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ABSTRACT 

A series of 31 sulfur-nitrogen donor ligands and 64 metal(II) complexes have been investigated. The 

thiomethylated aniline ligands 2–(methylthiomethyl)aniline 2MT and 2–(methylthio)aniline 2MA 

were synthesized with their substituted derivatives (-Me, -MeO, -Cl, -Br, -NO2) to serve as chelating 

agents. These ligands behave as bidentate ligands with SN donor group with Co(II), Ni(II) and Cu(II). 

The Co(II) and Ni(II) complexes have the ML2Cl2 molecular formula while the Cu(II) complexes 

formed with MLCl2 stoichiometry where L is the bidentate ligand.  

The ligands and their metal(II) complexes have been characterized by elemental analysis and with 

spectroscopic techniques. The trend observed in the NMR spectra and IR frequencies of the 

thiomethylated compounds shows there is a significant difference between the 2MT and 2MA series 

as a result of sulfur lone pairs extending the conjugation of the aromatic ring in the case of the latter. 

The effect of the position and electronic nature of ring substituent on the NMR shifts of the amine 

protons is discussed. The 6- and 5-membered chelate complexes formed by the 2MT and 2MA 

ligands respectively do not show significant diversity in their spectroscopic properties.  

From the elemental analysis for the Co(II) and Ni(II) complexes, their compositions reveal 1:2 M:L 

stoichiometry with 2 chlorine atoms from the respective metal salts. In addition, the spectroscopic 

data are largely indicative of tetragonally distorted structures for these solid complexes. The X-ray 

crystallography data reveal the Cu(II) complexes exist as square pyramidal dimers and with long Cu–

Cl equitorial bonds fit into the tetragonally distorted octahedral structure. The electrolytic nature of 

Co(II) and Cu(II) complexes in DMF were found to be similar, they behave as non electrolytes in 

contrast to Ni(II) complexes which are 1:1 electrolytes. The electronic spectra of these metal(II) 

complexes were found to be different for both their solid forms and in solutions of DMF and DMSO 

and this has been discussed.  

The thiomethylated aniline ligands possess the amine and thioether groups which are present in many 

known biologically active compounds, hence the biological activity of the ligands and their metal 

complexes were tested against three strains of bacteria and one fungus. The methoxy-substituted 

derivatives were found to possess better inhibitory activity and this was similarly reflected in the 

metal(II) complexes. The activity of the complexes can be said to be in the order, Cu(II) > Co(II) > 

Ni(II).   

The Schiff-base derivatives were prepared from the ligands and para-methoxysalicylaldehyde and 

their Cu(II) complexes were synthesized in order to determine their biological activity. The Schiff-

base ligands were found to be less active than their parent ligands. The Cu(II) complexes are not 

soluble in water, DMSO or DMF, as a result  and could not be evaluated for their biological activity.  
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Based on the good results from the antimicrobial evaluation, the antiplasmodial activity of some of 

the Co(II), Ni(II) and Cu(II) complexes of the thiomethylated ligands against Plasmodium falciparum 

(FCR-3) was determined. At 50 μM concentration level, the Cu(II) complexes show activity equal or 

better than the prophylactic chloroquine. The Cu(II) complexes with the methoxy-substituted 

demonstrated exceptional activity but their Co(II) and Ni(II) analogues did not show any activity.  

The cytotoxicity of the active Cu(II) complexes at 50 μM concentration was determined against the 

breast cancer cell line (MDA-MB-231). The compounds destroyed the cancer cell in the range of 28–

40%, thus showing their preferred activity against the parasitic cell instead of the cancer cell. The 

selectivity demonstrated by these compounds have shown them to be potential antimalarial agents and 

this could be further investigated.  
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1.1 INTRODUCTION AND RATIONALE 

This research study is based on synthesis of arylamine-thioether ligands and their substituted derivatives 

to serve as chelating agents to complex with metal(II) ions. The derived ligands and metal complexes are 

to be characterized with elemental analysis, by spectroscopic means and structurally with X-ray 

crystallography where suitable single crystals could be grown. These compounds are to be tested for their 

biological activity as antimicrobial agents, antiplasmodial and anticancer agents.  

The arylamine-thioether or thiomethylated ligands are derived from two unsubstituted compounds; 2–

(methylthiomethyl)aniline 2MT and 2–(methylthio)aniline 2MA to form two series of ligands. The 

ligands chosen are to act as bidentate sulphur-nitrogen donors and they differ in the presence of an alkyl 

group in the former which prevents direct thioether attachment to the ring as in the case of 2MA. The 

resulting change in physicochemical properties and biological activity imposed on these sets of ligands is 

to be reported. In addition, six- and five-member chelates are expected to form on complexation of these 

ligands with metal ions and the consequent difference in properties of these complexes are to be studied.  

The substituents (R) chosen are the methyl, methoxy, bromo, chloro and nitro groups and these are 

substituted on the benzene ring in a position ortho and para to the amino group on the ring (Fig. 1.1).  
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R2

NH2

(CH2)n

S

Me

R1

R1 = H    R2 = R   para          n = 0    2MA series
R1 = R    R2 = H   ortho         n = 1    2MT series  

Fig. 1 .1 The ortho and para substituted 2MA and 2MT series  

 

This was done so that any resulting trend in physicochemical property and biological activity of these 

compounds due to change in electronic nature and position of ring substituent could be studied. The 

names and structures of these ligands are listed in Tables 1.1 and 1.2 respectively with abbreviated names 

given to denote the position of the substituent relative to the aryl amino group.   

The common donor groups that are usually present in ligands used in pharmaceutical synthesis are shown 

in Fig. 1.2. As can be observed with this list, possession of N or S donor atom is common to 75% of these 

groups and those combining the N and S donor atoms are not common. The choice of the 2MT- and 

2MA-based compounds is based on exploring their potential bioactivity due to the presence of both N 

(NH2) and S (thioether) moieties in each molecule. 

The hard-borderline and soft nature of N and S respectively permits them to form strong chelates with the 

borderline Co(II) and Ni(II) and borderline-soft Cu(II) in accordance to “Hard acid and soft base theory”.
1
   

Metal ions from Mn(II) to Zn(II) were considered so as to be able to study the characteristics of the 

derived complexes in relation to their positions across the period table. In addition, these metal ions are of 

biological relevance in living organisms, hence their complexes with the ligands of study were to be 

tested for their biological activity. 

Mn(II) is essential in malic enzyme, isocitrate dehydrogenase and pyruvate decarboxylase. Fe(II) in 

haemoglobin, Co(II) is associated with low symmetry sites in enzymes, its complexes can carry molecular 

oxygen and Co(III) is the central ion in cobalamin and cobamides. Cu(I) and Cu(II) with cuproproteins 

also transport molecular oxygen and act as good catalysts in related oxidation-reduction processes and 

Zn(II) is essential to several metalloenzymes such as carboxypeptidase A.
2
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Table 1.1 Names and structures of 2–(methylthiomethyl)anilines 

Entry Abbreviation R IUPAC name Structure 

1 2MT H 2–(methylthiomethyl)aniline 
NH2

CH2SCH3  

2 2–Me–2MT Me 2–methyl–6–((methylthio)methyl)aniline 
NH2

CH2SCH3

CH3

 

3 4–Me–2MT Me 4–methyl–2–((methylthio)methyl)aniline 
NH2

CH2SCH3H3C  

4 2–MeO–2MT MeO 2–methoxy–6–((methylthio)methyl)aniline 
NH2

CH2SCH3

OCH3

 

5 4–MeO–2MT MeO 4–methoxy–2–((methylthio)methyl)aniline 
NH2

CH2SCH3H3CO  

6 2–Cl–2MT Cl 2–chloro–6–((methylthio)methyl)aniline 
NH2

CH2SCH3

Cl

 

7 4–Cl–2MT Cl 4–chloro–2–((methylthio)methyl)aniline 
NH2

CH2SCH3Cl  

8 2–Br–2MT Br 2–bromo–6–((methylthio)methyl)aniline 
NH2

CH2SCH3

Br

 

9 4–Br–2MT Br 4–bromo–2–((methylthio)methyl)aniline 
NH2

CH2SCH3Br  

10 2–NO2–2MT NO2 2–(methylthiomethyl)–6–nitroaniline 
NH2

CH2SCH3

NO2

 

11 4–NO2–2MT NO2 4–nitro–2–((methylthio)methyl)aniline 
NH2

CH2SCH3O2N  
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Table 1.2   Names and structures of 2–(methylthio)anilines 

Entry Abbreviation R IUPAC name Structure 

1 2MA H 2–(methylthio)aniline 
NH2

SCH3  

2 2–Me–2MA Me 2–methyl–6–(methylthio) aniline 
NH2

SCH3

CH3

 

3 4–Me–2MA Me 4–methyl–2–(methylthio) aniline 
NH2

SCH3H3C  

4 2–MeO–2MA MeO 2–methoxy–6–(methylthio) aniline 
NH2

SCH3

OCH3

 

5 4–MeO–2MA MeO 4–methoxy–2–(methylthio) aniline 
NH2

SCH3H3CO  

6 2–Br–2MA Cl 2–bromo–6–(methylthio) aniline 
NH2

SCH3

Br

 

7 4–Br–2MA Cl 4–bromo–2–(methylthio) aniline 
NH2

SCH3Br  

8 2–Cl–2MA Br 2–chloro–6–(methylthio) aniline 
NH2

SCH3

Cl

 

9 4–Cl–2MA Br 4–chloro–2–(methylthio) aniline 
NH2

SCH3Cl  
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Fig. 1.2 Donor groups commonly used in modern pharmaceuticals 

 

Many of these ligands have been previously prepared (reviewed later in Section 1.2.2) and some of them 

characterized by NMR spectroscopy and mass fragmentation pattern. However no systematic or detailed 

characterization encompassing the CHNS analysis and the various spectroscopic techniques is yet to be 

reported for any of these ligands. The biological activity of 2MT and 2MA ligands has not been 

previously reported, although some research has been conducted on the 2–aminobenzothiazoles, the 

precursor to 2MA. In the same vein, no biological evaluation of their metal(II) complexes have been 

reported. These issues are addressed in this research. 

In the course of practical investigations in the laboratory, only the Co(II), Ni(II) and Cu(II) complexes 

could be synthesized. The Mn(II), Fe(II) and Zn(II) complexes did not form under similar reaction 

conditions employed for other metal(II) complexes; the individual reactants precipitated out of solution.  

As a result of antibacterial activity shown by some ligands and their Cu(II) complexes especially, the 

corresponding Schiff-bases were derived in a condensation reaction with para-methoxysalicaldehyde. 

The choice of this aldehyde is based on its antimicrobial and antioxidant property. Cu(II) complexes of 

the Schiff-base ligands were also synthesized so the effect of chelation could enhance their biological 

activity.  The names and formula of the Schiff-base ligands are listed in Table 1.3. 

In this research study, 20 thiomethylated ligands were synthesized and their Co(II), Ni(II) and Cu(II) 

complexes (53) were isolated. 11 Schiff-base ligands were derived from the parent thiomethylated ligands 

with their corresponding 11 Cu(II) complexes; a total of 95 compounds were synthesized. 
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Table 1.3 Names and structures of pMS–derived Schiff base ligands  

Entry Abbreviation IUPAC name Structure 

1 pMS–2MT  2-((E)-(2-(methylthio)methyl) 

phenylimino)methyl)-5-methoxyphenol 

H
C

N

OH S

CH3

O

CH3  

2 pMS–4Me2MT 2-((E)-(4-methyl-2-((methylthio)methyl) 

phenylimino)methyl)-5-methoxyphenol 

H
C

N

OH S

CH3

O

CH3

CH3

 

3 pMS–4MeO2MT 2-((E)-(4-methoxy-2-((methylthio)methyl) 

phenylimino)methyl)-5-methoxyphenol 

H
C

N

OH S

CH3

O

CH3

OCH3

 

4 pMS–4Cl2MT 2-((E)-(4-chloro-2-((methylthio)methyl) 

phenylimino)methyl)-5-methoxyphenol 

H
C

N

OH S

CH3

O

CH3

Cl

 

5 pMS–4Br2MT 2-((E)-(4-bromo-2-((methylthio)methyl) 

phenylimino)methyl)-5-methoxyphenol 

H
C

N

OH S

CH3

O

CH3

Br

 

6 pMS–4NO22MT 2-((E)-(2-((methylthio)methyl)-4-

nitrophenylimino)methyl)-5-methoxyphenol 

H
C

N

OH S

CH3

O

CH3

NO2

 

7 pMS–2MA 2-((E)-(2-(methylthio)phenylimino)methyl)-5-

methoxyphenol 

H
C

N

OH

S

CH3O

CH3  

8 pMS–4Me2MA 2-((E)-(4-methyl-2-((methylthio) 

phenylimino)methyl)-5-methoxyphenol 

H
C

N

OH

S

CH3O

CH3

CH3

 

9 pMS–4MeO2MA 2-((E)-(4-methoxy-2-((methylthio) 

phenylimino)methyl)-5-methoxyphenol 

H
C

N

OH

S

CH3O

CH3

OCH3

 

10 pMS–4Cl2MA 2-((E)-(4-chloro-2-((methylthio) 

phenylimino)methyl)-5-methoxyphenol 

H
C

N

OH

S

CH3O

CH3

Cl

 

11 pMS–4Br2MA 2-((E)-(4-bromo-2-((methylthio)methyl) 

phenylimino)methyl)-5-methoxyphenol 

H
C

N

OH

S

CH3O

CH3

Br
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1.2 SN AND NN DONOR LIGANDS AND THEIR METAL(II) COMPLEXES 

1.2.1 Applications of thiomethylated anilines 

Thiomethylated anilines belong to a class of sulfur-nitrogen (SN) and/or nitrogen-nitrogen (NN) donor 

groups. They are useful intermediates in production of many organic compounds which are themselves 

precursors of certain reactions. By reduction with Raney nickel,
3  

they can be used to generate ortho-

methylated anilines – which are useful intermediates in production of dyes, rubber, herbicides,
4
 as well as 

in electro-optical and many other industrial processes. They find application in preparation of sulfoxides
5 

which are desulfurized to generate methylated anilines
6
 and as starting materials

7 
for deriving 

aminobenzaldehydes which are also useful precursors to many important heterocyclics. By coupling 2–

(methylthioaniline) with another suitable aromatic polymer, suitable chelating resin
8
 has been derived for 

use in preconcentration of metal ions such as Cd, Hg, Ni, Co, Cu and Zn for analytical purposes.  

 

Their applications are summarized in the Scheme 1.1 below. 

 

 

R

NH2

(CH2)n

SCH3

Helminthosporium

[O]

R

NH2

S

O

R

NH2

SCH3

Ra Ni
R

NHAc

CHO

Ac2O,

HCl

Amberlite-XAD

n = 0, 1

H3CS

N
H
NNCH

H2C

Na2CO3, H2O

HgO, BF3.OEt2

-SCH3

 

Scheme 1.1 Applications of thiomethylated anilines 
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1.2.2 Review on synthesis of 2MT and 2MA ligands 

Many 2–(methylthiomethyl)anilines with electron-withdrawing and –donating substituents at different 

positions on the phenyl ring have been reported (that is, R = H, o-Me, p-Me, o-MeO, p-MeO, o-Cl, p-Cl, 

o-NO2, p-NO2). The synthetic routes to these compounds have employed various starting materials and 

reaction conditions. The common starting reagents include appropriate aniline or N-chloroaniline with 

dimethyl sulfide
3,6,9-13 

or dimethyl sulfoxide-trifluoroacetic anhydride.
14

  

More recently, 2–(methylthiomethyl)aniline (2MT) was derived from nitration of benzyl chloride derived 

from benzyl alcohol and subsequent reduction to the amine.
5
 The reaction conditions employed in these 

syntheses have varied from low temperature within
3,13

 or without
14

 an inert gas environment to high 

temperature/reflux
6 

condition. It is noteworthy that each of these different methods resulted in similar 

comparable products. 

The mechanism
3,11

 of the reaction as illustrated in Scheme 1.2 generally involves the mono-N-

chlorination (with a suitable halogenating agent such as t-BuoCl, N-chlorosuccinimide, chlorine) of the 

starting aniline to the corresponding N-chloroderivative, which is reacted with disubstituted sulfide 

(dimethyl sulfide, dimethyl sulfoxide-trifluoroacetic anhydride) to produce the azasulfonium salt. 

Abstraction of alpha proton of the azasulphonium salt by a base gives the azasulphonium ion 

intermediate, which undergoes an intramolecular Sommelet-Hauser (2, 3-sigmatropic)
15-17

 rearrangement 

type with exclusive attack on the aromatic ring ortho to the amino function to give the sulfinylimine, 

accompanied by hydrogen transfer and rearomatization to give the ortho-substituted-thiomethylated 

aniline.   
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R

NH2

N-Chloro derivative

R

H
N

Cl

CH3SCH3

S
CH3

H3C

Cl

Azasulfonium salt

R

H
N

S

CH3
CH3

Cl

Cl

Chlorodimethyl 
sulfonium chloride

Base

Azasulfylide ion

R

NH

CH2SCH3

H

Cyclohexadienone imine

R

NH2

CH2SCH3

Hydrogen transfer

Rearomatization

Cl

Halogenating
agent

[2, 3]- SR

HS
CH3

H2C

Cl

R

H
N

 

Scheme 1.2 The mechanism of formation for 2–(methylthiomethyl)anilines  

 

2–(Methylthio)aniline (2MA) has been reported. The common procedure
18-20

 involves the methylation of 

2-aminothiophenol into 2-(methylthio)aniline by methyl iodide in dry ethanol at low temperature in a 

basic medium, though a similar product was derived at higher reflux temperature.
 21

 It has also been 

synthesized by copper-catalyzed amination of arylhalide with sodium azide in an inert and water free 

environment.
22

 A mixture of 2– and 4–(methylthio)aniline was derived from the reaction of phenyl azide 

with sulphides in the presence of both trifluoroacetic acid and trifluoromethanesulphonic acid.
23

  

 

The overview of some of these synthesis procedures is given in Scheme 1.3. 



1. Introduction and literature review                             

  
 

10 

 

SH

NH2

SCH3

NH2

KOtBu/EtOH

CH3I

NH2

RR

AlCl3/CuI, >100oC

SCH3

NH2

Bromine

R = 4-Br

SCH3

Br

NaN3, Cu

Ascorbic acid, EtOH

N2, 100oC

R = 4-Br
R = H, 2-Me, 4-Me, 4-meO, 4-Cl

CH3SSCH3

 

Scheme 1.3 Synthesis of 2MA by and some substituted-2MA ligands 

 

 

Substituted 2–(methylthio)anilines were synthesized from the reaction of corresponding anilines with 

aliphatic disulfides in the presence of Lewis acid catalysts, particularly aluminum chloride and copper 

iodide at high temperatures of >100
o
C; mixtures of ortho- and para- substituted methylthiolated products 

resulted.
24

 The 4–bromo derivative has been synthesized by direct addition of bromine to 2–

(methylthio)aniline, the reaction being monitored by gas chromatography.
25

  

 

Substituted–2– and 4–(phenylthio)anilines were prepared by direct thiolation of an arene C–H bond using 

FeF3/I2 as catalyst.
26

 A two-pot synthetic route can also be used to generate substituted 2–

(methylthio)anilines. By alkaline hydrolysis of the appropriate 2–aminobenzothiazoles at a high 

temperature and subsequent methylation with methyl iodide, the crude substituted 2–(methylthio)anilines 

were derived.
27 

Variously substituted 2–aminobenzothiazoles were synthesized from reactions of appropriate anilines 

with potassium thiocyanate in the presence of bromine in acetic acid.
28-32

 Similar products were also 

derived when ammonium thiocyanate was used.
33-35

 Concentrated sulphuric acid in place of bromine was 

used to generate 6–methyl–2–aminobenzothiazole.
36-37
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1.2.3 Review on metal complexes of 2MT, 2MA and NN donor ligands 

Co(II), Ni(II) and Cu(II) complexes of the substituted 2MT ligands (R = H, o-Me, o–Cl and p–Cl) have 

been previously reported by Kratzl et al.
38

 The Cu(II) complexes were prepared by combining the 

appropriate metal salt in ethanol with the desired aniline derivative in the same solvent in a 1:2 mass ratio. 

Co(II) and Ni(II) complexes were prepared using similar mass reacting ratio, however both solutions were 

heated to boiling before they were mixed together and the solid complexes formed on cooling the 

mixture. The formulae of complexes formed are CuLCl2, NiL2Cl2 and CoL2Cl2 (L is the series of 2MT 

ligands) respectively. 

Complexes of Co(II), Ni(II) and Cu(II) with 2MA have been reported
39-41 

with general formula CoL2Cl2, 

NiL2Cl2 and CuLCl2 respectively, where L is 2MA and acts as a bidentate ligand.  Dunski and Crawford
39 

derived the metal complexes by dropwise addition of ethanol solution of appropriate metal chloride to 

2MA in ethanol at room temperature. However on heating both reactants to reflux, CuL2Cl2 was obtained. 

Some complexes of the stoichiometry PdCl2(NH2-SMe)2 and [Pt(NH2-SMe)2][PtCl4] were also derived
40

 

with 2MA, the S–demethylation of the ligand is reported to occur when these complexes are heated in 

dimethylformamide yielding the thiolo-bridged complexes M2Cl2(NH2-S)2. The analogous nickel complex 

was not demethylated under similar conditions however. 

 

1.2.4 Spectral and magnetic properties of 2MT, 2MA, related compounds and complexes  

Functional groups associated with primary amine in 2MA ligands have been assigned their infrared and 

Raman shifts. Generally the N–H asymmetric and symmetric stretches, NH2 scissor bend and C–N stretch 

were assigned
19,23,39

 infrared frequencies in the ranges 3470 – 3424, 3365 – 3325, 1600 – 1610 and 1300 – 

1310 cm
–1

 respectively. In the modeling studies
42

 of 2MA, Raman shifts of 3345, 1683 and 1305 cm 
–1

 

were assigned to the N–H asymmetric stretching, NH2 bending and C–N stretching modes respectively.     

The infrared absorptions of the metal(II) complexes are characterized by the amine N–H  stretches which 

are shifted to lower wavenumber on coordination compared to the parent ligand. As expected, 

coordination normally leads to a shift of the N–H stretching vibration to lower frequencies;
40

 the range of 

shifts reported usually between 150 and 300 cm
–1

 for the metal complexes. The NH2 bend and C–N 

stretch likewise undergo shifts to lower frequencies by 10 – 30 cm
–1

.  
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In the complexes of 2MT and related ligands with Co(II), Ni(II) and Cu(II), the NH2 asymmetric and 

symmetric stretches were red shifted by 150–200 cm
–1

 in the coordination compounds.
38,41,43,44 The N–H 

infrared frequencies of 2MA complexes reported
39

 were shifted to a much lower frequency (by 150–270 

cm
–1

) compared to those of 2MT complexes. The magnetic moments for these complexes are 4.79, 3.11 

and 1.77 B.M. for Co, Ni and Cu complexes respectively.
39

 

Aniline as a ligand belongs to a class of N donor group and two moles of it can be used in coordination to 

a metal ion. Infrared studies of aniline
 
and its complexes with Mn(II), Co(II), Ni(II), Cu(II), Zn(II), 

Cu(II), Pd(II) and Pt(II) halides were made using 15-N
45,46

 and 2-D
47

 labelling. Different vibrations in the 

compound were assigned on the basis of observed shifts in frequency of each group on deuteration; NH2 

stretching and scissoring vibrations were assigned 3440 – 3481, 3360–3395 and 1618 cm
–1

 respectively, 

and C–N stretch 1271–1278 cm
–1

.  

In the aniline complexes, a decrease of 100 – 200 cm
–1

 occurred for asymmetric and symmetric NH2 

stretches and a lower frequency shift of 40 – 70 cm
–1

 for C–N was observed; this is expected with the 

decrease in C=N double bond character. Absorptions in the region 370 – 450 cm
–1

 were suggested to due 

to metal to nitrogen stretch and in the series of metal(II) complexes studied,
45

 their frequencies decreased 

in the order Pt > Pd > Cu > Co > Mn > Zn > Cd. The trend was ascribed to be partly due to differences in 

absorption profile attributed to coupling between NH, vibrations in amino groups having different relative 

conformations in the different complexes. These conformations appear to be determined by the over-all 

configuration (planar square, tetrahedral or octahedral) and by the size of the halogen atoms. Metal to 

chlorine stretches in these complexes in the range 295–334 cm
–1

 were assigned on the basis of their 

absence in the spectra of the corresponding bromide and iodide complexes. Two bands were observed for 

tetrahedral complexes due to the asymmetric and symmetric stretching vibrations.
45

 

In another study
48

 of infrared spectra of octahedral and tetrahedral aniline complexes with Co(II), Ni(II), 

Cu(II) and Zn(II), metal to nitrogen and metal to halogen stretching frequencies were assigned on the 

basis of the band shifts which occur on 15–N labelling and metal ion and halogen substitution; bands in 

the region 170–320 cm
–1 

and 350–450 cm
–1

 to M–Cl and M–N bands respectively. Lower frequency shift 

of these bands was observed in the complexes on moving from lower to higher coordination number. 

Metal to ligand bands in cis- and trans-[Pt(An)2X2] ( X = Cl, Br, I) were assigned
49

 by 15–N labelling and 

varying the halogen. The stretching frequency for Pt – N is 374 cm
–1

 in both cis- and trans- complexes 

while bands at 330, 230 and 170 cm
–1

 were assigned v(Pt – X) for X = Cl, Br and I respectively.  
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In the complexes of 2MA with Ru, Ni, Pd and Pt reported, the M–Cl bands in the infrared region are 

found to be dependent on the structure of the compounds. Two M–Cl bands in Ru(II) complex, RuL2Cl2,
19 

were assigned 310 cm
–1

 and 320 cm
–1

 indicating the chlorine atoms are cis to each other.
50

 In a study
51

 of 

low frequency infrared spectra of NiL2Cl2 (L, bidentate), [PdL2]Cl2 (L, bidentate) and PtL2Cl2 (L, 

monodentate), where L is 2MA,  a M–Cl band was observed at 345 cm
–1

 for the nickel complex; which 

could indicate an octahedral nickel complex with trans chlorine atoms for the nickel complex. The earlier 

work of Livingstone on other Ni(II) complexes supported this.
52

 No M–Cl band was observed in the 

region 270–360 cm
–1

 expected for Pd–Cl, supporting the presence of ionic chlorides. It was suggested the 

complex PtL2Cl2 may have a cis structure due to two M–Cl bands observed at 336 cm
–1

 (symmetric) and 

325 cm
–1

 (asymmetric), the weak symmetric band not infrared active in the trans isomer.  

Complexes of nickel(II) with N donor ligands such as aniline, pyridine, quinoline and dipyridine were 

isolated and found to exhibit diverse geometries with the colour of the complexes changing as the ligands 

are replaced. For NiCl2(aniline)2,
53

 when aniline was replaced with ligands of stronger field such as 

pyridine
54

, quinoline
55

 and dipyridine,
56

 the colour of the complexes were blue or yellow. These 

complexes exhibited varying geometries as octahedral, tetrahedral or square planar depending on their 

coordination number of the ligands. Their magnetic moments were found to be typical of octahedral ( = 

3.20–3.41 B.M.), tetrahedral ( = 3.54 B.M.) and diamagnetic square planar complexes. The nickel 

complex of the type Ni(NNS)2 has moment 3.42 B.M. which is above the range 2.9-3.3 B.M. generally 

accepted as typical of octahedral Ni(II). However, it falls within the range 3.3-3.5 B.M. found for many 

tetragonal Ni (II) complexes.
57

 

The solid reflectance spectra
38 

of Co(II) complexes of 2MT show three bands in the ranges 480–500, 540 

and 560–590 nm while the electronic spectra in DMF show two bands at 600–610 and 660–670 nm (log  

about  2.5). A change in configuration from octahedral to tetrahedral was implied with these large shifts 

in wavelengths and with change in colour from pink to dark blue on dissolution in DMF. The magnetic 

moments of Co(II) complexes of 2MT studied are between 5.24 and 5.28 B.M.
38 

In the electronic spectra of Ni(II) complexes of 2MT ligands,
38

 an octahedral structure was assigned due 

to three bands observed in their solid reflectance spectra at 410–420, 650–660 and 725–740 nm which 

were shifted to 420, 620 and 685–700 nm respectively in solution spectra with DMF. It was suggested the 

shift to higher energy could be as a result of replacement of Cl with DMF as the latter is higher in 

spectrochemical series. The magnetic moments for these complexes are in the range 3.04-3.20 B.M.
38
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For the copper(II) complexes of 2MT, 2Me–2MT, 2Cl–2MT and 4Cl–2MT already reported, distorted 

octahedral or tetragonal structures were suggested. Their absorption spectra were found to be almost 

identical to those of Cu(ClO4)2 in DMF,
58

 displaying only one absorption maximum in the near UV 

region. Magnetic moments were measured between 1.86 and 1.95 B.M.
58 

 

 

1.3 SCHIFF BASE LIGANDS AND COMPLEXES  

Schiff-base was first synthesized by Hugo Schiff.
59

 Schiff-bases are derived from condensation reaction 

between a primary amine (-NH2) and a carbonyl (-C=O from a ketone or an aldehyde group). The 

resulting imine functionality is the hallmark for Schiff-bases products. Water is also eliminated alongside 

in the condensation reaction (Fig. 1.3). The formation of a Schiff base is a reversible reaction and 

generally takes place under acid or base catalysis or upon heating. 

 

 

R NH2

O

R1 R2

H2O

N

R1 R2

R

H+/ OH-/

 

Primary amine Carbonyl group Schiff-base Water 

 

Fig. 1.3 Condensation reaction for the formation of Schiff-bases 

   

 

Schiff bases of aliphatic aldehydes are relatively unstable and readily polymerizable
60,61

 while those of 

aromatic aldehydes having effective conjugation are more stable.
62

Aldehydes react faster than ketones in 

formation of Schiff-bases as the reaction centres of aldehydes are sterically less hindered than that of 

ketones.
63 

 

Schiff bases are better coordinating ligands when they bear a functional group, usually the hydroxyl, 

sufficiently near the site of condensation in such a way that a five- or six-membered chelate can be 

formed with a metal ion.  
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1.3.1 Spectroscopic properties of Schiff bases 

Schiff-base ligands have been characterized by infrared, nuclear magnetic resonance and 

ultraviolet/visible spectroscopic methods. The νC=N (as well as νC-O for those with hydroxyl group) 

stretching frequency is the main typical feature used for the characterization of Schiff-bases and chemical 

shifts of the azomethine proton (HC=N) are usually investigated in the NMR study. 

 

The νC=N frequency of Schiff-bases generally occurs in the region 1680-1603 cm
–1

 when H, alkyl or 

phenyl groups are bonded to carbon and nitrogen atoms.
64 

 The position of this vibrational frequency is 

affected by the physical state of the compound, the nature of the substituent, conjugation with either 

carbon or nitrogen or both, and hydrogen bonding. 

 

For Schiff bases of the type Ar–CH=N–R (where Ar is an un-substituted phenyl group), two different 

ranges were reported
65,66 

for νC=N frequency; 1650-1638 cm
–1

and 1650-1645 cm
–1 

respectively.  

 

With substitution of a nitro or halogen group on the phenyl ring, a range of 1657-1631cm
–1

 was 

observed.
65 

A frequency region of 1631–1613 cm
–1

 were found for the compounds of the type Ar–CH=N–

Ar.
67 

The presence of an OH group at the 2-position of the phenyl ring effects a red shift, with a frequency 

shift of about 8 cm
–1

 using N-benzylideneaniline as a reference. In these compounds, the phenolic C–O 

stretching vibration occurs between 1288 and 1265 cm
–1

.  

 

The C=N stretching frequency is generally shifted to lower energies upon coordination to metal ions 

through both O and N atoms. Kovacic
68 

assigned the νC=N frequency in some substituted salicyl-

aldiminatocopper(II) complexes in both the solid state and in solution. In nujol mull, it was found at 

1603–1616 cm
–1

, while in dichloromethane the band is shifted to 1601–1612 cm
–1

. In the Cu(II) 

complexes, the phenolic C–O appears in the region 1310–1330 cm
–1

, as compared to 1265–1288 cm
–1

 in 

the free ligands. 

Absorption due to the free O–H stretching vibration is not always observed in the infrared spectra of 

Schiff-bases derived from 2-hydroxybenzaldehyde and aniline.
68

 This has been attributed to the formation 

of intra-molecular hydrogen bonding resulting in a stable six-membered chelate, as seen below (Fig. 1.4). 

Instead, a broad, weak band having some fine structures is found in the region from 3100–2700 cm
–1

, 
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most of the fine structure is due to the C–H modes. However, Baker and Shulgin
69

 as well as Kovacic
68 

have assigned a weak band near 2730 cm
–1

 to the internally hydrogen bonded O–H  stretching vibration. 

O

H

N

R

R1

 

Fig. 1.4 Hydrogen bonding in salicyaldimines 

 

UV/Visible spectra of some Schiff-bases have been reported. The Schiff-base ligands synthesized by 

Abdu-Elzaher
70

 exhibited three peaks at about 270 nm, 330 nm, and 372 nm and were characterized as 

follows: the first two peaks were attributed to benzene π → π* and imino π → π* transitions while 372 

nm was assigned to n → π* transition. Zhoa et al.
71 

has also assigned the band at 334 nm to the 

azomethine chromophore π → π* transition while the bands at higher energies (212 and 281 nm) were 

regarded as associated with the benzene π → π*. However, Ramesh and Maheswara
72

 assigned π → π* 

and n → π* of the imine bond to the bands at 295–249 nm and 330–346 nm respectively. On the other 

hand, the azomethine chromophore π → π* or n → π* transition always undergoes either a red or blue 

shift in the complexes, depending on the nature of the Schiff base and the metal ion. This is usually used 

as an indication of the involvement of imino nitrogen in coordination to metal ion. The bands assigned to 

benzene π → π* transitions are always only slightly affected.
72

 

 

1.3.2 Application of Schiff bases 

Schiff-bases have useful applications as antibacterial
73-78

 and antifungal agents.
79-80

 Schiff base products 

obtained from aminopyridines and o-hydroxyaromatic aldehydes have been demonstrated to serve as 

analytical agent for metal analyses,
81-83

 hence encouraging investigations of the corresponding metal 

complexes. 

 Schiff bases are often used as ligands in coordination chemistry to form metal complexes owing to their 

metal binding ability.
82,84-86

 Schiff bases are able to stabilize many different metals in various oxidation 

states, controlling the performance of metals in a large variety of useful applications in biological, 

clinical, analytical and industrial in addition to their important roles in catalysis and organic synthesis.
87 
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Not only have they played a seminal role in the development of modern coordination chemistry, but they 

can also be found at key points in the development of inorganic biochemistry.
88

  

A considerable number of Schiff-base complexes have potential biological interest, being used as 

successful models of biological compounds.
89-90

 Schiff base complexes incorporating phenolic group as 

chelating moieties in the ligand are considered as models for executing important biological reactions and 

mimic the catalytic activities of metalloenzymes.
91

  

 

Macrocyclic derivatives of these Schiff bases have many fundamental biological functions, such as 

photosynthesis and transport of oxygen in mammalian and other respiratory system.
92-93

 Schiff base 

ligands containing various donor atoms (like N, O, S) show broad biological activity and are of special 

interest because of the variety of ways in which they are bonded to metal ions.  

 

It is known that the existence of metal ions bonded to biologically active compounds may enhance their 

activities.
87,94-95

 In recent years, because of new interesting applications found in the field of pesticides 

and medicine, the metal complexes with tridentate O, N, N types of alternative structures have attracted 

the attention of chemists. Various metal complexes with bi- and tridentate Schiff-bases containing 

nitrogen and oxygen donor atoms play important role in biological system and represent interesting 

models for metalloenzymes, which efficiently catalyze the reduction of dinitrogen and dioxygen.
96

  

 

Schiff-base formation in the biological environment is widely found in the chemistry of pyridoxal 

phosphate (PLP), a derivative of pyridoxine otherwise known as vitamin B6. The role of this coenzyme is 

significant for living matter as far as the metabolism of amino acids is concerned.
97

 In PLP-dependent 

enzymes, the coenzyme binds to the protein through the formation of an imine with the E- amino group of 

a lysine residue.
98

 Stereochemical investigations
99

 carried out with the aid of molecular models showed 

that Schiff-bases formed between methyl-glyoxal and the amino group of the lysine side chains of 

proteins can bend back towards the N atom of peptide groups in such a way that a charge transfer can 

occur between these groups and the oxygen atoms of the Schiff bases. 

Salicylaldiminato Schiff-bases have been used in DNA cleavage due to their intramolecular charge 

transfer.
100,101

 Schiff bases are involved as intermediates in the processes of non-enzymatic 

glycosylations.  

 



1. Introduction and literature review                             

  
 

18 

 

1.3.3 Copper complexes of Schiff-bases 

Copper complexes containing Schiff-base ligands are of great interest since they exhibit biological 

activities such as antitumor and anti-Candida.
102

 Some copper complexes have been found to inhibit 

cellular proteasome and cause inhibition of cancer cell growth.
103

 

The Cu(II) complexes of Schiff-bases are also important in catalysis and act as models in bioinorganic 

system because of charge symmetry and the possible fine-tuning of the electronic properties by different 

substitutions. This can create active sites with potential regioselective molecular recognition, as suggested 

by the head-to-tail arrangements of the molecules found in the crystal structures.
104-105

 

Cu(II) complex with the Schiff base derived from 5-nitro-salicylaldehyde and ethylenediamine suggests 

coordination through azomethine N atom and phenolic oxygen after deprotonation.
104-105

 The copper 

complex offered a large variety of molecular structures and electronic properties as well as the possibility 

of enhancing, or 'switching on' the nonlinear optical properties of the organic ligands through 

complexation to a metal center.
106

  

Cu(II) complex with Schiff-base (salicylaldehyde-amino ethanol) and phenanthroline base has a 

suggested square pyramidal geometry.
107 

The Schiff base coordinates in tridentate manner through ONO 

system, while heterocyclic base in bidentate manner through N-N system.
107

 The complex exhibits visible 

light-induced cleavage of double standard DNA and thus is of current importance for therapeutic 

applications.
108-109

 The photo excited electronic state of the complex initiates a series of chemical 

reactions that lead to the oxidative cleavage of the nucleic acid. The compound exhibits red-light-induced 

photo cleavage of DNA and has found clinical applications in the emerging field of photodynamic 

therapy (PDT) of various cancers
110- 111 

and hepatotoxicity.  

The brown colored Cu(II) complex with a Schiff base derived from 4-aminoantipyrine and 2-hydroxy-1-

naphthaldehyde has been characterized.
112

 The ligand is monobasic and tridentate in nature forms the 

complex through azomethine nitrogen, antipyrine ring oxygen, phenolic oxygen after deprotonation and 

acetate ion forming square planar geometry. The complex exhibits wide applications in biological system 

and industrial uses, especially in catalysis and dying.  

