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Abstract

Credit card fraud is an ever-growing problem. There has been a rapid increase in the rate of
fraudulent activities in recent years resulting in a considerable loss to several organizations,
companies, and government agencies. Many researchers have focused on detecting fraudulent
behaviours early using advanced machine learning techniques. However, credit card fraud
detection is not a straightforward task since fraudulent behaviours usually differ for each
attempt and the dataset is highly imbalanced, that is, the frequency of non-fraudulent cases
outnumbers the frequency of fraudulent cases. In the case of the European credit card
dataset, we have a ratio of approximately one fraudulent case to five hundred and seventy-
eight non-fraudulent cases. Different methods were implemented to overcome this problem,
namely random undersampling, one-sided sampling, SMOTE combined with Tomek links and
parameter tuning. Predictive classifiers, namely logistic regression, decision trees, k-nearest
neighbour, support vector machine and multilayer perceptrons, are applied to predict if a
transaction is fraudulent or non-fraudulent. The model’s performance is evaluated based on
recall, precision, F-score, the area under receiver operating characteristics curve, geometric
mean and Matthew correlation coefficient. The results showed that the logistic regression
classifier performed better than other classifiers except when the dataset was oversampled.

Keywords: Financial fraud, Imbalanced dataset, Bootstrap, Cross validation, Support vector machine,
k-nearest neighbour, Decision trees, Logistic regression, Multilayer perceptron.
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Chapter 1

Introduction

1.1 Financial Fraud Detection

Financial fraud detection (FFD) is vital to preventing the devastating consequences of finan-
cial fraud. FFD involves distinguishing fraudulent financial transactions from non-fraudulent
transactions, revealing fraudulent behaviour or activities and allowing decision-makers to de-
velop appropriate strategies to decrease the impact of fraud. Data mining plays a vital role
in FFD as it is widely used to extract and uncover hidden patterns in large amounts of
data (Ngai et al [2011)). Technological advancement and the internet boom has caused an
increase in fraudulent schemes in the business world. Some of these commonly observed
schemes include credit card fraud, financial statement fraud, e-commerce transaction fraud,
insurance fraud, money laundering and telecommunications fraud (Hu et al, 2011). The
use of statistical and machine learning based technologies has been shown to be an effective
method in detecting fraud (Zhou & Kapoor, 2011)). However, fraudsters are adaptive and are
usually able to find ways of bypassing the models which are build to detect fraud (Zhou &
Kapoor, 2011). Existing fraud detection techniques usually share very similar data mining
principles but they can differ in many aspects with specialized domain knowledge (Bolton &
Hand, 2002). Billions of dollars are lost annually due to credit card fraud (Chan et al.| (1999),
Chen et al.| (2006)). Ngai et al.| (2011) found 49 journal articles detailing mathematical fraud
detection models, mostly relating to insurance fraud. The latter journal author noted that
the learning techniques used to detect fraud include logistic regression (LR), artificial neural
networks (ANN), Bayesian belief networks (BBN) and decision trees (DT). They note that
these articles provide many different solutions to the problems inherent in the detection and
classification of fraudulent transactions. West & Bhattacharya (2016) discuss more recent
developments in the area of fraud classification, including the use of automated real time

processes that can be used to detect fraud.

There are two types of frauds that can be identified in a set of transactions; card not present
(CNP) and card-present fraud (CP) (Thennakoon et al., [2019). CNP fraud occurs when a

1



1.2. CREDIT CARD FRAUD IN SOUTH AFRICA

payment card is used without the cardholder physically presenting the card at the transaction
time. Merchants unintentionally process fraudulent transactions since the perpetrator has
gained access to the card’s magnetic stripe information and know the payment card number,
the card’s three-digit security code, and the cardholder’s name and address. There is no
way for the merchant to verify the cardholder’s signature or request additional identification
because the payment card is never physically handled by the merchant. The victim, who
keeps the compromised card, is generally unaware of the situation. However, in CP fraud the
perpetrator has the actual stolen card or a fraudulent duplicated card made using the card
number and magnetic stripe information (Talbot et al.l 2003). Unlike transactions where a
card is present, the responsibility for the loss of fraudulent CNP transactions lies with the
merchant, which means the payment processor will charge the merchant for the full value of

the fraudulent purchase.

1.2 Credit Card Fraud in South Africa

Fraud affects almost every business area, from data breaches that jeopardize end-customer
privacy and payment security to ransom attacks that cost businesses vast amounts of money
(Amanze & Onukwughal [2018). Over the past decades, financial fraud has brought shocking
losses to the global economy, threatening the efficiency and stability of capital markets (Zhu
et al., 2021). According to SABRIC| (2021)) the gross losses due to fraud committed on South
African issued debit cards amounted to more than R520 million in 2020, an increase of 26.5%
compared to 2019; and more than R469 million for issued credit cards which is a decrease of
28.4% compared to 2019. Due to financial uncertainty, people used debit cards as opposed to
buying on credit, as they were more comfortable spending money they already had. During
the COVID-19 lockdown restrictions, consumer buyer behaviour shifted to online platforms.
In addition, debit cards were enabled for online purchases, creating new opportunities for
scammers to steal card information from bank customers. Social vulnerabilities resulting from
fear and confusion caused by the pandemic and adjusting to lockdowns were also exploited
by criminals. The Covid-19 lockdown forced many small and large companies to move their
businesses to the internet to provide worldwide services. Any type of fraud can severely
impact the business, whether it’s perpetrated by opportunistic individuals or serious and
organized crime groups. However, serious and organized crime can often increase the scale and
impacts of fraud, and professional fraudsters make their fraudulent activities more difficult
to detect.



CHAPTER 1. INTRODUCTION

1.3 Objectives

This thesis aims to perform a predictive analysis of the European credit card transaction
dataset using machine learning techniques to detect fraudulent transaction. The approach is
to use predictive models to identify whether a transaction is fraudulent or non-fraudulent.
Several machine learning algorithms , namely logistic regression, decision trees, support vec-
tor machines, k-nearest neighbours, multilayer perceptron and artificial neural networks are
implemented and the results are discussed. To address the class imbalance, a data-level
and algorithmic level approach is implemented. In data-level approach, sampling techniques
such as random undersampling, SMOTE with Tomek link and one-sided sampling were used
whereas in the algorithmic level approach parameter tuning techniques such as random search

were used to find parameters that improve classifier performance.

1.4 Thesis Outline

Chapter [2 discusses previous work done on credit card fraud detection and challenges in fraud
detection. This brief review of the literature suggests that decision trees, binary logistic
regression classifiers, support vector machines and neural networks would be appropriate

classifiers to apply to the data in question.

Chapter |3] introduces supervised, unsupervised and semi-supervised classification, how clas-

sification models are estimated and related challenges as well as the problem of overfitting.

Chapter [4] introduces and discusses the k-nearest neighbour classifier, decision trees, binary
logistic regression classifiers, support vector machines, neural networks and the different ways
in which these classifiers can be directly modified to mitigate the bias towards the majority

class.

Chapter 5| discusses different techniques of measuring binary classification performance for

balanced and imbalanced data.

Chapter [6] discusses accuracy assessments for imbalanced data at the algorithmic and data-

level.

Chapter [7] provides a brief background information on the Furopean credit card dataset,

analysis of the results and compare them to similar studies.

Chapter |8 summarizes the results and provides several insights for future work.



Chapter 2

Background and Challenges in Fraud

Detection

This chapter introduces credit card fraud and different techniques that have been successfully

applied in the context of credit card fraud.

2.1 Related Work

Ghosh & Reilly| (1994) conducted a feasibility study to determine an ANN’s effectiveness
for fraud detection on a Mellon bank credit card portfolio. They trained an ANN-based
system on a sample of non-fraudulent and fraudulent transactions. The data was sampled
such that there are thirty (30) non-fraudulent cases for each fraudulent case. In the training
phase, four hundred and fifty thousand (450 000) transactions were used out of 650 000
available accounts. The ANN was trained on observations of fraud due to lost cards, stolen
cards, counterfeit, mail order, and non-received issue fraud. The trained ANN was tested
on approximately two million unsampled transactions that were authorized in a two month
period. The training dataset was taken from the transactions before the test set. The ANN
detected more fraudulent accounts with significantly fewer false positives, reduced by a factor
of twenty (20), over rule-based fraud detection procedures. The ANN-based system provided
a substantial improvement in accuracy and the timeous detection of fraudulent transactions.
The ANN has the ability to detect fraudulent patterns on credit accounts and it has achieved
a reduction in total fraud losses of 40% from 20% previously achieved using the rule-based
method. This reduced the case load for human review since they reviewed approximately
seven hundred and fifty (750) accounts per day resulting on average to only one detected

fraudulent account per week.

Shen et al| (2007) investigated the effectiveness of applying classification models to credit
card fraud detection problems. DTs, ANNs, and LR models were built and tested. Mod-

els were built and subsequently evaluated on transactions from 2005 for training; 2006 for

4



CHAPTER 2. BACKGROUND AND CHALLENGES IN FRAUD DETECTION

testing and model validation. The credit card dataset had 0.07% fraudulent transactions.
In training phase, all fraudulent cases were used and a sample of non-fraudulent cases were
removed. A lift table and lift chart were used to describe the models’ usefulness and create
the scored dataset. The ANN and LR approach outperformed the DT model in classifying
credit card fraud. Credit issuers can utilize fraud models to compare the transaction in-
formation with historical trading patterns to predict a current transaction’s probability of
being fraudulent and provide a scientific basis for intelligent authorized anti-fraud strategies

or refuse to authorize a transaction and launch investigations of suspicious transactions.

Sanchez et al.| (2009) proposed the use of association rules to extract knowledge so that
standard behaviour patterns may be obtained of fraudulent transactions from credit card
databases to detect and prevent fraud. Their methodology optimizes the execution times,
reduces excessive generation rules and makes the results more intuitive. They noted glob-
alization causes a sharp increase in commercial management and hence there is a need for
intelligent tools which integrally solve the problems of extracting knowledge from operational
databases to support decision making. They concluded that it was possible to provide a more
comprehensive, proactive online solution to provide knowledge for commercial decision mak-
ing by extracting knowledge using fuzzy logic techniques which are applied to operational

databases and strategic decisions for organizations.

Sahin & Duman| (2011) developed and applied ANN and LR to a credit fraud detection prob-
lem. The credit dataset distribution was highly imbalanced, with nine hundred and seventy
eight (978) fraudulent transactions and twenty two million non-fraudulent transactions. The
dataset was preprocessed before the classification models were developed. Stratified sampling
was used to under-sample the non-fraudulent transactions so that these models could learn
both classes. The stratified samples of non fraudulent transactions were combined with fraud-
ulent transactions to form three samples with different fraudulent to non-fraudulent ratios.
The first sample had a ratio of one fraudulent to one non-fraudulent transaction; the second
had a ratio of one fraudulent to four non-fraudulent transaction; and the third had a ratio
of one fraudulent to nine non-fraudulent transaction. Sahin & Duman| (2011) observed that
the ANN classifier outperformed the LR in classifying transactions into fraudulent or non-
fraudulent transactions. Prediction accuracy and the true positive rate (TPR) were used as
model performance measures. They however noted that as the training dataset distribution
became more biased, the performance of all classifiers decreases in identifying fraudulent

transactions.

Ogwueleka) (2011) designed an ANN architecture for credit card fraud detection using unsu-
pervised learning. The ANN was applied to the transactional data to generate four clusters,
namely low, high, risky and high-risky. The self-organizing map neural network technique
provided the optimal classification of each transaction into its associated group. Receiver op-
erating curves (ROC) for credit card fraud detection watch detected over 95% of fraud cases
without false positives. This was followed by the ROC curve for LR which detected over 75%
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without any false positives. Quadratic discriminant analysis (QDA) performed worst with
over a detection of 60%. The credit card ANN fraud detection system detected most of the
fraudulent transactions with the probability of a false-positive being below 3%. |Ogwueleka

(2011)) concluded that the ANN system was effective in detecting fraudulent transactions.

Jha et al| (2012) employed a transaction aggregation strategy to detect credit card fraud.
Transactions were aggregated to capture consumer buying behaviour prior to each transac-
tion. These aggregated transactions were used for model estimation to detect fraudulent
transactions. They estimated the logit model using primary and derived attributes, where
derived attributes were created by aggregating values of transactions over different time peri-
ods. They concluded that transaction aggregation is a good strategy for fraud detection as

the model with derived attributes performed in classifying transactions.

Fu et al.| (2016]) proposed using a convolutional neural network (CNN) based framework for
fraud detection. A CNN was used to capture the hidden patterns of fraud behaviours learned
from labelled data. The transaction data was represented by a feature matrix on which CNN
was applied to identify a set of latent patterns for each sample. They criticized the fraud
detection models proposed by (Ghosh & Reilly| (1994)) and Maes et al.| (2002) for being overly
complex and noted that there was a high probability of overfitting. They applied CNN to
effectively reduce feature redundancy, avoid model overfitting and to reveal latent patterns

of fraudulent transactions.

Nami & Shajari| (2018) developed a method involving two stages for fraud detection, namely
the extraction of suitable transnational features and a dynamic random forest algorithm.
In the feature extraction stage, additional features are derived from primary transnational
data in an effect to better understand cardholders’ spending behaviour. The cardholders’
behaviour varies over time so his/her new behaviour deviated from recent transactions. A
similarity measure was established based on transaction time. This measure assigns greater
weight to recent transactions. In the second stage, the dynamic random forest algorithm was
applied to the first time initial detection and a minimum risk model was applied in cost-
sensitive detection. They found that the recent behaviour of cardholders exerted a consider-
able effect on decision-making regarding the evaluation of transactions as either fraudulent
or non-fraudulent. The use of both primary and derived transnational features increases the
F-measure. An average increase of 23% in the prevention of damage was attained through

the cost-sensitive approach.

Pumsirirat & Yan| (2018) developed a model based on a deep autoencoder (AE) and restricted
Boltzmann machine (RBM). This model reconstructs the non-fraudulent transactions to find
anomalies from normal patterns. This model detects fraudulent cases that cannot be detected
based on the previous history or supervised learning approaches. The deep learning AE
is an unsupervised learning algorithm that applies back-propagation by setting the inputs
equal to the outputs. Tensor flow was used to implement AE, RBM and H20, a multilayer
feedforward ANN that is trained with stochastic gradient descent using back-propagation,
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using deep learning. The root squared error and ROC curve were computed. Benchmark
experiments with other tools were used to confirm that AE and RBM in deep learning can
accurately detected credit card fraud in a large dataset. [Pumsirirat & Yan| (2018) used three
credit card datasets, namely German, Australian and European to measure the area under
the ROC curve (AUC) for AE and RBM. The AE and RBM obtained an AUC score of over
95% for European credit card dataset.

Kiran et al. (2018) conducted research on credit card fraud detection using the Naive Bayes
(NB) and k-nearest neighbour (kNN) classifiers. They observed different results for these
classifiers applied to the same dataset. The purpose of using different classifiers was to
enhance the accuracy and flexibility of the algorithm. The dataset comprises the records
of European credit card holders who made transaction using their credit card in the month
of September 2013. This dataset contains records of transactions that were made in a two
day period. The number of transactions that were made within this specified period were
284 807. 492 of these transactions were identified as being fraudulent. The dataset is highly
imbalanced with more observation oriented as a positive class, namely non-fraudulent. A
principal component analysis was conducted. Unfortunately the dataset does not provide
any background information on the original features due to confidentiality agreements. This
makes it difficult to interpret the principal components. The kNN classifier applied to the
principal component dataset was 95% accurate while the NB classifier was 90% accurate.
Kiran et al.|(2018) concluded that credit card fraud detection can’t be efficient in practice if

it is done using only one classifier.

Dornadula & Geetha (2019) developed a novel credit card fraud detection system for stream-
ing transactional data to analyse the customers’ past transaction details and extract behavi-
oural patterns. Cardholders were clustered into different groups based on their transaction
amounts (low, medium and high) using range partitioning. A sliding window algorithm was
implemented to aggregate the cardholders’ transactions from different groups. This helped
to extract features that described the cardholders’ behavioural patterns. Different classifi-
ers, namely local outlier factor (LOF), isolation forest (iForest), SVM, LR, DT and random
forest (RF), were trained over the groups separately. The classifier with the best rating score
was chosen as the best method for predicting fraud. The Matthews Correlation Coefficient
(MCC) was used to measure accuracy due to the imbalanced data. The MCC results were
improved after SMOTE was applied. Dornadula & Geetha (2019) observed that the DT
classifier outperformed all other classifiers before SMOTE was applied to the dataset. RF
classifier outperformed all other classifiers one the dataset was balanced. LR, DT and RF
are the only classifiers which showed significant improvement after SMOTE was applied to

the European credit card dataset.

Darwish (2020) designed an improved two-level credit card fraud tracking model based on an
imbalanced dataset using semantic fusion of k-means and the artificial bee colony (ABC) al-

gorithm. This improves identification precision and accelerates the convergence of detection.

7



2.2. CHALLENGES IN FRAUD DETECTION

The ABC algorithm filters the dataset’s characteristics using an integrated rule engine to
evaluate whether the transaction is fraudulent or non-fraudulent. They concluded that the
fusion of multiple pieces of evidence and learning are appropriate approaches for addressing
these real-world problems where behavioural patterns are intricate and there is little or no

knowledge about the semantics of the application domain.

2.2 Challenges in Fraud Detection

2.2.1 Concept Drift

The change in fraudulent activity and customer behaviour leads to an evolution of online
transaction distribution, this is known as concept drift (Kubat & Widmer, [1995)). Changes
in the hidden patterns can cause more or less drastic changes in the target variable. An
effective model should be able to track such changes and adapt to them quickly. A difficult
problem in handling concept drift is distinguishing between true concept drift and noise.
Some algorithms may overreact to noise, erroneously interpreting it as concept drift, while

others may be highly robust to noise, adjusting to the changes too slowly (Stolfo et al., |1997).

2.2.2 Imbalanced Class Distribution

The skewed distribution of the classes is considered as one of the most critical problems in
FFD (Maes et al.l 2002). In general, the imbalanced class problem happens when there are
far fewer samples of fraudulent cases than non-fraudulent cases. In a supervised learning
approach, the class imbalance problem arises when the minority class is very small, leading
to numerous issues, such as preventing the model from identifying patterns in the minority
class data (Stolfo et al., [1997). In addition, class imbalance has a severe impact on the per-
formance of classifiers, which tend to be overwhelmed by the majority class and ignore the
minority class since most data mining algorithms are not designed to cope with such class
imbalance (Liu et al., 2008). The imbalance class problem can be addressed at an algorithmic
level but typically is addressed on the data-level (Krawczykl, [2016). At the algorithmic level,
existing learning algorithms are directly modified to mitigate the bias towards the majority
class and adapt them to mining data with skewed distributions, for example regularization
parameter, class weight and stopping criterion. At the data level, a pre-processing step is
performed to rebalance the dataset. Several pre-processing techniques have been proposed to
overcome the class imbalance problem on the data level, including random oversampling, ran-
dom undersampling, synthetic minority oversampling technique (SMOTE) and cost-sensitive
learning (Mekterovié et al., |2021)).
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2.2.3 Large Amounts of Data

The actual transaction label is only available several days after the transaction occurred since
investigators can not timeously check all the transactions. Analysts can not keep up with
the exponential rate at which transactions are made in the e-commerce space. The fastest
analyst can go through approximately a thousand (1 000) transactions a day, which may
lead to mislabelled cases in the dataset to be used for building the model due to human
error and bias (Bhattacharyya et al. 2011). Credit card datasets are usually large with high
dimensionality. The presence of many features makes the process of data mining and detection
difficult and complicated (Hilas & Sahalos, |2007). In addition, high dimensionality slows
down the model building process. Several techniques have been proposed to overcome this
challenge, such as principal component analysis (PCA), feature selection and t-distributed
stochastic neighbour embedding (t-SNE). These techniques help reduce the size of the model
and thus reduce the computation time (Abdallah et al., 2016).

2.2.4 Real Time Detection

Fraud detection systems are divided into two different categories: offline detection and online
detection based on different types of fraud. When detecting online fraud, an online credit
card payment application requires immediate detection and response. However some ap-
plications require offline detection. Online fraud detection must be able to manage limited
resources to ensure the detection process works effectively. Therefore, the effectiveness of
any proposed online fraud detection solution benefits from reduced amounts of data and the
reduced associated computational complexity of the methods used for detection (Abdallah
et al.l 2016). The online banking system is fixed; the customer has access to the same bank-
ing system, leading to good credentials to characterize common behavioural sequences and
identify suspicions of fraudulent online banking. However customer behaviour patterns are
diverse; fraudsters tend to simulate the real behaviour of customers. They often change their

behaviour to compete with advances in fraud detection (Minastireanu & Mesnita, 2019).

2.3 Chapter 2 Summary

This literature review suggest that kNN, DT, SVM, LR and MLP are appropriate classifiers
to apply to the analysis of the data in this thesis.



Chapter 3
Classification

This chapter introduces classification. Section discusses the direct estimation of the
expected risk or test error from the empirical risk or train error, an optimistic approximation

of the expected risk. Several challenges arise when attempting to estimate the expected risk.

Sections [3.4.2] and [3.4.4] discuss overfitting and model complexity in the context of model

estimation.

3.1 Introduction to Supervised, Semi-supervised and Un-

supervised Learning

Classification is the process of predicting the class label given the input variables or features
(James et al., 2013a). The objective of classification is to estimate the correct class label
using the input variables, x;, to predict the discrete output or target variables y; for each
i € {1,2,...,N}. This mapping can be denoted by the function y; = f(x;). Data mining
algorithms can categorized into three learning methods: supervised, unsupervised, or semi-
supervised (Neelamegam & Ramaraj, 2013). In supervised learning, the algorithm works
with a set of observations with known class labels. Suppose f(x;) € {1,2,..., M} denotes
M discrete classes. Let Dy = {xi,yi}fil denote a set of N observations where x; € R? is
the input vector and f(x;) = y; € {1,2,..., M} is the corresponding known class label. Each
class label 7; is an integer between 1 and M indicating the class label of the i'* training
observation. Furthermore, let Dy.qin = {X;,4i}._; C Dy denote the training set and Dy =
{xi,yi}¥,.1 C Dy denote the test set such that Dygin N Diest = 0 and Diygin U Dyess = Dy
where ¢ < N. The supervised classification model is trained on Dy,.;,. In the training phase
the classification algorithm has access to the feature variables and their corresponding class
label for all observations in Dy,.q;,. In the testing phase, the classification algorithm has access
to feature variables only in D,.y. The classification algorithm uses all feature variables in
Dyes to predict the corresponding class labels and these new class labels are compared to the

actual class labels to measure the model’s performance. In unsupervised learning, there are
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no known class labels. These algorithm aims to group observations in Dy N{x;}}¥; = {x;}¥,
based on the similarity of these attribute values, typically for a clustering task (Lebret et al.,
2015). The result provided by clustering is usually a partition D, = {z;}, of Dy N {x;}¥,

into K groups such that

1, if DyN{x;}Y¥, belongs to the k™ group, or
Zik =
0 otherwise.

Semi-supervised learning is used when a small subset of labelled class observations is available,
but large number of the output variables are unlabelled, that is all the class information is not
available. Let {x;, y;}I_, denote the set of ¢ observation with known class labels and {x;}/*7,,
denote the set of n unlabelled observations where class labels are unknown. It follows that
Dy = {x, yi}i_; U{x;}i2},, is the set of N observations where N =t + n and n > ¢. Semi-
supervised learning combines this information to exceed the classification performance that
can be obtained either by dropping the unlabelled data and applying supervised learning to
the subset of the data with known class labels or by dropping the class labels of the known
subset and applying unsupervised learning to all the data, that is now all unlabelled (Lebret

et al., 2015)).

3.2 Multiclass Classification

Multiclass classification is a classification task that consists of more than two class labels, that
is [{1,2,..., M}| > 2. For example, suppose an academic researcher wants to host the 2021
mathematics Olympiad for all high schools in Makhanda. The academic researcher wants to
predict which high school will win bronze, silver and gold, that is y; € {bronze,silver, gold }
denotes the class labels. The classification model will be trained on D,,4, where x; could
contain feature variables such as the schools overall performance in mathematics, if the school
is a private or public school, how many times has the school won the mathematics Olympiad
in the past etc. Let 1 denote bronze, 2 denote silver and 3 denote gold, that is y; € {1, 2, 3}.
This is a multiclass classification examples since there are more than two different class labels

where each high school is assigned to only one class label.

3.3 Binary Classification

Binary classification is a classification task where the target or output variable can take one
of only two class labels; that is y; € {c1, co} where ¢; denotes the i** class label. For example,
consider the classification of transactions into fraudulent or non-fraudulent transactions. The
class label is coded as 1 for a fraudulent transaction and 0 for non-fraudulent transaction.

Since there are only two class labels, that is y; € {0,1}, this is a binary classification task.

11
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Binary classification can be viewed as binary regression since we can predict the conditional

probability that a binary response is 1 given the feature variables x; (James et al., 2013b)).

