylthiosulphinate, or an asymmetrical alkylthiosulphinate, is present, exchange of alkyl groups can lead to a scrambling process, and hence the formation of mixed products. 47

Scheme 2.13 Thermal reactions of alkylthiosulphinates ${ }^{46}$

(124)

(128)


For example, the alkylthiosulphinate bearing alkyl groups $R$ and $R^{\prime}$ could, by disproportionation, give products such as the following :

$$
\begin{aligned}
& \mathrm{R}-\mathrm{SO}_{2}-\mathrm{S}-\mathrm{R}^{\prime} \\
& \mathrm{R}-\mathrm{SO}_{2}-\mathrm{S}-\mathrm{R} \\
& \mathrm{R}-\mathrm{S}-\mathrm{S}-\mathrm{R} \\
& \mathrm{R}-\mathrm{S}-\mathrm{S}-\mathrm{R}^{\prime} \\
& \mathrm{R}^{\prime}-\mathrm{S}-\mathrm{S}-\mathrm{R}^{\prime} \\
& \mathrm{R}-\mathrm{SO}_{2}-\mathrm{S}-\mathrm{S}-\mathrm{R}^{\prime} \\
& \mathrm{R}-\mathrm{SO}-\mathrm{S}-\mathrm{R} \\
& \mathrm{R}-\mathrm{SO}_{2}-\mathrm{C}-\mathrm{S}-\mathrm{S}-\mathrm{R}^{\prime} \\
& \mathrm{R}-\mathrm{SO}_{2}-\mathrm{C}-\mathrm{S}-\mathrm{S}-\mathrm{R}
\end{aligned}
$$

Thiosulphinates are known to be present in Allium species as products of enzymic conversion of S-alk(en)yl-L-cysteine sulphoxides. ${ }^{8}$ The presence of an alkyl cysteine sulphoxide lyase enzyme and of three amino acid sulphoxides in Tulbaghia violacea has been established (see p. 110), and by analogy with Allium species, it would seem likely that enzymic conversion of the amino acid sulphoxide to thiosulphinates occurs in Tulbaghia violacea. Thus, it is reasonable to expect compounds of the type discussed earlier in this section to be obtained from extracts of Tulbaghia violacea.

This is supported by the isolation of compounds (117) and (118) (see section 2.2 .4, p. 91) which are analogous to the products (132) and (126) respectively, in Scheme 2.13. This suggests that the alkylthiosulphinate precursors in Tulbaghia violacea include $R S(0) S R^{\prime}$ or $R^{\prime} S(0) S R\left(R=\mathrm{CH}_{2} \mathrm{SCH}_{3} ; \mathrm{R}^{\prime}=\mathrm{CH}_{3}\right)$. Scheme 2.14 shows of possible route for the formation of the isolated compounds (117) and (118) from the postulated precursors.

The identification of the group R as $\mathrm{CH}_{3} \mathrm{SCH}_{2}$ (rather than $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~S}$ as was suggested by Jacobsen et $a 1^{41}$ in an earlier study on Tulbaghia violacea) is confirmed by spectroscopic analyses as discussed previously (section 2.2.4.1, p. 91).

Scheme 2.14 Possible route for formation of sulphur compounds (117) and (118) ${ }^{47}$

Initial reaction for each of three possible alkylthiosulphinate precursors :-


$\mathrm{CH}_{3} \mathrm{SCH}_{2}-\stackrel{\mathrm{O}}{\mathrm{I}} \mathrm{S}-\mathrm{S}-\mathrm{CH}_{2} \mathrm{SCH}_{3} \longrightarrow \mathrm{CH}_{3} \mathrm{SCH}_{2} \mathrm{SOH}+\quad \mathrm{S}=\mathrm{CHSCH}_{3}$

Further possible conversions:-


The fortuitous use of hexane which contained some xylene (see Experimental section, p. 161) could have led to the formation of compound (117), since the thermal reaction producing such sulphinyl disulphides is proved by the presence of aromatic solvents. ${ }^{47}$ This has been attributed to the formation of a $\Pi$-complex between the aromatic nucleus and the electrophilic sulphonium ion (133) (Scheme 2.14, p. 108).

### 2.2.5 ANALYSIS OF VOLATILES FROM TULBAGHLA VIOLACEA

Tulbaghea violacea has been shown to contain a sulphoxide lyase enzyme similar to those found in members of the closely related Allium family, and previous investigation of Tulbaghia violacea volatiles ${ }^{41: 42}$ suggested the presence of sulphur compounds which corresponded with those found in Allium volatiles. This report postulated the presence of ethyl groups in the alkylthiosulphinate precursors in Tulbaghia violacea, which would represent an unusual case, since ethyl groups are not generally found in the sulphur compounds of the Allium family. ${ }^{54}$

Extensive research on a wide variety of Allium species (into the nature of the volatile components and their formation by enzymic conversion of non-volatile precursors, ${ }^{53-57}$ has established precedents for identification of the precursors by analysis of the volatiles. 54 Conditions for extraction procedures and g.I.c. and g.c. - m.s. analyses are well documented, ${ }^{113 ; 116}$ and in this study these conditions were reproduced as closely as possible, for the sake of comparison.

### 2.2.5.1 G.l.c. and g.c. - m.s. analysis of volatiles from Tulbaghia violacea

The volatiles were extracted by vacuum distillation of fresh plant material and analysed by g.l.c. on a monthly basis throughout the course of a year (see Experimental section, p. 164). (Improvements in extraction and analysis techniques during the year led to more informative results from later analyses). The results of g.c. - m.s. analysis of the extracted volatiles were compared with the results of g.c. - m.s. analysis of sulphur compounds (117) and (118), and g.c. m.s. analysis of the volatiles extracted from Allium cepa (onion) and Allium sativum (garlic) (see Experimental section, p. 164). Comparison showed that the Tulbaghia violacea volatile differed considerably from those of the Allium species in g.I.c. retention times (see Figure 2.27) and in the mass spectra of components (see Appendix, p. 215), indicating that the sulphur compounds in Tulbaghia violacea are not common to the Alliums.

Figure 2.27 G.I.c. comparison of volatiles from Tulbaghia violacea
with those from Allium cepa and Allium sativum


Column : HP-1; conditions: $70-200^{\circ}, 8^{\circ} / \mathrm{min}$.

Two components appeared consistently in the g.c. - m.s. analysis of volatiles extracts obtained at various times of the year, and with columns of varying types (see Experimental section, p. 164). A computer library search indicated that the mass spectrum of $2,4,5$ trithiahexane correlated closely with that of the first of these components (Figure 2.28 A ); this is in accordance with the explanation given in section 2.2.4.4 for the formation of disulphides from the sulphur containing precursors. The mass spectrum of the second component was observed to correlate closely with that of $2,4,5,7$-tetrathiaoctane (118) which was isolated previously (see section 2.2.4.1) (Figure 2.28; B).

It was possible to tentatively identify certain other components shown in the g.c. - m.s. analyses, in the light of the information discussed in section 2.2.4.4 (p. 105), as shown in Table 2.8 and Figure 2.28.*

Table 2.8 Components of volatiles from Tulbaghia violacea, identified by g.c. - m.s.

| $m / z$ | Possible structure |
| :--- | :--- |
| 140 | $\mathrm{CH}_{3}-\mathrm{S}-\mathrm{S}-\mathrm{CH}_{2} \mathrm{SCH}_{3}$ |
| 186 | $\mathrm{CH}_{3} \mathrm{SCH}_{2}-\mathrm{S}-\mathrm{S}-\mathrm{CH}_{2} \mathrm{SCH}_{3}$ |
| 218 | $\mathrm{CH}_{3} \mathrm{SCH}_{2}-\mathrm{S}-\mathrm{S}-\mathrm{S}-\mathrm{CH}_{2} \mathrm{SCH}_{3}$ |
| 172 | $\mathrm{CH}_{3}-\mathrm{S}-\mathrm{S}-\mathrm{S}-\mathrm{CH}_{2} \mathrm{SCH}_{3}$ |
| 126 | $\mathrm{CH}_{3}-\mathrm{S}-\mathrm{S}-\mathrm{S}-\mathrm{CH}_{3}$ |

Although components having low retention times were generally found to be inaccesible, the mass spectrum of one component was found to correlate well with 3 -hexen-1-ol ( $89 \%$ computer search correlation), and a second component correlated with 4 -hexen-1-ol acetate ( $52 \%$ match) (see Figure 2.28; D).

[^2]Figure 2.28 Mass spectra of components of volatlles from Tulbaghia violacea

## A. 2,4,5-trithiahexane



Components of volatiles extracts



Figure 2.28 Mass spectra of components of volatiles from Tulbaghia violacea (contd)
B. 2,4,5,7-tetrathiaoctane [Compound (118)]


Components of volatiles extracts




Figure 2.28 Mass spectra of components of volatiles from Tulbaghia violacea (contd)

## C. Other components of volatiles extracts



Figure 2.28 Mass spectra of components of volatiles from Tulbaghia violacea (contd)
D. Hexen-1-01


Components of volatiles extracts

E. Hexen-1-0l acetate


### 2.2.6 MISCELLANEOUS EXTRACTIONS OF TULBAGHLA VIOLACEA

The possibility of the presence of secondary metabolites other than flavones and sulphur compounds was investigated by following literature procedures for extraction and analytical chromatography.

### 2.2.6.1 Examination of Tulbaghia violacea for the presence of saponins

Aqueous extracts of Tulbaghia violacea were observed to produce a stable foam when shaken, suggesting the presence of saponins. Treatment of aqueous extract I (Scheme 2.11, p. 66) following the method of Hayashi et al $1^{117}$ (see Experimental section, p. 165) afforded a small sample in solution in chloroform.

Analysis of this sample by t.l.c., using 3 different sapogeninspecific spray reagents [viz., cinnamaldehyde - sulphuric acid reagent (4), 123 vanillin - phosphoric acid reagent (3), 104 and antimony chloride reagent (5) ${ }^{104}$ (see Table 3.2 , p. 131)] gave positive results as shown in Figure 2.29; A. A similar extraction procedure, following Carle and Reinhard, ${ }^{15}$ afforded an extract which gave similar results (see Figure 2.29 ; B and Experimental section, p. 165). The aglycone sample obtained by hydrolysis of the butanol-soluble fraction $V$ (see Experimental section, p. 163) was chromatographed in the same manner, and also showed positive results (Figure 2.29 ; C). These results suggested the possible presence of steroidal saponins in the plant but could not be followed up due to time considerations.

### 2.2.6.2 Examination of Tulbaghia violacea for the presence of alkaloids

A small scale extraction to isolate alkaloids ${ }^{118}$ was carried out on the aqueous extract I (see Experimental section, p. 165) and the resulting sample was analysed by t.l.c. using alkaloid-specific spray reagents, viz., Drazendorff's reagent (5) and iodoplatinate reagent (7). 104 The results obtained were unconvincing in that the colour reactions observed were not consistent with those expected for alkaloids.

Figure 2.29 T.l.c. analysis of Tulbaghia violacea extracts, in examination for steroidal saponins

$$
\text { Spot } R_{f} \quad \text { Colour }
$$

(1)


| a | 0.98 | Red |
| :--- | :--- | :--- |
| b | 0.60 | Red |
| c | 0.20 | Yellow |
| d | 0.20 | Blue |
| e | 0.36 | Blue |
| f | 0.58 | Yellow |
| g | 0.20 | Red |

Spray reagent : Cinnamaldehyde $-\mathrm{Ac}_{2} \mathrm{O}-\mathrm{H}_{2} \mathrm{SO}_{4}$ (4)
(2)


| h | 0.43 | Blue |
| :--- | :--- | :--- |
| i | 0.37 | Blue |
| j | 0.94 | Purple |
| k | 0.43 | Blue |
| l | 0.06 | Blue |
| m | 0.62 | Blue |
| n | 0.43 | Purple |
| o | 0.24 | Blue |

## (3) <br> Spray reagent: Vanillin $-\mathrm{H}_{3} \mathrm{PO}_{4}$ (3)

(3)


| p | 0.98 | Grey |
| :--- | :--- | :--- |
| q | 0.67 | Purple |
| r | 0.33 | Green |
| s | 0.25 | Brown |
| t | 0.18 | Grey |
| u | 0.67 | Grey |
| v | 0.17 | Grey |

[^3]
### 2.2.6.3 Examination for anthraquinones

A classic test for the presence of anthraquinones, the Borntrager test, ${ }^{13}$ was carried out on the aqueous extract $I$, as well as on an anthraquinone standard, emodin (see Experimental section, p. 166). The red colouration observed for emodin was not observed for the extract of Tulbaghia violsces. Analysis by t.l.c. using solvent systems and spray reagents suggested in the literature $104 ; 119$ also gave negative results for a hydrolysate of extract I (see Experimental section, p. 166) and it was concluded that no anthraquinones were present in Tulbaghia violacea.

### 2.2.7 BIOLOGICAL ACTIVITY OF TULBAGHLA VIOLACEA EXTRACTS

The biological activity of Tulbaghia violacea was examined briefly. The effect of the plant extracts on bacterial cultures was investigated, since some anti-bacterial action appeared likely due to the presence of sulphur compounds in the plant; similar compounds in Allium species are known to be strongly bacteriocidal.44;50 In addition, reported impairment of gut contraction in patients treated with Tulbaghia violacea extracts (see p. 1) suggested that the extracts had some effect on involuntary muscle, and this was investigated by means of an isolated organ system.

### 22.7.1 Bacteriostatic action

A range of aqueous extracts of Tulbaghia violacea (see Experimental section, p. 167) were used to treat four different bacterial strains, cultured by seeding in nutrient agar. Bacteriostatic action was indicated by a circular region of inhibited growth around the well in the agar, into which the extract had been introduced (the region being known as a "halo") (see photograph, Figure 2.30). The results of the initial investigation, using extracts obtained from mature, well-established plants, showed convincing haloes, and dilutions of the extracts caused correspondingly smaller haloes, as summarised in Table 2.9. Repetition of the investigation using extracts from younger plants gave the rather less striking results summarised in Table 2.10, possibly reflecting a lower concentration of secondary metabolites in the younger plants.

Thus, the Tulbaghia violacea extracts showed some bacteriostatic activity. The strongest activity was shown by the extract $I_{1}$ which had not been boiled (see Experimental section, p. 167), and this may be due to the biologically active compounds in the fresh plant material being transformed by heating into products which have less effect on the bacteria.

Figure 2.30 Photograph : example of bacteriostatic action of Tulbaghia violacea extracts


Bacterial culture : B. subtilis

White spots on the surface of the plate are due to fungal overgrowth during storage before photographs were taken.

Table 2.9 Bacteriostatic action of Tulbaghia violacea extracts (1)
Bacterial species Extract* Halo diameter (mm) for varying dilutions

$$
\begin{array}{llll}
1 & 1: 4 & 1: 16 & 1: 64
\end{array}
$$

B. subtilis

| $\mathrm{I}_{1}$ | 29 | 22 | 14 | 12 |
| ---: | ---: | ---: | ---: | ---: |
| $\mathrm{I}_{2}$ | 26 | 19 | 10 | 9 |
| $\mathrm{I}_{3}$ | 21 | 17 | 9 | - |
| $\mathrm{I}_{4}$ | 17 | 13 | 8 | - |

E. coli

| $\mathrm{I}_{1}$ | 20 | 15 | 14 | - |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{I}_{2}$ | 20 | 15 | 14 | - |
| $\mathrm{I}_{3}$ | 17 | 15 | 14 | - |
| $\mathrm{I}_{4}$ | 17 | 15 | 14 | - |

S. marcesens

|  | $\mathrm{I}_{1}$ | 19 | 17 | 10 |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{I}_{2}$ | 19 | 17 | 10 | - |
| $\mathrm{I}_{3}$ | 19 | 13 | - | - |
| $\mathrm{I}_{4}$ | 16 | 13 | - | - |

S. aureus

| $\mathrm{I}_{1}$ | 29 | 23 | 14 | - |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{I}_{2}$ | 26 | 17 | 14 | - |
| $\mathrm{I}_{3}$ | 23 | 17 | 14 | - |
| $\mathrm{I}_{4}$ | 21 | 16 | 14 | - |

*See Experimental section, p. 167.
Table 2.10 Bacteriostatic action of Tulbaghia violacea extracts (2)
Bacterial species Extract Halo dlameter (mm) for different dilutions
1 1:4 1:16
B. subtilis

| $I_{1}$ | 14 | 10 | 9 |
| :--- | ---: | ---: | ---: |
| $I_{2}$ | 10 | 8 | - |

E. coll

$$
\begin{array}{lll}
\mathrm{I}_{1} & 10 & 10
\end{array}
$$

S. aureus

| $\mathrm{I}_{1}$ | 9 | - | - |
| :--- | :--- | :--- | :--- |
| $\mathrm{I}_{2}$ | 9 | - | - |

Drug assessment using isolated involuntary muscle is based on the fact that the tissue will continue to respond normally for several hours after removal from the animal, provided it is maintained in a suitable nutrient solution. In this study, rat intestine was used, and standard procedures ${ }^{120}$ were followed (see Experimental section, p. 167).

Contraction of the isolated intestinal preparation is achieved by acetylcholine, which initiates contraction by binding to cholinergic muscarinic receptors located on the cell membrane. In vivo, endogenous acetylcholine is released and subsequently hydrolysed to prevent continued action. Also present in the intestinal preparation are adrenergic receptors of the $\beta_{2}$ subtype. Stimulation of the receptors by adrenergic agonists such as adrenaline or isoprenaline result in relaxation of the tissue. Thus these $\beta_{2}$-agonists act as functional non-competitive antagonists of acetylcholine and can consequently reduce the size of contractions induced by acetylcholine In an insurmountable manner. The action of $\beta$-agonists can in turn be prevented by use of competitive $\beta$-adrenergic antagonists, which bind to the $\beta$-receptors preferentially. ${ }^{121}$

The effects of the Tulbaghia violacea extracts on smooth muscle were determined by two methods : using single dose responses, and doseresponse curves.
(a) Single dose responses

The rather dramatic effect of the plant extract ( $I_{2}$; see Experimental section, p. 167) was shown initially by single doses, as illustrated in Figure 2.31. A single dose of acetylcholine added to the organ-bath caused the muscle preparation to contract, as shown in graph A. The muscle preparation was washed (allowing relaxation) and then pretreated with the plant extract $I_{2}$. After 5 minutes of pretreatment, the same dose of acetylcholine was added, producing the response shown in graph $B$, where contraction is shown to be inhibited. Graph $C$ shows the result of treatment of fresh organ, initially with

Figure 2.31 Single dose responses of isolated smooth muscle with
treatment by Tulbaghia violacea extracts


propranolol (a $\beta$-adrenergic antagonist), followed by the plant extract, and finally the same dose of acetylcholine as before. The dipping of the base line shown in graph B (at p) is indicative of the presence of a $\beta$-agonist, causing relaxation.
(b) Dose-response curves

A normal dose-response curve was obtained by successively adding increasing amounts of acetylcholine to the organ-bath and recording the size of the corresponding contractions. The organ was then pretreated with plant extract and the doseresponse curve was repeated. After thorough washing and resting, the organ was pretreated with propranolol and the plant extract as before, and a third dose-response curve was recorded. The results of these procedures are shown in Figure 2.32, Graphs A, B and C respectively.

The results of this study suggest that the plant extract contains a $\beta$-adrenergic agonist, which would oppose the action of acetylcholine on the smooth muscle. When propranolol was used to pretreat the organ, the $\beta$-receptors would be blocked, preventing the action of a $\beta$-agonist in the plant extract and thus allowing normal contraction in response to stimulation by acetylcholine.

Extension of this hypothesis to the action of the plant extract in patients may explain the reported ${ }^{4}$ reduction in the peristaltic action of the gastro-intestinal tract.

Figure 2.32 Dose response curves for isolated smooth muscle, with

## treatment by Tulbaghia violacea extracts



## 23 CONCLUSIONS CONCERNING ACTIVE PRINCIPLES IN TULBAGHLA VIOLACEA

From the results of the various investigations carried out, certain conclusions may be drawn regarding the chemical constituents of Tulbaghia violacea and their role in the use of this plant as a herbal remedy.

Two sulphur compounds were isolated from the plant, viz., 2,4,5,7-tetrathiaoctane-2,2-dioxide and 2,4,5,7-tetrathiaoctane. These products are postulated to originate from sulphur-containing amino acids, indicating the likely presence in the plant of a system analogous to that giving rise to biologically active sulphur compounds in Allium species, particularly garlic. It is possible that the sulphur compounds in Tulbaghia violacea are responsible for the gastric inflammation and corrosion reported to be caused by the herbal remedy. These sulphur compounds are also likely to be responsible for the bacteriostatic action of the plant extracts.

However, the irritation of intestinal mucosa could also be attributed to the presence of steroidal saponins in Tulbaghia violacea, evidence of which was obtained chromatographically. Steroidal saponins also typically cause inhibition of peristaltic action in smooth muscle, an effect which was clearly demonstrated in the treatment of isolated mammalian intestinal muscle with Tulbaghia violacea extracts. The combined effects of sulphur compounds and steroidal saponins may even sufficiently damage the intestinal mucosa (particularly of a young child) so as to allow absorption of steroidal saponins, thus causing inhibition of tissue respiration or haemolysis in the bloodstream, and possibly affecting a patient's responses to stimuli.

The presence in Tulbaghia violacea of two flavonols, kaempferol and quercetin, was confirmed chromatographically. It is possible that their presence, as glycosides, in extracts of the plant, has a calming effect on the smooth muscle of the gastro-intestinal tract, and on this basis the herbal remedy may have some efficacy in the treatment of colic conditions.

Several sugars were identified in Tulbaghia violacea; the free sugars found were glucose, fructose, galactose and arabinose, and the glycosidic sugars found were glucose, fructose, rhamnose, fucose, arabinose, galactose, and xylose. Since flavones are not often associated with fucose or fructose, it seems likely that these sugars occur in the plant associated with other secondary metabolites. This lends support to the suggested presence of saponins in the extracts.

It would seem from the studies on the biological activity of the Tulbaghia violacea extracts that other plants contain higher concentrations of secondary metabolites, which suggests that use of young plants in the preparation of the herbal medicine could result in less adverse effects. Also, since heating could cause hydrolysis of glycosides and transformation of sulphur compounds, an extract which has been boiled might contain less corrosive or less easily absorbed constituents and might therefore be less damaging.

## EXPERIMENTAL

### 3.1 GENERAL

Melting points were measured on a Kofler hot-stage apparatus and are uncorrected. I.r. spectra were recorded on a Perkin-Elmer 180 spectrophotometer, as Nujol mulls, KBr discs, or solutions in $\mathrm{CC1}_{4}$. ${ }^{1} \mathrm{H}$ n.m.r. spectra were recorded on the following instruments : Perkin-Elmer R12A, Bruker AM300, and Bruker WM300, using $\mathrm{CDCl}_{3}$ as solvent and TMS $(\delta=0)$ as internal standard, unless otherwise stated. ${ }^{13} \mathrm{C}$ n.m.r. were recorded on a Bruker AM300 instrument. Low resolution mass spectra were obtained on a Hewlett Packard 5988A spectrophotometer.

Solvents were dried as follows : (i) benzene, toluene, and ether, by refluxing over sodium in the presence of benzophenone; (ii) acetone and 2-butanone, by refluxing over anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$; and (iii) DME, by passing through an alumina column. Unless otherwise stated, solutions were dried during work-up with anhydrous $\mathrm{MgSO}_{4}$.
G.l.c. analyses were carried out on a Hewlett Packard 5980A gas chromatograph using $N_{2}$ as carrier gas, and flame ionisation detection with hydrogen and synthetic air as detegctor feeder gases. Conditions are described in the text. For g.c. - m.s. analyses, a Hewlett Packard 5988A gas chromatograph was linked to the Hewlett Packard 5980 A mass spectrograph, and He was used as carrier gas, while detection was as for g.l.c. analyses. Columns used for g.l.c. and g.c. - m.s. were as follows : (i) HP-1 (crosslinked methyl silicone gum) $25 \mathrm{~m} \times 0.2 \mathrm{~mm} \times 0.33 / \mu \mathrm{m}$ film thickness; (ii) J + W DB225 (fused silica capillary column) $30 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$ film thickness; (iii) HP-20M (carbowax 20 M) $25 \times 0.2 \mathrm{~mm} \times 0.2 \mu \mathrm{~m}$ film thickness.

Flash chromatography ${ }^{122}$ was carried out using Silica gel 60 [particle size $0.040-0.063 \mathrm{~mm}$ (230-400 mesh ASTM) (Merck)]. T.l.c. analyses were carried out on Silica gel $60 \mathrm{~F}_{254}$ precoated plastic plates (Merck) and cellulose precoated plastic plates (Merck). For p.l.c., plates were prepared using Silica gel $60 \mathrm{PF}_{254}$ (Merck).

Solvent systems used for flash chromatography are detailed in the text, while solvent systems and spray reagents used for t.l.c. analyses are listed in Table 3.1 and Table 3.2 respectively.

Table 3.1 Solvent systems used for t.l.c. analyses

Solvent system Composition

| (1) | $n-\mathrm{BuOH}-\mathrm{MeOH}-\mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}$ | (8:8:1:1) |
| :---: | :---: | :---: |
| (2) | MeCOEt - AcOH - MeOH | ( $3: 1: 1$ ) |
| (3) | EtOAc - Prop ${ }^{\text {i }} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}$ | (6:2:1) |
| (4) | $\mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}$ | (1:19) |
| (5) | $\mathrm{Bu}^{\text {t }} \mathrm{OH}-\mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}$ | (3:1:1) |
| (6) | EtOAc - $\mathrm{AcOH}-\mathrm{HCOOH}-\mathrm{H}_{2} \mathrm{O}$ | (18:3:1:1) |
| (7) | EtOAC - hexane | (1:1) |
| (8) | $\mathrm{CHCl}_{3}$ : acetone | (4:1) |
| (9) | EtOAc : toluene | (2:3) |
| (10) | THF : $\mathrm{CHCl}_{3}$ | (1:4) |
| (11) | $\mathrm{CHCl}_{3}$ : $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}$ | (78:20:2) |
| (12) | $\mathrm{CHCl}_{3}: \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}$ | (70:30:10) |
| (13) | $\mathrm{CHCl}_{3}: \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}$ | (65:35:10) |

Table 3.2 Spray reagents used in t.l.c. analyses

| Spray | $y$ reagent | Composition |
| :---: | :---: | :---: |
| (1) | Anisaldehyde - $\mathrm{H}_{2} \mathrm{SO}_{4}$ | EtOH ( 20 ml ), anisaldehyde ( 1 ml ), <br> $\mathrm{H}_{2} \mathrm{SO}_{4}(1 \mathrm{ml}) \mathrm{AcOH}(0.2 \mathrm{ml})$ |
| (2) | For p.c. of sugars | (i) Saturated aq. $\mathrm{AgNO}_{3}(5 \mathrm{ml})$ <br> in acetone ( 20 ml ) <br> (ii) 408 aq. $\mathrm{NaOH}(40 \mathrm{ml})$ <br> in EtOH ( 500 ml ) <br> (iii) $\mathrm{NaOAc}(25 \mathrm{~g}), \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(25 \mathrm{~g})$, <br> $\mathrm{ACOH}(1 \mathrm{ml})$ in $\mathrm{H}_{2} \mathrm{O}(500 \mathrm{ml})$ <br> Paper was dried after spraying with each solution |
| (3) | Vanillin - $\mathrm{H}_{3} \mathrm{PO}_{4}$ | Vanillin (l g) in $\mathrm{H}_{3} \mathrm{PO}_{4}(50 \mathrm{ml})$, filtered. Heated $5 \mathrm{~min} .$, after spraying, at $100^{\circ} \mathrm{C}$ |
| (4) | Cinnamaldehyde - $\mathrm{H}_{2} \mathrm{SO}_{4}$ | (i) Cinnamaldehyde (1 g) in EtOH ( 100 ml ) <br> (ii) $\mathrm{Ac}_{2} \mathrm{O}(12 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{SO}_{4}(1 \mathrm{ml})$. T.1.c. plate dried after spraying with (i). |
| (5) | $\mathrm{SbCl}_{3}-\mathrm{CHCl}_{3}$ | $\mathrm{CHCl}_{3}$ saturated with $\mathrm{SbCl}_{3}$ Heated 5 min . at $100^{\circ} \mathrm{C}$ |
| (6) | Dragendorff's reagent | See reference (104) |
| (7) | Iodoplatinate | 10\% aq. Hexachloroplatinic acid ( 3 ml ) , $\mathrm{H}_{2} \mathrm{O}(97 \mathrm{ml})$ and $6 \% \mathrm{aq}$. KI ( 100 ml ) <br> Heated 5 min . at $100^{\circ} \mathrm{C}$. |
| (8) | Magnes ium acetate | 0.5* solution in MeOH |
|  | $\mathrm{KOH}-\mathrm{EtOH}$ | 1\% solution |

### 3.2 SYNTHESIS OF MODEL COMPOUNDS

Benzoic anhydride (60)

(60)

## Method 1

Supported $\mathrm{P}_{2} \mathrm{O}_{5}$ [supplied by E. Merck as "SICAPENT" with indicator (Cat. No. 543)] was added to a solution of benzoic acid ( 12.2 g , 0.1 mol ) in dry toluene, in a flange-flask equipped with an overhead stirrer, reflux condenser, and drying-tube. The stirred mixture was maintained at ca. $100-110^{\circ} \mathrm{C}$ (oil-bath temperature) for 1 h , and then filtered. The residue was then washed with dry $E t_{2} O$, and the combined filtrate and washings were treated with anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ ( 1 g ) and charcoal, and boiled under reflux for 15 min before filtering sequentially through celite and alumina. The solvent was evaporated under reduced pressure, and vacuum distillation of the residue afforded benzoic anhydride ( 60 ) ( $8.37 \mathrm{~g}, 74 \%$ ), m.p. $39-40^{\circ} \mathrm{C}$ (1it.,$^{85} 42-43^{\circ} \mathrm{C}$ ); $\nu_{\max }\left(\mathrm{CCl}_{4}\right) 1795$ and $1725 \mathrm{~cm}^{-1}$ (anhydride CO ); $\delta_{H}\left(\mathrm{CDCl}_{3}\right) 7.55(6 \mathrm{H}, \mathrm{m}, 3-, 4-$, and $5-\mathrm{H})$ and 8.15 ( $4 \mathrm{H}, \mathrm{m}, 2-$ and $6-\mathrm{H}$ ).

## Method 2

Repetition of this preparation following the above procedure and using benzene as the solvent afforded benzoic anhydride (60)
( $8.68 \mathrm{~g}, 772$ ), m.p. $40-41^{\circ} \mathrm{C}$.