Cu(II) complexes with two flexible Schiff bases, bis-[(N, N'-3,5-di-tert-butylsalicylidene)-4,4'-

diaminodiphenyl] ether and bis-[(N,N'-3-tert-butyl-5-methylsalicylidene) 4, 4'-diaminodiphenyl] ether 
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were prepared in high yields and their structures were determined by X-ray single-crystal diffraction.
113 

Infrared spectrum of the complexes shows coordination through azomethine nitrogen atom and 

deprotonated phenolic oxygen atom. The X-ray structure shows clearly that complex is a double helical 

structure. The neutral helix contains two Cu(II) ions and two deprotonated ligands with the Cu....Cu 

separation, that is shorter than other analogous Schiff base dinuclear Cu(II) complexes.
114

 Each copper 

center is bonded to two salicyladimine units to attain pseudo-tetrahedral coordination geometry. The 

complexes have attracted much attention because of the fundamental role of helicity in biology and the 

potential applications in the fields of asymmetric catalysis and non-linear optical materials.
115

 A new 

macrocyclic ligand was synthesized by reaction of 2, 6-diaminopyridine and 1,7-bis(2-formylphenyl)-

1,4,7-trioxaheptane and its Cu(II) complex synthesized by template effect is binuclear. The comparative 

electrochemical study shows that the complex exhibited a quasi-irreversible reduction process in DMSO 

solution.
116

 

A comprehensive review on the biological activity of Schiff bases and their metal complexes has been 

written by Arulmurugan et al.
117 

 

1.4 ANTIBIOTIC SUSCEPTIBILITY TESTING (AST) 

1.4.1 General introduction 

The history of antimicrobials began in 1877 with the observations of Pasteur and Joubert, who discovered 

that one type of bacteria could prevent the growth of another. They did not know at that time that the 

reason one bacterium failed to grow was that the other bacterium was producing an antibiotic. 

Antimicrobial therapy is the treatment of infectious disease using, typically, chemotherapeutic agents that 

either kill microbes or otherwise interfere with microbial growth. 

In general, antimicrobial drugs can be classified
118

 into two categories; the first comprises of those 

obtained from natural sources such as beta-lactam antibiotics (e.g. penicillins, cephalosporins) and protein 

synthesis inhibitors (e.g. aminoglycosides, tetracyclines, chloramphenicol). The second category includes 

the synthetic antibiotics such as the sulphonamides, cotrimoxazole, antivirals, antifungals, antimalarials, 

anticancer drugs etc. 

 

http://en.wikipedia.org/wiki/Louis_Pasteur
http://en.wikipedia.org/w/index.php?title=Jules_Francois_Joubert&action=edit&redlink=1
http://www.mansfield.ohio-state.edu/~sabedon/black14.htm#infectious_disease
http://www.mansfield.ohio-state.edu/~sabedon/black13.htm#chemotherapeutic_agent
http://www.mansfield.ohio-state.edu/~sabedon/black12.htm#bactericidal_effects
http://www.mansfield.ohio-state.edu/~sabedon/black12.htm#bacteriostatic_effects
http://en.wikipedia.org/wiki/Beta-lactam
http://en.wikipedia.org/wiki/Penicillins
http://en.wikipedia.org/wiki/Cephalosporins
http://en.wikipedia.org/wiki/Protein_synthesis_inhibitors
http://en.wikipedia.org/wiki/Protein_synthesis_inhibitors
http://en.wikipedia.org/wiki/Aminoglycosides
http://en.wikipedia.org/wiki/Tetracyclines
http://en.wikipedia.org/wiki/Chloramphenicol
http://en.wikipedia.org/wiki/Sulphonamides
http://en.wikipedia.org/wiki/Cotrimoxazole
http://en.wikipedia.org/wiki/Antiviral_drug
http://en.wikipedia.org/wiki/Anti-fungal
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1.4.2 Modes (mechanism) of action  

It is always desirable to know the mode of action of an agent and five modes of antimicrobial action have 

been identified
119 

viz. 

(i) Inhibition of cell wall synthesis  

(ii) Disruption of cell membrane function  

(iii) Inhibition of protein synthesis  

(iv) Inhibition of nucleic acid synthesis (i.e., inhibition of replication of genetic material 

or transcription).  

(v) Action as antimetabolites 

For an antibiotic to affect the growth of a microbial cell it must (i) enter the cell and reach the site of 

action, (ii) bind to a target molecule involved in an essential cell process, (iii) markedly inhibit this 

process. An antibiotic can be bactericidal or bacteriostatic. A bactericidal effect occurs when the 

antibiotic interaction results in an irreversible disruption or binding whereas a bacteriostatic effect 

involves lower affinity binding and as such is reversible when the antibiotic is removed from the 

environment.
119 

 

1.4.3 Classification of organisms based on activity  

The result of the activity of antimicrobial agents has led into the classification of microorganisms into 

categories of susceptibility. The Kirby-Bauer method
120

 and its modifications recognize three categories 

of susceptibility as susceptible, intermediate susceptible and resistant.  

An organism is said to be "susceptible" to a drug when the infection caused by it is likely to respond to 

treatment with this drug at the recommended dosage.  

“Intermediate susceptibility” covers two situations. It is applicable to strains that are "moderately 

susceptible" to an antibiotic that can be used for treatment at a higher dosage because of its low toxicity or 

because the antibiotic is concentrated at the focus of infection. The term also applies to those strains that 

are susceptible to a more toxic antibiotic that cannot be used at a higher dosage. In this situation the 

intermediate category serves as a buffer zone between susceptible and resistant.  

http://www.mansfield.ohio-state.edu/~sabedon/black13.htm#inhibition_of_cell_wall_synthesis
http://www.mansfield.ohio-state.edu/~sabedon/black13.htm#disruption_of_cell_membrane_function
http://www.mansfield.ohio-state.edu/~sabedon/black13.htm#inhibition_of_protein_synthesis
http://www.mansfield.ohio-state.edu/~sabedon/black13.htm#inhibition_of_nucleic_acid_synthesis
http://teach.microbiol.unimelb.edu.au/micro/interLab/sectionA/topic1/4.1.html
http://teach.microbiol.unimelb.edu.au/micro/interLab/sectionA/topic1/4.1.html
http://teach.microbiol.unimelb.edu.au/micro/interLab/sectionA/topic1/4.1.html
http://teach.microbiol.unimelb.edu.au/micro/interLab/sectionA/topic1/4.1.html
http://teach.microbiol.unimelb.edu.au/micro/interLab/sectionA/topic1/4.1.html
http://teach.microbiol.unimelb.edu.au/micro/interLab/sectionA/topic1/4.1.html
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The term "resistant" implies that the organism is expected not to respond to a given drug, irrespective of 

the dosage and the location of the infection.
121

 

Bacteria demonstrate two kinds of resistance to antibiotics, namely intrinsic and acquired resistance. 

Intrinsic resistance means that the species was resistant to an antibiotic even before its introduction. 

Acquired resistance means that the species was originally susceptible to an antibiotic, but later became 

resistant. Bacteria can acquire antibiotic resistance either by mutation or through exchange of genetic 

material among same or closely related species. The sudden acquisition of resistance to antibiotics poses 

difficulties in treating infections. Resistance to several different antibiotics at the same time is even more 

significant problem. It is because of the acquired resistance that bacterial isolates must be subjected to 

antibiotic susceptibility testing.  

 

1.4.4 Antibiotic susceptibility testing methods
122

 

1. Quantitative Methods   

2. Qualitative Methods   

3. Automated Susceptibility Tests 

4. Newer Non-Automated Susceptibility Tests   

5. Molecular Techniques  

1. Quantitative methods: In these tests, the minimum amount of antibiotic that inhibits the 

visible growth of an isolate or minimum inhibitory concentration (MIC) is determined. Bacterial isolate is 

subjected to various dilutions of antibiotics. The highest dilution of antibiotic that has inhibited the 

growth of bacteria is considered as MIC. These tests can be performed on broth or agar. These are 

classified as: 

1. Broth dilution methods  

 a. Macrobroth dilution MIC tests 

 b. Microbroth dilution MIC tests 

2. Agar dilution methods 
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Macrobroth dilution tests: A serial two-fold dilution of antibiotic are made in test tubes from 0 to 

maximum concentration that is achieved in vitro without toxic effect on patient. The inoculum density of 

bacterial isolate to be tested is standardized with 0.5 McFarland turbidity standard. The suspension should 

have a final inoculum of 5 X 10
5
 CFU/mL. 1mL of bacterial suspension is added to rows of antibiotic 

solution and incubated at 37
o
C overnight. The lowest concentration of antibiotic that completely inhibits 

visual growth of bacteria (no turbidity) is recorded as MIC.
122

 

Microbroth dilution tests: A polystyrene tray containing 80 wells is filled with small volumes of 

serial two-fold dilutions of different antibiotics. The inoculum suspension and standardization is done 

according to McFarland standard. The bacterial inoculum is then inoculated into the wells and incubated 

at 37
o
C overnight. MIC is determined as in macrobroth dilution test.  

Agar dilution method: A serial two-fold dilution of the antibiotic is prepared in Mueller-Hinton agar. 

The bacterial inoculum is standardized according to McFarland standard. Using a micropipette a 

measured small volume (usually 1–10 mL) is inoculated on the surface of agar and incubated at 37
o
C 

overnight. The lowest concentration of antibiotic that inhibits visible growth on surface of agar is taken as 

MIC. 

2. Qualitative Methods: These tests categorize a bacterial isolate as sensitive, intermediate or 

resistant to a particular antibiotic. This is the disk diffusion susceptibility test. 

Disk diffusion test: In this method the standardized bacterial isolate is spread on an agar plate and then 

paper disc containing specific concentration of antibiotics are placed and incubated at 37
o
C overnight. If 

the organism is susceptible to the antibiotic, it does not grow around the disk thus forming a zone of 

inhibition. Strains resistant to an antibiotic grow up to the margin of disk. The diameter of zone of 

inhibition
123

 must be measured and result read from the Kirby-Bauer chart as sensitive, intermediate or 

resistant.  

 

3. Automated Susceptibility Methods: Determination of bacterial growth in wells containing 

antimicrobial agent are performed in short period of time using computer-assisted instruments. Various 

techniques include turbidimetric detection, flourimetric detection and Video Image processing.  
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Newer Non-Automated Susceptibility Tests include the alamarBlue® assay which incorporates an 

oxidation-reduction indicator that both fluoresces and changes color in response to chemical reduction of 

growth medium resulting from microorganisms and mammalian cell growth.
123

  Etest® is a predefined, 

stable gradient of 15 antibiotic concentrations on a plastic strip which makes use of innovative dry 

chemistry technology and is used to determine the on-scale minimum inhibitory concentration (MIC) of 

antibiotics, antifungal agents and anti-mycobacterial agents.
124

 The Spiral Gradient Endpoint (SGE) test 

provides highly sensitive and repeatable MIC determinations by the agar dilution method. A gradient of 

antimicrobial concentrations is produced in the agar by deposition of a stock solution with a spiral 

plater.
125

 

 

4. Molecular Techniques involve the detection of gene coding for resistance to one or several 

drugs by techniques such as polymerase chain reaction (PCR) and deoxyribonucleic acid (DNA) 

hybridization.
122

 

Important features of quality assurance in antibiotic susceptibility testing are listed below
126

  

- Use antibiotic discs of 6 mm diameter 

- Use correct content of antimicrobial agent per disc 

- Stock the supply of antimicrobial discs at -20
o
C 

- Use Mueller-Hinton medium for antibiotic sensitivity determination 

- Use appropriate control cultures 

- Use standard methodology for the test 

- Use coded strains from time to time for internal quality control 

- Keep the antibiotic discs at room temperature for one hour before use 

- Incubate the sensitivity plates for 16-18 hours before reporting 

- Incubate the sensitivity plates at 35
o
C/37

o
C as appropriate 

- Space the antibiotic discs properly to avoid overlapping of inhibition zone 

- Use inoculum size that produces near confluent growth 

- Ensure an even contact of the antibiotic disc with the inoculated medium 

- Measure the zone sizes precisely using a ruler  

- Interpret the zone sizes by referring to standard charts. 
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1.5 ANTIMALARIAL AGENTS 

1.5.1 Malaria disease 

Malaria is an infectious disease transmitted by the bite of an infected female mosquito of the Anopheles 

genus. The malaria causative agent, transmitted by the mosquito vector, is a unicellular eukaryote (i.e. 

protist) belonging to the Apicomplexa phylum and named Plasmodium spp. It is an obligate intracellular 

parasite. Five species Plasmodium spp. are infectious to humans: P. falciparum, P. vivax, P. ovale, P. 

malariae, and P. knowlesi. P. falciparum is responsible for most of the deaths from malaria. Malaria is 

present in most inter-tropical countries, and is the cause of an estimated one in every five childhood 

deaths (20%) in Africa. It is calculated that an Africa child has on average 1.6 to 5.4 episodes of malaria 

fever each year and a child there dies from malaria every 30 s.
127

 Malaria is a major public health problem 

which puts 3.3 billion people at risk and affects almost half a billion people worldwide, resulting in 

around 1–3 million deaths each year,
128 

with a recent encouraging decrease to under 1 million casualties in 

recent years.
127

  

 

1.5.2 Advances in antimalarial agents  

As a result of its continuing danger to public health, various approaches have been used in order to 

eliminate or reduce significantly the menace of malaria. These include the use of insecticides, vaccines 

and chemotherapy.
129

  

Insecticides (e.g. DDT) which act as poisons to mosquito can be sprayed in a given area (indoor residual 

spraying (IRS)) or coated on materials such as bed nets (insecticide treated nets (ITN) and long lasting 

insecticidal nets (LLIN)). The indiscriminative use of massive insecticide sprayings, however, has led to 

the resurgence of insect resistance. The ITN and LLIN approaches have been effective and could lower 

transmission by 90% and child mortality by 10% if used by all. However, a recent study has shown 

mosquito are developing resistance to insecticides, even the newest long lasting compounds (i.e. the LLIN 

approach), in short period of time.
130
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Several pathways and protein targets are currently assessed as potential targets for vaccines and are on 

clinical trial
131

 and a recent and promising study has been led and published on a phase 3 clinical trial for 

over more than 15 000 patients in seven African countries.
132

  

Chemotherapy is an approach that involves the use of chemical agents. So far, malaria control has relied 

heavily on a restricted number of chemically related drugs belonging to either the quinoline or the 

antifolate groups. Quinoline-based antimalarials include quinine, chloroquine, etc. It is generally believed 

that they target the catabolism of the host’s haemoglobin by the parasite which take place in the acidic 

food vacuole,
133,134

 specifically inhibiting haemozoin formation.
135

  

Until the mid 20
th
 century, chloroquine (CQ) (Fig. 1.5) was the most efficient molecule to efficiently treat 

malaria but the parasite has developed a global resistance to the molecule. 
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Fig. 1.5 Antimalarial drugs and potential metal-based antimalarial drugs 

Other types of antimalarial drugs are the antifolates, which interfere with folate metabolism, a pathway 

essential to malaria parasite survival. This class of drugs includes effective causal prophylactic and 
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therapeutic agents, some of which act synergistically when used in combination with one another. The 

most commonly used antifolate combinations are pyrimethamine, chloroquanide or dapsone as a 

dihydrofolate reductase (DHFR) inhibitor combined with sulfalene or sulfadoxine as a dihydropteroate 

synthase (DHPS) inhibitor.
136

 The antifolates have been proven to be susceptible to resistance by the 

malaria parasite. Resistance is caused by point mutations in DHFR and DHPS, the two key enzymes in 

the folate biosynthetic pathway that are targeted by the antifolates.
137

 There are numerous marketed 

monotherapies from this class. Drug combinations of proguanil and atovaquone (malarone) are also 

available.
138

 

In search of new and more effective organic drugs that can prevent the parasite resistance, a significant 

contribution in the field of antimalarial chemotherapy has been identified as the active component, 

artemisinin. Artemisinin-based combination therapies are considered the most efficient treatment to cure 

malaria patients.
127

 Difficulties in the formation of artemisinin led to discovery of its water soluble 

counterparts, dihydroartemisinin and artesunate.
139

 These compounds are believed to be activated by the 

iron-rich environment inside the parasite.
140

 Generation of such a reactive chemical entity produces 

several chemical transformations.
141-143

 Although extremely efficient to treat malaria patients, artemisinin 

is currently threatened by the emergence of resistant parasite in south east Asia.
144,145

 

 

1.5.3 Antimalarial drug resistance 

Antimalarial drug resistance has been defined as the ability of a parasite to survive and/or multiply despite 

the administration and absorption of a drug given in doses equal to or higher than those usually 

recommended but within tolerance of the subject. The drug in question must gain access to the parasite or 

the infected red blood cell for the duration of the time necessary for its normal action. Resistance can 

become firmly established within a parasite population, existing for long periods of time. The first type of 

resistance to be acknowledged was to chloroquine in Thailand in 1957. 

The parasite has generated a detoxification mechanism in which the haematin (harmful to Plasmodium in 

high concentrations by causing lipid peroxidation) forms a highly insoluble, microcrystalline substance 

present in the food vacuole called haemozoin.
146

 Several mechanisms have been proposed for the 

formation of haemozoin.
147-149

 The hypothesis that haematin is the target of some antimalarials originated 

from early studies showing that chloroquine forms a complex with haematin.
150

 Since then haem, 
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haematin and haemozoin have been drug targets for antimalarials. Artemisinin forms radical adducts with 

haem that act against the parasite.
151

 

Haematin is believed to be the main target of the quinoline-based drugs and there has been evidence that 

these drugs act by preventing the detoxification of haematin. The mechanism of action by which these 

drugs are able to avoid the formation of haemozoin has been the subject of various debates and 

hypotheses.
152-154

 Given that haemozoin formation is unaltered in drug resistance; it remains an excellent 

target for new drugs. Recent advances in understanding of these drugs’ interactions with both haematin 

and haemozoin have been made.
155

 

 

1.5.4 Metal-based antimalarial agents  

Metals may also be used to enhance the efficacy of organic drugs and rational design of metal–based 

therapeutic agents has increased after the important discovery of Cis–platin, a successful Pt-based 

anticancer drug.
156,157

 Use of metals in medicine has advantages in giving more effective syntheses of 

stable transition metal complexes with variable and predictable structures. Ligand properties can be 

selected to tune the overall properties of the medicinal product and this provides more knowledge of the 

biological effects of metals in the organism in order to enhance efficient biological targeting. These 

parameters have helped in the development of new drugs for major medical human problems including 

cancer along with bacterial, viral and parasitic infections such as malaria.
158

  

Metal complexes with amodiaquine and primaquine were reported in 1987 by Wash et al.,
159 

however the 

activity of these drugs was not increased by complexation. Analogues of metal-chloroquine complexes 

were designed; Sanchez-Delgado et al
160

 modified the chloroquine template by incorporating a transition 

metal into the molecular structure, the rhodium complexes of the derived compound showed enhancement 

by 4.5 fold compared to the standard drug chloroquine diphosphate (CQDP). This propelled the group to 

move further exploring with Ru(II) and chloroquine (CQ), a new molecular design was used by varying 

the ancillary ligands and the overall charge of the complexes. The potency of all complexes of Ru-CQ 

was higher.
161

 For greater efficacy, gold complexes were isolated which showed an activity 5-10-fold 

greater than chloroquine.
162

 Encouraged by this enhancement of activity, a new series of gold-CQ 

complexes were developed with different changes including variations of the phosphine ligand, in the 

counteranion and the oxidation state of gold and the use of other biological important ligands.
163
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However, no clear structure-activity correlations could be established for this series of compounds. 

Iridium-CQ complexes have also been evaluated, displaying moderate activity.
164

 Pt-CQ derivatives have 

been synthesized and tested on malaria by various research groups, the compounds showed higher activity 

than free ligands.
165

 

As analogues of ferrocene complexes have shown potentials as drugs with medical applications,
166

 many 

complexes have been prepared based on ferrocene-conjugate analogues of known antimalarial drugs.
167-171

 

No enhancement was noted except in the case of ciprofloxacin,
169-171 

with more than 20 times activity in 

CQ-resistant strains. These compounds showed only moderate antimalarial activities in 8 parasite strains, 

which implies that the presence of the ferrocenyl moiety in these structures does not significantly change 

their biological activity in malaria.
172

 Low or decreased activity was shown by chloroquine diphosphate 

associated with ferrocene carboxylic acid via a salt bridge suggesting an antagonistic effect between both 

parts,
173

 and when ferrocene is condensed on the quinoline ring or on the endocyclic nitrogen,
174

 or 

attachment of ferrocenyl group to the terminal nitrogen associated with a modulation of the lateral chain 

length.
175

 The bisquinolines-derivatives however were active against CQ-resistant strain.
176

 The 

ferrocenyl bisquinoline showed activity on CQ-resistant strain (D2d) but was less active on the CQ-

susceptible strain (HB3).
177

  

Ferroquine FQ (Fig. 1.5)
178,179

 was formed by introduction of the ferrocenyl moiety into the lateral side 

chain of chloroquine. Ferroquine in different formulations as base, ditartrate or dihydrochloride salts
173 

has been found to be active against both CQ-resistant and CQ-susceptible parasites. The antimalarial 

activity against CQ-resistant parasites is partly facilitated by the location of the ferrocene moiety inside 

the lateral chain.
175

 As it possesses planar chirality, ferroquine has enantiomers; the activities of the pure 

enantiomers and the racemate have been compared. Both enantiomers and racemate were found to be 

equally active in vitro against the CQ-susceptible and CQ-resistant P. falciparum strains HB3 and Dd2. 

When tested in vivo against P. vinckei, both enantiomers were slightly less active than the racemic 

mixture which could be suggestive of synergistic effect between the enantiomers. Similar results were 

obtained for the different enantiomers and the racemate from the in vitro cytotoxicity studies in the 

L5178Y cell proliferative assay.
180

 

Ferroquine has shown a higher efficacy than chloroquine; curative doses for chloroquine for CQ-

susceptible P. vinckei is 70 mg Kg
–1

 per day and 400 mg Kg
–1 

per day for the CQ-resistant clone while 

that for ferroquine is 10 mg Kg
–1 

per day for all strains tested, irrespective of the route of 

administration.
181,182
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In order to produce drugs with better activity and improved property, modifications were made to 

ferroquine by modifying the tertiary and secondary amines. Changes in tertiary amines showed 2-10 fold 

improved activity more than CQ and of same activity with FQ.
175

 FQ derivatives mimicking 

hydroxychloroquine (HCQ) were prepared, which structurally differ from FQ in the presence of side 

chains on the tertiary amines and in the possession of OH group, designed to reduce the cytotoxicity 

effects as compared to FQ. These compounds showed increase activity compared to CQ but lower activity 

than FQ.
183

 Changes in the secondary amines resulted in an analogue with higher antimalarial activity 

than that of CQ and comparable to that of ferroquine. These studies showed that the remarkable activity 

of FQ depends on the position of the ferrocenic nucleus in the side chain and that the in vitro antimalarial 

activity is not disturbed by slight modifications in the lateral basic side chain.
184

 

More analogues of ferroquine with thiosemicarbazones were prepared.
185

 From comparison of the activity 

of a series of analogues synthesized by the combination of FQ with thiosemicarbazones (those without the 

ferrocenic moiety and those without the 4-aminoquinoline moiety), the authors concluded that the 

aminoquinoline moiety which allows transport of the compounds to parasite food vacuole seems to be the 

major contributor to antimalarial activity of FQ while the ferrocene moiety within the lateral chain is 

responsible for maintaining a strong antimalarial activity on CQ-resistant P. falciparum.  

Trioxaquinines
186

 contain two moieties covalently linked together; 1,2,4-trioxane (as in artemisinin) and 

4-aminoquinoline (as in CQ). They were produced based on the concept of hybrid molecules with a dual 

mode of action. These molecules have shown considerable activity against the CQ-resistant strains of P. 

falciparum.
187,188

 One of the trioxaquines, PA1103/SAR116242 has been selected as a drug candidate.
189

 

These hybrid compounds might be considered a possible response to the recently growing resistance of 

various parasites to artemisinin.
190,191

  

Another approach towards development of antimalarial compounds is the use of chelating ligands with 

metal ions. Ligands such as ethylenediamine-N,N′-bis[propyl(2-hydroxy-(R)-benzylimino)] 

(ENBPI)
192,193 

and [1,12-bis(2-hydroxy-3-ethylbenzyl)-1,5,8,12-tetraazadodecane] (Eadd)
194 

(Fig. 1.5) 

have formed stable complexes with Al(III), Fe(III), Ga(III) and In(III) and these compounds were 

modified by variation of the substituents on the aromatic rings and the hydrocarbon backbone 

independently. All the complexes except those of In(III) showed activity against CQ-susceptible (HB3) 

and CQ-resistant (FCR-3 and Indo-1) strains of P. falciparum. The 4,6-dimethoxy-ENBPI Fe(III)  proved 

to be the most potent of the series, inhibiting both CQ-susceptible and CQ-resistant parasites. The 

selective biological activity of this compound has been explained taking into account the spatial 
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orientation of the peripheral regions of the aromatic moieties including the methoxy functionalities, rather 

than just the central metal core. The antimalarial activity of these compounds has been observed to 

correlate well with their ability to inhibit formation of -haematin in vitro, likely via the formation of 

specific drug/haem propionate salt.
192,193

  

As a result of the encouraging results of the metal-based drugs, a large number of metal complexes with 

Cu,
195,196

 Pd,
197

 Mn, Co
198

 centers have been reported recently. From the biological studies of these 

compounds, they do not exceed the activity of gold-chloroquine complexes, ferroquine and ruthenium-

chloroquine complexes.  

Metal complexes of trimethoprim, chloroquine and pyrimethamine with Mn(II), Co(II), Cu(II) and Pt(II) 

were synthesized
199,200 

and tested for in vitro activity against P. falciparum K1 CQ-resistant strain. Their 

cytotoxicity was determined using L-6 cells. The Pt(II) complex of chloroquine showed most potency 

(IC50 0.15595 M, cytotoxicity 77.35 M), however all the complexes show less activity compared to 

CQ. The effect of Cu(II) complexation on the antimalarial activity of a class of naphthoquinone ligands 

was reported.
195

 The copper complexes show enhanced activities against P. falciparum 3D7 strain when 

compared with their parent ligands, the most potent possesses the meta substitution of the methyl group in 

the arylazo ring with antimalarial activity ED50 (g/mL) 3.5 and selectivity index of 2.45. The most 

potent of the series has the most positive redox potential (+0.38 V) indicating that facile reduction to the 

cuprous species with subsequent activation of intracellular oxygen may be one of the likely mechanisms 

of their antimalarial activities.
195 

 

1.5.5 Mechanism of action 

Though the mechanism of action of these metal-CQ complexes is not fully understood, two potential 

targets of action are proposed based on the accepted mechanisms of action for chloroquine: the inhibition 

of haemozoin formation and DNA interaction. CQ is believed to act by concentrating on the parasite food 

vacuole and preventing the crystallization of toxic haem into haemozoin, leading to membrane damage 

and parasite death.
201

 It is well established that chloroquine forms complexes with haematin in solution 

and is an inhibitor of -haematin formation.
201-203

 From the interaction studies
204-206

 of some metal-CQ 

complexes with haematin by spectrophotometric titration and experiments carried out by Sanchez et al to 

measure the abilities of metal-CQ derivatives to inhibit the formation of -haematin at the lipid-water 

interface, it was concluded that the main mechanism of action of the complex metal-CQ is the inhibition 
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of formation of -haematin. Trials in these targets (specifically at the lipid-water interface) are excellent 

predictors of the in vitro biological activity.  

The mechanism of action of ferroquine has been suggested to be similar to that of CQ, by concentrating 

on the parasite food vacuole and preventing the crystallization of toxic haem into haemozoin. The target 

of action has also been linked to increase of partition coefficients which influence the lipophilicity and 

consequent biological behavior of ferroquine. Ferroquine is a stronger inhibitor of -haematin formation 

as indicated by its IC50 value of 0.8 compared to IC50 value of 1.9 for chloroquine.
207

 The better 

antimalarial activity of ferroquine has been attributed to the presence of intramolecular hydrogen bonding 

in its lateral side chain
208,209

 which was confirmed by synthesizing an analogue (FQ–Me) in which the 

aniline hydrogen atom is replaced with methyl group with a resulting decrease in activity.
210

 The 

ferrocene moiety in ferroquine is able to generate small amounts of hydroxyl radicals from H2O2 via a 

Fenton-like reaction, which is capable of inducing severe damage to the parasite food vacuole membranes 

before a detoxification mechanism in the parasite can be effective. This redox property of ferroquine has 

been suggested to attribute to its better antimalarial activity than CQ.
211,212

 The inhibitory activity of 

ferroquine against CQ-resistant strains could be as a result of reduced affinity for transporter linked to 

CQ-resistance (PfCRT). 

 

1.6 The spectral and magnetic properties of Cobalt(II), Nickel(II) and Copper(II) 

Cobalt(II), Nickel(II) and Copper(II) have similar features characteristic of transition metal ions such as 

ability to form coloured complexes and exhibit various geometrical structures, however, their spectral 

properties and hence magnetic properties are different due to differences in their outer d electrons.  The 

crystal field splitting of the d orbital of a metal ion in high symmetries including tetrahedral and 

octahedral is shown in Fig. 1.6. 
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Fig. 1.6 Crystal field splitting of the d orbitals of a central ion in complexes of various geometries 

 

 

1.6.1 Cobalt(II)  

The Cobalt(II) ion has a 3d
7

 configuration and it complexes with ligands to form majorly tetrahedral or 

octahedral complexes (Fig. 1.7) majorly with orange-pink or blue-violet colors respectively. Cobalt(II) 

forms more tetrahedral complexes than any other transition metal ion, likely as a result of small difference 

in the crystal field stabilization energies between its octahedral and tetrahedral complexes when compared 

with that for other d
n
 configurations).

213
 

 

Co
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H2O OH2

OH2

OH2
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Cl
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Fig. 1.7 Typical Co(II) complexes in tetrahedral and octahedral geometries 
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In the octahedral field Co(II) has a ground term 
4
T1g. Octahedral complexes are usually high spin. Low 

spin complexes are few because only ligands with very strong fields can cause spin pairing of Co(II) ion 

(Dq > 15 000 cm
–1

).
214

 Tanabe and Sugano
215

 have made a complete energy level diagram for octahedral 

Co(II) complexes. Three transitions are expected for high spin octahedral Co(II) complexes. The lowest 

energy band is a transition corresponding to 
4
T1g  

4
T2g. The highest energy transition occurs in the 

visible near 20 000 cm
–1

 (500 nm) and has been assigned to 
4
T1g  

4
T1g (P).The second band due to 

4
T1g  

4
A2g transition is not often observed; the transition involves a two-electron process for strong fields hence 

its intensity is much weaker compared to the other two transitions.
216

  The visible band frequently has a 

shoulder or a fine structure to it – which has sometimes been attributed to the 
4
T1g  

4
A2g transition but 

may alternatively arise as a result of spin orbit coupling,
217,218 

vibrational broadening, low symmetry 

components to the ligand field
219 

or transitions to doublet states.
217

 

The ground term 
4
T1g for high spin octahedral Co(II) complexes is orbitally degenerate and provides an 

orbital contribution to the magnetic moments. The room temperature moments are found to be in excess 

of the spin only values, in the range 4.7–5.2 B.M. The moments vary considerably with temperature.
216

 

Low spin octahedral Co(II) complexes have the 
2
Eg ground term, their magnetic moments are expected to 

be in the range 1.70 – 1.85 B.M. and to be independent of temperature change.
216

 

Tetrahedral Co(II) complexes are high spin with ground term 
4
A2. Three transitions are similarly 

expected; the lowest energy band due to 
4
A2  

4
T1(F) transition is not often observed as it is weak 

because the transition is forbidden for electric dipole absorption in pure tetrahedral symmetry. More so it 

lies in the infrared region in the range 3000–5000 cm
–1

 (3330–2000 nm) where it is frequently overlapped 

by vibrational bands. The energy of this transition is usually taken as the Dq. Transitions due to 
4
A2  

4
T1(F) ( = 10–10

2 
M

–1 
cm

–1
) and 

4
A2  

4
T1(P) ( = 10

2
–2x10

3 
M

–1 
cm

–1
) lie in the near infrared and visible 

regions respectively.
216

 The high intensities of these bands differentiate them from those of octahedral 

absorptions and one can conveniently distinguish between the two stereochemistries on this basis. These 

intense absorptions of tetrahedral Co(II) complexes make them appear blue. The bandwidths are usually 

wide ranging between 1500 and 2000 cm
–1

 (6660 and 5000 nm). Both bands show fine structure with 

multiple absorption bands. These features have been attributed to spin orbit coupling,
217,218

 low symmetry 

components of the crystal field
219

 and transition to the doublet states.
217
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The most complete calculation of the energy levels with respect to the ligand field Coulombic (Dq), spin 

orbit (λ) and electron correlation parameters (Racah B and C) for both octahedral and tetrahedral Co(II) 

has been made by Liehr.
220

 

 

In the complexes of lower symmetry than tetrahedral, the second band is usually broadened and the lower 

symmetry components are more pronounced. In CoA2B2 complexes of C2v symmetry the 
4
A2g  

4
T1(F) 

band should be split into three transitions viz. 
4
A2g  

4
B2, 

4
A2g  

4
A2 and 

4
A2g  

4
B1 and the 

4
A2g  

4
T1(P) 

band should be similarly split. Such splittings are observed
221

 in many complexes of Co(II) with nitrogen 

and phosphorus donor, the bands occurring at 8000–10200 cm
–1

, ~7000 cm
–1

  and ~6000 cm
–1

 (1250–980, 

~1428 and ~1667 nm). 

 

The magnetic moments for tetrahedral Co(II) complexes are usually found within the range 4.4–4.8 B.M. 

Unlike in octahedral complexes, the tetrahedral moments are independent of temperature.
216

 

 

Square planar complexes of Co(II) are not common. They commonly show a weak band in the 8000–

10000 cm
–1

 (1250–1000 nm) range. With z
2
 orbital above those of xz, yz and xy, transitions from (xz, yz)

4
 

(xy)
2
 to z

2
 are expected in the near infrared. In complexes with bidentate ligands of the type Co(LL)2, xy 

is the highest orbital and the low lying three orbitals are xz, yz and x
2
–y

2
. These four orbitals are close in 

energy and their relative order will generally depend on the type of ligand system being considered.
222

 

 

The few complexes with this geometry have magnetic moments in the range 2.1–2.8 B.M. indicating one 

unpaired electron.
216

  

 

 

 

1.6.2  Nickel(II) 

 

Majority of Nickel(II) complexes have coordination numbers of four, five and six. Complexes with 

coordination of three, seven and eight are quite rare. Six-coordinate complexes are generally high-spin, 

unless one or more ligands are at a larger distance. Five-coordinate complexes can be either high-spin or 

low-spin. Four-coordinate complexes are high-spin in a tetrahedral or pseudotetrahedral environment and 

low-spin in square planar geometry.
223
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The electronic structure of Ni(II) complexes has been investigated using optical spectroscopic (optical 

absorption, MCD) and magnetic (magnetization, magnetic susceptibilities, EPR, NMR) techniques and 

several reviews have already been published.
224-228

 

 

For Ni(II) complexes both triplet (high-spin) and singlet (low-spin) states are known as the ground state, 

depending on the relative value of the interelectronic repulsion and crystal field stabilization energy – 

which in turn depend on the covalency of the metal-ligand bonds, the nature of the ligands and the 

stereochemistry of the complex. When the interelectronic repulsion P overcomes the crystal field 

stabilization energy Δ, a low-spin state occurs; conversely when Δ > P, a high-spin occurs. In 

intermediate situations where both Δ ≈ P the ground state depends on external conditions such as pressure 

or temperature giving rise to spin equilibria.  

 

Venanzi
229

 has shown that for ethylenediamine complexes of Ni(II) 15–30 kcals crystal field energy is 

gained on going from a tetrahedral to an octahedral complex. A similar energy difference is expected also 

in complexes of Ni(II) with other ligands based on the calculated crystal field stabilization energies for 

tetrahedral and octahedral complexes.
230

 This could explain why most paramagnetic Ni(II) complexes 

have a tendency to form octahedral structures as compared to tetrahedral configuration. Tetrahedral 

paramagnetic Ni(II) complexes will be formed only when the ligands are of weak field and cannot cause 

spin-pairing of electrons to give rise to square planar configuration, and when the steric requirements of 

the ligands enforces a (distorted) tetrahedral arrangement of the atoms.  

 

In almost all its six-coordinate complexes, Ni(II) has an octahedral stereochemistry. Octahedral Ni(II) 

complexes are usually blue or green, a typical example is bright green Ni(H2O)6. The replacement of H2O 

by ligands of higher donor strength, such as NH3 or en, shifts the absorption spectra to higher frequencies 

and the colour of the corresponding six-coordinate complexes [Ni(NH3)6]
2+

 and [Ni(en)3]
2+

 becomes blue. 

They have a spin triplet 
3
A2g as the ground term and three main spin-allowed bands are usually observed 

in octahedral Ni(II) complexes.  

 

These transitions have been assigned in Oh symmetry to 
3
A2g  

3
T2g, 

3
A2g  

3
T1g (F) and 

3
A2g  

3
T1g(P). 

Less intense spin-forbidden transitions attributable to 
1
D (

1
Eg) and 

1
G (

1
Tg) states can also be observed. 

The first band due to transition to 
3
T2g is usually in the range 5000–12000 cm

–1
 (2000–833 nm). The 

3
A2g 

 
3
T1g (F) band is in the range 12000–19000 cm

–1
 (833–526 nm) and has often been found to show a 

shoulder or appear as a doublet especially when Dq/B is near unity.
214

 This doublet structure has been 
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ascribed to a gaining of intensity of the 
3
A2g  

1
Eg transition through configurational interaction with the 

3
T1g (F) level.

231,232
 Spin-orbit coupling will mix some triplet character into the 

1
Eg term, thus lifting the 

spin selection rule slightly; the resultant small absorption band then distorts the main band.
233,234

  

 

The third transition to 
3
A2g  

3
T1g(P) ranges between 20000–29000 cm

–1
 (500–345 nm). Transitions to 

spin singlet levels are in the region 11 000–15 000 cm
–1

 (909–666 nm) for 
3
A2g  

1
Eg and in the range 

17000–22000 cm
–1 

(588–455 nm) for 
3
A2g  

1
T1g.The energy level diagram for octahedral Ni(II) 

complexes inclusive of spin-orbit coupling has been presented by Liehr and Ballhausen.
233

  

 

In complexes of the type NiA4B2, NiA2B2 and NiAB2 (where A is monodentate, bidentate and tetradentate 

respectively and B is monodentate) where ligands of different field strengths are present, the symmetry is 

lowered to D4h by tetragonal distortion. The lowest energy band is usually affected by the lower symmetry 

and is observed to split. The splitting of the energy levels increases the number of observable transitions. 