3.4 Model Estimation

3.4.1 Introduction

Suppose X denotes the input space, that is X = R¢, where d denotes the dimensions, and
Y denotes the output space. The joint probability distribution on X x ) is denoted as
Pxy. Let (X,Y) denote a pair of random variables distributed according to Pxy and Dy
denote independent, identically distributed (iid) random sample from Pxy. The objective of
decisional modeling is to find a function f € F, f : X — ) that predicts y € ) from x € X.
The function f is chosen from a family of parametric functions or a hypothesis space, F. The
performance of a predictor f is measured by the expected loss, or risk or generalization error,

which is defined as

R(f) = EPX,Y [‘C(X7 Y, f(X))] (341)

where the expectation is taken with respect to the distribution Py and L£(-) is the loss,
or error, function. The loss function quantifies the extent to which f(x) corresponds to the
expected value of y. The most commonly used loss is the 0-1 loss function (Nguyen & Sanner,
2013) which is defined as

Ly fly = 4 T II=Y (3.42)

1, otherwise.

In Eq. 3.4.2] the loss is zero if the prediction is correct and 1 if the prediction is incorrect.
This means any misclassification brings the same penalty regardless of the type of error.
For example, if we are classifying transactions as being fraudulent or non-fraudulent the
misclassification of a fraudulent transaction in the class of non-fraudulent transaction brings
the same penalty as the misclassification of a non-fraudulent transaction to the class of
fraudulent transactions. The 0-1 loss function is not adequate for highly imbalanced datasets
(Garcia-Gomez & Tortajadaj, |2015). The ultimate goal of supervised learning is to find
fhy € F for which the risk Rp,(f) is minimal by searching for a model that minimizes the

training error, thus

[y = argmin Rp, (f).
feFr

Unfortunately in most cases Eq. cannot be evaluated since the distribution Pyy is
unknown to the learning algorithm (Vapnik} 1992). However an approximation of Eq.
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can be computed by taking the average loss function on the training dataset

N
1
RDN = N;L(Xzayzaf> (343)

Learning the function f by minimizing Eq [3.4.3|is known as the Empirical Risk Minimiza-
tion principal (ERM) (Vapnikl 1992). The risk is an important measure of goodness of the
predictor f(-) since it tells how it performs on average in terms of the loss function. The

minimum risk is defined as
) = Inf
R(fuin) = Int. R(J),

where the infimum is often taken with respect to all measurable functions. Suppose that the

learning algorithm chooses the predictor f* from F such that

f*=argmin R(h)
feF
and let fp, € F denote a function that minimizes the empirical risk. The excess risk of the

output f = of the learning algorithm is defined and decomposed as follows:

RB(fpy) = B(fmin) = R(") = R(fmin) + B(fD,) — B(f7).

VvV WV
approximation error estimation error

This decomposition reflects a trade-off that is similar to the bias-variance trade-off (Zhaol,
2017). The approximation error, that is the bias of an estimator, term behaves like a bias
square term, and the estimation error, that is the variance, behaves like the variance term in
standard statistical estimation problems. Similar to the bias-variance trade-off, there is also
a trade-off between the approximation error and the estimation error. The approximation
error is zero for the family that contains the best model and strictly positive for families that
do not contain this model (Zhao, 2017). Let F; and F; denote two families. The best model
of F1 has a better approximation error than the best model of F5 if F; is more complex than
Fo. The estimation error is zero if the function in F that minimizes the empirical risk also
minimizes the the expected risk. The model that minimizes the empirical risk is likely to
move away from a model that minimizes the expected risk when the capacity of family F is

high, hence the estimation error increases (Lian| 2021).

3.4.2 Model Overfitting

Overfitting is a fundamental issue in supervised learning that prevents a models from gener-
alizing well on test data (Schaffer, [1993). Generally overfitting can be categorized into noise

learning and model complexity. Under noise learning, the training set has few observations,
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that is Dy,.q;n is small, or has less representative data. Refer to section for a discussion

on model complexity.

3.4.3 Opverfitting in the Context of Regression

Consider Figs. and [3.3] In these figures the blue stars denote the training set, Dyqin,
the orange stars denote the test set, D;.q, e; denotes the error of the i observation and the

black line denotes the fitted regression model. The total training error can be calculated as

t

train __ train ~train
€ = E (y; -9 "")

i=1
and the total test error by
ptest — Z (yfest . Qfest)'
=1+t

The linear model, a polynomial of degree 1, in Fig. is underfitting the training data since
it is unable to capture the non-linear relationship between input observations, Xy, 4, and the
target variables, y;qq4in. These models usually have high bias and low variance. This happens
when there is less data to build an accurate model or when non-linear data is used to build

a linear model.

Figure 3.1: Illustration of an underfitting model (adapted from Weston| (2014))).
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Fig. shows a polynomial of degree two fitted on the same dataset. The model appears to
be a good fit on the training data and also generalizes well on the test data (see Fig. .
This model has low bias in that it is a better model for the training data that captures the
relationship between predictor variable and response variable, and low variance as there isn’t
much difference between the training and test error. The polynomial of degree 2 has low
training error, low test and is less complex than the model fitted in Fig. [3.3] a polynomial of
degree 3.

Figure 3.2: Tllustration of an optimal model (adapted from Weston| (2014)).

Fig. shows a polynomial of degree 3 fitted to the same dataset. The model is too well
trained, it takes noise in the training set as set of observations used to train the model. This
reduces the model’s ability to predict the response variable on the test data, an unseen data
during training, since it has ‘memorized’ the training data. The training error is very low
but the test error is high, therefore the model is overfitted. When a model is overfitting it

has high variance and low bias and this reduces the model’s ability to generalize well.
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Figure 3.3: Illustration of an overfitting model (adapted from [Weston| (2014)).

3.4.4 Model Complexity

Complex models in general perform better on training data than simpler models since they
have more parameters that can be adjusted during training to get a good fit (Myung, 2000).
Hence complex models have small training error when compared to non-complex models.
However a model that is too complex may end up overfitting the training data. As a result,
there is low training error and high test error (Cheung & Rensvold, 2002). A complex model
showing high variance may improve in performance if trained on more observations. In most
cases, the error rate on the training set starts off low when there are few observations and
increases as more observations are used (Sejdinovic, 2021). On the other hand, the error
rate on the test set is typically high for a model trained on a few observations and decreases
with more training observations. If the test error rate remains higher than the training error
rate even when the training set is large, then the model is overfitting (Rashidi et al., [2019).
Vapnik (1992) proposed regularization as an implicit approach to control model complexity
and avoid overfitting. The optimal model, R(f}, ), in the considered family is minimized by

taking the sum between Rp, (f) and a regularization term, G(f), that is

Ty = argmin [Ro (/) +aG(f)]
feF
where a > (0 balances the trade-off between goodness of fit and model complexity. The higher
the value of «, the higher the model complexity penalty. The value of « is selected, based on
the training set, to achieve a good balance between goodness of fit and model complexity. In
decision modelling, the goal is to find a model with the best generalization error, not a model
with the lowest training error. Training error is not a suitable estimator of the generalization
error (Myung, [2000). To minimize the generalization error one must look at the trade-off

between minimizing the model complexity and the training error.
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Fig. illustrates the trade-off between bias and variance. A high error rate on both the
training set and test set indicates that the model is too simple in that the model underfits the
data and fails to capture any relationship presented in the dataset. In this case, the model
will have low variance and high bias. If the error rate is low on the training data but high
on the test data then the model maybe be too complex, the model is overfitting. In this case
the model will have high variance and low bias. The shaded area in this figure indicates the
ideal zone. In this region, both the test and training error are low and the model is not over
or under fitting the dataset. Let e™® denote the difference between the training and test

frain_ ptest . emin the model is complex and therefore

error that generalizes the model. If e
overfitting, see for example Fig. [3.3] If e — et < ™ then the model is underfitting, see

for example Fig. Finally, if e'ri® — ¢t — emin then the model is optimal, see for example

Fig. 3.2

Figure 3.4: Tllustration of model complexity (adapted from Rashidi et al. (2019)).

3.5 Chapter 3 Summary

This chapter discussed a brief introduction to supervised, unsupervised and semi-supervised
classification. Section B.4.1]discussed model estimation and demonstrated that direct estima-
tion of the generalization error by the training error is excessively optimistic. Challenges that

emerge when building a classifier, namely overfitting and model complexity, are discussed.
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Chapter 4

An Introduction to Supervised

Classification

This chapter introduces supervised models and the theory of the classification models used for
fraud detection is discussed. The k-nearest neighbour, decision tree, logistic regression, sup-

port vector machine and multilayer perceptron supervised learners are discussed in sections

and [4.5] respectively.

4.1 k-Nearest Neighbour

The k-nearest neighbour (kNN) classifier can be based on Euclidean distance. Euclidean
distance represents the straight line distance between the test observation, x;, and the training

observation, x;. Thus,

(Xip — ti)2 = ||x; — XtH2

]~

d2(xi,xt) =
1

p

where t = 1,2,..., N. The kNN classifier first identifies the k points in the training data that
are closest to x; based on a distance measure, for example Euclidean distance. The kNN
classifier estimates the test observation’s label according to the majority of the class’s in
this neighbourhood (James et al., 2013b). When there is no weighting, this majority voting

method can be expressed as

f(x,) = argmax Z I(y; = v) (4.1.1)

ve{-1,+1} (%4,4:) ENR(xt)

where f(x;) is the predicted class label and Ny, (x;) denotes the set of k training observations
closest to x; with k € Z* (Liu & Chawla, 2011). The majority voting method in Eq.
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can be rewritten as follows:

f(xt) = argmax Z I(y; = v)

VELLA (o, ) €N (x0)

—max{ > Iy=-1, Y Iu=+D)}

(xi,yi) ENg (%) (xi,yi) €Ng (1)
1 1
(xi,yi) ENg (1) (%i:yi) €NE (%)
:mw{ﬂmz—MP@:+U} (4.1.2)
where P(y; = —1) and P(y; = +1) represent the probability of class —1 and class +1

appearing in Nj(x;) respectively.

Fig. illustrates the kNN algorithm with 3 nearest neighbours. In this figure, a small
training set consists of seven red triangles, that belong to class A, and seven blue stars, that
belong to class B. The goal is to predict the class of the new observation labelled by the green
cross. The kNN classifier identifies three observations closest to the green cross by calculating
the Euclidean distance between the green cross and all other observations in the training set.
The neighbourhood is shown in Fig. by the circle. The neighbourhood contains two red
triangles and one blue star. From this it can be deduced that P(Red Observation) = % and
P(Blue Observation) = % Based on the majority voting, the kNN classifier will predict that

the cross belongs to class A, the red class.
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Figure 4.1: An example of a kNN classifier (adapted from Navlani (2018)).

4.1.1 The Weighted k-Nearest Neighbours

The classification performance of the kNN classifier is affected by how much the £ nearest
neighbours vary in their distances (Fan et al.,|[2019)). |Dudani (1976) proposed that the samples
nearby should be weighted more heavily than those farther away when making the decision
using the distance-weighted kNN (DWKNN) algorithm. Let {xy,...,x;} denote the set of k
nearest neighbours of the test observation x;, arranged in an increasing order according to
the distance between x, and x;. The distance weighted function, with weight w;, for the

nearest neighbour of the test observation is defined as follows:

d(xy, xp) — d(xy,X;)

w; = 4 d(Xe, Xp) — d(x¢,X1)’ i dlox x) 7 dloxe, 1) (4.1.3)

1 it d(xy,xk) = d(xy,x1).

The DWKNN algorithm adjusts the kNN algorithm in Eq. as

f(x;) = argmax Z w; x I(y; = v).

VELLA Y (x; ) €N (x0)

According to Eq. the nearest neighbour gets weight of 1, while the furthest neighbour
a weight of 0 and the other neighbours’ weights are scaled linearly to the interval in between
0 and 1 (Gou et al., 2012). Even though the weighted majority voting method solves the
problem of large distance variances among the k nearest neighbours, the effect of this method
becomes insignificant if the neighbourhood of the test observation is too dense and one, or
both, of the classes is overly presented (Liu & Chawlal 2011)).
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4.1.2 Selection of the Value of k

kNN DWKNN are classifiers that classify the test observation based on the majority vote of
its neighbours. The value of k will determine the performance of the classifier; different k
values can have a large impact on the predictive accuracy and picking a good value of k is
generally unintuitive (Ling et al., 2021). The kNN classifier tries to estimate the conditional
class probability from observations in a local region of the data space which contains the k
nearest neighbours of the test observation (Zavrel, [1997). The estimate is affected by the
selection of k since the radius of the local region is determined by the distance of the k™"
furthest neighbour. When the value of k is very small, the local estimate tends to be very poor
if the nearest neighbours are not nearby due to data sparseness or the nearest neighbours
are not reliable due to noise. Increasing the value of k takes into account a larger region
around the test observation in the data space and makes it possible to overcome this effect
by smoothing the estimate. Unfortunately, a large value of k easily causes over-smoothing
and the classification performance degrades (Gou et al., [2012)). Zavrel (1997)) suggested that
the value of k£ must be determined empirically through cross validation (see section .

4.1.3 Class Imbalance and k-Nearest Neighbours

When the dataset is highly imbalanced, the traditional kNN algorithm tends to perform
poorly as the class which is overly presented tends to dominate the neighbourhood of the test
observation. Eq.[4.1.2]demonstrates that the traditional kNN classification algorithm is based
on finding the class label that has a higher prior value, that is max {P(yi =—1),P(y; = +1)}.
This suggests that it only uses the prior information to predict the class label and this has
suboptimal performance on the minority class when the dataset is highly imbalanced (Liu &
Chawla, 2011)). [Liu & Chawla| (2011) proposed the use of a class confidence weighted (CCW)
kNN algorithm to transform the traditional kNN rule of using prior probability to using the
posterior probability by incorporating Bayes’ theorem in the traditional kNN algorithm. To
incorporate Bayes’ theorem in Eq. [1.1.2] let Ny (x;) denote the sample space, P(y; = +1) and
P(y; = —1) denote the priors of the two classes in the sample space. Bayes’ rule (Wackerly
et al., 2014) states that if { By, By, ..., B, } is a partition of S, the sample space, such that
P(B;) >0, fori=1,2,...,n, then

P(A|B;)P(B;)  P(A|B;)P(B))

P(B;|A) = = —
P ZP(AlB»P(B»

(4.1.4)
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The collection of sets {Bj, B, ..., By} is said to be a partition of S if for some k € Z*,
S =By UByUBs...UB, and B;N B; = 0 for i # j. Let class —1 be the majority class,
then it is expected that the inequality, P(y; = —1) > P(y; = +1) holds in most feature
space regions. The traditional kNN tends to be bias towards the majority class especially
in the overlapping regions since the majority class is likely to be overly presented there and
thus the weighted kNN becomes ineffective in correcting the bias (Liu & Chawla, 2011). The
class confidence weighted (CCW) kNN algorithm captures the probability of attribute values
given a class label. The CCW kNN on a training observation is defined as
wi Y = P(xi|ys).
The majority voting rule for kNN, Eq. can the be rewritten in the context of CCW as

follows:

foew(x;) = argmax Z I(y; = v) X w,
ve{-1,+1} (x5,50) € N (¢

= argmax Z I(y; = v) x P(x;|y:)

ve{—1,+1} (x4,ys ) ENg (x¢)

= max {l Z I(y; = —1) x P(X|ys),

- S Iy = +1) x Plxily) }

(%i,yi) €Nk (x¢) (%i,yi) €N (x¢)

= max {P(yi = —1)P(x;|ly; = —1), P(y; = +1)P(x;|y; = —1—1)}.

el

Using Eq. 4.1.4) P(y; = —1) can be rewritten as

Pxilyi = —1)P(y: = —1)
P(x;)

o P(x;ly; = —1)P(y; = —1).

Py = —1[x;) =

Therefore it follows that

foow(x) = max { P(y; = ~1x:), Py = +11x:) }

where P(y; = —1|x;) and P(y; = +1|x;) denotes the probability of x; belonging to class —1

and class +1 respectively, given x; in Ni(x;).

4.2 Decision Trees

A decision tree (DT) is constructed by recursively partitioning the feature space of the train-
ing set. The objective is to find a set of decision rules that naturally partition the feature
space to provide an informative hierarchical classification model (Myles et al., |2004)). To

classify a new instance, we start with the root of the constructed tree and follow the path
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corresponding to the observed value of the attribute in the node of the tree. This process is
continued until a leaf is reached where the associated label is used to obtain the predicted
class value (Jenhani et al., 2008). When building a decision tree, the complexity lies in de-
termining the best split for each attribute. A splitting index is used to evaluate the goodness
of the alternative splits for an attribute (Loh & Shih, [1997). Quinlan| (1986) proposed the use
of information gain. Consider a binary classification problem, the Gini, denoted by Gini(Dy)
and the entropy, denoted by Ent(Dy) are defined as (Du & Zhan, [2002)):
2
Gini(Dy) =1-Y P’

J=1

and

Ent(Dy) = Z P;log P;

where P; is the relative frequency of class j in dataset Dy. The information gain of attribute

A in the dataset Dy can be calculated based on entropy or Gini index as follows

Gaingini(Dn, A) = Gini(Dy) Z | x Gini(DY) (4.2.1)
UEA

and

GainEnt(DN,A) Ent DN Z
A

x Ent(DY) (4.2.2)

where v denotes any possible values of attribute A, DY C Dy for which attribute A has
value v, |DY/| is the number of elements in DY, and |Dy/| is the number of elements in Dy.
The test node that makes the classification progress the most corresponds to selecting an
attribute with the maximum gain. Maximum gain is attained when the choice of attribute
makes it possible to correctly classify all the data. When gain is zero, the data points will
all be misclassified after the split. The first term of Eq. [4.2.1] and Eq. [£.2.2] don’t depend

DY
1Dyl x Gini(DY)

on the attribute A. Thus maximizing the gain means minimizing Z Dyl

vEA

or Z D N| x Ent(DY) (Du & Zhan, 2002). The information gain measure in Eq. 4.2.1

”UGA
or Eq. ﬂ is biased towards attributes with many outcomes. Thus, DTs prefer selecting

attributes that have large number of values (Quinlan, |1986). Quinlan| (1986) introduced the

gain ratio measure to improve the gain measure and compensate for this bias. The gain ratio

measure is defined as

GainEm(DN, A)

GainRatio =
ainRatio Ent(Dy)

(4.2.3)
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The gain ratio measure has the following limitations: it may not always be defined, for
example if Ent(Dy) = 0, and it may choose attributes with very low Ent(Dy) rather than
those with high gain. As a result, Quinlan| (1986]) proposed that Eq. be applied to
select from those attributes whose initial gain is at least as high as the average gain of
all the attributes. De Mantaras (1991) proposed an attribute selection criterion based on
the distance between partitions. This solves the problem of bias in favor of multi-valued

attributes without having limitations that Quinlan’s gain ratio have.

4.2.1 Decision Tree Building Example

To demonstrate how DT works we use the tennis play datasetf] given in table 4.1l In this
example, the objective of the DT classifier is to predict if tennis will be played or not, based

on outlook, temperature, humidity and wind features.

Table 4.1: The tennis dataset, Dy.

Day Outlook Temperature Humidity Wind Play

D1 sunny hot high weak  no
D2 sunny hot high strong  no
D3  overcast hot high weak  yes
D4 rain mild high weak  yes
D5 rain cool normal weak  yes
D6 rain cool normal  strong no
D7  overcast cool normal  strong yes
D8  sunny mild high weak  no
D9  sunny cool normal weak  yes
D10 rain mild normal weak  yes
D11  sunny mild normal  strong yes
D12 overcast mild high strong  yes
D13 overcast hot normal weak  yes
D14 rain mild high strong  no

The first step to growing a tree is to decide on the root node. To determine the root node,
we have to calculate the information gain of all attributes or features and select the feature

with maximum gain:

Gaingini(Dn, Outlook) = Gini(Dy) — Z x Gini(DY)
A
o Aoy o DN e IDR
= Gini(Dy) Gini(Dy) x + Gini(Dy) % + Gini(Dy)
| Dy| [ Dy|

5 3 2 4 0 4 5 2 3
—GiniDy) — [ 2 xSx 24 Sxoxoy 2w in?
ini(Dx) (14X5X5+14X4X4+14X5X5)

— Gini(Dy) — 0.1714.

Zhttps://www.kaggle.com /fredericobreno/play-tennis
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— X—-X-4+—X=-X=-4—X=-X—
147474147676 14 474
= Gini(Dy) — 0.2202.

4 2 2 6 2 4 4 1 3
Gaingini(Dn, Temperature) = Gini(Dy) — ( )

— X=X =4+ — X=X =
4 7 714777
= Gini(Dy) — 0.1837.

4 1
Gaingini(Dn, Humidity) = Gini(Dy) — < 7 3 7 6>

18 3 11" 6

= Gini(Dy) — 0.2143.

2
Gaingini(Dy, Wind) = Gini(Dy) — ( 8 6 6 3 3)

From the above calculations, the feature variable outlook has maximum gain and is thus
selected as the root node. The root node will have three branches, namely sunny, rain and
overcast, see Fig. [£.2] The next step is to determine the child nodes of outlook. For this,
we explore each of the feature branches, namely sunny, rain and overcast. Starting with the

feature branch sunny, determine the subset D}, of Dy, under the feature branch sunny as
shown in Fig. [4.2]

Outlook

D1 sunny  hot high weak no
sunny i\ Overcast D2 sunny hqt h?gh strong  no
D8 sunny  mild high weak no
A/ Da sunny  cold normal  weak yes
D11 sunny  mild normal  strong  yes

Figure 4.2: Root node and subset, D} of Dy.

To generate a node at the feature branch sunny, we calculate information gain of all feature

variables in D} as follows:

2 2 0 2 1 1 1 1 0
(DY, T ture) = Gini(DY) — (2 x Sx 4 2 x =X = 4= X = % -
Gaingini(Dy, Temperature) = Gini(Dy) (5><2><2—|—5><2><2+5><1><1>

= Gini(D)y) — 0.1.

3 3 0 2 2 0
Gaingini(Dy, Humidity) = Gini(Dy) — (5 X3 X3 + 5 X g% 5)

= Gini(Dy) — 0.
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3 1 2 2 1 1
Gaingini (D, Wind) = Gini(Dy,) — (5 X3 X3 + 5 X5 X 5)

= Gin(D}) — 0.2333.

Humidity has the maximum gain, thus the branch sunny has humidity as the child node, see
Fig. The feature value overcast represents a pure class, that is overcast only presents

one class which is yes. Since overcast is a pure class we can make a decision and thus the
leaf node under overcast is yes, see Fig. [4.3

D4 rain mild weak  yes
D5 rain cool weak  yes
D6 rain cool strong  no
D10 rain mild weak  yes
D14 rain mild strong  no

Figure 4.3: Growing the tree and a subset D%, of Dy.

The feature value rain has three corresponding yes’s and two no’s that is we can de-
cide to have yes as a leaf node since P(yes|Outlook is rain) = £ which is greater than
P(yes|Outlook is rain) = % Since the features, temperature and wind have not been used
we expend and calculate their information gain using the subset D3 as shown in Fig. .
The information gain for features temperature and wind are calculated as follows
Gaingini (D3, Temperature) = Gini(D3) — (g X % X %—i— % X % X %)
= Gini(D3) — 0.2333.

3 2 1 2 2 0

= Gini(D3%) — 0.1333.

The feature variable wind has maximum gain and thus the branch rain will have wind as a

child. The resulting tree is shown in Fig. [4.4] The only feature variable left is temperature.
Under the internal node wind, the branch weak, will have a leaf node yes since

. P(yes Nwind is weak)
P(yes|wind is weak) = P(wind is weak) =

=0.75

= Joo] 2]
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and

P(no|wind is weak) = <=+ = 0.25.

= [oo| 2w

Therefore, the branch strong of the internal node wind will have a leaf node no. Similarly,
the leaf node of the branch normal has the leaf node yes since P(yes/humidity is normal) =
2 =0.857 and P(nolhumidity is normal) = = 0.1429. It then follows that the branch high

of the internal node humidity has the leaf node no.

D1 weak  hot no
D3 weak  hot yes
D4 weak  mild yes
D5 weak  cold yes
D8 weak  mild no
D9 weak  cold yes
D10 weak mild yes
D13  weak  hot yes

Figure 4.4: Growing tree and a subset, D?\,, of Dy.

The fully grown tree shown in Fig. can be used to predict the class label for a given
input. For example if x = (rain, high, weak), the DT classifier will predict the class label as

yes.
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Figure 4.5: A fully grown tree.