Anisic anhydride (61) (4-methoxybenzoic anhydride)

(61)

## Method 1

Supported $\mathrm{P}_{2} \mathrm{O}_{5}(15 \mathrm{~g})$ was added to a warmed solution of anisic acid ( $15.2 \mathrm{~g}, 0.1 \mathrm{~mol}$ ) in dry $\mathrm{DME}(60 \mathrm{ml})$, in a flange-flask equipped with an overhead stirrer, reflux condenser, and drying-tube. The stirred mixture was boiled under reflux for 1 h , and then filtered. The residue was washed with fresh dry DME. The combined filtrate and washings were treated with anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ and charcoal, boiled under reflux for $15 \mathrm{~min} .$, and filtered sequentially through celite and alumina. Evaporation of the solvent gave anisic anhydride (61) $(8.0 \mathrm{~g}, 56 \%)$, m.p. $96-97^{\circ} \mathrm{C}$ (from EtOAC) (lit. $8^{85} 99^{\circ} \mathrm{C}$ ); $\nu_{\max }$ $\left(\mathrm{CCl}_{4}\right) 1895$ and $1730 \mathrm{~cm}^{-1}$ (anhydride CO ) ; $\delta_{\mathrm{H}}\left(\mathrm{CDC1}_{3}\right) 3.88(6 \mathrm{H}, \mathrm{s}$, $\left.2 \mathrm{x} 0 \mathrm{CH}_{3}\right), 6.95(4 \mathrm{H}, \mathrm{d}, \mathrm{J} 9 \mathrm{~Hz}, 3-$ and $5-\mathrm{H})$, and $8.10(4 \mathrm{H}, \mathrm{d}, \mathrm{J} 9 \mathrm{~Hz}$, 2- and 6-H).

## Method 2

Repetition of the above preparation following the same procedure, and using dry toluene ( 90 mI ) as solvent and dry $\mathrm{Et}_{2} 0$ to wash residues, afforded anisic anhydride (61) (9.9 g, 69\%), m.p. $96-97^{\circ} \mathrm{C}$.

## 2,3-Dimethoxybenzoic anhydride (62)


(62)

The general procedure described for the synthesis of anisic anhydride (61) (Method 2) was followed, using supported $\mathrm{P}_{2} \mathrm{O}_{5}$ (15 g), and 2,3dimethoxybenzoic acid ( $18.2 \mathrm{~g}, 0.1 \mathrm{~mol}$ ) in dry toluene ( 70 ml ). Work-up as before afforded 2,3-dimethoxybenzoic anhydride (62) (10.5 g, $60 Z$ ), m.p. $66-67^{\circ} \mathrm{C}$ (from $E t_{2} \mathrm{O}$ - hexane) (lit., $8493^{\circ} \mathrm{C}$ ); $\nu_{\max }\left(\mathrm{CCl}_{4}\right) 1750$ and $1795 \mathrm{~cm}^{-1}$ (anhydride CO$) ; \delta_{H}\left(\mathrm{CDCl}_{3}\right) 3.90$ and $3.95\left(12 \mathrm{H}, 2 \times \mathrm{s}, 2 \times 0 \mathrm{CH}_{3}\right)$ and $7.30(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$.

Veratric anhydride (63) (3,4-dimethoxybenzoic anhydride)

(63)

The general procedure described for the synthesis of anisic anhydride (61) (Method 2) was followed using supported $\mathrm{P}_{2} \mathrm{O}_{5}$ ( 15 g ), and veratric acid ( $18.2 \mathrm{~g}, 0.1 \mathrm{~mol}$ ) in dry toluene ( 60 ml ). Work-up as described previously, but omitting the final filtration through alumina, afforded veratric anhydride (63) (10.7 g, 62\%), m.p. 122 $124^{\circ} \mathrm{C}$ (from EtOAC) (11t. $\left.8^{86} 124-125^{\circ} \mathrm{C}\right)$; $\nu_{\max }\left(\mathrm{CCl}_{4}\right) 1790$ and 1745 $\mathrm{cm}^{-1}$ (anhydride CO ) ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.95$ and $3.98(2 \times 6 \mathrm{H}, 2 \times \mathrm{s}, 4 \mathrm{x}$ $\left.0 \mathrm{CH}_{3}\right), 6.95(2 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}, 2-\mathrm{H})$ and $7.85(4 \mathrm{H}, \mathrm{m}, 5-$ and $6-\mathrm{H})$.

3,4,5-trimethoxybenzoic anhydride (64)

(64)

The general procedure described for the synthesis of veratric anhydride (63) was followed, using supported $\mathrm{P}_{2} \mathrm{O}_{5}(12 \mathrm{~g})$, and 3,4,5trimethoxybenzoic acid ( $12 \mathrm{~g}, 0.06 \mathrm{~mol}$ ) in dry toluene ( 70 ml ), and using dry toluene to wash residues. Work-up as before afforded 3,4,5-trimethoxybenzoic anhydride (64) (5.19 g, 23\%), m.p. 158 $159^{\circ} \mathrm{C}$ (from EtOAC) (1it.,$^{87} 159^{\circ} \mathrm{C}$ ) ; $\nu_{\max }\left(\mathrm{CCl}_{4}\right) 1780$ and $1730 \mathrm{~cm}^{-1}$ (anhydride CO ) ; $\delta_{H}\left(\mathrm{CDCl}_{3}\right) 3.98$ and $4.00\left(18 \mathrm{H}, 2 \times \mathrm{s}, 6 \times \mathrm{OCH}_{3}\right)$ and 7.49 ( $4 \mathrm{H}, \mathrm{s}, 2$ - and 6-H).

Cinnamic anhydride (65) (3-phenyl-2-propenoic anhydride)

(65)

The general procedure described for the synthesis of veratric anhydride (63) was followed, using supported $\mathrm{P}_{2} \mathrm{O}_{5}$ ( 15 g ), and cinnamic acid ( $14.8 \mathrm{~g}, 0.1 \mathrm{~mol}$ ) in dry DME ( 60 ml ). After boiling for 1 h , additional Sicapent ${ }^{(8)}(5 \mathrm{~g})$ and DME ( 10 ml ) were added and boiling was continued for 15 min . Work-up as before afforded cinnamic anhydride (65) (i0.5 g, $75 \%$ ), m.p. $135-137^{\circ} \mathrm{C}$ (from EtOAc) (1it. . ${ }^{86} 138^{\circ} \mathrm{C}$ ); $\nu_{\max }\left(\mathrm{CC1}_{4}\right) 1725$ and $1790 \mathrm{~cm}^{-1}$ (anhydride CO ); $\delta_{H}\left(\mathrm{CDCl}_{3}\right) 6.5(4 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{CH}=\mathrm{CH})$ and 7.6 ( $10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$ ).

Phenylacetic anhydride (66) (2-phenylethanoic anhydride)

(66)

## Method 1

The general procedure described for the synthesis of anisic anhydride (61) (Method 1) was followed, using supported $\mathrm{P}_{2} \mathrm{O}_{5}$ ( 15 g ), and phenylacetic acid ( $13.6 \mathrm{~g}, 0.1 \mathrm{~mol}$ ) in dry DME ( 60 ml ). The crude product was obtained as a brown oil, distillation of which gave three fractions. Each of these fractions was shown by ${ }^{1} H$ n.m.r. to contain varying proportions of a contaminant [tentatively identified as methyl phenylacetate on the basis of the ${ }^{1} \mathrm{H}$ n.m.r. signal at $\delta 3.25$ $\left.\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)\right]$. The overall yield of the required product was estimated by ${ }^{1} \mathrm{H}$ n.m.r. spectroscopy to be 3.7 g (30z).

## Method 2

Repetition of the above preparation, following the same procedure, and using toluene ( 70 ml ) as the solvent, afforded, after evaporation of the solvent, crystalline phenylacetic anhydride (66) (7.06 g, 56\%), m.p. $70^{\circ} \mathrm{C}$ (from $E t_{2} 0$ ) (lit., ${ }^{85} 71-72^{\circ} \mathrm{C}$ ); $\nu_{\max }\left(\mathrm{CCl}_{4}\right) 1745$ and $1810 \mathrm{~cm}^{-1}$ (anhydride CO ), $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.70\left(4 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$ and 7.30 ( $10 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}$ ).

Octanoic anhydride (67)

$$
\left[\left(\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}\right)\right]_{2} \mathrm{O}
$$

(67)

## Method 1

The general procedure described for the synthesis of anisic anhydride (61) (Method 1) was followed, using supported $\mathrm{P}_{2} \mathrm{O}_{5}$ ( 15 g ) and octanoic acid ( $14.4 \mathrm{~g}, 0.1 \mathrm{~mol}$ ) in dry DME ( 60 ml ). Work-up as before afforded octanoic anhydride (67) (8.1 g, 57\%), b.p. $140^{\circ} / 0.2 \mathrm{mmHg}\left(1\right.$ it. ${ }^{85} 186^{\circ} / 15 \mathrm{mmHg}$ ) ; $\nu_{\max }\left(\mathrm{CCI}_{4}\right) 1760$ and $1820 \mathrm{~cm}^{-1}$ (anhydride CO$) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.95\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.30(20 \mathrm{H}$, br signal, $\left.\mathrm{CH}_{2}\right)$, and $2.35\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}\right)$.

## Method 2

Repetition of the above preparation following the same procedure and using benzene as the solvent, afforded octanoic anhydride (67) $\left(6.6 \mathrm{~g}, 49 \%\right.$ ) , b.p. $118^{\circ} / 0.05 \mathrm{mmHg}$.
$\omega$-Methoxyresacetophenone (73) (2', 4'-dihydroxy-2-methoxyacetophenone) ${ }^{88}$

(70)

(73)

Methoxyacetonitrile ( $1.2 \mathrm{~g}, 0.017 \mathrm{~mol}$ ) was added to a solution of resorcinol ( $1.6 \mathrm{~g}, 0.015 \mathrm{~mol}$ ) in dry $E t_{2} \mathrm{O}(50 \mathrm{ml})$. Dry HCl gas was bubbled through the stirred solution for 2 h at $0^{\circ} \mathrm{C}$ (during which time a cream solid formed) and the resulting mixture was stored at $4^{\circ} \mathrm{C}$ for 2 d . The solvent was decanted and the residual solid was rinsed with fresh dry $\mathrm{Et}_{2} \mathrm{O}$ before recrystallisation from MeOH , to give the ketimine hydrochloride salt (70) (1.02 g, 30\%), m.p. 201 $202^{\circ} \mathrm{C}$ (dec.) [lit. ${ }^{88} 205-207^{\circ} \mathrm{C}$ (dec.)]. The hydrochloride salt (70) was dissolved in water and the solution was warmed to $80^{\circ} \mathrm{C}$ for 0.5 h to effect hydrolysis. Cooling afforded $\omega$-methoxyresacetophenone (73) as colourless crystals ( $0.48 \mathrm{~g}, 56 \%$ ) m.p. 134 $136^{\circ} \mathrm{C}$ (dec.) [1it., ${ }^{88} 136^{\circ} \mathrm{C}$ (dec.)]; $\nu_{\max }(\mathrm{KBr}) 3360$ ( OH ) and 1750 $\mathrm{cm}^{-1}(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.55\left(3 \mathrm{H}, \mathrm{s}, 0 \mathrm{CH}_{3}\right), 4.65(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \mathrm{x} \mathrm{OH})$, $4.75\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.50\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\right.$ and $\left.6^{\prime}-\mathrm{H}\right)$, and $7.70\left(1 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{H}\right)$.
$\omega$-Methoxyphloracetophenone (74) (2', $4^{\prime}, 6^{\prime}$-trihydroxy-2-methoxyphloracetophenone) ${ }^{88}$

(71)

(74)

Methoxyacetonitrile ( $5 \mathrm{~g}, 0.08 \mathrm{~mol}$ ) was added to a solution of phloroglucinol ( $9 \mathrm{~g}, 0.08 \mathrm{~mol}$ ) in dry $E t_{2} \mathrm{O}(50 \mathrm{ml})$. Dry HCl gas was bubbled through the stirred solution for 2 h at $0^{\circ} \mathrm{C}$ (during which time a pale yellow solid formed) and the resulting mixture was stored at $-4^{\circ} \mathrm{C}$ for 3 d . The solvent was decanted and the residual solid was rinsed with fresh dry $\mathrm{Et}_{2} \mathrm{O}$. Recrystallisation from MeOH gave the ketimine hydrochloride salt (70) ( $10.5 \mathrm{~g}, 56 \%$ ), m.p. $236-240^{\circ}$ (dec.) (lit., $238-241^{\circ} \mathrm{C}$ ). The hydrochloride salt (70) was dissolved in water ( 50 ml ) and boiled to effect hydrolysis. On
cooling, pale yellow needles formed which were recrystallised from water, giving $\omega$-methoxyphloracetophenone (74) ( $6.8 \mathrm{~g}, 76 \%$ ), m.p. 191 $-192^{\circ} \mathrm{C}$ (dec.) [1it. $8^{88} 190-192^{\circ} \mathrm{C}$ (dec.)]; $\nu_{\max }(\mathrm{KBr}) 3270 \mathrm{br}$ (OH) and $1640 \mathrm{~cm}^{-1}(\mathrm{CO}), \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 3.50\left(3 \mathrm{H}, \mathrm{s}, 0 \mathrm{CH}_{3}\right), 4.71(2 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{2}$ ) , $4.90(3 \mathrm{H}, \mathrm{br} \mathrm{s}, 3 \mathrm{x} \mathrm{OH})$, and $5.90(2 \mathrm{H}, \mathrm{B}, 2 \times \mathrm{Ar}-\mathrm{H})$.
$2^{\prime}$-Hydroxy-2, $4^{\prime}, 6^{\prime}$-trimethoxyacetophenone (77)90

(77)

Methoxyacetonitrile (10 g, 0.14 mol ) was added to a solution of 3,5 -dimethoxyphenol ( $10 \mathrm{~g}, 0.065 \mathrm{~mol}$ ) and anhydrous $\mathrm{ZnCl}_{2}(2 \mathrm{~g}$, 0.015 mol ) in dry $E t_{2} 0$. Dry HCl gas was bubbled through the stirred solution for 2.5 h at $0^{\circ} \mathrm{C}$ (during which time a pink solid crystallised) and the resulting mixture was stored at $-4^{\circ} \mathrm{C}$ for 3 d . The supernatant liquid was decanted and the residual solid was washed with fresh dry $E t_{2} \mathrm{O}$. A solution of the solid in $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{ml})$ was heated on a steam-bath for 1 h , cooled, and then extracted with ether ( $5 \times 30 \mathrm{ml}$ ). The dried ether fraction was concentrated under reduced pressure to afford a yellow oil which was recrystallised from EtOH, giving $2^{\prime}$-hydroxy $-2,4^{\prime}, 6^{\prime}$-dimethoxyacetophenone (77) (3.08 g, 21\%), m.p. $102-104^{\circ} \mathrm{C}$ (1it., ${ }^{90} 103-104^{\circ} \mathrm{C}$ ) ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.50(3 \mathrm{H}, \mathrm{s}$, $\left.2-0 \mathrm{CH}_{3}\right), 3.88\left(6 \mathrm{H}, 2 \mathrm{xs}, 4^{\prime}-\right.$ and $\left.6^{\prime}-0 \mathrm{CH}_{3}\right), 4.58\left(2 \mathrm{H}, \mathrm{B}, \mathrm{CH}_{2}\right), 5.9(1 \mathrm{H}$, $\left.\mathrm{d}, \mathrm{J} 2 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 6.15\left(1 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right)$, and $13.7(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$.
$2^{\prime}, 5^{\prime}$-Dihydroxy-2,4', 6'-trimethoxyacetophenone (79)90

(79)

A stirred solution of $2^{\prime}$-hydroxy-2, $4^{\prime}, 6^{\prime}$-trimethoxyacetophenone (77) $(3.0 \mathrm{~g}, 0.014 \mathrm{~mol})$ in $5 \% \mathrm{NaOH}$ solution ( 50 ml ) was maintained at $15^{\circ} \mathrm{C}$ and a solution of $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(4 \mathrm{~g}, 0.015 \mathrm{~mol})$ was added during the course of 1 h . Stirring was continued for 3 h and the mixture was then left to stand for 18 h . Conc. $\mathrm{HCl}(2 \mathrm{ml})$ was added to acidify the solution which was then filtered. Further conc. HCl ( 15 ml ) was added, and the aqueous layer was extracted with $E t_{2} \mathrm{O}$ ( $6 \times 30 \mathrm{ml}$ ). Evaporation of the dried ether layer gave a dark brown oil which was purified by chromatography [flash chromatography on silica; elution with EtOAc - hexane ( 8 : 2)] to yield, as a yellow oil, $2^{\prime}, 5^{\prime}-$ dihydroxy-2, $4^{\prime}, 6^{\prime}-t r i-m e t h o x y a c e t o p h e n o n e ~(79)(0.20 \mathrm{~g}, 7 \%), \delta_{H}$ $\left(\mathrm{CDCl}_{3}\right) 3.5$ and $3.7\left(9 \mathrm{H}, 2 \mathrm{xs}, 3 \mathrm{x} 0 \mathrm{CH}_{3}\right), 3.85(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \mathrm{x} \mathrm{OH})$, $4.42\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$ and $6.15(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H})$.

Chrysin (80) (5,7-dihydroxy-2-pheny1-4H-1-benzopyran-4-one) ${ }^{74}$

(80)

Phloracetophenone ( $1 \mathrm{~g}, 0.006 \mathrm{~mol}$ ), benzoic anhydride ( 10 g , $0.044 \mathrm{~mol})$, and sodium benzoate ( $1.2 \mathrm{~g}, 0.008 \mathrm{~mol}$ ) were placed in a three-necked 100 ml round-bottomed flask fitted with thermometer and condenser. The stirred mixture was maintained at $180-185^{\circ} \mathrm{C}$ for 6 h . After cooling, the resulting mixture was dissolved in EtOH ( 60 ml ) by boiling under reflux for 0.5 h . A solution of $\mathrm{KOH}(6.4 \mathrm{~g}$, 0.12 mol ) in $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{mI})$ was slowly added to the solution and boiling was continued for 0.5 h . After removal of the $E t O H$ under reduced pressure, the residue was dissolved in $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{ml})$. Solid $\mathrm{CO}_{2}$ was added to saturate the aqueous solution, precipitating crude product
which was purified by chromatography [flash chromatography on silica, elution with EtOAc - hexane (55 : 45) affording chrysin (80)] ( $0.75 \mathrm{~g}, 81 \%$ ), m.p. $282-285^{\circ} \mathrm{C}$ (from MeOH) (1it., $7^{74} 285-286^{\circ} \mathrm{C}$ ); $\nu_{\max }(\mathrm{KBr}) 3180-2620 \mathrm{br}(\mathrm{OH})$ and $1655 \mathrm{~cm}^{-1}(\mathrm{CO}) ; \delta_{H}\left(\mathrm{DMSO}^{2} \mathrm{~d}_{6}\right) 6.25$ ( $1 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz}, 6-\mathrm{H}), 6.45(1 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz}, 8-\mathrm{H}), 6.72$ (1H, 8, 3-H), $7.85(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$ and $11.50(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \mathrm{x} \mathrm{OH})$.

5,7-Di-O-acetylchrysin (81) (5,7-diacetoxy-2-pheny1-4H-1-benzopyran-4-one) ${ }^{74}$

(81)

Chrysin (80) ( $0.4 \mathrm{~g}, 0.0016 \mathrm{~mol}$ ) was placed in a round-bottomed 25 ml flask with $\mathrm{Ac}_{2} 0(2.5 \mathrm{ml}, 0.03 \mathrm{~mol})$ and pyridine ( $0.5 \mathrm{ml}, 0.006 \mathrm{~mol}$ ). The mixture was boiled under reflux for 2 h before pouring on to crushed ice ( 30 g ) and extracting with $E t_{2} \mathrm{O}$. The $E t_{2} \mathrm{O}$ extract was dried (anhydrous $\mathrm{MgSO}_{4}$ ), evaporated to dryness, and the solid product recrystallised from MeOH , to yield 5,7-di-O-acetylchrysin (81) ( $220 \mathrm{mg}, 39 \%$ ), m.p. $185-186^{\circ} \mathrm{C}$ (lit., ${ }^{74} 185^{\circ} \mathrm{C}$ ); $\nu_{\max } 1775 \mathrm{~s}$ (CO) and $1630 \mathrm{~s}(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.37$ and $2.47\left(2 \times 3 \mathrm{H}, 2 \times \mathrm{s}, 2 \times \mathrm{CH}_{3} \mathrm{CO}\right), 6.74$ ( $1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}$ ) , $6.96(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2 \mathrm{~Hz}, 8-\mathrm{H}$ ) and 7.60 (5H, m, Ar-H).

4'-0-Methylapigenin (82) [5,7-dihydroxy-2-(4-methoxyphenyl)
-4H-1-benzopyran-4-one J ${ }^{74}$

(82)

A stirred mixture of phloracetophenone ( $1 \mathrm{~g}, 0.006 \mathrm{~mol}$ ), anisic anhydride ( 61 ) ( $10 \mathrm{~g}, 0.05 \mathrm{~mol}$ ), and potassium anisate [prepared by neutralisation of anisic acid ( $4 \mathrm{~g}, 0.025 \mathrm{~mol}$ ) in MeOH with KOH ( $1.4 \mathrm{~g}, 0.025 \mathrm{~mol}$ ), and subsequent evaporation of the solvent] ( $1.5 \mathrm{~g}, 0.008 \mathrm{~mol}$ ) was maintained at $180-185^{\circ} \mathrm{C}$ for 6 h , then cooled and dissolved in EtOH ( 60 ml ). A solution of $\mathrm{KOH}(6.4 \mathrm{~g}, 0.1 \mathrm{~mol}$ ) in $\mathrm{H}_{2} \mathrm{O}$ ( 4 ml ) was added slowly and the resulting solution was boiled under reflux for 0.5 h . The EtOH was removed by distillation and the residue was dissolved in $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$. Saturation of the aqueous solution with $\mathrm{CO}_{2}$ precipitated the crude product which was purified by chromatography [flash chromatography on silica; elution with EtOAC - hexane (55 : 45)] and recrystallisation from EtOH to yield yellow crystals of $4^{\prime}$-0-methylapigenin (82) ( $0.6 \mathrm{~g}, 35.2 \%$ ), m.p. $260-263^{\circ} \mathrm{C}$ (lit., ${ }^{98} 261^{\circ} \mathrm{C}$ ); $\nu_{\max }(\mathrm{KBr}) 3140 \mathrm{br}(\mathrm{OH})$ and $1655 \mathrm{~cm}^{-1}(\mathrm{CO})$; $\delta_{H}\left(\mathrm{DMSO}_{\mathrm{H}}-\mathrm{d}_{6}\right) 2.96\left(3 \mathrm{H}, \mathrm{s}, 0 \mathrm{CH}_{3}\right), 3.93(2 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 6.30(1 \mathrm{H}, \mathrm{d}, \mathrm{J} \mathrm{3Hz}$, $6-\mathrm{H}), 6.50(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3 \mathrm{~Hz}, 8-\mathrm{H}), 6.62(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 7.1(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8 \mathrm{~Hz}$, $3^{\prime}-$ and $\left.5^{\prime}-\mathrm{H}\right)$ and $7.93\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8 \mathrm{~Hz}, 2^{\prime}-\right.$ and $\left.6^{\prime}-\mathrm{H}\right)$.

Apigenin (83) [5,7-dihydroxy-2-(4-hydroxypheny1)-4H-1-benzopyran-4-one $]^{74}$

(83)

A mixture of $4^{\prime}$ - 0 -methylapigenin ( 82 ) ( $0.06 \mathrm{~g}, 0.2 \mathrm{mmol}$ ), $\mathrm{Ac}_{2} \mathrm{O}$ $(0.3 \mathrm{ml}, 3 \mathrm{mmol})$ and $\mathrm{HI}(\mathrm{d}=1.7 \mathrm{~g} / \mathrm{ml} ; 1 \mathrm{ml}, 5 \mathrm{mmol})$ boiled under reflux for 2 h . $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{ml})$ was added and the aqueous solution was heated on a steam-bath for 0.25 h . The solution was cooled and after standing at room temperature for 2 d , some yellow product crystallised. Reduction of the volume and cooling in ice afforded more yellow crystals of apigenin (83) ( $0.02 \mathrm{~g}, 35 \%$ ), m.p. $340-344^{\circ} \mathrm{C}$ (from MeOH ) (1it. $9^{98} 348-350^{\circ}$ ); $\nu_{\max }(\mathrm{KBr}) 3200 \mathrm{br}(\mathrm{OH})$ and $1650 \mathrm{~cm}^{-1}$ (CO).

3',4'-Di-0-methylluteolin (84) [2-(3,4-dimethoxyphenyl)
-5,7-dihydroxy-4H-1-benzopyran-4-one $]^{75}$

(84)

Phloracetophenone ( $0.5 \mathrm{~g}, 0.003 \mathrm{~mol}$ ) was added to veratric anhydride (63) ( $5.0 \mathrm{~g}, 0.01 \mathrm{~mol}$ ) and potassium veratrate [prepared by neutralisation of a solution of veratric acid ( $8.3 \mathrm{~g}, 0.046 \mathrm{~mol}$ ) in MeOH with $\mathrm{KOH}(2.5 \mathrm{~g}, 0.045 \mathrm{~mol})$, followed by evaporation of the solvent] ( $2.0 \mathrm{~g}, 0.01 \mathrm{~mol}$ ). The stirred mixture was maintained at $180-185^{\circ} \mathrm{C}$ for 5 h , then cooled and dissolved in EtOH ( 60 ml ) by boiling under reflux. A solution of $\mathrm{KOH}(6.4 \mathrm{~g}, 0.1 \mathrm{~mol})$ in $\mathrm{H}_{2} \mathrm{O}$ ( 4 mI ) was slowly added and boiling under reflux was continued for 0.5 h . The EtOH was removed under reduced pressure leaving a brown residue which was dissolved in water ( 30 ml ). Saturation of the aqueous solution with $\mathrm{CO}_{2}$ precipitated brown crude product which was purified by chromstography [flash chromatography on silica; elution with EtOAc - hexane (7 : 3) and subsequently benzene - Et. ${ }_{2} \mathrm{O}$ (1:1)] to afford $3^{\prime}, 4^{\prime}$-di-O-methylluteolin (84) ( $0.31 \mathrm{~g}, 33 \%$ ), m.p. 256 $258^{\circ} \mathrm{C}$ (lit. ${ }^{75} 258-259^{\circ} \mathrm{C}$ ) ; $\nu_{\max }(\mathrm{KBr}) 3300 \mathrm{br}$ (OH) and $1645 \mathrm{~cm}^{-1}$ $(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{DMSO}_{6}\right) 3.55(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.85\left(6 \mathrm{H}, \mathrm{s}, 0 \mathrm{CH}_{3}\right), 6.82(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J} 2 \mathrm{~Hz}, 6-\mathrm{H}), 6.95$ ( $1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}$ ), 7.10 ( $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2 \mathrm{~Hz}, 8-\mathrm{H}$ ), 7.30 ( $1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}$ ) , $7.52\left(1 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{H}\right)$, and 7.65 ( $1 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}$ ).

Luteolin (85) [2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-1-benzopyran-4-one $]^{75}$

(85)

A mixture of $3^{\prime}, 4^{\prime}$-di-0-methylluteolin (84) ( $0.06 \mathrm{~g}, 0.2 \mathrm{mmol}$ ), $\mathrm{Ac}_{2} \mathrm{O}$ $(0.3 \mathrm{ml}, 3 \mathrm{mmol})$, and $\mathrm{HI}(\mathrm{d}=1.7 \mathrm{~g} / \mathrm{ml} ; 1.3 \mathrm{ml}, 6 \mathrm{mmol})$ was boiled under reflux for $2 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(30 \mathrm{ml})$ was added and the aqueous solution was heated on a steam-bath for 15 min . After cooling and filtering, the solution was reduced to a very small volume. MeOH ( 1 ml ) was added, and separation by chromatography [p.l.c. on silica; elution with EtOAc - hexane (1 : 1)] afforded the crude product as a yellow oil ( $20 \mathrm{mg}, 36 \%$ ). Chromatography [t.l.c. on silica; elution with EtOAc - hexane (1 : 1)] of the crude product showed the product to contain one major yellow (fluorescent purple in u.v. light) component, assumed to be the required product, and some brown material. The product was found to be very susceptible to oxidative decomposition.

3,4'-Di-0-methylkaempferol (86) 15,7-dihydroxy-3-methoxy -2-(4-methoxypheny1)-4H-1-benzopyran-4-one $]^{99}$

(86)
$\omega$-Methoxyphloracetophenone (74) (1.9 g, 0.01 mol ) was added to anisic anhydride ( 61 ) ( $7.6 \mathrm{~g}, 0.03 \mathrm{~mol}$ ) and potassium anisate ( 4.7 g , $0.025 \mathrm{~mol})$, and the stirred mixture was maintained at $180-185^{\circ} \mathrm{C}$ for 3 h . After cooling, the mixture was dissolved in EtOH ( 100 ml ) by boiling under reflux. A solution of $\mathrm{KOH}(8.5 \mathrm{~g}, 0.15 \mathrm{~mol})$ in $\mathrm{H}_{2} \mathrm{O}$ ( 6 ml ) was added slowly, and boiling under reflux was continued for 0.5 h . Removal of the EtOH by distillation left a dark residue which was dissolved in $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$. Saturation of the aqueous solution with $\mathrm{CO}_{2}$ precipitated the yellow product which was purified by
chromatography [flash chromatography on silica; elution with EtOAc hexane ( 45 : 55)] and recrystallisation from aqueous AcOH to yield $3,4^{\prime}$-di-O-methyl-kaempferol (86) (1.2 g, 40\%), m.p. $230-231^{\circ} \mathrm{C}$ (lit., ${ }^{98} 234^{\circ} \mathrm{C}$ ) ; $\nu_{\max }(\mathrm{KBr}) 3100 \mathrm{br}$ ( OH ) and $1655 \mathrm{~cm}^{-1}$ (CO); $\delta_{\mathrm{H}}$ $\left(\mathrm{CD}_{3} \mathrm{OD}\right) 3.60$ and $3.72(6 \mathrm{H}, 2 \mathrm{x} \mathrm{s}, 2 \mathrm{x} \mathrm{OCH} 3), 4.50(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, $6.05(1 \mathrm{H}, \mathrm{d}, \mathrm{J} \mathrm{2Hz}, 6-\mathrm{H}), 6.30(1 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz}, 8-\mathrm{H}), 6.88(2 \mathrm{H}, \mathrm{d}$, $J 8 \mathrm{~Hz}, 3^{\prime}-$ and $\left.5^{\prime}-\mathrm{H}\right)$, and $7.92\left(2 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}, 2^{\prime}-\right.$ and $\left.6^{\prime}-\mathrm{H}\right)$.