Six spin-allowed transitions may be anticipated and in practice at least five are observed, some spin-

forbidden bands may also appear. Spin-allowed transitions are in order of increasing energy 
3
B1g  

3
B2g < 

3
B1g  

3
Eg < 

3
B1g  

3
Eg < 

3
B1g  

3
A2g < 

3
B1g  

3
Eg < 

3
B1g  

3
A2g. The transitions to the doubly 

degenerate 
3
Eg levels are usually the most intense features with molar coefficient values close to 10. The 

highest energy bands are more intense.
235

  

 

The structures of five-coordinated complexes are square pyramidal (C4v symmetry) or trigonal 

bipyramidal (D3h symmetry). Nickel(II) complexes in these configurations are not common and do occur 

only when particular steric requirements and donor power of the ligand stabilize these geometries. The 

electronic ground state of nickel(II) complexes in these geometries can either be a spin singlet (low-spin 

configuration, diamagnetic) or spin triplet (high-spin configuration). Five-coordinate Ni(II) complexes 

with polydentate (polyamines, salicyaldimines, polyarsines and polyphosphines)
226,236

 and monodentate 

([Ni(CN)5
3-

], [Ni(OAsMe)5]
2+

) ligands have been prepared and characterized. The square pyramidal 

complexes [Ni(CN)5
3-

] and [Ni(OAsMe)5]
2+ 

are low-spin and high-spin respectively, and 

[NiBr(Me6tren)]
+
 and [NiBr(np3)]

+ 
are trigonal bipyramidal high-spin and low-spin complexes, 

respectively.
  
In general, low-spin complexes are formed by donor atoms with low electronegativity, such 

as C, P, As and S, whereas high-spin complexes are formed by highly electronegative donors like O and 

N.
237
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Square pyramidal complexes possess an orbitally non-degenerate ground level, 
3
B1. Transitions observed 

are 
3
B1  

3
E occurring in the near IR region in the range 4000–9000 cm

–1 
(2500–1110 nm,  ≈ 10–20 M

–1
 

cm
–1

), 
3
B1  

3
E at 12000–18000 cm

–1
 (833–555 nm,  ≈ 10–20 M

–1
 cm

–1
) with a shoulder on the low 

frequency side due to 
3
B1  

3
B2 transitions, 

3
B1  

3
A2(P) occurring at 17000–25000 cm

–1
 (588–400 nm) 

as a weak band and 
3
B1  

3
E(P) which is the most intense band in the range 19 000–29 000 cm

–1
 (526–

345 nm,  ≈ 100–800 M
–1

 cm
–1

).
228

  

 

The electronic spectra
228

 of trigonal bipyramidal high-spin Ni(II) complexes are characterized by four 

bands: 

 

3
E'  

3
E"  5000–8000 cm

–1
 (2000–1250 nm,  ≈ 10–30 M

–1
 cm

–1
)    

3
E'  

3
A1" + 

3
A"2   8000–14 000 cm

–1
 (1250–714 nm,  ≈ 10–20 M

–1
 cm

–1
)  

3
E'  

3
A'2  17 000–22 000 cm

–1
 (588–455 nm,  ≈ 20–30 M

–1
 cm

–1
)  

3
E'  

3
E" + 

3
A'2 (P) 22500–26200 cm

–1 
(444–382 nm,  ≈ 50–200)  

 

For four-coordinate Ni(II) complexes the commonest geometry is square planar. The planar configuration 

is stabilized by strong nickel–ligand covalent bonding (both - and -bonding). Ligands with higher 

donor strength favour square planar structures whereas those with weaker donor strength prefer the 

tetrahedral configuration. The tetrahedral configuration is only favoured as compared to the planar one by 

the spin pairing energy and by the minimization of electrostatic repulsion energy. The bulkiness of the 

substituents on donor atoms may also prevent a planar structure due to steric hindrance and a distorted 

tetrahedral structure may become preferred.
227 

 

The electronic ground state of a square planar complex is 
1
A2g. The spectra of square planar Ni(II) 

complexes frequently consist
238

 of a strong band in the region 18 000–25 000 cm
–1

 (555–400 nm, ≈ 50–

500 M
–1

 cm
–1

) with a second band in the range 23 000–30 000 cm
–1

. These bands are assigned to the 

transitions 
1
A1g  

1
A2g  and 

1
A1g  

1
B1g respectively. Another weaker band sometimes observed in the 11 

000–15 000 cm
–1

 region is probably a spin forbidden transition. The major difference between the spectra 

of square complexes and those of octahedral or tetrahedral complexes is the absence of any band below 

10 000 cm
–1

 – which confirms that the energy gap between dx2–y2 and dxy is larger than this value and 

accordingly the complexes are planar. Detailed discussion of the structure and bonding in square Ni(II) 

complexes has been given by Gray.
239
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The electronic spectra of tetrahedral Ni(II) complexes are characterized by 3 spin-allowed transitions. The 

tetrahedral crystal field splitting is about half that in an octahedral field, as a result the absorption bands in 

tetrahedral complexes have lower energies and are shifted towards the infrared as compared to octahedral 

bands. The tetrahedral bands are more intense (by a factor of about ten times) because of the absence of a 

centre of symmetry in these complexes. The lowest energy band, 
3
T1  

3
T2 in the region 4000–7000 cm

–1
 

(2500–1428 nm,  ≈ 10–50 M
–1

 cm
–1

) is not often observed. The second band in the near infrared in the 

range 7000–11 000 cm
–1 

( ≈ 100–200 M
–1

 cm
–1

) is assigned to 
3
T1  

3
A2 transition. The highest energy 

transition 
3
T1  

3
T1 (P) shows a very broad band in the region 15 000–20 000 cm

–1
 (666–500nm,  ≈ 10–

50 M
–1

 cm
–1

) with weaker bands on either side of it being assigned to spin-forbidden bands.
240

  

 

Jahn-teller effect will be operative in this configuration though the distortion of the tetrahedron is not 

expected to be large.
240

 

 

Review articles on the theory of magnetic susceptibility of Ni(II) complexes have been written 
241-245

 and 

the authors showed regular octahedral complexes of Ni(II) are always paramagnetic. The experimental 

magnetic moments lie usually within the range 2.9–3.3 BM. The larger values are generally observed due 

to orbital contribution derived from the mixing of low-lying excited states into the ground state or as a 

result of orbital contribution directly from orbitally degenerate ground state. The magnetic moments 

usually observed at room temperature for Ni(II) complexes are found in Table 1.4.  

 

In NiA6 complexes with Oh symmetry, the ground state 
3
A2g and the next excited state 

3
T2g are well 

separated in energy by >7000 cm
–1

 (<1428 nm), the magnetic moment does not vary largely with 

temperature and anisotropic effects are also of little significance unless at very low temperatures (<4 K). 

At temperatures below 4 K the differences in thermal populations of the ground state levels due to zero 

field splitting become important and larger anisotropies are observed.
242
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Table 1.4 Typical values of the effective magnetic moment at  

room temperature of nickel(II) complexes in various geometries228 

Coordination    eff (BM) 

Octahedral    2.9–3.3 

Trigonal bipyramidal   3.2–3.8 

Square pyramidal    3.2–3.4  

Tetrahedral    3.2–4.1 

Square planar    Diamagnetic 

 

 

For Ni(II) complexes with tetrahedral and trigonal bipyramidal geometries, the ground states are orbitally 

degenerate while those of octahedral and square pyramidal structures are non-degenerate. Largest values 

are observed for tetrahedral and trigonal bipyramidal complexes whose ground states are orbitally 

degenerate. Large orbital contributions are also expected from square pyramidal complexes which have 

an excited state E lying near to the ground state. Magnetic moments cannot be used to distinguish 

between tetrahedral and five-coordinate complexes.
223

 

 

Owing to the degenerate nature of the ground state for trigonal bipyramidal complexes, the computed 

magnetic moments are larger than those of the square pyramidal complexes. Large variation of magnetic 

moments with temperature is shown by complexes with trigonal bipyramidal geometry or close to it. 

 

Square planar complexes of Ni(II) are usually diamagnetic since there are no unpaired electrons. The 

magnetic moments in Ni(II) tetrahedral structures are considerably higher than the spin only value 

through orbital contribution. The experimental moments are within the range 3.2–4.1 BM and are 

dependent upon temperature. Spin-orbit coupling splits the ground term 
3
T1 term into three states of 

multiplicity 0, 3, 5 with the 0 state lying lower. At low temperatures only the 0 state is populated and  

becomes zero, giving a large temperature dependence of the magnetic moments. 

 

1.6.3  Copper(II) 

Copper is an important trace element for plants and animals and is involved in mixed ligand complex 

formation in a number of biological processes. Copper(II) has a 3d
9  

configuration. The usual 
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coordination numbers adopted by copper(II) are 4, 5 and most commonly 6. Regular octahedral is rare 

because of uneven occupancy of the highest energy d orbital giving rise to a distortion of the ligand 

octahedral array – commonly referred to as the Jahn-Teller effect.  

Jahn-Teller distortion of symmetrical structures results from partially filled electronic energy levels.
246

 

Different repulsions are experienced by the ligands around the metal ion, the most being experienced by 

ligands close to or along the plane of the d orbital occupied by the lone electrons. Hence the ligands 

closest are repelled away more than the others resulting in distortion (tetragonal in octahedral structures) 

from the regular symmetry. That is, if there is degeneracy because one d orbital is filled with a pair of 

electrons while another of equal energy is only half filled, then by a change of geometry which resolves 

this degeneracy, a more stable state can be obtained. Copper(II) complexes are anomalously stable 

because they tend to have an irregular octahedral arrangement of ligands, with four at the corners of a 

square lying close to the copper(II) ion, and the other two on the perpendicular axis less close.
247 

This 

distortion leads to an elongation of two bonds giving four short bonds and two longer ones. More rarely, 

the distortion can result in two short bonds and four long ones. The former distortion in the limit results in 

a square planar arrangement of the ligands about the copper ion.   

In an octahedral field, Cu
2+

 has a 
2
D ground term and one transition corresponding to 

2
Eg to 

2
T2g is 

expected. However as a result of Jahn-teller distortion
246

 which is greater in a 3d
9
 than in a d

1
 ion, 

octahedral Cu(II) complexes generally show spectra with broad bands resulting from several overlapping 

bands, and the energy of the system is favourably lowered. 

For the tetrahedral copper(II) complexes, the orbital splitting is inverted and the 
2
E becomes the ground 

term. One transition 
2
E to 

2
T2 is also expected primarily in the red or near infrared between 8000 and 9000 

cm
–1

 (1250–1110 nm), which is at a lower energy than the corresponding octahedral complexes (t = 

4/9o).
248

 

Square planar complexes of Cu(II) usually display more than one transition
 
showing no absorption less 

than 10 000 cm
–1 

(1000 nm).
249

 

The spin only magnetic moment for copper(II) ion would be 1.73 B.M., but due to spin orbit coupling 

higher values are often observed. The ionic or weak covalently bonded copper(II) complexes have 

moments in the range 1.9–2.2 B.M. compared to 1.72–1.82 B.M. for those having strong covalent 
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bonds;
250-252

 abnormally low magnetic moments are observed due to partial coupling of unpaired electrons 

between neighboring copper atoms (antiferromagnetism).  

 

1.7 AIMS AND OBJECTIVES 

 

In summary, the aims and objectives of this research study are as follow: 

 

 Synthesis of thiomethylated ligands which are 2–(methylthiomethyl)aniline and 2–

(methylthio)aniline and their substituted derivatives with -Me, -MeO, -Cl, -Br and -NO2 at the 

ortho and para positions to the amino group.  

 

 Synthesis of the Co(II), Ni(II) and Cu(II) complexes of the above-mentioned ligands. 

 

 Synthesis of the Schiff bases derived from the thiomethylated ligands and their copper(II) 

complexes 

 

 Characterization of the ligands, Schiff bases and their corresponding metal(II) complexes with 

elemental analysis, IR/Raman, UV, NMR spectroscopy, conductivity measurements and single-

crystal X-ray diffraction as appropriate. 

 

 Study of the difference in properties of the two types of ligands as a result of direct sulfur 

attachment to the aromatic ring in one case. These properties are 

 

 NMR shifts of  the proton groups  

 IR frequency absorptions. 

  

 Study of the difference in properties of the five- and six-membered metal(II) chelates formed by 

the 2–(methylthio)aniline and 2–(methylthiomethyl)aniline ligands respectively. These properties 

include 

 colour of complexes 

 IR frequency absorptions 

 UV absorptions  
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 Geometry/structure of complexes. 

 

 Study of the difference in properties of ligands and metal(II) complexes as a result of the effect of 

electron donating/withdrawing nature of the attached substituent groups on the aromatic ring. 

 

 Study of the difference in properties of ligands and metal(II) complexes as a result of the position 

of substituent (relative to the amino group) on the aromatic ring. 

  

 Biological study of the ligands and their metal(II) complexes 

 Antimicrobial activity against chosen strains of bacteria (Bacillus subtilis, 

Staphylococcus aureus, Escherichia coli) and fungus (Candida albicans) 

 Antiplasmodial activity against P. falciparum (FCR-3) 

 Cytotoxicity assay using breast cancer cell line (MDA-MB-231). 
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2.1 MATERIALS  

All reagents used to synthesize the 2–(methylthiomethyl)anilines, 2–(methylthio)anilines, the Schiff-bases 

of their para–substituted derivatives and the metal(II) complexes were analytical grade purchased from 

Sigma-Aldrich and Merck, South Africa. The solvents were used as obtained except in a few cases where 

they were dried and distilled under nitrogen before use following standard procedures.
1 

 

2.2 SYNTHESIS 

2.2.1 Synthesis of the 2MT and 2MA ligands  

2.2.1.1  2-(Methylthiomethyl)aniline ligands 

The general procedure employed for the synthesis of 2-(methylthiomethyl)aniline (R = H) and the other 

substituted derivatives followed that of Chupp et al.
2
  

Synthesis of 2-(methylthiomethyl)aniline: Aniline (1.00 g, 10.7 mmol) and dimethyl sulfide (1.1 mL, 

15.00 mmol) in dichloromethane (28 mL) were vigorously stirred at room temperature. N-

chlorosuccinimide (2.04 g, 15.0 mmol) was added in small portions. The mixture was stirred for 10 min; 

triethylamine (2.1 mL, 15.0 mmol) was added and the mixture was heated at reflux for 12 h. The organic 
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layer was extracted with 10% NaOH (25 mL) and dried over anhydrous magnesium sulfate. Solvent was 

removed in vacuo to give red-brown oily crude (6.11 g). Purification of the crude was carried out by 

column chromatography on silica gel 60 (0.040–0.063 mm) using hexane: ether (4:1 vol/vol) as the 

eluent, fractions were collected in test tubes in 30 mL portions and Rf value of each fraction was 

determined on TLC plate (Silica gel 60 F254). Fractions with similar Rf values were combined, dried in 

vacuo to remove the solvent and the NMR spectra obtained to identify the desired product. The first 

fraction gave 2MT as pure light yellow oil (80% yield). 

Other substituted 2–(methylthiomethyl)aniline ligands (R = 2–Me, 4–Me, 2–MeO, 4–MeO, 2–Cl, 4–Cl, 

2–Br, 4–Br, 2–NO2, 4–NO2) were similarly prepared (Scheme 2.1). The ligands are soluble in common 

polar and non-polar organic solvents except 4NO2–2MT which is insoluble in EtOH and MeOH. Their 

physical and analytical data including their microanalyses and percentage yield (pure) are recorded in 

Table 2.1 under Section 2.4.1.  

 

NH2

S

NH2

S

RR

CH3SCH3

NCS

DCM

Reflux 12-20 h

R = H, -CH3, -OCH3, -Br, -Cl, -NO2  

Scheme 2.1 Synthesis of substituted 2–(methylthiomethyl)anilines 

 

2.2.1.2  2-(Methylthio)aniline ligands 

2–(Methylthio)aniline was previously prepared by methylation of 2–aminothiophenol at low 

temperature.
3
  

2–aminothiophenol (0.50 g, 4.00 mmol) in dry ethanol (10 mL) was cooled to 0
o
C while stirring. 

Potassium tert–butoxide (0.45 g, 4.00 mmol) was added in portions over for 15 min, and the mixture was 

further stirred for 45 min. Iodomethane (0.58g, 4.10 mmol) was added slowly over 15 min and the 

reaction mixture was allowed to warm up to room temperature and was stirred for 45 min. The resulting 
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mixture was filtered and the filtrate obtained was evaporated to dryness, DCM (25 mL) was added to this 

residue and the solution filtered. The filtrate was evaporated under reduced pressure to obtain the crude 

product.  Column purification of this crude carried out on silica gel using hexane/ether (5:1 vol/vol) as 

eluent yielded pure 2–(methylthio)aniline (0.16 g, 63%). 

The substituted 2–(methylthio)anilines however were prepared employing two steps (Scheme 2.2). The 

first step
4-8 

of the reaction involves the conversion of the appropriate substituted anilines to the 

corresponding 2–aminobenzothiazoles. In the second stage,
9
 the substituted 2–aminobenzothiazoles were 

hydrolyzed and methylated to yield the desired crude 2–(methylthio)anilines. Column purification of the 

crude was carried out on silica gel using hexane/ether (6:1 vol/vol) as eluent to afford the pure 

compounds.       

                               

NH2 NH2

S

a: KSCN, Bromine, Acetic acid

b: KOH, H2O

c: EtOH, MeI, KOtBu

a b, c

R = H, -CH3, -OCH3, -Br, -Cl

N

S

NH2
R R R

 

Scheme 2.2 Two–pot synthesis of substituted 2–(methylthio)anilines 

 

Step 1  p-Anisidine (1.00 g, 8.10 mmol) and potassium thiocyanate (3.16 g, 32.50 mmol) in 

glacial acetic acid (16 mL) were rapidly stirred and bromine liquid (1.30 g, 8.10 mmol) was added 

dropwise. The mixture was stirred for 10 h keeping the temperature below 35
o
C, during which a 

precipitate was formed. This mixture was filtered and residue washed with water. The combined filtrate 

was neutralized to pH 7 with aqueous ammonia solution during which a shiny brown precipitate formed, 

and was filtered, dried and weighed to be 2.00 g of 6–methoxy–2–aminobenzothiazole. 

Step 2  6–Methoxy–2–aminobenzothiazole (0.54 g, 3.00 mmol) was slowly added to potassium 

hydroxide (1.54 g, 27.40 mmol) dissolved in 2 mL water. The mixture was slowly heated to 135
o
C 
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allowing the water to evaporate. The temperature was then increased to 165
o
C and held there for 2 h. The 

reaction mixture was allowed to cool to room temperature and quenched with 2 mL of water. The mixture 

was filtered to remove the unreacted 2–aminobenzothiazole. The filtrate was collected and the water 

removed under vacuum. Iodomethane (0.19 mL, 3.00 mmol) and 4 mL ethanol were each added to the 

residue and the slurry was stirred for 16 h after which ethanol was removed in vacuo. The residue was 

dissolved in water, neutralized to pH 7 with concentrated HCl and the product extracted with 

dichloromethane. Removal of the solvent under pressure yielded crude 4–methoxy–6–(methylthio)aniline 

which was purified to yield pure product (0.26 g, 9%).  

Other substituted 2–(methylthio)anilines were similarly prepared with the exception of the nitro-

substituted derivatives which could not be synthesized because their 2–aminobenzothiazole precursors 

yielded unknown products after hydrolysis and methylation processes of step 2 above. The synthesized 

ligands are soluble in common polar and non-polar organic solvents. Table 2.2 (Section 2.4.1) contains 

the physical and analytical data of the successfully synthesized ligands. 

 

2.2.2 Synthesis of Schiff–bases derived from the thiomethylated ligands 

pMS–2MT was prepared as described: 2MT (0.28 g, 1.86 mmol) and p-methoxysalicylaldehyde (0.31 g, 

2.05 mmol) in 2 mL EtOH and 2 mL DCM were refluxed for 6 h. The solvent was reduced and a yellow 

product precipitated which was obtained by filtration, washed with ethanol, air dried and weighed as 0.37 

g (69%).  

A similar procedure was employed for the synthesis of other pMS–2MT and pMS–2MA Schiff–bases. In 

a few cases, an oily product resulted from the reaction. On purification by column chromatography on 

silica gel using hexane/ether (6:1 vol/vol) as eluent, the pure solid product was obtained. All the Schiff-

base ligands are soluble in DCM, CHCl3, DMSO and DMF but not in MeOH or EtOH. Suitable single 

crystals were grown from DCM/EtOH mixture. The analytical data including the yields for the Schiff–

bases are recorded in Table 2.3 (Section 2.4.1). 
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2.2.3 Synthesis of metal(II) complexes of the thiomethylated ligands 

The general synthesis procedure employed the use of corresponding metal(II) chlorides and the ligands, 

both in ethanol or ethanol/dichloromethane mixture to afford Co(II) and Ni(II) complexes which formed 

in a 2:1 ligand:metal ratio respectively. The Cu(II) complexes were derived in 1:1 stoichiometry, 

however, Cu(4Br–2MA)2 formed in 2:1 ligand: metal ratio.  

The products were neither affected by the order of addition (ligand to metal or metal to ligand) nor by the 

reaction temperature (ambient synthesis or reflux). 

Attempts were made to synthesize the corresponding complexes of Mn(II), Fe(II) and Zn(II) with 2MT 

ligand under similar reaction conditions but were not successful.  

 

2.2.3.1  Cobalt(II) complexes 

Co2MT was prepared by adding 0.06 g (0.38 mmol) 2MT in 2 mL ethanol to 0.04 g (0.15 mmol) 

CoCl2
.
6H2O in 2mL ethanol, stirred at room temperature for 4 h to ensure complete reaction. Light pink 

precipitate obtained was filtered, washed with ethanol and ethyl-acetate, dried under vacuum and weighed 

to be 0.13 g (79%).  

Co2MA was prepared by adding ethanol solution of CoCl2
.
6H2O (0.27 g, 1.10 mmol) to 2–

(methylthio)aniline (0.40 g, 2.90 mmol) in ethyl-acetate (2 mL), stirred at room temperature for 4 h to 

ensure complete reaction. Dark purple precipitate obtained was filtered, washed with ethanol and ethyl-

acetate, air dried and weighed to be 0.08g (17%).  

 

2.2.3.2  Nickel(II) complexes 

To NiCl2
.
6H2O (0.04 g, 0.15 mmol) in ethanol (2 mL) was added an ethanol (2 mL) solution of 2MT 

(0.06 g, 0.38 mmol). This mixture was stirred at room temperature for 4 h to yield a green solid which 

was filtered, washed with ethanol and ethyl-acetate, dried under vacuum and weighed to afford 0.14 g 

Ni2MT in 85% yield.  
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To 2–(methylthio)aniline (0.10 g, 0.70 mmol) in ethylacetate (2 mL) was added ethanol (2 mL) solution 

of NiCl2
.
6H2O (0.07 g, 0.30 mmol) and the mixture was stirred at room temperature for 4 h. Green solid 

formed and was obtained by filtration, washed with ethanol and ethylacetate, air dried and weighed to 

give 0.09 g Ni2MA in 81% yield.  

 

2.2.3.3  Copper(II) complexes 

CuCl2
.
2H2O (0.04 g, 0.21 mmol) in 2 mL ethanol was stirred at room temperature and 2MT (0.03 g, 0.21 

mmol in 2mL ethanol was added. Green precipitate was immediately formed and the mixture was further 

stirred for 2 h to ensure complete reaction. Cu2MT was obtained after filtering, washing with ethanol and 

drying and weighed 0.05 g (91%). 

2–(methylthio)aniline (0.11 g, 0.80 mmol) in ethanol was stirred at room temperature and ethanol solution 

of CuCl2
.
2H2O (0.14 g, 0.80 mmol) was added. The mixture was further stirred for 2 h. The dark green 

Cu2MA solid obtained after filtering, washing with ethanol and drying was weighed as 0.19 g (88%). 

Similar procedures were employed to synthesize the Co(II), Ni(II) and Cu(II) complexes of other 

substituted 2MT and 2MA ligands (Scheme 2.3). However, the synthesis of some metal(II) complexes 

were not successful following the above procedures. Complexes of 2NO2–2MT) could not be synthesized 

as repeated synthesis of 2NO2–2MT ligand failed to produce a pure product after several attempts. Co(II) 

and Ni(II) complexes of 2Cl–2MA and 2Br–2MA were not obtained as the individual reactants 

precipitated out of the reaction mixture.  

All the cobalt(II), nickel(II) and copper(II) complexes were found to be stable in air, retaining their 

physical and chemical properties. Co(II) complexes of both 2MT and 2MA ligands are completely soluble 

in organic solvents such as EtOH, MeOH, CH3CN, THF, DMF and DMSO. Ni(II) complexes are also 

soluble in EtOH, MeOH, CH3CN, DMF and DMSO. The Cu(II) complexes are only completely soluble 

in DMF and DMSO. The analytical data of the metal(II) complexes are recorded in Tables 2.4–2.5 for 

Co(II), Tables 2.6–2.7 for Ni(II) and Tables 2.8–2.9 for Cu(II). 



2. Experimental section 

 

  60  
 

NH2

(CH2)n

S

R
CoCl2.6H2O

H2
N

(CH2)n

S

Cu

EtOH/DCM
rt

Cl

Cl

Cl

Cl

R

H2
N

(CH2)n

S

Ni

Cl

Cl

R

R

N
H2

(CH2)n

S

H2
N

(CH2)n

S

Co

Cl

Cl

R

R

N
H2

(CH2)n

S

CuCl2.2H2O

EtOH/DCM
rt

NiCl2.6H2O

EtOH/DCM
rt

n = 0, 2MA   n = 1, 2MT

R = H, -CH3, -OCH3, -Cl, -Br, -NO2

 

Scheme 2.3 Synthesis of metal complexes of 2MT and 2MA ligands 

 

2.2.4 Synthesis of Cu(II) complexes of Schiff–bases  

Cu(pMS–2MT) was prepared as described: The schiff–base pMS–2MT (0.06 g, 0.21 mmol) was 

dissolved in DCM/EtOH (2 mL/2 mL) mixture and a few drops of triethylamine was added to convert the 

ligand into the ionic form by proton abstraction. The solution was further stirred for 15 min maintaining 

the temperature at 30
o
C. CuCl2

.
2H2O (0.02 g, 0.10 mmol) in ethanol was added in drops and the mixture 

was refluxed for 1 h during which a dark grey precipitate formed. The reaction mixture was allowed to 

warm to room temperature and filtered. The precipitate was washed with ethanol and air-dried, the 

precipitate was weighed to be 0.07 g (%). Other copper(II) complexes of the schiff–bases were similarly 

prepared as seen in Scheme 2.4. They are soluble in DCM and CHCl3 only. Their physical and analytical 

data are presented in Table 2.10. A single crystal suitable for X–ray crystallography was grown from 

chloroform/ethanol mixture.
 
 



2. Experimental section 

 

  61  
 

 

NH2

(CH2)n
S

Me

R1

O

HO OMe

R1

N

(CH2)n

S

Me

OMe

OHEtOH

reflux, 6 h

R1

N

(CH2)n

S

Me

OMe

OH
EtOH, reflux, 1 h

R1

N

n(H2C) S

Me

OMe

O

Cu

R1

N

(CH2)nS

Me

MeO

a R: H,    b R: Me,    c  R: MeO    d R: Cl    e R: Br    f  R: NO2                                                              n = 0  pMS-2MA     n = 1  pMS-2MT

O

CuCl2.6H2O

1A-11A

1B-11B  

Scheme 2.4 Synthesis routes for Schiff-bases and Cu(II) complexes 

 

2.3  PHYSICAL MEASUREMENTS 

2.3.1 CHNS analysis 

Elemental analysis (CHNS) was carried out by Mr. Francis Chindeka in this department on Elementar 

Analysensysteme varioMICRO V1.6.2 GmbH. 
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2.3.2 Melting point 

The melting points of the solid samples were measured using Galenkemp melting point apparatus. 

 

2.3.3 NMR 

One– and two–dimensional NMR (
1
H, 

13
C, DEPT135, COSY, HMBC and HSQC) spectra were obtained 

in CDCl3 relative to the residual proton in the solvent on Bruker Avance 400 MHz NMR spectrometer.  

 

2.3.4 IR 

The mid-infrared spectra (4000 – 400 cm
-1

) were determined as solids on PerkinElmer Spectrum 100 

ATR-FTIR spectrometer. Far-infrared spectra (700 – 30 cm
-1

) were obtained in nujol mulls held between 

polyethylene discs and recorded on Perkin Elmer Spectrum 400 FTIR/FIR spectrometer. 

 

2.3.5 Raman 

The Raman spectra were obtained as solids on Bruker Vertex 70 Fourier spectrometer, equipped with 

RAM II FT-Raman module with Ge detector and Nd: YAG laser under the excitation of 1064 nm and 

power of 4. Each sample was collected after 20 scans. 

 

2.3.6 Single crystal X–ray diffraction 

Crystallography data were collected at -73 K using a Bruker KAPPA APEX II diffractometer with a 4-

circle goniometer and sensitive CCD detector. The instrument is equipped with a graphite monochromator 

and used a Molybdenum fine focus sealed x-ray tube as source of x-ray (Mo-Kα radiation, λ = 0.71073 Å) 

and an Oxford Cryostream 700 system for sample temperature control. Bruker APEX2 software was used 

for instrument control. The structures of the compounds were solved using SHELXL–97 software 
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package.
10-12

 Numerical absorption corrections were done. All non hydrogen atoms were refined 

anisotropically. The positions and temperature parameters of the hydrogen atoms were fixed to the 

adjacent atoms. Crystallography data were run at the Nelson Mandela Metropolitan University, Port 

Elizabeth, South Africa by Dr. van Brecht.  

 

2.3.7 Conductivity measurements 

Conductivity measurements of complexes solution in dimethyl formide at 10
–3

 M under room 

temperature were taken using AZ
®
 86555 p

H
/mV/Cond./TDS/Temp machine. 

 

2.3.8 Electronic spectra 

Electronic spectra (250–1100 nm) were obtained in solution using dimethylsulfoxide as solvent for the 

thiomethylated ligands and their metal complexes, and dichloromethane for the Schiff-bases and their 

Cu(II) complexes and were run on PerkinElmer Lambda 25 UV/VIS Spectrometer. 

 

2.3.9 Diffuse reflectance spectra 

Solid reflectance study of the metal complexes was carried out using Shimadzu UV-3100 UV-VIS-NIR 

Spectrometer with a MPC-3100 multipurpose large sample compartment at the Nelson Mandela 

Metropolitan University, Port Elizabeth, South Africa with the assistance of Dr. Eric Hosten. 

 

2.4 RESULTS OF ANALYSIS 

In this section are written the results for each experimental work carried out in the course of 

research. The tables presented contain the ligands and complexes, these are arranged starting 

from the unsubstituted ligands (or their complexes) to the ones with electron-donating 

substituents (–Me, –MeO) and those with withdrawing groups (–Cl, –Br, –NO2). 
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2.4.1 Physical and analytical data 

This sub-section contains the data collected on some of the physical properties of the thiomethylated 

ligands with their metal(II) complexes as well as those of the Schiff-bases derived from them. The tables 

also contain the analytical information and percentage yields for all the compounds successfully 

synthesized. 
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Table 2.1 Physical and analytical data for 2–(methylthiomethyl)anilines 

Entry Ligand           Mol.           M. Pt            %Found (Calculated)  Yield

  wt.             (oC) C H  N S  % 

1 2MT 153.24 oil 62.87 (62.70)         7.08 (7.23) 9.27 (9.14) 19.61 (20.92) 80 

2 2Me–2MT 167.27 oil 62.05 (64.62)         7.83 (8.07) 8.13 (8.37) 17.85 (19.17) 57 

3 4Me–2MT 167.27 65-68 63.12 (64.62)         7.87 (7.83)     8.09 (8.37)   18.11 (19.17) 69 

4 2MeO–2MT 183.27          oil 58.41 (58.98)         7.36 (7.15) 7.53 (7.64) 16.96 (17.50)     97 

5 4MeO–2MT 183.27           oil 57.97 (58.98)         7.92 (7.15)     7.51 (7.64)        17.32 (17.50) 26 

6 2Cl–2MT         187.69           oil 50.97 (51.19)         5.68 (5.37) 7.26 (7.46) 16.05 (17.08) 33 

7 4Cl–2MT         187.69           69-72 51.84 (51.19)         5.51 (5.37) 7.38 (7.46) 16.49 (17.08) 78 

8 2Br–2MT         232.14 oil 41.62 (41.39)         4.26 (4.34) 6.10 (6.03) 13.57 (13.81) 60 

9 4Br–2MT         232.14 68-71 41.25 (41.39)         4.22 (4.34) 5.89 (6.03) 13.42 (13.81) 62 

10 2NO2–2MT       198.24 70-72 47.02 (47.39)         5.25 (5.22) 13.18 (13.82) 15.09 (15.82) 51 

11 4NO2–2MT       198.24 70-73 47.58 (47.39)         5.30 (5.22) 13.74 (13.82) 16.01 (15.82) 33 
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Table 2.2 Physical and analytical data for 2–(methylthio)anilines 

Entry Ligand Mol.            M. Pt %Found (Calculated) Yield 

  wt. (oC)         C H N S             % 

12 2MA              139.22 oil 58.90 (60.39) 6.72 (6.52) 9.57 (10.06) 22.03 (23.03) 16 

13 2Me–2MA 153.25 oil 62.03 (62.70)       7.99 (7.24) 9.01 (9.14) 20.91 (20.92) 24 

14 4Me–2MA 153.25 oil 61.97 (62.70)  7.44 (7.24) 9.02 (9.14) 20.64 (20.92) 9 

15 2MeO–2MA 169.24 68-72   56.10 (56.77) 6.87 (6.55) 8.21 (8.28) 19.00 (18.95) 11 

16 4MeO–2MA 169.24 oil 56.62 (56.77) 6.70 (6.55) 8.06 (8.28) 18.34 (18.95)           9 

17 2Cl–2MA 173.66   oil 48.80 (48.41) 4.81 (4.64) 8.02 (8.07) 18.39 (18.46) 29 

18 4Cl–2MA 173.66 oil 48.60 (48.41) 5.23 (4.64) 7.96 (8.07) 18.29 (18.46) 8 

19 2Br–2MA 218.11 oil 39.54 (38.55) 3.71 (3.70) 6.36 (6.42) 14.76 (14.70) 22 

20 4Br–2MA 218.11 oil 39.96 (38.55) 3.93 (3.70) 6.46 (6.42) 17.27 (14.70) 10 
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Table 2.3 Physical and analytical data for pMS–2MT and pMS–2MA Schiff-base ligands 

Entry Ligand         Mol. Colour M. Pt                            %Found (Calculated) Yield 

  wt.                   (oC) C H N S  % 

21 pMS-2MT  287.38 Yellow 68-69 66.59 (66.87) 6.17 (5.96) 4.89 (4.87) 11.00 (11.16) 80 

22 pMS–4Me2MT  301.40 Yellow 72-73 68.18 (67.74) 7.19 (6.35) 4.59 (4.65) 10.57 (10.64)      75 

23 pMS–4MeO2MT 317.40 Pale yellow        72-73 64.20 (64.33) 6.58 (6.03) 4.42 (4.41) 10.06 (10.10) 53 

24 pMS–4Cl2MT  321.82 Yellow 72-73 59.72 (59.71) 5.18 (5.01) 4.35 (4.35) 9.63 (9.96)     55 

25 pMS–4Br2MT  366.27 Yellow 74-75 52.43 (52.47) 4.37 (4.40) 3.85 (3.82) 8.89 (8.75) 74 

26 pMS–4NO22MT 332.37          Orange 75-76 57.71 (57.82) 5.17 (4.85) 8.29 (8.43) 9.47 (9.65) 55 

27 pMS-2MA  273.35 Brown 68-69    65.80 (65.91) 5.24 (5.53) 5.13 (5.12) 11.42 (11.73) 94 

28 pMS–4Me2MA  287.38 Yellow 72-73      67.07 (66.87) 5.88 (5.96) 4.94 (4.87) 11.21 (11.16) 85 

29 pMS–4MeO2MA  303.38          Yellow 80-81    63.38 (63.34) 6.06 (5.65) 4.66 (4.62) 10.72 (10.57) 36 

30 pMS–4Cl2MA  307.80          Yellow 90-91     57.94 (58.53) 4.95 (4.58) 4.49 (4.55) 9.85 (10.42) 88 

31 pMS–4Br2MA  352.25 Yellow 94-95   51.99 (51.15) 3.97 (4.01) 4.03 (3.98) 9.37 (9.10) 89 
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Table 2.4 Physical and analytical data for Co(II) complexes of 2–(methylthiomethyl)anilines 

Entry Complexes Mol. Colour M. Pt         %Found (Calculated)  Yield

  wt.         (oC) C H N S   % 

1A [Co(2MT)2Cl2]       436.33 Pink 130-132 43.92 (44.04)  5.42 (5.08) 6.08 (6.42)    14.61 (14.70) 79  

2A [Co(2Me–2MT)2Cl2] 464.38 Pale blue  140-142  46.24 (46.55)    5.82 (5.64)    5.89 (6.03)    13.46 (13.81) 24 

3A [Co(4Me–2MT)2Cl2 464.38 Pink 155-157 46.99 (46.55)    6.05 (5.64)    5.98 (6.03)    13.67 (13.81) 95 

4A [Co(2MeO–2MT)2Cl2 496.38 Pink 106-108 43.41 (43.55)    5.72 (5.28)    5.57 (5.64)   12.73 (12.92)     57 

5A [Co(4MeO–2MT)2Cl2].H2O 496.38 Dark purple      130-133 42.34 (42.03)    4.79 (5.49)    5.50 (5.45)   11.32 (12.47) 50 

6A [Co(2Cl–2MT)2Cl2]         505.22 Pink 215-217 37.91 (38.04)    4.12 (3.99)    5.44 (5.54)   12.23 (12.69) 63 

7A [Co(4Cl–2MT)2Cl2]         505.22 Pink 178-180 38.33 (38.04)    4.02 (3.99)    5.51 (5.54)    12.36 (12.69) 46 

8A [Co(2Br–2MT)2Cl2]   594.12 Pink 180-182 32.74 (32.35)    3.42 (3.39)    4.73 (4.72)  10.37 (10.79) 42 

9A    [Co(4Br–2MT)2Cl2]   594.12 Pink 176-178 32.97 (32.35)    3.37 (3.39)    4.78 (4.72)   10.38 (10.79) 55 

11A [Co(4NO2–2MT)2Cl2] 526.32 Yellow              > 200 36.64 (36.51)     3.82 (3.83)    10.65 (10.64) 12.18 (12.18)   55 
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Table 2.5 Analytical data for Co(II) complexes of 2–(methylthio)anilines 

Entry Complexes Mol. Colour M. Pt  %Found (Calculated)  Yield 

  wt.  (oC) C H N S  % 

12A [Co(2MA)2Cl2]    408.27 Grey purple       >200 40.23 (41.19) 4.40 (4.44) 6.63 (6.86) 14.96 (15.71) 17 

13A [Co(2Me–2MA)2Cl2] 436.33 Blue  >200 43.91 (44.04)    5.00 (5.08)        6.31 (6.42)    14.54 (14.70) 65 