4.2.2 Pruning

A DT performance on the training data may be a misleading indication of the actual predict-
ive accuracy. A complex DT that achieves high accuracy on a training set will often perform
poorly on the test set while a simple DT that performed far less accurately in training may
perform better on the test (Schaffer, [1993). DTs are, at least initially, grown to overfit the
training set. This means that a decision tree classification model has probably accounted for
variation in the training set that is not representative of the entire population (Myles et al.
2004). To reduce overfitting in the training set and improve generalization error, a test set
which is independent of the training set is used to evaluate the decision rules. Decision rules
or leaves that reduce predictive accuracy of the decision tree classification model based on
the test set are removed, thus reducing the complexity of the model. When a decision rule is
removed, the associated branch node is replaced with a leaf node (Myles et al.| 2004). Un-
pruned trees can potentially lead to a problem of small disjuncts as the tree is grown to their
full complete size on imbalanced training set (Chawlal |2003)). Liu et al.| (2010)) proposed the
use of Fishers exact test as a method for pruning the decision tree which improves accuracy

and the added benefit of it is that all the rules found are statistically significant.

4.2.3 Class Imbalance and Decision Trees

C4.5 and CART are two popular algorithms for decision tree induction (Cieslak & Chawlal,

2008). However their corresponding splitting criterion, namely information gain and Gini
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measure, are considered to be sensitive to class imbalance (Flachl [2003). Traditional pruning
algorithms are based on error estimations in that a node is pruned if the predicted error rate is
decreased. This pruning technique will not always perform well on imbalanced datasets (Liu
et al.| 2010). Pruning can have a detrimental effect on learning from imbalanced datasets,
since lower error rates can be obtained by removing branches that lead to minority class
leaves (Chawla, 2003)). Drummond & Holte (2000a)) proposed two methods of dealing with
imbalanced dataset. The first method utilizes a cost insensitive splitting criterion with a cost
insensitive pruning method which produces a decision tree algorithm that is least affected by
cost or prior class distribution. The second method is to grow a cost independent tree which is
then pruned in a cost sensitive way. Kearns (1990) suggested an improved splitting criterion
for top down decision tree induction known as DKM. Different authors have implemented
DKM as a decision tree splitting criterion in imbalanced dataset and it has shown improved
performance (Drummond & Holte| (2000a), |Flach| (2003), |Zadrozny & Elkan| (2001)). However
DKM has also been shown to be weakly skew insensitively (Drummond & Holte| (2000a), [F'lach
(2003)). |Cieslak & Chawla (2008) proposed the use of Hellinger distance as a decision tree
splitting criterion which they showed to be skew-insensitive. In the decision tree constuction
algorithm, a feature is selected as a splitting attribute when it produces the largest Hellinger
distance between two classes. Suppose (O, ) is a measurable space, © is a non empty set
and A is a o-algebra on O, such that P and () are two continuous distributions with respect
to the parameter \. Let p and ¢ be the densities of the measures P and () with respect to .

The definition of Hellinger distance can be given as:

dy(P,Q) = \//Q (\/F— \/§>2d>\.

They extended their work in |Cieslak et al.| (2012]) by demonstrating that the Hellinger distance
decision trees (HDDT) are robust in the presence of class imbalance and when combined
with bagging they mitigate the need for sampling. They further showed that HDDTs are not
significantly worse than C4.5 for balanced datasets. Therefore, it is sensible to use Hellinger
distance over gain ratio even on balanced datasets. Drummond & Holte (2000a) showed that
a combination of a cost insensitive splitting criterion such as DKM and cost sensitive pruning

generally performs well.

4.3 The Binary Logistic Regression Model

Suppose y; denotes a binary (Bernoulli) response variable. The logistic function is defined as
(Maalouf & Irafalis, 2011)

eXif

1 4 exiB ( )
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4.3. THE BINARY LOGISTIC REGRESSION MODEL

where 3 is the vector of parameters with the assumption that x;p = 1 so that 3 is a constant
term and is included in the vector 8. Let {Y}, Y3, ..., Yx} denote a set of independent random
variables each from an exponential family of distributions. The distribution of each Y; has a

canonical form and depends on a single parameter 6;, that is

J(yi;0;) = explyibi(6;) + ¢i(6;) + di(ys)]

where b;, ¢;, d; are function of 6;,. The distributions of all the Y;’s are of the same form.
Therefore the joint density of Y7, Y3, ..., Y is (as per Dobson & Barnett| (2018))

f(y1, 92, s yn; 01,09, ..., 0n) = Hexp[yib(@-) + c(6;) + d(yi)]
F(y:0) = exp | Joub(0) + D e0) + > d(w)|.  (432)

Suppose that F(Y;) = p;, where p; is some function of 6;. For a generalized linear model,

there is a transformation of u; such that

9() = x8.
The importance of this transformation is that g(u;) has many of the desirable properties of
a linear regression model (Hosmer Jr et all 2013). Consider a binary classification problem.
Eq. provides the conditional probability that y; = 1 given x;. This is denoted by p;(x;).
It follows that the quantity 1 — p;(x;) gives the conditional probability that y; = 0 given x;
(Hosmer Jr et al., 2013). All Y;’s have a Bernoulli distribution with the same parameters.

Therefore, the joint probability distribution of y is given by

N
flybxi B) = [ [ ot (1= pi)' (4.3.3)
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This distribution belongs to an exponential family since,

In (f(?/i’xh ) ﬁp’ (1—p)"~ yl)

=1

1 (pr (1= pi)' )]

In(p) +In((1 - p)' )]

In

M- =

s
I
—

-

@
I
-

M-

@
Il
=

:yi In(p;) + (1 — ) In(1 - pz)} (4.3.4)

f(yilxi, B) = exp (Zyl In ( ) + Zln (1 —p; > (4.3.5)

Eq. has the same form as Eq. where

1 = b(0;) = In (1 flpl) = X;B

where 7; denotes the link function. Let 3 denote the parameter vector for a saturated

max

model, that is a model that fits the data perfectly, and by, denote the maximum likelihood

estimator of 3 Let [(b;y) denote the maximum value of the likelihood function for the

max*

model of interest. The deviance is defined as (Dobson & Barnett, 2018))
D = 2[l(bmax; y) — 1(b; y)]. (4.3.6)

For a saturated model, the maximum log-likelihood estimates are p; = y;. From Eq. [4.3.4],

the maximum value of the log-likelihood function is

maxa y

Mz

[ (i) + (1= ) In(1 = )], (4.3.7)

=1

For any other model with p < N parameters, let p; denote the maximum likelihood estimates
for the probabilities and let §; = p; denote the fitted model values. The log-likelihood function

evaluated at these values is

l(b;y) = Z [yi In(g;) + (1 —y;) In(1 - @z)] (4.3.8)

=1

Substituting Eq. and Eq. into Eq. gives

D:Qi[yiln (2’—)+(1—y)ln<tz)] (4.3.9)
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4.3. THE BINARY LOGISTIC REGRESSION MODEL

For binary classification, the likelihood of a saturated model is equal to 1, {(bpax;y) = 0
(Hosmer Jr et al.l [2013). Tt then follows from Eq. that the deviance is given by

D = =-2[(b;y).

The log-likelihood in Eq. can be written as (Minkal 2003))
N N / \

1(8) =S yx.8— 1n<1 +exzﬂ) _ 21812 1.3.10

) Zy B Z il (4.3.10)

where 2||8||? is a regularization or penalty term. For A > 0, Eq. 4.3.10| gives a regular-
ized estimate of 3 which often provides a good generalized performance, especially when the
dimensionality is high (Nigam et al., [1999)). The function in Eq. is non-linear, max-
imizing it requires the maximum likelihood estimate (MLE) of 8. Minka| (2003)) showed that
conjugate gradient method provides a better estimate of 3, since it guarantees convergence

in at most d steps.

Fig[4.6)illustrates an example of binary logistic regression. The blue dotted line indicates the
decision boundary. If the classification model returns a prediction probability of more than
0.5 for given x;, then the transaction would be classified as class 1, for example a fraudulent
transaction. Alternatively, if the model returns a prediction probability of less than 0.5
for given x;, then the transaction will be classified as class 0, for example a non-fraudulent
transaction. An increase above 0.5 in the decision boundary will cause an increase in the false
negative rate (FNR), that is the model will predict the transactions as non-fraudulent whereas
they are actual fraudulent. Alternatively, a decrease below 0.5 in the decision boundary will

cause an increase in the FPR.

Figure 4.6: Demonstration of logistic regression (adapted from [DeMaris| (1995)).
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4.3.1 Class Imbalance and Logistic Regression

The method used for computing the probability of Yy, given x, is a function of the maximum-

likelihood estimate, B, namely

1

PYo=18) = —
(o =118)=

(4.3.11)
and is statistically consistent (Firth, [1993). King & Zeng (2001) demonstrated that 3 is a
biased estimate of 3 in class imbalanced datasets and that it generates predicted probabilities
that underestimate the actual probability of a rare event, for example fraudulent transactions.

To correct the bias done to class imbalance, Manski & Lerman| (1977) proposed the following
weighted log likelihood

N
Qi
(8) ;Hi(y np; + (1 =) In(1—p;))
N
= sz(yz Inp; + (1 —y;) In(1 — p;)) (4.3.12)
=1
where w; = 1?1_ = (%)yz + (ﬁ)(l — y;), with § denoting the proportion of the events in

the sample and 7 the proportion of events in the population. King & Zeng (2001) proposed
a small-sample correction to Eq. 4.3.12| which can make a difference when the probability of

the event of interest is low.

4.4 Support Vector Machines

4.4.1 The Linearly Separable Case

Let x; € R? be a feature vector and y; € {—1,+1} denote the corresponding class labels,
where d is the dimension of the feature vector. For binary class classification, for example

fraudulent and no-fraudulent transactions, we construct a function

f: RT'—R

+1, if transaction is fraudulent, or
x; = f(x;) = .
—1, otherwise

that predicts whether the new observation x; belongs to the fraudulent class or to the non-

fraudulent class. The optimal hyperplane is defined as
fx)=wix+b=0
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where w is a weight vector, x; is the input feature vector and b is the bias (Huang et al.
2018). The support vector machine (SVM) model finds w and b such that the hyperplane
separates the data and maximizes the margin between the classes, where the margin is given
by

2
Margin = —.

[[w]
The weight vector, w, and the bias, b, satisfy the following inequalities for all elements in the

training set (Chi et al., 2008))

wix; +b>+1, if y;=+1 and y(wix;+0)>+1 (441)
wix; +b< -1, if y;=—1 and y(wlix;+b)>+1 o

The objective of the learning phase in SVM is to maximize the margins between classes in
the feature space. This is equivalent to (Chi et al., 2008])

1
min  —||w]|? subject to
wh 2 : (4.4.2)
yi(wlix; +b) > +1, Vie {1,2,3,....N}

Since Eq. is an optimization problem over two constraints, w and b. The Lagrangian is
used to remove the two constraints. The objective is to introduce the slack variable, o, and

optimize the following Lagrangian function with respect to w and b.
1 N
L(w,b, @) = o||wl[* - ;ai(yxw Xi+b) 1)

N N

1

= SIWll* = D oum(w xi +0) + ) o (4.4.3)
=1 i=1
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Minimizing L(w, b, a) with respect to w and b and setting to zero yields, the local minimum,
that is

OL(w,b 0 al al
) (I = St x4+ 3 )

= 2 (IiwlP) ——(Zazyz wox ) (S

i=1
N
0=w-— E QYiX;
i=1

N
LW =D X (4.4.4)
i=1

and

W:%G“W’ﬂ (Zazyzw xz+b> (ch%)

=1

2 agy = 0. (4.4.5)

N N
Eqgs. 4.4.4] and [4.4.5| suggest that the local minimum falls when w = Zaiyixi and Zaiyi =

i=1 i=1

0. Substituting [4.4.4] and [4.4.5]into [4.4.3| yields

N N N
Linax(w, b, o) (Z Oézyzxz) - Z%’yi ( Z%’ijj "X+ b) + Z(xi
1 NZ:1 - N N . N N
=3 ( Z aiyixi> (Z ajijj) - Zaiyi Zajijj -X; — bZ oy + Zai
= Z Z Yy (X - X;) Z Z QoYY (X - X5) — bz ;Y + Zal

lel lel

N N
I e ) 3 Yo% +z%
i=1 j=1 =1 j=1
N N
- Zai - % Z ajyzy] X - j) (446)
i=1 =1
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In this context, the dual objective function is, max ( Zai
64 .

N
Z Z-ozjyiyj(xi,xj>), subject toZozlyz =0, s > 0 Vi € {1,2,3,..., N} where
—1

1
2
(+,-) is the inner product. The demsmn function for classifying a new observation x is

N

f(x) = sign(w'x +b) = sign(z i (X, X) + b).

i=1

4.4.2 The Linearly Non-Separable Case

In most real world problems, the datasets are not completely linearly separable even thought
they are mapped into a higher dimensional space (Ma & He| 2013)). Therefore, the constraint
in Eq. is violated. To overcome this problem, Eq is relaxed by introducing a set
of slack variables & > 0. The soft margin optimization problem is then formulated as follows

(

mln ( ||w]||* + CZ&,), subject to

yi(w-x;+b) > 1-¢ (4.4.7)

land & >0, for 1€{1,2,3,..,N}

N

where Z@- is a measure of total misclassifications and C' denotes a misclassification cost
i=1
(Ma & Hej, 2013). For 0 < &; < 1, the data points fall inside the region of separation but on

the right side of the decision surface. For & > 1, they fall on the wrong side of the decision
surface (Liu & Huangl 2002)). For very large C, that is Clgr;o L(w,b,a,&,0), the penalty
for misclassitying points is very high, so the decision boundary will perfectly separate the
data if possible. For very small C, that is (ljlgh L(w,b,a,&,0), the classifier can maximize
the margin between most of the points while misclassifying few points, since there is small
penalty (Weston| 2014)). From Eq. the Lagrangian equation is

L(w,b,a,&,0) = |w||2+025z Zaz [y W - %; + b) —1+5,} Z(sgz (4.4.8)

=1 =1

The derivative of Eq. with respect to w and b will result in Eq. and Eq.
respectively. Taking the derivative of L(w,b, o, §,0) with respect to J; and &; respectively,

gives

OL(w,b,a,&,0)
06;

—0 = &=0 (4.4.9)
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and

OL(w,b,a,&,0)
0&;

:C—Oél—éz

Substituting Eq. and Eq. 4.4.10] into Eq. results in Eq. Eq. is called

the primal form of optimization. The dual form, which gives the same optimal solution (Ma

N N N
1
& Hel [2013), is max ( 5 %= E aiajyiyj(xi,xj>)7 subject to E oay; =0, a; >0 Vie
=1 =1

ij=1 =
{1,2,3, ..., N}. The decision function for classifying a new observation x is still

f(x) = sign(iaiyxxi,x) + b) (4.4.11)

Fig. shows the linear SVM binary classifier. For linearly separable data, the classifier
perfectly classifies the dataset without any misclassifications. For non-linearly separable

data, the classifier fails to perfectly separate the classes and it violates the constraint in

Eq. 4.4.1}

Figure 4.7: Linear SVM, binary classification (adapted from Huang et al. (2018)).

4.4.3 The Soft Margin Error Cost

Consider the objective function in Eq. [4.4.7, The first term of the objective function fo-
cuses on maximizing the margin, while the second term attempts to minimize the pen-
alty term associated with the misclassifications. Eq. assumes the same misclassifica-

tion cost for both classes, for example fraudulent and non-fraudulent transactions (Palade,
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2013). In imbalanced data, the low presence of positive observations makes them ap-
pear further from the optimal class boundary than the negative observations. This can
be solved by shifting the hyperplane towards the minority class, but this shift can cause
more false negative predictions and lower the models performance on the minority class
(Ma & Hel 2013)). [Veropoulos et al. (1999) proposed cost sensitive learning. In this
method, the objective function in Eq. is modified to assign C" to the misclassifica-

tion cost for positive class and C~ to the misclassiﬁcation cost of a negative class. Therefore,

Eq. [4.4.7] is rewritten as IIllIl <—||W||2 +C* Z& +C™ Z@), subject to y;(w - x; +b) >

1-¢& and & >0, for i € {1, 2,3,...,N}. The effect of Class imbalance is reduced by assign-

ing a higher misclassification cost to the minority class than the majority class (Veropoulos

et al., 1999) It then follows that the Lagrangian form of the modified objective function
N N

is max (Za, Z oziajyiyj<xi,xj)), subject to Zoziy,» =0, 0<af <C"and 0 <

i,jzl i=1
a < C° Where a; and «o; represent the Lagrangian multipliers of positive and negative

class respectively.

4.4.4 The Kernel Transformation

Linear classifiers cannot separate the class well when the data is intrinsically non-linear
(Palade, 2013). A general approach is to map the data points onto a higher dimensional
space where the linearly non-separable data in the original feature space becomes linearly
separable (Zhoul 2019). However, the learning process may be very slow since the inner
product will be difficult to calculate in the higher dimensional space (Scholkopf, 2001)). Boser
et al.| (1992) proposed the use of kernel functions as a solution to this problem. According
to Mercer’s theorem every positive semi-definite symmetric function is a kernel (Cristianini
& Shawe-Taylor, 2000). Let ¢(-) be a function that maps the data from a input space into a

feature space, that is
¢:x; € R — ¢(x;) € F CR?

where d is the dimension of the feature space. The goal is to choose the mapping ¢ that
converts non-linear relations between the response variable and the feature variables into
linear relations (Maalouf & Trafalis, 2011). The kernel is related to the transformation ¢(x;)
by the equation (Zhang & Wu, 2012))

K(x;,%x;) = <§Z5(XL)7¢(XJ)>
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and w is also transformed into feature space where
N
W= Z@iyi¢(xi)-
i=1

Eq. is rewritten as
f(x) = Sign(z aiyi((xi), ¢(x)) + b) = sign(z iy K (X, %) + b)-

The use of the kernel function makes it possible to compute the separating hyperplane without
explicitly carrying out the mapping into feature space (Howley & Madden, [2005). The

following are the most commonly used kernel functions (Mitchell, [2011):

i. Linear kernel: K(x;,x) = <xi,x>;

—e
—

d
i. Polynomial kernel: K(x;,x) = <<xi,x>) :

i. Radial basis function kernel: K (x;,X) = exp ( —7||x; — x||* + C’);

—

i
iv. Sigmoid kernel: K(x;,x) = tanh <’)/<Xi, X> + 7");

where d denotes the degree of a polynomial, C' the cost and r the coefficient. The linear
kernel is equivalent to a first-degree polynomial kernel and corresponds to the original input
space. Each kernel corresponds to a feature space, and since no explicit mapping takes place
with that feature space, the optimal linear separators can be found efficiently in the feature
spaces with millions of dimensions (Howley & Madden, 2005). An alternative to using one of
these default kernels is to derive a custom kernel suitable for a particular problem (Mitchell,
2011]).

4.5 Multilayer Perceptron

The multilayer perceptron is the most widely used model in neural network applications using
back-propagation learning algorithm (Ruck et al.;[1990). MLP is a predictive neural network
model that maps a set of input data to an appropriate set of outputs. It connects multiple
layers in a directed graph, that is the node’s signal path only goes in one direction. Weights
and output signals interconnect nodes; a function of the sum of node inputs is modified
by a simple nonlinear transfer function or activation. The node’s output is scaled by the
connecting weight and fed forward as an input to the nodes in the next layer of the network

(McGovern, 2016). The definition of architecture in a MLP nueral network is crucial since
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4.5. MULTILAYER PERCEPTRON

lack of connectivity can make the network incapable of solving the problem of insufficient
adjustable parameters. On the other hand, an excess of connections may cause the model to
overfit (Ramchoun et al [2016). MLP uses different loss functions depending on the problem
type. The most commonly used loss function for classification is cross-entropy (CE), also

known as the log loss function (Pedregosa et al., 2011) which is defined as

M
7=1

where M denotes the number of class labels, y;; a binary indicator of whether or not the
j™ label is the correct classification of the i observation and ¢;; is the model probability of
assigning j' class label to the i'* observation. CE quantifies the accuracy of a classifier by
penalizing misclassification. For perfect classification, CE is zero. For binary classification,
Eq. can be rewritten as follows

CE(y,5, W) = —yIn(y) — (1 - y) In(1 — ) + of|[W][3

where a||[W||3 is an L2-regularization term, that is a penalty term, that penalizes complex
models and a > 0 is the hyper-parameter that controls the magnitude of the penalty. MLP
randomly initializes the weights and repeatedly updates them to minimize the loss function.
The input vector is propagated through the network to obtain an output and an error is
calculated by comparing the actual and predicted output. This error is propagated back
through the network and weights are adjusted until the overall error is satisfactorily small.
This process is called back-propagation. In gradient descend, the gradient VC' Ew of the loss

function with respect to the weights is computed as follows
Wit = W' — eVCEy,

where € denotes the learning rate and ¢ the iteration step (Pedregosa et al.,[2011). This weight
is updated until the algorithm reaches the maximum number of iterations or an improvement

in the loss function is sufficiently small.
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Fig. shows a two hidden layer MLP. The input layer consist of a set of neurons
{z;|x1, a9, ..., x4} representing the input features. Each neuron in the hidden layer transforms
the values from the previous layer with a weighted linear summation wyx +woxs + ... +wexy,
followed by a non-linear activation function. The output layer receives the values from the

last hidden layer and transforms them into output values.

Figure 4.8: Illustration of multilayer perceptron with 2 hidden layers (adapted from McGovern
(2016)).

4.6 Chapter 4 Summary

Many data mining classifiers are built to handle balanced dataset and thus the cost of mis-
classifying each observation is the same. Since the misclassification cost is the same, this
suggest that the data mining classifiers should be adjusted to handle imbalance dataset since
the misclassification cost is not the same. For example, in the brain cancer dataset, the cost
of misclassifying a patient as healthy is heavy than the cost of misclassifying the patient as
ill. In this chapter, the theory of each classifier is discussed and several suggestions on how

the classifies can mitigate the bias due to the majority class are presented.
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Chapter 5
Binary Classifier Performance Evaluation

Section [5.1] introduces binary classification performance metrics. Sections [5.2] to [5.6] of this
chapter introduces different metrics that can be used to measure the performance of a binary
classifier when dealing with imbalanced dataset. Section [5.7]discusses model validation which

is the task of verifying that the classifiers are performing as expected.

5.1 Introduction

Suppose the positive class has NT observations and the negative class has N~ observations
such that N = N* 4+ N~ and assume that the positive class is the minority class, thus,
N < N~. Let f denote the binary classifier which is defined as

fR* —R

+1, for example if transaction is fraudulent, and
x = f(x) =

—1, otherwise

and I(-,-) denotes an indicator function, defined as

+1, if oy = f(x)

-4 Uy Xi)-

The confusion matrix is given by

Actual positive Actual negative
Predicted as positive TP FP
Predicted as negative FN TN

where TP denotes a true positive, TN denotes a true negative, FP denotes a false positive,

F'N denotes a false negative and are computed as per table
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Table 5.1: Confusion matrix for a binary classifier.

Actual positive Actual negative

I(y; = =1, f(x;) = +1)

N
Predicted as positive TP:Z Iy; = +1, f(x;) = +1) FP=

=1 it

IVE

1

-

Predicted as negative FN:Z I(y; = +1, f(x;) = —1) TN=

=1 7

I(y; = =1, f(xi) = —1)

1

In this context

N N

N = Zﬂ(yi =+1, f(x;) = +1) + Zﬂ(yi = +1, f(x;) = —1)

=1 i=1

=TP +FN

and

N N
N~ = Z]I(yl =—1,f(x)=+1)+ ZH(% = -1, f(x;) = —1)
i=1 =1
=FP + TN.

The percentage accuracy of the classifier is given by

Accuracy = P(f(x) =y)

N
D Iy =+1, f(x;) = +1+§:H i =—1, f(x;) = —1)
=1
B N
TP +TN
- —

The error rate of the classifier is given by

Error rate = P(f(x) # y)

_ EN+FP
-

Alternatively, the error rate is given by error rate = 1 — accuracy. The accuracy and error
rate are not adequate classifier performance metrics for imbalance classifier performance. In

these instances, more attention is paid to the minority class (Zhou, 2019).
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5.2 ROC Curve and AUC

A receiver operating curve (ROC) is a graphical plot that illustrates the performance of a
binary classifier system as its discrimination threshold is varied. By considering all possible
values of the threshod, ¢, a ROC curve can be constructed as a plot of sensitivity (Eq.
versus 1—specificity (Eq. (Cali & Longobardi, 2015). ROC curves are robust against
changes to class distributions (Tharwat, 2020). If the ratio of positive to negative samples
changes in a test set, the ROC curve will not change. In other words, ROC curves are
insensitive to imbalanced data. This is because ROC curves depend on the true positive rate
(TPR) and false-positive rate (FPR) (Tharwat] 2020)), which are defined as

TP TP
TPR= ——— = — 5.2.1
TP+ FN Nt ( )
and
FpP FpP
FPR = = . 5.2.2
FP+TN N—- ( )
Let
g R —R
x — [0, 1]

denote a probabilistic classifier, thus g assigns a probability score for each input variable. In
most cases, the ROC curve provides a quantitative result, g(x). Therefore, it is crucial to
define a threshold to group transactions into classes, for example fraudulent or non-fraudulent
transactions. We classify a transaction as fraudulent if g(x) > ¢ or non-fraudulent if g(x) < ¢
where t denotes the threshold. For example, consider ¢ = 0.5. If a classifier returns a
predictive value of g(x) = 0.67 for a given input variable x then that transaction will be
classified as fraudulent since g(x) > t. The area under ROC curve (AUC) is the measure of
quality of a probabilistic classifier and is defined as (Vuk & Curk, 2006)

'rtp FP
o Nt N-

1 N
- TP dFP.
N+N- /0

A random classifier has a AUC of 0.5 while a perfect classifier has a AUC of 1. Consider
Fig. [p.1[(a). The point (0,0) represents a classifier with no positive classifications, while all
negative observations are correctly classified and hence TPR=0 and FPR=0. The point (1, 1)

AreaROC =

represents a classifier where all positive observations are correctly classified while the negative
observations are misclassified. The point (1,0) represents a classifier where all positive and

negative samples are misclassified. The point(0, 1) represents a classifier where all positive
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and negative samples are correctly classified; thus, this point represents perfect classification.
Fig. (b) shows the relationship between sensitivity and specificity. The threshold, indicated
by the black dotted line in the centre of the graph, is where the sensitivity and specificity are
the same. If the threshold is moved to the left, the sensitivity increases and the specificity
decreases. At line A, sensitivity reaches its maximum value of 100% since we have no false
negatives, that is no fraudulent transactions were classified as non-fraudulent. If the threshold
is moved to the right, specificity increases and sensitivity decreases. At line B, specificity is
100% since we have no false positives, that is no non-fraudulent transactions were classified

as fraudulent.