Kaempferol (87) [3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-1
-benzopyran-4-one J ${ }^{99}$

(87)

A solution of $3,4^{\prime}$-di-0-methylkaempferol (86) (0.2 g, 0.6 mmol ) in freshly distilled HI ( $\mathrm{d}=1.7 \mathrm{~g} / \mathrm{ml} ; 2 \mathrm{ml}, 0.03 \mathrm{~mol}$ ) was heated to $140^{\circ} \mathrm{C}$ for 1 h before pouring into $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{ml})$. The aqueous solution was heated on a steam-bath for 15 min . The precipitated yellow product was filtered, dried under reduced pressure, and recrystallised from EtOH, yielding kaempferol (87) (0.15 g, 90\%), m.p. $276-278^{\circ} \mathrm{C}$ (lit. $98279-280^{\circ} \mathrm{C}$ ); $\nu_{\max }(\mathrm{KBr}) 3100 \mathrm{br}(\mathrm{OH})$ and $1655 \mathrm{~cm}^{-1}$ (CO) ; $\delta_{H}\left(\mathrm{DMSO}_{6}\right) 3.20(4 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 6.20$ ( $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2 \mathrm{~Hz}, 6-\mathrm{H}$ ), $6.40(1 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz}, 8-\mathrm{H}), 6.90\left(2 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}, 3^{\prime}-\right.$ and $\left.5^{\prime}-\mathrm{H}\right)$, and 8.05 $\left(2 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}, 2^{\prime}-\right.$ and $\left.6^{\prime}-\mathrm{H}\right)$.

3, 3',4'-Tri-0-methylquercetin (88) [2-(3,4-dimethoxyphenyl)5, 7-dihydroxy-3-methoxy-4H-l-benzopyran-4-one $]^{100}$

(88)

A stirred mixture of $\omega$-methoxyphloracetophenone (74) (0.6 g, $0.003 \mathrm{~mol})$, veratric anhydride ( 63 ) ( $5.0 \mathrm{~g}, 0.014 \mathrm{~mol}$ ) and potassium veratrate ( $2.0 \mathrm{~g}, 0.01 \mathrm{~mol}$ ) was maintained at $175-180^{\circ} \mathrm{C}$ for 4.5 h . After cooling, the mixture was disaolved in EtOH ( 30 ml ) by boiling under reflux. A solution of $\mathrm{KOH}\left(1.8 \mathrm{~g}, 0.03 \mathrm{~mol}\right.$ ) in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$ was added, and boiling was continued for 0.5 h . The EtOH was removed by distillation and the residue was dissolved in water. Saturation of the aqueous solution with $\mathrm{CO}_{2}$ resulted in precipitation of the crude product which was purified by chromatography [flash chromatography on silica ; elution with EtOAc - hexane (7 : 3)] and recrystallisation from EtOAc, to yield $3,3^{\prime}, 4^{\prime}$-tri- 0 -methylquercetin (88) ( 0.43 g , $39 \%$ ), m.p. $238-240^{\circ} \mathrm{C}$ (11t., ${ }^{100} 240-245^{\circ} \mathrm{C}$ ); $\nu_{\max }(\mathrm{KBr}) 3130 \mathrm{br}$ ( OH ) and $1650 \mathrm{~cm}^{-1}(\mathrm{CO})$; $\delta_{\mathrm{H}}$ (DMSO- $\mathrm{d}_{6}$ ) 3.86 and 3.95 ( $9 \mathrm{H}, 2 \times \mathrm{s}, 3 \mathrm{x}$ $\left.0 \mathrm{CH}_{3}\right), 6.36(1 \mathrm{H}, \mathrm{d}, \mathrm{J} \mathrm{3Hz}, 6-\mathrm{H}), 6.48(1 \mathrm{H}, \mathrm{d}, \mathrm{J} \mathrm{3Hz}, 8-\mathrm{H}), 7.15(1 \mathrm{H}$, $\left.\mathrm{m}, 5^{\prime}-\mathrm{H}\right), 7.80\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\right.$ and $\left.6^{\prime}-\mathrm{H}\right)$, and $12.60(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OH})$.

Quercetin (89) [2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy
-4H-1-benzopyran-4-one $1^{100}$

(89)

A mixture of $3,3^{\prime}, 4^{\prime}$-tri- 0 -methylquercetin ( 88 ), ( $0.2 \mathrm{~g}, 0.7 \mathrm{mmol}$ ), $\mathrm{Ac}_{2} \mathrm{O}(0.5 \mathrm{ml}, 5 \mathrm{mmol})$, and $\mathrm{HI}(\mathrm{d}=1.7 \mathrm{~g} / \mathrm{ml} ; 1.5 \mathrm{ml}, 0.02 \mathrm{~mol})$, was maintained at $140^{\circ} \mathrm{C}$ for 2 h . After cooling, $\mathrm{H}_{2} \mathrm{O}$ ( 50 ml ) was added to the contents of the flask, and the resulting mixture was heated on a steam-bath for 20 min . The mixture was again cooled and the solid product was filtered off, drled in vacuo, and recrystallised from MeOH to afford quercetin (89) ( $0.15 \mathrm{~g}, 86 \%$ ), m.p. $312-314^{\circ} \mathrm{C}$ (1it., ${ }^{100} 312-316^{\circ} \mathrm{C}$; $\nu_{\max }(\mathrm{KBr}) 3200 \mathrm{br}(\mathrm{OH})$ and $1620 \mathrm{~cm}^{-1}(\mathrm{CO})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.20(1 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz}, 6-\mathrm{H}), 6.39(1 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz}, 8-\mathrm{H}), 6.92$ ( $\mathrm{H}, \mathrm{d}, \mathrm{J} 9 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}$ ), and $7.60\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\right.$ and $\left.6^{\prime}-\mathrm{H}\right)$.

3, 3', 4'-Tri-0-methylfisetin (90) 2-(3,4-dimethoxyphenyl)
-7-hydroxy-3-methoxy-4H-1-benzopyran-4-one J ${ }^{100}$

(90)

A stirred mixture of $\omega$-methoxyresacetophenone (73) ( 0.5 g , $0.003 \mathrm{~mol})$, veratric anhydride ( 63 ) $(5.0 \mathrm{~g}, 0.015 \mathrm{~mol})$ and potassium veratrate ( $2 \mathrm{~g}, 0.01 \mathrm{~mol}$ ), was maintained at $175^{\circ} \mathrm{C}$ for 4.5 h . After cooling, the mixture was dissolved in EtOH ( 30 ml ) by boiling under reflux for 0.5 h . A solution of $\mathrm{KOH}\left(1.6 \mathrm{~g}, 0.03 \mathrm{~mol}\right.$ ) in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$ was added slowly, and boiling was continued for 0.5 h . The EtOH was removed by distillation and the residue was dissolved in $\mathrm{H}_{2} \mathrm{O}$ ( 30 ml ). Saturation of the aqueous solution with $\mathrm{CO}_{2}$ precipated the crude product which was purified by chromatography [flash chromatography on silica; elution with EtOAc - hexane (7 : 3)] and recrystallisation from EtOAc, affording 3, $3^{\prime}, 4^{\prime}$-tri-0-methylfisetin (90) ( 0.205 g , 237), m.p. $218-220^{\circ} \mathrm{C}$ (lit., $1^{100} 220^{\circ} \mathrm{C}$ ); $\nu_{\max }(\mathrm{KBr}) 3210 \mathrm{br}(\mathrm{OH})$ and $1610 \mathrm{~cm}^{-1}(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{DMSO}_{6}\right) 3.85$ and $3.90\left(9 \mathrm{H}, 2 \times \mathrm{s}, 3 \times \mathrm{CH}_{3}\right)$, $6.90(2 \mathrm{H}, \mathrm{m}, 5-$ and $6-\mathrm{H}), 7.10(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}), 7.7-7.9$ ( $3 \mathrm{H}, \mathrm{br} \mathrm{m}$, $2^{\prime}-, 3^{\prime}-$ and $\left.5^{\prime}-H\right)$, and 10.30 (1H, $\mathrm{s}, \mathrm{OH}$ ).

Fisetin (91) [2-(3,4-dihydroxypheny1)-3,7-dihydroxy-4E-
1-benzopyran-4-one $]^{100}$

(91)

A mixture of $3,3^{\prime}, 4^{\prime}$-tri-0-methylfisetin (91) ( $0.2 \mathrm{~g}, 0.6 \mathrm{mmol}$ ), $\mathrm{Ac}_{2} \mathrm{O}$ $(0.2 \mathrm{ml}, 2 \mathrm{mmol})$, and $\mathrm{HI}(\mathrm{d}=1.7 \mathrm{~g} / \mathrm{ml} ; 1.0 \mathrm{ml}, 0.01 \mathrm{~mol})$ was maintained at $140^{\circ} \mathrm{C}$ for 2 h . The solution was cooled, and $\mathrm{H}_{2} \mathrm{O}$ ( 30 ml ) was added. The aqueous solution was heated on a steam-bath for 0.3 h . After cooling, the crude product, which precipitated, was filtered off, washed with $\mathrm{H}_{2} \mathrm{O}$, and recrystallised from MeOH to give fisetin (91) ( $0.12 \mathrm{~g}, 69 \%$ ), m.p. $345-350^{\circ} \mathrm{C}$ (1it., $98348^{\circ} \mathrm{C}$ ); $\nu_{\max }$ $(\mathrm{KBr}) 3300 \mathrm{br}(\mathrm{OH})$ and $1620 \mathrm{~cm}^{-1}(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right) 6.90(2 \mathrm{H}, \mathrm{m}, 6-$ and $8-H), 7.75\left(3 H, m, 2^{\prime}-, 5^{\prime}-\right.$, and $\left.6^{\prime}-H\right)$, and $7.96(1 H, d, J 9 H z$, 5-H).

3, $3^{\prime}, 4^{\prime}, 5^{\prime}$-Tetra-0-methylmyricetin (92) [5,7-dihydroxy-3-methoxy -2-(3,4,5-trimethoxypheny1)-4H-1-benzopyran-4-one $]^{101}$

(92)
$\omega$-Methoxyphloracetophenone (74) (1.0 g, 0.005 mol ) was added to $3,4,5$-trimethoxybenzoic anhydride (64) (5.0 g, 0.01 mol$)$ and sodium 3,4,5-trimethoxybenzoate [prepared by neutralisation of 3,4,5trimethoxybenzoic acid ( $9.1 \mathrm{~g}, 0.045 \mathrm{~mol}$ ) in MeOH with NaOH ( 1.68 g , $0.042 \mathrm{~mol})$, and subsequent evaporation of the solvent] $(2.2 \mathrm{~g}$,
0.01 mol). The stirred mixture was maintained at $175^{\circ} \mathrm{C}$ for 3 h , and then cooled. The residual mixture was dissolved in $\mathrm{EtOH}(30 \mathrm{ml})$ by boiling under reflux. A solution of $\mathrm{KOH}\left(1.7 \mathrm{~g}, 0.03 \mathrm{~mol}\right.$ ) in $\mathrm{H}_{2} \mathrm{O}$ ( 4 ml ) was added and boiling was continued for 0.5 h . The EtOH was removed under reduced pressure leaving a residue which was dissolved in $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{ml})$. Saturation of the aqueous solution with $\mathrm{CO}_{2}$ gave a
brown precipitate which was purified by chromatography [flash chromatography on silica; elution with EtOAc - hexane (65 : 35)] to give $3,3^{\prime}, 4^{\prime}, 5^{\prime}$-tetra-0-methylmyricetin (92) ( $0.06 \mathrm{~g}, 3 \%$ ), m.p. $268-273^{\circ} \mathrm{C}$ (dec.) (lit. ${ }^{101} 276-277^{\circ} \mathrm{C}$ ), $\nu_{\max }(\mathrm{KBr}) 3400 \mathrm{br}$ $(\mathrm{OH})$ and $1650 \mathrm{~cm}^{-1}(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 3.70(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.84$ and $3.95\left(12 \mathrm{H}, 2 \mathrm{x}\right.$ s, $\left.4 \mathrm{x} 0 \mathrm{CH}_{3}\right), 6.31(1 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz}, 6-\mathrm{H}), 6.45(1 \mathrm{H}, \mathrm{d}$, $J 2 \mathrm{~Hz}, 8-\mathrm{H})$, and $7.40\left(2 \mathrm{H}, \mathrm{s}, 2^{\prime}-\right.$ and $\left.6^{\prime}-\mathrm{H}\right)$.

Myricetin (93) [3,5,7-trihydroxy-2-(3,4,5-trihydroxypheny1)
-4H-1-benzopyran-4-one $]^{101}$

(93)

A mixture of $3,3^{\prime}, 4^{\prime}, 5^{\prime}$-tetra- 0 -methylmyricetin (92) ( 0.05 g , $0.13 \mathrm{mmol}), \mathrm{Ac}_{2} \mathrm{O}(0.1 \mathrm{ml}, 1 \mathrm{mmol})$ and $\mathrm{HI}(\mathrm{d}=1.7 \mathrm{~g} / \mathrm{ml} ; 0.3 \mathrm{ml}$, 1.4 mmol ) was maintained at $140^{\circ} \mathrm{C}$ for 1.5 h . $\mathrm{H}_{2} \mathrm{O} .(10 \mathrm{ml})$ was added, and the aqueous solution was heated on a steam-bath for 15 min . The solution was then concentrated under reduced pressure diluted with MeOH , and chromatographed [p.1.c. on silica; elution with EtOAc hexane ( $1: 1$ )]. A yellow (fluorescent purple in u.v.light) major band was isolated and used, without further purification, as a chromatographic standard. The susceptibility of this material to oxidative decomposition was evident from its tendency to turn brown while on a t.l.c. plate.

3, 3', 4',5,7-Penta-0-methylquercetagetin (94) [2~(3,4-dimethoxyphenyl)
-6-hydroxy-3,5,7-trimethoxy-4H-1-benzopyran-4-one $j^{90}$

(94)

A stirred mixture of $2^{\prime}, 5^{\prime}$-dihydroxy- $2,4^{\prime}, 6^{\prime}$-trimethoxyacetophenone (79) ( $0.2 \mathrm{~g}, 1 \mathrm{mmol}$ ), veratric anhydride (63) (2.1 g, 6 mmol ), and potassium veratrate ( $0.6 \mathrm{~g}, 3 \mathrm{mmol}$ ), was maintained at ca. $180^{\circ} \mathrm{C}$ for 4 h . After cooling, the residual mixture was dissolved in EtOH $(30 \mathrm{ml})$ by boiling under reflux. A $10 \%$ aqueous solution of KOH ( 14 ml ) was added slowly and boiling was maintained for 0.5 h . The EtOH was removed under reduced pressure and the residue was dissolved in $\mathrm{H}_{2} \mathrm{O}$. Saturation of the aqueous solution with $\mathrm{CO}_{2}$ precipitated a small amount of crude product which was filtered off. Extraction of the filtrate with $\mathrm{Et}_{2} 0$ afforded further crude product. Chromatography of the combined material [p.l.c. on silica; elution with EtOAc hexane (1 : 1)] gave 3 fractions, one of which ( 30 mg ; Rf 0.46 ) was shown by ${ }^{1} \mathrm{H}$ n.m.r. spectroscopy to be crude $3,3^{\prime}, 4^{\prime}, 5,7$-penta- 0 -methyl-quercetagetin (94) $\delta_{\mathrm{H}}\left(\mathrm{CD}_{3} 0 \mathrm{D}\right) 3.76$ and 3.96 ( $15 \mathrm{H}, 2 \mathrm{x} \mathrm{s}$, $\left.5 \times 0 \mathrm{CH}_{3}\right), 6.15(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H})$, and $7.33\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime}-5^{\prime}-, 6^{\prime}-\mathrm{H}\right)$.

3, 3', 4',5,7-Penta-0-acetylquercetin (96) [3,5,7-triacetoxy -2-(3,4-diacetoxyphenyl)-4H-1-benzopyran-4-one J ${ }^{100}$

(96)

Quercetin (89) ( $15 \mathrm{~g}, 0.045 \mathrm{~mol}$ ) was dissolved in $\mathrm{Ac}_{2} \mathrm{O}$ ( 75 ml , $0.7 \mathrm{~mol})$ and pyridine ( 10 ml ). The solution was boiled under reflux for 2 h before pouring on to crushed ice ( 300 g ), whereupon the crude solid separated as a brown solid. Recrystallisation of the dried solid from EtOH $-\mathrm{CHCl}_{3}$ afforded needles of $3,3^{\prime}, 4^{\prime}, 5,7$-penta- $0_{-}$ acetylquercetin (96) (15.6 g, 64\%), m.p. $190-192^{\circ} \mathrm{C}$ (lit., ${ }^{100}$ $\left.191-195^{\circ} \mathrm{C}\right) ; \nu_{\max }(\mathrm{KBr}) 1775$ (C0) and $1650 \mathrm{~cm}^{-1}(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 2.32 and $2.4\left(15 \mathrm{H}, 2 \mathrm{x}\right.$ s, $\left.\mathrm{s} x \mathrm{COCH}_{3}\right), 6.85(1 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz}, 6-\mathrm{H}), 7.30$ (1H, d, J $2 \mathrm{~Hz}, 8-\mathrm{H}), 7.40\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right)$, and $7.65\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\right.$ and $\left.6^{\prime}-H\right)$.

3, 3', 4',5-Tetra-0-acetylrhamnetin (97) [3,5-diacetoxy-2-(3,4-diacetoxyphenyl)-7-methoxy-4H-1-benzopyran-4-one J ${ }^{103}$

(97)

Methyl iodide ( $10 \mathrm{ml}, 0.03 \mathrm{~mol}$ ) was added to a mixture of $3,3^{\prime}, 4^{\prime}, 5,7$-penta-0-acetylquercetin (96) (5 g, 0.009 mol ) and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(13 \mathrm{~g}, 0.1 \mathrm{~mol})$ in dry acetone ( 75 ml ). The mixture was boiled under reflux for 20 h . Undissolved solids were then filtered off and washed with fresh dry acetone. The combined filtrate and washings were concentrated to a gum which was dissolved in warm benzene ( 30 ml ). The solution was filtered, diluted with hexane ( 30 ml ), and concentrated to ca. 10 ml ; on cooling, the crude product crystallised out ( $4.31 \mathrm{~g}, 91 \%$ ). Recrystallisation from acetone - MeOH afforded colourless needles of 3, $3^{\prime}, 4^{\prime}, 5$-tetra- 0 acetylrhamnetin (97) (1.8 g, 40\%), m.p. 189-190ㅇ (1it., ${ }^{103} 189-$ $\left.190^{\circ} \mathrm{C}\right) ; \nu_{\max }(\mathrm{KBr}) 1770(\mathrm{CO})$ and $1635(\mathrm{CO}) ; \delta_{H}\left(\mathrm{CDCl}_{3}\right) 2.29$ and 2.49 $\left(12 \mathrm{H}, 2 x \mathrm{~s}, 4 \mathrm{x} \mathrm{COCH}_{3}\right), 3.85\left(3 \mathrm{H}, \mathrm{s}, 7-0 \mathrm{CH}_{3}\right), 6.48(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2 \mathrm{~Hz}$, $6-H), 6.78(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2 \mathrm{~Hz}, 8-\mathrm{H}), 7.20\left(1 \mathrm{H}, \mathrm{s}, 5^{\prime}-\mathrm{H}\right)$, and $7.61(2 \mathrm{H}, \mathrm{m}$, $2^{\prime}$ - and $6^{\prime}-H$ ).

Rhamnetin (98) [2-(3,4-dihydroxypheny1)-3,5-dihydroxy-7-methoxy-4E-1-benzopyran-4-one $j^{103}$

(98)

A solution of $3,3^{\prime}, 4^{\prime}, 5$-tetra-0-acetylrhamnetin (97) (1.0 g, 0.002 mol ) in $10 \%$ aqueous NaOH solution ( $1.1 \mathrm{ml}, 0.004 \mathrm{~mol}$ ) was warmed on a steam-bath for 3 min . $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{ml})$ was added, and after a further $5 \mathrm{~min} .$, concentrated $\mathrm{HCl}(1 \mathrm{ml})$ was added. Heating on the steam-bath was continued for 0.75 h , during which time the crude yellow product precipitated. This was filtered off and recrystallised from acetone - MeOH to yield rhamnetin (98) (0.38 g, 56\%), m.p. $291-294^{\circ} \mathrm{C}$ (1it. . ${ }^{103} 294-296^{\circ} \mathrm{C}$ ); $\nu_{\max }(\mathrm{KBr}) 3150 \mathrm{br}$ $(\mathrm{OH})$ and $1660 \mathrm{~cm}^{-1}(\mathrm{CO}) ; \delta_{H}\left(\mathrm{DMSO}_{-} \mathrm{d}_{6}\right) 3.96\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.45(1 \mathrm{H}$, $\mathrm{d}, J 3 \mathrm{~Hz}, 6-\mathrm{H}), 6.75(1 \mathrm{H}, \mathrm{d}, J 3 \mathrm{~Hz}, 8-\mathrm{H}), 7.05\left(1 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right)$, $7.94\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}\right.$ - and $\left.6^{\prime}-\mathrm{H}\right)$.

3,3',4',5-Tetra-0-acetyl-7-0-benzylquercetin (99) [3,5-diacetoxy-7-benzyloxy-2-(3,4-diacetoxyphenyl)-4H-1-benzopyran-4-one $]^{103}$

(99)
$3,3^{\prime}, 4^{\prime}, 5,7$-Penta-0-acetylquercetin (96) (10.0 g, 0.02 mol ), KI ( $1.0 \mathrm{~g}, 0.001 \mathrm{~mol}$ ), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(25 \mathrm{~g}, 0.2 \mathrm{~mol})$, and freshly distilled benzyl chloride ( $10.0 \mathrm{ml}, 0.08 \% \mathrm{~mol}$ ) were added to dry acetone ( 250 ml ). The mixture was boiled under reflux for 21 h . Undissolved solids were then filtered off and washed with fresh dry acetone. The combined filtrate and washings were concentrated under reduced pressure to give an oil which was dissolved in warm benzene ( 100 ml ), and hexane ( 50 ml ) was added. On cooling the solution, the crude colourless product crystallised. Recrystallisation of the
crude product from acetone -MeOH gave $3,3^{\prime}, 4^{\prime}$, 5-tetra-0-acetyl-7-0-benzyl-quercetin (99) ( $6.18 \mathrm{~g}, 57 \%$ ), m.p. $162-163^{\circ} \mathrm{C}$ (1it., ${ }^{103}$ $163^{\circ} \mathrm{C}$ ); $\nu_{\text {max }}(\mathrm{KBr}) 1775(\mathrm{CO})$ and $1640 \mathrm{~cm}^{-1}(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDC1}_{3}\right) 2.25$ and $2.35\left(12 \mathrm{H}, 2 \times \mathrm{s}, 4 \mathrm{x} \mathrm{COCH} 3\right.$ ), $5.22\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 6.82(1 \mathrm{H}, \mathrm{d}$, $J 2 \mathrm{~Hz}, 6-\mathrm{H}), 6.92(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2 \mathrm{~Hz}, 8-\mathrm{H}), 7.44$ ( $1 \mathrm{H}, \mathrm{s}, 5^{\prime}-\mathrm{H}$ ), 7.52 ( 5 H , s, $\mathrm{C}_{6} \mathrm{H}_{5}$ ), and $7.70\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}\right.$ and $\left.6^{\prime}-\mathrm{H}\right)$.

3'-0-Acety1-3,4',5,7-tetra-0-benzylquercetin (100) [2-(3-acetoxy -4-benzyloxypheny1)-3,5,7-tribenzyloxy-4H-1-benzopyran-4-one $J^{103}$

(100)
$3,3^{\prime}, 4^{\prime}, 5-T e t r a-0$-acetyl-7-0-benzylquercetin (99) ( $2.5 \mathrm{~g}, 0.004 \mathrm{~mol}$ ), KI ( $0.25 \mathrm{~g}, 0.002 \mathrm{~mol}$ ), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(10 \mathrm{~g}, 0.07 \mathrm{~mol})$, and freshly distilled benzyl chloride ( $5 \mathrm{ml}, 0.04 \mathrm{~mol}$ ) were added to dry 2-butanone ( 50 ml ). The mixture was boiled under reflux for 20 h . Undissolved solids were then filtered off and washed with fresh dry 2-butanone. The combined filtrate and washings were concentrated to an oil which was dissolved in benzene ( 20 ml ). Hexane was added to the cooled solution until crystallisation of the crude product commenced. Recrystallisation of the crude product from acetone MeOH afforded $3^{\prime}$-0-acetyl-3, 4',5,7-tetra- 0 -benzylquercetin (100) ( $0.95 \mathrm{~g}, 33.8 \%$ ), m.p. $175-176^{\circ} \mathrm{C}$ (lit., ${ }^{103} 176^{\circ}$ ); $\nu_{\max }(\mathrm{KBr}) 1770(\mathrm{CO})$ and $1640 \mathrm{~cm}^{-1}(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 5.26(8 \mathrm{H}, \mathrm{m}, 4 \mathrm{x}$ $\mathrm{PhCH}_{2}$ ), $6.50(2 \mathrm{H}, 2 \times \mathrm{s}, 6$ - and $8-\mathrm{H}), 7.38\left(21 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{C}_{6} \mathrm{H}_{5}\right.$ and $5^{\prime}-$ H), and 7.78 ( $2 \mathrm{H}, \mathrm{s}, 2^{\prime}-$ and $\left.6^{\prime}-\mathrm{H}\right)$.

3,4',5,7-Tetra-0-benzylquercetin (101) [3,5,7-tribenzyloxy -2-(4-benzyloxy-3-hydroxypheny1)-4H-1-benzopyran-4-one $]^{103}$

(101)
$3^{\prime}$ - 0 -Acetyl-3, $4^{\prime}, 5,7$-tetra-0-benzylquercetin (100) ( $0.8 \mathrm{~g}, 1.4 \mathrm{mmol}$ ) was dissolved in acetone ( 5 ml ), and $\mathrm{MeOH}(10 \mathrm{ml})$ and $10 \%$ aqueous $\mathrm{NaOH}(2 \mathrm{ml}, 8 \mathrm{mmol})$ were added. The solution was heated on a steambath for 10 min, and then diluted with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{ml})$ and acidified with conc. HC1. The yellow product which precipitated was filtered off and recrystallised from acetone - MeOH to afford 3, 4', 5,7-tetra-0-benzyl-quercetin (101) ( $0.68 \mathrm{~g}, 73.3 \%$ ), m.p. $165-166^{\circ} \mathrm{C}$ (lit., ${ }^{103}$ $\left.166.5^{\circ} \mathrm{C}\right)$; $\nu_{\text {max }}(\mathrm{KBr}) 3300 \mathrm{br}(\mathrm{OH})$ and $1630 \mathrm{~cm}^{-1}(\mathrm{CO}) ; \delta_{H}\left(\mathrm{CDCl}_{3}\right) 5.15$ ( $8 \mathrm{H}, \mathrm{m}, 4 \mathrm{x} \mathrm{PhCH}_{2}$ ) , $6.55(2 \mathrm{H}, \mathrm{m}, 6$ - and $8-\mathrm{H}), 7.00\left(1 \mathrm{H}, \mathrm{s}, 5^{\prime}-\mathrm{H}\right)$, and $7.45\left(22 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{C}_{6} \mathrm{H}_{5}, 2^{\prime}-\right.$ and $\left.6^{\prime}-\mathrm{H}\right)$.

3,4',5,7-Tetra-0-benzyl-3-0-methylquercetin (102) [3,5,7-tribenzyloxy -2-(4-benzyloxy-3-methoxypheny1)-4H-1-benzopyran-4-one $]^{103}$

$3,4^{\prime}, 5,7$-Tetra-0-benzylquercetin (101) ( $0.4 \mathrm{~g}, 0.6 \mathrm{mmol}$ ), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(1.5 \mathrm{~g}, 0.01 \mathrm{~mol})$, and methyl iodide ( $1 \mathrm{ml}, 0.015 \mathrm{~mol}$ ) were added to dry acetone ( 10 ml ), and the mixture was boiled under reflux for 20 h . Undissolved solids were then filtered off and washed with fresh dry acetone, and the combined filtrate and washings were
concentrated to a gum. Water ( 10 ml ) was added, precipitating crude product which was recrystallised from benzene - hexane to yield $3,4^{\prime}, 5,7$-tetra- 0 -benzyl- $3^{\prime}$ - 0 -methylquercetin (102) ( $0.15 \mathrm{~g}, 36.7 \%$ ), m.p. $119-120^{\circ} \mathrm{C}$ (1it., ${ }^{103} 126-127^{\circ} \mathrm{C}$ ); $\nu_{\max }(\mathrm{KBr}) 1630 \mathrm{~cm}^{-1}$ (CO); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.16\left(3 \mathrm{H}, \mathrm{s}, 0 \mathrm{CH}_{3}\right), 5.25\left(8 \mathrm{H}, \mathrm{m}, 4 \mathrm{x} \mathrm{PhCH}_{2}\right), 6.50(1 \mathrm{H}, \mathrm{d}$, $J 2 \mathrm{~Hz}, 6-\mathrm{H}), 6.60(1 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz}, 8-\mathrm{H}), 6.85\left(1 \mathrm{H}, \mathrm{s}, 5^{\prime}-\mathrm{H}\right)$, and 7.42 $\left(22 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{C}_{6} \mathrm{H}_{5}, 2^{\prime}\right.$ - and $\left.6^{\prime}-\mathrm{H}\right)$.

Isorhamnetin (103) [3,5,7-trihydroxy-2-(4-hydroxy-3-methoxypheny1) -4H-1-benzopyran-4-one $j^{103}$

(103)
$3,4^{\prime}, 5,7$-Tetra-0-benzyl-4'-0-methylquercetin (102) (0.14 g, 0.2 mmol ) was dissolved in glacial $\mathrm{AcOH}(5 \mathrm{ml}, 0.08 \mathrm{~mol})$, and conc. HCl $(2.5 \mathrm{ml})$ was added. The solution was heated on a steam-bath for 1.5 h , and then cooled and diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$. The precipitated yellow product was filtered off and recrystallised from acetone -MeOH , affording isorhamnetin (103) ( $0.05 \mathrm{~g}, 797$ ), m.p. 303 - $305^{\circ} \mathrm{C}$ (Iit., ${ }^{103} 305-306^{\circ} \mathrm{C}$ ) ; $\nu_{\max }(\mathrm{KBr}) 3100 \mathrm{br}(\mathrm{OH})$ and $1655 \mathrm{~cm}^{-1}$ $(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right) 3.91\left(3 \mathrm{H}, \mathrm{s}, 0 \mathrm{CH}_{3}\right), 6.231 \mathrm{H}, \mathrm{d}, \mathrm{J} \mathrm{3Hz}$, $6-\mathrm{H}), 6.42(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3 \mathrm{~Hz}, 8-\mathrm{H}), 6.98\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right)$, $7.10(4 \mathrm{H}$, br $\mathrm{s}, \mathrm{OH})$, and $7.72\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\right.$ and $\left.6^{\prime}-\mathrm{H}\right)$.