14A [Co(4Me–2MA)2Cl2] 436.33 Pink >200 43.48 (44.04)    5.32 (5.08)        6.22 (6.42)    13.40 (14.70) 43 

15A [Co(2MeO–2MA)2Cl2].2H2O   468.38 Purple black      >200 38.10 (38.26) 4.67 (4.82)        5.42 (5.58)    12.07 (12.77)     9 

16A [Co(4MeO–2MA)2Cl2] 468.38 Purple >200 41.36 (41.03)    5.03 (4.73)        5.83 (5.98)    13.04 (13.69) 74  

18A [Co(4Cl–2MA)2Cl2]         477.16 Pink 160-162   34.91 (35.24)    3.33 (3.38)        5.76 (5.87)      13.33 (13.44) 28 

20A [Co(4Br–2MA)2Cl2] 566.07 Pink 150-152 31.80 (29.70)    3.37 (2.85)        4.99 (4.95)      13.80 (11.33) 51 
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Table 2.6 Physical and analytical data for Ni(II) complexes of 2–(methylthiomethyl)anilines     

Entry Complexes Mol.       Colour M. Pt a  %Found (Calculated) Yield 

  wt.  (oC) C H N S  % 

1B [Ni(2MT)2Cl2]       436.09 Green 200-205 44.02 (44.07)    5.31 (5.08)   6.45 (6.42) 14.15 (14.71) 85 

2B [Ni(2Me–2MT)2Cl2] 464.14 Green 220-224 46.35 (46.58)    5.89 (5.65)    5.95 (6.04)    13.21 (13.82) 80 

3B [Ni(4Me–2MT)2Cl2] 464.14 Green       212-218 46.82 (46.58)    5.85 (5.65)    5.95 (6.04)    13.53 (13.82) 86 

4B [Ni(2MeO–2MT)2Cl2] 496.14 Green 220-226 43.57 (43.57)    5.70 (5.28)    5.61 (5.65)    12.79 (12.93)     74 

5B  [Ni(4MeO–2MT)2Cl2].2H2O 496.14 Pale green 220-228 41.50 (40.62)    5.82 (5.68)    5.11 (5.26)    10.30 (12.05) 45 

6B [Ni(2Cl–2MT)2Cl2]         504.98 Light green          210-208 36.59 (38.06)    4.18 (3.99)    4.96 (5.55)      11.17 (12.70) 78 

7B [Ni(4Cl–2MT)2Cl2]         504.98 Green 220-230 37.64 (38.06)    4.01 (3.99)    5.36 (5.55)      12.09 (12.70) 80 

8B [Ni(2Br–2MT)2Cl2]    593.88 Light green    210-220 33.13 (32.36)    3.57 (3.39)    4.61 (4.72)    9.75 (10.80) 86 

9B [Ni(4Br–2MT)2Cl2]    593.88 Green 230-236 31.71 (32.36)    3.21 (3.39)    4.58 (4.72)    9.11 (10.80) 89 

11B [Ni(4NO2–2MT)2Cl2] 526.08 Green yellow      204-210 36.56 (36.53)    3.95 (3.83)    10.49 (10.65)   11.66 (12.19) 87 

a Decomposition took place for all the Ni(II) complexes  
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Table 2.7 Physical and analytical data for Ni(II) complexes of 2–(methylthio)anilines 

Entry Complexes Mol. Colour M. Pt a %Found (Calculated) Yield 

  wt.    (oC) C H N S  % 

12B [Ni(2MA)2Cl2]       408.04 Pale green >200 40.60 (39.47)        4.88 (4.73)   6.53 (6.58) 15.07 (15.05) 81 

13B [Ni(2Me–2MA)2Cl2].2H2O 436.09 Green >200 40.81 (40.70)        5.83 (5.55)    5.91 (5.93)      13.43 (13.58) 70 

14B [Ni(4Me–2MA)2Cl2] 436.09 Green                >200 44.11 (44.07)        5.32 (5.08)    6.32 (6.42)      14.33 (14.71) 76 

15B [Ni(2MeO–2MA)2Cl2] 468.09 Green >200 41.81 (41.05)        4.98 (4.74)    6.05 (5.98)      13.65 (13.70)     58 

16B [Ni(4MeO–2MA)2Cl2] 468.09 Light blue >200 41.57 (41.05)        4.87 (4.74)    6.01 (5.98)      13.31 (13.70) 85 

18B [Ni(4Cl–2MA)2Cl2]         476.93 Light green        >200  35.97 (35.26)        3.41 (3.38)    5.68 (5.87)      13.00 (13.45) 41 

20B [Ni(4Br–2MA)2Cl2]    566.07 Pale green >200 31.78 (29.72)        3.04 (2.85)    5.06 (4.95)      12.91 (11.33) 76 

a Decomposition took place for all the Ni(II) complexes   
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Table 2.8 Physical and analytical data for Cu(II) complexes of 2–(methylthiomethyl)anilines 

Entry Complexes Mol.  Colour M. Pt            %Found (Calculated)  Yield 

  wt.          (0C) C H N S  % 

1C [Cu(2MT)Cl2] 287.70 Green 153-155 33.30 (33.40)    3.97 (3.85)  4.86 (4.87) 10.93 (11.15) 91 

2C [Cu(2Me–2MT)Cl2] 301.72 Dark brown        150-152 36.11 (35.83)    4.13 (4.34)      4.67 (4.64) 10.00 (10.63) 83 

3C [Cu(4Me–2MT)Cl2] 301.72 Brown                158-160 36.19 (35.83)    4.09 (4.34)      4.56 (4.64) 10.45 (10.63) 89 

4C [Cu(2MeO–2MT)Cl2]   317.72 Dark Brown 134-135 33.70 (34.02)    3.89 (4.12)      4.37 (4.41) 9.37 (10.09) 76 

5C [Cu(4MeO–2MT)Cl2]   317.72 Brown 147-149 34.09 (34.02)    4.19 (4.12)      4.30 (4.41) 9.58 (10.09) 89 

6C [Cu(2Cl–2MT)Cl2]        322.14 Green 146-147 29.54 (29.83)    2.87 (3.13)      4.32 (4.35) 9.73 (9.95) 69 

7C [Cu(4Cl–2MT)Cl2]        322.14 Green 158-160 30.10 (29.83)    2.86 (3.13)      4.31 (4.35) 9.90 (9.95) 75 

8C [Cu(2Br–2MT)Cl2]        366.59 Red brown          148-150 26.70 (26.21)    2.52 (2.75)      3.83 (3.82) 8.27 (8.75) 53 

9C [Cu(4Br–2MT)Cl2]        366.59 Green 170-172 26.35 (26.21)    2.41 (2.75)      3.86 (3.82) 8.38 (8.75) 79 

10C [Cu(2NO2-2MT)2Cl2]      332.69 Bright green        162-164 29.02 (28.88)    3.03 (3.03)      8.36 (8.42) 8.99 (9.64) 73 

11C [Cu(4NO2-2MT)Cl2]      332.69 Green           146-148 29.68 (28.88)    2.91 (3.03)      8.50 (8.42) 9.73 (9.64) 73 
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Table 2.9 Physical and analytical data for Cu(II) complexes of 2–(methylthio)anilines 

Entry Complexes Mol. Colour M. Pt %Found (Calculated) Yield 

  wt.  (oC) C H N S % 

12C [Cu(2MA)Cl2]            273.67 Dark green 130-132 31.01 (30.72)        3.52 (3.31) 5.04 (5.12) 11.73 (11.72) 88 

13C [Cu(2Me–2MA)Cl2] 287.70 Black 140-141 36.24 (33.40)        3.76 (3.85)    4.89 (4.87)      10.24 (11.15) 19 

14C [Cu(4Me–2MA)Cl2] 287.70 Bright green       150-152 33.74 (33.40)        3.81 (3.85)    4.90 (4.87)      10.94 (11.15) 92 

15C [Cu(2MeO–2MA)Cl2]  303.70 Deep brown        >200 31.72 (31.64)        4.15 (3.65)    4.50 (4.61)      10.33 (10.56)   32 

16C [Cu(4MeO–2MA)Cl2]   303.70 Dark green         120-122 33.67 (31.64)        3.52 (3.65)    4.93 (4.61)      9.79 (10.56) 94 

17C [Cu(2Cl–2MA)Cl2]         308.11 Deep brown       150-152 29.54 (29.83)        2.87 (3.13)    4.32 (4.35)      9.73 (9.95) 24 

18C [Cu(4Cl–2MA)Cl2]         308.11 Green 160-161 35.97 (35.26)        3.41 (3.38)    5.68 (5.87)      13.00 (13.45) 85 

19C [Cu(2Br–2MA)2Cl2]
a  570.68 Black 110-111 28.95 (29.46)        2.90 (2.83)    4.78 (4.91)      10.61 (11.24) 22 

20C [Cu(4Br–2MA)Cl2] 352.57 Green 160-162 24.29 (23.85)        2.35 (2.29)    3.92 (3.97)      9.86 (9.09) 81 

a octahedral compound formed with 2:1 ligand to metal ratio under similar reaction conditions as other compounds 
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Table 2.10 Physical and analytical data for Schiff-base Cu(II) complexes 

Entry Complexes Mol. M. Pt        Colour     %Found (Calculated)  Yield

   wt. (0C)  C H N S  % 

21C [Cu(pMS–2MT)2]  636.28 178-179 Dark grey 59.74 (60.40) 5.25 (5.07) 4.35 (4.40) 9.88 (10.08) 90 

22C [Cu(pMS–4Me2MT)2]  664.34 180-181 Dark grey  61.16 (61.47)    5.67 (5.46)      4.10 (4.22) 9.67 (9.65)           84 

23C [Cu(pMS–4MeO2MT)2]  696.34 154-155 Brown 57.81 (58.64)     5.14 (5.21)      3.96 (4.02) 9.35 (9.21) 68 

24C [Cu(pMS–4Cl2MT)2]  705.17 186-187 Dark grey  53.58 (54.50)     3.56 (4.29)      3.99 (3.97) 9.08 (9.09)          75 

25C [Cu(pMS–4Br2MT)2]  794.08 184-186 Dark grey  48.19 (48.40)     3.85 (3.81)      3.49 (3.53) 7.94 (8.08) 87 

26C [Cu(pMS–4NO22MT)2]  726.28 >200 Brown 53.05 (52.92)     4.60 (4.16)   7.72 (7.71) 8.46 (8.83) 77 

27C [Cu(pMS–2MA)2]  608.23 >200 Deep green 30.05 (30.62) 3.12 (2.51) 2.45 (2.38) 5.04 (5.45) 40  

28C [Cu(pMS–4Me2MA)2]  636.28 >200     Light brown 59.46 (60.40)      5.21 (5.07)      4.28 (4.40) 9.50 (10.08) 88      

29C [Cu(pMS–4MeO2MA)2] 668.28 >200     Dark brown 57.75 (57.51)    4.91 (4.83)        4.15 (4.19) 9.32 (9.60) 38 

30C [Cu(pMS–4Cl2MA)2]  677.12 >200     Light brown 51.01 (53.21)   4.24 (3.87)        3.99 (4.14) 9.21 (9.47)           86 

31C [Cu(pMS–4Br2MA)2]  766.02 >200     Light brown 47.04 (47.04)    3.31 (3.42)        3.64 (3.66) 8.88 (8.37) 82 
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Table 2.11 1H and 13C chemical shifts () for 2MT ligands in ppm            

Ligands (C)1 (C)2             H (C)3 H (C)4 H (C)5 H (C)6                   H (C)7 H (C)8 H9       H (C)10 

2MT (144.96) (121.19) 7.05 d (130.49)     6.76 t (117.96) 7.14 t (128.21) 6.71 d (116.15)  3.71 s (35.14)     2.01 s (14.32)       4.06 s     ----------                      

2Me–2MT (143.23) (120.49)      6.98 d (129.64)      6.68 t (117.45)     7.05 d (128.67)   -------- (122.69)      3.73 s (35.60)   2.02 s (14.56)    4.09 s  2.22 s (17.39) 

4Me–2MT (142.62)     (121.61)     6.85 s (131.23)      ------- (127.44)      6.93 d (128.98)    6.62 d (116.52)       3.67 s (35.48)    2.02 s (14.63)  3.95 s 2.25 s (35.60)                 

2MeO–2MT (147.63) (121.69)       6.70 d (109.44)    6.77 t (117.24)     6.69 d (122.92)    -------- (134.97)      3.72 s (35.30)   2.00 s (14.65)    4.28 s  3.85 s (55.60) 

4MeO–2MT (138.64) (123.71)       6.70 d (116.46)    ------- (152.21)      6.64 s (113.45)     6.64 d (117.41)       3.64 s (35.48)    1.99 s (14.57)      3.81 s  3.73 s (55.56)      

2Cl–2MT (141.50)    (120.19)     6.96 d (128.28)     6.68 t (117.76)    7.27 d (128.97)  -------- (122.43)      3.73 s (35.54)   2.01 s (14.39)    4.60 s ---------- 

4Cl–2MT (143.85)     (122.84)       6.98 s (130.18)      ------- (123.14)      7.04 d (128.23) 6.58 d (117.53)       3.59 s (35.20)    1.97 s (14.66)   4.07 s ----------                 

2Br–2MT (142.86)    (122.57)    6.96 d (129.83)     6.57 t (118.51)     7.37 d (131.71)  -------- (110.93)      3.70 s (36.04)   1.98 s (14.54)    4.59 s ---------- 

4Br–2MT (144.24) (109.72)    7.13 s (132.83)      ------ (123.47)      7.18 d (130.99)   6.60 d (117.82)      3.60 s (35.00)   1.98 s (14.57)    4.08 s ---------- 

2NO2–2MT (143.61)    (124.03)   7.25 d (136.55)     6.64 t (115.64)      8.07 d (125.67)    -------- (133.29)      3.73 s (35.20)    1.99 s (14.60)   6.62 s ----------                 

4NO2–2MT (151.60) (119.95)   7.96 s (126.68) ------- (138.42)      8.02 d (125.08)   6.67 d (114.76)       3.70 s (34.94)    2.00 s (14.57)   4.76 s ---------- 

s singlet  
d doublet   

t triplet   

2.4.2 
1
H and 

13
C NMR shifts for the ligands 
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Table 2.12 1H and 13C chemical shifts () for 2MA ligands in ppm 

Ligands (C)1            (C)2       H (C)3     H (C)4 H (C)5 H (C)6        H (C)8 H 9         H (C)10 

2MA (146.78)      (119.86)   7.43 d (132.97)        7.16 t (118.40)        6.79 t (128.55) 6.76 d (114.60)        2.40 s (17.35) 4.29 s ----------     

2Me–2MA (143.20) (122.84)       7.11 d (128.33)      7.09 t (115.25)        6.61 d (131.77)      ------- (125.12) 2.42 s (18.55)      3.57 s     2.15 s (17.04)   

4Me–2MA (144.39)       (119.97)     7.22 s (129.33)        ------- (127.78)         6.95 d (133.33)     6.67 d (114.84)        2.39 s (20.15)       4.14 s 2.28 s (17.51) 

2MeO–2MA (134.90)       (125.46)      6.84 d (115.04)        6.83 t (122.45)       6.64 d (112.29)      ------- (147.17)         2.43 s (18.80)      3.81 s      3.83 s (55.36)         

4MeO–2MA (140.32)      (121.49)     6.92 s (114.39)     ------- (152.29)         6.69 d (115.83)    6.66 d (117.18) 2.36 s (17.15)      3.82 s 3.73 s (55.59) 

2Cl–2MA (141.32)       (119.41)    7.26 d (129.06)     6.68 t (116.16)        7.07 d (130.05)     ------- (126.58) 2.41 s (18.42)      3.97 s ----------  

4Cl–2MA (145.15)       (115.67)      7.29 s (131.64)      ------- (122.66)         7.02 d (128.26)      6.62 d (121.87)     2.36 s (17.88)      4.05 s ----------         

2Br–2MA (142.55) (126.91)      7.42 d (129.89)       6.66 t (115.97)    7.11 d (133.18)      ------- (109.31) 2.40 s (18.57)       4.02 s     ---------- 

4Br–2MA (145.72)     (122.32)      7.41 s (131.19)        ------- (109.53)       7.14 d (134.62) 6.56 d (116.09)     2.34 s (17.43)     4.16 s ----------      

s singlet  
d doublet      

t triplet 
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Table 2.13 1H Chemical shifts () for pMS–2MT and pMS–2MA Schiff base ligands in ppm          

Ligands       H1            H3            H4 H6 H8 H9 H3' H5' H6'  H7' H8' H 9'    

pMS–2MT 8.50 s 7.33 d 6.51 d 6.54 s  13.64 s  3.85 s 7.30 s 7.32 t 7.11 d 3.81 s 2.06 s 7.22 t  

pMS–4Me2MT 8.48 s 7.27 d 6.49 d 6.53 s  13.69 s  3.84 s 7.15 s 7.11 d  7.02 d          3.78 2.07 s 2.35 s 

pMS–4MeO2MT 8.47 s 7.27 d 6.49 d 6.53 s 13.71 s  3.84 s  6.91 s 6.85 s 7.10 d          3.80 s 2.08 s 3.83 s 

pMS–4Cl2MT 8.46 s 7.29 d 6.51 d 6.53 s  13.33 s  3.85 s 7.33 s 7.27 d  7.04 d          3.75 s 2.07 s         ---- 

pMS–4Br2MT 8.44 s 7.41 d 6.49 d 6.51 s  13.35 s  3.83 s 7.46 s 7.27 d  6.96 d          3.73 s 2.05 s ---- 

pMS–4NO22MT 8.22 s 7.34 d 6.55 d 6.54 s  12.94 s  3.87 s    8.22 s 8.20 d  7.19 d          3.82 s 2.08 s ---- 

pMS–2MA 8.54 s 7.30 d 6.50 d 6.54 s  13.65 s  3.85 s 7.24 s 7.25 d  7.17 d  ---- 2.47 s ---- 

pMS–4Me2MA 8.53 s 7.27 d 6.49 d 6.54 s  13.70 s  3.84 s 7.04 s 6.98 d 7.07 d ----        2.46 s 2.38 s 

pMS–4MeO2MA 8.50 s 7.25 d 6.48 d 6.52 s  13.66 s  3.85 s 6.77 s 6.69d  7.13 d ---- 2.45 s  3.83 s 

pMS–4Cl2MA 8.48 s 7.25 d 6.48 d 6.51 s  13.34 s  3.84 s 7.12 s 7.04 d  7.10 d  ---- 2.45 s  ----      

pMS–4Br2MA 8.48 s 7.25 d 6.48 d 6.51 s  13.34 s  3.83 s 7.26 s 7.25 d  6.98 d  ---- 2.45 s ----      

a only substituted in pMS–2MT Schiff-bases    

s singlet   

d doublet   

t triplet 
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Table 2.14 13C Chemical shifts () for pMS–2MT and pMS–2MA Schiff-base ligands in ppm    

Ligands                       C1           C2 C3 C4          C5         C6         C7           C9 C1' C2' C3' C4' C5'        C6' C7'    C8' C9'       

pMS–2MT 161.97     113.23 133.6 107.13 164.02 101.02 163.63 55.44 147.42 131.80 130.27 126.91 128.38 118.44 34.59    15.35     ---- 

pMS–4Me2MT 161.17     113.28 133.44 107.03 163.85 101.01 163.63 55.42 144.75 131.70 130.94 136.13 128.96 118.02 34.54    15.43     20.97 

pMS–4MeO2MT 160.30     113.38 133.33 107.00 163.79 101.07 163.48 55.89 140.48 133.49 115.53 158.14 113.58 118.92 35.23    15.91     55.96 

pMS–4Cl2MT 162.30     113.10 133.79 107.38 164.57 101.08 163.57 55.49 146.08 131.57 130.02 133.71 128.32 119.63 34.34    15.45     ---- 

pMS–4Br2MT 162.22     113.04 132.83 107.30 164.20 100.96 163.45 55.44 146.49 133.98 133.74 119.30 131.23 119.92 34.19    15.39     ----     

pMS–4NO22MT 163.83 112.88  133.26 107.98 165.11 101.07 164.08 55.61 153.39 134.39 125.32 145.35 124.04 119.44 34.19    15.39     ----     

pMS–2MA 160.73     113.19 133.55 107.13 164.03 101.11 163.66 55.54 145.39 134.49 126.92 125.26 124.91 117.03 ----        14.78     ---- 

pMS–4Me2MA 159.83     113.29 133.40 107.04 163.93 101.18 163.68 55.44 143.00 134.25 126.10 136.92 125.83 116.67 ----        14.94    21.24 

pMS–4MeO2MA 158.69     113.36 133.20 106.91 163.68 101.15 163.34 55.50 138.68 136.45 109.89 158.82 111.16 117.31 ----        14.80      55.40 

pMS–4Cl2MA 160.83     113.05 132.45 107.27 164.23 101.10 163.51 55.43 143.74 133.68 124.99 136.76 124.24 117.76 ----       14.64      ----        

pMS–4Br2MA 160.79     113.01 127.9 107.23 164.21 101.06 163.48 55.40 144.12 137.03 133.68 120.25 126.98 118.06 ----       14.63      ---- 
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2.4.3 Infrared frequencies and Raman shifts data  

The tables below list the infrared frequencies of selected vibrational groups in the ligands and their 

complexes. The data for each ligand with its metal complexes are shown so that vibrational shifts for each 

ligand on chelation with metal ions can be easily seen. Separation of thiomethylated compounds into the 

ortho and para substituted types is done so as to facilitate the comparative studies of frequency shifts as a 

result of change in position of substituents on the aromatic ring.  

The Raman experiments for the metal complexes of the thiomethylated ligands were unsuccessful as a 

result of fluorescence which obscured the whole spectra. Since shifts in frequencies on chelation of the 

ligands to metal ions are to be determined, Raman frequencies of the thiomethylated ligands were not 

obtained. However the Cu(II) complexes of the Schiff-bases did not undergo fluorescence, hence their 

Raman shifts and those of the parent ligands were obtained and the corresponding values are recorded in 

Table3.19.
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Table 2.15 Selected IR frequencies of para–substituted 2–(methylthiomethyl)anilines and complexes (cm–1) 

Compounds va(N–H) vs(N–H) δNH2 v(C–N) v(M–N) v(M–Cl) v(M–S) Δva(N–H) 

2MT  3424 3352 1618 1272 ---- --- ---- ---- 

[Co(2MT)2Cl2]  3281     3218 1610 1251 426 358, 321, 244, 221 284 143  

[Ni(2MT)2Cl2]  3278    3221 1611 1253 428 364, 323, 253, 231 289 146 

[Cu(2MT)Cl2]  3294  3217 1609 1251 430 398, 363, 295, 274 327 130 

4Me–2MT  3420 3346 1625 1275         ---- ---- ---- ---- 

[Co(4Me–2MT)2Cl2]  3273    3214 1600 1269 397 327, 248, 224 309 147 

[Ni(4Me–2MT)2Cl2]   3268      3212 1600 1264 400 328, 257, 231 313    152 

[Cu(4Me–2MT)Cl2]  3276 3221 1599 1259 405 381, 294, 268 321 144 

4MeO–2MT  3409  3341 1626 1293 ---- ---- ---- ---- 

[Co(4MeO–2MT)2Cl2]  3308 3229 1596 1273 425 335, 261, 231 309 101 

[Ni(4MeO–2MT)2Cl2] 3290 3223 1606 1272 429 341, 261, 231 299 119 

[Cu(4MeO–2MT)Cl2] 3256 3202 1617 1272 430 364, 303, 271 338 153 

4Cl–2MT 3399  3307 1625 1275 ---- ---- ---- ---- 

[Co(4Cl–2MT)2Cl2] 3268 3212 1615 1250 390 336, 251, 227 309 128 

[Ni(4Cl–2MT)2Cl2]  3272 3218 1610 1252 394 328, 252, 231 309 127 

[Cu(4Cl–2MT)Cl2]  3261 3221 1609 1244 398 297, 272 322 138 

4Br–2MT 3398 3317     1624        1275 ---- ---- ---- ---- 

[Co(4Br–2MT)2Cl2]  3269 3211 1606 1250 381 332, 317, 250, 222 290 129 

[Ni(4Br–2MT)2Cl2] 3269 3215 1607 1251 389 317, 253, 230 293 129 

[Cu(4Br–2MT)Cl2] 3259 3219 1607 1244 393 293, 281 322 139 

4NO2–2MT 3450  3347 1639 1278 ---- ---- ---- ---- 

[Co(4NO2–2MT)2Cl2]  3271 3227 1624 1255 423 356, 337, 251, 231 300 179 

[Ni(4NO2–2MT)2Cl2]  3256 3198 1624 1255 439 322, 281, 271 296 194 

[Cu(4NO2–2MT)Cl2]  3267 3222 1620 1250 425 380, 365, 294 324 183 
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Table 2.16 Selected IR frequencies of ortho–substituted 2–(methylthiomethyl)anilines and complexes (cm–1) 

Compounds va(N–H) vs(N–H) δNH2 v(C – N) v(M–N) v(M–Cl) v(M–S) Δva(N–H) 

2MT  3424 3352 1618 1272 ---- ---- ---- ---- 

[Co(2MT)2Cl2]  3281     3218 1610 1251 426 358, 321, 244, 221 284 143 

[Ni(2MT)2Cl2]  3278    3221 1611 1253 428 364, 323, 253, 231 289 146 

[Cu(2MT)Cl2]  3294  3217 1609 1251 430 398, 363, 295, 274 327 130 

2Me–2MT 3441 3360 1621 1277          ---- ---- ---- ---- 

[Co(2Me–2MT)2Cl2]  3286    3252 1603 1267 400 352, 266 327 155 

[Ni(2Me–2MT)2Cl2]   3254      3218 1611 1264 403 347, 244, 228 303  187 

[Cu(2Me–2MT)Cl2] 3260 3185 1608 1265 418 351, 284, 274 320 181 

2MeO–2MT  3437  3349 1615 1323 ---- ---- ---- ---- 

[Co(2MeO–2MT)2Cl2]  3340 3250 1589 1270 427 327, 259, 229 303 197 

[Ni(2MeO–2MT)2Cl2]   3337 3246 1589 1271 404, 369 327, 266, 234 308 100 

[Cu(2MeO–2MT)2Cl2]
    3329 3201 1592 1273 424 368, 294, 275 334 108 

2Cl–2MT 3436  3351 1617 1291 ---- ---- ---- ---- 

[Co(2Cl–2MT)2Cl2]  3329 3198 1608 1274 399, 381 341, 317, 250, 232 284 107 

[Ni(2Cl–2MT)2Cl2]  3327 3200 1609 1275 428 343, 325, 251, 232 285 109 

[Cu(2Cl–2MT)Cl2]  3322 3187 1609 1280 399 334, 286 317 114 

2Br–2MT 3428 3345     1614        1288 ---- ----  ---- ---- 

[Co(2Br–2MT)2Cl2]  3315 3201 1608 1273 425, 381 343, 317, 273, 250 298 113 

[Ni(2Br–2MT)2Cl2]  3313 3201 1607 1274 430, 386 345, 324, 251, 235 302 115 

[Cu(2Br–2MT)Cl2]  3303 3189 1602 1274 400 352, 266  327 125 

2NO2–2MT 3465  3359 1623 1330 ---- ---- ---- ---- 

[Cu(2NO2–2MT)Cl2]  3300 3186 1609 1279 426, 394 294, 282 347 165 
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Table 2.17 Selected IR frequencies of para–substituted 2–(methylthio)anilines and complexes (cm–1) 

Compounds va(N–H) vs(N–H) δNH2        v(C – N) v(M–N) v(M–Cl) v(M–S) Δva(N–H) 

2MA  3446 3345 1603 1298 ---- ---- ---- ---- 

[Co(2MA)2Cl2]  3219  3173 1597   1282 410 342, 245, 229 306       227 

[Ni(2MA)2Cl2] 3213  3174 1590   1283 413  346, 254, 234 307      233 

[Cu(2MA)Cl2]  3242  3193 1586   1282 419, 384      296, 269 350      204 

4Me–2MA  3435  3344 1614      1291 ---- ---- ----      ---- 

[Co(4Me–2MA)2Cl2]  3250  3218 1593      1278 412, 391     337, 227 273      185 

[Ni(4Me–2MA)2Cl2]  3282  3209 1585      1272 416, 387 328, 228 285, 262 153 

[Cu(4Me–2MA)Cl2]  ----a  3175 1596      1274 423, 396 305, 258 324      ---- 

4MeO–2MA 3420  3339 1615   1279 ---- ---- ----      ----  

[Co(4MeO–2MA)2Cl2]  3220  3159 1595   1256 432, 402 363, 334, 237, 225 285      200 

[Ni(4MeO–2MA)2Cl2]  3214  3156 1597   1258 435, 408 367, 336, 242, 223 286, 269 206 

[Cu(4MeO–2MA)Cl2]  3208  3161 1609   1257 416 302, 275 340      212 

4Cl–2MA 3445  3349 1606   1282 ---- ---- ----  ---- 

[Co(4Cl–2MA)2Cl2]  3208  3163 1599   1264 413, 381            331, 240, 225 273      237 

[Ni(4Cl–2MA)2Cl2]  3203  3165 1601   1267 416, 386        332, 246, 222 274  242 

[Cu(4Cl–2MA)Cl2]  3231  3180 1594   1263 422, 391 311, 282 329      214 

4Br–2MA   3445  3345 1603   1282           ---- ---- ----     ---- 

[Co(4Br–2MA)2Cl2]   3204  3161 1598          1267 408, 372         330, 256, 236 304      241 

[Ni(4Br–2MA)2Cl2]   3203  3164 1601   1268 412, 376         331, 257, 228 305   242 

[Cu(4Br–2MA)Cl2]   3233  3194 1592   1264 419, 376 298, 274 323      212 

a, not observed 
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Table 2.18 Selected IR frequencies of ortho–substituted 2–(methylthio)anilines and complexes (cm–1) 

Compounds va(N–H)     vs(N–H) δNH2        v(C–N) v(M–N) v(M–Cl) v(M–S) Δva(N–H) 

2Me–2MA 3452 3355 1619 1279 ---- ---- ----  ----  

[Co(2Me–2MA)2Cl2]  3298 3250 1607     1241 427, 387 325 304  154 

[Ni(2Me–2MA)2Cl2]  3342 3280 1615     1249 401, 392        348, 247 304, 277 110 

[Cu(2Me–2MA)Cl2]  3313 3199 1621     1250 406 290, 278 362  139 

2MeO–2MA 3383 3293 1620     1269 ---- ---- ----  ---- 

[Co(2MeO–2MA)2Cl2] 3251 3172 1583     1241 NA NA NA  132 

[Ni(2MeO–2MA)2Cl2]  3235 3198 1594     1256 416, 391 360, 250 304  160 

[Cu(2MeO–2MA)Cl2]   3251 3171 1585     1245 414 280, 262 314  132 

2Cl–2MA 3459 3358 1615     1292 ---- ---- ----  ---- 

[Cu(2Cl–2MA)Cl2] 3340 3199 1581     1271 406 301, 278 ----  119 

2Br–2MA 3455 3354 1611     1290 ---- ---- ----  ---- 

[Cu(2Br–2MA)2Cl2] 3276 3183 1583     1273 409 333, 303, 275 ----  179 

NA not available for far infrared analysis as the yield was too small 
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Table 2.19 IR frequencies and Ramana shifts of Schiff–base ligands and complexes (cm–1) 

Compound v(C=N) v(C–O) v(Cu–O)  v(Cu–N)  

pMS–2MT 1609 s (1612 s)  1291 m (vw)     

[Cu(pMS–2MT)2] 1605 s (1613 s)               1313 m (1317 m) 464 m (vw), 449 m (448 vw) 405 s (398 w), ------- 

pMS–4Me2MT 1616 s (1614 s)               1280 m  (vw)   

[Cu(pMS–4Me2MT)2] 1613 s (1617 s)               1317 m (1316 m) 464 m (vw), 449 (vw) 425 w (vw) , 406 m (400 w) 

pMS–4MeO2MT 1597s (1598 s)                1282 m  (vw)    

[Cu(pMS–4MeO2MT)2] 1596 s (1603 s)               1311 m (1303 m) 466 m (vw), 444 m (446 vw)  421 w (vw), 398 s (391 w) 

pMS–4Cl2MT                   1607 s (1609 s)    1287 m (vw)     

[Cu(pMS–4Cl2MT)2] 1605 s (1608 s)               1316 m (1317 m)  456 m (vw), 437 m (438 vw) 406 s(402 w), -------- 

pMS–4Br2MT  1605 s (1609 s)               1286 m (1287 m)    

[Cu(pMS–4Br2MT)2]  1603 s (1611 s)               1314 m (1315 m) 464 m (463), 453 m (vw) 429 m (438 vw), 402 m (396 vw) 

pMS–4NO22MT     1603 s (1605 s)               1273 s (1276 m)    

[Cu(pMS–4NO22MT)2]          1599 s (1604 s)               1313 s (1316 w)  467 m (vw), 442 w (441 vw)  423 w (vw), 399 s (394 w) 

pMS–2MA     1600 s (1604 s)               1289 m (1273 m)     

[Cu(pMS–2MA)2]  1607 s (1615 s)               1339 m (1342 s) 458 m (vw), -------- 421 m (425 s), 381 m (394 w) 

pMS–4Me2MA  1600 s (1606 s)               1289 m (1276 m)      

[Cu(pMS–4Me2MA)2]  1604 s (1588 s)               1312 m (1313 m) 454 s (vw), ------- 415 m (vw), 395 m (403 vw) 

pMS–4MeO2MA  1603 s (1607 s)               1285m (1273 m)     

[Cu(pMS–4MeO2MA)2]  1582 s (1596 s)               1310 m (1298 w) 461 m (462 w), 431 m (436 w) 401 m (397 w), -------- 

pMS–4Cl2MA  1605 s (1607 s)               1291 m (1286 m)      

[Cu(pMS–4Cl2MA)2]  1593 s (1601 s)               1311 m (1313 w) 463 m (463 w), 432 m (vw) 417 m (421 w), 399 s (394 w) 

pMS–4Br2MA  1602 s (1604 s)               1291 m (vw)      

[Cu(pMS–4Br2MA)2]  1592 s (1600 s)               1311 m (1314 w) 465 m (465 w), 452 m (vw) 429 m (430 w), 401m (397 w) 

a values enclosed in brackets are Raman shifts  s, strong   m, medium; w, weak  vw, very weak 



2. Experimental section 

 

  85  
 

2.4.4 X–ray crystallographic data 

 

Table 2.20 Summary of crystallographic data for [Cu(4NO2-2MT)2Cl2]2 

Compound     [Cu(4NO2-2MT)2Cl2]2 

Empirical formula    C16H20Cl4Cu2N4O4S2 

Formula weight    665.38    

Crystal system    Monoclinic  

Space group    P21/c  

a (Å)      5.5999(2) 

b (Å)     27.2688(9) 

c (Ås)     7.6550(2)   

 (o)     90.00     

 (o)     97.8850(10)    

γ (o)     90.00    

V (Å3)     1157.89(6)   

Z     4    

T (K)     200(2)    

D calc (Mg/m3)    1.908  

Crystal size (mm)    0.06 X 0.06 X 0.17 

Absorption coefficient (mm–1 )   2.512    

Absorption correction (min., max.)  0.6705, 0.8721  

F (000)     668    

θ Range for data collection (o)   2.79 – 27.99    

Limiting indices    -4 ≤ h ≤ 7, -36 ≤ k ≤ 35, 

      -10 ≤  l  ≤ 10  

Reflections collected    11213        

Unique reflections (Rint)   3530 (0.0232)   

Completeness to θ    27.99 (99.9%)   

Refinement method    full-matrix least-squares on F2 

Data/restraints/parameters   2798/0/162 

Goodness-of-fit on F2    1.080    

Final R indices [I > 2σ(I)]   R1=0.0262, wR2 =  0.0576  

R indices (all data)    R1=0.0354, wR2 =  0.0601  

Largest difference in peak and hole (e A –3 )  0.383 and -0.337 

CCDC     88807413 
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Table 2.21 Selected bond lengths [Å] and angles [°] for complex [Cu(4NO2-2MT)2Cl2]2 

Cu–N1    2.0750(18)   Cu1–S1    2.3214(6) 

Cu1–Cl1    2.2554(6)   Cu1–Cl2    2.6902(5) 

Cu1–Cl2    2.3184(5)   Cl2–Cu1    2.6902(5) 

S1–C8   1.798(2)   S1–C7    1.817(2) 

N1–C1    1.434(3)   C4–N2    1.464 

N2–O2    1.203(3)    N2–O1    1.212(3)  

 

N1–Cu1–Cl1   176.82(5)   N1–Cu1–Cl2   85.39(6) 

N1–Cu1–Cl2   88.60(5)   Cl1–Cu1–Cl2   93.19(2) 

Cl1–Cu1–Cl2   94.27(2)    Cl2–Cu1–Cl2   90.625(17) 

N1–Cu1–S1   91.93(5)   S1–Cu1–Cl2   105.455(19) 

Cl1–Cu1–S1   85.69(2)   Cu1–Cl2–Cu1   89.376(17) 

Cl2–Cu1–S1   163.90(2)   C8–S1–C7   102.40(11) 

C8–S1–Cu1   105.25(9)   C7–S1–Cu1   104.90(7) 

C1–N1–Cu1   118.59(13)   O2–N2–O1   122.3(2) 

O2–N2–C4   118.5(2)    O1–N2–C4   119.2(2) 

D–H···A interactions  D–H    H···A    D···A   D–H···A 

N1–H11···Cl1  0.826   2.816   3.584  155.32 

N1–H12···Cl2 . 0.878   2.867   3.425  122.97 

N1–H12···Cl1 . 0.878   3.279   3.941  134.09 

C2–H2···Cl1  0.949   2.709   3.538  146.28 

C3–H3···S1  0.950   2.852   3.651  142.30 

C7–H7A···O2   0.990   2.619   3.436  140.00 

C7–H7B···C3   0.991   2.699   3.501  138.21 

C8– H8A···O2  0.980    2.538   3.079  114.66 

 

 

 

 

Fig. 2.1 Crystal structure of [Cu(4NO2-2MT)2Cl2]2 
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Table 2.22 Summary of crystallographic data for pMS–2MT, pMS–pMe2MT and pMS–2MA  

Compound    pMS-2MT   pMS-4Me2MT  pMS-2MA 

Chemical formula   C16H17NO2S    C17H19NO2S  C15H15NO2S 

Formula weight   287.37   301.39   273.34 

Crystal system   Monoclinic   Monoclinic   Orthorhombic 

Space group    P21/c    P21/c   P212121 

a (Å)     10.7495(3)    11.7158(5)   5.63650(10)        

b (Å)    10.5921(2)    13.8428(5)   12.2831(3)              

c (Ås)    13.4840(3)   9.5750(4)   19.3196(4)  

 (o)    90.00    90.00   90.00  

 (o)    105.6620(10)   96.015(2)   90.00  

γ (o)    90.00   90.00   90.00 

V (Å3)    1478.28(6)   1544.32(11)   1337.57(5)  