Figure 5.1: Demonstration of ROC curve, AUC and threshold (adapted from |Chawla et al. (2002)).

5.3 The Geometric Mean

Geometric mean, or G-mean, is a metric that can be used to measure the balance between a
classifiers performance on the majority and minority classes. A poor performance in predict-
ing the positive observations will lead to a low G-mean value, even if the negative observations

are correctly classified (Hido et al., [2009). The G-mean metric is defined as

a TP y TN
-mean = |/ — X —.

N+  N-

The G-mean minimizes the negative influence of the skewed distribution of classes. It does
not show the contribution of each class to the overall performance, nor which is the prevalent
class. This means that different combinations of TPR and TNR may produce the same result

for this metric (Bekkar et al., 2013).
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5.4 Precision and Recall

Precision and recall curves (PR) are a common way to measure performance in highly im-
balanced dataset (Goadrich et al., [2006). These two evaluation metrics focus on the correct
classification of the positive observations. Precision measures how many observations that
are classified as positive are actually positive, while recall measures how many positive ob-

servations are correctly classified as positive. Recall is defined as

TP
l=——
Reca TP 1 TP
and precision as
Procisi TP
recision = ——.
TP + FN

By definition, precision does not contain any information about FN, and recall does not
contain any information about FP. Therefore, neither provides a complete evaluation of
classifier performance, while they are complementary to each other. Though a high precision
and a high recall are desired, there are often conflicts to achieve the two goals together since

FP usually becomes larger when TP increases (Zhou, 2019).

Figure 5.2: Tllustration of the Precision-Recall curve (adapted from [Zhou (2019)).

Fig. illustrates the tradeoff between precision and recall. The point (1,1) represents a
perfect classifier, where high precision relates to a low false-positive rate, and high recall

relates to a low false-negative rate. The high value of the area under the curve represents
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a high precision and recall. High precision and recall show that the classifier is returning

accurate results.

5.5 F-measure and § Varied F-measure

The F-measure is the harmonic mean of precision and recall which is defined as (Sokolova
et al., | 2006])

recall X precison
F=2x p

. 5.5.1
recall + precison ( )

It is worth noting that the F-measure will be zero if recall is zero or precision is zero and
Fe [0,1]. F increases proportionally with the increase of precision and recall; a high value of
F indicates that the model performs better on the positive class. If the F' =1, this means that
the classification model is perfect. The F-measure can be written in a more general manner,
called the [ varied F-measure, which is defined as

(1 + 3?) x recall X precision
Fg =

(32 x recall + precision

where 5 € RT. [ is adjusted according to the relative importance of recall vs precision
(Sokolova et al., 2006). In Eq. B is assumed to be 1. Decreasing 3 leads to a reduction
of precision importance. The rationale behind the 3 varied F-measure is that misclassification
within the minority class is often more expensive than misclassification of majority examples;
consequently improving the recall will affect the F-measure more than the precision (Bekkar
et al., 2013)).

5.6 Matthews Correlation Coefficient

The Matthews correlation coefficient (MCC) measures the correlation between actual values

y and predicted values g. It is defined as (Chicco & Jurman) 2020)

_ Cou(y,9)
Oy X 0y

MCC

TP x TN — FP x FN
V(TP +FP) x (TP +FN) x (TN + FP) x (TN + FN)’

MCC is a binary classification measure that assigns a high score if the model can correctly
classify most positive and negative observations (Jurman et al., 2012). The MCC score ranges
from -1 to +1, MCC score € [—1, 1], where a score of —1 indicates perfect misclassification
and a score of +1 indicates a perfect classification. MCC score of 0 means that the classifier

is no better than a random flip of a fair coin. However, suppose the MCC score is exactly
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equal —1,0 or +1. In these cases, it is not a reliable indicator of how similar a predictor is
to a random guessing since MCC is dependent on the dataset (Chicco et al., [2021)). MCC is
a single performance measure less influenced by imbalanced dataset, that is it is insensitive

to class imbalance.

5.7 Model Validation

5.7.1 The Validation Set Approach

As mentioned in section direct estimation of the generalization error by the training
error is excessively optimistic, more special when the model is complex. When model com-
plexity is low and the training set is very large, a generalized lower limit B(N, F) (sufficiently

small) is defined, and the expected risk can be obtained as

To estimate the test error associated with fitting a statistical model, the dataset Dy is
randomly split into Dy,in, and Dyes;. The model is fit on Dy,.qi, and the fitted model is used
to predict the response for the observations in D;.,. The resulting test set error rate provides
an estimate of the actual test error rate. Training only on the part of the available dataset,
that is Dy.qin, can have serious disadvantages when N is small or Dy is an imbalanced
dataset (James et al.| [2013a). Firstly, since one of the classes is relatively rare in Dy, further
decreasing the number of observations belonging to the rare class has a negative impact on
the quality of the resulting model. Secondly, the test estimate of the actual test error can be
highly variable depending precisely on which observations are included in Dy;.q;, and which
observations are included in Dy.,. The classification model tends to perform worse when
trained on few observations, suggesting that the test set error rate may overestimate the

actual test error rate for the model fit on Dy.

5.7.2 Cross Validation
5.7.2.1 k-fold Cross Validation

In k-fold cross validation (k-fold CV), Dy is partitioned into k disjoint subsets of approxim-
ately equal sizes. This partitioning is done by randomly sampling Dy without replacement.
The model is evaluated on one of the partitions where the other £ — 1 folds are used for
training. This procedure is repeated until each of the k subsets has served as a test set, each
fold serves as a test set only once. The average of the k performance measurements on the
k test sets is the cross validated performance. In a more general setup, let f,k(xi) denote
the model that wasn’t trained on the k** subset of Dy. The value of f_k(xi) is the predicted
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value for the observation 7; which is an element of the k' subset. The k-fold CV estimate of

the prediction error is (James et al., 2013a)

N
1 R
EI'I'(CV) = N Z »C(yi’ f—k(XZ))
=1

CV often involves stratified random sampling. This sampling technique is an unbiased es-
timate of the population proportion which means that when Dy is randomly partitioned
the class proportions in the individual subsets reflects the proportions in Dy. To avoid a
biased evaluation, subsets that are used for evaluating the model should reflect this class
ratio (Kohavi, [1995).

Fig. depicts how k& = 10 fold CV works. In this figure, Dy is randomly split in 10 disjoint
subsets. Each subset contains approximately 10% of Dy. The classification model is trained
on the training set, consisting of 9 combined folds of data, and subsequently tested on the
test set, the fold not included in the training set. On each fold, the classification model’s
performance is measured, for example using recall, precision, geometric mean, etc., on the
test set. This process is repeated until all 10 folds have served as the test set. The average

of these 10 folds performance provides the classifiers final performance score, for example
10

1
Average, ...i = m Z recall;.

=1

Test set Training set

i A \

Fold 1 [ .

Fold 2 O OO00O0000O00d0

g0 IO O I 1A

Figure 5.3: Illustration of k-fold cross validation (adapted from |Terrible| (2017)).

5.7.2.2 Leave One Out Cross Validation

Leave-one-out cross validation (LOOCV) is a special case of k-fold CV where k = N. In

LOOCYV, N —1 observations are used to train the model and only one observation is used for
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testing. As there are N possible partitions the classifier is trained N times. The test error in
LOOCYV is approximately an unbiased estimate of the true prediction error, but it has high
variance since the N training sets are the same, in that two different training sets only differ
by one case (Friedman et al. 2001). The bias for LOOCV is lower compared to k-fold CV.
The advantage of using k-fold CV is that it is less computational expensive than LOOCV,

especially when N is large, and has lower variability (Berrar, 2018]).

5.7.3 The Bootstrap

The bootstrapping technique is the most widely used statistical tool to quantify uncertainty
associated with a given estimator or statistical learning method (James et al., 2013a). The
idea is to randomly draw samples, with replacement, from the training set, where each
randomly selected sample has the same size as the original training set. This procedure is
repeated B times to produce B bootstrap datasets. For each bootstrap, the model is fit and
the behavior of the fits over B replications is examined. The bootstrap technique has other
important advantages besides providing a more accurrate point estimate for prediction error,
it provides direct assessment of variability for estimated parameters in the prediction rule
(Efron & Tibshirani, 1997).

5.7.3.1 Bias and Standard Error

Let 6 = s(X) denote an estimator for # where X denotes the training dataset and 0 = ¢(P)
denotes some parameter of the distribtuion. A bootstrap estimate of the standard error can
be obtained as follows: draw B independent bootstrap samples X*1), X*@ X gron, p

where

X0 x;®  x®WEp we{1,2,.., B}

By evaluating the bootstrap replications we obtain

A~

0*® = s(X*®) vbe {1,2,.., B}.

The estimate of the standard error is

N[

B

% S <é*(b) _ é*(-)>2] (5.7.1)

b=1

S/éboot (é) =

B
. 1 . .
where 6*0) = EZH*(Z’) and 0*® is the b bootstrap estimate. Eq. [5.7.1] estimates the
b=1
standard deviation of . The accuracy of a point estimate is determined by the deviation of

the expected value of an estimator from the true value, that is the bias. A bootstrap estimate
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for bias is defined as

~ ~

bias(0) = 6*0) — 0.

In the bootstrap estimate of bias, the unknown population parameter 6 is replaced by the
estimate 6 from the sample. If the bias is too large to be ignored, the corrected bias is
calculated as (Ruppert & Matteson, |2011)):

e = O — Dias(0) = 20 — %0,

Bias correction is not necessarily a good thing since the variability in a bias-corrected estimate
may be high (Davison & Hinkley| 1997)).

5.7.3.2 Bootstrap Estimates of Prediction Error

To estimate the prediction error using bootstrap the model is fit on each set of bootstrap
samples and a record of how well it predicts the original training set is kept. Thus, the

estimate prediction error from bootstrap samples is

1
Errboot -

Mm

1 N
NZ‘C waz?fb Xl))
=1

1 1_1B N
ENZZE X'L;yzafb Xz)) (5-7-2)

b=1 i=1

where fb(xi) is the predicted value at x; from the model fit to the b bootstrap dataset.
Unfortunately, this is generally not a good estimator since the bootstrap samples used to
produce fb(xi) may contain x;, that is the bootstrap samples may overlap (Friedman et al.,
2001). The leave-one-out bootstrap estimator provides an improvement by imitating cross-

validation and is defined as

Z L Xl?%vfl;(XZ)) (5.7.3)

beC—?

Er,rboot (1) — Z |C

where C~* denotes the set of indices for bootstrap samples that do not contain observation
i and |C~"| denotes the number of such samples. Eq. solves the overfitting suffered by
Eq. .7.2] but this is still biased. The bias is due to non-distinct observations that result
from sampling with replacement. [Efron & Gong| (1983) proposed the .632 estimator which is
defined as

%.632 - 0368W —|— 0‘632E;‘boot(1)
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N
1
where err = N Z L(x;,yi, f(x;)) is the naive estimate of prediction error, that is the train-

i=1
ing error. The .632 estimator is designed to correct the upward bias in Er\rboot(l) by averaging
it with the downwardly biased estimate Er\r.ﬁgg. Unfortunately, if the model is highly over-
fitting, that is training error is zero, the .632 estimator will be downward biased. |Efron
& Tibshirani (1997) proposed the .632+ estimator designed to be the less biased between
err and Er\rboot(l). The .632+ rule puts greater weight on Er\rboot(l) when the amount of

overfitting, measured by Er\rboot(l) —err, is large. The .632+ estimator is defined as

—_ —_

ET?”.632+ = (1 - UA])W + @DErrboot(l)

0.632 p _ Bty —err
1-0.368R and R = ¥
estimate of v obtained by evaluating the prediction model on all possible combinations of

where w = . v denotes a no-information error rate, 4 is an

target variables, y;, and predictors, x;, which is defined as

1 N N
’A}/:mzzﬁxzayw ))

i=1 j=1

The weight @ ranges from .632 if R = 0 to 1 if B = 1 and thus, Errgpm, €

Err 639, ET‘Tboot(l) .

5.7.3.3 Bootstrap-t Confidence Interval

Suppose that 0 is approximately normally distributed with  and variance se()2. Let §ex (6)
be an estimator of se(é) based on the sample X. The bootstrap-t confidence interval is
constructed by generating the bootstrap replications é*(l),é*@), ...,é*(B) which provide an

estimate of the sampling distribution of 0. For the bootstrap sample X*®) we can compute

A~

0+®) — ¢

70 = —.
sex-(6)

Using the values of T*®)  critical values ti—s and fg can be estimated by fl,% and 1?%
respectively, such that (Efron, |1979)

and
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Then a 100(1-a))% confidence interval for 6 can be derived as follows

where 0, = 0 — fl,%se(é) and 0y = 0 — f%se(é). The 100(1-«)% confidence interval for 6,

namely

A~ ~

[éL, QAU} = [é - fl_%se(e), 0 — fzse(é)} (5.7.4)

2

is given by the empirical quantile of the bootstrap replications, that is
1< o
Mg — Ay L ORI B!
P*(0 §0L)—BEH{0 §9L}N2

and

The confidence interval in Eq. is similar to the common student-t interval (refer to Rice
(2006)) except that the ¢t-value is replaced by the bootstrap estimates tAl,% and f% (Johnson),
2001).

5.8 Chapter 5 Summary

For highly imbalanced datasets, the accuracy measure of any classifier will always be high;
thus, accuracy is not a reliable performance metric. This chapter discussed several binary
classifier performances, namely AUC, G-mean, precision and recall curve, F-measure and
MCC. Section discussed two types of model validation, namely CV and bootstrap.
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Chapter 6
Improving Model Performance

This chapter introduces different ways of improving classifier performance. The classification
performance of any classifier built on imbalanced dataset can be improved at data-level
that is manipulating the given dataset or at algorithmic level, that is manipulating classifier
parameters. Sections and discuss the techniques used to deal with imbalanced
dataset at data-level while sections focuses on algorithmic level.

6.1 Sampling Techniques

6.1.1 Random Undersampling and Oversampling

The random oversampling (RO) technique increases the number of minority class members
in the training set. The advantage of oversampling is that no information from the original
training set is lost since we keep all minority and majority classes members. However, the
disadvantage is that it significantly increases the size of the training set. This increases
training time and the amount of memory required to store the training set. When dealing
with very high dimensional datasets, care should be taken on how one might ensure that
time complexity and memory complexity are kept under reasonable constraint (Liu, 2004).
RO tends to overfit since it duplicates minority class observations (Liu et al., [2008)). (Chawla
et al.| (2002) proposed SMOTE as a solution to this problem, see section .

The random undersampling (RU) technique uses a random subset of the majority class to
train the classifier. It ignores many majority class observations to ensure that the classes are
more balanced, and the training process becomes faster. The main disadvantage of RU is

that potentially useful information can be contained in the ignored cases (Ganganwar, 2012).

To improve classifier performance under random sampling, [Kubat et al.| (1997) proposed the
one-sided sampling method that tries to find a consistent subset, D', of the original data Dy

in the sense that the 1-NN rule learned from D’ can correctly classify all examples in Dy.
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Initially, D’ contains all the minority class examples and one randomly selected majority
class example. A 1-NN, that is k = 1, classifier is constructed on D’ to classify the examples
in D. All misclassified majority examples are added into D’. The Tomek link as proposed
by [Tomek! (1976)), is then used to remove the borderline or noisy cases in the majority class
in D'. Suppose C(-) is the class label. Let d(x;,x;) denote the Euclidean distance between
x; and x;. The pair (x;,%;) is a Tomek link if C(x;) # C(x;) Vi,j and Yk € RT, fx;, such
that d(x;,x;) < d(x;,x;) or d(x;,x;) < d(x;,%;). Figs.[6.1(a) and (b) illustrate how random
sampling and random oversampling can both be applied to balance the credit card dataset.
Consider any of the two circled points in Fig. (c) The blue star point has the orange
triangle as its nearest neighbour and vice versa. These two circled points have different class
labels, for example the blue star point belongs to a non-fraudulent class and the orange point
belongs to a fraudulent class. Since these points have two different class labels and are each

other’s nearest neighbours, they are Tomek links.

Figure 6.1: Demonstration of random undersampling, oversampling and the Tomek link (adapted
from |Agarwal| (2018))).
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6.1.2 The Synthetic Minority Oversampling Technique

The synthetic minority oversampling technique (SMOTE) is an oversampling technique that
forms new minority class observations by interpolating several minority class examples that
lie close together. This process potentially leads to overfitting on the multiple copies of
minority class observations. The minority class is over-sampled by taking each minority
class sample and introducing synthetic instances along the line segments joining all of the k
minority class nearest neighbours, as shown in Fig.[6.2] Depending upon the amount of over-
sampling required, neighbours from the k nearest neighbours are randomly chosen (Chawalal,
2009). To generate synthetic instances, let M denote the sampling rate set according to the
imbalanced proportion and s denote a random integer such that s € (0, 1), Vs € Z. For each
observation x in N*, the nearest neighbour of x is obtained by calculating the Euclidean
distance between x and every other sample in the set N*. For each observation in NV, x;
where i € (1,2,...,NT) are randomly selected from its k—nearest neighbours and used to
construct a new set N;. Now, for each x; € N* where j € (1,2, ..., M) a synthetic sample,
Xgynthetics 15 generated by

Xsynthetic — X + 5 X d(X, Xj)
where d(x,x;) denotes the Euclidean distance.

Fig depicts how SMOTE creates synthetic instances. In this example, the star symbols
denote non-fraudulent cases (the majority class) and the triangle symbols denote fraudu-
lent cases (the minority class). In this example, the value of k is chosen to be seven, that
is we calculate the Euclidean distance from the selected minority sample to seven nearest
neighbours. Each calculated Euclidean distance is multiplied by a random number, s that
is between 0 and 1 and the selected minority sample is added to each multiplied Fuclidean

distance produce seven synthesized samples.

o6



CHAPTER 6. IMPROVING MODEL PERFORMANCE

Figure 6.2: Example of the SMOTE algorithm using & = 7 neighbours (adapted from Walimbe
(2017).

6.2 Dimensionality Reduction

6.2.1 Principal Component Analysis

Principal component analysis (PCA) is a dimension reduction technique often used to reduce
the size of large datasets by transforming a large set of feature variables into a smaller set
of variables that still contain important information from the larger dataset. Reducing the
number of feature variables in a dataset sacrifices accuracy, that is, dimensionality reduction
trades accuracy for simplicity. Small datasets are easier to explore, visualize and analyze with
machine learning algorithms without dealing with irrelevant variables (Wold et al.| |1987).
Suppose X is a data matrix with N rows and m columns. Let x; denote a column vector
for each i € {1,2,...,m}, thus x; denotes the m observations of feature variable i. A linear
combination of those x variables can be expressed as t = wi;x; + wyxs + ... + w,,X,,, Where
t is the new vector in the same space as the x variables. The matrix X contains variation
that is relevant to the problem, namely the classification of fraudulent and non-fraudulent
transactions. Therefore, t = Xw must have as much variation as possible. If this amount of
variation in t is significant, then it may be a good summary of the X variables. For example,
thirty variables of X could be replaced by two t variables which retain most of the relevant

information. The objective of principal component is to find a linear combination of feature
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variables that maximizes the variance, that is

var(t)
. 6.2.1
max -_p ( )
Since wlw = ||w||* = ||w]|||w]|, Eq. is equivalent to the constraint problem
argmax var(t) (6.2.2)

llwll=1

where || - ||* denotes the squared norm (Bro & Smilde, 2014)). Let

1 r  XTX
S:—inxi =N 1

denote the covariance matrix of the centered variables, i.e. after substrating the mean.
Eq. can be re-expressed as

argmax w'Sw.
[Iwl|=1

S is a symmetric, positive semidefinite matrix by construction and has eigenvalue decompos-
ition of the form S = QAQ", where Q is an orthogonal matrix, QQ" = I where the columns
of Q are the orthonormal eigenvalues of S, and A is a diagonal matrix of the corresponding
non-negative eigenvalues of S, \; such that \; > Ao, ... > \,;, > 0 (Abdi & Williams, 2010).

Hence,
wiSw =wl QAQ'w =p'Ap

A1

:[pl p2 - pm]

Am
Prm

= \ipi + dops o+ Al = Y A
=1

where p = QTw. The norm of p is

Ip[]* = lIQ"W[]* = (Q"W) (Q"W)
=w' QQ w=w'w = ||w]|
I

=1 (since ||w|| = ]|vv||2 =1).
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m
Since p is a unit vector, pr = 1. Thus, p"Ap is always an average of the \.s with

averaging weights given by p?. To make this average as big as possible, set p; = 1 and p; = 0

for i > 1 since \; is the biggest eigenvalue. That is p = e; maximizes p*Ap where
e = [1 0 --- 0]

denotes the first standard basis vector. It then follows that p*Ap < \; for every unit vector
p which implies that q; = Qe; maximizes p" Ap where q; denotes the first column of Q
(Roughgarden & Valiant, 2021). The second principal component is computed the same
way with the condition that it has the second highest variance and is uncorrelated to the
first component. This continues until all principal components have been computed, that
is, the remaining principal components are computed by solving the optimization problem

max w;Sw; subject to w] w; = 1 and w;w; =0 V1 < j < i for the i*" principal component.

6.3 Feature Selection

Guyon et al. (2002) proposed the recursive feature elimination (RFE) technique to reduce
dimensionality of the feature space. Suppose we have a prediction model that assigns weight
w; to feature x; according to their importance. The feature with the smallest value of w; is
considered to be the least important feature. The objective of RFE is to recursively remove
the least important features until a specified number of features is reached. At first, the model
is trained on Dy,.q;,. In the credit card dataset, Dy, contains 30 features. The importance
of each feature is obtained by assigning a weight to each feature. RFE recursively removes
the least important features at each step and re-ranks the remaining features by retaining
the model based on the remaining features. However, the least important feature may still be
an important feature when combined with other features (Guyon & Elisseeff, |2003). Hence,
simply removing a redundant or least important feature may degrade model performance.
Chen & Jeong| (2007) proposed enhanced recursive feature elimination (EnRFE) to overcome
this issue. The EnRFE algorithm assesses the importance of the potentially least important
feature and evaluates the model’s performance after this feature is removed, based on the
corresponding value of w;. If the model’s performance degrades after this feature is removed,
the feature will not be removed even though it has the smallest value of w;. The feature with
the second smallest value of w; is then considered. The process is repeated until a feature

that does not degrade the model’s performance when it is removed is found.
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6.4 Parameter Tuning

Hyper-parameters are parameters whose values are used to control the learning process (Wis-
tuba et al| [2015). Effectively searching the hyper-parameters’ space using optimazation
techniques can help identify the optimal parameters for models. The parameter tuning op-
timization process consist of four components: an estimator with its objective function, a
search space, the optimization method used to find the hyper-parameters and an evaluation
function to compare the performance of the different hyper-parameters. Sometimes hyper-
parameters cannot be learned from the training data as they increase model complexity and
cause the model to overfit (Claesen & De Moor} [2015)). In general the hyper-parameter op-
timization problem can be setup up as follows (Wistuba et al., 2015): let Ay : Dy — M be
a learning algorithm where M denotes the space of all models and A € ©® is a chosen search
space where ® = @1 X Oy X ... Xx O, is a d-dimensional hyper-parameter space. The objective
of hyperparameter optimization is to find the hyper-parameter configuration A*. That is we

seek

A= argmin L <A)\ (Dtrain> ) Dval)
AEA

~ argmin W(\)
Ae{A1,22,.., A5}
where W denotes a hyper-parameter response function. In general, very little information
is known about the response function ¥ or the search space ®. The critical step in hyper-

parameter optimization is choosing the set of trials {\1, g, ..., Ag} (Bergstra & Bengio, 2012).