### 3.3 ISOLATION AND CHROMATOGRAPHIC ANALYSIS OF CONSTITUENTS OF TULBAGHIA VIOLACEA

The plant material was identified as Tulbaghia violacea Harv., by Mrs. E. Brink of the Albany Museum Herbarium, Grahamstown, where voucher specimens are deposited (Vouchers A7418 and A7419).

### 33.1 Aqueous extraction of Tulbaghia violacea (Extract 1)

Fresh plant material, including green parts, was washed and crushed in a domestic blender with distilled water ( 100 ml per 30 g plant). The stirred slurry was boiled for 10 min , and then filtered while hot, through celite, to give a light brown filtrate which was freezedried. The residual product, extract $I$, was obtained as a sticky hygroscopic powder, and was chromatographed using various techniques as follows.
(i) T.l.c. [on silica; elution with EtOAc - propioH - $\mathrm{H}_{2} \mathrm{O}$ (6:2:1), visualised with anisaldehyde $-\mathrm{H}_{2} \mathrm{SO}_{4}$ spray (see Figure 2.10, p. 68)].
(ii) Two-dimensional (2-d)-t.l.c. [on cellulose; elution with $\mathrm{Bu}^{\mathrm{t} O H}-\mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}(3: 1: 1)$ and $5 Z \mathrm{AcOH}$ consecutively; visualised with iodine (see Figure 2.11, p. 69)].
(iii) Gel filtration [with Sephadex LH-20; elution with EtOH - $\mathrm{H}_{2} \mathrm{O}$ (3:2), using a peristaltic pump, flow rate $0.2 \mathrm{ml} / \mathrm{min}$; detection by u.v. absorption (see section 2.2.3.1, p. 82)].

The results of this chromatography indicated the presence of at least 3 sugars, and the presence of several glycosidic components.

### 3.3.2 Hydrolysis of Extract I

Extract I ( 9.3 g ) was added to $10 Z \mathrm{HCl}(170 \mathrm{ml})$ and the mixture was heated on a steam-bath for 0.5 h , cooled, and then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 80 \mathrm{ml})$ and EtOAc ( $3 \times 80 \mathrm{ml}$ ). The combined organic extracts were dried, concentrated under reduced pressure, and
chromatographed [p.1.c. on silica; elution with EtOAc - hexane (3:2)] to give as major components the hexose degradation products :-5-hydroxymethylfurfural (115), $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.7$ (1H, br s, OH ), $4.62 \mathrm{H}, \mathrm{s}, \mathrm{CH} \mathrm{OH}), 6.5(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 7.2(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$, and $9.5(1 \mathrm{H}, \mathrm{s}$, $\mathrm{CHO}) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 55.5\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{OH}\right), 109.5(\mathrm{~d}, \mathrm{CH}), 120.5$ (d, $\mathrm{CH})$, and $176.0(\mathrm{~d}, \mathrm{CHO})$; and 4 -oxopentanoic acid (116) $\delta_{H}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 2.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.53\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} \mathrm{5} \mathrm{Hz}, \mathrm{CH}_{2}\right)$, and $2.70(2 \mathrm{H}$, $\left.t, J 5 \mathrm{~Hz}, \mathrm{CH}_{2}\right) . \delta_{c}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 27.5\left(\mathrm{t}, \mathrm{CH}_{2}\right), 29.8\left(\mathrm{q}, \mathrm{CH}_{3}\right)$, $37.5\left(t, \mathrm{CH}_{2}\right), 177.5(\mathrm{~s}, \mathrm{COOH})$ and $208.1(\mathrm{~s}, \mathrm{CO})$.

The aqueous layer remaining after solvent extraction was neutralised with $\mathrm{Ag}_{2} \mathrm{CO}_{3}$, filtered, and chromatographed using
(i) thin layer chromatography [co-chromatography with standard sugars on silica; elution with $\mathrm{BuOH}-\mathrm{MeOH}-\mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}$ (8:8:1:1) visualised with anisaldehyde $-\mathrm{H}_{2} \mathrm{SO}_{4}$ spray (see Figure 2.12; A, p. 70)] and
(ii) paper chromatography [Whatman 3 M paper; downward elution overnight with EtOAc - AcOH $-\mathrm{HCOOH}-\mathrm{H}_{2} \mathrm{O}$ (18:3:1:1); visualised with a), $\mathrm{AgNO}_{3}$ in acetone; b), NaOH in EtOH , c), $\mathrm{NaOAc}, \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, AcOH in $\mathrm{H}_{2} \mathrm{O}$ (see Table 3.2) (Figure 2.12; B, p. 70)].

The results of this chromatography indicated the presence of glucose, fructose and xylose in the extract $I$.

### 3.3.3.1 Hydrolysis of extract I on a t.l.c. plate ${ }^{105}$

An aqueous solution of extract $I$ was spotted in one corner of each of two 65 x 65 mm t.l.c. plates. After the first elution with BuOH -$\mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}(3: 1: 1)$, the plates were dried, examined under u.v. light, and placed in the reaction box ${ }^{105}$, face up. A p.l.c. plate, sprayed with $5-\mathrm{M} \mathrm{HCl}(5 \mathrm{ml})$, was placed face down over the t.l.c. plates and supported by the rim of the box. The whole box was placed in an oven at ca. $100^{\circ} \mathrm{C}$ for 10 min , after which the box was opened and the t.1.c. plates removed and dried in the oven. Standard compounds were spotted in line with sample spots, above the solvent front, and a
second elution was carried out perpendicular to the direction of the first elution, using $\mathrm{BuOH}-\mathrm{MeOH}-\mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}$ (8:8:1:1) for one plate, and EtOAc - hexane (1:1) for the other. The first plate was visualised with anisaldehyde $-\mathrm{H}_{2} \mathrm{SO}_{4}$ spray to reveal sugar components (see Figure 2.11, p. 69) and the second plate was examined under u.v. light to detect aglycones (see Figure 2.18, p. 84). The results of this chromatography suggested the presence of the sugars glucose and fructose, and aglycones which correlated with flavone standards.
3.33.2 Hydrolysis of fraction $V$ of methanolic extract III on a t.l.c. plate

The procedure for hydrolysis of extract I was followed using the butanol soluble fraction $V$ (Scheme 2.11, p. 66). The resulting chromatograms showed aglycones corresponding to the flavone standards kaempferol and quercetin (see Figure 2.18, p. 84) and sugars corresponding to glucose and fructose (see Figure 2.11, p. 69).
33.4 Isolation of free and glycosidic sugars from extract $\mathrm{I}^{2}$

Extract I ( 0.4 g ) was dissolved in $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{ml})$, and powdered charcoal ( 1 g ) was added. The mixture was stirred for 0.5 h , and then filtered, and the residue was washed with fresh water. The combined filtrate and washings were evaporated to dryness under reduced pressure to give a fraction (FS) ( 170 mg ) containing free sugars. The charcoal residue was added to a hot solution of phenol ( 3.5 g ) in $\mathrm{H}_{2} \mathrm{O}(47 \mathrm{ml})$, the stirred mixture was heated to $\mathrm{ca} .80^{\circ} \mathrm{C}$ for 10 min before filtering, and the residue was washed with fresh water. The combined filtrate and washings were concentrated under reduced pressure to ca. 20 ml and extracted with $\mathrm{Et}_{2} \mathrm{O}$ ( $4 \times 20 \mathrm{ml}$ ) to remove the phenol. The aqueous layer and fraction (FS) were chromatographed [t.l.c. on silica; elution with BuOH - MeOH - $\mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}$ (8:8:1:1); visualisation with anisaldehyde $-\mathrm{H}_{2} \mathrm{SO}_{4}$ spray; (see Figure 2.13, p. 72)] to confirm the presence of free sugars in fraction (FS), and the absence of free sugars in the aqueous solution. The aqueous layer
was concentrated further, to ca. 5 mI , added to $10 \% \mathrm{HCl}$ ( 7 ml ), and the mixture was then heated on a steam-bath for 0.5 h , cooled, and extracted with EtOAc ( $4 \times 20 \mathrm{ml}$ ). The aqueous layer was neutralised with $2-\mathrm{M} \mathrm{NH}$ solution and concentrated to ca .5 ml , giving a fraction (GS) containing glycosidic sugars. T.l.c. [as for fraction (FS)] indicated the presence of sugars in the fraction (GS) (Figure 2.13, p. 72). Fractions (FS) and (GS) were used for derivatisation procedures. The EtOAc layer was dried, concentrated, and chromatographed [t.l.c. on silica; elution with solvents (7) - (10) (see Figure 2.19, p. 86)] to show the presence of flavone components.

### 3.3.5 Preparation of peracetylated aldononitriles (PAANs) of sugars ${ }^{106}$

### 33.5.1 Standard mixture of sugar PAANs

A stock solution was prepared containing 50 mg of each of the following sugars : D-glucose, D-mannose, D-galactose, D-xylose, Larabinose, L-rhamnose and $D-f u c o s e$, in $\mathrm{H}_{2} \mathrm{O}$ ( 0.5 ml ). Hydroxylamine hydrochloride ( 0.5 g ) was dissolved in $N$-methylimidazole ( 20 ml ), and this solution was stored at $-4^{\circ} \mathrm{C}$. A mixture of the stock sugar solution ( 0.2 ml ) and the hydroxylamine hydrochloride solution $(0.4 \mathrm{ml})$ was heated in a closed tube at $80^{\circ} \mathrm{C}$ for 10 min , and then cooled. $\mathrm{Ac}_{2} \mathrm{O}(5 \mathrm{ml})$ was added while the solution was cooled in ice. After $5 \mathrm{~min}, \mathrm{CHCl}_{3}(1 \mathrm{ml})$ and then $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{ml})$ were added. The tube was shaken and allowed to stand; the aqueous (upper) layer was discarded and the $\mathrm{CHCl}_{3}$ layer was dried. This $\mathrm{CHCl}_{3}$ solution was used as a standard mixture for g.I.c. analysis of the isolated sugar sample (FS).

### 33.5.2 Individual standard sugar PAANs

The general procedure described for the preparation of the standard mixture of sugar PAANs was followed using, in each case, a standard sugar (from those listed above and including D-fructose) ( 4 mg ) in $\mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{ml})$. G.I.c. analysis of each of these samples was used to identify the peaks in the gas chromatogram of the standard mixture of derivatised sugars (Figure 2.14; A, p. 75).

### 33.53 Free sugar (FS) PAANs

The general procedure described for the preparation of the standard mixture of sugar PAANs was followed, using a solution of sample (FS) ( 60 mg ) in water ( 0.2 ml ) to give a solution of (FS) PAANs which was analysed by g.l.c. and g.c. - m.s., using the standard sugar PAANs for comparison.

### 33.5.4 Glycosidic sugar (GS) PAANs

The general procedure described for the preparation of the standard mixture of sugar PAANs was followed, using the solution (GS) (1 ml) as the sugar solution, to give a solution of (GS) PAANs which was analysed by g.l.c. and g.c. - m.s., using the standard sugar PAANs for comparison.
3.3.5.5 G.l.c. and g.c. - m.s. conditions for analysis of PAANs
G.I.c. analysis : DB225 column; $N_{2}$ carrier gas, flow rate $25 \mathrm{ml} / \mathrm{min}$; isothermal $220^{\circ} \mathrm{C}$; inlet purge time 0.5 min ; inlet and detector temperatures $230^{\circ} \mathrm{C}$; column head pressure 100 kPa .
G.c. - m.s. analysis : DB225 column; He carrier gas, flow rate $1.5 \mathrm{ml} / \mathrm{min}$ through colum; isothermal $230^{\circ} \mathrm{C}$; inlet purge time 1 min ; inlet and detector temperatures $240^{\circ} \mathrm{C}$.
33.6 Preparation of alditol acetate derivatives of sugars ${ }^{108}$
33.6.1 Standard mixture of sugar alditol acetates
$\mathrm{NaBH}_{4}(0.5 \mathrm{~g})$ was added to a solution containing 40 mg of each of the following sugars : D-glucose, D-galactose, L-arabinose, D-xylose and L-rhamnose, in water ( 0.4 ml ). The mixture was allowed to stand at room temperature for 1 h , and then acidified with $50 \% \mathrm{AcOH}$ before being evaporated to dryness. $\mathrm{MeOH}(5 \mathrm{ml})$ was added, and the mixture was again evaporated to dryness. Treatment with MeOH was repeated twice to remove boron residues. Pyridine ( 1 ml ) and $\mathrm{Ac}_{2} \mathrm{O}$ ( 1 ml ) were
added to the residue, and the mixture was maintained at $100^{\circ} \mathrm{C}$ for 1 h before being poured on to crushed ice ( $c a .10 \mathrm{~g}$ ). When the ice had melted, the solution was extracted with $\mathrm{CHCl}_{3}(3 \times 10 \mathrm{ml})$. The $\mathrm{CHCl}_{3}$ layer was washed (consecutively with $10 Z \mathrm{H}_{2} \mathrm{SO}_{4}$ solution, saturated $\mathrm{NaHCO}_{3}$ solution, and $\mathrm{H}_{2} \mathrm{O}$ ), dried, and concentrated to ca. 0.2 ml . This solution was used as the standard mixture of sugar alditol acetates (AAs) for g.c. - m.s. analysis of isolated sugar samples (FS) and (GS).

### 3.3.6.2 Fructose and Mannose alditol acetates

The general procedure described for the preparation of the standard mixture of alditol acetates was followed, using a solution of fructose ( 40 mg ) in $\mathrm{H}_{2} \mathrm{O}(0.4 \mathrm{ml})$, and a solution of mannose ( 40 mg ) in $\mathrm{H}_{2} \mathrm{O}$ ( 0.4 ml ). The resulting derivatives were used as g.c. - m.s. standards to confirm the presence of fructose in the isolated sugar samples (FS) and (GS) (see section 2.2.2.5, p. 78).

### 3.3.6.3 Free sugars

The general procedure described for the preparation of the standard mixture of alditol acetates was followed, using sample (FS) ( 20 mg ) in water $(0.4 \mathrm{ml})$. The derivatised mixture was analysed by g.c. m.s. using the standard mixture of alditol acetates for comparison (see section 2.2 .2 .5, p. 78).

### 33.6.4 Glycosidic sugars

The general procedure described for the preparation of the standard mixture of alditol acetates was followed, using the sample (GS) ( 0.4 ml ) as the sugar solution. The derivatised mixture was analysed by g.c. - m.s. using the standard mixture of alditol acetates for comparison (see section 2.2.2.5, p. 78).
3.3.6.5 G.l.c. and g.c. - m.s. conditions for analysis of alditol acetates
G.l.c. analysis : DB225 column; $N_{2}$ carrier gas, flow rate $25 \mathrm{ml} / \mathrm{mln}$; 1sothermal $230^{\circ} \mathrm{C}$; inlet purge time 0.5 min , inlet and detector temperatures $240^{\circ} \mathrm{C}$; column head pressure 100 kPa .
G.c. - m.s. analysis : DB225 column; He carrier gas, flow rate $1.5 \mathrm{ml} / \mathrm{mln}$ through the column; isothermal $230^{\circ} \mathrm{C}$; inlet purge time I min; inlet and detector temperatures $240^{\circ} \mathrm{C}$.

### 3.3.7 Soxhlet extraction of Tulbaghia violacea (Extracts II - VI)

 and isolation of sulphur compounds (117) and (118)Fresh, hand-chopped plant material (excluding green parts) ( 1.5 kg ) was extracted in a Soxhlet apparatus, with hexane (containing $30 \%$ xylene and $30 \%$ toluene) (5 1) for 2 d (see Scheme 2.11, p. 66). The extract II was concentrated to a small volume ( 100 ml ) and stored at $-4^{\circ} \mathrm{C}$ for 5 d , during which time a white material crystallised out. This solid ( 0.26 g ) was filtered off, dissolved in $\mathrm{CHCl}_{3}(1 \mathrm{ml})$ and chromatographed [p.1.c. on silica; EtOAc - hexane (60:40) as eluant] to give white crystalline 2,4,5,7-tetrathiaoctane-2,2-dioxide (117) ( 0.13 g ), m.p. $59-60^{\circ} \mathrm{C}$, (Found C, 22.98; H, 4.60. $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~S}_{4} \mathrm{O}_{2}$ requires $C, 22.00 ; H, 4.62 \%$ ); $\nu_{\max }\left(\mathrm{CCl}_{4}\right) 1325$ and $1140\left(\mathrm{SO}_{2}\right), 685$ $\left(\mathrm{CH}_{3}-\mathrm{S}\right), 590$, and $550 \mathrm{~cm}^{-1}\left(\mathrm{SO}_{2}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.25(3 \mathrm{H}, \mathrm{s}), 3.05(3 \mathrm{H}$, s), $4.12(2 \mathrm{H}, \mathrm{s})$, and $4.22(2 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 15.47\left(\mathrm{CH}_{3}\right), 39.26$ $\left(\mathrm{CH}_{3}\right), 45.25\left(\mathrm{CH}_{2}\right)$, and $62.07\left(\mathrm{CH}_{2}\right) ; m / z 218\left(\mathrm{M}^{+}, 3 \%\right), 93(10), 61$ (100), and 45 (71). (See section 2.4.1).

The residual plant material in the Soxhlet apparatus was then extracted with MeOH ( 51 ) for 2 d. A colourless precipitate (VII) was filtered from the MeOH extract (III) and air dried. This material gave a positive Molisch test and was found to char and effervesce when treated with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$, indicating a carbohydrate. Hydrolysis of the solid ( 0.1 g ) was effected in dilute HCl ( 3 ml ) by heating on a steam-bath for 15 minutes. Neutralisation of the solution with 2 M -aq. $\mathrm{NH}_{3}$ and subsequent concentration to small volume, afforded glucose, identifled by chromatography [t.l.c. on silica; elution with $\mathrm{BuOH}-\mathrm{MeOH}-\mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}$ (8:8:1:1); visualised with anisaldehyde $-\mathrm{H}_{2} \mathrm{SO}_{4}$ spray reagent] using glucose, fructose, rhamnose and $x y l o s e$ as standards.

The filtered MeOH extract (III) was concentrated under reduced pressure to a syrup ( 300 ml ) which was then dissolved in water $(300 \mathrm{ml})$. A small portion ( 30 ml ) of this aqueous solution was hydrolysed (see next section, p.163), and the remainder was extracted with EtOAc, and then $n-B u O H$, giving fractions IV and $V$ respectively.

The dried EtOAc extract (IV) was concentrated under reduced pressure to small volume ( 2 ml ) and chromatographed [p.1.c. on silica, elution with $\mathrm{CHCl}_{3}$ ] to yield 2,4,5,7-tetrathiaoctane (118) as a pale yellow liquid $(100 \mathrm{mg})$, $v_{\max }\left(\mathrm{CCl}_{4}\right) 680\left(\mathrm{CH}_{3}-\mathrm{S}\right)$ and $480 \mathrm{~cm}^{-1}(\mathrm{~S}-\mathrm{S}) ; 8^{\mathrm{H}}$ $\left(\mathrm{CDCl}_{3}\right) 2.23(3 \mathrm{H}, \mathrm{s})$ and $3.40(2 \mathrm{H}, \mathrm{s}) ; \mathrm{m} / \mathrm{z} 186\left(\mathrm{M}^{+}, 14 \%\right), 93$ (2) and 61 (100) (see section 2.4.1).

The BuOH-soluble fraction was evaporated to dryness, giving a sticky yellow powder, fraction $V(1.7 \mathrm{~g})$. Chromatography of fraction $V$ was carried out as follows :
(i) Flash chromatography [on silica; sequential elution with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(78: 20: 2)$, $\left.70: 30: 10\right)$, ( $\left.65: 35: 10\right)$ ] giving 6 crude fractions as shown in Table 3.3 below; (see section 2.2.3.1, p. 82).
(1i) T.1.c. [on cellulose; elution with $\mathrm{Bu}^{t} \mathrm{OH}-\mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}$ (3:1:1) and $5 \% \mathrm{AcOH}$; visualisation with $I_{2}$ ] (see section 2.2.3.1, p. 82).
(iii) 2-D-t.1.c. [on silica with hydrolysis after first elution with $\mathrm{Bu}^{\text {to }} \mathrm{H}-\mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}(3: 1: 1)$; second elution with BuOH - MeOH -$\mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}$ (8:8:1:1) for sugars, and EtOAc - hexane (1:1) for aglycones; visualisation with anisaldehyde $-\mathrm{H}_{2} \mathrm{SO}_{4}$ spray for sugars] (see sections 2.2.2.1 and 2.2.3.1, pp. 67 and 82).

The results of this chromatography showed the presence of glycosidic material in fraction $V$, comprising aglycones corresponding to the flavone standards, kaempferol and quercetin, and sugars corresponding to glucose and possibly xylose. Fructose appeared to be present as a free sugar (Figure 2.11; C) (see section 2.2.3.3. p. 89).

Table 3.3 Fractions from flash chromatography of extract $V$

| $R_{f}{ }^{*}$ | Mass of fraction (mg) |
| :---: | :---: |
| 0.59 | 20 |
| 0.38 | 18 |
| 0.28 | 13 |
| 0.22 | 24 |
| 0.15 | 40 |
| 0.08 | 13 |
| * in solvent system : $\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(78: 20: 2)$ |  |

### 3.3.8 Hydrolysis of methanolic extract III

A portion of the aqueous solution of methanolic extract III (see Scheme 2.11, p. 66) ( 30 mI ) was added to a $10 \%$ methanolic solution of HCl ( 30 ml ), and the mixture was heated on a steam-bath for 0.5 h . The solution was concentrated to a small volume ( 20 ml ) and extracted with EtOAc ( $3 \times 20 \mathrm{ml}$ ). Concentration of the dried EtOAc layer gave a mixture which was chromatographed using t.l.c. [co-chromatography on silicon with standard flavones; elution with solvents (7) - (10) (see Figure 2.19, p. 86)], to show components correlating with flavones (see section 2.2.3.2).

### 3.3.9 Hydrolysis of BuOH extract V

A solution of extract $V$ (Scheme 2.11, p. 66) ( 60 mg ) in MeOH ( 3 mI ) and $5 \mathrm{M}-\mathrm{HCl}(2 \mathrm{ml})$ was heated on a steam-bath for 2 h . The solution was evaporated to dryness, and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{ml})$ was added. The aqueous solution was extracted with $\mathrm{CHCl}_{3}$. Concentration of the dried $\mathrm{CHCl}_{3}$ extract gave a mixture which was chromatographed using
(i) t.l.c. [co-chromatography on silica with flavone standards; solvent systems (7) - (10) (see Figure 2.19, p. 86)].
(ii) 2-d t.l.c. [on silica; elution with each of solvents (7) - (10) in both directions (see Figure 2.20, p. 90)].
(iii) t.l.c. [on silica; elution with EtOAc - hexane (7:3); visualised with vanillin $-\mathrm{H}_{3} \mathrm{PO}_{4}$ and cinnamaldehyde $-\mathrm{Ac}_{2} \mathrm{O}-\mathrm{H}_{2} \mathrm{SO}_{4}$ reagent (see Table 3.2) (section 2.2.6.1, p. 117)].

The results of the $t .1 . c$. analyses (i) and (ii) showed the presence of the flavonols, kaempferol and quercetin, as aglycones, and the analysis (iii) indicated the possible presence of steroidal sapogenins in the aglycone mixture (see section 2.2.6.1, p. 117).

### 33.10 Extraction of volatiles from Tulbaghia violacea

Fresh plant material (aerial parts) was rapidly frozen using liquid $N_{2}$, ground in a pestle and mortar while frozen, then allowed to return to room temperature, and extracted by vaccum distillation at 10 mm Hg and $c a .40^{\circ} \mathrm{C}$ for 2 h . The distillate, collected in a cold trap, was extracted with $E t_{2} O$; the $E t_{2} O$ extract was dried and concentrated under reduced pressure at ca. $10^{\circ} \mathrm{C}$, to small volume. The resulting sample was analysed by g.l.c. [on HP-1 column; carrier gas $N_{2}$ total flow rate $15 \mathrm{ml} / \mathrm{min}$; temperature programme $70-200^{\circ} \mathrm{C}$ at $8 \% / \mathrm{min}$; inlet purge time 1 min ; inlet and detector temperatures $210^{\circ} \mathrm{C}$ ] (see section 2.2.5.1) and g.c. - m.s. [(i) on HP-1 column; carrier gas He, flow rate through column $1.5 \mathrm{ml} / \mathrm{min}$; column head pressure 62 kPa ; temperature programme $60-180^{\circ} \mathrm{C}$ at $6^{\circ} / \mathrm{min}$; inlet purge time 3 min ; inlet and detector temperatures $200^{\circ} \mathrm{C}$; (ii) on HP 20 M (Carbowax 20 M ) column; carrier gas He, flow rate through column $1 \mathrm{ml} / \mathrm{min}$; column head pressure 62 kPa ; temperature programme 65 $210^{\circ} \mathrm{C}$ at $2^{\circ} / \mathrm{min}$, inlet and detector temperatures $200^{\circ} \mathrm{C}$ ] (see section 2.2.5.1).
3.3.11 Extraction of volatiles from Allium cepa and Allium sativum

The procedure for extraction of volatiles from Tulbaghis violacea was followed, using fresh onion bulbs and fresh garlic bulbs (both obtained locally). The extracts were analysed by g.l.c. and g.c. m.s. as described previously.

### 3.3.12 Miscellaneous constituents

33.12.1 Examination of Tulbaghia violacea for presence of saponins

Method $1^{117}$
A solution of extract I (scheme 2.11, p. 66) (1 g) in MeOH ( 20 ml ) and $0.1 \mathrm{M}-\mathrm{H}_{2} \mathrm{SO}_{4}(5 \mathrm{ml})$ was heated on a steam-bath for 1 h . $\mathrm{H}_{2} \mathrm{O}$ (20 ml) was added, and the solution was concentrated under reduced pressure before extracting with $\mathrm{CHCl}_{3}$. The organic layer was washed consecutively with saturated $\mathrm{NaHCO}_{3}$ solution and saturated NaCl solution, dried, and evaporated to dryness. The resulting sample was analysed by t.l.c. [on silica; elution with benzene - acetone (4:1); visualised with spray reagents :- (i) cinnamaldehyde - $\mathrm{Ac}_{2} \mathrm{O}-\mathrm{H}_{2} \mathrm{SO}_{4}$ reagent (4); (ii) vanillin $-\mathrm{H}_{3} \mathrm{PO}_{4}$ reagents (3); and (iii) $\mathrm{SbCl}_{3}$ reagent (5) (See Table 3.2)].

## Method $2^{15}$

A solution of extract I ( 200 mg ) in 2 M -methanolic $\mathrm{HCl}(35 \mathrm{ml})$ was boiled under reflux for 2 h and then filtered. The solid residue was dissolved in $10 \%$ aqueous $\mathrm{NH}_{3}$ and the solution was evaporated to dryness, at $60^{\circ} \mathrm{C}$. Extraction with $\mathrm{CHCl}_{3}$ gave a solution which was dried, concentrated, and chromatographed following the procedures in method 1.

## Method 3

The sample of aglycones obtained by hydrolysis of the butanol-soluble fraction $V$ (section 3.2 .9 , p. 163) was chromatographed as described in Method 1.

The results of this analysis (shown in Figure 2.29, p. 118) indicate the presence of saponins in Tulbaghia violacea.
33.12.2 Examination of Tulbaghia violacea for alkaloids ${ }^{118}$

A mixture of extract $I$ (Scheme 2.11, p. 66) ( 2 g ) in EtOH ( 30 ml ) was boiled under reflux for 2 h , filtered, and the filtrate was evaporated to dryness. The remaining material was dissolved in $5 \%$

AcOH and the solution was washed with $\mathrm{Et}_{2} \mathrm{O}$ before being basified with $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution. Extraction of the alkaline solution with $\mathrm{CHCl}_{3}$ gave a solution which was dried, concentrated, and chromatographed [t.1.c. on silica; elution with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(9: 1)$; visualised with :- (i) Dragendorff's reagent (6); (ii) iodoplatinate reagent (7) (see Table 2.3)] but the results were inconclusive (see section 2.6.2, p. 117).
3.3.12.3 Examination of Tulbaghia violacea for anthraquinones
(a) Borntrager test ${ }^{13}$

A solution of extract I (Scheme 2.11, p. 66) ( 100 mg ) in $5 \%$ aqueous KOH solution was boiled for 5 min , cooled, acidified with $5 \mathrm{M}-\mathrm{HCl}$, and extracted with benzene ( 5 ml ). The benzene layer was shaken with $2 \mathrm{M}-\mathrm{NaOH}$ solution. The lack of red colouration in the alkaline phase indicated the absence of anthraquinones. [A control test was carried out using emodin ( 1 mg ), and the alkaline phase was observed to turn red in this case.]
(b) T.I.c. analysis

The hydrolysed sample prepared for analysis of saponins (see section $3.2 .12 .1, ~ p .165$ ) was chromatographed [on silica; elution with benzene - ethyl formate - formic acid (75:24:1); visualised with :- (i) magnesium acetate reagent (8) ${ }^{104}$; and (ii) KOH - EtOH reagent (9) (see Table 3.2)] using emodin as a standard. No components in the sample showed red or purple spots (while emodin gave a red spot in both cases) and these results were taken to be negative.

### 3.4 BIOLOGICAL ACTIVITY OF TULBAGHIA VIOLACEA EXTRACTS

3.4.1 Examination of effects of Tulbaghia violacea extracts on bacterial cultures

Aqueous extractions of Tulbaghia violacea were carried out (using 50 g fresh plant material and $250 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ in each case) as follows :-

Extract $I_{1}$ : Roots and white aerial parts were ground in a blender with water, allowed to stand for 1 h , and then filtered.

Extract $I_{2}$ : Roots and white aerial parts were ground in a blender with water, the mixture was boiled for 10 min, cooled and filtered.

Extract $I_{3}$ : Green leaves were ground in a blender with water, the mixture was allowed to stand for 1 h , and then filtered.

Extract $I_{4}:$ A sample of extract $I_{1}$ was stored at $-4^{\circ} \mathrm{C}$ for ca. 3 weeks.

Dilutions of $1: 4,1: 16$, and $1: 64$ were made for each extract. Nutrient agar solution ( 30 ml per petri dish) was seeded with cultures of B. subtilis, E. coli, S. aureus, and $S$. marcesens and wells were punched in each quarter of the agar plates. The plant extracts (and diluted samples) were added to the wells as indicated in Table 2.9 (p. 122) and the cultures were maintained at $37^{\circ} \mathrm{C}$ for 24 h. Bacteriostatic action was assessed by measurement of the diameter of the circular regions of inhibited growth in the agar plates (see photograph, p. 121). The results of this investigation (listed in Tables 2.9 and 2.10 ) show definite bacteriostatic activity, particularly in the case of fresh extracts of mature plants.

### 3.4.2. Isolated organ study on effect of Tulbaghia violacea extracts

A portion of cleaned rat small intestine, $c a .2 \mathrm{~cm}$, was mounted in a 50 ml organ-bath, (see Figure 3.1) in Tyrode's solution (see Table 3.4) and maintained at $37^{\circ} \mathrm{C}$. Contractions were recorded via a thread tying the muscle preparation to a transducer connected to a recorder.