Z    4   2   4 

T (K)    200(2)   200(2)   200 (2) 

D calc (Mg/m3)   1.291   1.296   1.357 

Absorption coefficient (mm –1 )  0.220   0.213   0.239 

F (000)    608   640   576 

θ Range for data collection (o)  2.16–28.00    2.60–28.00    1.96–28.00 

Limiting indices   -14 ≤ h ≤ 13, -13 ≤ k ≤ 12, -15 ≤  h  ≤ 15, -18 ≤ k ≤ 11, -7≤ h ≤ 5 , -16 ≤ k ≤16 

     -17 ≤  l  ≤ 17  -12 ≤  l  ≤ 12  -25 ≤  l  ≤ 25  

Reflections collected   13042   14683   13256 

Unique reflections (Rint)   3530 (0.0139)  3725 (0.0192)  3231(0.0154) 

Completeness to θ   28.00 (99.1%)  28.00 (99.9%)  28.00 (99.9%)  

Absorption correction   Numerical   Numerical   (Min., max.) 0.8295, 0.9696 

Refinement method   full-matrix least-squares on F2 Full-matrix least-squares on F2 Full-matrix least-squares on F2 

Data/restraints/parameters  3531/0/249   3725/0/219   3231/0/192 

Goodness-of-fit on F2   1.040   0.976   1.050 

Final R indices [I > 4σ(I)]  R1= 0.0344, wR2 =  0.0925  R1 = 0.0336, wR2 =  0.0871 R1 = 0.0268, wR2 =  0.0718 

R indices (all data)   R1=0.0393, wR2 =  0.0995  R1=0.0479, wR2 =  0.0955 R1 = 0.0289, wR2 =  0.0742 

Largest difference in peak and hole (e A –3 ) 0.278 and -0.176  0.220 and -0.298  0.201 and -0.204 

CCDC    872915
14

   872916
15

   890400
16
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Table 2.23 Selected bond lengths [Å] and angles [°] for Schiff-base ligands 

Bonds  pMS–2MT  pMS–4Me2MT Bonds  pMS–2MA  

S1–C16   1.7965(16)  1.7919(17)  S1–C8  1.7945(14)  

S1–C15   1.8153(12)  1.8143(14)  S1–C2   1.7617(13) 

N1–C8   1.2894(15)   1.2845(17)  N1–C7   1.2801(17)  

N1–C9   1.4147(14)  1.4150(17)  N1–C1   1.4146(15)  

O1–C2   1.3531(13)  1.3483(16)  C12–O1   1.3438(15)  

O1–H1   0.86(2)   0.8400  O1–H1   0.88(2)  

C1–C8   1.4433(16)   1.4428(19)  C7–C11   1.4495(16)  

C4–07  1.3575(14)  1.3603(16)  O2 –C9   1.4209(18)  

O1–C2  1.3531(13)  1.3483(16)  C12–O1   1.3438(15) 

C16–S1–C15  100.25(7)   101.00 (8)   C2–S1–C8   103.77(7) 

C8–N1–C9   119.67(10)  120.52 (12)   C7–N1–C1   123.50(11)  

C2–O1–H1   107.3(14)   109.5   C12–O1–H1  103.2(15)  

N1–C8–C1   121.91(10)   122.41 (12)  N1–C7–C11  121.54(12)  

N1–C8–H8   121.5(9)   118.8  N1–C7–H7   119.2  

C1–C8–H8   116.5(9)   118.8  C11–C7–H7  119.2  

 

 

       

Fig. 2.2 Crystal structures of pMS–2MT, pMS–4Me2MT and pMS–2MA 
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Table 2.24 Summary of crystallographic data for [Cu(pMS-2MT)2] and [Cu(pMS-4Me2MT)2] 

Compound [Cu(pMS-2MT)2] [Cu(pMS-4Me2MT)2] 

Chemical formula C32H32CuN24O4S2 C34H36N24O4S2 

Formula weight 636.26 664.31  

Crystal system Triclinic Triclinic 

Space group P1  P1  

Temperature (K) 200(2) 200(2) 

a (Å) 7.1941(2)  7.2958(4) 

b (Å) 8.4666(3)  8.6889(5)  

c (Ås) 12.8106(4) 13.1418(8) 

α (o) 75.4490(10)  76.031(2)  

β (o) 82.7680(10)  76.268(2)  

γ (o) 77.5270(10) 76.380(2) 

V (Å3) 735.31(4) 771.19(8)  

Z 1 1   

D calc (Mg/m3) 1.437 1.430  

Absorption coefficient (mm –1 ) 0.925 0.885  

F (000) 331 347 

θ Range for data collection (o) 2.53–28.00  2.67–28.00  

Limiting indices -9 ≤ h ≤ 8, -11 ≤ k ≤ 11, -9 ≤  h  ≤ 9, -11 ≤ k ≤ 11, 

 -16 ≤  l  ≤ 16 -17 ≤  l  ≤ 16 

Reflections collected 12739 12274 

Unique reflections (Rint) 6517 () 5938 

Completeness to θ 28.00 (99.6%) 28.00(98.3%) 

Absorption correction Numerical Numerical 

Refinement method full-matrix least-squares on F2 full-matrix least-squares on F2 

Data/restraints/parameters 6517/3/375 5983/3/395 

Goodness-of-fit on F2 1.077 1.147 

Final R indices [I > 2σ(I)] R1=0.0309, wR2 =  0.0777 R1=0.0524, wR2 =  0.1483  

R indices (all data) R1=0.0343, wR2 =  0.0802 R1=0.0533, wR2 =  0.1488 

Largest difference in peak and hole (e A –3 ) 0.368 and -0.296 1.743 and -0.469 

CCDC 87291317 87291418 
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Table 2.25 Selected bond lengths [Å] and angles [°] for [Cu(pMS-2MT)2] 21C and [Cu(pMS-4Me2MT)2] 22C 

Compound 21C 22C Compound 21C 22C 

Cu1–O101  1.898(5) 1.892(6) Cu1–N101  1.985(6) 2.002(7) 

Cu1–O201  1.930(4) 1.941(6) Cu1–N201  1.994(5) 1.975(8) 

O101–C102  1.310(7) 1.288(10)  N101–C108  1.316(7)  1.275(12) 

N101–C109  1.362(8) 1.450(11) O201–C202 1.289(7) 1.302(10) 

N201–C208  1.276(7) 1.322(12) N201–C209  1.475(6)  1.396(12) 

S101–C116  1.808(6)  1.810(9) S101–C115  1.806(7)  1.784(11) 

S201–C216  1.781(7) 1.774(11) S201–C215  1.842(7) 1.859(11) 

 

O101–Cu1–O201 176.9(3) 177.5(4)  C115–S101–C116  100.4(3) 101.0(5) 

O101–Cu1–N201 89.9(2) 91.2(3)  C216–S201–C215  100.1(3) 99.6(5) 

O201–Cu1–N201  89.50(18) 89.4(3)  C102–O101–Cu1  121.9(4) 123.6(6) 

O101–Cu1–N101  90.3(2) 89.7(3) C202–O201–Cu1  125.9(4) 122.7(5)  

O201–Cu1–N101  90.3(2) 89.6(3)  N101–C108–C101 126.9(5) 123.9(8) 

N201–Cu1–N101  179.1(3) 179.1(4)  N101–C108–H108  116.6 118.1 

C108–N101–C109  120.8(5) 120.6(8) N201–C208–C201  124.9(5) 125.7(8) 

C108–N101–Cu1  120.8(4) 123.3(6)  N201–C208–H208  117.5 117.2 

C109–N101–Cu1  118.2(4) 115.7(6)  C208–N201–Cu1  123.6(4) 121.8(6)  

C208–N201–C209  119.0(5) 118.7(8)  C209–N201–Cu1  117.4(4) 119.5(6) 

 

          

Fig. 2.3 Crystal structures of Cu(pMS–2MT) and Cu(pMS–4Me2MT) 
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2.4.5 Molar conductivity in DMF 

The conductivity of each metal complex was determined in DMF at 10
-3

 M solution at room temperature. 

 

Table 2.26 Molar conductivity of 2MT and 2MA complexes in DMF19  

Compounds Λm  

–1 cm2 mol–1
 

Compounds Λm 

–1 cm2 mol–1
 

Compounds Λm  

–1 cm2 mol–1
 

[Co(2MT)2Cl2] 

[Co(2Me-2MT)2Cl2] 

[Co(4Me-2MT)2Cl2] 

[Co(2MeO-2MT)2Cl2] 

[Co(4MeO-2MT)2Cl2] 

[Co(2Cl–2MT)2Cl2] 

[Co(4Cl–2MT)2Cl2] 

[Co(2Br–2MT)2Cl2] 

[Co(4Br–2MT)2Cl2] 

[Co(4NO2–2MT)2Cl2] 

29.9  

36.2 

35.8 

32.4 

33.2 

32.4 

28.6 

30.5 

30.8 

28.8 

[Ni(2MT)2Cl2] 

[Ni(2Me-2MT)2Cl2] 

[Ni(4Me-2MT)2Cl2] 

[Ni(2MeO-2MT)2Cl2] 

[Ni(4MeO-2MT)2Cl2] 

[Ni(2Cl–2MT)2Cl2] 

[Ni(4Cl–2MT)2Cl2] 

[Ni(2Br–2MT)2Cl2] 

[Ni(4Br–2MT)2Cl2] 

[Ni(4NO2–2MT)2Cl2] 

69.2 

73.1 

69.5 

72.1 

69.4 

71.3 

69.5 

71.5 

74.3 

68.1 

[Cu(2MT)Cl2] 

[Cu(2Me-2MT)Cl2] 

[Cu(4Me-2MT)Cl2] 

[Cu(2MeO-2MT)Cl2] 

[Cu(4MeO-2MT)Cl2] 

[Cu(2Cl–2MT)Cl2] 

[Cu(4Cl–2MT)Cl2] 

[Cu(2Br–2MT)Cl2] 

[Cu(4Br–2MT)Cl2] 

[Cu(4NO2–2MT)Cl2] 

27.9 

27.7 

32.2 

33.2 

38.3 

27.8 

26.5  

29.2 

28.7 

27.2 

[Co(2MA)2Cl2] 

[Co(2Me-2MA)2Cl2] 

[Co(4Me-2MA)2Cl2] 

[Co(2MeO-2MA)2Cl2] 

[Co(4MeO-2MA)2Cl2] 

---- 

[Co(4Cl–2MA)2Cl2] 

---- 

[Co(4Br–2MT)2Cl2] 

31.7 

32.5  

37.8 

31.5 

36.8  

----- 

35.2  

----- 

37.1 

[Ni(2MA)2Cl2] 

[Ni(2Me-2MA)2Cl2] 

[Ni(4Me-2MA)2Cl2] 

[Ni(2MeO-2MA)2Cl2] 

[Ni(4MeO-2MA)2Cl2] 

---- 

[Ni(4Cl–2MA)2Cl2] 

---- 

[Ni(4Br–2MA)2Cl2] 

80.7  

83.5 

85.0  

81.4 

87.4 

----- 

83.2 

----- 

79.8 

[Cu(2MA)Cl2] 

[Cu(2Me-2MA)Cl2] 

[Cu(4Me-2MA)Cl2] 

[Cu(2MeO-2MA)Cl2] 

[Cu(4MeO-2MA)Cl2] 

[Cu(2Cl–2MA)Cl2] 

[Cu(4Cl–2MA)Cl2] 

[Cu(2Br–2MA)2Cl2] 

[Cu(4Br–2MA)Cl2] 

37.3 

32.4 

31.5 

33.4 

36.4 

29.2 

28.9 

28.3  

29.6 

CoCl2.6H2O 38.6 NiCl2.6H2O 72.7 CuCl2.2H2O 27.7 
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2.4.6 Electronic spectra in solution and solid reflectance spectra 

As the Cu(II) complexes of 2MT and 2MA ligands are only soluble in DMF and DMSO, both solvents 

were used as the media for the spectra study in solution. For comparative purposes, the solution spectra of 

the ligands and other Ni(II and Co(II) complexes were also obtained in same solvents. DMF and DMSO 

have high donor capacities towards metal ions
7 

and their molecules may become coordinated to the metal 

ion (to form adducts) or could replace the ligand molecule(s) by solvolysis. The solid reflectance spectra 

of the complexes were therefore obtained in order to study the possible structural changes imposed on the 

complexes as a result of interaction with these solvents.  

The Schiff-bases and their Cu(II) complexes are soluble in solvents such as DCM and CHCl3 but not in 

polar solvents like EtOH, MeOH, DMSO or DMF, hence their solution spectra were obtained in DCM. It 

was found unnecessary to obtain their solid reflectance spectra as they retain the same colour when 

dissolved in DCM – which is a non-coordinating solvent. 
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2.4.6.1  Electronic spectra of 2MT and 2MA ligands in solution 

 

Table 2.27 Electronic spectra data (nm) of 2MT and 2MA ligands in DMF and DMSO a  

 π π*  ILCTa 

Ligand DMF DMSO DMF DMSO DMF DMSO 

 π π* 

Ligand DMF DMSO  DMF DMSO 

2MT                 265  259 297  300 ---- ----          

2Me–2MT 264  258 298  295 ---- ---- 

4Me–2MT 264  259 305  306 ---- ---- 

2MeO–2MT 265  259 295  297 ---- ---- 

4MeO–2MT 264  259 313  319 ---- 363 

2Cl–2MT 273sh 258 304  304 ----  349sh 

4Cl–2MT 266  275 311  316 ---- ---- 

2Br–2MT 274sh  258 305  303 ---- ---- 

4Br–2MT 266  272 313  312  ---- ---- 

2NO2–2MT 275sh  258 295  285 416  412 

4NO2–2MT 273sh  258  301  295sh 389b  392 

2MA 273sh  261 317  309 

2Me–2MA 286sh  270 309  308sh 

4Me–2MA 272sh  262  318  315 

2MeO–2MA 284sh  270 308  309sh 

4MeO–2MA 273sh  260  324  324 

2Cl–2MA 285  271 317  317 

4Cl–2MA 274  262 322  321 

2Br–2MA 285  278sh 317  321 

4Br–2MA 284sh  267 325  322 

---- ---- ---- ---- ---- 

---- ---- ---- ---- ---- 

a Intraligand charge transfer  
b additional ILCT is observed at 381 nm 

sh shoulder 
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2.4.6.2  Electronic spectra of 2MT and 2MA metal(II) complexes in solution and in solid state 

 

Table 2.28 Electronic spectra of Co(II) complexes of 2MT ligands in solution and in solid state 

 Wavelength [λmax/(nm)](, mol–1 dm3 cm–1)    

Complexes Solvent π  π*  π  π*  CT                        d  d transitions  

[Co(2MT)2Cl2] DMF 273sh 305 (3250) 324 (498)  375sh 487sh 532sh  607a (190)  672a (300) 

 DMSO 261 (7260) 300 (6850) 322 (1225) 370sh 498sh 530sh 613 (140) 684 (208)  

 Solid ---- ---- 337 486 548 693sh 1289br  

[Co(2Me–2MT)2Cl2] DMF 275sh 302 (2990) 325 (425) 370sh 480sh 529sh  607a (210) 672a (340) 

 DMSO 288sh 311 (4529) 319 (458) 384sh 489sh 534sh 612 (96) 684 (132)  

 Solid  ---- ---- 341 478 558, 588 677sh  1289br 

[Co(4Me–2MT)2Cl2] DMF 272sh 309 (3235) 344 (415)  368sh 485sh 526sh  608  (370) 674a (590) 

 DMSO 272 (998) 319 (5310) 328 (1080)  370 (40)  482sh  533sh 623 (76)  677(124) 

 Solid ---- ---- 342  481 547  662sh 1292br  

[Co(2MeO–2MT)2Cl2] DMF 272sh 304 (3350) 324 (478)  360sh 486sh 529sh  608  (180) 673 (280) 

 DMSO 266sh 306 (4270) 319 (473)  354sh 479sh 533sh 613 (90) 679 (145) 

 Solid ---- ---- 342   481 541 677sh  1281br  

[Co(4MeO–2MT)2Cl2] DMF 264 (8655) 313 (15055) m m  m 515 (1165) 594br 672br  

 DMSO 260 (9040) 315 (8420) 353 (1655) 393 (1655) m  525 (965) 597br 676 (530) 

 Solid ---- ---- 355 ---- 531 695sh 1317sh 

[Co(2Cl–2MT)2Cl2] DMF 270sh 310 (3840) 323 (464) 350sh 479sh 522 (16)  608 a (75) 671a (116) 

 DMSO 265sh 312 (3740) 324 (503) 353sh 494sh 530sh 612 (124) 678 (207)  

 Solid ---- ---- 344 491 558 678sh  1293br 

[Co(4Cl–2MT)2Cl2] DMF 271 (695) 313 (3075) 322 (420)  385sh 480sh 527sh  607 a (222) 674a (355) 

 DMSO 266 (10970) 311 (7310) 332 (1120) 395sh  487sh  532sh 613 (115) 680 (195)   

 Solid ---- ---- 335 495 568 644sh  1289br 

sh, shoulder  br, broad  m, masked  
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Table 2.28 Electronic spectra of Co(II) complexes of 2MT ligands in solution and in solid state (continued) 

 Wavelength [λmax/(nm)](, mol–1 dm3 cm–1)    

Complexes Solvent π  π*  π  π*  CT                                           d  d transitions  

[Co(2Br–2MT)2Cl2] DMF 274sh 311 (3785) 324 (520) 374sh 487sh 533sh  608  (200)  673 (315)  

 DMSO 266sh 314 (4320) 325 (530) 368sh 487sh 534sh 613 (113) 683 (170)  

 Solid ---- ---- 344 485 566 661sh  1292br 

[Co(4Br–2MT)2Cl2] DMF 275 (980) 314 (3255) 326 (428)  390sh 485sh 526sh  607 (303) 674 (490) 

 DMSO 267 (11195) 311 (6180) 333 (1125) 387sh 492sh 537sh 620 (105) 678 (178) 

 Solid ---- ---- 341 493 551 660sh  1280br 

[Co(4NO2–2MT)2Cl2] DMF 272 (2450) 312 (4070) 380 (30800)            433 (1925)  530sh 608 (380) 675 (609) 

 DMSO 274 (2010) 316 (3950) 380 (33405)            430 (1080)  533sh 620 (102) 677 (170) 

 Solid ---- ---- 369 450br 535 698sh  1288br 

sh, shoulder    

br, broad   

m, masked   
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Table 2.29 Electronic spectra of Co(II) complexes of 2MA ligands in solution and in solid state  

 Wavelength [λmax/(nm)](, mol–1 dm3 cm–1)    

Complexes Solvent π  π* π  π* CT    d  d transitions   

[Co(2MA)2Cl2] DMF 273sh  312 (5565) 328 (1708) 402sh 486sh 520sh  607 (285)  668 (390)  

 DMSO 271 (1155) 315 (5870) 328 (1790) ---- 487sh 560 (325)  618 (333) ---- 

 Solid ---- ---- 341 471  522, 589  751sh 984sh 1360br  

[Co(2Me-2MA)2Cl2] DMF 286 (2655) 308 (3445) 328 (1396)  398sh 488sh 525sh   607 (179)  671 (270) 

 DMSO 288sh 311 (4529) 328 (1700) 405sh 488sh 528sh 612 (96)  684 (132) 

 Solid  --     -- 336, 369 589 625 757sh 1124  1375   

[Co(4Me-2MA)2Cl2] DMF 272 (740) 317 (4930) 332 (1741)  ---- 491sh 527sh   608 (180)  672 (286)  

 DMSO 272 (998) 319 (5310) 335(1740) ---- 487sh 535sh  613 (76)  677(124) 

 Solid --     -- 338 481 521, 567, 593 654sh 1016br 1327br   

[Co(2MeO-2MA)2Cl2]
a DMF 274sh  314 (6475) 328 (6293)  ---- 462 (7220)  ---- 592sh 661sh  

 DMSO 272sh 319 (7185) 329 (7605) ---- 461 (8620)  ---- 591sh 660br  

[Co(4MeO-2MA)2Cl2] DMF 272 (773)  324 (8593) 344 (1959) ---- 483sh 528sh  607 (214)  672 (298) 

 DMSO 272 (1194) 323 (6518) 346 (2000) 395sh 488sh 533sh 621 (125)  684 (161) 

 Solid --     -- 348 481 514, 567, 601 670sh ---- 1350br 

[Co(4Cl-2MA)2Cl2] DMF 278 (1400)  323 (6122) 340 (1780)  ---- 495sh 530sh   608 (188) 672 (299) 

 DMSO 276 (1930)    324 (6460) 340 (1838) ---- 492sh 534sh  614 (82)  673 (129) 

 Solid --     -- 337 460 521, 571 655sh  931br 1330br 

[Co(4Br-2MA)2Cl2] DMF 283 (2212) 323 (5618) 340 (1874)  ---- 491sh 526sh   608 (205) 674 (316)  

 DMSO 286 (2815) 323 (7000) 345 (1940) ---- 489sh 532sh  613 (181) 677 (290) 

 Solid -- -- 341 460  514, 579 667sh 953br 1340br 

a, the solid spectra could not be obtained    
sh, shoulder  

br, broad   

m, masked  
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Table 2.30 Electronic spectra of Ni(II) complexes of 2MT ligands in solution and in solid state 

 Wavelength [λmax/(nm)](, mol–1 dm3 cm–1)    

Complexes Solvent π  π* π  π* CT d  d transitions  

[Ni(2MT)2Cl2] DMF 268sh 315 (1950) 322 (410) 424 (12)  584sh  623 (2) 707 (4)   773 (4) >1100     

 DMSO 273sh 300 (523) 327 (374) 425 (12)  ---- ---- 707 (3) 799 (4) >1100    

 Solid ---- ---- 353 419 660 1145br 

[Ni(2Me-2MT)2Cl2]  DMF 276sh 295 (6730)  322 (210)  417  (12) 578sh 622 (3) 696 (4)  776 (3)  > 1100 

  DMSO 268sh 312 (1840) 322 (200) 422 (3)  ---- ----           711(3)       789 (5)  > 1100 

  Solid  ---- ---- 353 414 657 1133br     

[Ni(4Me-2MT)2Cl2]  DMF 273sh  318 (1990) 330 (516) 417 (19) 585 (7)  618 (9) 689 (9) 766 (6) >1100 

  DMSO 269sh 318 (1985) 332 (503) 429 (11)  ---- ---- 709 (2) 793 (3)  >1100 

  Solid ---- ---- 351 419 665 1155br       

[Ni(2MeO-2MT)2Cl2]  DMF 277 sh  308 (1720) 322 (221) 418 (17) 580 (7) 618 (9) 689 (9) 771 (5) >1100 

  DMSO 270sh 310 (1870) 322 (213) 428 (14) ---- ---- 712 (4) 797 (6)  >1100 

  Solid ---- ---- 370 398sh 650 1104br      

[Ni(4MeO–2MT)2Cl2]  DMF 273sh  324 (2231) 341 (589) 421 (41) 575 (18) 618 (18) 690 (16) 763 (5) >1100 

  DMSO 270sh 324 (2210) 344 (577) 411 (17)  ---- ----- 708 (6) 771 (7) > 1100 

  Solid ---- ---- 348 m 672 1100sh 

sh, shoulder  

br, broad   

m, masked   
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Table 2.30 Electronic spectra of Ni(II) complexes of 2MT ligands in solution and in solid state (continued) 

 Wavelength [λmax/(nm)](, mol–1 dm3 cm–1)    

Complexes Solvent π  π* π  π* CT d  d transitions  

[Ni(2Cl–2MT)2Cl2] DMF 273sh 315 (1915) 328 (360) 418  (18) 584 (7) 621  (10) 690 (10) 778sh >1100 

 DMSO 267sh 317 (1940) 328 (471) 411 (14)  ---- ---- 710 (3) 763 (3)  >1100 

 Solid --     -- 353 404 654  1140br   

[Ni(4Cl–2MT)2Cl2] DMF 272sh  312 (946) 328 (520) 414  (11) 577sh  621(2) 698 (4)    769 (3) >1100 

 DMSO 275sh 324 (2170) 337 (542) 400 (34)  ---- ---- 705 (4) 764 (4)  >1100 

 Solid --     -- 364 407sh 654 1137br       

[Ni(2Br–2MT)2Cl2] DMF 274sh  316 (1948) 328 (360) 418 (18)  586 (7)  621 (8)   689 (10) 771sh >1100 

 DMSO 269sh 316 (1950) 329 (484) 420 (12)  ---- ---- 718sh  790 (2) >1100 

 Solid --     -- 353  406 654 1129br    

[Ni(4Br–2MT)2Cl2] DMF 278sh  324 (2049) 334 (516) 417 (19) 586sh 621 (8) 689 (8) 769 (4) >1100 

 DMSO 274sh 325 (2160) 337 (520) 411 (12)  ---- ---- 702 (3) 762 (4)  >1100 

 Solid --     -- 356  402 653 1147br        

[Ni(4NO2–2MT)2Cl2] DMF 275sh 315sh  376 (649) 422 (484) 585 (7)  621 (9)  688 (8) 767 (5) >1100 

 DMSO 270sh 315sh  348 (632) 440 (498) ---- ---- 713 (3) 761 (4)  >1100 

 Solid --     -- 363  412, 460 665 1129br 

sh, shoulder  

br, broad   
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Table 2.31 Electronic spectra of Ni(II) complexes of 2MA ligands in solution and in solid state  

 Wavelength [λmax/(nm)](, mol–1 dm3 cm–1)    

Complexes Solvent π  π* π  π*  CT                              d  d transitions  

[Ni(2MA)2Cl2] DMF 272sh 319 (2505) 332 (613) 416 (17) 576sh   626sh 698 (6) 772 (6) >1100 

 DMSO 271 (595) 318 (2515) 330 (640) 432 (12) ----     ---- 706sh 802 (4)   >1100 

 Solid ----  ---- 338 392sh 602 1014br  1316br 

[Ni(2Me–2MA)2Cl2] DMF 276sh 315 (2225)  331 (640) 419 (16) 576sh 620 (7) 700 (7) 779sh  >1100 

 DMSO 279sh 319 (2325) 334 (646) 422 (12) ---- ---- 708sh 786 (4) >1100 

 Solid  ---- ---- 370 423sh ---- 728 1204br 

[Ni(4Me–2MA)2Cl2] DMF 273sh 326 (2688) 338 (667) 412 (23) 577sh 622 (4) 701 (6) 793sh (7) >1100 

 DMSO 275 (559) 322 (2637) 341 (687) 410 (18) ----  ---- 713sh 833 (7) >1100 

 Solid ---- ---- 332, 365  m 592  886  1210br  

[Ni(2MeO–2MA)2Cl2] DMF 278sh 320 (2530) 332 (637) 412 (19) 573sh 622sh 697 (6) 776 (6) >1100 

 DMSO 278sh 320 (2324) 332 (639) 413 (23) 568sh 628sh 698 (7) 774 (7) >1100 

 Solid ---- ---- 351, 365  433sh ----  742 1250br 

[Ni(4MeO–2MA)2Cl2] DMF 272 (136) 324 (955) 350 (788) 423 (22) 579sh 628 (12) 709 (13) 790 (12)  >1100 

 DMSO 276 (560) 323 (2680) 357 (748) 423 (18) ---- ---- 710sh 817 (11)    > 1100 

 Solid ---- ---- 334 395sh     591 888 1237br 

[Ni(4Cl–2MA)2Cl2] DMF 278 (731)sh 324 (2745) 343 (703) 411 (26) ---- ---- 704 (8) 781 (10) >1100

 DMSO 281 (814) 325 (2777) 347 (711) 423 (23) ---- ---- 707sh 798 (9) >1100 

 Solid ---- ---- 338 398sh 594 961br 1312br        

[Ni(4Br–2MA)2Cl2] DMF 279sh 323 (2720) 345 (715) 420 (17) 586sh 619 sh 701 (5) 774 (5) >1100 

 DMSO 280sh 323 (2683) 349 (728) 424 (12) ----  ---- 708sh 804 (6)     >1100 

 Solid ---- ---- 343 405sh 591 957br 1311br   

sh, shoulder  
br, broad   

m, masked   
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Table 2.32 Electronic spectra of Cu(II) complexes of 2MT ligands in solution and in solid state  

  Wavelength [λmax/(nm)](, mol–1 dm3 cm–1)    

Complexes Solvent π  π*  π  π* CT d  d 

[Cu(2MT)Cl2] DMF 266 (4530) 295 (5750)  327 (2150), 434 (437)  931 (89)  

 DMSO 259 (8350) 298 (8250) 322 (2095), 430sh 925 (99)  

 Solid ---- ---- 353, 400 706br 

[Cu(2Me–2MT)Cl2] DMF 275sh 301 (3860)  329 (1705), 433 (390)  930 (85) 

 DMSO 275sh 306 (4780) 325 (2223), 430sh 936 (92) 

 Solid  ---- ---- 354, 469 713br 

[Cu(4Me–2MT)Cl2] DMF 266 (5010)  300 (5370)  330 (2330), 435 (550)  923 (93) 

 DMSO 259 (7700) 303 (6965) 330 (2207), 430sh 916 (125) 

 Solid ---- ---- 356, 450 754br 

[Cu(2MeO–2MT)Cl2] DMF 272sh 301 (4060)  327 (895), 434 (130)  876 (60) 

 DMSO ---- 305 (4805) 334 (1988), 504sh 912 (88) 

 Solid ---- ---- 371, 402, 479 771br 

[Cu(4MeO–2MT)Cl2] DMF 266 (4900), 287sh 308 (4680)  327 (2334), 439 (778)      582 (628), 821 (81) 

 DMSO 259 (6265), 286 (5200) 312 (5565) 336 (2309), 447 (489)     595 (290), 885 (95) 

 Solid ---- ---- 352, 403, 479 786br 

sh, shoulder  
br, broad   

m, masked   
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Table 2.32 Electronic spectra of Cu(II) complexes of 2MT ligands in solution and in solid state (continued) 

 Wavelength [λmax/(nm)](, mol–1 dm3 cm–1)    

Complexes Solvent π  π*  π  π* CT d  d  

[Cu(2Cl–2MT)Cl2] DMF 275sh 305 (3750)  328 (1890), 436 (290)    939 (80) 

 DMSO ---- 309 (4940) 332 (1865), 431sh 938 (108) 

 Solid ---- ---- 356, 413  773br 

[Cu(4Cl–2MT)Cl2] DMF 266 (8130)  306 (5370) 330 (1905), 435 (329)    942 (85) 

 DMSO 261 (11680)  309 (6710) 335 (1969), 430sh 936 (90) 

 Solid ----  ---- 364, 405 782br 

[Cu(2Br–2MT)Cl2] DMF 275sh 305 (3940)  329 (1706), 437 (260)    937 (72)  

 DMSO ---- 310 (5450) 331 (1870), 431sh 934 (83)  

 Solid  ----      ----  351, 414, 463 778br 

[Cu(4Br–2MT)Cl2] DMF 267 (9120) 306 (5370)  326 (2540), 436 (324)    947 (85) 

 DMSO 262 (12640) 308 (6880) 333 (2015), 430sh 920 (83)  

 Solid ---- ---- 348, 425  795br 

[Cu(4NO2–2MT)Cl2] DMF 267 (8440), 299sh 312sh  377 (1850), 397 (14030), 415 (1515)  946 (30) 

 DMSO 263 (7530), 301sh 322sh  381 (1700), 399 (1400), 428 (1640) 925 (87) 

 Solid ---- ---- 367, 450 765br 

sh, shoulder  

br, broad   
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Table 2.33 Electronic spectra of Cu(II) complexes of 2MA ligands in solution and in solid state  

 Wavelength [λmax/(nm)](, mol–1 dm3 cm–1)    

Complexes                      Solvent π  π* π  π* CT  d  d transitions 

[Cu(2MA)Cl2] DMF 275sh 308 (3957)  328 (2328), 432 (395)  903 (70)  

 DMSO 280 (2720) 317 (4535) 328 (2860), 432 sh  870 (102)  

 Solid ---- ---- 353 706br 

[Cu(2Me–2MA)Cl2] DMF 273sh 300 (5080)  336 (3360), 428 (2070) 503 (1605)  

 DMSO 273sh 306 (6340) 336 (3426), 425sh 548 (1860), 999 (130) 

 Solid  ---- ---- 354, 469 713br 

[Cu(4Me–2MA)Cl2] DMF 277sh 312 (4995) 331 (2673), 437 (320)  928 (80) 

 DMSO 273sh 315 (6850) 333 (2710), 500 sh 896 (86)  

 Solid ---- ---- 356, 450 754br 

[Cu(2MeO–2MA)Cl2] DMF 275sh 315 (5805)  335 (3664), 454 (3400)) m 

 DMSO 275sh 311 (8230) 384(3986), 460 (3390)  1000 (18) 

 Solid ---- ---- 371 771br 

[Cu(4MeO–2MA)Cl2] DMF 275sh  300 (3895)  333 (2837), 428 (2145)  544 (903), 587 (704) 

 DMSO c 276sh 315 (5760) 332 (3018), 433 (1510) 539sh, 590sh, 692 (70)  

 Solid ----     ---- 352, 403, 479 786br 

[Cu(2Cl–2MA)Cl2] DMF 275 sh 304 (5690) 333 (3280), 364 (5424), 413 (3335)  m 

 DMSO 276 sh 304 (4940) 331 (2590), 368 (2160), 396 (2070) 497sh, 1039br (108) 

 Solid ---- ---- 356, 413 773br 

[Cu(4Cl–2MA)Cl2] DMF 279 sh 319 (5288) 336 (2810), 435 (330)  906 (80) 

 DMSO 277 sh 320 (6630)      336 (2900) 518 (108), 571sh, 615sh, 906(82) 

 Solid ---- ---- 364, 405 782br 

[Cu(2Br–2MA)2Cl2] DMF 281 (3210) 314 (3622)  332 (2430), 436 (370) 901 (40)  

 DMSO 286 (4565) 315 (5620) 332 (2820) 500sh, 886 (54)  

 Solid ---- ---- 351, 414, 463 778br 

[Cu(4Br–2MA)Cl2] DMF 285sh 319 (5132)  333 (2922), 433 (390)  565sh, 625sh, 913  (75)  

 DMSO 281sh 320 (7220) 332 (2824) 507 (107), 569sh, 615sh, 896 (105)  

 Solid ----     ---- 348, 425 795br 

sh shoulder br broad  m masked 
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2.4.6.3  Electronic spectra of Schiff-base ligands and complexes in solution 

 

Table 2.34 Electronic spectra of Schiff-base ligands and complexes in DCM 

Compound Wavelength [λmax/(nm)](, mol–1 dm3 cm–1)    

       π  π*                  π  π* n  π* (C=N) CT d  d 

pMS–2MT 249 (1170) 299 (4420) 339 (9120)    

[Cu(pMS–2MT)2] 260sh  306 (16300) 364 (19890) 393 (4370) 598br (98) 

pMS–4Me2MT 253 (2520) 299 (8970) 343 (23250) 

[Cu(pMS–2Me2MT)2] 265sh 307 (16050)  363 (20140) 396 (4490) 611br (120)  

pMS–4MeO2MT 255 (2310) 301 (7580) 350 (21300) 

[Cu(pMS–4MeO2MT)2] 264sh 310 (16530) 364 (22460) 396 (4500) 615br (118) 

pMS–4Cl2MT 254 (2520) 303 (11280) 343 (27900)  

[Cu(pMS–4Cl2MT)2] 264sh 306 (15760) 364 (16680) 394 (4400) 598br (90) 

pMS–4Br2MT 252 (2220) 303 (10140) 344 (24290) 

[Cu(pMS–4Br2MT)2] 264sh 313 (17100)  354 (20810) 396 (4450) 601br (98) 

pMS–4NO22MT 253 (4570)  370 (40100) 

[Cu(pMS–4NO22MT)2] 265sh 309 (23830) 376 (24500) 400 (8870) 580 (170) 

pMS–2MA 246 (54430) 272, 282 (40500) 359 (41730) 

[Cu(pMS–2MA)2] 261 (16600) 328 (20500) 409 (14850) ----- 660 (152) 

pMS–4Me2MA 245 (30030) 275 (24000)  359 (24000) 

[Cu(pMS–2Me2MA)2] 261 (16600) 282, 303 (31000) 392 (22800) ----- 684 (130) 

pMS–4MeO2MA 244 (46130) 281 (37070) 368 (39000) 

[Cu(pMS–4MeO2MA)2] 261 (38000) 285, 304 (32500) 392 (22800) ----- 660 (80) 

pMS–4Cl2MA 246 (40680)  276 (31080) 362 (35860)  

[Cu(pMS–4Cl2MA)2] 254 (20950) 286, 304 (19100) 390 (12350) ----- 661 (120) 

pMS–4Br2MA 244sh 277 (16800) 365 (16000) 

[Cu(pMS–4Br2MA)2] 258 (34920) 286, 303 (32200) 392 (20980) ----- 657 (60) 
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This chapter brings out the key issues of the results obtained for all the compounds synthesized and used 

in this research work, so that decisive conclusions can be reached. In most part of the discourse, 2–

(methylthiomethyl)anilines (2MT) and 2–(methylthio)anilines (2MA) with their metal(II) complexes are 

jointly discussed as they have similar properties such as reaction stoichiometry, colour, electronic spectra 

etc.  Where there are variations between the two groups, the differences are noted and discussed.   

The electronic effect of substituents on the ring is also discussed in relation to their electron 

withdrawing/donating property. Where applicable, position of substituent on the ring as ortho or para to 

the amine group (Fig. 3.1) in relation to subsequent effect on property of compounds is discussed.   
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Fig. 3.1   para (A) and ortho (B) positions of substituents in 2MA and 2MT ligands 

 

3.1  ELEMENTAL ANALYSIS AND YIELDS  

The elemental analysis of a compound is a preliminary test carried out to ascertain the composition of 

elements in it. It is a helpful tool as it shows in which stoichiometry or ratio the ligand possibly binds to a 

metal ion in a given complex. It is also an indication of the purity of the synthesized compound. The 

microanalyses were submitted in replicate. The data as contained in Tables 2.1–2.3, and Tables 2.4–2.10 

(Chapter 2) for ligands and complexes respectively show that the C, H, N results are generally better than 

the S values. It is noted that the error is greatest for the sulfur figures, especially for the nickel complexes. 

This may reflect the formation of metal sulfides during combustion analysis, leading to a decrease in 

precision.  The NMR spectra of these ligands however indicate they are pure.  

The elemental analysis results of the Schiff-base ligands are in close agreement with their predicted 

values. The stoichiometry of the Cu(II) complexes was determined as [Cu(SB) 2] where SB is Schiff-base, 

by elemental analysis and was confirmed by X-ray crystallographic studies. 

Yields of most of the compounds synthesized were above 50%, however low yields were derived for a 

few compounds. The yields were especially low in the case of the ortho-substituted copper complexes of 

2MA ligands in comparison with their para-substituted analogues and their Co(II) and Ni(II) 

counterparts. No such discrimination in yields obtained was seen in any other set of metal complexes. 