6.4.1 Grid Search

The Grid search (GS) method is based on defining a hyper-parameter search space and
detecting the optimal hyper-parameter combination in the search space (Bergstra et al.
2011). Let A be indexed by k configuration variables, for example in a SVM k would be
the regularization parameter, kernel, gamma and so on. GS requires that we choose a set of

values for each variable, L; where i € {1,2,...,k}. The set of trials is formed by combining
k

every possible combination of values; the number of trials is H |L;| elements. This product
i=1
over k makes GS inefficient for high dimensionality hyper-parameter configuration space

since the number of joint values increases exponentially as the number of hyper-parameters
grows (Bergstra & Bengio, [2012). GS cannot exploit the well-performing regions further by
itself, and therefore combining it with manual search is a good strategy in finding hyper-
parameters (Yang & Shami, [2020). GS is computationally expensive; it is only an effective
hyper-parameter optimization method when the hyper-parameter configuration space is small
(Yang & Shami, 2020).
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6.4.2 Random Search

Bergstra & Bengio| (2012) proposed random search (RS) as a solution to certain GS limita-
tions. RS is a technique where random combinations of hyper-parameters are used to find
the best solution for the model. Unlike GS, which test every possible combination of values
in the search space, RS tries a random combination of values in the search space. GS is
computationally more expensive than RS. If the search space is large enough, then the global
optimum or at least an approximation can be found (Yang & Shami, 2020). RS is more
practical than GS since it can be applied even when using a cluster of computers that can
fail. Adding new trials to the set or ignoring failed trials are feasible since the trials are
iid, which is not the case for GS (Bergstra & Bengio, 2012). RS samples a fixed number of
parameter combinations from a specified distribution, which improves system efficiency by
reducing the probability of wasting time on a poor performing region. Bergstra & Bengio
(2012) showed that RS is more efficient than GS in high dimensional spaces since functions

U of interest have low effective dimensionality.

6.5 Chapter 6 Summary

To address the imbalanced dataset and improve the classification performance of all the
classifiers at data-level, this chapter discussed several sampling techniques, namely RO, RU,
one-sided sampling and SMOTE. To reduce overfitting when sampling techniques are applied
to the imbalanced dataset, Tomek links are introduced. Furthermore, different parameter
tuning methods to improve classification performance at the algorithmic level, namely GS

and RS are discussed.
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Chapter 7
Results and Discussion

In the chapter we present the experimental results on the European credit card dataset.
Section [7.I|gives a brief background of the European credit card dataset. Section [7.2]discusses
the analysis of the results obtained from each classifier and finally, section compare these

results to similar studies.

7.1 The European Credit Card Dataset

This dataset contains information about fraudulent and non-fraudulent transactions in the
credit card transaction domain. It has records of European credit cardholders who made
transactions over two days using their credit cards in September 2013. The datasetE] is
in CSV format. Background information about the feature variables is not provided due
to confidentiality issues (Dal Pozzolo et al. 2015). Features labelled V1 to V28, are the
principal components obtained from a PCA of the original data by Dal Pozzolo et al.| (2015),
‘Time’ and ‘Amount’ are the only features that have not been transformed. The time feature
denotes the number of seconds elapsed between the transaction and the first transaction in
the dataset. The amount feature denotes the transaction amount. The response variable is
defined as

1, if transaction is fraudulent, and
y =
0, otherwise.

This dataset contains 284 807 observations of the 30 feature variables. Of these only 492
observations were identified as being fraudulent. The dataset is highly imbalanced, with
fraud cases accounting for 0.173% of all transactions (see Fig. . The dataset has no

missing values. 1 825 transactions have an amount of €0.00 of which 27 are classified as

fraudulent transactions and 1 798 are classified as non-fraudulent transactions. There are 1

3https://query.data.world/s/3dwtejin6vc6riddgd3vub6flypzon
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064 duplicated transactions, 17 are from the fraudulent class and 1 047 are from the non-

fraudulent class.
Percentage of fraudulent and non-fraudulent
transactions.
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Figure 7.1: A percentage barplot of the fraudulent and non-fraudulent transactions for the

European Credit Card Dataset.

Figure 7.2: Scatterplot of the time and amount of fraudulent and non-fraudulent transactions.
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Figs. and suggest that there are outliers with regards the amount feature, where most
of the amount outliers are in the non-fraudulent class. There are no fraudulent transactions
with an amount exceeding approximately €2 500. 281 469 (99.841%) of the transactions have
a transaction amount of less than €2 500. Fig. suggests that the fraudulent and non-
fraudulent transaction are evenly distributed over time, there is no clear distinction between
them. The amount distribution shows the €1.00 amount as the most frequently deducted
amount for fraudulent and non-fraudulent transactions. The distribution is skewed to the
right; the mean of the fraudulent and non-fraudulent transactions is to the right of the median

transaction value.

Figure 7.3: Distribution of both fraudulent and non-fraudulent transactions over time and amount.

The box plot of time does not show any obvious mean difference and the fraudulent and non-
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fraudulent cases have similar variability. In the amount box-plot, there is too much variation

in the amount column, and hence we have a condensed box-plot (Fig. .

Figure 7.4: Boxplots of the time and amount feature variables

7.2 Analysis of the European Credit Card Dataset

This study has developed five classification models using the python programming language,
namely, SVM, kNN, LR, DT and MLP. Several parameters for measuring models’ perform-
ance have been computed: precision, recall, F'; measure, G-mean, AUC and MCC. To evaluate
these models, 70% of the data was used for training and 30 % for testing. In the data cleaning
stage, 1 825 transactions with €0.00 amount and 1 064 duplicated transactions were removed
from the dataset. This reduced the number of fraudulent transactions and non-fraudulent
transactions. The dataset used to build the classification models has 281 981 observations, of
which 448 (0.1589%) are fraudulent and 281 470 (99.8411%) are non-fraudulent transactions.
The feature variables ‘Time’ and ‘Amount’ were normalized as these were the only feature
variables not transformed by PCA and there was high variation. For example, the transac-

tion with the minimum amount was €0.01 and the transaction with maximum amount was
€25 691.16.

In the first phase of this study, classification models were built on the normalized data
and performance measures were obtained. In the second phase, the one-sided sampling
method was applied on the normalized data which removed 12 728 observations from the
non-fraudulent transactions. In the third phase of this study PCA was performed on the
normalized one-sided sampled dataset and 17 components were retained out of 30 features.

Lastly, random undersampling was used to balance the classes. Due to limitations mentioned
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in section [6.4.2] hyper-parameters for each classification model were obtained using RS with

5 fold cross validation.

Consider tables|7.1]and the classifier performance on the test and training data for SVM,
kNN, LR, DT and MLP. The training results show LR as the worst performing classifier
amongst all these classifier. SVM, LR and DT are likely to be overfitting as for example in
table DT has no FPs, that is precision is equal to one and has no FNs, that is recall is
equal to one. The overfitted DT classifier perfectly classifies fraudulent and non-fraudulent
transactions on the train dataset. On the test data, DT has low precision which implies
high a FPR and low recall which implies a high FNR. There is a large difference between
training and test error. Table [7.3| and shows the hyper-parametrized classification model
results. The error difference between FNR on the train and test set decreased from 21% to
9% for SVM, 7% to 6% for kNN, 4% to 2% for LR, 26% to 10% for DT, 20% to 4% for MLP.
This indicates a reduction in overfitting (Wong et al., 2016). The amount of improvement in
performance varies across the classifiers. For example, LR classifier with default parameters
has a FNR of 37% on the test set. The hyper-parameterized LR classifier on the test set has
a FNR of 19%, a decrease of 18%. The decrease in FNR is at a cost of FPR, since a decrease

in precision results to an increase in FPR.

Table 7.1: Training results on the normalized Table 7.2: Test results on the normalized data

data with default model parameters. with default model parameters.
Classification Classification
models Precision Recall F; models Precision Recall F;
SVM 0.98 0.83 0.90 SVM 0.91 0.62 0.74
kNN 0.96 0.78 0.86 kNN 0.93 0.71 0.81
LR 0.90 0.67 0.77 LR 0.86 0.63 0.72
DT 1.00 1.00 1.00 DT 0.77 0.74 0.76
MLP 0.98 0.91 0.94 MLP 0.98 0.71 0.80

Table 7.3: Training results on the normalized Table 7.4: Test results on the normalized data

data with tuned model parameters. with tuned model parameters.
Classification Classification
models Precision Recall Fy models Precision Recall Fy
SVM 0.97 0.84 0.90 SVM 0.91 0.75 0.82
kNN 0.93 0.78 0.85 kNN 0.93 0.72 0.81
LR 0.80 0.79 0.79 LR 0.81 0.81 0.81
DT 0.93 0.82 0.87 DT 0.84 0.72 0.78
MLP 0.86 0.80 0.83 MLP 0.89 0.76 0.82
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The bootstrap sample mean is an estimate of the population mean. Since the mean is based
on sample data and not the entire population, the sample mean is unlikely to equal the
population mean. Confidence intervals are based on the sampling distribution of a statistic.
If a statistic is an unbiased estimator of a population parameter, its sampling distribution
is centred on the true value of the parameter. The bootstrap distribution approximates the
sampling distribution of the statistic (Johnson| [2001)). Therefore, an average of 95% of the
values in the bootstrap distribution provides a 95% bootstrapped confidence interval (C.I) for
the parameter. C.Is help to evaluate the actual significance of the estimate of the population
parameter (James et al., |2013al). Tables to show the bootstrap point estimates, 95%
C.I and the standard error for each classifier built on the normalized dataset. From these
tables, it can be noted that LR outperforms all other classifiers with an AUC score of 0.9034
and G-mean of 0.8983.

Table 7.5: SVM bootstrap estimate on the normalized test set.

Model estimate Bootstrap point estimate 95% bootstrap C.I Standard error

Precision 0.9091 0.9310 [0.8749, 1.0000| 0.0408
Recall 0.7463 0.7552 [0.6893, 0.8090| 0.0368
Fy 0.8197 0.8314 [0.8031, 0.8585] 0.0193
G-mean 0.8638 0.8676 [0.8275, 0.8992] 0.0221
AUC 0.8731 0.8776 [0.8447, 0.9044] 0.0184
MCC 0.8234 0.8370 |0.8139, 0.8620)| 0.0178

Table 7.6: kNN bootstrap estimate on the normalized test set.

Model estimate Bootstrap point estimate 95% bootstrap C.I Standard error

Precision 0.9320 0.9060 [0.8487, 0.9754| 0.0450
Recall 0.7164 0.7404 [0.6890, 0.8046| 0.0344
I 0.8101 0.8129 [0.7784, 0.8602] 0.0258
G-mean 0.8592 0.8717 [0.8268, 0.8968| 0.0207
AUC 0.8582 0.8701 [0.8445, 0.9023| 0.0172
MCC 0.8169 0.8178 [0.7824, 0.8634| 0.0259

Table 7.7: LR bootstrap estimate on the normalized test set.

Model estimate Bootstrap point estimate 95% bootstrap C.I Standard error

Precision 0.8129 0.8200 [0.7600, 0.8600] 0.0300
Recall 0.8071 0.8123 [0.7620, 0.8503| 0.0290
Fy 0.8100 0.8148 [0.7664, 0.8313] 0.0213
G-mean 0.8983 0.9009 [0.8727, 0.9219| 0.0162
AUC 0.9034 0.9060 [0.8809, 0.9250] 0.0145
MCC 0.8097 0.8158 [0.7670, 0.8314] 0.0214
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Table 7.8: DT bootstrap estimate on the normalized test set.

Model estimate Bootstrap point estimate 95% bootstrap C.I Standard error

Precision 0.8435 0.8647 [0.7665, 0.9527| 0.0607
Recall 0.7239 0.7808 [0.6822, 0.8562] 0.0556
Fy 0.7791 0.8168 [0.7497, 0.8649| 0.0418
G-mean 0.8507 0.8853 [0.8322, 0.9261| 0.0335
AUC 0.8618 0.8937 [0.8410, 0.9294| 0.0293
MCC 0.7811 0.8207 [0.7590, 0.8681| 0.0381

Table 7.9: MLP bootstrap estimate on the normalized test set.

Model estimate Bootstrap point estimate 95% bootstrap C.I Standard error

Precision 0.8947 0.8598 [0.7931, 0.9005] 0.0349
Recall 0.7612 0.8011 [0.7322, 0.8402] 0.0345
Y 0.8226 0.8249 [0.7972, 0.8539] 0.0220
G-mean 0.8724 0.8952 [0.8605, 0.9255] 0.0184
AUC 0.8805 0.8922 [0.8736, 0.9159] 0.0163
MCC 0.8250 0.8385 [0.7978, 0.8651] 0.0215

Consider tables and the classifier performance on the test and training data for
SVM, kNN, LR, DT and MLP. SVM, MLP and DT are likely to be overfitting since there
is a large difference between the FNR in the train and test predictions. For example, the
SVM classifier has a FNR of 20% in training and 37% in the test. The DT classifier still
classifiers the fraudulent and non-fraudulent transactions without any misclassification on the
train dataset. For classification models built on the one-sided sampled dataset with default
parameters it can be noted that there is a slight increase in recall for all classifiers except
LR which remained the same. This increase in recall implies that the classifiers were able
to correctly classify more fraudulent transactions. The downside to this is the increase in
FPR since precision decreased. Consider table [7.12| and the classifier performance on
the test and training data for hyper-parameterized SVM, kNN, LR, DT and MLP. The gap
between the test and train predictions has decreased for all other classifiers except kNN which
remained the same. This gap decreased from 17% to 5% for SVM, 3% to 0% for LR, 22% to
3% for DT and 12% to 1% for MLP, this indicates a reduction in overfitting.
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Table 7.10: Training results on the one-sided
sampled data with default model

parameters.

Classification

models Precision Recall F;
SVM 0.98 0.80 0.88
kNN 0.96 0.78 0.86
LR 0.88 0.60 0.71
DT 1.00 1.00 1.00
MLP 0.95 0.93 0.94

Table 7.12: Training results on the one-sided
sampled data with tuned model

parameters.

Classification

models Precision Recall F;
SVM 0.97 0.83 0.89
kNN 0.96 0.78 0.86
LR 0.81 0.79 0.80
DT 0.96 0.78 0.86
MLP 0.956 0.79 0.86

Table 7.11: Test results

on the one-sided
sampled data with default model

parameters.

Classification

models Precision Recall F;y
SVM 0.92 0.63 0.75
kNN 0.86 0.73 0.79
LR 0.86 0.63 0.72
DT 0.69 0.78 0.73
MLP 0.83 0.81 0.82

Table 7.13: Test results

on the one-sided
sampled data with tuned model

parameters.

Classification

models Precision Recall F;
SVM 0.88 0.78 0.83
kNN 0.86 0.73 0.79
LR 0.77 0.79 0.78
DT 0.86 0.75 0.80
MLP 0.86 0.78 0.82

Consider tables to the classifier performance based on one-sided test data. The

model estimates fall with the bootstrap confidence interval and they are close to the bootstrap

point estimate for all the classifiers. The LR classifier outperforms all other classifiers with an
AUC score of 0.8953 and G-mean of 0.8892. kNN classifier is the least performing classifier
with an AUC score of 0.8656 and G-mean of 0.8551.

Table 7.14: SVM bootstrap estimate on the one-sided sampled test set.

Model estimate

Bootstrap point estimate

95% bootstrap C.I Standard error

Precision 0.8750
Recall 0.7836
Fy 0.8268
G-mean 0.8851
AUC 0.8917
MCC 0.8278

0.9035
0.7782
0.8351
0.8804
0.8890
0.8370

[0.8498, 0.9479]
[0.7251, 0.8162)]
07921, 0.8676]
[0.8488, 0.9024]
0.8625, 0.9080]
0.7943, 0.8697]

0.0310
0.0300
0.0235
0.0179
0.0150
0.0231
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Table 7.15: kNN bootstrap estimate on the one-sided sampled test set.

Model estimate Bootstrap point estimate 95% bootstrap C.I Standard error

Precision 0.8596 0.8754 [0.7817, 0.9250| 0.0477
Recall 0.7313 0.7610 [0.7216, 0.7972] 0.0225
Fy 0.7903 0.8126 [0.7632, 0.8509] 0.0268
G-mean 0.8551 0.8713 [0.8473, 0.8924| 0.0135
AUC 0.8656 0.8804 [0.8607, 0.8985| 0.0112
MCC 0.7926 0.8151 [0.7642, 0.8532] 0.0274

Table 7.16: LR bootstrap estimate on the one-sided sampled test set.

Model estimate Bootstrap point estimate 95% bootstrap C.I Standard error

Precision 0.7737 0.7800 [0.7100, 0.8200] 0.0300
Recall 0.7910 0.8002 [0.7664, 0.8327| 0.0217
Fy 0.7823 0.7883 [0.7522, 0.8137| 0.0201
G-mean 0.8892 0.8941 [0.8746, 0.9123| 0.0124
AUC 0.8953 0.8999 [0.8830, 0.9162] 0.0108
MCC 0.7820 0.7885 [0.7546, 0.8137| 0.0195

Table 7.17: DT bootstrap estimate on the one-sided sampled test set.

Model estimate Bootstrap point estimate 95% bootstrap C.I Standard error

Precision 0.8632 0.8675 [0.7487, 0.9527| 0.0649
Recall 0.7537 0.7886 [0.6889, 0.8591] 0.0573
Fy 0.8048 0.8164 [0.7500, 0.8649] 0.0418
G-mean 0.8681 0.8811 [0.8322, 0.9193| 0.0301
AUC 0.8768 0.8952 [0.8432, 0.9294| 0.0284
MCC 0.8063 0.8223 [0.7567, 0.8681] 0.0401

Table 7.18: MLP bootstrap estimate on the one-sided sampled test set.

Model estimate Bootstrap point estimate 95% bootstrap C.I Standard error

Precision 0.8595 0.9060 [0.8451, 0.9417| 0.0341
Recall 0.7761 0.7938 [0.6884, 0.8319| 0.0517
Fy 0.8157 0.8468 [0.8247, 0.8645| 0.0142
G-mean 0.8809 0.8922 [0.8617, 0.9161] 0.0174
AUC 0.8880 0.8893 [0.7947, 0.9217| 0.0425
MCC 0.8165 0.8374 [0.7651, 0.8829| 0.0370

Consider table [7.19] and the classifier performance on the test and training data for
SVM, kNN, LR, DT and MLP. The classification models SVM and DT are likely to be
overfitting, since for example the gap between train and test predictions for FNR is large.
SVM has a FNR of 21% on train prediction and a FNR of 34% on test prediction. DT is
still the only classifier that classifiers the fraudulent and non-fraudulent transactions without

any misclassification in training. This is not a surprised, as mentioned in section [4.2.2) DTs
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are initially grown to overfit the training set. On the test set, the kNN and SVM classifiers
improved on their ability to classify fraudulent transactions without increasing the FPR
compared to table [7.11] The classification performance of DT and LR degraded and the
FPR increased for both classifiers compared to table The MLP classifier improved its
ability to classify fraudulent transaction but increased the FPR since precision decreased

compared to table [7.11

Consider table [7.21] and the classifier performance on the test and training data for
hyper-parameterized SVM, kNN, LR, DT and MLP. The gap between the train and test
prediction for FNR has decreased; it decreased from 13% to 4% for SVM, 3% to 2% for kNN,
26% to 1% for DT and 3% to 0% for MLP. The hyper-parameterized LR classifier has the
ability to classifier more fraudulent transactions with the cost of increasing the FPR. The
gap between train and test prediction has increased compared to the LR trained with default
parameters, refer to table and On the test data, all classifiers have improved in
their ability to classify fraudulent transaction with SVM showing a large improvement of

23% compared to table [7.20]

Table 7.19: Training results after applying PCA  Table 7.20: Test results after applying PCA

with default model parameters. with default model parameters.

Classification Classification

models Precision Recall F models Precision Recall F;
SVM 0.98 0.79 0.88 SVM 0.92 0.66 0.77
kNN 0.96 0.78 0.86 kNN 0.86 0.75 0.80
LR 0.88 0.58 0.70 LR 0.85 0.58 0.69
DT 1.00 1.00 1.00 DT 0.63 0.74 0.68
MLP 0.94 0.78 0.85 MLP 0.89 0.75 0.82

Table 7.21: Training results after applying PCA Table 7.22: Test results after applying PCA

with tuned model parameters. with tuned model parameters.
Classification Classification
models Precision Recall Fy models Precision Recall Fy
SVM 0.97 0.84 0.90 SVM 0.89 0.80 0.84
kNN 0.96 0.76 0.85 kNN 0.88 0.74 0.80
LR 0.80 0.78 0.79 LR 0.79 0.81 0.80
DT 0.94 0.80 0.86 DT 0.83 0.79 0.81
MLP 0.91 0.81 0.85 MLP 0.85 0.80 0.82

Consider tables to the classifier performance based on the test data after PCA

has been applied. The model estimates still fall with the bootstrap confidence interval and
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they are close to the bootstrap point estimate for all the classifiers. The LR classifier has
again outperforms all other classifiers with an AUC score of 0.9028 and G-mean of 0.8976.
kNN classifier is the worst performing classifier with an AUC score of 0.8693 and G-mean of
0.8595. The AUC and G-mean scores of SVM, LR, DT and MLP are very close.

Table 7.23: SVM bootstrap estimate on the test set after applying PCA.

Model estimate Bootstrap point estimate 95% bootstrap C.I Standard error

Precision 0.8917 0.9230 [0.8766, 0.9602] 0.0257
Recall 0.7985 0.7914 [0.7020, 0.8533| 0.0455
Fy 0.8425 0.8501 [0.8024, 0.8856] 0.0278
G-mean 0.8935 0.8880 [0.8344, 0.9236] 0.0270
AUC 0.8992 0.8957 [0.8510, 0.9266] 0.0228
MCC 0.8436 0.8534 |0.8134, 0.8862] 0.0252

Table 7.24: kNN bootstrap estimate on the test set after applying PCA.

Model estimate Bootstrap point estimate 95% bootstrap C.I Standard error

Precision 0.8761 0.8626 [0.7805, 0.9270| 0.0440
Recall 0.7388 0.7694 [0.7349, 0.8030] 0.0240
Fy 0.8016 0.8123 [0.7737, 0.8544] 0.0278
G-mean 0.8595 0.8066 [0.8562, 0.8953| 0.0141
AUC 0.8693 0.8846 [0.8673, 0.9014| 0.0120
MCC 0.8042 0.8139 [0.7742, 0.8568| 0.0282

Table 7.25: LR bootstrap estimate on the test set after applying PCA.

Model estimate Bootstrap point estimate 95% bootstrap C.I Standard error

Precision 0.7883 0.7900 [0.7300, 0.8400] 0.0300
Recall 0.8060 0.8027 [0.7689, 0.8327| 0.0196
Fy 0.7970 0.7936 [0.7634, 0.8173| 0.0172
G-mean 0.8976 0.8955 |0.8760, 0.9123| 0.0111
AUC 0.9028 0.9012 [0.8843, 0.9162] 0.0098
MCC 0.7968 0.7937 [0.7649, 0.8176| 0.0168

Table 7.26: DT bootstrap estimate on the test set after applying PCA.

Model estimate Bootstrap point estimate 95% bootstrap C.I Standard error

Precision 0.8281 00.8473 [0.7831, 0.9223| 0.0469
Recall 0.7910 0.7435 [0.6384, 0.7957| 0.0530
Fy 0.8092 0.7896 [0.7113, 0.8455] 0.0404
G-mean 0.8893 0.8596 [0.7964, 0.8917| 0.0324
AUC 0.8954 0.8716 [0.8191, 0.8977| 0.0265
MCC 0.8091 0.7910 [0.7146, 0.8484] 0.0405
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Table 7.27: MLP bootstrap estimate on the test set after applying PCA.

Model estimate Bootstrap point estimate 95% bootstrap C.I Standard error

Precision 0.8492 0.8707 [0.8040, 0.9453| 0.0517
Recall 0.7985 0.7948 [0.7000, 0.8319] 0.0425
I 0.8231 0.8277 [0.7918, 0.8640] 0.0255
G-mean 0.8935 0.8748 [0.8049, 0.9307] 0.0392
AUC 0.8991 0.8976 [0.8748, 0.9244| 0.0153
MCC 0.8232 0.8130 [0.7384, 0.8550] 0.0392

Table [7.28| summarizes the classifier’s performance on the random under sampled dataset,
that is where the non-fraudulent transactions were reduced to 448 observations to balance

the class labels. LR classifier has outperformed all the other classifiers.

Table 7.28: Estimates for the random undersampled dataset on test set.