Figure 3.1 Organ-bath as used for isolated organ study

To transducer and recorder


Table 3.4 Tyrode's solution ${ }^{120}$

| Constituent | Mass required per litre of solution (g) |
| :--- | :--- |
| NaCl | 8.00 |
| KCl | 0.20 |
| $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ | 0.26 |
| $\mathrm{NaH}_{2} \mathrm{PO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ | 0.26 |
| $\mathrm{NaHCO}_{3}$ | 1.00 |
| $\mathrm{CaCl}_{2}$ | 0.36 |
| Glucose | 1.00 |

Single doses were recorded [using $10^{-4} \mathrm{M}$-acetylcholine (ACh) $(0.1 \mathrm{ml})$ and the pretreatment solutions (i) extracts $I_{2}$ (see section 3.2 .13 .1 ) ( 0.5 ml ) and (1i) $10^{-3} \mathrm{M}$-propranolol ( 0.5 ml )] as shown in Figure 2.31 (p. 124). The final concentrations obtained in the organ-bath are indicated in Table 3.5. Dose-response curves were obtained by adding increasing amounts of ACh to the organ-bath in the order indicated, to give concentrations in the organ-bath as shown, in Table 3.5.

Table 3.5 Doses of ACh for dose-response curves

| Concentration of Volume ACh <br> ACh solution  <br> $\left(\mathrm{mol} . \mathrm{dm}^{-3}\right)$  | Folution added <br> $(\mathrm{ml})$ | Lonal <br> concentration <br> in organ-bath <br> $\left(m o l . d m^{-3}\right)$ |  |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
| $1 \times 10^{-7}$ | 0.1 | $3 \times 10^{-10}$ | -9.5 |
| $1 \times 10^{-7}$ | 0.5 | $1 \times 10^{-9}$ | -9.0 |
| $1 \times 10^{-6}$ | 0.1 | $3 \times 10^{-9}$ | -8.5 |
| $1 \times 10^{-6}$ | 0.5 | $1 \times 10^{-8}$ | -8.0 |

Graphs plotted of response vs log (concentration ACh) are shown in Figure 2.32 (p, 126). Dose-response curves were obtained using
(i) ACh only to give the normal dose-response curve;
(ii) pretreatment with plant extract $I_{2}(0.5 \mathrm{ml}), 5 \mathrm{~min}$ pretreatment time, and additions of ACh as before; and
(iii) pretreatment with $10^{-3} \mathrm{M}$-propranolol solution ( 0.5 ml ), 5 minutes pretreatment, treatment with extract $I_{2}(0.5 \mathrm{ml})$. 5 minutes further pretreatment, and additions of ACh as before.

The experiment was repeated on four occasions using fresh muscle preparations, and the graphs represent the mean of the four sets of results. The study shows that the plant extract reduces the effect of ACh on smooth muscle, and that this action is prevented by propranolol.

## APPENDIX

(1) G.C. - m.s. data - Sugars
(i) Standard sugar PAANs
2.5E5



| $0 \pm$ | abund． | $m / z$ | abund． | Nz | abund． | $N_{z}$ | $\rightarrow$ bund． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 31.20 | $\theta 2$ | 73.00 | 2058 | 110.10 | 62 | 153.10 | 1901 |
| 32.00 | 342 | 74.00 | 319 | 111.00 | 793 | 154.10 | 560 |
| 37.95 | 83 | 75.10 | 59 | 112.08 | 1236 | 155.10 | 94 |
| 38.95 | 169 | 77.10 | 53 | 113.10 | 248 | 156．10 | 69 |
| 40.05 | 207 | 78.10 | 51 | 115.10 | 15932 | 157.10 | 3860 |
| 40.95 | 212 | 79.95 | 25 | 116.10 | 1328 | 150.10 | 501 |
| 42.95 | 133568 | 80.95 | 77 | 117.10 | 174 | 159.20 | 72 |
| 44.05 | 2984 | 82.05 | 262 | 123.10 | 132 | 170.15 | 308 |
| 45.05 | 646 | 63．05 | 249 | 124.05 | 99 | 171.15 | 489 |
| 51.05 | 83 | 84.15 | 309 | 124.95 | 109 | 172．15 | 92 |
| 52.05 | 172 | 89.05 | 831 | 126.05 | 96 | 175.05 | 1134 |
| 53.05 | 72 | 85.95 | 1255 | 127.05 | 117 | 180.05 | 651 |
| 54．05 | 105 | 87.05 | 313 | 12 E .05 | 450 | 181.05 | 63 |
| 55.05 | 399 | 87.95 | 64 | 129.05 | 690 | 182.05 | 36 |
| 56.05 | 142 | 89.05 | 40 | 130.05 | 147 | 183.15 | 362 |
| 57.05 | 292 | 93.05 | 157 | 131.05 | 84 | 195.10 | 56 |
| 58.00 | 58 | 93.75 | 172 | 133.05 | 147 | 196．20 | 101 |
| 59.00 | 49 | 96.05 | 92 | 138.05 | 346 | 200.10 | 2285 |
| 60.00 | 654 | 97.05 | 79 | 139.25 | 55 | 201.10 | 183 |
| 61.00 | 681 | 98.05 | 174 | 140.05 | 1047 | 212.15 | 71 |
| 62.10 | 31 | 99.05 | 1479 | 141.05 | 2152 | 213.15 | 727 |
| 64.10 | 36 | 100.05 | 220 | 142.05 | 254 | 214.15 | 日 0 |
| 86.00 | 103 | 101.05 | 306 | 143.05 | 93 | 217.15 | 1201 |
| 68.00 | 286 | 102.00 | 745 | 145.15 | 14821 | 218.05 | 126 |
| 69.00 | 230 | 103.01 | 16552 | 146.10 | 1020 | 225.05 | 120 |
| 70.00 | 587 | 104.00 | 708 | 147.10 | 131 | 242.10 | 1982 |
| 71.00 | 273 | 105.00 | 153 | 149.00 | 73 | 243.10 | 325 |
| 72.10 | 79 |  |  |  |  |  |  |


D－Xylose PAAN derivative

| $\begin{aligned} & \circ{ }^{\circ}{ }^{\circ} \\ & \therefore 8 . \end{aligned}$ | が客务 <br>  | $\begin{aligned} & \text { nun n } \\ & \text { ©on } \\ & \text { ©in } \end{aligned}$ | nn nns． ดัजทำ | $\begin{aligned} & A B \approx *=0 \\ & \text { in } \\ & \text { vin } \end{aligned}$ | あいいいい जैञ응 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{NiN}_{\mathrm{N}}^{\mathrm{N}}$ |  | anvun ${ }_{\text {and }}^{\text {as }}$ |  |  |  |
|  | ：0000 |  | mommom |  | $\begin{aligned} & y y y v y \\ & \text { y y y } \\ & 08000 \\ & 00000 \end{aligned}$ |
| $\bigcup_{n}^{u n}$ | $\tilde{N} \hat{N}$ | N N合会品品 $\qquad$ |  | がいいべいか |  |
| $\begin{aligned} & \text { An } \\ & \text { is } \\ & \text { in } \end{aligned}$ |  |  |  |  |  |
| $\begin{gathered} \text { N } \\ \text { N } \\ \text { in } \end{gathered}$ |  |  |  |  |  |
|  |  | NNNNか NOOOO <br>  |  |  |  |





## (ii) Free sugar PAANs




(iii) Glycosidic sugar PAANs


（iv）Standard sugar alditol acetates（AAs）



Sesn 20 20 $26 . \because 94 \mathrm{~mm}$ ）of DATA：SEUR13．0

| ํํํ 339 | $28 y y y$ <br>  | zyyyy <br>  | ㄴ․․atid号号号市 |  | 品它家品 |  กूं००१ जे |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | A.⿳亠二口欠心o | NuNaty | 2Nu゙运 | NuNu |  |
| NNA |  | जN゙N | 可＂以号 | 问吕管』。 Nットロ吕口品品 |  |  <br>  |
|  | N~N |  | an aivion |  |  |  |
|  |  |  | 気気気会耍 |  |  | 式NN －va ज品品品 |
| $\begin{aligned} & \text { NN } \\ & \text { Nou } \\ & \text { Non } \end{aligned}$ |  |  |  |  | ayy |  |
| $\begin{aligned} & \text { nuy } \\ & \text { vö } \\ & \text { noun } \\ & \text { wo } \end{aligned}$ | $4 N \mathrm{NNN}$ －6．oy －NNN MONON | NNNNN <br> yonns <br> GOHVa <br> 伿歀N | $\boldsymbol{N} \boldsymbol{N} \boldsymbol{N} N$ CWNON － NNN二品 | NNNNN <br>  N゙心汤べN | NNNNN AUORO जNNNN |  |
| Wٌou |  | NVMN <br>  | 品品品 |  | $\begin{gathered} \text { A } \\ \text { Novisu } \\ \text { Nown } \end{gathered}$ |  |



L-Arabinose AA derivative

| 2z | sbund. | Mz | abund. | $\sim 2$ | stund. | $\omega x$ | abund. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 51.15 | 164 | 86.05 | 17569 | 129.05 | 2126 | 103.15 | 180 |
| 52.15 | 243 | 86.95 | 2359 | 130.05 | 399 | 184.15 | 90 |
| 53.15 | 521 | 88.05 | 177 | 131.05 | 156 | 187.15 | 46120 |
| 54.05 | 522 | 99.05 | 152 | 132.05 | 162 | 188.10 | 3395 |
| 55.05 | 3304 | 95.15 | 177 | 133.15 | 464 | 199.10 | 725 |
| 56.05 | 1829 | 96.15 | 119 | 139.15 | 901 | 190.10 | 57 |
| 57.10 | 2781 | 97.05 | 3409 | 140.15 | 11612 | 199.10 | 1971 |
| 58.10 | 348 | 98.05 | 25240 | 141.15 | 9002 | 200.10 | 11724 |
| 59.00 | 196 | 99.05 | 8177 | 142.15 | 1019 | 201.20 | 2372 |
| 60.00 | 1948 | 100.15 | 1770 | 143.05 | 344 | 202.20 | 308 |
| 61.00 | 70.0 | 101.10 | 2003 | 144. 10 | 727 | 203.10 | 164 |
| 62.10 | 200 | 102.10 | 2823 | 145.10 | 74928 | 207.10 | 86 |
| 63.10 | 71 | 103.10 | 65160 | 146.10 | 4808 | 217.15 | 39792 |
| 67.20 | 131 | 104.00 | 3309 | 147.10 | 683 | 218.15 | 3904 |
| 68.00 | 4598 | 105.00 | 460 | 148.10 | 85 | 219.15 | 625 |
| 69.10 | 5801 | 110.10 | 126 | 157.10 | 15351 | 220.15 | 33 |
| 70.10 | 2111 | 111.10 | 387 | 158.20 | 21576 | 229.15 | 249 |
| 71.10 | 2162 | 112.10 | 1574 | 159.20 | 2017 | 230.15 | 134 |
| 72.10 | 493 | 113.10 | 591 | 161.10 | 107 | 242.20 | 2437 |
| 73.00 | 16849 | 115.10 | 115432 | 163.10 | 41 | 243.20 | 340 |
| 74.10 | 1845 | 116.10 | 30632 | 169.15 | 99 | 244.20 | 77 |
| 75.10 | 249 | 117.10 | 3408 | 170.15 | 4763 | 247.20 | 114 |
| 77.10 | 78 | 118.10 | 504 | 171.15 | 545 | 257.35 | 39 |
| 78.10 | 111 | 119.00 | 121 | 172.15 | 67 | 259.15 | 260 |
| 70.05 | 411 | 120.10 | 199 | 173.15 | 81 | 260.15 | 440 |
| 80.05 | 631 | 121.10 | 98 |  | 44 |  |  |
| 81.05 | 9743 | 122.05 | 130 | 175.15 | 8152 | 261.15 289.20 | 257 11224 |
| 92.05 | 1792 | 123.05 | 101 | 176.15 | 735 | 290.20 | 11224 1393 |
| 82.95 | 9889 | 124.05 | 89 | 177.15 | 150 | 291.20 | 1393 |
| 84,05 | 1108 | 127.05 | 36392 | 182.15 | 1229 | 303.25 | 363 |
| 85.05 | 52128 | 128.05 | 16359 |  |  |  |  |


goen 1059 (30.473 min) of OATA:SQUR13.D



D-Glucose AA derivative

| m/z | abund. | $0 \times$ | abund. | m/z | sbund. | mx | abund. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 51.05 | 114 | 96.05 | 455 | 143.15 | 792 | 211.15 | 890 |
| 52.05 | 130 | 97.05 | 22944 | 144.10 | 910 | 212.15 | 6235 |
| 53.05 | 544 | 98.05 | 9217 | 145.10 | 4.4578 | 213.15 | 1299 |
| 54.15 | 303 | 99.05 | 3185 | 146.10 | 3378 | 214.15 | 195 |
| 55.05 | 3049 | 100.15 | 1430 | 147.10 | 560 | 215.15 | 98 |
| 56.05 | 924 | 101.00 | 1714 | 151.10 | 126 | 217.15 | 31144 |
| 57.10 | 1545 | 102.00 | 4179 | 152.10 | 13347 | 218.15 | 2791 |
| 50.00 | 262 | 103.00 | 42584 | 153.10 | 13071 | 219.25 | 438 |
| 59.10 | 124 | 104.10 | 1882 | 154.10 | 1175 | 229.15 | 1519 |
| 60.00 | 1154 | 105.10 | 291 | 155.10 | 231 | 230.25 | 2160 |
| 61.10 | 3619 | 107.10 | 71 | 156.20 | 317 | 231.20 | 458 |
| 82.00 | 105 | 109.10 | 1621 | 157.10 | 32750 | 235.10 | 44 |
| 69.00 | 177 | 110.10 | 14793 | 158.18 | 11542 | 241.10 | 51 |
| 66.10 | 126 | 111.10 | 8682 | 159.10 | 1144 | 242.20 | 1224 |
| 67.00 | 285 | 112.10 | 2469 | 160.20 | 125 | 243.20 | 193 |
| 68.10 | 4220 | 113.10 | 857 | 162.20 | 73 | 244.20 | 33 |
| 69.10 | 6751 | 115.10 | 98832 | 168.15 | 93 | 247.10 | 293 |
| 70.10 | 1918 | 116.10 | 16840 | 169.15 | 1791 | 254.15 | 588 |
| 71.00 | 2276 | 117.10 | 1515 | 170.15 | 21680 | 255.15 | 60 |
| 72.00 | 355 | 118.10 | 234 | 171.05 | 3186 | 259.15 | 19688 |
| 73.10 | 12427 | 119.10 | 122 | 172.15 | 327 | 260.15 | 2255 |
| 74.10 | 1285 | 120.00 | 183 | 173.15 | 144 | 261.15 | 345 |
| 75.10 | 309 | 121.10 | 99 | 174.15 | 88 | 271.25 | 91 |
| 77.10 | 122 | 122.00 | 115 | 175.15 | 7102 | 272.15 | 3779 |
| 79.05 | 202 | 123.15 | 104 | 176.15 | 512 | 273.15 | 1086 |
| 80.05 | 458 | 124.15 | 103 | 177.15 | 130 | 274.25 | 223 |
| 81.05 | 3374 | 126.15 | 414 | 182.15 | 291 | 289.20 | 29664 |
| 82.05 | 1731 | 127.05 | 37456 | 184.15 | 580 | 290.20 | 4179 |
| 82.95 | 8010 | 128.05 | 35064 | 187.15 | 44252 | 291.10 | 842 |
| 84.05 | 1435 | 129.05 | 3264 | 189.10 | 3335 | 292.20 | 88 |
| 85.05 | 25824 | 130.15 | 383 | 189.10 | 691 | 314.25 | 287 |
| 86.05 | 13359 | 131.15 | 250 | 190.10 | 64 | 331.20 | 100 |
| 97.05 | 1693 | 132.15 | 157 | 194.20 | 189 | 332.20 | ${ }^{3}$ |
| 88.05 | 145 | 133.05 | 410 | 195.10 | 115 | 361.25 | 6031 |
| 89.05 | 344 | 139.15 | 48072 | 199.20 | 2376 | 362.20 | 903 |
| 91.05 | 91 | 140.05 | 6576 | 200.10 | 1910 | 363.20 | 256 |
| 93.05 | 290 | 141.15 | 1400 | 201.20 | 239 | 375.20 | 768 |
| 94.15 | 316 | 142.15 | 863 | 203.10 | 206 | 376.20 | 98 |
| 95.15 | 416 |  |  |  |  |  |  |



D-Galactose $A A$ derivative

| -2 | -bund. | $\cdots$ | abund. | $m / x$ | abund. | ar | abund. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 51.05 | 112 | 89.95 | 41 | 139.05 | 45592 | 203.00 | 163 |
| 52.05 | 124 | 91.15 | 104 | 140.05 | 5587 | 207.10 | 61 |
| 53.05 | 39. | 93.05 | $\triangle 56$ | 141.15 | 1255 | 211.15 | 7 フワ |
| 54.15 | 228 | 94.05 | 317 | 142.15 | 997 | 212.15 | 5678 |
| 55.05 | 2994 | 95.05 | 501 | 143.15 | 586 | 213.15 | 1390 |
| 56.05 | 1040 | 0.65 | 380 | 144.10 | 1021 | 214.15 | 163 |
| 57.00 | 2396 | 07.05 | 20064 | 145.00 | 79928 | 215.05 | 63 |
| 58.00 | 273 | 99.05 | 8556 | 146.10 | 5340 | 217.15 | 31680 |
| 59.00 | 198 | 99.05 | 3481 | 147.10 | 631 | 218.15 | 3087 |
| 60.10 | 1439 | 100.05 | 2233 | 152.10 | 11807 | 219.15 | 654 |
| 61.10 | 3798 | 101.00 | 2209 | 153.10 | 11081 | 220.25 | 40 |
| 62.10 | 121 | 102.00 | 4076 | 154.10 | 1251 | 229.15 | 1419 |
| 63.00 | 76 | 193.00 | 47208 | 159.10 | 132 | 230.25 | 2983 |
| 64.00 | 30 | 104. 10 | 2140 | 156.10 | 345 | 231.20 | 570 |
| 65.00 | 161 | 105.10 | 317 | 157.10 | 40964 | 232.10 | 109 |
| \$6. 10 | 163 | 108.00 | 59 | 150.10 | 11661 | 242.20 | 1241 |
| 67.10 | 298 | 109.10 | 1504 | 159.10 | 1058 | 243.20 | 175 |
| 68.00 | 5682 | 110.10 | 14976 | 160.20 | 150 | 247.10 | 123 |
| 69.00 | 5079 | 111.10 | 6969 | 163.10 | 62 | 254.15 | 202 |
| 70.00 | 2191 | 112.10 | 2315 | 169.15 | 1586 | 259.15 | 14012 |
| 71.00 | 2071 | 113.10 | 1150 | 170.05 | 30992 | 260.15 | 2504 |
| 72.10 | ${ }^{18}$ | 115.10 | 100000 | 171.15 | 4072 | 281.25 | 290 |
| 73.10 | 13154 | 116.10 | 16944 | 172.15 | 530 | 271.25 | 7 |
| 74.10 | 1167 | 117.10 | 1560 | 173.15 | 184 | 272.15 | 2309 |
| 75.10 | 234 | 118.00 | 305 | 174.15 | 108 | 273.25 | $97 \%$ |
| 76.30 | 33 | 119.00 | 147 | 173.15 | 7792 | 274.25 | 147 |
| 77.10 | 83 | 120.00 | 198 | 176.15 | 674 | 273. 20 | 41 |
| 78.10 | 84 | 121.00 | 157 | 177.05 | 138 | 289.20 | 22968 |
| 79.05 | 228 | 122.00 | 96 | 182.15 | 292 | 290.20 | 3134 |
| B0.05 | 367 | 124.05 | 126 | 183.15 | 35 | 291.20 | 488 |
| 81.05 | 3100 | 125.15 | 146 | 184.15 | 222 | 314.25 | 215 |
| 81.95 | 1775 | 126.05 | 560 | 187.15 | 37272 | 331.20 | 110 |
| 82.95 | 9418 | 127.05 | 30984 | 188.10 | 3588 | 332.20 | 136 |
| 84.05 | 1389 | 129.05 | 43920 | 189.10 | 804 | 333.10 | 61 |
| 05.05 | 25704 | 129.05 | 4097 | 194.10 | 100 | 361.25 | 5127 |
| 86.05 | 15484 | 130.15 | 507 | 195.10 | 73 | 382.20 | 832 |
| 87.05 | 2216 | 131.15 | 366 | 199.10 | 1911 | 363.20 | 147 |
| 80.05 | 226 | 132.05 | 228 | 200.10 | 1557 | 375.20 | 523 |
| 89.05 | 260 | 233.15 | 330 | 201.10 | 334 | 376.20 | 01 |

(v) Fructose alditol acetate (AA) derivative



Mannitol AA derivative

| m/x | abund. | m/z | abund. | $\omega$ | abund, | m/x | abind. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 51.05 | 389 | 95.05 | 667 | 144.15 | 1183 | 213.15 | 1475 |
| 52.05 | 365 | 95.95 | 304 | 145.10 | 44584 | 214. 15 | 119 |
| 53.15 | 1043 | 97.05 | 24848 | 146.10 | 2932 | 215.15 | 83 |
| 54.15 | 485 | 99.05 | 8661 | 147.10 | 508 | 215.75 | 63 |
| 55.05 | 3940 | 99.05 | 4153 | 152.10 | 9697 | 217.15 | 22424 |
| 56.05 | 1619 | 100.05 | 3232 | 153.10 | 12819 | 218.15 | 2413 |
| 57.05 | 3147 | 101.00 | 1598 | 154.10 | 1222 | 219.15 | 421 |
| 58.00 | 469 | 102.00 | 4576 | 154.90 | 173 | 229.15 | 1166 |
| 60.00 | 1528 | 103.00 | 41872 | 157.10 | 32414 | 230.15 | 1459 |
| 61.00 | 6022 | 104.10 | 1973 | 158.20 | 日26) | 231.15 | 518 |
| 62.00 | 271 | 105.00 | 363 | 159.20 | 029 | 233.10 | 26 |
| 63.90 | 168 | 106.20 | 47 | 160.20 | 246 | 242.20 | 873 |
| 67.00 | 886 | 107.20 | 168 | 162.00 | 41 | 243.30 | 146 |
| 68.00 | 7303 | 109.10 | 1602 | 168.05 | 116 | 245.20 | 09 |
| 69.10 | 6577 | 110.10 | 15759 | 168.25 | 115 | 247.20 | 309 |
| 70.10 | 2607 | 111.10 | 10853 | 169.05 | 2022 | 254.10 | 322 |
| 71.10 | 2588 | 112.00 | 2125 | 170.15 | 27872 | 259.15 | 84 |
| 72.10 | 780 | 113.10 | 1142 | 171.15 | 3531 | 259.15 | 17416 |
| 73.00 | 19600 | 115.10 | 04656 | 172.15 | 135 | 260.15 | 2078 |
| 74.00 | 1719 | 116.10 | 14625 | 173.25 | 127 | 261.25 | 438 |
| 75.00 | 257 | 117.10 | 1510 | 175.15 | 0011 | 272.15 | 1200 |
| 77.10 | 155 | 118.20. | 14 B | 176.15 | 400 | 273.25 | 993 |
| 78.20 | 133 | 122.20 | 71 | 182.25 | 318 | 274.05 | 173 |
| 79.05 | 543 | 123.05 | - 118 | 184. 25 | 330 | 275.25 | 71 |
| 80.15 | 519 | 123.85 | 181 | 185.05 | 110 | 276.35 | 53 |
| 91.05 | 3871 | 125.15 | 122 | 187.15 | 46672 | 281.10 | 69 |
| 82, 05 | 1663 | 127.05 | 29664 | 188.15 | 3652 | 289.20 | 12903 |
| 83.05 | 4771 | 120.05 | 35456 | 189.20 | 731 | 290.20 | 1555 |
| B4.05 | 1633 | 129.15 | 3645 | 190.20 | 67 | 298.89 | 53 |
| 85.05 | 25258 | 130.05 | 556 | 194.20 | 105 | 317.15 | 64 |
| 86.05 | 18946 | 132.15 | 104 | 195.10 | 195 | 331.10 | 100 |
| 86.95 | 1070 | 133.15 | 413 | 199.10 | 2524 | 361.25 | 4396 |
| 87.75 | 77. | 139.15 | 56824 | 200.10 | 1591 | 362. 15 | 922 |
| 88.05 | $135 *$ | 140.15 | 5955 | 201.10 | 247 | 363.15 | 198 |
| 89,05 | 43* | 141.05 | 899 | 203.10 | 149 | 375.20 | 454 |
| 93.05 | 695 | 142.15 | 938 | 211.15 | 697 | 376.10 | 87 |
| 94.05 | 472 | 143.05 | 900 | 212,15 | 4988 | 376.40 | 60 |


（vi）Mannose alditol acetate

| mz | sbund． | $0 / 2$ | －bund． | $m / x$ | －bund， | $a / 2$ | sbund． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 50.95 | 422 | 90.15 | 291 | 136.25 | 180 | 189．29 | 532 |
| 52.85 | 417 | 91.05 | 390 | ．137．15 | 325 | 187.15 | 227200 |
| 53.05 | 1814 | 93.05 | 2437 | 139.05 | 331072 | 188.15 | 20768 |
| 54.05 | 981 | 94.05 | 1647 | 140.15 | 29824 | 189.10 | 4319 |
| 55.05 | 10608 | 95.05 | 2408 | 141.15 | 6819 | 190.20 | 301 |
| 56.05 | 3673 | 97.05 | 107632 | 142.15 | 3568 | 191.00 | 111 |
| 57.05 | 8452 | 98.05 | 34208 | 143.05 | 3706 | 194.10 | 618 |
| 58.10 | 1257 | 99.05 | 13725 | 145.00 | 309504 | 195.10 | 687 |
| 59.00 | 840 | 100.05 | 9880 | 146.10 | 16316 | 195.80 | 72 |
| 59.20 | 425 | 102.00 | 8173 | 147.10 | 2885 | 197.40 | 67 |
| 60.10 | 5867 | 102.00 | 20608 | 148.10 | 114 | 198.10 | 184 |
| 61.10 | 15268 | 103.00 | 212864 | 149．20 | 175 | 199.10 | 12090 |
| 62.00 | 529 | 104．10 | 8428 | 149.90 | 52 | 200.10 | 8766 |
| 83.70 | 68 | 105.10 | 1632 | 151.10 | 035 | 201.10 | 1075 |
| 64.00 | 74 | 106.10 | 225 | 152.10 | 58280 | 202.30 | 107 |
| 84.30 | 90 | 108.10 | 339 | 153.10 | 60808 | 203.10 | 753 |
| 65.08 | 692 | 109．10 | 6413 | 154．10 | 6302 | 205.10 | 284 |
| 66.10 | 681 | 110.10 | 69824 | 155.10 | 949 | 207.20 | 176 |
| 67.10 | 1321 | 111.10 | 45889 | 157.10 | 216064 | 208． 70 | 70 |
| 68.00 | 20184 | 112.10 | 9572 | 158.10 | 54320 | 210.20 | 78 |
| 69.00 | 37976 | 113.10 | 5073 | 159.10 | 4501 | 210.50 | 100 |
| 70.00 | 7016 | 115.10 | 456896 | 160.20 | 412 | 211.15 | 3931 |
| 71.00 | 9449 | 116.10 | 74248 | 161.20 | 544 | 212.15 | 24368 |
| 72.10 | 1686 | 117.10 | 5987 | 162.30 | 54 | 213.15 | 7998 |
| 73.10 | 59400 | 118.10 | 998 | 165.10 | 79 | 214．15 | 1004 |
| 74.10 | 4375 | 119.10 | 299 | 166．50 | 39 | 215.05 | 385 |
| 75.10 | 725 | 120.00 | 299 | 169.15 | 9510 | 217.15 | 135040 |
| 76.50 | 55 | 121.00 | 249 | 170.05 | 173888 | 218.15 | 11858 |
| 77.10 | 437 | 122.10 | 195 | 171.15 | 19040 | 219.25 | 2240 |
| 79.05 | 753 | 123.15 | 366 | 172.15 | 2102 | 220.05 | 266 |
| 79.95 | 1919 | 124.15 | 617 | 173.05 | 841 | 222.15 | 62 |
| 81.05 | 12252 | 125.05 | 574 | 174.15 | 517 | 227.35 | 90 |
| 82.05 | 7176 | 127.05 | 159296 | 175．15 | 39632 | 229.25 | 6938 |
| 82.95 | 17936 | 128.05 | 187712 | 176.15 | 1921 | 230.25 | 8434 |
| 84.05 | 5961 | 129.05 | 18560 | 177.15 | 801 | 231.15 | 2204 |
| 85.05 | 107608 | 130.15 | 2015 | 178.15 | 91 | 232.25 | 422 |
| 86.05 | 65920 | 131.05 | 1540 | 181.45 | 127 | 241.20 | 432 |
| 97．05 | 7278 | 132.05 | 989 | 182，15 | 1853 | 242.20 | 4359 |
| ， 87.95 | 817 | 133.15 | 2181 | 183.15 | 383 | 243.20 | 729 |
| 89.05 | 832 | 135.05 | 248 | 184．15 | 1345 | 245.10 | 288 |


|  |  い心に合 <br>  | $\begin{aligned} & \text { tư工u } \\ & \text { Nun } \\ & \text { Noson } \end{aligned}$ |  | NONON NNOO <br>  |  | NNNNN Mỡô NNN～N | NNNN ज゙ज゙ッチ́ <br>  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\stackrel{N}{L}$ |  |  |  |  |