Low yields recorded might be as a result of the unsuitability of the reaction conditions to the formation of 

those ortho-substituted products. Cobalt(II) complexes of 2MA ligands such as Co2MA, Co(2Me–2MT), 

Co(2MeO–2MA) and Co(4Cl–2MA) were also synthesized with low yields and were found to be 

particularly soluble in the solvents used to purify them. 
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3.1.1 2–(Methylthiomethyl)anilines, 2–(methylthio)anilines and their Schiff-base ligands 

Most of the thiomethylated-aniline ligands used in this work has been previously synthesized (except the 

bromo-substituted derivatives).
1-7

 These ligands were synthesized during this research study so they could 

be fully characterized and be used in biological studies. The elemental analysis data are generally in good 

agreement with the expected ligands’ formula composition in most cases. 

The elemental analysis results obtained for the Schiff-base ligands are in excellent agreement with the 

expected values, indicating the reaction between the anilines and the aldehyde was by 1:1 stoichiometry 

of the reactants.  

 

3.1.2 Complexes of 2–methylthiomethyl)anilines and 2–(methylthio)anilines  

Tables 3.4–3.9 display the elemental composition of the metal complexes. From the elemental 

composition results, the Co(II) complexes of both 2MT– and 2MA–based ligands indicate a 2:1 ligand to 

metal binding ratio including two chlorine atoms. 

The Ni(II) complexes of both groups similarly show 2:1 ligand to metal combination stoichiometry with 

two chlorine atoms. 

However, Cu(II) complexes formed in 1:1 ligand to metal combination irrespective of the addition 

method (metal to ligand or ligand to metal) used. Irrespective of the reaction temperature with the 2MT 

ligands, the same stoichiometry was derived for the complexes. In order to facilitate comparative studies 

with Cu(II) complexes with 2MT ligands, the complexes of 2MA ligands were prepared at room 

temperature to ensure the formation of 1:1 complexes since Dunski
8
 has reported a 2:1 formation ratio for 

copper(II) complex with 2MA under reflux. The exception to this 1:1 stoichiometry formation of the 

copper complexes is Cu(2Br–2MA) formed in 2:1 ratio even under similar reaction condition as others. 

The reason for this is not clearly understood as its counterpart Cu(2Cl–2MA) formed in 1:1 ratio. 
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3.1.3 Cu(II) Complexes of Schiff-bases 

The elemental analysis obtained for the copper complexes are also in excellent agreement with the 

predicted values. Cu(II) complexes of both pMS–2MT and pMS–2MA Schiff-bases were formed in 2:1 

ligand to metal stoichiometry.   

 

3.2  NMR SHIFTS OF 2MT AND 2MA LIGANDS 

The one– and two–dimensional proton and carbon-13 nuclear magnetic resonance shifts of all the ligands 

were determined in deuterated chloroform for proper assignments of signals due to resonating protons and 

carbon nuclei so that comparative studies could be made.   

The proton NMR chemical shifts of most of the 2MT ligands have been reported by Hiraki et al
9
 and 

Chupp et al
2 

with the exception of the bromo–substituted ligands. Likewise the proton NMR shift values 

of some 2MA ligands have been reported
10-13 

with the exception of ortho-(MeO, Cl, Br) and para-Br 

substituted ligands. The Carbon-13 NMR shifts were not reported and these values have been assigned 

here with the aid of 1D- as well as 2D-NMR spectroscopy which are recorded in Tables 2.11-2.12 in 

Chapter 2. 

The 
1
H spectrum of 4Br–2MT with the other one- and two-dimensional NMR spectra in Fig. 3.2–3.6 is 

representative and typical of other 2MT ligands. The 
1
H spectrum shows a singlet peak due to the methyl 

protons close to 2 ppm, another singlet peak of the methylene protons at a higher frequency of 3.6 ppm, 

with the low intensity singlet peak due to amine protons around 4 ppm are observed. The aromatic 

protons absorb between 6.6 and 7.2 ppm. The spectra of 2MA ligands are similar, differing in the absence 

of signal due to methylene protons. The NMR shifts of complexes were not measured due to their 

possession of paramagnetic metal ions.  

Of the various resonating groups present in the ligands, the amine protons show the most sensitivity to 

electronic effect of substituents on the ring as one changes from neutral (H) to electron–donating (Me, 

OMe) to electron–withdrawing groups (Br, Cl, NO2). The position of these ring substituents relative to 

that of amine also influences the shifts of amine protons. The lone pair of electrons on the aniline nitrogen 

is in conjugation with the –system of the ring, it is thus expected that variation in the electronic nature of 

the substituents attached to the aromatic ring should have a direct effect on the nitrogen atom and 
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consequently on the protons attached to it. It is well known that chemical shift (δ) depends on molecular 

structure and solvent and 
1
H nucleus is sensitive to hybridization of atom to which it is attached and 

electronic effects. These highlights are discussed below.  

 

  

Fig. 3.2 1H–NMR spectrum (400 MHz) of 4Br–2MT in CDCl3 
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Fig. 3.3 13C–NMR spectrum (100 MHz) of 4Br–2MT in CDCl3 

 

 

Fig. 3.4 DEPT135 NMR spectrum (100 MHz) of 4Br–2MT in CDCl3 
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Fig. 3.5 COSY NMR spectrum (400 MHz) of 4Br–2MT in CDCl3 

 

 

Fig. 3.6 HSQC NMR spectrum (100 MHz) of 4Br–2MT in CDCl3 
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3.2.1  Trend in NMR shifts of amine protons of 2–(methylthiomethyl)anilines 

Position of ring substituent (para/ortho to aniline nitrogen): Observation made from Tables 2.11 

and 2.12 shows the NMR shift values of the para-substituted ligands (Fig. 3.7A) are higher than those of 

their corresponding ortho analogues (Fig. 3.7B), regardless of electronic nature of substituent. The close 

proximity of all substituent groups in the ortho–substituted irrespective of their electronic nature serves an 

effect of reducing the electron density on aniline nitrogen atom because of a stronger inductive effect 

operative at this position compared to para position where they are distal to nitrogen. Hence they all 

deshield amine protons more than 2MT. As expected, the withdrawing groups deshield more strongly 

than the rest.  

 

Table 3.1 Trend in chemical shifts of NH2 protons of para– and  

ortho–substituted 2MT ligands    

Ligands         

(para) 

Ligands         

(ortho) 

4MeO–2MT  3.81 

4Me–2MT  3.95 

2MT  4.06 

4Br–2MT 4.08 

4Cl–2MT 4.07 

4NO2–2MT 4.73 

2MeO–2MT  4.28 

2Me–2MT  4.09 

2MT  4.06 

2Br–2MT 4.59 

2Cl–2MT 4.60 

2NO2–2MT 6.62 

 

NH2

CH2SCH3

R

2NH2

CH2SCH3
R

4

NH2

CH2SCH3

CH3

2

 

 

      para–substituted 2MT      ortho–substituted 2MT            Hyperconjugation in 2Me–2MT  

         A               B           C 

Fig. 3.7 Substitution in 2MT ligands (A, B) and hyperconjugation (C) 
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This explains the very high frequencies observed for the halogens, more especially for NO2 group at this 

position. Despite its electron–donating ability as an entity, the strongly negative oxygen atom of MeO 

group directly attached to the ring at this position withdraws electrons from the ring, consequently from 

nitrogen. The net effect is to increase the frequencies of amine protons. The methyl group has the same 

effect on amine protons by hyperconjugation (Fig. 3.7C). In the para position, these substituents 

influence the electron density on the nitrogen by mesomerism effect. This is a longer range effect 

compared to the ortho inductive effect whose range is shorter.  

Another explanation as to why amine protons absorb at higher frequencies with substituent at ortho 

position could be the reduced probability of hydrogen bonding with NH2. Hydrogen bonding in amine 

groups is known to lower their frequencies.
14

 In addition, the close proximity of these relatively bulkier 

groups ortho to amine group could induce a structural distortion of NH2 to pyramidal which reduces the 

conjugation with aromatic ring, hence a deshielding effect is observed.  

Electronic effect of ring substituent: the observed trend in NMR shifts of amine protons as a result 

of changing the substituent places the neutral 2MT in the middle of those with electron donating and 

withdrawing nature. Amine protons have higher chemical shift values in ligands with withdrawing groups 

than those with the donating groups, regardless of the position of the substituent. This is as a result of 

increase in the electron density on the aniline nitrogen as a result of increase in conjugation with electron 

donating groups, subsequently reducing the frequencies of the protons attached to this nitrogen as they 

become more shielded. Hence an upfield shift in frequencies is observed for both methyl and methoxy 

groups relative to 2MT (neutral, H substitution). Conversely, the electron withdrawers such as the 

halogen and nitro groups decrease the conjugation of the aromatic system, thereby decreasing the electron 

density on the nitrogen atom; its protons are deshielded and they resonate at higher frequencies. 

 

3.2.2  Trend in NMR shifts of other protons of 2–(methylthiomethyl)anilines 

Aromatic protons: A trend similar to that in amine protons, though less pronounced, is found for 

protons on the aromatic ring of the para–substituted ligands. Protons 3 and 5 were particularly similar in 

trend as a result of their equidistance to the substituent at position 4. Those on the ortho–substituted rings 

on the other hand show irregularities and do not display a noticeable trend probably due to the ortho–

effect.
15 



3. Discussion 
 

  115 

 

Nature and position of substituents determine the shape of the NH2, as either pyramidal or planar. In 

planar configuration, the NH2 lone pair is in conjugation with the aromatic ring while in its pyramidal 

structure, the overlap of its lone pair is hindered due to a decrease in flattening leading to a decrease of 

charge delocalization via the  bond. As a result, substituents that make the NH2 planar will shield amine 

protons. 

Methyl and methylene protons: The aliphatic methyl protons attached to sulfur are not affected by 

substituent change on aromatic ring since they are distal to the aromatic ring to experience any mesomeric 

effect. On the other hand, the carbon bearing the methylene protons is attached to the ring hence they also 

share in the –conjugation of the ring. Generally, they absorb at lower frequencies with any para 

substituent type but at higher frequencies with any ortho substituent, similar to the trend observed in 

amine protons. 

 

3.2.3  Trend in NMR shifts of protons of 2–(methylthio)anilines 

The frequencies of all protons (methylene, amine and aromatic) of substituted 2MA ligands are generally 

lowered compared to that of 2MA (H, light atom substituent) irrespective of the electronic nature or 

position of substituent (Table 3.2). This is suggestive of the presence of stronger hydrogen bonding 

between the amine protons and sulfur, which is reduced as bulkier groups are attached to the ring. There 

is also a possibility of change in the planarity of the NH2 with the aromatic system to a pyramidal 

configuration with attachment of bulkier groups. The consequence is to reduce the frequencies of the 

amine protons of substituted ligands relative to 2MA. 

The NMR shifts for para-substituted 2MA ligands are seen to be lower than those of their ortho-

analogues. It could be that the substituent at the ortho position enhances the pyramidal orientation of the 

NH2 group decreasing the probability of hydrogen bonding with the thioether group. Further physical 

studies may be used to verify this. 
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Table 3.2 Trend in chemical shifts of the NH2 protons of para– and  

ortho–substituted 2MA ligands    

Ligands         

(para) 

Ligands         

(ortho) 

4MeO–2MA  3.82 

4Me–2MA  4.14 

2MA  4.29 

4Br–2MA   4.16 

4Cl–2MA 4.05 

2MeO–2MA  3.81 

2Me–2MA  3.57 

2MA  4.29  

2Br–2MA 4.02 

2Cl–2MA 3.97 

 

 

3.2.4 Comparison of amine protons shifts in 2MT and 2MA ligands 

In 2MA ligands, the effect of the direct attachment of sulfur to the aromatic ring is not expected to have a 

bearing on the substituent since S is meta to the substituent at both the para and ortho positions. Its effect 

is however directly on the amine group to which it is proximal. In general if the frequency shifts of amine 

protons in 2MT and 2MA ligands are compared, we can make the following generalizations: 

In the unsubstituted ligands 2MT and 2MA, the effect of sulfur attachment to the aromatic ring is to 

increase the conjugation of the ring and decrease the electron demand on amine nitrogen in the case of the 

latter; thereby its protons absorb at higher frequencies relative to those of 2MT ligands. This trend is 

likewise observed in para–substituted ligands. 

Conversely, the frequencies are lower in ortho substituted 2MA ligands in comparison to their 2MT 

analogues, perhaps due to a change in the orientation of NH2 group relative to the aromatic ring. 

Moreover, NH2 is a comparatively small group, and the atomic groups in the ortho-position of the 

aromatic ring do not significantly change the orientation of the lone electron pair of the amine nitrogen 

atom, favoring conjugation with the π-system of the ring.
16
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3.3 NMR SHIFTS OF SCHIFF-BASE LIGANDS 

The NMR shifts of the Schiff-bases are recorded in Table 2.13 and the spectra are shown below in Fig. 

3.8–3.15. For the pMS–2MT ligands, the upfield region consist of singlet peaks for the methyl protons of 

the thioether group in the range 2.05–2.08 ppm and methylene protons in the range 3.73–3.81 ppm. The 

methyl protons in pMS–2MA ligands absorb at higher frequencies between 2.45 and 2.47 ppm, indicating 

the protons are more deshielded here. Another singlet peak due to the methoxy protons appears between 

3.83–3.87 ppm in the spectra of all the ligands. Additional singlet signals are observed for those Schiff-

bases substituted with methyl and methoxy groups on their phenyl rings at 2.35–2.38 ppm and 3.83 ppm 

respectively.  

The aromatic protons of the two phenyl rings appear as multiplets in the range 6.48–8.22 ppm. The 

downfield region shows two separate singlet peaks due to azomethine proton (8.44–8.54 ppm) and the 

phenolic proton (12.94–13.71 ppm) in all the ligand. The signal due to phenolic proton was confirmed as 

it was exchangeable on shaking with deuterium oxide. The high frequency of its absorption is an 

indication of hydrogen bonding between this proton and imine nitrogen. This phenomenon is usually 

observed in resonance signals of alcoholic protons and much more the aromatic phenolic protons and has 

been reported in Schiff-bases derived from 2-hydroxybenzaldehyde and aniline.
17

 The signal due to 

phenolic proton also shows sensitivity to change in electronic nature of substituents on aromatic ring; its 

frequency increases with electron donating power of substituents. The effect of substituent type is carried 

through resonance across the aromatic rings to the absorption of phenolic proton. The ligand with the 

methoxy substituent gives the highest frequency absorption at 13.71 ppm. The more donating substituents 

increase the electron density on the proton and consequently increase its availability for hydrogen 

bonding. The converse can be said of the electron withdrawing substituents like NO2, hence the phenolic 

proton here absorbs at a lower frequency value of 12.94 ppm. 
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Fig. 3.8 1H–NMR spectrum (400 MHz) of pMS–2MT in CDCl3 

 

 

Fig. 3.9 1H–NMR spectrum (400 MHz) of pMS–2MT in CDCl3 showing the disappearance of signal due to phenolic proton after 

deuterium shake 
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Fig. 3.10 13C–NMR spectrum (100 MHz) of pMS–2MT in CDCl3 

 

 

Fig. 3.11 DEPT135 NMR spectrum (100 MHz) of pMS–2MT in CDCl3 
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Fig. 3.12 COSY 2D-NMR spectrum (100 MHz) of pMS–2MT in CDCl3 

 

 

Fig. 3.13 HSQC 2D-NMR spectrum of pMS–2MT in CDCl3 
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Fig. 3.14 1H-NMR spectrum (400 MHz) of pMS–2MA in CDCl3 

 

 

Fig. 3.15 13C-NMR spectrum (100 MHz) of pMS–2MA in CDCl3 
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3.4 MID INFRARED SPECTRA OF 2MT AND 2MA LIGANDS 

The mid infrared spectra were obtained for the thiomethylated ligands, the Schiff-bases and their metal(II) 

complexes in the region 4000 – 650 cm
–1 

and their corresponding values are recorded in Tables 2.15–

2.19. The vibrational frequencies in the 2MT and 2MA ligands found within this range include those 

characterized by primary amines such as N–H stretches, NH2 scissor bend, NH rock and C–N stretch. The 

N–H asymmetric and symmetric stretches are usually found in the region 3500 – 3300 cm
-1

, NH2 bend 

around 1590 – 1600 cm
-1

, C–N stretch around 1280 cm
-1 

and NH rock near 800 cm
-1 

for aromatic primary 

amines.
18

 The bands expected from the thioether group due to C–S–C bend (around 1100 cm
–1

) and C–S 

stretch (650 – 780 cm
–1

) were not observed as they are weak bands.
19

 The discussion will focus on N–H 

(asymmetric and symmetric) and C–N stretches as these are usually shifted on chelation.  

The N–H stretches were assigned using the equation given by Bellamy and Williams
20

 for predicting N–H 

asymmetric and symmetric stretches in primary amines where more than two bands are observed. As 

some of these ligands were already reported and because they bear similarity with aniline, the frequencies 

of the vibrating groups were confirmed by comparing with values in literature, those of aniline
21-23 

and 

other related compounds in the literature.
24-28

  

 

3.4.1 N–H asymmetric and symmetric stretches 

Two N–H stretches are usually expected in the primary amine group in the thiomethylated anilines, 

asymmetric stretch being higher in frequency than the symmetric.  

 

2MT ligands  

As expected two N–H bands due to asymmetric and symmetric stretches were observed in the regions 

3446 – 3398 cm
–1 

and 3346 – 3317 cm
–1

 respectively for these ligands. A third shoulder band described
24

 

as the overtone of the NH2 bending mode was observed in the ligands around 3200 – 3100 cm
–1

. The 

spectra of these ligands are shown in Fig. 3.16 and 3.17.  
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Fig. 3.16 Mid IR of 2MT and para-substituted ligands 

 

 

 

 

Fig. 3.17 Mid IR of 2MT and ortho-substituted ligands 
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2MA ligands  

Both N–H asymmetric and symmetric stretches were likewise observed in the ranges 3459 – 3383 and 

3355 – 3293 cm
–1

 respectively and the shoulder band is also observed in the region 3200 – 3150 cm
–1 

(Fig. 3.18–3.19).  Maji
 
et al

29
 and other groups

30,31
 who previously reported the synthesis of 2MA 

assigned the infrared frequencies of N–H asymmetric and symmetric stretches, N–H shoulder stretch, 

NH2 scissor bend and C–N stretch infrared frequencies in the ranges 3470 – 3424, 3365 – 3325, 3080 – 

3050, 1600 – 1610 and 1300 – 1310 cm
–1

 respectively.  

 

 

 

Fig. 3.18 Mid IR of 2MA and para-substituted ligands 
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Fig. 3.19 Mid IR of 2MA and ortho-substituted ligands 

 

Comparative studies  

 

1. Ortho/para substitution effect: Both N–H stretches in ortho-substituted ligands absorb at higher 

frequencies in comparison with those of the para-substituted analogues in 2MT ligands. This is in perfect 

agreement with the observation made with the effect of position of substituent on the NMR frequencies of 

amine protons. It could be recalled that with ortho-substitution, the amine protons absorb at higher 

frequencies, being shifted downfield in comparison with same substituent at the para position. Similar 

pattern is observed with 2MA ligands with ortho-substituted ligands absorbing at higher frequencies. 

 

2. Electronic effect of substituent: Considering the effect of the nature of ring substituent on N–H 

stretches, the electron donating groups absorb at higher vibrational frequencies than the withdrawing 

groups in 2MT ligands, the exception being the nitro–substituted compounds.  

 

An opposite effect is observed with 2MA ligands where the withdrawing groups have higher frequencies 

than the donating groups. This has a direct relationship with the amine protons chemical shifts where 

higher frequencies are observed with electron withdrawing substituents.  

 

650 1150 1650 2150 2650 3150 3650 

Wavenumber (cm-1) 
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3. Effect of thioether position: The frequencies of vibrations due to asymmetric stretch of N–H in 

2MT ligands are generally lower than those of their corresponding 2MA ligands. The only exception is 

the ortho–methoxy substituted 2MA with a lower frequency. The higher frequencies observed in 2MA 

ligands could be as a result of electron contribution of the comparatively electronegative sulfur of the 

thioether to the aromatic ring which reduces the electron density on nitrogen lone pair of electrons. 

Consequently, the N–H bond of 2MA derivatives has more electron density. In 2MA ligands, the effect of 

sulfur direct attachment to the aromatic ring is not expected to have a direct bearing on the substituent 

since S is meta to the substituent at both the para and ortho positions. Its effect is however directly on the 

nitrogen to which it is proximal. 

 

 

Fig. 3.20 Comparison of N–H frequencies in selected 2MT and 2MA ligands 

 

3.4.2 C–N stretch 

The C–N band in aromatic aniline compounds is expected around 1280 cm
–1

. This was observed in the 

range 1269 – 1330 cm
–1 

in both ligands; the higher frequencies in 2MA ligands are consistent with what is 

observed in their N–H frequencies. The only exception is the para-methoxy compound (Fig. 3.21) which 

absorbs at a lower frequency. 
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The effect of position of substituent on the C–N frequency is also consistent with what was observed on 

the N–H stretch in 2MT ligands, the ortho-substituted ligands absorb at higher energies. In contrast, the 

trend is reversed for 2MA ligands as the electron donating groups in the ortho-substituted show lower 

frequencies compared to their para analogues and vice versa for the electron withdrawing groups. 

 

The electronic nature of substituent does not seem to show any significant effect on the C–N stretch in 

2MT ligands as there is no consistent linear trend observed. 2MA ligands show similar trend in C–N 

stretch as with N–H stretch, with electron withdrawing groups absorbing at higher frequencies than the 

withdrawers. This may reflect the vagrancies associated with the differences in vibrational coupling 

experienced by substituted benzenes when comparing different substitution patterns.
32

 

 

 

Fig. 3.21 NH2 bend and C–N stretches in selected 2MT ligands  
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Fig. 3.22 Comparing the NH2 bend and C–N stretch of para–methoxy 2MT and 2MA 

 

 

3.5 MID AND FAR INFRARED SPECTRA OF 2MT AND 2MA METAL COMPLEXES  

In the infrared spectra of these complexes, the bands of interest are those associated with amine group 

commonly found in the mid infrared region and those attributable to metal–ligand vibrations found in the 

far infrared region of the spectrum. As the ligands used in this study are of SN donor type and the metal 

chloride salts were used for complexation, metal to ligand vibrations expected are M–N, M–L and M–S 

stretches. From the elemental analysis results, there was no deprotonation of the amine protons on 

complexation and the two N–H stretches are observed in the mid infrared region. The corresponding 

Raman shifts could not be obtained for the metal complexes of the 2MT and 2MT ligands as they 

fluoresced under the laser beam and the spectra were obscured. 
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3.5.1  N–H stretches  

It is well known that aniline compounds show intra- and inter-molecular hydrogen bonding and the extent 

of the bond is determined by the nature of the amine. The tendency to form hydrogen bonds is very strong 

in ammonia and primary amine complexes, except when the NH2 group of the amine is sterically 

hindered. In secondary amine complexes, the tendency is very slight.
16

 Hydrogen bonded N–H bands are 

observed in the spectra of some of the complexes used in this study, especially those of 2MA complexes 

and the nickel complexes in general. The N–H stretches were assigned using the equation given by 

Bellamy and Williams
20

 for N–H asymmetric and symmetric stretches in primary amines, where more 

than two possible N–H bands were observed as a result of intra- and inter-molecular hydrogen bonding. 

The ortho-substituted complexes show greater deviation (Tables 3.16 and 3.18) from the standard 

deviation of 4.8 cm
–1

, indicating the amino hydrogen atoms may not be equivalently hydrogen bonded.   

Both N–H asymmetric and symmetric stretches are lowered in the complexes. The shift to lower 

frequency of these stretches upon chelation has been interpreted to be the result of the electron density of 

the nitrogen being directed to the metal ion, leaving the amino protons less tightly bound to the nitrogen.
33 

N–H frequencies observed in 2MT complexes generally occur at higher frequencies than those in 2MA 

complexes, hence the magnitude of the N–H frequency shift, ΔvN–H (ΔvN–H = vN–H(ligand) – vN–H(complex)) for 

the former is smaller relative to the analogous 2MA complexes. The complexes of 2MA ligands are 

abundantly hydrogen bonded as could be seen from their N–H stretches (Fig. 4.14). Hence they display 

far lower frequencies in comparison to their analogous 2MT complexes. The magnitude of the N–H 

frequency shift should reflect the strength of the bonding interaction between the metal ion and the ligand 

nitrogen. A large ΔvN–H indicates strong metal–ligand vibration.  

Apart from the bathochromic shift experienced by N–H bands on coordination, another effect is the 

hyperchromic shift of the bands to higher absorptions. The formation of M–N bonds by a coordinating 

group having one or more N–H bonds increases the electron demand of the nitrogen and therefore 

increases the polarity of the N–H bonds. This induces an increase in change in the N–H dipole moment 

during vibration, resulting in an increase in total absorption.
34 

Most of the metal complexes show both 

bathochromic and hyperchromic shift of their N–H bands, as seen from Fig. 3.23 and 3.24 that the N–H 

of metal complexes show stronger absorptions and are shifted to lower energies on chelation. No 

consistent trend was shown among the three series of complexes that could be used to judge the 

coordinating ability of Co(II), Ni(II) or Cu(II) ions in these complexes.  
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Fig. 3.23 Effect of coordination on N–H bands of 2MT and complexes 

 

 

 

 

 

Fig. 3.24 Hydrogen bonding and effect of coordination on NH bands in 2MA ligands 
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3.5.2 C–N stretch 

C-N shifts to lower frequencies on complexation as expected as a result of decrease in the C=N double 

bond character. Similar trend was also observed in the shift of this band in the complexes of both series of 

ligands (Fig. 3.25). The absorption intensity of the bands also reduces on complexation.  

 

 

 

Fig. 3.25 Shift of VC–N on coordination in 2MT ligands 

 

 

3.5.3 Metal to ligand vibrations  

The assignments here will be complicated by the appearance of metal sensitive torsional ring vibrations 

on chelation, which appear in this region. The greater vibrational coupling experienced within the far 

infrared could also complicate the spectra.
35,36

 The metal complexes used in this study do not show a 

consistent trend in metal–ligand vibrations. As a result, no correlation could be made between the 

coordinating ability of metal ions in terms of the effect the position or the electronic nature of substituents 

on the aromatic ring has on the metal–ligand frequency. In general, the nickel and cobalt complexes 

behave similarly as the infrared absorptions of their metal–ligand vibrations occur at same or nearly 

equivalent frequency. This is expected if they are isostructural in the solid state. The copper complexes 

are non-isostructural. Hence both nickel and cobalt complexes will be jointly discussed. 
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3.5.3.1  M–N stretch 

In the 2MT complexes, the only band attributed to M–N stretch occurs in the region 380–440cm
–1

 for all 

the complexes with medium absorption. A large ΔvN–H should indicate strong metal–ligand vibrations. In 

the complexes, no correlation could be seen between the change in shift of either the asymmetric or 

symmetric N–H stretch on chelation and M–N stretch. Fig. 3.26 gives an overview of these M–L 

stretches. 

 

 

Fig. 3.26 Metal to ligand vibrations in metal complexes 

 

Most 2MA complexes show two bands in the region 370 – 435 cm
–1

 and these have been assigned to M–

N stretches. That one band is observed in a few cases like in the ortho-substituted 2MA copper complexes 

could be that the octahedral structure is more perfect here and the two M–N bonds being in a perfect trans 

position absorb at same or almost equal frequency. The methoxy group has the highest frequency for the 

M–N stretch, confirming it stabilizes the complex and subsequently the metal–ligand vibration with its 

electron donating property. Conversely, the electron withdrawing halogens are seen with lowest M–N 

values. The methoxy group seems to be able to perturb the structure of the molecule effectively by 

strongly influencing the electronic distribution of participating atoms. 

30 130 230 330 430 530 630 

Wavenumber (cm-1) 

Co2MT Ni2MT Cu2MT 

VM–S 

VM–Cl 

VM–Cl 

VM–N  



3. Discussion 
 

  133 

 

Considering the trend in M–N frequency from Co(II) to Cu(II), no noticeable trend exists. Since the 

nature of M–N bond in coordination compounds has been shown to depend on the charge of the metal 

ion, the type of available bonding orbitals, the hybrid state of the nitrogen, and the tendency of the metal 

to form covalent bonds; the change of substituents on the aromatic ring and the oxidation state of the 

metals being the same may not be sufficient to cause a noticeable change in M–N bond. It has been shown 

in a series of amine complexes, where the charge on the metal ions increased from +l to +3, that there was 

a corresponding decrease in the absorption frequency of the coordinated N–H bands.
19

  

 

3.5.3.2  M–Cl stretch 

The vibrations due to M–Cl stretches consist of a mixture of medium and intense band in all the 

complexes. For copper complexes of 2MT ligands, the first set of bands is found in the range 335–400 

cm
–1

 and the second set absorbs in the region 266 – 303cm
–1

. The higher M–Cl vibrations are assigned as 

terminal chlorine bonding to Cu
2+

 while the lower frequency vibrations are due to those vibrations in 

which the chlorine is bridging. This is confirmed by the crystal structure of [Cu(4NO2-2MT)Cl2]2 which 

shows a planar arrangement of the atoms around the Cu
2+

 center whereby the 2 chloride ions are cis to 

each other and one of them is involved in an axial bridging bonding with the Cu
2+

 of the adjacent 

molecule. This gives rise to different M–Cl vibrations in which the terminally bound Cl
-
 absorb at a 

higher frequency than the bridging Cl
-
. In addition, two bands are usually expected from interactions of 2 

chloride ions in a cis arrangement with same metal ion in a planar structure.  

M–Cl vibrations in nickel and cobalt complexes occur at lower frequencies than those of copper 

complexes. This is as a result of change in geometry from the five–coordinate copper(II) to (distorted) 

octahedral Ni(II) and Co(II), decrease in M-Cl bond frequency is expected as the coordination number of 

a particular metal ion increases.
37 

The two sets of M–Cl absorptions are found in the ranges 317–347 cm
–1

 and 220–261 cm
–1

. The first set 

of bands is assigned to M–Cl bands in a distorted pseudo–octahedral trans configuration in both 

complexes where only one or two such bands is (are) expected depending on how symmetrical the 2 

chlorine trans bonds are to each other. The lower frequency vibrations have been attributed to other low 

symmetry components arising from M–Cl vibrations.
37
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Only one set of M–Cl bands is observed in Cu(II) complexes of 2MA ligands in the range 258–311 cm
–1

. 

This indicates another type of arrangement around the copper center where all the chloride ions are 

bridging two metal centers to form an octahedral geometry round each metal ion, as suggested by the 

lower frequencies of these M–Cl bands.  In 2MT copper complexes, only one chloride ion is bridging two 

metal centers. 

One M–Cl band is observed around 325–347 cm
–1 

in nickel and cobalt complexes, indicating the 2 

chlorine ions are in trans configuration in the structures. An additional band of higher frequency (364 cm
–

1
) is seen in the methoxy substituted complexes perhaps as a result of different spatial orientation of the 

compound with the presence of the strongly donating methoxy group.  

Two more bands associated with M–Cl bands are observed for 2MA complexes in the region 200–260 

cm
–1

. Such bands have been similarly reported by Ikram.
37

  

 

3.5.3.3 M–S stretch 

The vibrations due to M–S stretch are found to be of weak, medium or strong intensity depending on the 

coordination environment. As it is in the case of the other metal–ligand stretches, M–S vibrations absorb 

at higher energies in copper complexes (between 315 and 350 cm
–l
)

 
than in the nickel and cobalt 

complexes (260 – 310 cm
–1

) of 2MT ligands. Following similar trend, those of 2MA complexes absorb in 

the ranges 320 – 360 cm
–1

 and 270 – 307 cm
–l
 for the copper complexes and other two complexes 

respectively. 

The only indication of a higher geometry obtainable in Ni and Co complexes compared to Cu complexes 

is the lower frequencies of the M–Cl and M–S bands observed in the former. Metal–ligand vibrations are 

lowered as the coordination number of metal ion increases.  

 

The shift to lower energies of the M–S bands in complexes of 2MA ligands could be as a result of the 

conjugation of the lone pairs of the thioether sulfur with the aromatic ring which reduces their availability 

for binding with the metal ions whereas those of the 2MT complexes are more available and strengthens 

the bonding to attached metal ions. 

As mentioned earlier, no trend with respect to effect of electronic nature or position of substituent is seen 

on these vibrations as was observed in N–H stretch. However a trend can be seen when the metal–ligand 
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vibrations of 2MT and 2MT complexes are compared; in general those of the former absorb at higher 

frequencies than those of their analogous 2MA complexes. 

In the metal(II) complexes studied by Kratzl
23

, the trend observed for Δv(N–H) was of the order Zn (210 

cm
–1

), Cu (240 cm
-l
), Co (255 cm

–1
), Ni (270 cm

–1
), Pd (300 cm

–1
), which is an indication of the bond 

strength between the metal ion and nitrogen. Similar trend is observed for complexes of unsubstituted 

ligands but no longer holds as substituents are added to the ring, which could imply that the electronic 

nature of some of the substituents are not defined in certain positions on the ring. For example, the 

methoxy group also has a negative inductive effect from its electronegative oxygen atom, especially at the 

ortho position aside its electron donating tendency as a group. This can be confirmed by its deviations in 

certain observations made above. 

The following summary can be made for the observations in the infrared spectra of 2MT and 2MA 

ligands and complexes: 

There seems to be a correlation between the NMR shifts of amine protons and N–H IR asymmetric stretch 

frequencies from the consideration of ortho/para position of substituents in 2MT ligands but not with 

electronic nature of substituent. This implies the electronic nature of the substituents used here does not 

significantly affect the property of 2MT ligands. For 2MA ligands, the position as well the electronic 

nature of substituents as reflected in the NMR shifts of amine protons have a linear relationship with the 

N–H infrared asymmetric  stretch frequency. 

In the study, 2MA ligands are consistent in the effect of electronic nature on NMR shifts and IR stretches 

observed, the electron withdrawing groups deshielding more effectively the amine protons and decreasing 

the amine conjugation, consequently increasing the N–H frequency. The 2MT ligands however show 

consistency in the effect of the position of substituent, the ortho-substituted compounds deshielding the 

amine protons more effectively and decreasing the amine conjugation, consequently increasing the N–H 

frequency.  

This difference in behavior of these two series of ligands could be due to inequality of hydrogen bonding 

of the amine protons, as the N–H stretches of the ortho-substituted ligands do not obey closely the 

relationship proposed by Bellamy
17

 for NH symmetric and asymmetric stretches, the standard deviation 

being much higher than 4.8 cm
–1

.  
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3.6 INFRARED SPECTRA AND RAMAN SHIFTS OF SCHIFF-BASE LIGANDS AND 

 COMPLEXES 

The N–H stretches observed in the spectra of the reacting 2MT/2MA amine ligands are absent in the IR 

spectra of these Schiff-bases. Strong bands characteristic of the azomethine C=N stretches
38

 are seen in 

the region 1600-1610cm
–1

. The infrared spectra of imines shows that the C=N stretching frequency 

absorb in the region between 1680 and 1603 cm
-1

 when H, alkyl or phenyl are bonded to carbon and 

nitrogen atoms.
38

 The broad band due to the phenolic O–H vibration in the ligands is not observed as a 

result of involvement of its hydrogen in intramolecular bonding with the azomethine nitrogen.
16

 The 

phenolic O–H was deprotonated on complexation and this was confirmed by the crystal structures of the 

complexes (Figures 3.48 and 3.49). The frequencies of C=N stretches are lowered by 5-20 cm
-1 

while 

those of C–O stretches (1328-1342 cm-1) are shifted to higher frequencies by 20-40 cm
-1

 as a result of 

coordination of azomethine nitrogen and phenolic oxygen respectively to the metal centre.
39

  

New bands of medium intensity appear in the far infrared region of the complexes in the range 430 – 467 

cm
–1

 and are assigned as Cu–O stretches in an octahedral field. Another set of bands of medium intensity 

are seen between 380 and 429 cm
–1

; these are due to Cu–N stretching modes.   

The Raman shifts for each of the groups that are Raman-active were found close to the IR values 

(allowing for instrumental calibration issues) confirming their assignments. The Raman and IR spectra for 

the ligands and their complexes are shown by Fig. 3.27–3.41.  
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Fig. 3.27 Raman spectrum of [Cu(pMS–4Cl2MA)2] 

 

  

Fig. 3.28 Raman spectrum of pMS–4Me2MT 
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Fig. 3.29 Raman spectrum of [Cu(pMS–4Me2MT)2] 

 

 

 

Fig. 3.30 Raman spectrum of [Cu(pMS–4MeO2MT)2] 
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Fig. 3.31 Raman spectrum of pMS–4Me2MA 

 

 

Fig. 3.32 Raman spectrum of [Cu(pMS–4Me2MA)2] 
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Fig. 3.33 Raman spectrum of [Cu(pMS–4Br2MA)2]  

 

 

Fig. 3.34 Raman spectrum of [Cu(pMS–4MeO2MA)2]  
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Fig. 3.35 Raman spectrum of [Cu(pMS–2MT)2]  

 

 

 

Fig. 3.36 Mid–IR spectra of pMS–2MT and [Cu(pMS–2MT)2]  

 

650 1150 1650 2150 2650 3150 3650 

Wavenumber (cm-1) 

pMS-2MT Cu(pMS-2MT) 



3. Discussion 
 

  142 

 

 

Fig. 3.37 Mid–IR spectra of pMS–4Me2MA and [Cu(pMS–4Me2MA)2] 

 

 

Fig. 3.38 Far–IR spectrum of pMS–4MeO2MT 
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Fig. 3.39 Far–IR spectrum of [Cu(pMS–4MeO2MT)2] 

 

 

Fig. 3.40 Far–IR spectrum of pMS–4NO22MT 
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Fig. 3.41 Far–IR spectrum of [Cu(pMS–4NO22MT)2] 
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3.7 CRYSTALLOGRAPHIC DATA 

3.7.1 Crystallographic data of [Cu(4NO2–2MT)2Cl2]2 (11C) 

A single crystal of 11C was grown by the slow evaporation of a mixture of DMSO/EtOH (2:1) solution. 

The molecular structure of 11C is shown in Fig. 3.42 together with the atom numbering scheme. The 

crystal data and structure refinement for 11C are recorded in Table 2.20. The complex molecule 

crystallizes in the monoclinic space group P21/c.  

The four corners of the square plane are occupied by the aniline nitrogen (N1), thioether sulfur (S1) and 

two chloride ions (Cl1, Cl2) in a cis arrangement to each other. One of the Cl (Cl2) is involved in axial 

bonding with the Cu(II) of the adjacent molecule while Cl1 is terminally bonded to only one Cu(II). There 

are one or two sets of possible axial coordination seen in this complex depending on the acceptable bond 

distance for Cu–Clapical. Each axial coordination is made by one of the chloride ions (Cl2) bonding with 

the Cu(II) ion of the adjacent cell layer and the Cu–Clapical distance (Cu1–Cl2 and Cl2–Cu1) for one set is 

2.690 Å which is within the range for Cu–Clapical distance of many Cu(II) octahedral compounds
40-42 

and 

the other set of Cu–Clapical distance is longer at 2.932 Å.  