Precision Recall Fy G-meam AUC MCC

SVM  0.9750 0.8706 0.9196 0.9224 0.9241 0.8534
kKNN  0.9574 0.8906 0.9221 0.9242 0.9252 0.8534
LR 0.9600  0.9041 0.9309 0.9324 0.9330 0.8679
DT 0.8960  0.9064 0.8998 0.8975 0.8984 0.7993
MLP  0.9514 0.9063 0.9278 0.9291 0.9296 0.8611

Table [7.29] summarizes the classifier’s performance on over-sampled dataset using SMOTE
in combination with Tomek links, that is the fraudulent transactions were increased to 281
470 observations to balance the class labels. MLP has outperformed all the other classifiers
with zero FNR. The MLP classifier has the ability to classify all fraudulent without any
misclassifications and with low FPR. The LR classifier is the worst performing classifier. All
MLP classifier performance measures have significantly improved compared to table [7.28]
The DT classifier has slightly decreased compared to table [7.28

Table 7.29: Classifiers built after SMOTE was applied on the test data.

Precision Recall Fy G-meam AUC MCC

SVM  0.9826 0.9743 0.9784 0.9785 0.9785 0.9571
kNN  0.9977 1.0000 0.9983  0.9988  0.9988 0.9977
LR 0.9716  0.9177 0.9438 0.9450 0.9454 0.8922
DT 0.9968  0.9986 0.9977  0.9977  0.9977 0.9954
MLP  0.9993 1.0000 0.9996 0.9996 0.9996 0.9993
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7.3 Comparative Studies

Raghavan & El Gayar| (2019) accessed the effectiveness of fraud detection using various
classification techniques, namely SVM, RF, kNN, RBM, CNN and deep belief neural networks
(DBN). The purpose of the study was to present an empirical comparison between different
traditional classifiers and deep learning models. They investigated the performance of various
classifier using three different datasets, namely European, Australian and German credit
card dataset. To improve classifier performance, methods such as data cleaning and hyper-
parameter searching were considered. These authors used CV on the training set to determine
the value of k that optimizes the kNN classifier. A GS algorithm was used to find hyper-
parameters for other classifiers and these hyper-parameters were used to build the models. All
implementation was conducted in python. The hyper-parameterized SVM classifier applied
to the European credit card dataset had an AUC score of 0.8887 and a MCC score of 0.8145.
The AUC score is 0.0156 higher compared to the AUC score in table [7.5] The MCC score is
0.0089 lower compared to the MCC score in table The AUC and MCC score in this article
falls within the 95% bootstrap C.I provided in table [7.5] In this study, a RS algorithm was
used to search for SVM hyper-parameters. The AUC and MCC scores in this study are close
to those reported by Raghavan & El Gayar| (2019) although different hyper-parameter search
algorithms were considered. This is not a surprise as RS has all the practical advantages
of GS (Bergstra & Bengio, 2012). [Raghavan & El Gayar (2019)’s hyper-perimeterized kNN
classifier had an AUC score of 0.9004 and a MCC score of 0.8354. The AUC score is 0.0422
higher compared to the AUC score in table The MCC score is 0.0185 higher compared
to the MCC score in table [7.5] The AUC and MCC estimates for the kNN classifier reported
in Raghavan & El Gayar| (2019) fall with the 95% bootstrap C.I reported in table [7.6

Puh & Brki¢| (2019)) compared classification performance of three different classifiers, namely
RF, SVM and LR to detect fraudulent transactions. They used the SMOTE algorithm to
address class imbalance. In the SMOTE algorithm, the sampling strategy parameter which
denotes the desired ratio of the number of observations in the majority class over the number
of samples in the minority class was set to be 40%. This ratio was chosen empirically by
conducting a variety of preliminary tests on the training data. In this study we used SMOTE
with Tomek links and the ratio was set to 1:1, that is one fraudulent transaction for each non-
fraudulent transaction. |Puh & Brki¢| (2019) used GS with CV to determine hyper-parameters
for the classifiers. The hyper-parameterized SVM classifier had an AUC score of 0.8877 and
an average precision score of 0.7978 obtained by CV. The hyper-parameterized LR had an
AUC score of 0.9114 and an average precision of 0.7337. It can be noted that the AUC
score reported in this article is close to the AUC score obtained in this study for hyper-
parameterized LR trained normalized dataset, one-sided data and after PCA was applied,
see tables [7.16] and [7.25] The same can be observed for the AUC score of the SVM
classifier. The AUC scores reported in Puh & Brki¢| (2019) falls within our 95% bootstrap
C.I. The average precision score reported in this article is lower compared to tables [7.7] [7.16],
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and These average precision scores falls outside the 95% bootstrap C.I.

Rajora et al.| (2018]) conducted a comparative study on ten different classifiers. The classifiers
were built on the European credit card dataset with and without the feature variable ‘time’
to determine its effectiveness when detecting fraudulent transactions. The feature variables,
‘time’ and ‘amount’ were normalized before any classifier was built. Rajora et al.| (2018]) used
RU to balance the class distribution and the dataset was split into 70:30, that is 70% of the
dataset was used for training and 30% was used for testing. To compare the results of Rajoral
et al.| (2018) with this study we consider the performance of the classifiers when the feature
variable ‘time’ is considered. In |Rajora et al. (2018) the SVM classifier had a precision score
of 0.94, recall of 0.94 and AUC of 0.94. The kNN classifier has a precision score of 0.94,
recall of 0.94 and AUC of 0.94. The LR classifier had a precision score of 0.95, recall of 0.94
and AUC of 0.94 and finally the DT classifier had a precision score of 0.91, recall of 0.91 and
AUC of 0.91. The performance scores obtained in this article are close compared to those
in table [7.28] The difference in the precision and AUC scores is no more than 4% for all
the classifiers. Rajora et al.| (2018) had better recall scores compared to these reported in
table this is possibly due to the duplicated transactions that were not removed and the
zero transaction amounts that were labelled as fraudulent since the number of fraudulent

transactions remained 492 in their study.
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Chapter 8
Conclusion

Credit card fraud costs financial companies millions of rands each year. Fraudsters are
continually trying to find new ways to bypass the existing fraud detection systems. As a
result, continuously updated fraud detection systems have become essential for banks and
financial institutions to minimize their losses. For fraud detection, this study investigated
five supervised classifiers, namely SVM, kNN, LR, DT and MLP. The classifiers were built
on different datasets, namely the original dataset and the resampled datasets (one-sided, RU
and SMOTE with Tomek link) as the European credit card dataset is highly imbalanced.
PCA was applied on the one-sided sampled dataset and 17 features were extracted. All
hyper-parameters were obtained using RS with ten-fold CV to avoid overfitting. The hyper-
parameterized classifiers were validated using the bootstrap point estimate and a 95% C.I
was attained. Performance measures for each classifier were reasonably close to the bootstrap
point estimate and fall with the 95% bootstrap C.I.

The LR classifier outperformed all other classifiers except when the dataset was oversampled
in which case it was the worst performing classifier with a G-mean of 0.9450% and a AUC
of 0.9454%. The best LR results were obtained when the dataset was RO followed by when
the dataset was just normalized. There is a slight difference in the classification performance
of an LR classifier for when the dataset was normalized and when RO was applied. This
suggests that normalizing the dataset and searching for hyper-parameters is effective and
could potentially be preferred over just randomly oversampling the majority class, which
could potentially ignore useful hidden patterns that lead to a better fraud detection system.
PCA did not improve the classification performance for any classifier. This is not a surprise
as mentioned in section since PCA trades accuracy for simplicity and there are not too

many features in these datasets.
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8.1 Limitations of this Study

Credit card fraud detection is extremely challenging. Credit card companies maintain the
datasets of their transactions. However, they do not release these data to the public domain
due to privacy and security concerns. The publicly released datasets don’t disclose the fea-
tures of the data, for example, merchant categories, geographic locations, dates and times of

the transactions. This leads to classifiers being built on the dataset with limited information.

8.2 Future Work

A cost-sensitive learning approach can be implemented by considering the misclassification
costs. The cost for misclassifying a fraudulent transaction as non-fraudulent is higher than
the cost for misclassifying a fraudulent transaction as fraudulent. For DTs, this would in-
clude using a cost-sensitive splitting criterion with a cost insensitive pruning method, see
section [4.2.3] or by using Fisher’s exact test. For LR, it would include using the weighted
log-likelihood, see section [4.3.1] The classification performance of the kNN classifier could be
improved by implementing the kNN CCW classifier since this uses the posterior probability
and does not only depend on prior probability to predict the class label, see section [£.1.3]
The classification performance of the SVM classifier may be improved by deriving a custom-
ized kernel suitable to this particular problem. The classification performance of an MLP
classifier may improve by adding more neurons, layers and increasing the search space to find

hyper-parameters that capture more fraudulent transactions with increasing FPR.

Credit card fraud is related to the non-stationary nature of transaction distributions since
fraudsters are adaptive and are usually able to find ways of bypassing the classifiers built
to detect fraudulent transactions. Therefore, it is essential to consider the changing beha-
viours while developing an effective fraud detecting classifier. A thorough study of the non-
stationary nature of credit card fraud detection cold be performed, however, this requires
vast amounts of data (Kulkarni & Ade} 2016)).
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Appendix: Python Code

This appendix contains all the python code used in this analysis.

# —x— coding: utf—8 —x—

""" Credit Card dataset analysis.ipynb
Automatically generated by Colaboratory.

Original file is located at
https://colab.research.google.com/drive /1F2V6qfVpkH24—VIfxc24W Cs—rRaTmLN—

nnn

Commented out IPython magic to ensure Python compatibility .
import warnings
import pandas as pd
import numpy as np
import seaborn as sns
from sklearn import metrics
import matplotlib.pyplot as plt
warnings . filterwarnings ("ignore")
# %matplotlib inline
import statistics
import pickle
import scipy.stats as stats
import statsmodels.api as sm
from scipy.stats import ttest ind
from statsmodels.formula.api import ols
from sklearn.preprocessing import StandardScaler
from sklearn.model selection import train_ test split
import matplotlib.patches as mpatches
from sklearn.metrics import average precision score
from sklearn.metrics import precision recall curve
from sklearn.metrics import plot precision recall curve
from sklearn.metrics import roc_curve, roc_auc_score
from statistics import mean
from sklearn.feature selection import RFECV
from imblearn.combine import SMOTETomek
from sklearn.model selection import Stratified KFold

from sklearn.metrics import confusion matrix, classification report
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from sklearn.model selection import KFold

from sklearn.model selection import cross_val score

from sklearn.metrics import matthews corrcoef

from sklearn.model selection import RandomizedSearchCV

from imblearn.metrics import geometric_mean score

from sklearn.metrics import accuracy score, fl score, precision_score
recall score

from google.colab import files

import io

#importing creditcard

D= pd.read csv("https://query.data.world/s/3dwtejin6vc6rd4ddgd3vub66flypzon™)

D.drop (D.columns[D. columns. str.contains ( ’unnamed’ ,case = False)],axis = 1,

inplace = True)

nmnn

nnn

xxData cleaning and processingsxx

#Look for missing values
print ( 'There are {} missing values in the dataset.’.format(np.sum(D.isnull ().

values.any()))) ##Check if there are any missing values

#Dataset with no zero amount transactions
creditdata=D.loc [D[ ’Amount’|!=0.00]

fraud cases=D.loc [(D[ ’Class’]==1) & (D[’ Amount’[!=0) ]
non_fraud_cases=D.loc [(D[’Class '|==0) & (D[ ’Amount’[!=0) ]

#Look for zero amounts in the non—fraudulent dataset
zero_amount fraudulent case=fraud cases.loc[fraud cases[’Amount’]==0.00]
#Look for zero amounts in the non—fraudulent dataset

zero amount nonfraudulent case=non fraud cases.loc|[non_ fraud cases|[’ Amount’

#Look for zero amounts
classl_zeroamounts=D.loc [(D[’Class ’|==1) & (D[ ’Amount’]|==0)]
classO_zeroamounts=D.loc [(D[’Class ’]==0) & (D[ ’Amount’]==0)]

print ("There are {} transcations in the fraudulent data and {} transcations in
the non—fraudulent data that have zero amounts, the whole dataset has {}
transcations with zero amounts’.format (np.sum(classl zeroamounts[’ Amount’

]==0.00) , np.sum(class0_zeroamounts| Amount’]==0.00) ,np.sum (D[ ’Amount’
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|==0.00)))
#Divide dataset into fraudulent and non—fraudulent cases with zero amounts
removed
fraud cases=creditdata.loc[creditdata|’Class’]==1]
non_fraud_cases=creditdata.loc[creditdata|’Class’|==0]

non_fraud cases.shape

print ("There are {} duplicates in this dataset".format(creditdata.duplicated (
keep=""first").sum()))

#Check for duplicates

print ( "There are {} duplicated fraudulent transactions and {} duplicated non—
fraudulent transactions.’.format ((creditdata.loc[creditdata[’Class’]==1]).
duplicated (keep="first ’) .sum() ,(creditdata.loc[creditdata|’Class’]==0]).

duplicated (keep="1first ’) .sum()))

+ Remove all duplicates

creditdata.drop duplicates(keep="first", inplace=True)

print (creditdata.shape)

print ("There are {} transactions with zero amount".format (np.sum(creditdata[’
Amount ’]==0.00) ) )

PRI Check 1 duplicates have been removed

print ("There are {} duplicates".format (np.sum(creditdata.duplicated (keep="
first"))))

print ("There are {} fraudulent and {} non—fraudulent transactions".format (np.
sum(creditdata[’ Class’]==1) ,np.sum(creditdata [’ Class’]==0)))

#Most frequent amount
print (statistics .mode(fraud cases|[’Amount’]))

print (statistics .mode(non_fraud cases|[’Amount’]))
(np.sum(creditdata [ ’Amount’|==1.00))
(

print (max(fraud cases[’Amount’]))

print

all_bank notes=creditdata.loc]|creditdata|’ Amount’|%10==0]

fraudulent transaction banknote=fraud cases.loc[fraud cases[ Amount’]|%10==0] #
fraud transaction bank notes

nonfraudulent transaction banknotes=non fraud cases[non_ fraud cases|[ Amount’
|%10==0] #Normal transcation bank notes

print ("There are" ,np.sum(fraud_cases| Amount’|%10==0),"bank notes in
fraudulent transcations.")

print ("There are" ,np.sum(non_fraud cases|[’Amount’]%10==0),"bank notes in

normal transcations.")

print ("There are" ,np.sum(creditdata|’Amount’]%10==0),"bank notes in the whole
dataset")
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#Remove bank notes from the fraud dataset i.e R10,R20,R30,...

cp_fraud=fraud cases.loc[fraud cases|[’Amount’]|%10==0] #Card not Present fraud
cnp fraud=fraud cases /Card present fraud

print (cp fraud.shape)

print (cnp fraud.shape)

less2500=np.sum(creditdata [ ’Amount '] <2500)

more2500=np.sum( creditdata| ’Amount '] >=2500)

print ("{}% of the transactions have transaction amount less than 2500 and {}%
have transaction amount more than 2500".format (round(less2500 /len (
creditdata)*100,3) ,round (more2500/len (creditdata)*100,3)))

print (less2500)

"""s«xGraphical representation of the datasetsx"""

#Plot histogram for Amount variable

g=sns.FacetGrid (creditdata ,hue="Class", size=10,legend out=False)
g.map(sns.distplot , "Amount")

g.add legend ()

plt.gcf().set size inches (6,6)

plt . ylim (0,0.004)

plt.title ("Distribution of the transaction amounts \n in Euros.")
new labels = [’Non—fradulent cases’, ’'Fraudulent cases’]

for t, 1 in =zip(g. legend.texts, new labels): t.set text(1l)
plt.ylabel ("Frequency (%)")

plt .show ()

#Summary

#D| > Amount ’]. describe ()

sns.set (re={"figure.figsize": (16, 8)})
fig , axes = plt.subplots(1,2)

sns . distplot (fraud _cases|[’Amount’],kde="true" ,ax=axes[0], color="#FC6A03")
sns.distplot (non_fraud cases["Amount"],kde="True" ,ax=axes[1])

#Truncate the x—axis 7
axes [0].set xlim (0,1000)

axes [1].set_xlim (0,2000)

axes [0].set_title ("Amount distribution for fraudulent transactions\n with
truncated axis")

axes[1].set title("Amount distribution for non—fraudulent transactions\n with
truncated axis")

axes [0]. grid (b=None)

axes [1]. grid (b=None)

plt .show ()

#Plot histogram for Time variable
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g=sns.FacetGrid (creditdata , hue="Class", size=10,legend out=False)

g.map(sns.distplot , "Time")

g.add legend ()

plt.ylabel ("Density")

plt.title ("Distribution of the time of the transactions \n from the first
observation.")

plt.gcf().set size inches (6, 6)

new labels = [’Non—fradulent cases’, ’'Fraudulent cases’]
for t, 1 in zip(g. legend.texts, new labels): t.set text(1l)
plt .show ()

#Summary

D[ ’Time’]. describe ()

sns.set (re={"figure.figsize": (16, 8)})

fig , axes = plt.subplots(1,2)

sns . kdeplot (fraud cases|’Time’], color="Orange" ,shade=True,ax—axes[0] ,cmap="
Oranges")

sns . kdeplot (non fraud cases["Time"], color="blue"  shade=True,ax=axes[0],cmap="
Blues")

sns . kdeplot (fraud cases[’Amount’], color="Orange" ,shade=True,ax=axes[1],cmap="
Oranges")

sns . kdeplot (non fraud cases["Amount"],color="blue" ,shade=True,ax=axes|[1],cmap—=
"Blues")

axes [0].set title("Density plot for Time attribute™)

axes [1].set title("Density plot for Amount attribute")

handles = [mpatches.Patch(facecolor=plt.cm.Oranges(100), label="Fraudulent
cases")

mpatches.Patch(facecolor=plt.cm.Blues(100), label="Non—fraudulent
cases") |

axes [0].legend (handles=handles)

axes [1].legend (handles=handles)

axes [0]. grid (b=None)

plt . grid (b=None)

plt .show ()

sns.set (re={"figure.figsize": (16, 8)})

fig , axes = plt.subplots(1,2)

sns . distplot (fraud _cases[’Time’], color="orange" ,kde=True,ax=axes [0])

sns.distplot (non fraud cases["Time"], color="blue" kde=True,ax=axes[1])

axes [0].set_title ("Time of the fraudulent transactions relative \n to the
first transaction.")

axes[1].set title("Time of the non—fraudulent transactions relative \n to the
first transaction.")

axes [0]. grid (b=None)

axes [1]. grid (b=None)

plt .show ()

#Ploting barplot for target
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plt . figure(figsize=(7,7))
g = sns.barplot (D[’Class’], D[’Class’], palette=’Setl’, estimator=lambda x:
len(x) / len(D) )
#Anotating the graph
for p in g.patches:
width, height = p.get width(), p.get_ height ()
X, y =p.get_xy()
g.text (x+width /2,
y+height |
"{:.4%}’ .format (height),

horizontalalignment="center’,fontsize=15)

#Setting the labels

#plt . xlabel (’Class distribution’, fontsize=14)

plt.ylabel (’Density’, fontsize=14)

plt.title (’Percentage of fraudulent and non—fraudulent \n transactions.’,
fontsize =16)

labels=["non—fraudulent", "fraudulent"]
plt.xticks (range (2),labels)
plt .show ()

sns.set_ style("whitegrid")

g=sns.FacetGrid (creditdata , hue="Class", size = 7,legend out=False)
g.map(plt.scatter , "Time", "Amount")

plt.title("Scatterplot of time against amount")

g.add legend ()

new labels = [’Non—fradulent cases’, ’Fraudulent cases’]

for t, 1 in zip(g. legend.texts, new labels): t.set text(1l)
plt.gcf().set_size_inches(7,7)

plt.grid (b=None)

plt .show ()

sns.set_ style("whitegrid")

g=sns.FacetGrid (creditdata , hue="Class", size = 6)
g.map(plt.scatter ;, "Amount", "Time")

plt.title ("Amount vs Time scatter plot")

g.add legend ()

plt.gcf().set_size_inches(7,7)

plt .show ()

sns.set (re={"figure.figsize": (16, 8)})
fig , ax = plt.subplots(1,2)

g=sns.boxplot(x = "Class", y = "Time", data = D,ax=ax[0])

sns.boxplot (x = "Class", y = "Amount", data = D,ax=ax[1])#,order = Non—
fradulent \n cases’,’Fraudulent \n cases ’]

new _labels = [’Non—fradulent cases’, ’Fraudulent cases’]

ax [0].set _title ("Time Boxplot")
ax[1].set_title ("Amount Boxplot")
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ax [0]. grid (b=None)
ax[1]. grid (b=None)
plt .show ()

def data array(creditdata: pd.DataFrame) —> (np.ndarray, np.ndarray):
X = creditdata.iloc[:, 0:30].values
y = creditdata.Class.values

return X, y

def plot(X: np.ndarray, y: np.ndarray):

plt.figure (figsize=(7,7))

plt.scatter (X[y = 0, 0], X[y = 0, 1], label="Non-fraudulent class",
alpha=0.5, linewidth=0.15)

plt.scatter (X[y = 1, 0], X[y = 1, 1], label="Fraudulent class", alpha
=0.5, linewidth=0.15, c="1")

plt.title ("Credit card dataset")

plt.legend ()

return plt.show ()

X,y=data array(creditdata normalized)
plot (X,y)

#Are the means significantly different?

print (ttest ind(fraud cases|[’Time’],non_fraud cases|[’Time’],equal_ var=False))

#H+Since p—value is less than alpha, we reject H o and conclude that there is a
significant difference between the means.

stats.levene (fraud cases|[’Time’],non_fraud cases|[’Time’],center="mean")

#Is there significant difference in the population?

##Since the p—value is greater than alpha, we fail to reject H_o and conclude
that there is insufficient evidence to say that there is a difference

between the variances.

#Are the means significantly different?

print (ttest ind(fraud cases|’Amount’],non fraud cases[’Amount’],equal var=
False))

#H+Since p—value is less than alpha, we reject H o and conclude that there is a
significant difference between the means.

stats.levene (fraud cases|[’Amount’|,non_ fraud cases|[’Amount’],center="mean")

#Is there significantl difference in the population?

##Since the p—value is less than alpha, we reject H o clude that there is a

significant difference between the population variance.