(vii) Free sugar alditol acetate (AA) derivatives



| m/x | abund. | m/z | abund. | m/z | abund. | $0 / \mathrm{x}$ | sbund. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 51.05 | 1055 | 90.05 | 141 | 130.05 | 229 | 189.10 | 181 |
| 52.05 | 2279 | 91.05 | 104 | 131.05 | 188 | 194.10 | 67 |
| 53.05 | 583 | 93.05 | 352 | 133.05 | 211 | 195.10 | 85 |
| 54.05 | 208 | 94.05 | $29{ }^{\circ}$ | 137.15 | 32 | 199.10 | 1273 |
| 55.05 | 2464 | 95.05 | 348 | 139,05 | 31120 | 200.10 | 955 |
| 56.05 | -งอ | 96.05 | 209 | 110.05 | -148 | 203.10 | 145 |
| 57.00 | 1514 | 97.05 | 16800 | 141.05 | 825 | 211.15 | 540 |
| 58.00 | 310 | 98.05 | 6070 | 142.15 | 394 | 212.15 | 2848 |
| 59.00 | 157 | 99.75 | 2321 | 143.15 | 459 | 213.15 | 731 |
| 80.00 | 1377 | 100.15 | 1050 | 144.10 | 525 | 214.15 | 9 |
| 81.00 | 3\%12 | 101.00 | 1064 | 145.00 | 30584 | 216.15 | 71 |
| 82.10 | $10 \%$ | 102.00 | 2656 | 146.00 | 2233 | 217.15 | 10696 |
| 64.10 | 29 | 103.00 | 31024 | 14.3 .00 | 464 | 218.15 | 1769 |
| 65.00 | 167 | 104.00 | 1250 | 151.10 | ${ }^{66}$ | 219.15 | 278 |
| 66.00 | 115 | 105.10 | 220 | 152.10 | 7031 | 229.15 | 78 |
| 87.00 | 292 | 103.00 | 38 | 153.00 | 745 | 230.15 | 1187 |
| 68.00 | 38.43 | 10\%.00 | 1114 | 154.10 | 38 | 231.20 | 219 |
| 49. 10 | 6677 | 110.00 | 10074 | 155.10 | 100 | 212.10 | 501 |
| 20.10 | 1725 | 111.10 | 5193 | 153.10 | 202 | 21.70 | 73 |
| 21.00 | 2034 | 112.10 | 1750 | 157.10 | 18980 | 254.05 | 245 |
| 72.10 | 302 | 113.10 | 714 | 158.10 | 5419 | 253.15 | 8875 |
| 73.00 | 10011 | 114.10 | 615 | 153.10 | 65. | 260.15 | 1231 |
| 74.10 | 101) 7 | 115.00 | 42916 | 160.10 | 82 | 261.15 | 164 |
| 75.10 | $30 ?$ | 116.10 | 10538 | 161.20 | 109 | 272.15 | 1232 |
| 76.00 | 70 | 117.10 | 936 | 189.08 | 885 | 273.15 | 4.2 |
| 77.10 | 123 | 118.00 | 329 | 170.05 | 14053 | 274.15 | 65 |
| 78.10 | 570 | 119.00 | 129 | 171.05 | 1934 | 275.20 | 57 |
| 78.95 | 3142 | 128.00 | 132 | 172.05 | 263 | 289.10 | 7372 |
| 80.05 | 588 | 122.00 | 129 | 173.15 | 119 | 290.10 | 1057 |
| 01.05 | 2349 | 123.05 | 57 | 175.15 | 3710 | 291.20 | 229 |
| 82.05 | 1189 | 124.15 | 70 | 170.15 | 257 | 314.15 | 160 |
| 82.45 | 10449 | 125.15 | 73 | 177.15 | 44 | 361.15 | 4005 |
| 83.99 | 1173 | 126.05 | 308 | 182.15 | 1 | 342.10 | 17 |
| 04.95 | 20368 | 127.05 | 14380 | 184.05 | 17256 | 375.20 | 167 |
| 86.05 | 10190 | 128.05 | 24320 | 187.15 | 17256 |  |  |
| 07.05 | 1793 | 129.05 | 2365 | 188.10 | 1350 |  |  |


(vii) Glycosidlc sugar alditol acetate (AA) dcrivatives
(TAC of DATA: SBURI5, D



| m/z | abund. | $m / z$ | abuna. | ax | sbund. | m/2 | sbund. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 51.05 | 669 | 88.05 | 151 | 129.15 | 2921 | 194.10 | 71 |
| 52.05 | 1061 | 88.95 | 213 | 130.15 | 295 | 195.10 | 91 |
| 53.05 | 447 | 91.05 | 71 | 131.05 | 183 | 199.10 | 1095 |
| 54.05 | 226 | 93.05 | 416 | 131.75 | 184 | 200.10 | 1110 |
| 55.05 | 2690 | 93.05 | 322 | 133.05 | 267 | 202.10 | 164 |
| 56.05 | 974 | 95.05 | 413 | 139.05 | 29616 | 203.20 | 122 |
| 57.00 | 1926 | 96.05 | 342 | 140.15 | 5074 | 211.15 | 486 |
| 58.00 | 253 | 97.05 | 15578 | 141.15 | 927 | 212.15 | 3108 |
| 59.20 | 135 | 99.05 | 6442 | 142.15 | 616 | 213.15 | 986 |
| 60.00 | 1554 | 97.05 | 2476 | 143.05 | 416 | 214.15 | 日8 |
| 61.00 | 3893 | 100.05 | 1582 | 144.10 | 796 | 217.15 | 20272 |
| 62.10 | 89 | 101.00 | 1590 | 145.00 | 53152 | 218.15 | 1833 |
| 64.00 | 59 | 102.00 | 272. | 146.10 | 3063 | 219.15 | 418 |
| 65.10 | 164 | 103.00 | 37472 | 147.10 | 531 | 229.25 | 909 |
| 66.00 | 95 | 104.10 | 1581 | 151.10 | 71 | 230.15 | 1777 |
| 67.10 | 343 | 125.10 | 285 | 152.10 | 7202 | 231.10 | 237 |
| 68.00 | 5248 | 169.00 | 1005 | 153.10 | 7975 | 242.20 | 596 |
| 69.00 | 8543 | 110.10 | 10615 | 154.10 | 729 | 243.20 | 113 |
| 70.00 | 2041 | 111.10 | 5985 | 156.10 | 203 | 247.10 | 57 |
| 71.00 | 1839 | 112.10 | 1875 | 157.10 | 27432 | 254.15 | 234 |
| 72.10 | 377 | 113.10 | 929 | 158.10 | 7466 | 259.15 | 6861 |
| 73.10 | 116.11 | 114.10 | 791 | 159.20 | 620 | 260.15 | 803 |
| 74.10 | 1036 | 115.10 | 68128 | 160.20 | 58 | 261.15 | 150 |
| 75.10 | 322 | 116.10 | 11702 | 169.05 | 1111 | 272.15 | 1386 |
| 76.00 | 98 | 117.10 | 1137 | 170.05 | 25176 | 273.25 | 605 |
| 77.10 | 83 | 118.00 | 306 | 171.05 | 2679 | 274.15 | 75 |
| 78.00 | 328 | 113.90 | 230 | 172.15 | 281 | 299.10 | 13656 |
| 79.05 | 1810 | 120.00 | 300 | 174.05 | 52 | 290.20 | 1619 |
| 80.05 | 467 | 121.00 | 127 | 175.15 | 4433 | 291.20 | 271 |
| 81.05 | 28.3 | 122.00 | 144 | 176.05 | 420 | 314.15 | 110 |
| 81.95 | 1805 | 124.15 | 108 | 182.05 | 106 | 332.20 | 62 |
| 82.95 | 15366 | 125.05 | 87 | 184.15 | 152 | 361.25 | 2631 |
| 84. 05 | 1332 | 123.05 | 354 | 187.15 | 23312 | 382.10 | 491 |
| 85.05 | 25448 | 127.05 | 20256 | 189.00 | 2287 | 363.10 | 77 |
| 86.05 | 13029 | 120.05 | 31488 | 149.10 | 373 | 375.20 | 210 |
| 86.95 | 2657 |  |  |  |  |  |  |

(2) G.c. - m.s. data - Sulphur compounds and Volatiles
(1) 2,4,5,7-tetrathiaoctane-2,2-dioxide - Compound (117)


(i1) 2,4,5,7-tetrathlaoctane - Compound (118)



|  |  |  |  | - ${ }^{\text {a }}$ - ahund |  | $m m$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| m/z | sbund. | m/z | -bund. |  |  |  |
| 26.15 | 635 | 45.90 | 3185 | 63.95 | 33.8 | 96.85 |
| 27.15 | 1342 | 47.00 | 5819 | 65.05 | 25389 | 87.95 |
| 27.75 | 315 | 43.00 | 2220 | 65.97 | 2310 | 00.95 |
| 28.25 | 323 | 49.00 | 3092 | 69.60 | 163 | 90.05 |
| 30.95 | 851 | 50.00 | 8991 | 22.00 | 354 | 90.95 |
| 34.95 | 1164 | 51.00 | 11137 | 72.90 | 300 | 91.95 |
| 36.05 | 409 | 52.05 | 3226 | 24.00 | 3095 | 92.95 |
| 36.95 | 2223 | 53.05 | 1366 | 74.80 | 1485 | 93.70 |
| 38,00 | 3527 | 55.95 | 180 | 75.80 | 1202 | 116.85 |
| 39.00 | 13182 | 56.65 | 103 | 76.90 | 2004 | 117.85 |
| 40.00 | 1800 | 59.05 | 110 | 01.05 | 955 | 118.99 |
| 41.00 | 1955 | 59.05 | 148 | 82. 05 | 22016 | 119,75 |
| 42.10 | 372 | 60.05 | 592 | 83.05 | 3079 | 121.80 |
| 43.10 | 1589 | 60.99 | \$524 | B4.05 | 17208 | 139,84 |
| 43.90 | 698 | 61.95 | 8193 | 45.85 | 3482 | 280.55 |
| 48.00 | 4915 | 62.95 | 15755 |  |  |  |

abund.


SCBn L2OS TJ2
S日S4 ON DOWAX

| $\mathrm{m} / 2$ | sbund. | m/z | abund. | mz | -tund. | m/z | abund. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25.95 | 244 | 58.75 | 9564 | 07.05 | 1787 | 116.85 | 293 |
| 27.05 | 8058 | 59.95 | 2917 | 67.95 | 4413 | 120.05 | 249 |
| 28.05 | 7547 | 60.95 | 735936 | 88.95 | 2822 | 122.70 | 160 |
| 29.05 | 1221 | 61.95 | 10392 | 90.05 | 355 | 122.90 | 165 |
| 30.15 | 316 | 62.95 | 23304 | 90.85 | 2706 | 123.70 | 2030 |
| 30.85 | 850 | 63.85 | 10355 | 91.85 | 2937 | 124.70 | 435 |
| 32.05 | 3671 | 64.95 | 969 | 92.65 | 40560 | 125.70 | 610 |
| 32.95 | 678 | 65.90 | 960 | 93.80 | 14648 | 127.80 | 230 |
| 35.05 | 25128 | 66.80 | 228 | 94.90 | 4169 | 131.00 | 249 |
| 36.05 | 377 | 68.00 | 213 | 95.00 | 3153 | 132.90 | 561 |
| 36.95 | 1434 | $6 ? .00$ | 507 | 96.80 | 423 | 137.65 | 1204 |
| 39.10 | 201 | 70.10 | 318 | 97.80 | 730 | 138.85 | 535 |
| 39.90 | 536 | 70.80 | 643 | 99.70 | 206 | 139.85 | 1295 |
| 41.00 | 946 | 72.00 | 501 | 99.10 | 197 | 141.05 | 215 |
| 42.00 | 499 | 73.00 | 3199 | 100.80 | 465 | 152.80 | 7748 |
| 42.90 | 2320 | 74.00 | 797 | 101.80 | 398 | 153.80 | \$63 |
| 43.90 | 5062 | 74.09 | 1769 | 102,90 | 833 | 154.80 | 1131 |
| 44.90 | 117064 | 75.90 | 4080 | 103.90 | 191 | 153.90 | 192 |
| 45.90 | 45424 | 76.90 | 5410 | 104.90 | 555 | 105.70 | 102854 |
| 47.00 | 26304 | 77.90 | 18120 | 105.90 | 443 | 106.70 | 7776 |
| 47.90 | 7174 | 73.9n | 0054 | 106.90 | 614 | 187.70 | 10064 |
| 48.90 | 789.7 | 79.75 | 2379 | 107.95 | 1043 | 188.80 | 1190 |
| 49.90 | 500 | 00.05 | 967 | 108.85 | 739 | 189.80 | 1207 |
| 50.90 | 353 | 81.95 | 270 | 109.75 | 215 | 190.80 | 328 |
| 54.95 | 592 | 83. 05 | 355 | 109.95 | 212 | 206,80 | 480 |
| 55.85 | 301 | 05.15 | 189 | 110.65 | 510 | 208.00 | 202 |
| 56.95 | 1867 | 95.95 | 332 | 115.05 | 343 | 280.75 | 205 |
| 57.95 | 6553 |  |  |  |  |  |  |





(iv) Volatiles - March


| SMELLY PLANT $\omega$ | EXTRACT ebund. | $m / 2$ | abund. | 2 | ebund. | - \% | abund. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 36.20 | 57 | 55.10 | 4960 | 73.90 | 391 | 97.90 | 976 |
| 37.20 | 369 | 56.10 | 1286 | 74.90 | 123 | 9 A .90 | 88 |
| 38.20 | 488 | 57.10 | 1041 | 75.90 | 325 | 102.75 | 36 |
| 39.20 | 3997 | 58.10 | 240 | 76.90 | 535 235 | 106.85 | +146 |
| 40.30 | 630 | 59.10 | 581 | 77.90 | 235 | 108.70 |  |
| 41.20 | 11373 | 60.00 | 228 | 28.90 | 802 | 109.80 | 57 |
| 42.20 | 2480 | 61.00 | 5084 | 80.00 | 1920 549 | 110.70 11150 | 149 |
| 43.20 | 2082 | 62.00 | 329 | 80.85 | 218 | 118.79 | 48 |
| 44.05 | 1033 | 62.95 | 453 | 81.95 | 2139 | 120.75 | 55 |
| 45.15 | 4810 | 63.95 | 253 | 82.95 | 2139 | 120.3 |  |
| 46.15 | 1939 | 65.09 | 390 | 83.95 | 159 | 132.70 |  |
| 47.15 | 2676 | 65.95 | 100 | 84.85 | 210 | 134.70 | 32 |
| 4 s .05 | 5.3 | 67.105 | 933 | 85.95 | 38 | 136.55 138.55 | 105 |
| 49.05 | 378 | 68.05 | 384 | 90.90 | 750 | 148.55 |  |
| 50.15 | 555 | 69.05 | 5753 | 91.80 | 750 | 140.85 | 36 |
| 51.15 | 621 | 70.05 | 1730 | 93.80 | 6288 | 148.80 | 81 |
| 52.15 | 230 | 71.15 | 196 | 94.80 | 430 | 149.50 164.50 | 32 |
| 53.10 | 1498 | 72.00 | 105 | 95.80 | ¢ 59 | 164.50 |  |
| 54.00 | 670 | 73.00 | 130 | 96.70 | 545 |  |  |



Scan
STELLY PLAHIT EXTRAGT

| $\begin{aligned} & n \\ & \hdashline i n \\ & 0 \end{aligned}$ |  <br>  |  <br>  | 出きもべ <br>  | がびゅべひ － 000 NNNN |
| :---: | :---: | :---: | :---: | :---: |
| $\underset{\sim}{n} \underset{\sim}{u}$ |  | $\underset{\sim}{\sim} \underset{\sim}{\infty} \underset{\sim}{a} \underset{\sim}{\infty} \underset{\sim}{\sim}$ |  |  |
| $\begin{aligned} & \text { ゅ } \\ & \stackrel{-}{\circ} \end{aligned}$ |  응․․․ |  | àasian 우ำทึ゚ |  |
| $\stackrel{\sim}{2}$ |  |  | $\begin{aligned} & \text { Na } \\ & \text { Nuvas } \\ & \text { iños } \end{aligned}$ |  |
| $\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & 0 \\ & \stackrel{0}{0} \end{aligned}$ |  | ※゚ロロ゚が 응ㅇㅇ －0．00 | どN゚ロロロ © 0 0000 |  ทัท ज ที่ |
| $y$ | ヘッavaia | ¢ ¢ N N N N |  |  |
| $\underset{\sim}{N}$ | Nがびべ <br> －0゙ <br> 㶽台齐亩俞 |  |  |  |
| $\cdots$ |  |  |  |  |








| $\sim x$ | abund. | m/x | sbund. | m’ | -bund. | $\sim$ | abund. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 31.50 | 675 | 43.45 | 109 |  |  |  |  |
| 32.40 | 3578 | 44.45 | 720 | 59.35 61.30 | 955 41600 | 79.20 80.20 | 1233 194 |
| 33.40 | 238 | 45.30 | 16300 | 62.30 | 41600 1234 | 80.20 81.20 | 194 200 |
| 34.50 | 214 | 46.30 | 6760 | 63.30 | 1234 1.58 | 81.20 $\$ 1.10$ | 200 |
| 35.50 | 6156 | 47.30 | 3282 | 64.20 | 1258 1324 | \$1.10 | 101 910 |
| 36.50 | 132 | 48.40 | 738 | 65.20 |  |  |  |
| 37.45 | 348 | 49.40 | 678 | 65.20 66.20 | 174 | 94.10 | 159 115 |
| 38.45 | 48 | 50.40 | 101 | 74.35 | 194 | 95.10 | 115 |
| 40.35 | 286 | 51.40 | 194 | 76.10 | 243 | 76.10 139.90 | 201 2798 |
| 41,45 | 108 | 57.34 | 169 | 77.20 | 592 | 149.90 14.90 | 2798 246 |
| 42.45 | 37 | 50.25 | 367 | 78.20 | 993 |  |  |



SCon To (2.J2Tmint or CA
AUGUST WOLATILES ON DQWAX
ara

| $\cdots \mathrm{x}$ | abund. | $m / x$ | -bund. | mer | sbund. | mz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 26.05 | 745 | 47.80 | 993 | 69.10 | 534 | 90.05 |
| 27.05 | 1574 | 49.00 | 1436 | 70.00 | 659 | 91.05 |
| 27.95 | 256 | 50.00 | 6710 | 70.90 | 1017 | 91.95 |
| 28.25 | 235 | 51.10 | 9280 | 22.90 | 1598 | 93.105 |
| 28.95 | 719 | 51.95 | 2320 | 2i.00 | 2890 | 94.00 |
| 35.05 | 552 | 53.05 | 1135 | 75.00 | 1653 | 95.80 |
| 35.85 | 140 | 55.05 | 925 | 76.100 | 2719 | 97.10 |
| 36.95 | 1281 | 57.05 | 650 | 77.00 | 2912 | 99.00 |
| 38.10 | 2434 | 5 Sa 9 | 506 | 78.00 | 372 | 104.40 |
| 39.00 | 9951 | 60.05 | 69\% | 81.05 | 235 | 116.85 |
| 40.10 | 13:3 | 60.95 | 3380 | 8. 9.95 | 509 | 117.55 |
| 41.00 | 1651 | 81.95 | 7173 | 82.95 | 11100 | 118.75 |
| 42.10 | 353 | 63.05 | 16304 | 13.95 | 1726 | 118.95 |
| 43.00 | 1992 | 64.05 | 3448 | 84.95 | 1095 | 119.05 |
| 44.10 | 470 | 65.05 | 32184 | 85.45 | 3663 | 120.65 |
| 45.00 | 3012 | 66.00 | 3125 | 80.35 | 2320 | 122.90 |
| 46.10 | 1121 | 66.90 | 332 | 9a. 05 | 1026 | 133.95 |
| 47.00 | 2042 | 67.95 | 232 | 89. 175 | 14961 |  |

[^4]




| mz | -bund. | m/x | sburd. | $\cdots \prime$ | $\triangle$ bund. | $4 \times x$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 27.05 | 2202 | 53.75 | 1377 | 81.25 | 4.64 | 114.85 |
| 20.05 | 2705 | 58.95 | 2482 | 03.05 | 760 | 119.05 |
| 29.05 | 220 | 61.05 | 314400 | 84.05 | $20 \%$ | 121.05 |
| 32.05 | 1827 | 61.95 | 6081 | 85.05 | 696 | 122.00 |
| 32.95 | 189 | 62.95 | 10074 | 97.95 | 133 | 122.90 |
| 34.15 | 270 | 63.95 | 3366 | 88.65 | 204 | 123.80 |
| 35.05 | 7311 | 64.75 | 408 | 89.05 | 276 | 124.90 |
| 37.25 | 328 | 65.05 | 336 | 90.95 | 1177 | 125.80 |
| 39.00 | 16.7 | 68.00 | 405 | 91.95 | 1197 | 126.90 |
| 41.00 | 787 | 67.00 | 5116 | 92.95 | 14719 | 137.75 |
| 41.30 | 176 | 64.00 | 185 | 93.90 | 4719 | 138.75 |
| 43.20 | 397 | 69.10 | 849 | $94.81)$ | 1036 | 139.85 |
| 43.90 | 1271 | 70.00 | 253 | 95.80 | 1304 | 150.90 |
| 44.90 | 36192 | 71.00 | 720 | 96.80 | .45.7 | 152.80 |
| 45.90 | 12136 | 73.10 | 309 | 98.00 | 530 | 153.90 |
| 47.00 | 6960 | 73.90 | 2 n 5 | 105.10 | 269 | 154.80 |
| 40.00 | 1774 | 74.90 | 478 | 173.00 | 244 | 165. 60 |
| 49.00 | 2109 | 75.80 | 1543 | 106.70 | 414 | 164.80 |
| 50.14 | 183 | 76.90 | 2153 | 177.45 | 615 | 137.80 |
| 50.80 | 260 | 78.00 | 5009 | 108.85 | 451 | 188. $\mathrm{BO}_{0}$ |
| 52.95 | 131) | 78.92 | 2473 | 118.65 | 20-3 | 189.80 |
| 55.05 | 75 | 78.95 | 703 | 111.05 | 403 | 207.00 |
| 55.05 | 116 | ancos. | 97) | 11:90 | 171 | 256,. 5 |

abnd
121
738
416
164
286
982
474
276
134
644
454
473
197
4477
281
549
48616
3469
9225
532
680
111
127




Scan 202 ( 0.535 min ) of DATA: SRUP25.D


Scan 38 ? ( 13.586 min ) of DATA:SEUR25.0
AUGUST VOLATILES

| $0 / 2$ | abund. | $m / x$ | obund. | $\mathrm{m} / \mathrm{z}$ | abund. | $\mathrm{m} / \mathrm{z}$ | abund. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 22.10 | 99 | 53.95 | 54 | 79.00 | 6973 | 115.10 | 91 |
| 22.40 | 95 | 54.95 | 86 | 80.00 | 830 | 117.10 | 68 |
| 24.20 | 93 | 55.25 | 124 | 81.00 | 600 | 119.30 | 68 |
| 24.50 | 121 | 55.85 | 142 | 81.95 | 176 | 120.20 | 47 |
| 24.80 | 180 | 56.25 | 148 | 83.05 | 167 | 124.10 | 113 |
| 26.00 | 214 | 57.15 | 860 | 83.95 | 35 | 126.30 | 65 |
| 26.30 | 182 | 50.05 | 1002 | 84.55 | 28 | 126.50 | 6.1 |
| 27.10 | 1811 | 59.00 | 1578 | 84. 85 | 44 | 127.15 | 26 |
| 28.10 | 2612 | 60.00 | 571 | 月6. 15 | 64 | 130.35 | 36 |
| 29.00 | 563 | 61.00 | 1064.40 | B7. 15 | 76 | 130.85 | 123 |
| 30.20 | 186 | 62.00 | 3025 | 88.85 | 119 | 132.15 | 30 |
| 31.10 | 1543 | 63,00 | 4867 | 90.95 | 631 | 137.45 | 21 |
| 32.10 | 1450 | 63.90 | 4425 | 92.05 | 239 | 139.25 | 60 |
| 33.00 | 271 | 65.00 | 590 | 93.05 | $44^{482}$ | 140.05 | 19472 |
| 34.10 | 129 | 65.90 | 341 | 94.05 | 726 | 161.05 | 1063 |
| 35.10 | 4885 | 67.00 | 78 | 94.85 | 635 | 142.05 | 2653 |
| 37.05 | 436 | 67.80 | 62 | 98.05 | 284 | 144.15 | 178 |
| 37.65 | 40 | 68.10 | 200 | 98.15 | 27 | 145.35 | 3, |
| 39.05 | 149 | 69.00 | 279 | 93.05 | 107 | 148.05 | 3 B |
| 39.95 | 159 | 70.00 | 74 | 99.95 | 80 | 158.30 | 53 |
| 41: P 5 | 779 | 39:80 | 128 | 180:.45 | 49 | 152:10 | 162 |
| 42.95 | 484 | 72.10 | 80 | 101.05 | 108 | 209.80 | 26 |
| 44.05 | 1450 | 73.10 | 141 | 102.05 | 43 | 235.35 | 20 |
| 44.95 | 27192 | 74.00 | 91 | 102.95 | 44 | 255.10 | 11 |
| 45.95 | 11080 | 74.30 | 112 | 103.35 | 29 | 273.55 | 26 |
| 47.05 | 664.4 | 75. 20 | 119 | 107.10 | 100 | 277.35 | 12 |
| 40.05 | 14.54 | 75,00 | 1026 | 10 B .10 | 188 | 406.25 | 34 |
| 49.05 50.95 | 10 HB | 78.80 | 13007 | 100.00 | 106 | 448.35 | 11 |
| 50.95 | 156 | 70.00 | 3697 | 112.10 | 41 |  |  |



Scon 423 ( 14.570 min ) of DNTA:SBUR2S.D


Scan 607 ( 19.600 min ) of DATA: SBUR2S.D AUGUST VOLATILES

| m/x | bund. | m/z | sbund. | $\mathrm{m} / \mathrm{z}$ | sbund. | $\mathrm{m} / 2$ | sbund. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20.80 | 40 | 55.05 | 223 | 78.80 | $1^{*}$ ó | 100.00 | 71 |
| 22.80 | 41 | 55.85 | 90 | 72.20 | 257 | $10 \% .20$ | 34. |
| 25.50 | 57 | 57.25 | 104 | 70.60 | 140 | 108. 50 | 31 |
| 25.90 | 43 | 58.05 | 5.4 | 79.80 | 137 | 111.80 | 88 |
| 27.00 | 171 | 59.85 | 136 | 21.30 | 150 | 114.50 | 43 |
| 28.00 | 4133 | 80.10 | 218 | 92. 15 | 114 | 118.00 | 32 |
| 29.10 | 173) | 80.80 | 112 | 93. 15 | 36 | $119.41]$ | 71 |
| 32.10 | 1385 | 61.00 | 39 | 35.35 | 41) | 129.45 | 25 |
| 34.10 | 55 | 62.70 | 72 | 8. 25 | 94 | 132.15 | 10 |
| 36.45 | 107 | 63.00 | 46 ? | B\%.05 | 31 | 136.25 | 10 |
| 38.95 | 363 | 64.10 | 169 | B\%. 05 | 227 | 145.55 | 45 |
| 40.05 | 182 | 65.10 | 7.40 | 91.05 | 3032 | 164.60 | 14 |
| 41.25 | 162 | 66.20 | 86 | 92.05 | 375 | 166.30 | 68 |
| 42.05 | 113 | 67.10 | 74 | 92.95 | 136 | 184. 05 | 11 |
| 44.05 | 518 | 67.30 | 119 | 95.05 | 93 | 188.15 | 4.7 |
| 45.15 | 101 | 70.30 | da | 97.05 | 26 | 201.30 | 39 |
| 47.75 | 30 | 71.00 | 43 | 101.35 | 42 | 20,7,40 | 26 |
| 49.25 | 93 | 74.20 | 150 | 102.15 | 101 | 227.25 | 15 |
| 50.05 | 220 | 75.10 | 56 | 103.135 | 497 | 319.65 | 35 |
| 51.15 | 294 | 75.00 | . 93 | 104.05 | 5856 | 3.45 .70 | 35 |
| 51.85 | 71 | 77.10 | 466 | 105.00 | 709 | 3.18.10 | 19 |
| 53.15 | 103 | 70.00 | 610 |  |  |  |  |