 

When one considers that the 2.932 Å distance is longer than would enable effective interaction between 

the Cu and Cl2, the axial coordination is reduced to one and a dimeric square pyramidal structure results 

(Fig. 3.42) with NSCl3 coordination per each Cu(II). The coordination geometry around Cu(II) will then 

be described as trigonal bipyramidal distorted square based pyramidal,
43

 as revealed by the magnitude of 

the trigonality index
44

 τ of 0.22 [τ = ( – α )/60, where α =N1–Cu1–Cl1=176.82(54)
o
 and  = Cl2–Cu1–

S1 = 163.90(2)
 o

; for perfect square pyramidal and trigonal bipyramidal geometries the τ values are zero 

and unity, respectively.  

 

On the other hand, considering that similar and longer bond lengths have been reported for Cu–Clapical in 

tolbachite,
45

 the first Cu(II) octahedral mineral compound, the arrangement around Cu(II) in 11C 

comprises of NSCl4 giving rise to polymeric octahedral structure of the molecule. Each CuNSCl2 shares 

one equatorial Cl
-
 with the adjacent Cu(II) in an apical bond and the sixth bond is formed by the 

equatorial Cl
-
 of the adjacent Cu(II) also binding to it apically. This linkage results in ladder-like 

octahedral sheets (Fig. 3.43). A distorted octahedral or tetragonal structures were earlier suggested for the 

copper(II) complexes of 2MT, 2Me–2MT, 2Cl–2MT and 4Cl–2MT.
23 

From the above crystal structures, 

the possibility of this suggestion is seen.
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Bond distances for Cu–N (2.075 Å) and Cu–S (2.321 Å) fall within the ranges expected.
46,47

 The Cu–

S(thioether) distance is typical of equatorially bound thioether sulfur.
48-50

 The Cu–Cu distances observed 

are of different lengths; 3.532 Å, 3.808 Å, 5.600 Å, 8.554 Å. As dimeric copper complexes can range 

from normal paramagnetic to the other extreme of strongly antiferromagnetic as a result of Cu–Cu 

interactions, further studies need to be carried out to investigate the nature of paramagnetism obtainable in 

these complexes. 

Extensive hydrogen bonding operates within the molecule and most of these distances measured are 

within the range for such bondings.
51 

Table 3.21 contains the data for possible intra- and intermolecular 

interactions within the lattice of 11C. 

   

 

 

Fig. 3.42 Dimeric square pyramidal structure of Cu(4NO2–2MT) 11C. Ellipsoids drawn at 50%  

probability and hydrogen atoms are omitted for clarity 
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C        Cl        Cu        N        O        S 
 

Fig. 3.43 Ladder-like polymeric octahedral structure of Cu(4NO2–2MT) 11C. Ellipsoids drawn at 50% probability and hydrogen 

atoms omitted for clarity 

 

3.7.2 Crystallographic data of Schiff-base ligands 

The molecular structures of Schiff-bases pMS–2MT (21), pMS–4Me2MT (22) and pMS–2MA (27) were 

determined by single crystal X–ray diffraction and are shown in Fig. 3.44-3.46. The Schiff-bases were 

grown by slow evaporation from DCM/EtOH mixture.  Compounds 21 and 22 crystallized out in the 

monoclinic P21/n space group and 27 in the orthorhombic P212121 space group. 

 

The C=N bond distances are nearly equal in 21 (1.289 Å) and 22 (1.285 Å), but slightly shorter in 27 

(1.280 Å) as a result of conjugation of sulfur lone pairs with the ring while C–N bond length is similar in 

the three compounds. The C–S distance of the thioether group is almost the same in 21 and 27, and the 

conjugation of the S lone pairs in 27 is further shown by the shorter bond length of S1–C2 (1.762 Å) 

compared to S1–C15 (1.815 Å and 1.814 Å in 21 and 22 respectively). The C–O bond is in order of 

decreasing distance 21 (1.353 Å) > 22 (1.348 Å) > 27 (1.344 Å) and this reflects a slightly more extensive 

conjugation in a similar order. The presence of the –methyl group in 22 contributes more electrons to the 

system by resonance. There is no effect of conjugation or substitution on C–N bond as it has same length 

(1.415 Å) in the three compounds. The O1–H1 bond distance is seen to be the larger in 27 than the other 

two compounds, indicating the its phenolic proton is more acidic. The hydrogen bond distances between 

the phenolic oxygen and the nitrogen are 1.840 Å, 1.860 Å and 1.790 Å respectively and the distance 
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separating the separating the two non hydrogen atoms C2…N1 (2.870 Å in 21 and 22), C12...N1 (2.860 Å 

in 27) fall within the expected range (2.6–3.5 Å).
52

 

The angles are as expected around the imine nitrogen (C8–N1–C9, C7–N1–C1) and are close to 120
o
 in 

the ligands, indicating the nitrogen lone pairs are planar and overlap effectively with the pie electron 

system of the aromatic ring.  

 

 

 

Fig. 3.44 Labelled ORTEP drawing of pMS–2MT 21 with ellipsoid at 50% probability. Hydrogen atoms are omitted for clarity  

 

 

 

 

 

Fig. 3.45 Labelled ORTEP drawing of pMS–4Me2MT 22 with ellipsoid at 50% probability. Hydrogen atoms are omitted for 

clarity 
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Fig. 3.46 Labelled ORTEP drawing of pMS–2MA 27A with ellipsoid at 50% probability. Hydrogen atoms are omitted for clarity 

                  

  

3.7.3 Crystallographic data of Schiff-base complexes 

The molecular structures of Schiff-base copper complexes [Cu(pMS-2MT)2] 21C and [Cu(pMS-

pMe2MT)2] 22C were determined by single crystal X–ray crystallography and are shown in Fig. 3.47 and 

3.48. The complexes were grown by slow evaporation from chloroform/EtOH mixture and crystallized 

out in the triclinic P1 space group.  

The crystal structures of 21C and 22C comprise of Cu(II) ion surrounded by 2N and 2O in the basal plane 

and 2S axially bonded in a slightly distorted octahedral arrangement. Two molecules of each ligand, 

acting as a tridentate ligand bind to the copper ion in a trans arrangement of the N, S and O donor atoms. 

The two Cu–S bond lengths are long and equal for both Cu–S bonds in each complex, 2.960 Å and 2.973 

Å respectively. Longer bond distances usually observed in Cu–L, (where L is Cl
–
, Br

–
, I

–
 or S) arise as a 

result of the large size of the donor atom and do not imply weaker binding.
53 

Such bond distances have 

been observed in Cu–S of some Schiff-base complexes.
54 

The bond distances between the phenolic 

oxygen and the aromatic carbons (C202–O201, C102–O101) decrease on chelation by 0.043 – 0.06 Å as a 

result of extensive conjugation through the whole molecule, this is further confirmed by the bond lengths 

involving atoms used in bonding with the Cu(II). There is an alternate decrease and increase in the bond 

lengths of C=N, C–S and that of C–N indicating their participation in metal chelation and in conjugation.  

All the in–plane angles are close to the expected 90
o 

and 180
o
 

 
in both complexes typical of octahedral 

complexes viz (O101–Cu1–N201 89.9
o
 and 91.2

o
, O101–Cu1–N201 89.9

o
 and 91.2

o
, O201–Cu1–N201 
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89.5
o
 and 89.4

o
, O101–Cu1–N101 90.3

o
 and 89.7

o
, O201–u1–N101 90.3

o
 and 89.6

o
, O101–Cu1–O201 

176.9
o
 and 177.5

o
, N201–Cu1–N101 179.1

o
 and 179.1

o
); the distortion in the octahedral structure is 

mostly found around sulfur atoms. This is as a result of the strain imposed by two molecules of a 

tridentate ligand in an octahedral arrangement around the metal centre, hence notable distortions are seen 

in the angles connected to sulfur atoms in the range 83.0–96.0
o 

(S201–Cu1–N101, S201–Cu1–O101, etc) 

and the planar angle of 177.69
o
 is seen at S201–Cu1–S10. The distortion is slight however and the 

complexes can be said to possess tetragonally distorted octahedral structures.  

 

 

 

   

 

 

Fig. 3.47 Labelled ORTEP drawing of 21C with ellipsoid at 50% probability. Hydrogen atoms are omitted for clarity 
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Fig. 3.48 Labelled ORTEP drawing of 22C with ellipsoid at 50% probability. Hydrogen atoms are omitted for clarity 

 

 

3.8 COLOUR VARIATION AND SOLID REFLECTANCE SPECTRA OF 2MT AND 

 2MA METAL COMPLEXES  

Colour of transition metal complexes with metal ions in variable oxidation states could indicate the 

geometry of the complexes. Limitation to this generalization occurs in instances of unexpected colour in 

complexes whose geometries should indicate otherwise, for example, in manganese d
0
 complexes (purple 

KMnO4), d
10

 (brick red HgI2), d
10

 s
2
 (orange red BiI3, yellow PbI2) and blue octahedral cobalt(II) 

complexes. Charge transfer transitions in most of these complexes have been ascribed as being 

responsible for the intense colours seen.  

In the complexes used in this research, colours of the solid complexes cannot be a sole indicator of their 

geometries as some anomalies were observed in colour of complexes in relation to their geometries 

especially in the solid state. This discussion attempts to relate the colour of complexes with their UV 

absorptions in the solid state since the latter has a direct bearing on the colour absorbed.  
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Complexes of 2–(methylthiomethyl)anilines and 2–(methylthio)anilines with same metal ion gave 

similarly coloured compounds in most cases and a few instances of variation is discussed, with the major 

difference occurring with the Co(II) complexes. An overview of the colour of the complexes is given in 

Fig. 3.49.  

 

 

         1       2               3        4                     5          6   7        8 

 

          9    10           11                    12                         13                      14  15 

 

            16            17                   18              19                  20              21 22   23    24  

 

 

 

 

 

Fig. 3.49 An overview of colour in metal complexes of 2MT and 2MA 

 

 

Each set of the metal complexes of Co(II), Ni(II) and Cu(II) studied has similar elemental composition in 

most cases except in the case of [Cu(2Br–2MA)2Cl2] (see Tables 2.4–2.9 in Chapter 2). The only 

modification to their structures is the variation in electronic nature of substituent group on the aromatic 

1   [Co(2MeO–2MT)2Cl2] 2  [Co(4Cl–2MA)2Cl2]  3  [Co(4Cl–2MT)2Cl2]  4   [Co(2Cl–2MT)2Cl2]   

5   [Co(2Me–2MA)2Cl2]      6  [Co(4NO2–2MT)2Cl2]   7   [Co(4Br–2MA)2Cl2]  8   [Co(4MeO–2MA)2Cl2] 

9   [Ni(2Me–2MT)2Cl2]       10 [Ni(2MeO–2MT)2Cl2]  11 [Ni(4Cl–2MT)2Cl2]    12 [Ni(2Cl–2MT)2Cl2]     

13 [Ni(2MeO–2MA)2Cl2]    14 [Ni(4NO2–2MT)2Cl2]  15 [Ni(4Br–2MA)2Cl2]  16 [Cu(2MT)Cl2]  

17 [Cu(4Cl–2MT)Cl2]  18 [Cu(2Cl–2MT)Cl2]  19 [Cu(4Me–2MA)Cl2]  20 [Cu(2Br–2MT)Cl2] 

21 [Cu(2Me–2MT)Cl2]     22 [Cu(2Me–2MA)Cl2]  23 [Cu(4MeO–2MA)Cl2]  24 [Cu(2Br–2MA)2Cl2] 
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ring and change in position of those substituents on the ring. There was no consistent trend observed in 

colour of complexes as a result of these variations.  

Based on their elemental compositions and from the commonly observed geometries for each metal ion 

with ligands of this type, Co(II) complexes could be tetrahedral with 2 ligands acting as monodentate 

donors with only N atoms and 2 Cl
-
 ions or octahedral with 2 S also participating in which case the 

ligands chelate bidentately. Co(II) tetrahedral complexes are generally blue while the pink colouration is 

common with the octahedrally coordinated ones. Among the 2MT and 2MA Co(II) complexes, the pink 

colour is more common, the few deviants are the methoxy (dark purple, purple black), nitro (yellow) and 

the ortho-methyl (blue) complexes.  

The solid reflectance spectra of Co(II) complexes are seen in Fig. 3.50–3.52. The complexes of 2MT have 

similar spectra except [Co(4MeO–2MT)2Cl2] whose ligand field transitions seen  to be masked by the 

charge transfer band. In the solid spectra of the 2MA complexes, the glaring exception is [Co(2Me–

2MA)2Cl2] whose transitions are obviously those of tetrahedral milieu, its blue colour bearing a strong 

evidence to this as well. Apart from these two, the deviation from pink colour will be attributed to their 

intense charge transfer transitions, as seen in blue purple [Co(2Me–2MT)2Cl2] and yellow [Co(4NO2–

2MT)2Cl2]. The other complexes show pink colour commonly associated with octahedral Co(II) 

complexes.  

 

    

Fig. 3.50 Solid reflectance spectra of Co(II) complexes of 2MT  
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Fig. 3.51 Solid reflectance spectra of Co(II) complexes of 2MA  

 

 

Fig. 3.52 Solid reflectance spectra of Co2MT and Co2MA 
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ortho-position of the methoxy substituent, this may not indicate any change in geometry compared to 

others since it shares the same green colour with others. As most octahedral Ni(II) complexes are green, 

the solid Ni(II) complexes of 2MT and 2MA are assigned the (pseudo) octahedral structure.  

 

 

 

 

Fig. 3.53 Solid reflectance spectra of Ni(II) complexes of 2MT (top) and 2MA (bottom) ligands 
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Copper(II) complexes are known with diverse colours in different geometries. The complexes of 2MT 

ligands display two major types of colour, green and varying shades of brown; the green colour is shown 

by complexes with electron withdrawing substituents with the exception of the ortho-bromo substituted 

which shares same colouration of brown with those complexes with electron donating group. The intense 

colour shown by the latter group is due to ligand charge transfer transitions and not a change in geometry 

as suggested by the similarity in the shapes of their spectra (Fig. 3.54 top). Hence the solid Cu(II) 

complexes of 2MT have similar square-pyramidal geometry as seen from the X-ray crystal data of 

Cu(4NO2–2MT).   

All the ortho-substituted Cu(II) complexes of 2MA are either dark coloured or brown while all the para-

substituted are green regardless of their substituted nature. As suggested in the case of 2MT complexes, 

the geometry of these complexes could be similar despite the difference in their colour. The solid 

reflectance of these two groups differ slightly (Fig. 3.54 bottom), those of the ortho-substituted have the 

ligand field transitions masked by their charge transfer bands as in the case of Cu(4MeO–2MA). Single 

crystal X-ray crystallography or modeling studies of these ortho-substituted would be useful to explain if 

there is a structural difference between them and their analogous para-derivatives.    

Since the para-substituted complexes share similarity with the spectra of those of 2MT complexes, they 

are likely to also possess the octahedral geometry. 
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Fig. 3.54 Solid reflectance spectra of Cu(II) complexes of 2MT (top) and 2MA (bottom) ligands 
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Fig. 3.55 Comparison between solid spectra of 2MT and 2MA complexes 

 

 

3.9 SOLUBILITY 
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complexes are not soluble in water, which is an indication that they are non–ionic complexes. 

-0.2 

-0.1 

0 

0.1 

0.2 

0.3 

300 500 700 900 1100 1300 1500 

A
b

so
rb

an
ce

 

Wavelength (nm) 

Co2MT Co2MA 

-0.07 

0.03 

0.13 

0.23 

0.33 

300 500 700 900 1100 1300 1500 

A
b

so
rb

an
ce

 

Wavelength (nm) 

Ni2MT Ni2MA 

0 

0.2 

0.4 

0.6 

300 500 700 900 1100 1300 

A
b

so
rb

an
ce

 

Wavelength (nm) 

Cu2MT Cu2MA 



3. Discussion 
 

  159 

 

Since comparative studies are also to be made between the 2MT and 2MA ligands as well as between 

their metal complexes, tests involving the use of solvents were carried out in DMF and DMSO. 

The Schiff-base ligands and their copper complexes are only soluble in dichloromethane and chloroform.  

 

3.10 MOLAR CONDUCTIVITY  

The electrolytic nature of 2MT and 2MA metal complexes was determined in DMF at 10
–3 

M.  DMSO 

could not be used as values for conductivity tests in DMSO for different electrolyte types are not 

consistent
55-59

 and can lead to ambiguity in results obtained. Values for conductivity in DMF at 10
–3 

M 

solution have been reported in literature for different electrolyte ranges
60-64

 the results obtained were 

compared with these standard values.
65 

The molar conductivity values at room temperature are reported in 

Tables 3.26 and 3.27 for metal complexes of 2MT and 2MA where the two series are seen to behave 

similarly, hence their conductivity will be jointly discussed.  

 

Co(II) complexes have values ranging between 28.6 and 37.8 S and this shows they behave as non-

electrolytes in solution. Cu(II) complexes demonstrate similar behaviour with values in the range 26.5–

37.3 S. This shows no chloride ion is outside the coordination sphere or displaced by the solvent 

molecule. The values between 68.1 and 87.4 S for Ni(II) complexes indicate they are 1:1 electrolytes 

and in this case, one chloride ion is outside the coordination sphere. The possibility exists that due to 

solvolysis effect of DMF, its molecule displaces the chloride ion from its bonding to Ni(II) and a 

compound formed is suggested to be of the type [Ni(L2Cl(DMF))Cl] where L is any 2MT or 2MT ligand. 

The electrolytic nature of the Schiff-base complexes could not be determined as their solubility was 

limited to solvents such as DCM and CHCl3. 
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3.11 ELECTRONIC SPECTRA OF 2MT AND 2MA LIGANDS AND COMPLEXES 

The electronic spectra of 2MT and 2MA ligands and their Co(II), Ni(II) and Cu(II) complexes are 

discussed in this section. The solvents used were determined by the solubility of the metal complexes. 

Hence the electronic spectra of the compounds were obtained in DMF and DMSO.  The solid reflectance 

spectra of the metal complexes were also obtained so that the effect of these polar solvents on the solid 

structures on dissolution could be studied and compared. It should be noted that there are grating changes 

in the instrument used for solution studies at ≈ 330, 680, 900 nm and these are reflected in some of the 

solution UV spectra. Similar occurrence is observed in the solid reflectance spectra around 830 nm. 

 

3.11.1  2MT and 2MA Ligands 

The electronic spectra of the ligands are recorded in Table 2.2.7 (Chapter 2). They are typical of 

transitions within the aromatic ring;   * and occurring between 250-310 nm in both 2MT and 2MA 

ligands. There is no constant trend observed in either the intensity or wavelengths of transitions in ligands 

as the solvent is changed from DMF to DMSO (see Fig. 3.56 -3.57).  

In both 2MT and 2MA series a hypsochromic shifting of n  * band to a higher energy takes place 

when the substituents are changed from the para to ortho position. This indicates the presence of 

substituents at the para position enhances a decrease in energy of this transition. The polar solvent 

molecules are able to solvate the nitrogen lone pairs more effectively when the substituents are farther 

away (at the para position) thereby lowering the energy of the n orbital relative to ortho substitution.
66

 

The   * transitions in 2MA ligands experience a red shift with change in substituent position from 

para to ortho. Attractive polarization forces between , * states and the solvent molecules lower the 

energies of both the non-excited and excited states and often reduces that of the excited state more 

significantly, as a result, the   * transition may experience a small red shift as observed in 2MA 

ligands. When the reduction in energy for both states is almost similar, the   * transition does not 

experience a shift and this is observed in 2MT ligands whose transition does not show sensitivity to 

change in position of substituents.
66

  

Both bands absorb at higher wavelengths in 2MA ligands compared to corresponding 2MT ligands as a 

result of increased conjugation of the ring by the sulfur lone pairs. 
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Fig. 3.56 Electronic spectra of 2MT (left) and 2MA (right) ligands in DMF in the near UV region 

 

        

Fig. 3.57 Electronic spectra of 2MT (left) and 2MA (right) ligands in DMSO in the near UV region 
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3.11.2  Metal(II) complexes 

In the solid reflectance spectra of the Co(II), Ni(II) and Cu(II) complexes of 2MT and 2MA, the ligand 

bands are not observed, probably because their intensities are too low to be observed in the solid state. 

They are however observed in the spectra of complexes in DMF and DMSO solutions. The two π  π* 

ligand bands are bathochromically shifted in most cases. This could be as a result of increase in the 

conjugation of the ligands on complexation. 

  

3.11.2.1 Co(II) complexes 

The diffuse reflectance spectra of Co(II) complexes of 2MT and 2MA are similar in general (see Section 

3.8 also), the exception being Co(2Me–2MA) and the para–methoxy substituted ones. They generally 

show a low energy broad band in the region 1250–1360 nm (Fig. 3.58). Another set of bands appears as 

multiplets between 500 and 600 nm, these transitions are more numerous in 2MA complexes than in those 

of 2MT.  Very close to this region, a distinct set of bands occur around 450–495 nm. A very high 

intensity band in the near UV is seen between 335 and 370 nm. Shoulder bands are seen 640 and 1000 nm 

in the spectra of the complexes, indicating that even in the solid state, these complexes have many spin 

forbidden transitions occurring through vibronic coupling.  

 

    

Fig. 3.58 Solid reflectance spectra of Co(II) complexes of 2MT (left) and 2MA (right) 
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In a tetrahedral or octahedral environment around Co(II), three bands are expected. For octahedral 

complexes, the lowest energy band is a transition corresponding to 
4
T1g  

4
T2g absorbing in the range 

1110–1520 nm, the second band due to 
4
T1g  

4
A2g transition (620–750 nm) is not often observed 

because of its low intensity as the transition involves a two-electron process for strong fields; the highest 

energy transition occurs in the visible near 500 nm (470 – 590 nm)
 67

 and has been assigned to 
4
T1g  

4
T1g 

(P). The visible band frequently has a shoulder or a fine structure to it. Tetrahedral Co(II) complexes 

show bands at lower energies and of higher intensities than those of octahedral configuration.  

From the solid reflectance spectra data obtained, the low energy broad band (1250–1360 nm) can be 

assigned as transition due to 
4
T1g  

4
T2g, no band due to the second transition between (620–750 nm) was 

observed and the third band was seen as multiple transitions (450–495 nm, 500–600 nm), this 

characteristic is associated with it and is said to arise as a result of low symmetry components to the 

ligand field
68   

or transitions to doublet states.
69

 The high intensity band in the near UV is due to S  Co 

charge transfer.  

On this basis, the solid cobalt(II) complexes here are assigned to octahedral geometry in the solid state. 

They could be tetragonally distorted type of structure as up to six spin allowed transition are allowed in 

this type of structure. For example, in the case of Co(s-Et2en)2X2, all the bands could be observed except 

for the lowest transition between the split component of the ground state 
4
T1g.

70
 Co(2Me–2MA) is 

assigned the tetrahedral geometry due to transitions at 589 and 625 nm with high intensities and lower 

ligand field transition at 1100 nm. Solid Co(4MeO–2MT) and Co(4MeO–2MA) give poorly defined 

spectra as seen in Fig. 3.59 which source could be ligand-based. 

 

 

  

Fig. 3.59 Similarity in solid spectra of para-methoxy substituted complexes  

 

-0.1 

0.1 

0.3 

0.5 

300 500 700 900 1100 

A
b

so
rb

an
ce

 

Wavelength (nm) 

Co(4MeO-2MT) Co(4MeO-2MA) 



3. Discussion 
 

  164 

 

In solutions of DMF and DMSO, the electronic spectra of the Co(II) complexes for both sets of ligands in 

the near UV and visible regions are shown in Fig. 3.60–3.63 and are observed to show absorptions at the 

same regions. The spectra are essentially similar in both solvents and the small shift to a higher energy (or 

lower wavelength) in DMF is because of its higher ligand field strength. The spectra in both solvents will 

be jointly discussed. 

The bands observed occur in the regions close to 600 nm and 670 nm (see Tables 2.29–2.30 in Section 

2.4.6.2), spin forbidden transitions which appear as shoulders between 370 and 530 nm and the very 

intense band in the region 320–345 nm ascribed as nitrogen to Cu(II) charge transfer. As the range of the 

UV-Vis spectrophotometer used in the solution studies does not exceed 1100 nm, the low energy bands 

could not be obtained.  

The spectra of the Co(II) complexes (including Co(4MeO–2MA) in solution are reminiscent of 

tetrahedral bands. In a tetrahedral milieu, the three transitions expected are due to 
4
A2  

4
T1(F), 

4
A2  

4
T1(F) and 

4
A2  

4
T1(P). The lowest energy band due to 

4
A2  

4
T1(F) transition is usually found in the 

range 2000–3330 nm and is not often observed as it is weak because the transition is forbidden for electric 

dipole absorption in pure tetrahedral symmetry and it is frequently overlapped by vibrational bands. The 

other two bands are of high intensities and lie in the near infrared and visible regions respectively.
 
Their 

intense absorptions make Co(II) tetrahedral complexes appear blue. Both bands show fine structure with 

multiple absorption bands. These features have been attributed to spin orbit coupling, low symmetry 

components of the crystal field and transition to the doublet states. In the spectra studied here, the second 

and third transitions are not observed. The intense bands around 600 nm with multiple absorptions can be 

assigned as the highest energy transition, 
4
A2  

4
T1(P). 
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Fig. 3.60 Electronic spectra of Co(II) complexes of 2MT (left) and 2MA (right) ligands in DMF in the near UV region 

 

  

Fig. 3.61 Electronic spectra of Co(II) complexes of 2MT (left) and 2MA (right) ligands in DMSO in the near UV region 
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Fig. 3.62   Electronic spectra of Co(II) complexes of 2MT (left) and 2MA (right) ligands in DMF in the visible region 

 

        

Fig. 3.63 Electronic spectra of Co(II) complexes of 2MT (left) and 2MA (right) ligands in DMSO in the visible region 
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a lower energy indicates a structural change from the solid octahedral geometry to the tetrahedral in the 

DMF and DMSO solutions. That a structural change or modification has taken place is suspected as the 

colour changed from pink (or any other observed solid complex colour) to blue when these solvents were 

added to the solid complexes. 
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Fig. 3.64 Selected Co(II) complexes in solid state and solution 

 

Taking into consideration that both types of solvent used are strongly coordinating, an interaction 

between the solid complex and the solvent is capable of modifying the Co(II) centre. This interaction 

could be in form of coordination of the solvent to the metal ion to form adduct, breaking of the bonds 

between metal ion and ligand atom(s) and/or subsequent replacement of the ligand atom(s) with the 

solvent molecules.  From the conductivity tests, Co(II) complexes behave as non-electrolytes in DMF, 

indicating that chloride ions were not displaced. With either DMSO or DMF coordinating to Co(II) by 

replacing one or more of the ligand atoms, a shift to higher energy is anticipated since either of this 

solvent has a higher crystal field than the SN and Cl groups present. The other alternative would be 

breaking of the Co–S bonds by the solvating effect of these solvents, thereby changing the geometry from 

octahedral to tetrahedral. The latter seems to be the case as the bands in the spectra are seen to move to 

lower energies on dissolution, indicating that the Co–S bonds are broken without replacement by the 

solvent molecules.  
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The spectra of both series of complexes are similar in general as typified by the spectra of methyl 

substituted complexes of 2MT and 2MA ligands in Fig. 3.65.  
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Fig. 3.65 Similarity in 2MT and 2MA Co(II) complexes 

 

The exceptions to the similarity in all the solution spectra are those of Co(4MeO–2MT) and Co2MA. The 

spectra of Co(4MeO–2MT) in solid state and solution are similar (Fig. 3.66), it may be concluded that it 

retains its structure in solution. It seems to bear some semblance to octahedral geometry but the d  d 

bands are merged, appearing to be masked by the charge transfer band. Repeated synthesis of this 

complex has resulted in identical spectra. It is beyond the scope of this work to resolve the spectrum.  The 

spectra of Co2MA in the solid state and in DMSO are similar but very different from that in DMF (Fig. 

3.64), hence it is suggested that its structure is octahedral in the solid state and in DMSO solution while it 

is tetrahedral in DMF solution. Co(2Me–2MA) is tetrahedral in solid state and in solution. The solid 

reflectance spectra of Co(2MeO–2MA) could not be obtained (the yield was too low and was not 

available for this test) for comparison purposes but it is suggested that it may also be tetrahedral in the 

solid state as its vibrational frequencies in the mid infrared region are in closer range to those of Co(2Me–

2MA) (see Table 2.18 in Chapter 2).   
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 Fig. 3.66 Co4MeO–2MT in solid state and solution 

 

Hence the suggested structures of the other Co(II) complexes in the solid state and in solution are 

(distorted) octahedral and tetrahedral respectively, with the few exceptions stated earlier. The proposed 

geometries are drawn below in Fig. 3.67. 
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Fig. 3.67 Proposed structures for Co(II) complexes in solid state and solution 
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3.11.2.2 Ni(II) complexes 

The reflectance spectra of Ni(II) complexes of 2MT and 2MA ligands are also similar (Fig. 3.68, also see 

section 3.8). As in the case of Co(II) complexes, three bands are expected for either octahedral or 

tetrahedral geometry. Four bands are observed in the spectra of Ni(II) complexes, the lowest energy band 

is broad covering the range 900–1300 nm, the second band occurs in the region 600–660 nm, the third 

band close to the UV region occurs between 380 and 430 nm and this band is masked in some complexes 

by the strongly intense charge transfer band around 340 nm, which is the fourth band. These values are in 

accordance to those predicted for octahedral Ni(II) with the lowest transition corresponding to 
3
A2g  

3
T2g, the second band is due to 

3
A2g  

3
T1g transition and the third band is assigned to 

3
A2g  

1
Eg. The 

case of Ni(2MeO–2MA) is already discussed, the shift to longer wavelengths is probably as a result of 

extended conjugation of the aromatic system by the methoxy chromophore at the ortho position. 

 

 

         

Fig. 3.68 Solid reflectance spectra of Ni(II) complexes of 2MT (left) and 2MA (right) ligands 

 

In solution, the electronic spectra of Ni(II) complexes of both 2MT and 2MA ligands are also similar 

(Fig. 3.69-3.72). Two of the complexes (Ni(2MeO–2MA) and Ni(4Cl–2MA)) have identical spectra 

while in other complexes, the solvent effect is prominent.  

The spectra in DMF solution generally show seven transitions in the UV-visible region; the low energy 

transition could not be fully observed as the range of the instrument used does not exceed 1100 nm, but it 
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can be seen to tail into the near IR region from 1100 nm. There are bands of varying intensities at 580, 

700 and 770 nm which appear as shoulder bands in some cases. The more prominent bands in the spectra 

are observed in the ranges 400–435 nm, 610–650 nm and 680–700 nm. The high intensity band between 

320 and 380 nm is due to a charge transfer transition from nitrogen to Ni(II).  

In DMSO solution, the spectra have fewer transitions comprising of the charge transfer transition between 

320 and 380 nm, a shoulder band around 700 nm, the prominent transition in the range 760–840 nm and 

the low energy band tailing into the near IR around 1100 nm. As can be seen from Tables 2.30–2.31 

(Chapter 2), all the bands in DMSO are replicated in DMF being shifted to higher energies.  

The bands in the solution are shifted to higher energy relative to those in the solid spectra (Fig. 3.73) and 

this is in contrast to what obtained in Co(II) complexes. Conductivity of Ni(II) complexes in DMF shows 

there is a removal of one of the chloride ions from the coordination center hence they were seen to behave 

as 1:1 electrolytes. A shift to higher energy is expected as a weak coordinating ligand is replaced by a 

stronger one. One can then surmise that DMF molecule replaces a chloride ion, hence increasing the 

energy absorptions as reflected in the band shift while retaining the octahedral geometry around the 

Ni(II).  

 

        

Fig 3.69 Electronic spectra of Ni(II) complexes of 2MT (top) and 2MA (bottom) in DMF in the near UV region  
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Fig 3.70 Electronic spectra of Ni(II) complexes of 2MT (top) and 2MA (bottom) in DMSO in the near UV region  
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Fig 3.71 Electronic spectra of Ni(II) complexes of 2MT (top left) and 2MA (top right) in DMF in the visible region with 

expanded views (below)       
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Fig 3.72 Electronic spectra of Ni(II) complexes of 2MT (top left) and 2MA (top right) in DMSO in the visible region with 

expanded views (below) 

 

 

 

 

 

 

 

0 

0.7 

1.4 

2.1 

2.8 

3.5 

300 500 700 900 1100 

A
b

so
rb

an
ce

 

Wavelength (nm) 

Ni2MT Ni(2Me-2MT) 
Ni(4Me-2MT) Ni(2MeO-2MT) 
Ni(4MeO-2MT) Ni(2Cl-2MT) 
Ni(4Cl-2MT) Ni(2Br-2MT) 

0 

0.6 

1.2 

1.8 

2.4 

3 

300 500 700 900 1100 

A
b

so
rb

an
ce

 

Wavelength (nm) 

Ni2MA Ni(2Me-2MA) Ni(4Me-2MA) 

Ni(2MeO-2MA) Ni(4MeO-2MA) Ni(4Cl-2MA) 

Ni(4Br-2MA) 

-0.03 

0.06 

0.15 

350 550 750 950 

0 

0.05 

0.1 

350 550 750 950 



3. Discussion 
 

  175 

 

             

Fig. 3.73 Ni(II) complexes in solid state and solution  

 

One can then suggest that the Ni(II) complexes exist in the (distorted) octahedral geometry in both solid 

states and in solution. The proposed structures are drawn in Fig.3.74. 
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Fig. 3.74 Proposed structures for Ni(II) complexes in solid state and solution 
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3.11.2.3 Cu(II) complexes 

The electronic spectra of Cu(II) complexes of 2MT and 2MA ligands are much similar in DMF and 

DMSO solvents (Fig. 3.75–3.78). They differ only in the noticeable decrease in the intensity of the charge 

transfer transition which now appears as a shoulder. This charge transfer at 430 nm is associated with 

sulfur to Cu(II) transition, it could be that DMSO is interacting with the copper ion in such a way that 

obscures the thioether sulfur overlap with the metal ion, hence the reduced intensity of that band.  

From the spectra below, a broad band is seen in the region 700-1100 nm for the 2MT complexes and most 

of them exhibit similar spectra with the exception of the methoxy-substituted. Those of 2MA can be 

classified into two main categories; the para-substituted complexes have similar spectra with the 

exception of the para-methoxy and the ortho-substituted complexes which also exhibit similar spectra. 

However, the bands in Cu(2Br–2MA) fall into same category with those of the para-substituted 

complexes. It could be recalled that this particular compound formed in a 2:1 ligand to metal ratio in 

contrast to other Cu(II) complexes. This could suggest that the para-substituted complexes have the 

octahedral geometry in solution. The dd band is broad between 850 and 1100 nm. 

The spectra of the ortho-substituted 2MA complexes consist of more spin-forbidden transitions which 

appear as shoulders, and the 900 nm band seems to be masked by the charge transfer band.  An octahedral 

geometry could still be suggested for them because they display similar electrolyte behaviour in DMF as 

the para-substituted complexes. 

They both show charge transfer transitions from ligand to metal around 330 nm (NCu) and around 430 

nm attributed to SCu. For either an octahedral or tetrahedral copper(II), the electronic spectra usually 

give one broad band.  It is well known that electronic spectra of a Cu(II) complex are not sufficient to 

decide its geometry.
69 

The d–d band in solid spectra of these Cu(II) complexes differ from that in solution (Fig. 3.79) as it is 

shifted to higher energies in DMF solution as was observed for Ni(II) complexes. Taking into 

consideration the behaviour of Cu(II) complexes in DMF as non-electrolytes, this shift can be explained. 

The bond distance of the sixth bond attached to the octahedral Cu(II) is 2.932 Å, between Cu and one of 

the chloride ions. This bond is long and will be easily displaced by the strongly coordinating DMF and 

DMSO solvents. This gives rise to a transition of higher energy as the stronger field DMF ligand replaces 

the weaker Cl
–
. This chloride ion is not displaced because it is also equatorially bonded to another Cu(II) 

in the adjacent layer. The terminal Cl
–
 was not displaced either because of the stronger equatorial bond it 
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has with Cu(II). Hence in solution, the octahedral geometry around Cu(II) is maintained but the solvent 

molecule being the sixth ligand.  

 

        

Fig 3.75 Electronic spectra of Cu(II) complexes of 2MT (top) and 2MA (bottom) in DMF in the near UV region  

 

     

Fig 3.76 Electronic spectra of Cu(II) complexes of 2MT (top) and 2MA (bottom) in DMSO in the near UV region  
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Fig 3.77 Electronic spectra of Cu(II) complexes of 2MT (top) and 2MA (bottom) in DMF in the visible region 

 

 

        

Fig 3.78 Electronic spectra of Cu(II) complexes of 2MT (top) and 2MA (bottom) in DMSO in the visible region 
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Fig. 3.79 Cu(II) complexes in solid state and solution  

 

On this basis, the structure of Cu(II) complexes in solution is proposed to be octahedral as shown in Fig. 3.80. 
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Fig. 3.80 Proposed structures for Cu(II) complexes in solid state and solution 
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3.11.3  Comparison between the spectra of 2MT and 2MA complexes 

The visible bands in the spectra of 2MT and 2MA complexes are generally similar, differing only in small 

shifts which are not consistent. The spectra in Fig. 3.81 below indicate similarity in 2MT and 2MA 

complexes. 
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Fig. 3.81 Comparison of bands in 2MT and 2MA complexes 

 

A trend is however noticeable in the energies of the charge transfer band (N  Cu) in the solid Co(II), 

Ni(II) and Cu(II) complexes as seen in Fig. 3.82 . The trend Co(II) > Ni(II) > Cu(II) is observed with 
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2MT complexes and the 2MA complexes follow the trend Co(II) ≈ Ni(II) > Cu(II). The implication of 

this is that as the metal ions become less readily reducible, the energy involved in transferring electrons 

from the ligand orbitals to the metal ion increases. The energy of transition to Cu(II) is the lowest, this 

makes Cu(II) the most reducible of the three ions.  