#Perform one—way Anova

model=o0ls (' Class “Time+Amount+TimexAmount’ ,data=creditdata) . fit ()
ano_table=sm.stats.anova lm(model,typ=2)
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print (ano_table)

print ("The interaction effect is not significant")

#Bank notes, R10,R20,R30,........

sns.set style("whitegrid")

sns . lmplot (x="Time" ;y="Amount" ;hue="Class" ,data=all bank notes,order = 2)
plt . xlabel (" Time")

plt.ylabel ("Amount")

plt.gcf().set size inches(7,7)

plt.title ("Fraudulent transcations™)

plt .show ()

sns.set (re={"figure.figsize": (16, 8)})
fig , axes = plt.subplots(1,2)

sns.set style("whitegrid")

sns.regplot (data=cp fraud ,x="Time" ,y="Amount" ;ax=axes[0],order = 2)
sns.regplot (data=cnp fraud ,x="Time" ,y="Amount" ,order = 5)

axes [0].set_xlim (0,175000)

axes [1].set xlim (0,175000)

axes [0].set title("Card present fraud (CP)")

axes [1].set title("Card not present fraud (CNP)")

plt .show ()

#The money stolen between 0 and 50000 seconds
sum—0
for i in range(len(creditdata)):
if ((creditdata.iloc[i][ Time’]>=0 and creditdata.iloc[i]["Time"]<=50000) and
creditdata.iloc[i][’Class’]==1):
sum—sum + creditdata.iloc[i][ Amount’ ]

print ("The money stolen between 0 and 50000 seconds is R",round(sum,2))

#The money stolen between 50000 and 100000 seconds
sum=—0
for 1 in range(len(creditdata)):
if ((creditdata.iloc[i][ Time’]>50000 and creditdata.iloc[i]["Time"]<=100000)
and creditdata.iloc[i][ ' Class’]==1):
sum—sum + creditdata.iloc[i][ Amount’]
print ("The money stolen between 50000 and 100000 seconds is ",round(sum,2))

#The money stolen between 50000 and 100000 seconds
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sum—0
for i in range(len(creditdata)):
if ((creditdata.iloc[i][ Time’]>100000 and creditdata.iloc[i]["Time"
]<=150000) and creditdata.iloc[i][’ Class’|==1):
sum—sum + creditdata.iloc[i][ Amount’ ]
print ("The money stolen between 100000 and 150000 seconds is ",round(sum,2))

#The money stolen above 150000 seconds
sum=0
for 1 in range(len(creditdata)):
if (creditdata.iloc[i][ Time’]>150000 and creditdata.iloc[i][ Class’]==1):
sum=sum + creditdata.iloc[i][’ Amount’]
print ("The money stolen above 150000 seconds is R",round(sum,2))

total amount=np.sum (D[ ’Amount’])
stolen _amount percentage=(np.sum(fraud cases|[’Amount’]) /total amount)=*100

n

print ("The stolen amount percentage is",round(stolen amount percentage,2),’%’)

print ("Total stolen amount" ,np.sum(fraud cases|[’Amount’]))

data = {’0—-50000": 15537.42, 50000 — 100000’: 22671.17, ’100000 — 150000 :
15442.25)
time interval = list (data.keys())

amount — list (data.values())

fig , axs = plt.subplots(figsize=(7,7))
plt.title (" Categorizing stolen amount within time intervals")
plt.xlabel ("Time in seconds")

plt.ylabel ("Amount stolen")

plt . grid (b=None)

plt.bar(time interval, amount,align="center’)

mnn nnn

xx Normalizing Datasetxx

from sklearn.preprocessing import StandardScaler

creditdata 1=creditdata

creditdata _1[ Amount(Normalized)’] = StandardScaler () .fit_transform (
creditdata 1[ Amount’].values.reshape(—1,1))

creditdata 1[ Time(Normalized)’] = StandardScaler().fit transform (creditdata 1
[ ’Time’].values.reshape(—1,1))

creditdata normalized = creditdata 1.drop(columns = [’Amount’, ’Time’], axis
~1)

creditdata=creditdata .drop ([ ’Amount(Normalized) ’, Time(Normalized) '], axis=1)

creditdata .head ()
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X=creditdata_normalized .drop(’Class’, axis=1)

y=creditdata mnormalized [’ Class ]

X train, X test, y train, y test = train_ test split (X, y, test size=0.3,
random state = 500, stratify=y)

nnn nnn

xxSupport Vector Machinesxx

#lmport svm model

from sklearn import svm

#Create a svimn Classifier

svim_ clf = svm.SVC()

#Train the model using the training sets

svm_clf .fit (X _train, y_train)

y_pred=svm _clf.predict (X _test)
print (classification report(y_ test,y pred))

y_pred tr=svm _clf.predict (X train)
print (classification report(y_train,y pred tr))

from sklearn.model selection import RandomizedSearchCV
defining parameter range

param grid = {’C’:[ 0.8,0.85,0.9,0.95], "kernel’:[ ’linear’, ’rbf’ ’poly’,’

sigmoid ’|}
rs_svm = RandomizedSearchCV (svm.SVC(max iter=200, tol=2,probability=True),
param_grid, scoring=’roc_auc’, verbose = True, n_jobs=—1, cv=5)

rs_svm. fit (X train, y_train)
print (rs_svm.best params )

from sklearn import svm

svin_hyp=svin .SVC(C=0.8 ,kernel="rbf’ max iter=200, tol=2,probability=True) . fit (
X train,y train)

#Predict the response for test dataset

y_pred = svm_hyp.predict proba (X test)

y _hat=svmm_hyp. predict (X test)

print (classification report(y test,y hat))

#Predict the response for train dataset
y_pred tr = svm_ hyp.predict (X _train)
print (classification report(y_train,y pred tr))

average precision = average precision score(y_test, y pred[:,1])
svm_pr_curve = plot precision_ recall curve(svm_ hyp, X test, y test)

svmm_pr_curve.ax_ .set title(’Precision—Recall curve:

"Avearge precision={0:0.2f}’.format (average precision))

from sklearn.metrics import roc_ curve, roc_auc_score
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prob=svm_ hyp.predict proba(X test)[:,1]

false positive rate, true positive rate, threshold = roc_curve(y_ test, prob)
fig , ax = plt.subplots(figsize =(8,5))

plt.title ('ROC Curve for SVM’)

plt.plot (false positive rate, true positive rate)

plt.plot ([0, 1], ls="—")

plt.ylabel ('True Positive Rate’)

plt.xlabel (’False Positive Rate’)

plt .show ()

y_hat=svm_ hyp.predict (X test)

auc=roc_auc_score(y test,y hat)

prec = precision score(y_ test, y_ hat)

rec = recall score(y_test, y hat)

f1 = f1_score(y_test,y hat)

gmean—geometric_mean _score(y test,y_ hat)

mcc—matthews corrcoef(y test,y hat)

print ("\tprecision:%0.4f"%prec ,"\trecall :%0.4f"%rec ,"\tFl—score:%0.4{"%f1 ,"\
tgeometric mean:%0.4 f"%gmean,"\ troc auc:%0.4 f"%auc , "\tMCC: %0.4 f "%mcc)

"""4xSVM Bootstrapp estimatesxx"""

from mlxtend.evaluate import bootstrap point632 score

def bootstrap estimate and ci(estimator, X, y, scoring func=None, random seed
=260,
method=".632", alpha=0.05, n_splits=10):
scores = bootstrap point632 score(estimator, X, y, scoring func=
scoring func,
n_splits=n_ splits, random seed=
random _seed ,
method=method )
estimate = np.mean(scores)
lower bound = np.percentile(scores, 100x(alpha/2))
upper _bound = np.percentile (scores, 100x(1—alpha/2))
stderr = np.std(scores)

return estimate, lower bound, upper bound, stderr

def data array(creditdata: pd.DataFrame) —> (np.ndarray, np.ndarray):
X=creditdata .drop(’Class’,axis=1)
y = creditdata|’Class’]
X train,X test,y train,y test—=train test split(X,y,test size=0.3,stratify=
y)
return X train.values ,X test.values,y train.values,y test.values

xtrain , xtest ,ytrain , ytest=data array(creditdata normalized)
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Calculate a bootstrap estimate for recall and a 95% confidence interval
estimator=svin.SVC(C=0.9,kernel="rbf’ max iter=200, tol=2,probability=True)
est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,

scoring func=precision score)
print (f"precision estimate on test dataset: {est:.4f}, confidence interval: [{
low:.4f}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=recall score)

print (f"recall estimate on test dataset: {est:.4f}, confidence interval: [{low
:.41ft}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=fl_ score)

print (f"fl estimate on test dataset: {est:.4f}, confidence interval: [{low:.4f
}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=geometric_mean score)

print (f"geometric mean estimate on test dataset: {est:.4f}, confidence
interval: [{low:.4f}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=roc_auc_score)

print (f"AUC estimate on test dataset: {est:.4f}, confidence interval: [{low:.4
£}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=matthews corrcoef)

print (f"MCC estimate on test dataset: {est:.4f}, confidence interval: [{low:.4
£}, {up:.4£f}], " f"standard error: {stderr:.4f}")

""" yxOne—Sided Sampling for SVMss"""

from imblearn.under sampling import OneSidedSelection

oss = OneSidedSelection(n_ neighbors=1, random state=200,sampling strategy="
majority")

X oss, y_ oss= oss.fit_resample (X, y)

y_oss.value counts ()

y.value counts()

X train, X test, y train, y test=train_ test split(X oss,y oss,test_ size=0.3,
stratify=y_ oss, random state=42)

xtest=X _test.values

ytest=y test.values
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from sklearn import svm

svin_und=svm .SVC(probability=True) . fit (X train,y train)

yhat=svm_ und. predict (X _train)

print (classification report(y_train,yhat))

yhat=svm und.predict (X test)
print (classification report(y_ test,yhat))

nnn mmnn

xxRandom search for One—Sided Samplingsx

from sklearn.model selection import RandomizedSearchCV
defining parameter range
max_iter —[25,50,75,100]
param grid = {’C’:[0.1,0.4,0.7,0.95], "kernel’:[ "linear’,’rbf’, 'poly’, sigmoid’
|, ’max iter’:max iter}
oss_svm = RandomizedSearchCV (svm.SVC(tol=2,probability=True) ,param grid,
scoring="roc_auc’, verbose = True, n_jobs=—1, cv=5)

oss_svm. fit (X train, y_ train)
print (oss_svm.best params )

from sklearn import svm

svim_hyp=svin .SVC(C=0.95 ,kernel="rbf’ ymax_ iter=100, tol=2,probability=True). fit (
X train,y train)

#Predict the response for test dataset

y_pred = svm_hyp.predict proba (X test)

y _hat=svm_ hyp. predict (X test)

print (classification report(y test,y hat))

yhat=svin_hyp.predict (X _train)

print (classification report(y_train,yhat))

average precision = average precision score(y_test, y_ pred[:,1])
svmm_pr_curve = plot precision recall curve(svm_hyp, X test, y_test)
svin_pr_curve.ax_ .set title(’Precision—Recall curve: °’

"Avearge precision={0:0.2f}’.format (average_precision))

from sklearn.metrics import roc_curve, roc_auc_score

prob=svmm_hyp.predict proba (X test)[:,1]

false positive rate, true positive rate, threshold = roc_curve(y test, prob)
fig, ax = plt.subplots(figsize=(8,5))

plt.title ('ROC Curve for SVM on balanced dataset.’)

plt.plot(false positive rate, true positive rate)

plt.plot ([0, 1], 1s="—")

plt.ylabel (’True Positive Rate’)

plt.xlabel (’False Positive Rate’)
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plt .show ()

y _hat=svmn_hyp.predict (X test)

auc=roc_auc_score(y test,y hat)

prec — precision score(y_test, y_hat)

rec = recall score(y_ test, y hat)

f1 = f1 score(y_test,y hat)

gmean=geometric_mean _score(y test,y hat)

mcc=matthews corrcoef(y test,y hat)

print ("\tprecision:%0.4f"%prec,"\ trecall :%0.4f"%rec ,"\tFl—score:%0.4{"%f1,"\
tgeometric mean:%0.4f"%gmean,"\troc auc:%0.4f"%auc, " \tMCC: %0.4 f "%mcc)

estimator=svin.SVC(C=0.95,kernel="rbf’ max_ iter=100, tol=2,probability=True) .
fit (X _train,y train)

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=precision score)

print (f"precision estimate on test dataset: {est:.4f}, confidence interval: [{
low:.4f}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=recall score)

print (f"recall estimate on test dataset: {est:.4f}, confidence interval: [{low
:.41ft}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=fl_ score)

print (f"fl estimate on test dataset: {est:.4f}, confidence interval: [{low:.4f
}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=geometric_mean score)

print (f"geometric mean estimate on test dataset: {est:.4f}, confidence
interval: [{low:.4f}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=roc_auc_score)

print (f"AUC estimate on test dataset: {est:.4f}, confidence interval: [{low:.4
£}, {up:.4f}], " f"standard error: {stderr:.4f}")

est , low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=matthews corrcoef)

print (f"MCC estimate on test dataset: {est:.4f}, confidence interval: [{low:.4
f}, {up:.4£f}], " f"standard error: {stderr:.4f}")

nmnn

**Random undersamplingxx
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nnn

from imblearn.under sampling import RandomUnderSampler
rus = RandomUnderSampler (random state=42)

X rus, y rus = rus.fit_resample (X, y)
y_rus.value counts ()

svim_rus=svm.SVC() . fit (X _train,y train)
y_pred=svm_rus.predict (X train)

print (classification report(y train,y pred))

y_pred=svm_rus.predict (X test)
print (classification report(y test,y pred))

from sklearn import svm

#K—-Fold cross validation

kf = StratifiedKFold (n_splits=10,shuffle=True,random state=42)

auc_score =[]

recall scor =[]

precision _scor =]

geo _score =[]

£1-]

mce =]

i=1

for train index ,test index in kf.split (X _rus,y rus):
#print (’{} of KFold {}’.format(i,kf.n splits))

xtrain ,xtest = X rus.iloc[train_ index],X rus.iloc[test index]
ytrain ,ytest = y rus.iloc[train_ index],y rus.iloc[test index]
#model

svin_rus=svm.SVC() . fit (xtrain , ytrain)

score = roc_auc_score(ytest ,svm_rus. predict (xtest))
scorel = recall score(ytest ,svm_rus.predict (xtest))
score2 = precision score(ytest ,svm_rus.predict (xtest))

score3=geometric_mean_score(ytest ,svin_rus.predict (xtest))
scored=f1 score(ytest ,svin_rus.predict (xtest))

scoreb=matthews_corrcoef(ytest ,svm_rus. predict (xtest))

auc_score.append(score)

recall scor.append(scorel)
precision scor.append(score2)
geo_score.append(score3)
f1.append(scored)

mcc. append (scored)
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i+=1

print ("\tprecision:%0.4f"%mean(precision scor),"\trecall:%0.4f"%mean (
recall scor) ,"\tFl—score:%0.4{"%mean(f1) ,"\tgeometric mean:%0.4f"%mean (
geo _score) ,"\troc auc:%0.4f"%mean(auc_score) ,"\tMCC:%0.4 f "%mean (mcc) )

y _hat=svm_ rus.predict (X test)

auc=roc_auc_score(y test,y hat)

prec = precision score(y_ test, y_ hat)

rec = recall score(y_ test, y hat)

f1 = f1_ score(y_test,y hat)

gmean—geometric_mean score(y test,y hat)

mcc=matthews corrcoef(y test,y hat)

print ("\tprecision:%0.4f"%prec ,"\trecall :%0.4{"%rec ,"\tFl—-score:%0.4{"%f1 ,"\
tgeometric mean:%0.4 {"%gmean,"\ troc auc:%0.4 f"%auc, "\tMCC: %0.4 { "%mcc)

" xSMOTE with TomekLinksx"""

from imblearn.combine import SMOTETomek

from imblearn.under sampling import TomekLinks

smt = SMOTETomek(tomek=TomekLinks (sampling strategy='majority’) ,random _state
=42)

X res, y_res = smt.fit resample (X, y)

y_res.value counts ()

X train, X test,y train,y test—train_ test split(X res,y res,test size=0.3,
stratify=y res)

from sklearn import svm
svin_smote=svm .SVC() . fit (X train,y train)
y_pred=svin_smote. predict (X train)

print (classification report(y train,y pred))

y_pred=svin_smote. predict (X _test)
print (classification report(y_ test,y pred))

y _hat=svm_smote.predict (X _test)

auc=roc_auc_score(y test,y hat)

prec = precision score(y_test, y_ hat)

rec = recall score(y_test, y hat)

f1 = f1_score(y_test,y hat)

gmean—geometric _mean _score(y test,y hat)

mcc—matthews corrcoef(y_ test,y hat)

print ("\tprecision:%0.4{"%prec ,"\ trecall :%0.4f"%rec ,"\tFl—score:%0.4{"%f1 ,"\
tgeometric mean:%0.4 f"%gmean,"\ troc auc:%0.4 f"%auc , "\tMCC:%0.4 f "%mcc)

nmnn nnn

xxk—Nearest Neighboursxx
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from sklearn.neighbors import KNeighborsClassifier
knn=KNeighborsClassifier (). fit (X train,y train)
y_pred=knn.predict (X test)

print (classification report(y_ test,y pred))

y_tr=knn.predict (X _train)

print (classification report(y train,y tr))

#Knn rs search

from sklearn.model selection import RandomizedSearchCV
n_neighbors=[i for i in range(2,7)]

p=[1,2]

param_grid={’n_neighbors’:n_neighbors, 'p’:p}

rs_knn—=RandomizedSearchCV (KNeighborsClassifier () ,param_grid,cv=>5,n_jobs=-—1,

verbose=True, scoring=’roc_ auc’)

best knn=rs knn.fit (X train,y train)
print (best knn.best params )

from sklearn.neighbors import KNeighborsClassifier

knn hyp = KNeighborsClassifier (n_neighbors=5,p=1).fit (X train,y train)

predict=knn_ hyp.predict (X test)

print (classification report(y test,predict))

predict train=knn hyp.predict (X _train)

print (classification report(y_ train,predict train))

Knn_ hat=knn hyp.predict proba(X test)[:,1]

average precision = average precision score(y_ test, Knn hat)

knn_ pr curve = plot precision recall curve(knn hyp, X test, y_test)

)

knn pr_ curve.ax .set title(’Precision—Recall curve:

"Avearge precision={0:0.2f}’.format (average_precision))

from sklearn.metrics import roc_ curve, roc_auc_score

false positive rate, true positive rate, threshold = roc_curve(y_ test, Knn hat

)
fig , ax = plt.subplots(figsize=(8,5))
plt.title ('ROC Curve for KNN’)
plt.plot(false positive rate, true positive rate)
plt.plot ([0, 1], ls="—")
plt.ylabel (’True Positive Rate’)
plt.xlabel (’False Positive Rate’)
plt .show ()

tTest dataset

auc=roc_auc_score(y test,predict)
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prec = precision score(y_ test, predict)

rec = recall score(y_test, predict)

f1 = f1_score(y_test, predict)

gmean=geometric_mean _score(y test,predict)

mcc—matthews corrcoef(y test,predict)

print ("\tprecision:%0.4{"%prec ,"\ trecall :%0.4f"%rec ,"\tFl—score:%0.4{"%f1 ,"\
tgeometric mean:%0.4f"%gmean,"\troc auc:%0.4f"%auc, " \tMCC: %0.4 f "%mcc)

"""4«xkNN bootstrap point Estimatesxx"""

Calculate a bootstrap estimate for recall and a 95% confidence interval

estimator=KNeighborsClassifier (n_neighbors = 5,p=1)

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=precision score)

print (f"precision estimate on test dataset: {est:.4f}, confidence interval: [{
low:.4f}, {up:.4f}], " f"standard error: {stderr:.4f}")

est , low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=recall score)

print (f"recall estimate on test dataset: {est:.4f}, confidence interval: [{low
241}, {up:.4f}], " f"standard error: {stderr:.4f}")

est , low, up, stderr = bootstrap estimate and _ ci(estimator, xtest, ytest,
scoring func=f1_score)

print (f"fl estimate on test dataset: {est:.4f}, confidence interval: [{low:.4f
t, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=geometric_mean score)

print (f"geometric mean estimate on test dataset: {est:.4f}, confidence
interval: [{low:.4f}, {up:.4f}], " f"standard error: {stderr:.4f}")

est , low, up, stderr = bootstrap estimate and _ ci(estimator, xtest, ytest,
scoring func=roc_auc_score)

print (f"roc_auc estimate on test dataset: {est:.4f}, confidence interval: [{
low:.4f}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and _ ci(estimator, xtest, ytest,
scoring func=matthews corrcoef)

print (f"MCC estimate on test dataset: {est:.4f}, confidence interval: [{low:.4
f}, {up:.4f}], " f"standard error: {stderr:.4f}")

nnn nnn

*xkNN One Sided Samplingsx

X train, X test, y train, y test=train_ test split(X oss,y oss,test_ size=0.3,
stratify=y_ oss, random state=42)

from sklearn.neighbors import KNeighborsClassifier
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knn_und=KNeighborsClassifier (). fit (X _train,y_train)
y_pred=knn_ und.predict (X train)

print (classification report(y train,y pred))

y_pred=knn_ und.predict (X _test)
print (classification report(y_ test,y pred))

Knn rs search

from sklearn.model selection import RandomizedSearchCV

n_neighbors=[i for i in range(2,7)]

p=[1,2]

param _grid={’n_neighbors’:n_neighbors, 'p’:p}

oss_knn=RandomizedSearchCV (KNeighborsClassifier () ,param_grid,cv=5,n_jobs=—1,
verbose=True, scoring=’'roc_auc’)

best knn=oss knn.fit (X train,y train)
print (best knn.best params )

from sklearn.neighbors import KNeighborsClassifier

knn _hyp = KNeighborsClassifier (n_neighbors=5,p=2).fit (X train,y train)
predict=knn_ hyp.predict (X _test)

print (classification report(y test,predict))

predict train=knn_ hyp.predict (X train)
print (classification report(y_train,predict train))

Knn hat=knn hyp.predict proba (X test)[:,1]

average precision = average precision_ score(y_ test, Knn hat)
knn pr curve = plot precision recall curve(knn hyp, X test, y test)
)

knn_pr_curve.ax .set title(’Precision—Recall curve:

"Avearge precision ={0:0.2f}’.format (average precision))

from sklearn.metrics import roc_curve, roc_auc_score

false positive rate, true positive rate, threshold = roc_curve(y_ test, Knn hat
)

fig , ax = plt.subplots(figsize=(8,5))

plt.title ('ROC Curve for KNN’)

plt.plot (false positive rate, true positive rate)

plt.plot ([0, 1], ls="-—")

plt.ylabel ('True Positive Rate’)

plt.xlabel (’False Positive Rate’)

plt .show ()

#Test dataset

auc=roc_auc_score(y_ test,predict)

prec = precision score(y_ test, predict)
rec = recall score(y_test, predict)

f1 = f1_score(y_test, predict)
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gmean—geometric _mean _score(y test,predict)

mcc=matthews corrcoef(y test,predict)

print ("\tprecision:%0.4f"%prec,"\ trecall :%0.4f"%rec ,"\tFl—score:%0.4{"%f1,"\
tgeometric mean:%0.4 {"%gmean,"\ troc auc:%0.4f"%auc, " \tMCC: %0.4 f "%mcc)

"""y xKNN Bootstrap Point Estimate For One-Sided Sampled Datasetsx"""

estimator=KNeighborsClassifier (n_neighbors = 5,p=1)

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=precision score)

print (f"precision estimate on test dataset: {est:.4f}, confidence interval: [{
low:.4f}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=recall score)

print (f"recall estimate on test dataset: {est:.4f}, confidence interval: [{low
:.41ft}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=fl1_score)

print (f"fl estimate on test dataset: {est:.4f}, confidence interval: [{low:.4f
}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=geometric_mean score)

print (f"geometric mean estimate on test dataset: {est:.4f}, confidence
interval: [{low:.4f}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=roc_auc_score)

print (f"roc_auc estimate on test dataset: {est:.4f}, confidence interval: [{
low:.4f}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and _ ci(estimator, xtest, ytest,
scoring func=matthews corrcoef)

print (f"MCC estimate on test dataset: {est:.4f}, confidence interval: [{low:.4
£}, {up:.4£f}], " f"standard error: {stderr:.4f}")

nmnn

*xRandom Undersamplingx

nnn

knn_rus=KNeighborsClassifier (). fit (X _train,y train)
y_pred=knn_ rus.predict (X train)
print (classification report(y train,y pred))
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y_pred=knn_rus.predict (X test)
print (classification report(y test,y pred))

from sklearn.neighbors import KNeighborsClassifier

#K—Fold cross validation

kf = StratifiedKFold (n_splits=10,shuffle=True,random state=42)

auc_score =[]

recall scor =[]

precision _scor =[]

geo _score =[]

£1-]]

mce =]

i=1

for train index ,test index in kf.split (X _rus,y rus):
#print (’{} of KFold {}’.format(i,kf.n splits))

xtrain ,xtest = X rus.iloc[train_ index],X rus.iloc[test index]
ytrain ,ytest = y rus.iloc[train_ index],y rus.iloc|[test index]
#model

knn rus=KNeighborsClassifier (). fit (xtrain ,ytrain)

score = roc_auc_score(ytest ,knn_ rus.predict (xtest))
scorel = recall score(ytest ,knn rus.predict (xtest))
score2 = precision score(ytest ,knn_ rus.predict (xtest))

score3=geometric_mean score(ytest ,knn_ rus.predict (xtest))
scored=f1 score(ytest ,knn rus.predict(xtest))

scoreb=matthews_corrcoef(ytest ,knn_rus. predict (xtest))

auc_score.append(score)

recall scor.append(scorel)
precision scor.append(score2)
geo_score.append(score3)
f1.append(scored)

mcc. append (scored)

=1
print ("\tprecision:%0.4f"%mean(precision_scor) ,"\trecall:%0.4f"%mean (
recall _scor) ,"\tFl-score:%0.4 f"%mean (f1) ,"\tgeometric mean:%0.4 f "%mean (

geo_score) ,"\troc auc:%0.4f"%mean(auc_score) ,"\tMCC:%0.4 { "%mean (mcc) )

""" 4««SMOTE with TomekLinksxx"""
from sklearn.neighbors import KNeighborsClassifier

knn smote=KNeighborsClassifier (). fit (X _train,y train)
y_pred=knn smote.predict (X train)

110



Appendix: Python Code

print (classification report(y train,y pred))

y_pred=knn_ smote.predict (X test)
print (classification report(y test,y pred))

auc=roc_auc_score(y test,y pred)

prec = precision score(y_ test, y_ pred)

rec = recall score(y_test, y pred)

f1 = f1_score(y_ test,y pred)

gmean—geometric_mean _score(y test,y pred)

mcc—matthews corrcoef(y_ test,y pred)

print ("\tprecision:%0.4{"%prec ,"\ trecall :%0.4f"%rec ,"\tFl—score:%0.4{"%f1 ,"\
tgeometric mean:%0.4 f"%gmean,"\ troc auc:%0.4 f"%auc , "\tMCC:%0.4 f "%mcc)

nmnn nnn

*xLogistic Regressionx
from sklearn.linear model import LogisticRegression
#Basic Logistic regression on raw dataset

Ir = LogisticRegression (). fit (X train, y_train)
y_pred=lr . predict (X test)

vhat=1r .predict proba (X test)

print (classification report(y_ test,y pred))

y_pred train=Ir.predict (X _train)
print (classification report(y_train,y_ pred train))

#Logistic regression random search
from sklearn.model selection import RandomizedSearchCV
param _grid={'C’:[0.1,0.3,0.7,0.9], solver’:[’lbfgs’, newton—cg’, sag’, 'saga’],
"penalty’:[ 127,711’ ’elasticnet ’, ’none’], ’class weight’
:[{0:1,1:5},{0:1,1:10} ,{0:1,1:30}]}
rs_lr=RandomizedSearchCV (LogisticRegression (max iter=1000) ,param grid,cv=5,
n_jobs=—1,verbose=True, scoring=’roc_auc’)

rs_lr.fit (X train,y train)
print (rs_lr.best params )