Scan 794 (22.249min) of DATA:SAUR25. D AUGUST UOLATIIES

| $\mathrm{m} / 2$ | abund. | $m / x$ | nbund. | $m / 2$ | abund. | $\mathrm{m} / \mathrm{x}$ | abund. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20.80 | 45 | 53.15 | 99 | 73.90 | 331 | 109.20 | 193 |
| 22.40 | 96 | 54.15 | 95 | 79.10 | 263 | 109.90 | 588 |
| 26.20 | 114 | 55.15 | 143 | el. 20 | 72 | 111.40 | 110 |
| 26.40 | 107 | 55.85 | 93 | 80.80 | 119 | 112.10 | 69 |
| 28.10 | 4066 | 57.15 | 376 | 82.05 | 51 | 112.40 | 53 |
| 29.10 | 188 | 59.05 | 686 | 82.95 | 66 | 119.40 | 59 |
| 29.70 | 139 | 59.00 | 2003 | 9+.95 | 79 | 134.95 | \& 0 |
| 31.10 | 99 | 60.00 | 2.782 | B5. 15 | 59 | 149.25 | 17 |
| 32.10 | 1622 | 60.80 | 251 | 37.05 | 182 | 154.10 | 15 |
| 33.10 | 229 | 67.00 | 180 | 89.95 | 2424 | 159.40 | 66 |
| 34.10 | 149 | 63.00 | 52\% | 90.95 | 2459 | 163.70 | 16 |
| 35.00 | 152 | 64.00 | 1091 | 91.95 | 685 | 104.55 | 36 |
| 36.75 | 19 | 65.00 | 327 | 92.95 | 468 | 185.15 | 28 |
| 37.05 | 30 | 66.10 | 123 | 93.95 | 152 | 217.10 | 64 |
| 39.95 | 280 | 66.90 | 94 | 95.05 | 101 | 221.35 | 11 |
| 41.05 | 167 | 67.20 | 106 | 96.05 | 49 | 248.20 | 10 |
| 42.85 | 165 | 68. 10 | 96 | 97.25 | 39 | 258.90 | 23 |
| 43.95 | 827 | 69.00 | 80 | 97.35 | 46 | 260.70 | 22 |
| 45.05 | 9493 | 73.90 | 137 | 100.15 | 60 | 262.40 | 34 |
| 45.95 | 795 | 75.10 | 150 | 103.25 | 27 | 330.15 | 22 |
| 47.05 | 1118 | 76.10 | 481 | 104.15 | 141 | 397.30 | 14 |
| 47.95 | 1397 | 73.00 | $B>0$ | 100.00 | 5590 | 397.70 | 24 |
| 49.05 | 127 |  |  |  |  |  |  |




| $\mathrm{m} / \mathrm{z}$ | abund. | $\mathrm{m} / \pm$ | aburd. | m/z | sbund. | $m \times 2$ | athund. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 23.00 | 25 | 62.00 | 201 | 93.05 | 156 | 143.15 | 95 |
| 24.10 | 45 | 63.00 | 9.93 | 94.15 | 35 | 145.45 | 24 |
| 25.10 | 17 | 64.00 | 193 | 94.35 | 34 | 1510.10 | 226 |
| 25,40 | 21 | 65.10 | 550 | 95.05 | 104 | 151.10 | 327 |
| 26.10 | 52 | 67.25 | 51 | 97.15 | 85 | 152.10 | 2039 |
| 27.00 | 108 | 68. 00 | 97 | 90.05 | 178 | 153.10 | 654 |
| 28.10 | 3306 | 68.80 | 432 | 9.7 .15 | 204 | 154.10 | 191 |
| 29.20 | 148 | 69.40 | 19.7 | 101.25 | 115 | 157.30 | 38 |
| 30.20 | 24 | 71.30 | 35 | 102.05 | 263 | 163.30 | 74 |
| 30.50 | 46 | 71.30 | 142 | 103.05 | 124 | 103.10 | 34 |
| 30.80 | 41 | 73.20 | 132 | 104.30 | 63 | 164.20 | 367 |
| 31.10 | 66 | 74.10 | 25.9 | 105.90 | 23 | 165.20 | 4644 |
| 32.10 | 1228 | 75.10 | 374 | 110.10 | 51 | 166.20 | 1936 |
| 37.95 | 30 | 76.10 | 1032 | 113.00 | 95 | 167.20 | -185 |
| 39.05 | 502 | 77.40 | 344 | 115.10 | 1098 | 168.20 | 1337 |
| 39.95 | 300 | 78.10 | 272 | 116.20 | 123 | 169.30 | 159 |
| 42.05 | 238 | 79.20 | 157 | 116.90 | 63 | 176.05 | 314 |
| 41.25 | 209 | 90.20 | 76 | 119.10 | 19 | 177.05 | 106 |
| 42.85 | 192 | 81.20 | 340 | 119.30 | 20 | 178.15 | 441 |
| 44.05 | 520 | 82.15 | 882 | 122.20 | 12 | 179.15 | 285 |
| 44.95 | 230 | 82.65 | 655 | 125.20 | 90 | 181.15 | 862 |
| 46.95 | 71 | 82.85 | 798 | 126.20 | 119 | 182.15 | 4941 |
| 50.05 | 225 | 83.55 | 213 | 127.10 | 152 | 183.15 | 718 |
| 51.05 | 639 | 83.75 | 217 | 129.05 | 62\% | 192.45 | 10 |
| 51.95 | 141 | 84.45 | 49 | 129.15 | 174 | 200.70 | 41 |
| 53.15 | 136 | 85.05 | 95 | 129.95 | 20 | 235.05 | 21 |
| 54.15 | 101 | 36.15 | 1.74 | 132.15 | 35 | 235.35 | 3 |
| 55.25 | 158 | 96. 95 | 255 | 133.75 | 58 | 291.05 | 2.7 |
| 55.75 | 65 | 48. 15 | 333 | 137.95 | 5 日 | 318.815 | $\bigcirc 1$ |
| - $\quad$. | $\therefore$ | . . | - |  |  |  |  |
|  |  |  |  |  |  |  |  |
| TIG af OATA: SBURZ5. |  |  |  |  |  |  |  |
| Scan 911 (27.893 min) of DFiTA:SRUR25.D AUGUST VOLATILES <br> $\mathrm{m} / \mathrm{z}$ abund. $\mathrm{m} / \mathrm{z}$ abund. $\mathrm{m} / \mathrm{z}$ abund. $\mathrm{m} / \mathrm{z}$ atrund. |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| 20.80 | 17 | 50.25 | 97 | 82.00 | 374 | 124.30 | 42 |
| 21.90 | 44 | 53.25 | 41 | 82.15 | 74 | 125.20 | 87 |
| 23.90 | 67 | 55.05 | 203 | 82.75 | 146 | 127.00 | 27 |
| 24.20 | 56 | 55.85 | 90 | 83.05 | 70 | 132.25 | 67 |
| 25.80 | 57 | 57.15 | 203 | 83.35 | 54 | 138.35 | 24 |
| 26.00 | 62 | 59.05 | 184 | 88.15 | 87 | 142.25 | 105 |
| 27.00 | 625 | 59.00 | 170 | 91.95 | 135 | 153.30 | 18 |
| 28.10 | 3545 | 61.00 | 25432 | 92.95 | 10243 | 157.20 | 29 |
| 29.10 | 98 | 62.00 | 896 | 94.05 | 943 | 167.00 | 25 |
| 31.00 | 109 | 63.00 | 1423 | 95.15 | 798 | 167.30 | 17 |
| 32.10 | 1525 | 64.00 | 2145 | 90.05 | 255 | 167.60 | 37 |
| 33.30 | 95 | 65.00 | 426 | 92.15 | 38 | 171.20 | 45 |
| 34.10 | 83 | 66. 00 | 248 | 98.55 | 57 | 172.10 | 12.14 |
| 35.00 | 1030 | \%6. 90 | 102 | 100.45 | 33 | 173.15 | 177 |
| 36.20 | 102 | 67.70 | 70 | 107.00 | 1941 | 174.05 | 290 |
| 39.05 | 74 | 69.10 | 128 | 108.10 | 433 | 207.10 | 32 |
| 39.85 | 340 | 71.10 | 161 | 109.00 | 296 | 207.90 | 49 |
| 42.05 | 268 | 72.60 | 68 | 110.10 | 77 | 216.20 | 86 |
| 43.15 | 181 | 73.20 | 65 | 110.90 | 495 | 234.15 | 21 |
| 44.05 | 633 | 73.60 | 49 | 113.30 | 22 | 249.20 | 19 |
| 45.05 | 8552 | 76.10 | 315 | 119.10 | 61 | 256.90 | 22 |
| 46.05 | 3368 | 73.00 | 549 | 121.30 | 45 | 257.90 | 11 |
| 47.05 | 2694 | 78.10 | 1097 | 123.00 | 79 | 324.95 | 27 |
| 4 4 .05 | 769 | 39.00 | 3785 | 123.30 | 43 | 327.25 | 20 |
| 40.95 | 525 | 80.00 | 545 | 123.60 | 35 | 372.35 | 17 |


Scan 1369 （ 40.393 min$)$ of DATA：SBUR25．D AUGUST UOLATILES


Sean 1980 （ 54.878 min ）of DATA：SBUR25．D

| m／x | abund． | m／z | abund． | $m / 2$ | abund． | $\mathrm{m} / \mathrm{z}$ | sbiand． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 21.80 | 25 | 57.05 | 189 | 78.00 | 1424 | 122． 70 | － 18 |
| 22.70 | 45 | 58.05 | 500 | 79.00 | 183 A | 123.013 | 30 |
| 27.00 | 754 | 58.95 | 605 | Gu． 0 | 505 | 125.80 | 140 |
| 28.10 | 4002 | 611.10 | 369 | 31.10 | 1：3 | 126.10 | 90 |
| 30.90 | 99 | 61.10 | 35992 | 84.15 | 64 | 12月． 15 | 1A |
| 32.00 | 1660 | 62.00 | 761 | 67． 45 | 49 | 138.95 | 10043 |
| 33.10 | 150 | 63.00 | 1542 | B8． 75 | 110 | 139.95 | 468 |
| 引か： 9 目 | 1437 | 84：91］ | 1637 | $88: 95$ | 3 3id | 14年：85 | 1192 |
| 37.15 | 82 | 65.90 | 269 | 92.05 | 139 | 153.20 | 195 |
| 41.05 | 120 | 67.10 | 233 | 92.95 | 6835 | 154．00 | 1918 |
| 41.35 | 58 | 68.10 | 134 | 94.05 | 2208 | 156.10 | 150 |
| 42.45 | 85 | 69.00 | 249 | 94.95 | 1107 | 167.40 | 24 |
| 43.05 | 249 | 69.90 | 42 | 95.95 | 447 | 207.90 | 26 |
| 43.95 | 1340 | 70.40 | 80 | 105．90 | 505 | 218．05 | 772 |
| 44.95 | 13963 | 70.90 | 146 | 107.00 | 691 | 219.25 | 61 |
| 45.95 | 5247 | 71.10 | 153 | 108.00 | 429 | 219.95 | 167 |
| 47.05 | 2682 | 72.30 | 117 | 109.20 | 134 | 275.55 | 33 |
| 48.05 | 613 | 73.20 | 50 | 109.90 | 106 | 283.55 | 31 |
| 49.05 | 585 | 76.00 | 307 | 111.00 | 275 | 381.40 | 13 |
| $59.05$ $56.05$ | $243$ | 73.10 | 496 | 117.10 | 75 | 392.10 | 24 |



Scan 2047 （5B．日B7 min）of DATA：SBUR25．0
AUGUST UOLATILES

| $\mathrm{m} / \mathrm{z}$ | abund． | $\mathrm{m} / \mathrm{z}$ | abund． | $m / 2$ | abund． | $m / z$ | aburid． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 22.40 | 56 | 52.45 | 53 | 81.20 | 203 | 122.10 | 270 |
| 24.00 | 43 | 53.25 | 72 | 81.95 | ${ }^{1} 1$ | 123.2 n | 210 |
| 28.00 | 3774 | 55.05 | 427 | 82.95 | 111 | 129.05 | 22 |
| 29.00 | 632 | 56.05 | 651 | 04．95 | 1 ns | 131.95 | 87 |
| 30.90 | 29 | 57.15 | 日86 | 96． 15 | 101 | 135.05 | 103 |
| 32.00 | 1432 | 58.05 | 144 | 98． 35 | 36 | 135.95 | 32 |
| 34.00 | 56 | 58.95 | 84 | 90.05 | 37 | 149.05 | 14988 |
| 34.30 | 73 | 61.10 | 61 | 91.15 | 156 | 150.00 | 1342 |
| 34.60 | 71 | 64.10 | 140 | 91.95 | 55 | 151.00 | 10 á |
| 36.20 | 89 | 65.00 | 612 | 93.05 | 581 | 175.25 | 15 |
| 30.65 | 67 | 65.80 | 83 | 94.115 | 106 | 175.95 | 13 |
| 37.05 | 90 | 68.10 | 34 | 95.25 | 120 | 193.15 | 19 |
| 39.05 | 238 | 69.10 | 197 | 95.45 | 86 | 195.15 | 37 |
| 39.95 | 320 | 70.00 | 92 | 96.25 | 34 | 205.10 | 371 |
| 40.95 | 1207 | 70.90 | 79 | 77.05 | 77 | 217.70 | 27 |
| 43：85 | 218 | 32：38 | 135 | 99：35 | 18 | 323：15 | 6日j |
| 44.05 | 854 | 73.20 | 142 | 100.25 | 14 | 225.15 | 13 |
| 45.05 | 266 | 73.90 | 137 | 101.15 | 26 | 280.85 | 20 |
| 47.05 | 60 | 74.10 | 136 | 104.05 | 775 | 325.65 | 67 |
| 48.25 | 66 | 76.20 | 950 | 105.00 | 751 | 355.05 | 19 |
| 49.05 | 62 | 77.10 | 100 | 105.90 | 49 | 359.05 | 30 |
| 49.95 | 316 | 78.80 | 61 | 110.20 | 34 | 398.00 | 15 |
| 50.75 | 158 | 79.20 | 136 | 115.30 | 30 | 398.410 | 30 |
| 51.25 | 100 | 80.50 | 11 | 121.10 | 287 | 407.35 | 31 |


SCOn ${ }^{22}$ T2.521 minT of TJATA:SHUR
FRESH SNWLE OF SRURSS OH DEWAX

| $=-x$ | shund. | $x / x$ | abund. | mos | sbund. | $\sim$ | abund. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 26.04 | 938 | 49.0 | 1495 | d:. 00 | 514 | 86.95 | 2617 |
| 22.05 | 1332 | 47.90 | 9507 | 67.90 | 206 | 67.95 | 763 |
| 28.15 | 228 | 51.00 | 12281 | 68.90 | 504 | 89.05 | 20304 |
| 29.15 | 84.4 | 51.95 | 3112 | 69.90 | 590 | 90.05 | 9314 |
| 30.95 | 352 | 53.05 | 1.76 | 71.10 | 870 | 91.05 | 654400 |
| 35.95 | 162 | 55.08 | 1559 | 72.00 | 482 | 92.45 | 374336 |
| 37.06 | 1400 | 53.15 | 3:9 | 73.00 | 7426 | 92.95 | 24788 |
| 38.10 | 2321 | 57.05 | 870 | 73.90 | 5473 | 93.90 | 551 |
| 39.00 | 11331 | 59.05 | 311 | 75.00 | 2782 | 95.10 | 217 |
| to. 00 | 1145 | 58.45 | 523 | 76.10 | 4368 | 96.40 | 142 |
| 41.00 | 1821 | 40.05 | P 0 | 77.00 | 3841 | 98.20 | 193 |
| 42.00 | 602 | A0.95 | 6100 | 78.15 | 552 | 100.00 | 464 |
| 42.90 | 2619 | 41.95 | 116.74 | 80.95 | 641 | 103.90 | 221 |
| 44.10 | 660 | 6). 05 | 24398 | 83.05 | 446 | 106.00 | 470 |
| 45.18 | 5560 | 63.95 | 4886 | 83.95 | 1044 | 126.90 | 347 |
| 46. 10 | 2300 | 65.05 | 49800 | 84.95 | 3247 | 127.10 | 355 |
| 47.00 | 1130 | 86.00 | 5365 | 85.95 | 4701 | 280.95 | 152 |






Scan 1409 (4n. 140 min ) of CATA:SBUF:55A.O
FRESH SAMPLE IF SBUPSS ON DELAK

| m/x | sbund. | $\mathrm{m} / \mathrm{z}$ | sbund. | $1 \mathrm{~m} / \mathrm{z}$ | sbund. | $\mathrm{m} / \mathrm{z}$ | *bund. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 26.05 | 450 | 47.90 | 537 | 68.70 | 15631 | 91.05 | 374 |
| 26.95 | 3270 | 49.00 | 202 | 60.90 | 7352 | 92.05 | 359 |
| 29.05 | 5816 | 50.80 | 1057 | 70.10 | 739 | 94.00 | 245 |
| 29.05 | 3653 | 50.90 | 1714 | 71.00 | 3458 | 94.90 | 1180 |
| 31.25 | 707 | 51.95 | 716 | 72.00 | 712 | 95.90 | 3859 |
| 31.95 | 2613 | 52.95 | 4307 | 73.00 | 39272 | 96.80 | 1630 |
| 33.15 | 164 | 54.05 | 1506 | 74.00 | 1368 | 97.90 | 230 |
| 35.75 | 144 | 55.05 | 156.3 | 75.00 | 345 | 98.90 | 110 ca |
| 36:98 | 12\% 2 | ¢ ¢ ${ }^{\text {¢ }}$ 9 | 3382 | 종:80 | ¢3d | 189:98 | \$959 |
| 39.10 | 120.3 | 53.95 | 1773 | 78.00 | 903 | 111.05 | 150 |
| 39.00 | 9077 | 59.05 | 2423 | 80.05 | 193 | 112.75 | 187 |
| 40.00 | 2982 | 50.05 | 5693 | 80.95 | 4267 | 113.05 | 238 |
| 41.10 | 12379 | 60.95 | 1021 | 82.05 | 424 | 113.95 | 6109 |
| 42.00 | 11574 | 61.59 | 651 | 132.35 | 491 | 114.35 | 441 |
| 43.00 | 5215 | 63.05 | 721 | 84. 05 | 241 | 125.00 | 450 |
| 43.90 | 1536 | 64.05 | 925 | 日4.95 | 1273 | 130.90 | 126 |
| 44.90 | 5625 | 65.05 | 1294 | 85.95 | 2131 | 139.85 | 135 |
| 45.90 | 431 | 65.90 | 338 | 86.95 | 540 | 20n. 80 | 55日 |
| 47.00 | 564 | 6.7 .00 | 3524 | B8.05 | 192 | 20.7.90 | 143 |

(ix) Volatiles - garlic


Scan 26 ( 3.736 min ) of CATA: SEUR23.0
GARLIC EXTRACT

| $0 / \mathrm{z}$ | abund. | m/z | aburid. | m/z | ahund. | $m /=$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 23.60 | 105 | 44.05 | 349 | 59.10 | 1009 | 87.95 |
| 26.10 | 40 | 45.05 | 1207 | 60.10 | 1090 | 88.95 |
| 27.30 | 113 | 46.75 | 171 | 62.30 | 33 | 91.25 |
| 28: 28 | 319 | 4'9:95 | 436 | 59:88 | $\pm 39$ |  |
| 29.30 | 189 | 50.25 | 34 | 70.10 | 184 | 100.05 |
| 31.90 | 125 | 51.35 | 40 | 71.10 | 016 | 106.10 |
| 34.20 | 129 | 55.15 | 209 | 22.10 | 150 | 114.90 |
| 37.95 | 435 | 55.65 | 12? | 73.10 | 279 | 125.40 |
| 39.05 | 1460 | 55.95 | 133 | 74.10 | 79 | 150.00 |
| 40.15 | 384 | 56.15 | 137 | 79.10 | 95 | 163.30 |
| 40.95 | 148 | 57.05 | 230 | e3. 15 | 152 | 174.45 |
| 42.05 | 154 | 50.05 | 176 | 8.7 .05 | 1445 | 377.00 |
| 43.15 | 120 |  |  |  |  |  |



Scan 51 ( 4.426 min ) of GATA:SRUR23. 0
GAPLIIC EXTRACT

| $m \mathrm{z}$ | abund. | m/z | -bund. | m/z | abund. | m/z | sbund. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 22.90 | 55 | 43. 05 | 5131 | 65.10 | 492 | 99. 05 | 119 |
| 25.40 | 98 | 44.15 | 533 | 65.90 | 167 | 95.05 | 80 |
| 26.20 | 40 | 45.25 | 271 | 67.00 | 13011 | 97.05 | 249 |
| 27.10 | 441 | 44.45 | 120 | 68.10 | 999 | 99.15 | 96 |
| 28.10 | 771 | 51.45 | 96 | 69.20 | 505 | 105.00 | 196 |
| 29.00 | 450 | 53.05 | 662 | 71.30 | 172 | 111.10 | 72 |
| 32.00 | 146 | 54.05 | 1366 | 73. 20 | 111 | 112.90 | 60 |
| 36.30 | 65 | 55.15 | 184, | 77.30 | 71 | 116.20 | 51 |
| 37.95 | 90 | 55.95 | 159 | 79.00 | 438 | 128.95 | 126 |
| 39.05 | 909 | 56.15 | 165 | 81.20 | 938 | 178.65 | 43 |
| 39.75 | 192 | 57.15 | 282 | 82.05 | 4714 | 242.90 | 53 |
| 48.15 | 200 | 50.15 | 126 | 83. 15 | 281 | 279.15 | 28 |
| 41.15 | 1350 | ou. 10 | 100 | 84.65 | 64 | 298.40 | 64 |
| 42.15 | 466 | 61.10 | 304 | 86. 85 | 214 |  |  |



Scan 163 （7．511 min）of DATA：SBUP．23．D GARLIC EXTRACT min）of OATA：SBUP．23．0

| $\mathrm{m} / \mathrm{z}$ | sbund． | m／z | obund． | $m / z$ | sbund． | mrz | abund． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 21.00 | 34 | 46.05 | 10日7 | 63.10 | $55 月$ | E6．？5 | 313 |
| 22.00 | 78 | 47.65 | $15: 16$ | 67.00 | 149 | 92.05 | 112 |
| 25．41） | 10.4 | $4 . .95$ | 111 | C8．01］ | 156 | P9．65 | 12.33 |
| 26.00 | $61)$ | 48.95 | 85 | 6．8．2\％ | 15.5 | 99.05 | 690 |
| 27． 210 | 44.7 | 50.35 | 315 | C） 100 | －1303 | 102.55 | 2254 |
| 28．17 | 2501 | 50.75 | 39 | 20.00 | 230 | 104.05 | 1163 |
| 2.3 .20 | 176 | 51.15 | 89 | 21，111 | 20.62 | 111\％．00 | 3625 |
| 30.10 | 29 | 53.05 | 403 | －2．10 | 2288 | 106.10 | 570 |
| 31.20 | 103 | 54.05 | 267 | 73.05 | 3635 | 106.90 | 467 |
| 32.11 | $7 \times 3$ | 55.05 | 45.4 | 74．70 | 924 | 112.10 | 1126 |
| 33． 00 | 30 | Sn． 25 | 129 | 75.30 | 236 | 113.10 | 2769 |
| 34.20 | 57 | 57.05 | 2.43 | －7．90 | 236 | 114.10 | 308 |
| ？ 3.05 | \＆ 11 | $5: 1.10$ | 7 －${ }^{\text {a }}$ | $3: 3017$ | （5） | $11^{6.117}$ | $\because \cdot$ |

Scan 488 （ 16.500 min ）of OATA：SBUR23．D GARLIC EXTRACT

| $\mathrm{m} / \mathrm{z}$ | abund． |  | sbund． | $\mathrm{m} / \mathrm{I}$ | sbund． | $\mathrm{m} / 2$ | obund． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 22.30 | 111 | 53.15 | 1677 | 78.10 | 2978 | 103.00 | 153 |
| 24.80 | 63 | 54． 15 | 720 | 79.10 | 8114 | 109.00 | 742 |
| 25.10 | 74 | 55.15 | 315 | 80.10 | 995 | 110.10 | 1278 |
| 26.10 | 334 | 55.85 | 183 | 81.10 | 327 | 111.10 | 17656 |
| 27.00 | 1732 | 57.05 | 1836 | 82.05 | 416 | 112.10 | 1577 |
| 20.00 | 2646 | 58.05 | 3179 | 82.95 | 471 | 113.10 | 902 |
| 28.80 | 108 | 59.10 | 1956 | 83.95 | 1984 | 113.90 | 144 |
| 32.00 | 1377 | 61.10 | 429 | 85.05 | 4343 | 114.90 | 128 |
| 33.10 | 134 | 61.10 | 585 | 86.05 | 444 | 116.10 | 159 |
| 37.05 | 447 | 62.20 | 346 | 80.95 | 353 | 117.00 | 327 |
| 38，05 | 831 | 83.00 | 749 | 07.95 | 177 | 118.00 | 1702 |
| 39.05 | 4813 | 63.90 | 2536 | 88.95 | 139 | 119.10 | 132 |
| 39.95 | 504 | 65.00 | 1933 | 89.95 | 434 | 120.10 | 298 |
| 41.15 | 1091 | 66.10 | 1424 | 91.75 | 126 | 123.00 | 45 |
| 42.15 | 247 | 67． 10 | 3265 | 95.15 | 332 | 133.05 | 105 |
| 43.15 | 253 | 68.70 | 234 | 97.05 | 12542 | 138.75 | 43 |
| 44.05 | 725 | 69.00 | 2691 | 98.05 | 693 | 144.05 | 11462 |
| 44.95 | 11469 | 70.00 | 525 | 99.05 | 829 | 145.05 | 998 |
| 46.05 | 803 | 71.00 | 13330 | 102.05 | 日 | 146.05 | 1266 |
| 47.05 | 1012 | 72.10 | 10416 | 103.05 | 11989 | 147.25 | 62 |
| 47.05 | 108 | 73.00 | 2227 | 104．05 | 670 | 157.90 | 55 |
| 49.05 | 183 | 74.00 | 027 | 105.00 | 963 | 206.90 | 59 |
| 50.05 | 1613 | 75.10 | 69 | 107．10 | $5 ?$ | 324.75 | 37 |
| 51.05 | 3082 | 76.00 | 281 | 107．30 | 61 | 362.05 | 77 |
| 52.05 | 1020 | 77.10 | 11403 |  |  |  |  |



| Scon 589 ( 19.298 min ) of DHTA: SEUP $23 . D$ GARLIC EXTFACT |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{m} / \mathrm{x}$ | abund. | $m / z$ | abund. | $m / 2$ | aburid. | m/2 | abund. |
| 25.90 | 117 | 45.95 | 125 | 74.50 | 114 | 97.05 | 307 |
| 27.10 | 121 | 46.95 | 243 | 75.10 | 2 Bl | 201.45 | 44 |
| 28.10 | 3303 | 54.45 | 78 | 77.30 | 59 | 103.05 | 227 |
| 31.30 | 109 | 56.115 | 130 | 77.70 | 62 | 10\%.05 | 157 |
| 32.10 | 896 | 59.10 | 211 | 79.90 | 262 | 105.10 | 57 |
| 34.80 | 59 | 59.90 | 196 | 80.80 | 82 | 106.10 | 67 |
| 35.50 | 98 | 63.70 | 153 | 81.23 | 153 | 118.50 | 77 |
| 36.00 | 50 | 61.90 | 44 | 84. 15 | 47 | 111.20 | 79 |
| 36.75 | 68 | 63.90 | 431 | 60.35 | 87 | 113.10 | 1603 |
| 39.05 | 1198 | 67.00 | 252 | 89.15 | 82 | 114. 10 | 302 |
| 40.05 | 298 | 68.20 | 130 | 91.05 | 105 | 145.10 | 101 |
| 41.05 | 1553 | 71.10 | 635 | 02.95 | 78 | 143.75 | 55 |
| 43.05 | 147 | 22.11 | 370 | 96.05 | 48 | 159.40 | 47 |
| 43.95 | 540 | 73.00 | 5198 | 97.15 | 93 | 176.45 | 71 |
| 45.05 | 1742 | 73.70 | 253 | 97.95 | 59 |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| T: Sean 488 +16. 5c, ain) of 0 <br> Z: IIC of DATA: SE.K<3.D |  |  |  |  |  |  |  |


| Scon 671 (21.561 min) of DATA:SEUR23.D GARLIC EXTRACT |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{m} / \mathrm{z}$ | abund. | $\mathrm{m} / 2$ | abund. | $\mathrm{m} / \mathrm{z}$ | abund. | $\mathrm{m} / \mathrm{x}$ | abund. |
| 25.20 | 171 | 54.05 | 158 | 77.00 | 3662 | 104.05 | 773 |
| 25.50 | 207 | 55.15 | 391 | 78. 00 | 1016 | 105.00 | 644 |
| 26.10 | 452 | 56.15 | 185 | 77.10 | 4486 | 109.00 | 371 |
| 27.10 | 1111 | 57.05 | 1715 | 80.20 | 2269 | 110.00 | 2345 |
| 28.00 | 2766 | 57.95 | 23.9 | 81.10 | 221 | 111.10 | 19848 |
| 32.00 | 1032 | 59.00 | 1805 | 82.85 | 204 | 112.10 | 1469 |
| 32.90 | 105 | 60.10 | 675 | 83.05 | 216 | 113.00 | 1051 |
| 34.10 | 93 | 61.10 | 23 B | 93.95 | 2167 | 114.00 | 116 |
| 35.20 | -82 | 62.10 | 107 | 85.05 | 3207 | 115.30 | 84 |
| 37.05 | 1113 | 63.10 | 237 | 06.05 | 340 | 116.10 | 268 |
| 38.05 | 152日 | 64.013 | 291 | 0. 05 | 304 | 117.03 | 593 |
| 39.05 | 8081 | 65.00 | 1352 | 89.15 | 130 | 119.00 | 137 |
| 39.85 | 401 | 66.10 | 509 | 89.05 | 120 | 128.95 | 352 |
| 41.05 | 712 | 67.10 | 1234 | 90.05 | 329 | 131.25 | 44 |
| 43.25 | 154 | 69.10 | 698 | 94.85 | 60 | 138.95 | 32 |
| 4.4. 05 | 1180 | 69.00 | 6248 | 95.35 | 49 | 144.15 | 18288 |
| 44.95 | 20880 | 70.09 | 1444 | 97.05 | 7307 | 145.05 | 1683 |
| 45.95 | 2316 | 71.00 | 50664 | 98.05 | 1864 | 145.95 | 2126 |
| 46.95 | 1917 | 72.00 | 47888 | 99.05 | 897 | 148.15 | 141 |
| 48.05 | 249 | 73.10 | 6120 | 100.15 | 277 | 168.70 | 52 |
| 48.95 | 136 | 74.10 | 2196 | 101.05 | 277 | 176.75 | 60 |
| 51.15 | 411 | 75.10 | 310 | 102.05 | 123 | 382.30 | 26 |
| 52.05 | 217 | 75.90 | 330 | 103.05 | 6671 | 400.25 | 31 |
| 53.05 | 717 |  |  |  |  |  |  |



Scan 747 ( 23.662 min$)$ of DATA:SAUR23.D GARL. IC EXTRACT

scan 785 (24.715 min) of OATA:SBUR23.D GAPLIC EXTRACT

| $\mathrm{m} / \mathrm{z}$ | abund. | $m / 2$ | sbund. | $m / z$ | abund. | $\mathrm{m} / \mathrm{z}$ | sbund. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 21.00 | 120 | 46.15 | 46 | $6 \% .80$ | 145 | 85.75 | 84 |
| 26.00 | 92 | 47.05 | 93 | 71.10 | 15. | 97. 15 | 114 |
| 28.10 | 2597 | 49.55 | 44 | 72.10 | 124 | 97.85 | 103 |
| 30.90 | 55 | 50.05 | 81 | 73.00 | 327 | 88.95 | 183 |
| 32.10 | 762 | 55.15 | 173 | 76.40 | 36 | 91.15 | 83 |
| 39.05 | 1252 | 56.95 | 323 | 76.90 | 78 | 99.135 | 188 |
| 39.95 | 289 | 59.20 | 175 | 77.10 | 70 | 100.05 | 193 |
| 41.05 | 1882 | 60.10 | 124 | 80.10 | 147 | 111.10 | 46 |
| 42.15 | 218 | 63.00 | 199 | 81.10 | 933 | 130.05 | 103 |
| 43.05 | 325 | 68.00 | 259 | 81.95 | 161 | 130.55 | 26 |
| 43.95 | 678 | 68.60 | 0.9 | B2. 75 | 98 | 210.20 | 29 |
| 45.05 | 382 | 69.10 | 171 | 85.15 | 59 | 239.85 | 36 |




Sean 1273 (38.145 min) of DATA:SQUR23.D GARLIC EXTRACT

| m/z | abund. | $\mathrm{m} / \mathrm{z}$ | abund. | $\mathrm{m} / \mathrm{z}$ | abund. | $m / z$ | abund. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20.90 | 67 | 39.95 | 491 | 59.50 | 104 | 84.95 | 269 |
| 22.30 | 80 | 41.05 | 1531 | 59.90 | 101 | 07.15 | 195 |
| 23.20 | 134 | 42.25 | 62 | 61.00 | 145 | 83.05 | 56 |
| 25.00 | 77 | 43.05 | 150 | 64.10 | 255 | 99. 45 | 45 |
| 25.00 | 58 | 44.15 | 1080 | 67.20 | 180 | 91.15 | 53 |
| 27.10 | 106 | 45.05 | 1507 | 68.10 | 160 | 93.85 | 44 |
| 28.10 | 3177 | 45.95 | 203 | 69.20 | 191 | 97.05 | 84 |
| 28.90 | 164 | 47.05 | 380 | 71.00 | 354 | 99.15 | 804 |
| 29.80 | 73 | 47.65 | 102 | 72.00 | 55.7 | 114.10 | 290 |
| 30.10 | 62 | 47.95 | 123 | 73.00 | 1651 | 115.10 | 59 |
| 30.80 | 29 | 49.45 | 49 | 74.00 | 129 | 116.10 | 100 |
| 31.40 | 99 | 50.45 | 102 | 75.10 | 70 | 121.20 | 51 |
| 32.10 | 1075 | 55.25 | 229 | 78.90 | 109 | 186.15 | 41 |
| 32.80 | 53 | 56.25 | 93 | 79.50 | 94 | 205.30 | 60 |
| 36.65 | 62 | 57.15 | 184 | 80.00 | 520 | 207.20 | 60 |
| 37.05 | 140 | 58.05 | 236 | 81.20 | 590 | 279.95 | 29 |
| 38.05 | 220 | 59.20 | 165 | 83.05 | 51 | 312.75 | 26 |
| 39.05 | 1499 |  |  |  |  | 12.35 |  |