       

Fig. 3.82 CT and ligand field bands in solid spectra of 2MT (left) and 2MA (right) complexes  

 

 

3.12 ELECTRONIC SPECTRA OF SCHIFF-BASE LIGANDS AND COMPLEXES 

The spectra of Schiff-base ligands show high energy transition π  π* of the aromatic ring in the range 

244–355 nm (Fig. 3.83 and 3.84).  The n  π* transition of the nitrogen lone pairs of electron to the 

aromatic ring occurs at a lower energy between 340 and 370 nm. These bands are shifted to longer 

wavelengths in the spectra of the complexes on complexation (Fig. 3.85-3.87) as a result of extensive 

conjugation of delocalized electrons throughout the compounds. An extra transition around 400 nm 

attributed to S  M charge transfer is also observed (Fig. 3.88), this type of transition is reported in a 

similar complex.
39

 This CT band is not observed in pMS–2MA Schiff-bases, however. The dd 

transition spans the region 600 – 615 nm, this is suggestive of a square based geometry around
71

 

copper(II) in a weak tetragonal field;  which is consistent with the observed X-ray crystal structures of 1B 

and 2B in which octahedral structures with long Cu–S axial bonds make the fifth and sixth bonds.  
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Fig. 3.83 Electronic spectra of pMS–2MT ligands   Fig. 3.84 Electronic spectra of pMS–2MA ligands in the 

UV region      in the UV region 

 

 

                 

Fig. 3.85 Electronic spectra of Cu(II) complexes of   Fig. 3.86 Electronic spectra of Cu(II) complexes of  

 pMS–2MT ligands in the UV region    pMS–2MA ligands in the UV region 
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Fig. 3.87 Typical electronic spectra of the Cu(II) complex compared with the Schiff-base ligand  

 

 

Fig. 3.88 Electronic spectra of Cu(II) complexes of pMS–2MT ligands in the visible region 
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BIOLOGICAL ACTIVITY OF COMPOUNDS 

 

 

4.1 Antiplasmodial susceptibility testing 

4.2 Antiplasmodial assay procedure 

4.3 Cytotoxicity screening procedure  

4.4 Results 

4.5 Discussion 

 References 

 

 

The 2MT and 2MA ligands including their metal complexes have the amine functionality alongside with 

the thioether group in their chemical structures. These two groups are known for conferring biological 

activity on systems where they are present. Literature is replete with such compounds of biological 

importance. Hence these compounds were tested in vitro against bacteria and fungus using the 

antimicrobial susceptibility testing procedure as outlined below. With encouraging results of 

antimicrobial inhibition from some of the compounds tested, the analogue Schiff–bases derived from their 

condensation reaction with para methoxysalicaldehyde were synthesized. The therapeutic effects of 

Schiff–bases are well documented in various biological applications and para methoxysalicaldehyde is 

known for its antimicrobial
1-3

 and antioxidant
4
 properties. Of the three categories of metal complexes 

tested, Cu(II) complexes have shown the greatest biological activity, the Cu(II) complexes of the Schiff–

bases were therefore synthesized. A greater inhibition was expected as a result of combination of these 

properties. The Schiff-base ligands are soluble in DMF but their Cu(II) complexes were not. As a result, 

the biological activity of the metal complexes could not be tested. The Schiff–bases tested were not active 

in the least, no inhibition was observed.  

Preliminary investigations to determine the antiplasmodial activity of the thiomethylated ligands and their 

metal complexes were carried out, their cytotoxicity was also tested in an attempt to assess their 

selectivity towards the plasmodial or breast carcinoma cell. 
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4.1  ANTIMICROBIAL SUSCEPTIBILITY TESTING  

 

4.1.1 Materials and measurements  

The microorganism strains were purchased from Microbiologics 217 Osseo Avenue North, St. Cloud, 

MN 56303. The nutrients/growth media were purchased from Merck, Becton Dickinson and Company in 

South Africa The sterile disks were purchased from Davies Diagnostics South Africa. Ampicillin powder 

was obtained from Roche Diagnostics GMBH, Mannheim, Germany. Double-distilled Millipore water 

was collected from the Pharmaceutics Unit of Faculty of Pharmacy, Rhodes University. Sterile saline was 

prepared by dissolving 0.85 g in double-distilled Millipore water and making up to 100mL. McFarland 

(0.5) solution was prepared by adding 0.5 ml of 1.175 % BaCl2.2H2O to 99.5 mL of 1 % H2SO4.
5
 The 

cultivation of Plasmodium falciparum and antiplasmodial screening of the test compounds were carried 

out by Dr van Zyl at the Department of Pharmacy and Pharmacology at University of Witwatersrand. 

Screening for cytotoxicity assay was conducted by Dr. A. Edkins at the Biomedical and Biotechnology 

Research Unit at Rhodes University.  

The materials used for the antimicrobial susceptibility testing include: 

 

 1. Bacillus subtilis (sub. spizizenii) ATCC 6633, Escherichia coli ATCC 8739, Staphylococcus aureus 

ATCC 6538 and Candida albicans ATCC 2091.  

2. Mueller Hinton Agar (MHA), Agar bacteriological, Potato Dextrose Agar (PDA) and Nutrient broth 

3. Double-distilled Millipore water/sterile water, sterile saline  

4. Micropipettes of appropriate volume sizes, pipette tips  

5. Test tubes, pipettes, sterile inoculating loop, swab forceps 

6. Gloves, masks, safety glasses, 70% ethanol solution  

7. 96–well polystyrene tray (round-bottom wells), eppendorf tubes 

8. Petri dishes (90 mm), Disks (6 mm diameter) 

9. McFarland (0.5) solution, Dimethyl formamide (DMF) 

10. Ampicillin (AMP), Ketoconazole (KTZ) 
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11. Ambient-air Incubator 

12. Laminar flow chamber 

13. Vortex mixer 

14. LEDETECT 96 micro plate reader 

15. PerkinElmer Lambda 25 UV/VIS Spectrometer  

 

4.1.2 Procedures and methods
6-8

 

The procedures described here were used for both antibacterial and antifungal susceptibility assays. The 

methods used were agar disk diffusion and micro-broth serial dilution. The procedures were carried out 

under a sterile aseptic atmosphere in a laminar flow to ensure there was no contamination. These tests 

were carried out in triplicates.  

 

4.1.2.1  Agar disk diffusion susceptibility testing 

This is a combination of Kirby and Bauer (NCCLS /CLSI approved) method.
6
 This procedure involves 

the use of sterile disks impregnated with specific concentration of test agents/antibiotics which are placed 

on agar plate inoculated with the microorganism and incubated over a period of time. The diameter of 

zone of inhibition of the microorganism’s growth by the antibiotic is measured and interpreted as 

susceptible (S), resistant (R) or intermediate (I) based on the values established for appropriate recognized 

reference. Ampicillin (AMP) and Ketoconazole (KTZ) were used as the reference antibiotics for the 

antibacterial and antifungal assays respectively. 

Preparation of culture medium: The medium used to culture the microorganisms used in this 

research was a combination of MHA and Agar Bacteriological for the antibacterial assay while PDA was 

used to grow Candida albicans. They were prepared by mixing appropriate quantities and making up to 

the required volume with double-distilled Millipore water in high heat-resistant tightly sealed containers. 

The mixtures were autoclaved, allowed to cool to 40
o
C and poured into labelled petri dishes up to 4 mm 

depth near an open flame. These media were allowed to solidify under a laminar flow. After cooling to 
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room temperature, these agar plates were turned upside down – to ensure the condensed water droplets at 

the upper part of the lids do not come in contact with the surface of the medium – and placed in the 

fridge.  A representative sample of the agar plates was incubated overnight in the incubator to serve as 

negative growth control. No microbial growth was observed and this served to eliminate false results that 

could otherwise be obtained from an already contaminated medium.  

Culture of microorganisms: A microorganism vial containing Bacillus subtilis (sub. spizizenii) 

ATCC 6633 was taken from 4
o
C storage and allowed to equilibrate to room temperature. A pellet was 

removed using sterile forceps near an open flame and placed in a micro-centrifuge tube containing 500µL 

sterile water/saline water. The pellet was crushed using sterile swab until the particles were of uniform 

size and the suspension appeared homogenous. The swab was saturated with the suspension and 

transferred to the agar plate. Inoculation of the microorganism over the surface of the agar plate was 

carried out gently with the swab and inoculating loop to facilitate colony isolation. The plate was 

incubated at 37
o
C, growth was observed after 30 h. A fresh culture was prepared from this stock culture 

by picking one well isolated colony, suspend in 5ml sterile saline, streaking on to a new plate and 

incubating overnight. Similar procedure was used to culture the other microorganisms, Candida albicans 

was incubated at 35
o
C and the growth was observed after 48 h. 

Preparation of test compounds/antibiotics: The test compounds used were the ligands and their 

metal(II) complexes synthesized during this research. Each was weighed and dissolved in 

dimethylformamide to make up to 50mg/L test solution; 5µL of each solution was taken up and applied 

onto the disks using a micro-pipette. This implies 250µg test compound was impregnated onto each disk. 

The disks were allowed to dry under the laminar flow. 

Ampicillin was used as the primary reference standard for antibacterial testing. Stock solution of 

Ampicillin was prepared by dissolving 100 mg of it in 1 mL sterile water in a sterile Eppendorf tube and 

mixing them with the vortex machine. Smaller concentrations of 25 mg/mL and 10 mg/mL were obtained 

by taking out 0.25 mL and 0.10 mL respectively from the stock solution with a micropipette and diluting 

to 1 mL with sterile water. 5µL of each of these antibiotic solutions were separately applied to the disks to 

serve as the reference, that is, 125 and 50µg/disk applications. 

The 100 mg/mL stock solution of Ketoconazole used as the reference standard for antifungal testing was 

similarly prepared by dissolving in DMSO.  
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Standardization of inoculum: In order to prepare the inoculum, 3 – 5 colonies of similar appearance 

were picked with a loop and suspended in saline water in a test tube. Standardization of the inoculum 

solution was achieved by comparing the turbidity of each with that of 0.5 McFarland and adjusting the 

density by adding more bacteria or more sterile saline. It has been estimated that at this concentration, the 

inoculum contains 10
8
 colony forming units/ml of viable bacterial cells. 

Inoculation of microorganisms, application of disks and incubation: The agar plates were 

inoculated
9
 by dipping a sterile swab into the inoculum ensuring that excess inoculum was removed by 

pressing and rotating the swab firmly against the side of the tube. Each plate was then streaked all over 

the surface with the swab three times, rotating the plate through an angle of 60
o
 after each application to 

ensure uniform. The edge of the agar surface was swabbed last and in the process removing any water 

droplet condensed there. These surfaces were allowed to dry with the lid closed. This was followed by 

placement of disks coated with test agents/antibiotics on the inoculated agar surfaces using a pair of 

sterile forceps, pressing down gently to ensure good contact. Each plate contained 6 disks, evenly spaced 

on the surface. The plates were placed in the incubator set to 37
o
C (or 35

o
C in the case of C. albicans).  

Measurement of zones of inhibition: After overnight incubation (48 h for C. albicans), the plates 

were removed and the diameter of clearance zone surrounding the disk (Fig. 4.1–4.2), indicating the zone 

of inhibition, was measured for each disk. Care was taken to ensure the lid was not opened and there was 

no contact with the bacterial droplets. The diameter of each zone, including that of the disk was measured 

from the outer surface of the lid using a ruler and recorded in mm Table 4.1 (Section 4.4.1).  

 

Interpretation of results: For quality control testing, the results are interpreted
10

 as sensitive, 

intermediate or resistant by comparing with that already obtained for a standard drug against similar 

microorganism being tested. There is a standard interpretive breakpoint established for disk diffusion 

testing of Ampicillin (AMP) against
10

 Escherichia coli but none for Bacillus subtilis (sub. spizizenii), and 

Staphylococcus aureus or Ketoconazole (KTZ) against Candida albicans, hence no range of values have 

been designated as sensitive (S), intermediate (I) or resistant (R) for these last three organisms. 

Consequently, in this study, the results were not interpreted by the S, I, R designations. The results were 

interpreted by testing the inhibition of AMP and KTZ on the microorganisms at lower concentrations to 

that used for test compounds (250µg/disk) and comparing the difference in values (Table 4.1).  
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Fig. 4.1 Growth inhibition of microorganisms by compounds      Fig. 4.2 Measurement of inhibition zone of compounds11  

 

 

 

4.1.2.2  Micro-broth serial dilution  

The minimum inhibitory concentration (MIC) was determined for some of the para substituted 

compounds, a majority of which inhibited microbial growth by at least 12 mm (twice the size of the disk 

diameter). As a result, the microorganisms tested were Bacillus subtilis (sub. spizizenii) and 

Staphylococcus aureus. The procedure made use of a 96-well polystyrene tray of which 80 wells were 

filled with small volumes of a serial two-fold dilution of each test compound. The lowest concentration of 

antibiotic that inhibits visible growth on surface of broth was taken as MIC. 

Preparation of culture medium: Test tubes containing 5mL Nutrient broth each were autoclaved. 

Four test tubes were used for each bacteria strain. A separate container containing more quantity of 

Nutrient broth for serial dilution was also autoclaved. These were allowed to cool to room temperature 

and refrigerated.  

Culture of microorganisms: Single colonies of bacterial culture were touched with a loop and grown 

overnight. A single colony from the fresh bacterial culture was dropped inside the sterilized broth tube 

using micropipette tip and covered with the tip inside. Three test tubes were inoculated per strain. The test 

strains were grown to the right A625 (absorbance of 0.08 – 0.10) using the spectrophotomer instrument to 

check the absorbance. At this wavelength/absorbance, the appropriate inoculum size for standard MIC, 

10
4
 – 10

5
 CFU/mL is achieved. 

http://aminj.myweb.uga.edu/ZONECHART.html
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Preparation of microtitre plates: The test agents/antibiotics were dissolved in DMF to make a 

concentration of 25 mg/mL in Eppendorf tubes. This implies the starting/highest concentration in well 1 

for the test is 12.5 mg/mL. Micropipette of appropriate size was used to dispense 100μL of broth medium 

into all wells of the microtitre plate. 100 μL of each test compound was dispensed into wells in column 1. 

Using the micropipettor set at 100 μL, the compounds were mixed into the wells in column 1 by sucking 

up and down 6 – 8 times without splashing. A two-fold dilution of column 1 was achieved by 

withdrawing 100 μL from well 1/column 1 and adding to column 2. This made column 2 a two-fold 

dilution of column 1. It was also thoroughly mixed by sucking up and down 6 – 8 times and 100 μL of 

this was transferred into column 3. The procedure was repeated down to column 10 only. 100 μL was 

discarded from column 10 rather than putting it in column 11. Generally, wells 1 – 10 contained the broth, 

test compounds/antibiotics and the bacterial strain; 11th well contained the blank (broth and bacteria are 

present but antibiotic is absent) and 12th well contains the control (only broth is present, antibiotic and 

bacterial strain are absent), Fig. 4.3.  

Inoculation of microorganisms and incubation: The bacterial solution grown to the right A600 was 

poured into a sterile petri dish. Another micropipette set to 5μL was used to dispense bacteria into wells 

in columns 11 to 1, in that order. The inoculum was not added to column 12 as it serves as the sterility 

control and blank for the plate scanner. Different test compounds were placed on different rows of the 

same plate but a bacterial strain was used per plate to avoid cross-contamination. Proper labelling was 

done to ensure no misappropriation of the test compounds. The plates were incubated at 37
o
C and 

satisfactory growth was obtained within 24 h.  

Measurements and interpretation of results: The plates were scanned with the microplate reader using 

column 12 as the blank. MIC was taken as the plate with lowest concentration of compound that inhibited 

visible growth on surface of broth. 
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Fig. 4.3 Microtitre plates containing test compounds12  

 

4.2 ANTIPLASMODIAL ASSAY PROCEDURE 

4.2.1  Parasite cultivation  

The chloroquine-resistant Gambian FCR-3 strain of the malaria parasite Plasmodium falciparum was 

cultured in vitro in human erythrocytes.
13,14

 Parasitized erythrocytes were suspended at a 5% haematocrit 

in RPMI-1640, supplemented with 10 mM D-glucose, 0.32 mM hypoxanthine, 50 mg/L gentamicin, 10% 

(v/v) heat inactivated human plasma and was buffered with 25 mM HEPES and 25 mM NaHCO3. 

Cultures were maintained daily and incubated at 37℃ with a gas mixture of 5% CO2, 3% O2 and the 

balance with N2. Cultures were synchronized with 5% D-sorbitol when the parasites were in the ring stage 

for experimental purposes.
15

 The percentage parasitaemia and stages were assessed daily by microscopic 

examination of thin blood smears stained with Giemsa.  

 

4.2.2 Antiplasmodial screening  

The antimalarial activity of the various extracts was determined using the tritiated hypoxanthine 

incorporation assay.
16

 The parasite suspension, consisting predominately of the ring stage, was adjusted to 

a 0.5% parasitaemia and 1% haematocrit and exposed to the various concentrations of the compounds 

(plated in triplicate) for a single cycle of parasite growth. All assays were carried out using untreated 

parasites and uninfected red blood cells as controls. Labelled 
3
H-hypoxanthine (0.5 μCi/ well, Amersham) 

was added after 24 h and the parasitic DNA was harvested on a Wallac
®
 GFB-filtermat with a Titertek

®
 

http://en.wikipedia.org/wiki/File:Microplates.jpg
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cell harvester. The filtermats were dried, transferred to sample bags which were filled with scintillation 

cocktail and sealed before being counted in the Wallac
®
 beta counter. The counts per minute (cpm) were 

generated and the parasite survival rate calculated. The concentration that inhibited 50% parasite growth 

(IC50 value) was determined from the log sigmoid dose response curve generated by the Enzfitter
®
 and 

Prism
®
 software. Chloroquine and quinine were used as the reference antimalarial agents. Each 

experiment was repeated, at least, in triplicate.  

 

4.3 CYTOTOXICITY SCREENING PROCEDURE 

All compounds were tested in triplicate against MDA-MB-231 breast carcinoma cells. The cytotoxicity of 

the compounds was determined using the WST-1 assay method (Roche). The cells were treated with a 

range of concentrations of the test compounds or vehicle control. Cells treated with DMSO were 

considered to represent 100% viability and the viability of cells at each dose was represented relative to 

this value.  

 

4.4 RESULTS 

The available compounds were tested for their antimicrobial inhibition activity using DMF as solvent and 

250 μg of each was measured on to the 6 mm disk. The compounds not tested have been used up for other 

characterisation tests or low-yielding such that, they were not available as at the time of determination of 

biological activity.  

For the cytotoxicity assay, some compounds were not tested as they showed poor or no inhibition against 

the plasmodial cell. 
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4.4.1 Antimicrobial susceptibility testing by agar disk diffusion 

 

Table 4.1 Agar disk diffusion test of compounds (250 μg disc–1) against chosen strains of microorganisms (disk diameter 6 mm) 

Compounds   

250 μg/disk 

S.  

aureus 

B.  

subtilis 

E.  

coli 

C. 

albicans 

Compounds   

250 μg/disk 

S.  

aureus 

B. 

subtilis 

E.  

coli 

C. 

albicans 

2MT 

Co2MT 

Ni2MT 

Cu2MT 

8 

11 

8 

10 

7 

11 

8 

14 

6 

6 

7 

7 

6 

6 

NT 

9 

2MA 

Co2MA 

Ni2MA 

Cu-2MA 

7 

11 

8 

10 

8 

12 

8 

13 

6 

6 

7 

7 

6 

NT 

6 

7 

2–Me–2MT 

Co(2–Me–2MT) 

Ni(2–Me–2MT) 

Cu(2–Me–2MT) 

7  

NT 

7 

9 

6 

NT 

8 

10 

6 

NT 

6 

6 

6 

6 

6 

8 

2–Me–2MA 

Co(2–Me–2MA) 

Ni(2–Me–2MA) 

Cu(2–Me–2MA) 

7 

NT 

NT 

19 

11 

NT 

NT 

20 

6  

NT 

NT 

6 

6 

6 

6 

6 

4–Me–2MT  

Co(4–Me–2MT ) 

Ni(4–Me–2MT) 

Cu(4–Me–2MT ) 

8 

9 

8 

10 

8 

8 

10 

13 

7 

6 

6 

8 

6 

NT 

6 

9 

4–Me–2MA 

Co(4–Me–2MA) 

Ni(4–Me–2MA) 

Cu(4–Me–2MA) 

8 

12 

NT 

10 

10 

9 

NT 

12 

6 

6 

NT 

7 

6 

6 

6 

8 

2–MeO–2MT 

Co(2–MeO–2MT) 

Ni(2–MeO–2MT) 

Cu(2–MeO–2MT) 

7 

NT 

8 

18 

6 

NT 

9 

18 

6 

NT 

6 

6 

6 

6 

6 

10 

2–MeO–2MA 

Co(2–MeO–2MA) 

Ni(2–MeO–2MA) 

Cu(2–MeO–2MA) 

9  

NT 

NT 

20 

11 

NT 

NT 

19 

6  

NT 

NT 

6 

6 

6 

6 

6 

4–MeO–2MT  

Co(4–MeO–2MT ) 

Ni(4–MeO–2MT) 

Cu(4–MeO–2MT ) 

13 

14  

9 

20 

12 

13 

10 

18 

7 

7 

6 

7 

6 

6 

6 

13 

4–MeO–2MA  

Co(4–MeO–2MA) 

Ni(4–MeO–2MA) 

Cu(4–MeO–2MA) 

9 

22  

NT 

15 

9 

17 

NT 

16 

6 

9 

NT 

7 

6 

6 

6 

6 

2–Cl–2MT 

Ni(2–Cl–2MT) 

Cu(2–Cl–2MT) 

8 

8 

8 

6 

8 

8 

6  

6 

6 

6 

NT 

7 

2–Cl–2MA 

Cu(2–Cl–2MA) 

7  

9 

15 

10 

6 

6 

6 

7 

4–Cl–2MT  

Co(4–Cl–2MT ) 

Ni(4–Cl–2MT) 

Cu(4–Cl–2MT ) 

8 

10 

8 

8 

8 

12 

8 

9 

7 

7 

6 

7 

6 

9 

NT 

10 

4–Cl–2MA 

Co(4–Cl–2MA) 

Ni(4–Cl–2MA) 

Cu(4–Cl–2MA) 

8 

9 

NT 

10 

8 

9 

NT 

9 

7 

7 

NT 

7 

6 

6 

6 

7 

2–Br–2MT 

Ni(2–Br–2MT) 

Cu(2–Br–2MT) 

7 

8 

9 

6 

8 

7 

6 

7 

6 

6 

NT 

8 

2–Br–2MA 

Cu(2–Br–2MA) 

 

NT 

9 

NT 

14 

NT 

6  

NT 

7 

4–Br–2MT  

Co(4–Br–2MT ) 

Ni(4–Br–2MT) 

Cu(4–Br–2MT ) 

8 

10 

9 

9 

9 

10 

8 

9 

7 

7 

6 

7 

6 

9 

NT 

11 

4–Br–2MA  

Co(4–Br–2MA) 

Cu(4–Br–2MA) 

9 

11  

13 

10 

11 

11 

7 

6 

7 

6 

6 

6 

4–NO2–2MT  

Ni(4–NO2–2MT) 

Cu(4–NO2–2MT ) 

7 

8 

8 

9 

7 

10 

7 

6 

7 

6 

NT 

6 

DMF 

AMP 125 μg/disk 

AMP 50 μg/disk 

KTZ 125 μg/disk 

6 

40 

26 

NA 

6 

38 

21 

NA 

6 

23 

11 

NA 

6 

NA 

NA 

23 

CoCl2.6H2O 16 13 10 6 CuCl2.2H2O 8 8 7 8 

NT – not tested; NA – not applicable 
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4.4.2 Antimicrobial susceptibility testing by microbroth serial dilution 

Table 4.2 MIC (μg/mL) of para substituted compounds by microbroth serial dilution  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NT – not tested  

 

4.4.3 Antimicrobial susceptibility testing for the Schiff–base ligands 

 

Table 4.3 Agar disk diffusion test of Schiff-base ligands (250 μg disc–1)  

against chosen strains of microorganisms (disk diameter 6 mm)  

Compounds   

250 μg/disk 

S.  

Aureus 

B.  

subtilis 

E.  

coli 

C. 

albicans 

pMS–2MT  6 6 6 6 

pMS–4MeO2MT  6 6 6 6 

pMS–4Br2MT 6 6 6 6 

pMS–4Cl2MT 6 6 6 6 

 

 

Compounds  

Microorganisms 

Compounds   

Microorganisms 

S.  

aureus 

B.  

subtilis 

E.  

coli 

S.  

Aureus 

B.  

Subtilis 

E.  

Coli 

2MT 

Cu2MT 

1560 

195 

1560 

780 

1560 

780 

2MA 

Cu2MA 

1560 

780 

1560 

3120 

1560 

390 

4Me–2MT  

Cu(4Me–2MT ) 

1560 

195 

1560 

780 

780 

780 

4Me–2MA 

Cu(4Me–2MA ) 

1560 

390 

195 

24.4 

780 

780 

4MeO–2MT  

Cu(4MeO–2MT ) 

Co(4MeO–2MT ) 

3120  

195 

195 

3120 

195 

195 

1560 

390 

NT 

4MeO–2MA 

Cu(4MeO–2MA) 

Co(4MeO–2MA) 

1560 

195 

97.5 

780 

24.4 

195 

1560 

390 

NT 

4Cl–2MT  

Cu(4Cl–2MT ) 

390 

195 

390 

195 

390 

390 

4Cl–2MA 

Cu(4Cl–2MA ) 

390 

390 

24.4 

48.8 

195 

1560 

4Br–2MT  

Cu(4Br–2MT ) 

195 

195 

780 

195 

390 

390 

4Br–2MA 

Cu(4Br–2MA ) 

195 

390 

48.8 

780 

195 

390 

4NO2–2MT  

Cu(4NO2–2MT ) 

NT 

780 

780 

97.5 

NT 

780 

CuCl2.2H2O 

CoCl2.2H2O 

780 

195 

390 

195 

780 

NT 
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4.4.4 Antimicrobial and cytotoxicity assays 

 

Table 4.4 Inhibition of growth of parasite
a
 and cancer

b
 cell by compounds 

 

a P. falciparum b breast cancer cell  lines  NT – Not tested  

 

 

 

 

 

Compound 

% Parasite growth  

at 50 μM  (SD) 

% viability  

at 50uM (SD) 

Cu2MT 5.49 (0.41) 38.0521 (9.71) 

Cu(4Me–2MT) 8.21 (0.63) 28.48664 (4.86) 

Cup(4MeO–2MT) 0.72 (0.57) 31.64475 (5.66) 

Cu(4Cl–2MT) 7.40 (1.31) 37.03055 (4.90) 

Cu(4Br–2MT) 6.83 (1.70) 39.04592 (9.34) 

Cu(4NO2–2MT) 8.63 (6.41) 39.74564 (8.09) 

Cu(2Me–2MT) 6.93 (0.48) 33.52377 (5.68) 

Cu(2Me–2MT) 8.46 (0.94) 29.74039 (6.23) 

Cu(2Cl–2MT) 5.91 (0.62) 32.69409 (8.63) 

Cu(2Br–2MT) 6.31 (0.61) 36.02779 (6.23) 

Cu(4MeO–2MA) -0.05 (0.26) 31.23485 (6.89) 

Cu(2MeO–2MA) 0.03 (0.15) 38.24921 (5.74) 

Ni(2MeO–2MT) 55.66 (5.66) NT 

Ni(4MeO–2MT) 93.57 (2.20) NT 

Ni(2MeO–2MA) 84.67 (9.42) NT 

Ni(4MeO–2MA) 119.54 (5.46) NT 

Co(2MeO–2MT) 62.67 (2.46) NT 

Co(2MeO–2MA) 77.43 (1.65) NT 

Co(4MeO–2MT) 104.07 (13.61) NT 
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4.5  DISCUSSION 

4.5.1 Antimicrobial susceptibility test 

From the results displayed in Table 4.1 for the disk diffusion susceptibility test, it can be observed that 

the inhibitory activity of each ligand was improved upon chelation with metal ion. This could be because 

the metal salts also have a measure of biological activity as shown from their inhibitory zones, for 

example, the hydrated cobalt(II) chloride salt inhibits S. aureus more than some its chelated 

compounds. Of the metal complexes, nickel(II) compounds showed the least inhibitory activity against 

the microbial growth. The activity of copper complexes on the whole is better than that shown by cobalt 

complexes.  

Comparing the three bacteria and the fungal strains tested, the gram–negative bacterium E coli was the 

most resistant to the compounds used. C. albicans was also very resistant as only the methoxy substituted 

compound could inhibit its growth by a diameter twice the size of the disk. It is well known that the 

bacterial cell wall is a good target for antimicrobial agents, this resistance by E. Coli could be as a result 

of its thicker peptidoglycan layer of the outer membrane (Fig. 4.4) which the test compounds could not 

interact with sufficiently compared to that of a typical gram-positive bacterium. This fact is widely known 

and referred to as ‘intrinsic resistance’ of Gram-negative bacteria. The same explanation may be 

applicable to the fungal cell wall which consists of polysaccharide materials (Fig. 4.5). Both S. aureus 

and B. subtilis showed some measure of susceptibility to Co(II) and Cu(II) complexes as could be judged 

from the sizes of their diameters of inhibition (Fig. 4.6-4.9). The electron donating groups seem to be 

better than the electron withdrawing groups in general.  

The minimum inhibitory concentration (Table 5.2) was determined for some of the compounds which 

showed a measure of inhibitory activity. It was observed that some of the compounds (for example,4Cl–

2MA and its copper complex) which did not show a large zone of inhibition are seen to have low MIC 

values, this could not be accounted for and a further investigation could be made along this direction. The 

electron withdrawing groups have the least MIC values in general. 
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Fig. 4.4 Gram-positive and Gram-negative bacterial cells17 

 

 

 

Fig. 4.5 The components of the yeast cell wall18 

 

The methoxy substituted compounds showed the most significant activity of all the compounds. Though 

the methoxy substituted compounds were not as active as the standard Ampicillin; they however have 

demonstrated very promising inhibitory activity. This could be as a result of the orientation of these 

compounds in space permitting the amino group to interact more strongly with the microbial cell. It could 

also be as a result of electron donating effect of methoxy group, pushing more electron density towards 

the amine group, thereby making it more available for interaction with the microbial cell, than is possible 

with other groups. This is confirmed by another electron donating group, next to the methoxy, the methyl 

substituted groups also showed good inhibition of the two gram–positive bacteria.  
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Fig. 4.6 Inhibition of S. aureus by para substituted 2MT ligands and  

metal(II) complexes (250 μg/disk) 

 

 

 

Fig. 4.7 Inhibition of S. aureus by para substituted 2MA ligands and  

metal(II) complexes (250 μg/disk) 
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 Fig. 4.8 Inhibition of B. subtilis (spizizenii) by para substituted 2MT ligands 

      and metal(II) complexes (250 μg/disk) 

 

  

 Fig. 4.9 Inhibition of B. subtilis (spizizenii) by para substituted 2MT ligands and  

      metal(II) complexes (250 μg/disk) 
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Contrary to antimicrobial/biological activity associated with some Schiff-bases, the Schiff-bases prepared 

in this research were low in activity as the ligands could not inhibit the growth of any of the strains tested. 

Many Schiff-bases have shown excellent biological activity. The structural difference between the 

thiomethylated aniline ligands which showed at least some inhibitory activity and their Schiff-base 

derivatives is the absence of the amino group. It could imply that the presence of the amino group 

facilitates the ability of the compounds to interact with the microbial cells. This is an area to look into for 

further research study as presence of amino groups in many drugs is known to be contributory to their 

biological property. 

Their metal complexes could not be tested as a result of insolubility in either DMF or DMSO. 

 

4.5.2 Antimalarial and cytotoxicity assays 

Since the copper complexes showed the highest activity in the antimicrobial inhibitory tests, the copper 

complexes of 2MT ligands are tested for their antimalaria plasmodial tests. The results as seen in Table 

4.4 are very revealing, with all the complexes tested inhibiting the growth of P. falciparum by ≥ 90% at 

50 μM.  The only compounds tested in the 2MA series, the methoxy substituted, inhibit the parasite 

growth completely at same concentration, indicating the remaining 2MA copper complexes would also be 

similar in behavior. Since the methoxy substituted copper complexes have the highest antiplasmodial 

activity, the analogous Co(II) and Ni(II) are also tested; the results indicate that the ortho-methoxy 

substituted complexes of Ni(II) and Co(II) are able to destroy 15–38% plasmodial cells and the para-

methoxy complexes show little or no inhibitory activity. The better activity of Cu(II) suggests a difference 

in mechanism and not just structural, from that obtainable in the other Co(II) and Ni(II). From the UV 

studies, Cu(II) shows a more reducible property compared to other metal ions, as it relates to the charge 

transfer, hence a redox potential aspect to activity of the Cu(II) is suggested. 

From the above results, it is clear that the chelation to copper(II) ion enhances antiplasmodial activity 

relative to Ni(II) and Co(II) ions. Furthermore, the presence of methoxy in either the ortho or para 

position in the copper complexes tested gives rise to almost similar activity while the ortho-positioning of 

the methoxy could enhance Ni(II) and Co(II) activities. This activity of methoxy compounds in 

antiplasmodial therapy has been reported
19 

and it is suggested its activity could be due to the spatial 

orientation it imposes on the complexes. The presence of the amino group in these present complexes 

could also account for their activity as structure-activity studies on some aminoquinolines showed that the 
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presence of a hydrophobic group (e.g. an alkyl spacer) and an amino group for pH trapping are essential 

for high anti-plasmodial activity.
20

 

Cytotoxicity of the most active compounds against cancer cell lines is carried out to ascertain its toxicity 

effects on human cells. The results in Table 4.4 indicate the compounds are less toxic to the cell lines, 

with 28–40% of the cells being viable. From these results, it is to be seen that the compounds are more 

selective towards inhibiting plasmodial growth than the cancer cells. 

The results obtained for these compounds at the 50 μM concentration level show they exhibit excellent 

antimicrobial activity which is greater than that shown by any antimalarial agent hitherto known to the 

author. Their preferential selectivity towards the parasite cell rather than the human cell is another good 

characteristic they have exhibited as potential drug candidates. Three of the compounds in particular show 

exceptional activity and selectivity hence the compounds are worth further investigating.  

In order to identify them as lead antimalarial compounds, they could be tested against resistant strains of 

parasite and their inhibitory activity determined at much lower concentrations. Since the Cu(II) 

complexes demonstrated outstanding biological activity in comparison to their Co(II) and Ni(II) 

counterparts, the mechanism of the interaction of these Cu(II) complexes with the parasite cell needs to be 

investigated. A mechanism involving the facile reduction of Cu(II) to Cu(II) with subsequent activation of 

intracellular oxygen has been proposed for the antimalarial activity of some four-coordinate copper(II) 

complexes.
21

 The redox property of ferroquine has been suggested to attribute to its better antimalarial 

activity than CQ.
22,23

 From the solid reflectance of the metal(II) complexes in this study, the charge 

transfer transition energy for the Cu(II) is n this study,  This could help in establishing structure-activity 

relationship between these agents and the target cells and guide towards the modification of the 

substituents and ring properties of these chelates.   
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Conclusion 

The thiomethylated-aniline ligands 2–(methylthiomethyl)aniline 2MT and 2–(methylthio)aniline 2MA 

were synthesized with their substituted derivatives (-Me, -MeO, -Cl, -Br, -NO2). Complexes of the 

ligands with Co(II), Ni(II) and Cu(II) were prepared. The ligands and their metal(II) complexes were 

characterized by elemental analysis and spectroscopic means. The Co(II) and Ni(II) complexes have the 

ML2Cl2 molecular formula while the Cu(II) complexes (with one exception) formed with MLCl2 

stoichiometry. The thiomethylated ligands show bands consistent with primary amine groups and there is 

no proton loss on coordination. Coordination of these ligands to the metal(II) ions take place through the 

N and S atoms as evidenced by the decrease in frequency of N–H band and appearance of new bands at 

the far infrared regions for M–N and M–S bonds respectively.  

The solid state configurations for the Co(II) and Ni(II) complexes in general can be suggested to be 

distorted octahedral from the elemental analysis and the spectroscopic data while the X-ray 

crystallography data clearly shows the square pyramidal or tetragonally distorted octahedral structure for 

the Cu(II) complexes.   

The electrolytic nature of CoII) and Cu(II) complexes in DMF were found to be similar, they behave as 

non electrolytes in contrast to Ni(II) complexes which show 1:1 electrolyte nature. The electronic spectra 

of these metal(II) complexes were found to be different for both their solid forms and in solutions of DMF 

and DMSO. In solution, the isostructurality of Co(II) and Ni(II) no longer holds. Co(II) complexes have 

spectra similar to those in tetrahedral geometry, the solvent molecules breaking the Co–S bonds but not 

binding to the Co(II) center. Ni(II) and Cu(II) complexes became isostructural, being octahedral in 

solution. In both types of complexes, the solvent molecule becomes attached to the metal center. In Ni(II) 

complexes, the chloride ion is replaced by the solvent molecule in the process while in the case of Cu(II), 

the solvent becomes bound to the metal center without displacing the bridging chloride.  

In the evaluation of their biological activity, some of the ligands showed some inhibitory activity against 

the gram–positive bacteria S. aureus and B. subtilis; the gram-negative bacterium E. coli and the fungus 

C. albicans were not susceptible to the compounds at the concentration tested. The activity of each metal 

complex was higher than that of its corresponding ligand. The methoxy-substituted ligands and their 

metal complexes however demonstrated promising antimicrobial activity at similar concentration.  
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In the evaluation of biological activity of some of the Co(II), Ni(II) and Cu(II) complexes of the 

thiomethylated ligands against Plasmodium falciparum, the Cu(II) complexes show outstanding activity 

in comparison to their analogous metal complexes. At 50 μM concentration level, the Cu(II) complexes 

show activity equal or better than the prophylactic chloroquine. The Cu(II) complexes with the methoxy-

substituted demonstrated exceptional activity but their Co(II) and Ni(II) analogues did not show any 

activity.  

The methoxy-substituted ligands and their Co(II), Ni(II) and Cu(II) complexes were seen to demonstrate 

exceptional biological activity against the strains of gram-positive bacteria S. aureus, B. subtilis as well as 

the P. falciparum. This exceptional behaviour of the methoxy-substituted compounds was also observed 

in the NMR shifts of the ligands, their electronic spectra as well as the frequency shifts of their N–H 

stretches. 

The cytotoxicity of the Cu(II) complexes was determined against the breast cancer cell at 50 μM 

concentration. 28–40% of the carcinoma cell destroyed shows their preference towards the inhibition of 

the plasmodial cell rather than the cancer cell. The selectivity demonstrated by these compounds have 

shown them to be potential antimalarial agents and further investigation can be carried out to identify 

them as lead drugs.  

The structures of these methoxy compounds both in the solid state and in solution could be further 

investigated as the methoxy group could be changing the orientation of these compounds to enhance 

activity. Likewise the redox properties of the Cu(II) complexes of the methoxy compounds could be 

determined in comparison with those of the Co(II) and Ni(II) methoxy complexes. 

The Schiff-base ligands and their Cu(II) complexes were prepared and structurally characterized. The 

ligands showed no biological activity and those of the complexes could not be determined. The inactivity 

of the ligands might be as a result of their non-polarity. However their catalytic property may be 

investigated. The long Cu–S bonds could make the S more labile and easier to replace by another group 

and this property may be useful in catalysis.  

The cytotoxicity of the active Cu(II) complexes of the thiomethylated ligands at 50 μM concentration 

against the breast carcinoma cell was in the range 28–40%, thus showing preference to destroying the 

parasitic cell instead of the cancer cell. The selectivity demonstrated by these compounds have shown 

them to be potential antimalarial agents and this could be further investigated.  
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