Scan 2025 ( 58, AE2 min) of CATA: SBIJP23. D


Scan 2277 ( 65.817 min ) of DATA:SEUR23.D GARLIC EXTRACT

| $\mathrm{m} / \mathrm{z}$ | abund. | $m / 2$ | obund. | m/z | abund. | $m / x$ | abund. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 23.30 | 182 | 55.05 | 1064 | 82.05 | 171 | 112.10 | 876 |
| 24.50 | 33 | 56.15 | 259 | 83.25 | 403 | 113.10 | 311 |
| 28.10 | 2953 | 57.15 | 1017 | 84.05 | 567 | 117.00 | 1841 |
| 29.10 | 199 | 58.15 | 474 | 85.05 | 533 | 118.00 | 15.9 |
| 31.00 | 92 | 59.00 | 331 | 86.05 | 192 | 119.00 | 135 |
| 32.00 | 893 | 60.10 | 200 | 87. 15 | 312 | 120.90 | 49 |
| 38.95 | 630 | 63.80 | 82 | 88.15 | 193 | 129.05 | 1611 |
| 39.95 | 256 | 64.00 | 79 | 89.05 | 398 | 137.05 | 114 |
| 41. 05 | 742 | 65.20 | 4.78 | 90.05 | 118 | 141.95 | 54 |
| 42.05 | 297 | 66.10 | 251 | 90.25 | 118 | 143.05 | $40 \%$ |
| 43.05 | 1319 | 67.00 | 435 | 95.05 | 123 | 144.05 | 813 |
| 43.95 | 1740 | 67.90 | 266 | 96.25 | 36 | 145.15 | 45 |
| 44.95 | 1974 | 69.10 | 56 ? | 97.05 | 2100 | 146.15 | 131 |
| 46.15 | 144 | 70.20 | 766 | 9 9 .05 | 377 | 147.15 | 258 |
| 46.95 | 318 | 71.10 | 253 H | 99.05 | 876 | 148.15 | 76 |
| 48.09 | 58 | 72.10 | 911 | 100.05 | 232 | 149.05 | 263 |
| 49.15 | 41 | 73.10 | 736 | 102.05 | 141 | 152.40 | 50 |
| 50.95 | 114 | 74.00 | 216 | 103.05 | 497 | 157.30 | 51 |
| 51.15 | 108 | 77.00 | 502 | 104.15 | 171 | 175.05 | 196 |
| 52.15 | 49 | 78.10 | 268 | 104.90 | 152 | 183.15 | 103 |
| 53.15 | 282 | 79.10 | 1058 | 110.10 | 730 | 216.20 | 1241 |
| 54.05 | 186 | 81.10 | 159 | 111.10 | 3904 | 218.05 | 234 |



Sean 87 ( 5.469 min$)$ of DATA: SEUR24.0
ONIOM EXTRACT

| $0 / 2$ | sbund. | m/z | abund. | $\mathrm{m} / \mathrm{z}$ | sbund. | $\mathrm{m} / \mathrm{z}$ | abund. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 22.50 | 115 | 58.05 | 1396 | 90.05 | 478 | 131.15 | 4471 |
| 25.10 | 542 | 59.10 | 2539 | 91.15 | 929 | 132.25 | 324 |
| 26.10 | 1120 | 60.00 | 89728 | 91.95 | 125 | 144.25 | 248 |
| 33:10 | 4513 | 82: 618 | 2336 | 97.95 | 298 | 14ं6: 25 | 1993 |
| 29.10 | 11460 | 65.10 | 109 | 99.15 | 210 | 147.15 | 138 |
| 30.10 | 1093 | 66.90 | 71 | 110.15 | 2284 | 157.40 | 98 |
| 31.10 | 14878 | 69.20 | 166 | 101.15 | 8フフ7 | 159.30 | 88 |
| 32.10 | 819 | 70.10 | 487 | 102.05 | 499 | 160.10 | 55 |
| 35.40 | 145 | 71.10 | 988 | 103.05 | 1181 | 161.20 | 103 |
| 30.35 | 41 | 72.00 | 3242 | 103.95 | 378 | 165.40 | 35 |
| 39.25 | 163 | 73.00 | 11530 | 105.10 | 625 | 174.65 | 40 |
| 39.95 | 1127 | 74.10 | 415 | 107.20 | 129 | 179.15 | 4 |
| 41.05 | 5592 | 75.10 | 456 | 109.10 | 44 | 184.35 | 46 |
| 42.05 | 15602 | 77.00 | 222 | 109.40 | 64 | 186.65 | 66 |
| 43.05 | 36248 | 78.90 | 265 | 112.20 | 51 | 191.25 | 77 |
| 44.15 | 6443 | 79.20 | 258 | 113.20 | 108 | 193.05 | 32 |
| 45.05 | 118920 | 81.20 | 114 | 114.00 | 439 | 197.60 | 26 |
| 46.05 | 7542 | 82.15 | 115 | 115.10 | 1161 | 207.20 | 219 |
| 47.05 | 838 | 03.15 | 219 | 116.10 | 1715 | 214.50 | 31 |
| 48.15 | 35 | 84.05 | 195 | 117.10 | 6044 | 241.00 | 61 |
| 50.05 | 80 | 85.05 | 415 | 118.10 | 530 | 267.15 | 132 |
| 54.25 | 50 | B6. 05 | 1174 | 119.20 | 185 | 281.05 | 67 |
| 54.95 | 229 | 87. 05 | 4028 | 128.25 | 55 | 357.15 | 30 |
| 56.15 | 331 | 88.05 | 997 | 129.05 | 301 | 382.90 | 30 |
| 57.05 | 1150 | 89.05 | 2826 | 130.15 | 1442 |  |  |



Scan 212 ( 9.007 min ) of BATA: SEUR2i. 3




Sean 57? (19.160 min) of DATm: S日UR24.D


Scan 1168 ( $35,406 \mathrm{~min}$ ) of DATH: SBUP24.0 OHION EXTRACT

| $m / z$ | abund. | $\mathrm{m} / \mathrm{z}$ | abund. | $\mathrm{m} / \mathrm{z}$ | abund. | $\mathrm{m} / \mathrm{z}$ | abund. |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 20.80 | 212 | 45.95 | 775 | 73.00 | 12356 | 106.10 | 505 |
| 21.40 | 94 | 46.95 | 543 | 74.10 | 5838 | 108.10 | 115 |
| 26.00 | 168 | 49.95 | 65 | 75.00 | 658 | 109.90 | 165 |
| 26.90 | 493 | 55.15 | 166 | 76.10 | 678 | 109.10 | 185 |
| 28.00 | 3386 | 56.15 | 165 | 37.00 | 388 | 109.90 | 46 |



Scan 1104 (35.04日 min) of OATA:SEUR24.D
OHIOH EXTPAII.


Scan 1211 ( 36.600 min ) of DATA: SBUR24.O OHION EXTRACT

| m/z | abund. | $m^{\prime}=$ | sbund. | $\mathrm{m} / \mathrm{z}$ | abund. | $m=$ | sbund. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 21.50 | 88 | 4.3. 05 | 408 | 73.10 | 11391 | 105.00 | 429 |
| 22.90 | 77 | 4.7 .95 | 163 | 74. 10 | 5932 | 106.10 | 923 |
| 26.90 | 450 | 50.15 | 113 | 35.00 | 972 | 107.00 | $3>0$ |
| 29.00 | 2918 | 53.15 | 270 | 76.10 | $4 \times 1$ | 109.00 | 96 |
| 29.10 | 385 | 55.15 | 90 | 77.00 | 370 | 109.10 | 336 |
| 30.90 | 182 | 55.35 | 75 | 78.00 | 162 | 110.10 | 264 |
| 32.00 | 1491 | 56.15 | 99 | 79.10 | 143 | 115.10 | 223 |
| 34.00 | 40 | 57.115 | 623 | 81. 10 | 207 | 116.20 | 61 |
| 34.50 | 95 | 58.05 | 83 il | 81.95 | 107 | 124.30 | 40 |
| 35.90 | 52 | 59.00 | 10日2 | 83. 45 | 179 | 137.05 | 201 |
| 37.15 | 52 | 60.00 | 144 | 85.15 | 163 | 138.05 | 1637 |
| 38.15 | 92 | 61.10 | 191 | 85.95 | 34 | 139.05 | 144 |
| 38.95 | 1415 | 64.00 | 16.7 | 89.05 | 168 | 139.95 | 417 |
| 39.95 | 450 | 64.90 | 214 | 95.15 | 183 | 147.05 | 1590 |
| 41.05 | 221. | 65.90 | 136 | 95.95 | 264 | 148.15 | 130 |
| 42.05 | 23.5 | 66.90 | 129 | 97.05 | 120 | 149.05 | 249 |
| 42.55 | 08 | 69.10 | 200 | 97.95 | 53 | 202.00 | 384 |
| 43.15 | 475 | 70.10 | 134 | 100.25 | 70 | 212.10 | 1495 |
| 44.05 | 894 | 71.00 | 798 | 101.05 | 72 | 213.20 | 262 |
| 44.95 | 3615 | 72.10 | 2.6 | 10.4 .35 | 46 | 214. 20 | 180 |

$5.95 \quad 610$


Scan $1830(53.720 \mathrm{~min})$ of DATA：SBUR2A．D
OWION EKTRACT

| E\％TRACI |  |  |  |  | abiund． | $m / x$ | suind． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{m} / \mathrm{z}$ | abund． | $\mathrm{m} / \mathrm{x}$ | sbund． | $\mathrm{m} / \mathrm{z}$ |  |  |  |
| 21.90 | 159 | 52.95 | 70 | B3． 05 | 156 | 116.10 | 409 |
| 22.70 |  | 53.15 | 72 | 84.45 | 64 | 119.10 | 94 |
| 27． 10 | 453 | 57．05 | 465 | 95．95 | 250 | 123.60 | 46 |
| วิ：90 | 42 sis | 59：88 | 1818 | 89：85 | 329 | 12す：考5 | 954 |
| 30.00 | 41 | 60.00 | 201 | 90.15 | 53 | 129.95 | 126 |
| 32.10 | 1343 | 61.00 | 457 | 90.85 | 293 | 134.15 | 60 |
| 34.20 | 66 | 62.30 | 37 | 91.45 | 83 | 135.15 | 56 |
| 34.80 | 72 | 63,10 | 40 | 91.65 | 65 | 137.15 | 54 |
| 35.00 | 55 | 64.00 | $46 \cdot 40$ | 92.95 | 101 | 138.05 | 165 |
| 36.95 | 134 | 64.90 | 293 | 93.15 | 73 | 1.11 .05 | 96 |
| 37.95 | 125 | 65.90 | 377 | 95.65 | 591 | 141.95 | 127 |
| 38.25 | 158 | 68.00 | 135 | 96.65 | 140 | 159.91 | 222 |
| 39.05 | 1295 | 69.20 | 523 | 97.95 | 125 | 170.00 | 3927 |
| 39.95 | 3：4 | 71.10 | 662 | 99． 15 | 175 | 171.00 | 317 |
| 40.95 | 3617 | 72.10 | 518 | 101.05 | 71 | 172.10 | 677 |
| 42.05 | 352 | 73.00 | 3760 | 105.10 | 451 | 179.05 | 481 |
| 42.75 | 392 | 74.10 | 4679 | 106.00 | 8314 | 180.05 | 3132 |
| 44.05 | 1054 | 75.00 | 460 | 107.010 | 014 | 181.15 | 317 |
| 45.05 | 3745 | 70.10 | 455 | 108．10 | 960 | 182.15 | 389 |
| 45.95 | 903 | 77.10 | 379 | 109.00 | 156 | 191.95 | 516 |
| 46.95 | 762 | 70.10 | 640 | 110.10 | 77 | 194.05 | 93 |
| 48.15 | 201 | 80.10 | 142 | 111.10 | 42 | 207.20 | 61 |
| 49.05 | 48 | 82.15 | 81 | 115.10 | 475 | 244.10 | 315 |
| 52.05 | 126 |  |  |  |  |  |  |



Scan 2290 （66． 170 min ）of DNTA：S日UR2A．D OHION EXTRACT

| m／z | abund． | miz | shund． | mix | oliund． | $m / x$ | abund． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 26.30 | 33 | 59.10 | 850 | 84.05 | 2852 | 118.20 | 79 |
| 27.20 | 351 | 60.10 | 100 | 85.15 | 565 | 117.00 | 69 |
| 28.10 | 36.75 | 61.00 | 185 | 85.05 | 3.15 | 127．15 | 183 |
| 29.10 | 1306 | 63，40 | 46 | 86.95 | 1623 | 128.05 | 974 |
| 31.20 | 236 | 60．00 | 118 | 87.95 | $1 \geqslant 8$ | 129．05 | 16320 |
| 32.10 | 1462 | 65.10 | 102 | A8． 95 | 247 | 130.05 | 1405 |
| 33.50 | 52 | 66.00 | 66 | 09.75 | 61 | 131.05 | 219 |
| 39.05 | 648 | 66.20 | 64 | 90.05 | 87 | 133.15 | 129 |
| 39.95 | 320 | 67.10 | 622 | 95.25 | 171 | 142.15 | 500 |
| 41.05 | 4429 | 68.00 | 533 | 97.15 | 475 | 145.35 | 106 |
| 42.05 | 1400 | $6 \% .10$ | 2224 | 99.05 | 232 | 196． 25 | 424 |
| 43.05 | 5501 | 70.10 | 7435 | 100.05 | 1217 | 147.15 | 3494 |
| 44.05 | 1332 | 71.10 | 6536 | 101.15 | 1923 | 148.15 | 286 |
| 45.05 | 4.75 | 72.00 | 402 | 102.15 | Q 70 | 149.25 | 95 |
| 45.75 | 62 | 73.00 | 777 | 103.15 | 180 | 157．20 | 133 |
| 48.35 | 0.3 | $74.01)$ | 184 | 104.90 | 60 | 199.30 | 203 |
| 53.05 | 411 | 25．21） | 30 | 106．10 | 71 | 212.30 | 230 |
| 54.25 | 329 | 77.20 | 0.7 | 100.10 | ＊． | 241.30 | 6.78 |
| 55.05 | 13123 | 79.00 | 139 | 111.00 | 3711 | 242.20 | 147 |
| 56.15 | 3068 | 81．00 | 206 | 112.10 | 68＋1 | 259．10 | 601 |
| 57.15 | 1085 | 182．05 | 70.3 | 113.20 | 2309 | 250.40 | 121 |

## BIBLIOGRAPHY

1. P.J. Brogden, C.D. Garbutt, and J.D. Hepworth, in "Comprehensive Heterocyclic Chemistry. The Structure, Reactions, Synthesis and Uses of Heterocyclic Compounds," ed. A.R. Katritzky and C.W. Rees, Pergamon Press, London, 1984.
2. T.J. Mabry, K.R. Markham, and M.B. Thomas, "The Systematic Identification of Flavonoids," Springer-Verlag, New York, 1970.
3. R.M.T. Dahlgren and H.T. Clifford, "The Monocotyledons. A Comparative Study," Academic Press, London, 1982.
4. N. Bell and medical staff of Grey Hospital, King William's Town and Frere Hospital, East London, personal communication.
5. C.G. Vosa, J. S. Afr. Bot., 1980, 46, 109.
6. J.M. Watt and M.G. Breyer-Brandwijk, "The Medicinal and Poisonous Plants of Southern and Eastern Africa," E. and S. Livingstone, London, 2nd edition, 1968.
7. D.G. Steyn, Onderstepoort Journal of Veterinary Science and Animal Industry, 1936, 7, 169.
8. E. Block, Scientific American, 1985, 252, 114.
9. P.M. North, "Poisonous Plants and Fungi", Blandford Press, London, 1967.
10. T. Itoh, T. Tamura, T. Mitsuhashi, and T. Matsumoto, Phytochemistry, 1977, 16, 140.
11. M.C. Brunengo, O.L. Tombesi, and E.G. Gros, Phytochemistry, 1987, 26, 3088.
12. S.D. Kravets, Yu. S. Vollerner, M.B. Gorovits, A.S. Shashkov, and N.B. Abubakirov, Khim. Prir. Soedin., 1985, 2, 188.
13. T. Robinson, "The Organic Constituents of Higher Plants," Burgess Publ. Co., Minneapolis, 1963.
14. K. Hostettmann and A. Marston, in "Foik Medicine. The Art and the Science," ed. R.P. Steiner, American Chemical Society, Washington DC, 1986.
15. R. Carle and E. Reinhard, Planta Medica, 1980, 38, 381.
16. See, for example : C.D. Kravets, Yu. S. Vollerner, M.B. Gorovits, A.S. Shashkov, and N.B. Abubakirov, Khim. Prir. Soedin, 1986, 5, 589; S. Cheng and J.K. Snyder, Tetrahedron Lett., 1987, 28, 5603; and M.A. Smoczkiewicz, D. Nitschke, and H. Wieladek, Mikrochim. Acta, 1982, II, 45.
17. Babady-Bila and K.R. Tandu, Planta Medica, 1987, 53, 85.
18. A. Hutchings and S.E. Terblanche, South African Medical Journal, 1985, 75, 62.
19. A.E. Schwarting, in "Toxicology : Mechanisms and Analytical Methods" Vol. II, ed. Stewart and Stolman, Academic Press, New York, 1961.
20. K.R. Price, I.T. Johnson, and G.R. Fenwick, CRC Critical Reviews in Food Science and Nutrition, 1987, 26, 27.
21. L.P. Miller, in "Phytochemistry, I. The Process and Products of Photosynthesis," ed. L.P. Miller, Van Nostrand Reinhold Co., New York, 1973.
22. M. Ieven and A.J. Vlietink, Pharmaceutisch Weekblad, 1981, 116, 169.
23. T.P. Antsupova and K. Samikov, Khim. Prir, Soedin., 1984, $2,257$.
24. S.H. Kamel, Zentrab1. Veterinaermed., Reihe A, 1966, 13, 662.
25. T. Henry, "The Plant Alkaloids," J. and A. Churchill, London, 1949.
26. R.F. Keeler, in "Toxic Plants" (Symposium Proceedings, 1977), ed. R. Kinghorn and A. Douglas, Columbia University Press, 1979.
27. J.B. Harborne in "The Biochemistry of Phenolic Compounds,n ed. J.B. Harborne, Academic Press, London, 1964.
28. L. Skrzypczakowa, Dissertationes Pharmaceuticae et Pharmacologie, 1967, XIX (5), 537.
29. M. Kaneta, H. Hikichi, S. Endo, and N. Sugiyama, Agric. Biol. Chem., 1980, 44, 1405.
30. C.A. Williams, Biochemical Systematics and Ecology, 1975, 3, 229.
31. E.C. Bate-Smith, J. Linn. Soc. (Bot.), 1968, 60, 325.
32. J.B. Harborne, "Phytochemical Methods," Chapman and Hall, London, 1973.
33. See, for example, J. Adell, O. Barbera, and J. Alberto Marco, Phytochemistry, 1988, 27, 2967; K.R. Markham, Phytochemistry, 1989, 28, 243; E. Messens and M. van Montagu, Carbohydr. Res. 1989, 186, 241; N. Nakaino, K. Nishizawa, I. Kanemoto, K. Murakami, Y. Takaishi, and T. Tomimatsu, Phytochemistry, 1989, 28, 301; and reference (29).
34. W.B. Whalley, in "The Pharmacology of Plant Phenolics," ed. J.W. Fairbairn, Academic Press, London, 1959.
35. F. Deeds, in "The Pharmacology of Plant Phenolics," ed. J.W. Fairbairn, Academic Press, London, 1959.
36. B. Havsteen, 2. Lebensm. - Unters. Forsch., 1980, 170, 36.
37. Q.J. Groom and T. Reynolds, Planta Medica, 1987, 53, 345.
38. G.R. Fenwick and A.B. Hanley, CRC Critical Reviews in Food Science and Nutrition, 1985, 22, 273.
39. J.E. Lancaster, P.H.S. Reynolds, M.L. Shaw, E.M. Dommisse, and J. Munro, Phytochemistry, 1989, 28, 461.
40. L.P. Nock and M. Mazelis, Phytochemistry, 1989, 28, 729.
41. J.V. Jacobsen, Y. Yamaguchi, L.K. Mann, and F.D. Howard, Phytochemistry, 1968, 7, 1099.
42. J.V. Jacobsen, Ph.D. dissertation, University of California, Davis, 1965.
43. See, for example, E. Block, R.E. Penn, and L.K. Revelle, J. Am. Chem. Soc., 1979, 101, 2200; references (47) - (52); and T. Bayer, H. Wagner, E. Block, S. Grisoni, S.H. Zhao, and A. Neszmelyi, J. Am. Chem. Soc., 1989, 111, 3085.
44. J. Emsley, New Scientist, 1989, 123 (168!), 32.
45. C.J. Cavallito and J.H. Bailey, J. Am. Chem. Soc., 1944, 66, 1950.
46. A. Stoll and E. Seebeck, Adv. Enzymo1., 1951, 2, 377.
47. E. Block and J. O'Connor, J. Am. Chem. Soc., 1974, 96, 3921 and 3929.
48. E. Block, S. Ahmad, M.K. Jain, R.W. Crecely R. Apitz-Castro, and M.R. Cruz, J. Am. Chem. Soc., 1984, 106, 8295.
49. E. Block, S. Ahmad, J.L. Catafalmo, M.K. Jain, and R. Apitz-Castro, J. Am. Chem. Soc., 1986, 108, 7045.
50. E. Block, R. Iyer, S. Grisoni, C. Saha, S. Belman, and F.P. Lossing, J. Am. Chem. Soc., 1988, 110, 7813.
51. Th. Bayer, W. Breu, O. Seligman, V. Wray, and H. Wagner, Phytochemistry, 1989, 28, 2373.
52. E. Block, A.A. Bazzi, and L.K. Revelle, J. Am. Chem. Soc., 1980, 102, 2490.
53. T. Bayer, H. Wagner, E. Block, S. Grisoni, S.H. Zhao, A. Neszmelyi, J. Am. Chem. Soc., 1989, 111, 3085.
54. R.A. Bernhard, Phytochemistry, 1970, 9, 2019, and references therein.
55. I.A. McKenzie and D.A. Ferns, Phytochemistry, 1977, 16, 763.
56. H. Kameoka, H. Iida, S. Hashimoto, and M. Miyazawa, Phytochemistry, 1984, 23, 155.
57. G.G. Freeman and R.J. Whenman, J. Sci. Fd. Agric., 1975, 26, 1869.
58. J.V. Jacobsen, R.A. Bernhard, L.K. Mann, and A.R. Saghir, Arch. Biochem. and Biophys., 1964, 104, 473.
59. St. v. Kostanecki, Chem. Ber., 1895, 28, 2901.
60. St. v. Kostanecki and J. Tambor, Chem. Ber., 1899, 32, 2260.
61. N.M. Cullinane and D. Philpott, J. Chem. Soc., 1929, 1761.
62. W.A. Hutchins and T.S. Wheeler, J. Chem. Soc., 1939, 91.
63. N.A. Bhagat and T.S. Wheeler, J. Chem. Soc., 1939, 14.
64. T. Emilewiez, St. v. Kostanecki, and J. Tambor, Chem, Ber., 1899, 32, 2448.
65. St. v. Kostanecki and J. Tambor, Chem. Ber., 1900, 33, 1988.
66. St. v. Kostanecki and V. Lampe, Chem. Ber., 1904, 37, 3167.
67. M. Breger and St. v. Kostanecki, Chem. Ber., 1905, 38, 931.
68. W. Baker, J. Chem. Soc., 1932, 1381.
69. J. Allan and R. Robinson, J. Chem. Soc., 1924, 2192.
70. A.T.M. Dunne, J.E. Gowan, J. Keane, B.M. O'Kelly, D. O'Sullivan, M.M. Roche, P.M. Ryan, and T.S. Wheeler, J. Chem. Soc., 1951, 1252.
71. R. Teoule, G. Grenier, H. Pacheco, and J. Chopin, Bull. Soc. Chim. Fr., 1961, 3, 546.
72. R. Teoule, J. Chopin, and C. Mentzer, Bull. Soc. Chim. Fr., 1959, 854.
73. R. Teoule, J. Chopin, and C. Mentzer, Compt. rend., 1960, 250, 3669.
74. R. Robinson and K. Venkataraman, J. Chem. Soc., 1926, 2344.
75. A. Lovecy, R. Robinson, and S. Sugasawa, J. Chem. Soc., 1930, 817.
76. T. Heap and R. Robinson, J. Chem. Soc., 1930, 2336.
77. I. Pri-Bar and H. Alper, J. Org. Chem., 1989, 54 (1), 36.
78. W.K. Fife and Z.D. Zhang, J. Org. Chem., 1986, 51 (19), 3744; Tetrahedron Lett., 1986, 27, 4937.
79. T. Fujisawa, T. Mori, K. Fukumoto, and T. Sato, Bull. Chem. Soc. Jpn., 1983, 56 (11), 3529.
80. A. Arrieta, T. Garcia, J. Lago, and C. Palomo, Synth. Commun., 1983, 13 (6), 471.
81. D.A. Kaiser, P.T. Kaye, L. Pillay, and G.H.P. Roos, Synth. Commun., 1984, 14 (9), 883.
82. D.A. Kaiser, P.T. Kaye and M. Moore, unpublished results.
83. S.G. Burton and P.T. Kaye, Synth. Commun., in the press.
84. S. Shinoda, J. Pharm. Soc. Jpn., 1927, 540, 25.
85. "CRC Handbook of Chemistry and Physics," CRC Press, Inc., Boca Raton, 59th. Ed., 1969.
86. "Dictionary of Organic Compounds," ed. E. and F.N. Spon, Eyre and Spotiswoode, London, 4 th Ed., 1965.
87. K. Hoesch, Chem. Ber., 1915, 48, 1122.
88. W.K. Slater and H. Stephen, J. Chem. Soc., 1920, 117, 309.
89. P.E. Spoerri and A.S. du Bois, in "Organic Reactions," Volume V, ed. W.E. Bachman, A.H. Blatt, L.F. Fieser, and J.R. Johnson, John Wiley and Sons, Inc., London, 1949.
90. L. Rao and T. Seshadri, Proc. Indian Acad. Sci., 1946, 23A, 23.
91. M.V. Bhatt and S.U. Kulkarni, Synthesis, 1983, 249.
92. F. Wessely and G.H. Moser, Monatsch. Chem., 1930, 56, 97.
93. G.A. Olah, S.C. Narang, B.G. Balaran Gupta, and R. Malhotra, J. Org. Chem., 1979, 44, 1247.
94. B. Loubinoux, G. Coudert, and G. Guillaumet, Synthesis, 1980, 638.
95. F.G. Mann and M.J. Pragnell, J. Chem. Soc., 1965, 4120.
96. J.R. McCarthy, J.L. Moore, and R.L. Gregge, Tetrahedron Lett., 1978, 5183.
97. J. March, "Advanced Organic Chemistry," 3rd Ed., Wiley-Interscience, New York, 1985.
98. J. Gripenberg, in "The Chemistry of Flavonoid Compounds," ed. T.A. Geissman, Pergamon Press, London, 1962.
99. R. Robinson and J. Shinoda, J. Chem. Soc., 1926, 1973.
100. J. Allan and R. Robinson, J. Chem. Soc., 1926, 2334.
101. J. Kalff and R. Robinson, J. Chem. Soc., 1925, 181.
102. S.M. Sethna, in "Organic Reactions," ed. W.E. Bachman, A.H. Blatt, L.F. Fieser, and J.R. Johnson, John Wiley and Sons, Inc., London, 1949.
103. L. Jurd, J. Am. Chem. Soc., 1958, 80, 5531.
104. E. Stahl, in "Thin Layer Chromatography. A Laboratory Handbook," ed. E. Stah1, Springer-Verlag, New York, 1965.
105. W. Heisig and M. Wichtl, Planta Medica, 1988, 54, 582.
106. G.D. McGinnis, Carbohydr. Res., 1982, 108, 284.
107. F.R. Seymour, E.C.M. Chen, and S.H. Bishop, Carbohydr. Res., 1979, 73, 19.
108. A.B. Blakeney, P.J. Harris, R.J. Henry, and B.A. Stone, Monosaccharide Analysis, 1983, 292.
109. J.H. Zwaving, J. Chromatogr., 1968, 35, 562.
110. M.H. Palmer, "The Structure and Reactions of Heterocyclic Compounds," Edward Arnold Publishers, London, 1967.
111. L.J. Bellamy, "The Infra-red Spectra of Complex Molecules," Chapman and Hall, London, 1975 and "Advances in Infra-red Group Frequencies, " Methuen and Co., London, 1968.
112. K. Biemann, "Mass Spectrometry," McGrawHill, New York, 1962.
113. M.H. Brodnitz, J.V. Pascale, and L. Van Derslice, J. Agr. Food. Chem., 1971, 19, 273.
114. K.O. Abraham, M.L. Shankaranarayana, B. Raghavan, and C.P. Natarajan, Lebensmitter-Wissenschaft und Technologie, 1976, 9, 193.
115. E. Block and J. O'Connor, J. Am. Chem. Soc., 1974, 96, 3921.
116. G. Vernin, J. Metzger, D. Fraisse, and C. Scharff, Planta Medica, 1986, 52, 96 and references therein.
117. K. Hayashi, I. Iida, Y. Nakao, and K. Kaneko, Phytochemistry, 1988, 27, 3919.
118. J. Bastida, F. Viladomat, J.M. Labres, C. Codina, and M. Rubiralta, Plant Medica, 1988, 52, 362.
119. M.C.B. van Rheede van Oudtshoorn, Plant Medica, 1963, 11, 332 and T.J. McCarthy and C.H. Price, Plant Medica, 1966, 14, 146.
120. Staff of Dept. of Pharmacology, University of Edinburgh, "Pharmacological Experiments on Isolated Preparations," E. and S. Livingstone, 2nd ed., 1965.
121. H.P. Rang and M.M. Dale, "Pharmacology," Churchill Livingstone, London, 1987.
122. W. Clark Still, M. Kahn, and A. Mitra, J. Org. Chem., 1978, 43, 2923.

[^0]:    Veratric anhydride $\omega$-Methoxyresacetophenone

[^1]:    * The peak ( $x$ ) on each chromatogram is typical of PAAN preparations, and is due to di-N-acetyl-O-acetylhydroxylamine. 106

[^2]:    * Complete g.c. - m.s. data listings are given in the Appendix.

[^3]:    Spray reagent : $\mathrm{SbCl}_{3}$ (

[^4]:    
    0756
    433536
    433536
    243136
    243136
    