Ir _hyp = LogisticRegression (C=0.1,solver="saga’,penalty="12" class_ weight
={0:1,1:5} ,max_iter=1000).fit (X _train, y_train)

y_pred tr=lr hyp.predict (X train)

print (classification report(y_train,y pred tr))

y_pred=Ilr _hyp.predict (X _test)
print (classification report(y_ test,y pred))

vhat=Ir hyp.predict proba (X test)

average precision = average precision score(y_test, yhat[:,1])
Ir _pr curve = plot precision recall curve(lr _hyp, X test, y_test)
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)

Ir pr curve.ax .set title(’Precision—Recall curve:

"Avearge precision={0:0.2f}. . format (average precision))

from sklearn.metrics import roc_ curve, roc_auc_score

yvhat=Ir hyp.predict proba(X test)

false positive rate, true positive rate, threshold = roc_curve(y_ test, yhat
[:,1])

fig , ax = plt.subplots(figsize=(8,5))

plt.title ('ROC Curve for LR.’)

plt.plot(false positive rate, true positive rate)

plt.plot ([0, 1], ls="—")

plt.ylabel ('True Positive Rate’)

plt.xlabel (’False Positive Rate’)

plt .show ()

y_pred=lr _hyp.predict (X _test)

auc=roc_auc_score(y test,y pred)

prec = precision score(y_ test, y pred)

rec = recall score(y_test, y pred)

f1 = f1_score(y_ test, y_ pred)

gmean—geometric_mean _score(y test,y pred)

mcc—matthews corrcoef(y_ test,y pred)

print ("\tprecision:%0.4f"%prec ,"\ trecall :%0.4f"%rec ,"\tFl—score:%0.4{"%f1 ,"\
tgeometric mean:%0.4 f"%gmean,"\ troc auc:%0.4 f"%auc , "\tMCC:%0.4 f "%mcc)

nmnn nnn

*xLogistic Regression Bootstrap Estimatexx

estimator=LogisticRegression (C=0.1,solver="saga’,penalty="12"  class weight
={0:1,1:5} ,max_iter=1000)

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=precision score)

print (f"precision estimate on test dataset: {est:.2f}, confidence interval: [{

low:.2f}, {up:.2f}], " f"standard error: {stderr:.2f}")

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=recall score)

print (f"recall estimate on test dataset: {est:.4f}, confidence interval: [{low
:.41f}, {up:.41f}], " f"standard error: {stderr:.4f}")

est , low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=f1_score)

print (f"fl estimate on test dataset: {est:.4f}, confidence interval: [{low:.4f
t, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and _ ci(estimator, xtest, ytest,
scoring func=geometric_mean score)
print (f"Geomtric mean estimate on test dataset: {est:.4f}, confidence interval
[{low:.4f}, {up:.4f}], " f"standard error: {stderr:.4f}")
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est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=roc_auc_score)

print (f"AUC estimate on test dataset: {est:.4f}, confidence interval: [{low:.4
£}, {up:.4f}], " f"standard error: {stderr:.4f}")

est , low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=matthews corrcoef)

print (f"MCC estimate on test dataset: {est:.4f}, confidence interval: [{low:.4
£}, {up:.4£f}], " f"standard error: {stderr:.4f}")

nnn nnn

xxLogistic Regression One—Sided Samplingssx
from sklearn.linear model import LogisticRegression
Ir und = LogisticRegression (). fit (X train,y_ train)
y_pred=Ilr _und.predict (X train)

print (classification report(y train,y pred))

y_pred=Ilr _und.predict (X _test)
print (classification report(y_ test,y pred))

#Logistic regression random search

from sklearn.model selection import RandomizedSearchCV

param _grid={’C’:[0.4,0.8,1.2,1.6,2], solver’:[’1bfgs’, 'newton—cg’, ’sag’, saga’
|, 'penalty’:[’127,°117, ’elasticnet’, ’none’], class weight’
:[{0:1,1:3},{0:1,1:5},{0:1,1:10},{0:1,1:15}]}

oss_Ir=RandomizedSearchCV (LogisticRegression (max_ iter=1000) ,param grid,cv=>5,
n_jobs=—1,verbose=True, scoring=’roc_ auc’)

oss_Ir.fit (X train,y train)
print (oss Ir.best params )

from sklearn.linear model import LogisticRegression

Ir_hyp = LogisticRegression (C=0.4,solver="saga’,penalty="12" max_iter=1000,
class _weight={0:1,1:5}).fit (X train, y_train)

y_pred=lr _hyp.predict (X _test)

print (classification report(y test,y pred))

y_pred tr=lr hyp.predict (X train)

print (classification report(y_ train,y pred tr))

yvhat=Ir hyp.predict proba(X test)
average precision = average precision score(y_test, yhat[:,1])
Ir _pr curve = plot_ precision recall curve(lr_hyp, X test, y_test)

Ir pr curve.ax .set title(’Precision—Recall curve:

"Avearge precision={0:0.2f}’.format (average precision))

from sklearn.metrics import roc_ curve, roc_auc_score
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yhat=Ir hyp.predict proba(X test)

false positive rate, true positive rate, threshold = roc_curve(y test, yhat
1)

fig , ax = plt.subplots(figsize =(8,5))

plt.title ('ROC Curve for LR’)

plt.plot(false positive rate, true positive rate)

plt.plot ([0, 1], ls="—")

plt.ylabel (’True Positive Rate’)

plt.xlabel (’False Positive Rate’)

plt .show ()

y_pred=lr _hyp.predict (X _ test)

auc=roc_auc_score(y test,y pred)

prec = precision score(y_ test, y_ pred)

rec = recall score(y_test, y pred)

f1 = f1_score(y_ test, y_ pred)

gmean—geometric_mean _score(y _test,y pred)

mcc=matthews corrcoef(y test,y pred)

print ("\tprecision:%0.4f"%prec ,"\ trecall :%0.4f"%rec ,"\tFl—score:%0.4{"%f1 ,"\
tgeometric mean:%0.4 f"%gmean,"\ troc auc:%0.4 f"%auc , "\tMCC: %0.4 f "%mcc)

nnn nmnn

xx Logistic Regression Bootstrap Estimate for One-Sided Sampled Dataset xx

estimator=LogisticRegression (C=0.4,solver="saga’,penalty="12  ;max_iter=1000,
class weight ={0:1,1:5})

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=precision score)

print (f"precision estimate on test dataset: {est:.2f}, confidence interval: [{
low:.2f}, {up:.2f}], " f"standard error: {stderr:.2f}")

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=recall score)

print (f"recall estimate on test dataset: {est:.4f}, confidence interval: [{low
:.41ft}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=fl_score)

print (f"fl estimate on test dataset: {est:.4f}, confidence interval: [{low:.4f
}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=geometric_mean score)
print (f"Geomtric mean estimate on test dataset: {est:.4f}, confidence interval
[{low:.4f}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,

scoring func=roc_auc_score)

114



Appendix: Python Code

print (f"AUC estimate on test dataset: {est:.4f}, confidence interval: [{low:.4
f}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func—matthews corrcoef)

print (f"MCC estimate on test dataset: {est:.4f}, confidence interval: [{low:.4
£}, {up:.4f}], " f"standard error: {stderr:.4f}")

"""yxxRandom undersamplingss"""

Ir _rus=LogisticRegression (). fit (X train,y train)
y_pred=Ir rus.predict (X train)
print (classification report(y train,y pred))

y_pred=Ir rus.predict (X test)
print (classification report(y_ test,y pred))

from sklearn.linear model import LogisticRegression

#K-Fold cross validation

kf = StratifiedKFold(n_splits=10,shuffle=True,random state=42)

auc_score =[]

recall scor =[]

precision scor =[]

geo _score =[]

£1-[]

mce =[]

i=1

for train index ,test index in kf.split (X rus,y rus):
#print ("{} of KFold {}’.format(i,kf.n splits))

xtrain ,xtest = X _rus.iloc[train_index],X rus.iloc[test index|]
ytrain ,ytest = y_rus.iloc[train_ index],y_rus.iloc|[test index]
#model

Ir_rus=LogisticRegression (). fit (xtrain ,ytrain)

score = roc_auc_score(ytest ,Ir rus.predict(xtest))
scorel = recall score(ytest ,lr rus.predict(xtest))
score2 = precision score(ytest ,lr rus.predict(xtest))

score3=geometric_mean_score(ytest ,lr_rus.predict (xtest))
scored=f1 score(ytest ,lr rus.predict(xtest))

scoreb=matthews_corrcoef(ytest ,lr_rus.predict (xtest))

auc_score.append(score)

recall scor.append(scorel)
precision scor.append(score?2)
geo score.append(score3d)
f1.append(scored)
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mcc. append (scored)
i+=1

print ("\tprecision:%0.4f"%mean(precision_scor),"\trecall:%0.4f"%mean (
recall _scor) ,"\tFl-score:%0.4{"%mean(f1l),"\tgeometric mean:%0.4f"%mean (
geo_score) ,"\troc auc:%0.4f"%mean(auc_score) ,"\tMCC:%0.4 f "%mean (mcc) )

"y «SMOTE and TomekLinksx"""

from sklearn.linear model import LogisticRegression
Ir smote=LogisticRegression (). fit (X _ train,y train)
y_pred=Ir smote.predict (X train)

print (classification report(y train,y pred))

y_pred=lr smote.predict (X _test)
print (classification report(y_ test,y pred))

y_pred=Ilr smote.predict (X _test)

auc=roc_auc_score(y test,y pred)

prec = precision score(y_ test, y_ pred)

rec = recall score(y_test, y pred)

f1 = f1 score(y_ test, y_ pred)

gmean=geometric_mean _score(y test,y pred)

mcc=matthews corrcoef(y test,y pred)

print ("\tprecision:%0.4f"%prec ,"\trecall :%0.4{"%rec ,"\tFl—-score:%0.4{"%f1 ,"\
tgeometric mean:%0.4f"%gmean,"\troc auc:%0.4f"%auc, " \tMCC: %0.4 f "%mcc)

mnn nnn

xx Decision Treesx*x

from sklearn.tree import DecisionTreeClassifier
dt=DecisionTreeClassifier ()

dt. fit (X train,y train)
y_pred=dt.predict (X _test)
yvhat=dt.predict proba (X test)

print (classification report(y_ test,y pred))

#Decision tree is overfitting
y_pred t=dt.predict (X _ train)

print (classification report(y_ train,y pred t))

from sklearn.model selection import RandomizedSearchCV

7 7 ?

param _grid={’criterion’:[ ’gini’, entropy’], min_ samples split’:[1,3,5,8],
min_ samples leaf’:[3,6,9,12]}

grid _dt= RandomizedSearchCV (dt,param grid,scoring=’roc_auc’,verbose=True,cv=5,
n_jobs=-1)

best dt=grid dt.fit (X train,y train)
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print (best dt.best params )

dt _hyp=DecisionTreeClassifier (criterion="entropy’,min_samples split=5,
min_samples leaf=12)

dt_hyp.fit (X train,y train)

y_pred=dt_ hyp.predict (X test)

yhat=dt_ hyp.predict proba (X test)

#There is an increase in precision and recall

print (classification report(y test,y pred))

y_pred tr=dt hyp.predict (X train)

print (classification report(y_train,y pred tr))

vhat=dt_ hyp.predict proba (X test)

average precision = average precision score(y_test, yhat[:,1])
dthyp pr_ curve = plot precision recall curve(dt_hyp, X test, y test)
dthyp pr_ curve.ax .set title(’Precision—Recall curve: ~’

"Avearge precision={0:0.2f}’.format (average_precision))

from sklearn.metrics import roc_curve, roc_auc_score

false positive rate, true positive rate, threshold = roc_curve(y test, yhat
[ ,1])

fig , ax = plt.subplots(figsize=(8,5))

plt.title ('ROC Curve for Decision tree’)

plt.plot(false positive rate, true positive rate)

plt.plot ([0, 1], ls="—")

plt.ylabel ('True Positive Rate’)

plt.xlabel (’False Positive Rate’)

plt .show ()

#Test dataset

yvhat=dt hyp.predict (X test)

auc=roc_auc_score(y test, yhat)

prec = precision score(y_ test, y_ pred)

rec = recall score(y_test, y pred)

f1 = f1_score(y_ test, y_ pred)

gmean—geometric _mean _score(y test,y pred)

mcc—matthews corrcoef(y_ test,y pred)

print ("\tprecision:%0.4{"%prec ,"\ trecall :%0.4f"%rec ,"\tFl—score:%0.4{"%f1 ,"\
tgeometric mean:%0.4f"%gmean,"\troc auc:%0.4f"%auc, " \tMCC: %0.4 f "%mcc)

"""yxDecision Tree Bootstrap Estimatexx"""

estimator=DecisionTreeClassifier (criterion="gini’ ,min_samples split=10,
min_samples leaf=5)
est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,

scoring func=precision score)
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print (f"Precision estimate on test dataset: {est:.4f}, confidence interval: [{
low:.4f}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=recall score)

print (f"recall estimate on test dataset: {est:.4f}, confidence interval: [{low
:.41ft}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=f1_ score)

print (f"fl estimate on test dataset: {est:.4f}, confidence interval: [{low:.4f
}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=geometric_mean score)

print (f{"geometric mean estimate on test dataset: {est:.4f}, confidence
interval: [{low:.4f}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=roc_auc_score)

print (f"roc auc estimate on test dataset: {est:.4f}, confidence interval: [{
low:.4f}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=matthews corrcoef)

print (f"MCC estimate on test dataset: {est:.4f}, confidence interval: [{low:.4
£}, {up:.4f}], " f"standard error: {stderr:.4f}")

mnn mnn

¥k Decision Tree for One—Sided Samplingsx

from sklearn.tree import DecisionTreeClassifier
dt_bal=DecisionTreeClassifier (). fit (X train,y train)
yhat=dt bal.predict (X _train)

print (classification report(y_train,yhat))

y_pred=dt_bal.predict (X _test)
print (classification report(y test,y pred))

from sklearn.model selection import RandomizedSearchCV

)

param grid={’criterion ’:[’gini’, entropy’], 'max depth’:[3,5,7,9],’
min_samples split’:[2,4,6], ’min_samples leaf’:[1,3,5]}

grid _dt= RandomizedSearchCV (dt_ bal ,param grid,scoring="roc_auc’,verbose=True,
cv=5,n_jobs=—1)

best dt=grid dt.fit (X train,y train)

print (best dt.best params )
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dt _hyp=DecisionTreeClassifier (criterion="gini’,min_samples split=6,
min_samples leaf=>5max_depth=9)

dt _hyp.fit (X train,y train)

y_pred=dt hyp.predict (X _test)

yvhat=dt_hyp.predict proba (X test)

#There is an increase in precision and recall

print (classification report(y_ test,y pred))

y_pred tr=dt hyp.predict (X train)
print (classification report(y _ train,y pred tr))

yhat=dt_ hyp.predict proba (X test)

average precision = average precision score(y_test, yhat[:,1])

dthyp pr_curve = plot precision recall curve(dt_hyp, X test, y_ test)
)

dthyp pr_ curve.ax .set title(’Precision—Recall curve:

"Avearge precision={0:0.2f}’.format (average_precision))

from sklearn.metrics import roc_curve, roc_auc_score

false positive rate, true positive rate, threshold = roc_curve(y test, yhat
1)

fig , ax = plt.subplots(figsize =(8,5))

plt.title ('ROC Curve for Decision tree’)

plt.plot (false positive rate, true positive rate)

plt.plot ([0, 1], 1s="—")

plt.ylabel (’True Positive Rate’)

plt.xlabel (’False Positive Rate’)

plt .show ()

#Test dataset

vhat=dt_ hyp.predict (X test)

auc=roc_auc_score(y test, yhat)

prec = precision score(y_ test, y_ pred)

rec = recall score(y_test, y pred)

f1 = f1 score(y_ test, y_ pred)

gmean=geometric_mean _score(y test,y pred)

mcc=matthews corrcoef(y test,y pred)

print ("\tprecision:%0.4f"%prec ,"\trecall :%0.4{"%rec ,"\tFl-score:%0.4{"%f1 ,"\
tgeometric mean:%0.4f"%gmean,"\troc auc:%0.4f"%auc, " \tMCC:%0.4 f "%mcc)

"""w«xDecision Tree Bootstrap Point Estimate for One—Sided Sampled Datasetsx"""

estimator=DecisionTreeClassifier (criterion="gini’ ,min_samples split=6,
min _samples leaf=5 max depth=9)

est, low, up, stderr = bootstrap estimate and_ ci(estimator, xtest, ytest,
scoring func=precision score)

print (f"Precision estimate on test dataset: {est:.4f}, confidence interval: [{
low:.4f}, {up:.4f}], " f"standard error: {stderr:.4f}")
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est , low, up, stderr = bootstrap estimate and _ ci(estimator, xtest, ytest,
scoring func=recall score)

print (f"recall estimate on test dataset: {est:.4f}, confidence interval: [{low
241}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=fl_ score)

print (f"fl estimate on test dataset: {est:.4f}, confidence interval: [{low:.4f
}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and _ ci(estimator, xtest, ytest,
scoring func=geometric_mean score)

print (f"geometric mean estimate on test dataset: {est:.4f}, confidence
interval: [{low:.4f}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and _ ci(estimator, xtest, ytest,
scoring func=roc_auc_score)

print (f"roc auc estimate on test dataset: {est:.4f}, confidence interval: [{
low:.4f}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=matthews corrcoef)

print (f"MCC estimate on test dataset: {est:.4f}, confidence interval: [{low:.4
f}, {up:.4f}], " f"standard error: {stderr:.4f}")

"""yxRandom undersamplingsx"""

dt_rus=DecisionTreeClassifier (). fit (X _train,y_train)
yhat=dt rus.predict (X _ train)
print (classification report(y_train,yhat))

y_pred=dt rus.predict (X test)
print (classification report(y_ test,y pred))

from sklearn.tree import DecisionTreeClassifier
#K-Fold cross validation
kf = StratifiedKFold (n_splits=10,shuffle=True,random state=42)
auc_score —[]
recall scor =[]
precision _scor =[]
geo _score =[]
£1-[]
mce =[]
i=1
for train index ,test index in kf.split (X rus,y rus):
#print ('{} of KFold {}’.format(i,kf.n_splits))
xtrain ,xtest = X _rus.iloc[train_ index],X rus.iloc[test index|]
ytrain ,ytest = y_rus.iloc[train index],y_ rus.iloc[test index]
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#model

dt _rus=DecisionTreeClassifier (). fit (xtrain, ytrain)
score = roc_auc_score(ytest ,dt_ rus.predict (xtest))
scorel = recall score(ytest ,dt_ rus.predict(xtest))
score2 = precision score(ytest ,dt rus.predict(xtest))

score3=geometric_mean_score(ytest ,dt_rus.predict (xtest))
scored=f1_ score(ytest ,dt rus.predict(xtest))

scoreb=matthews corrcoef(ytest ,dt rus.predict(xtest))

auc_score.append(score)

recall scor.append(scorel)
precision scor.append(score2)
geo score.append(score3d)
f1.append(scored)

mcc. append (scored)
i+=1

print ("\tprecision:%0.4f"%mean(precision_scor),"\trecall:%0.4f"%mean (
recall _scor) ,"\tFl-score:%0.4{"%mean(f1l),"\tgeometric mean:%0.4f"%mean (
geo_score) ,"\troc auc:%0.4f"%mean (auc_score) ,"\tMCC:%0.4 f "%mean (mcc) )

y_pred=dt_ rus.predict (X test)

auc=roc_auc_score(y_ test,y pred)

prec = precision score(y_ test, y_ pred)

rec = recall score(y_test, y pred)

f1 = f1_score(y_ test, y_ pred)

gmean=geometric_mean _score(y test,y pred)

mcc=matthews corrcoef(y test,y pred)

print ("\tprecision:%0.4{"%prec ,"\ trecall :%0.4f"%rec ,"\tFl—score:%0.4 {"%f1 ,"\
tgeometric mean:%0.4f"%gmean,"\troc auc:%0.4f"%auc,"\tMCC: %0.4 f "%mcc)

"y «SMOTE and TomekLinkxx"""

from sklearn.tree import DecisionTreeClassifier

dt _smote=DecisionTreeClassifier (). fit (X_train,y_train)
yhat=dt smote.predict (X train)

print (classification report(y_train,yhat))

y_pred=dt smote.predict (X _test)
print (classification report(y_ test,y pred))

y_pred=dt smote.predict (X _test)

auc=roc_auc_score(y test,y pred)
prec = precision score(y_ test, y_ pred)
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rec = recall score(y_test, y pred)

f1 = f1_score(y_ test, y_ pred)

gmean=geometric_mean _score(y test,y pred)

mcc=matthews corrcoef(y test,y pred)

print ("\tprecision:%0.4f"%prec ,"\ trecall :%0.4f"%rec ,"\tFl—score:%0.4 {"%f1 ,"\
tgeometric mean:%0.4f"%gmean,"\troc auc:%0.4f"%auc, " \tMCC: %0.4 f "%mcc)

mnn

xx Multilayer Perceptronxx

mnn

from sklearn.neural network import MLPClassifier
mpc=MLP Classifier (). fit (X_train,y_train)
y _hat=mpc. predict (X _train)

print (classification report(y_ train,y hat))

y_mpc=mpc. predict (X _test)
print (classification report(y _test,y mpc))

from sklearn.model selection import RandomizedSearchCV
defining parameter range
param_grid = {
"hidden layer sizes’: [(10,30,10),(20,)],

“activation’: [’tanh’, ’relu’],

"solver’: [’sgd’, ’adam’],

"alpha’: [0.01,0.03, 0.05],

"learning rate’: [’constant’,’adaptive’]}

rs_mpc=RandomizedSearchCV ( MLP Classifier (), param grid,scoring="roc_auc’,
verbose=True,cv=5,n_jobs=—1)
best mpc=rs mpc. fit (X _ train,y train)

print (best _mpc.best params )

from sklearn.neural network import MLPClassifier

mpc_hyp—=MLP Classifier (activation="relu" ,alpha=0.03,learning rate="adaptive",
hidden layer sizes=(10,30,10),solver="adam")

mpc_hyp. fit (X train,y train)

yvhat=mpc_ hyp.predict proba (X test)

#There is an increase in precision and recall
y_pred train=mpc_hyp.predict (X train)

print (classification report(y_ train,y pred train))

y_pred=mpc_hyp.predict (X _test)
print (classification report(y test,y pred))
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yhat=mpc_ hyp.predict proba (X test)
average precision = average precision score(y_test, yhat[:,1])
mpchyp pr_curve = plot precision recall curve(mpc hyp, X test, y_ test)

mpchyp pr_curve.ax .set title( Precision—Recall curve:

"Avearge precision={0:0.2f}’.format (average_precision))

from sklearn.metrics import roc_curve, roc_auc_score

false positive rate, true positive rate, threshold = roc_curve(y test, yhat
[, 1])

fig , ax = plt.subplots(figsize=(8,5))

plt.title ('ROC Curve for Multilayer perceptron’)

plt.plot(false positive rate, true positive rate)

plt.plot ([0, 1], ls="—")

plt.ylabel (’True Positive Rate’)

plt.xlabel (’False Positive Rate’)

plt .show ()

#Test dataset from the model

auc=roc_auc_score(y_ test, mpc hyp.predict (X test))

prec = precision score(y_ test, mpc hyp.predict (X test))
rec = recall score(y_test, mpc hyp.predict (X test))

f1 = f1 score(y_test, mpc hyp.predict (X _ test))
gmean=geometric_mean _score(y test ,mpc_hyp.predict (X test))
mcc=matthews corrcoef(y test ,mpc hyp.predict (X test))

print ("\tprecision:%0.4f"%prec ,"\ trecall :%0.4f"%rec ,"\tFl—score:%0.4 {"%f1 ,"\
tgeometric mean:%0.4f"%gmean,"\troc auc:%0.4f"%auc, " \tMCC:%0.4 f "%mcc)

""MyxMultilayer Perceptron Bootstrap Estimatesxx

nnn

mpc_hyp=MLP Classifier (activation="relu"  jalpha=0.03,learning rate="adaptive",
hidden layer sizes=(10,30,10),solver="adam")

est, low, up, stderr = bootstrap estimate and_ ci(mpc_ hyp, xtest, ytest,
scoring func=precision score)

print (f"precision estimate on test dataset: {est:.4f}, confidence interval: [{
low:.4f}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and_ ci(mpc_ hyp, xtest, ytest,
scoring func=recall score)

print (f"recall estimate on test dataset: {est:.4f}, confidence interval: [{low
:.41f}, {up:.41f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and_ci(mpc_hyp, xtest, ytest,

scoring func=fl_score)
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print (f"fl estimate on test dataset: {est:.4f}, confidence interval: [{low:.4f
Y, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(mpc hyp, xtest, ytest,
scoring func—=geometric_mean score)

print (f{"geometric mean estimate on test dataset: {est:.4f}, confidence
interval: [{low:.4f}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(mpc hyp, xtest, ytest,
scoring func=roc_auc_score)

print (f"roc auc estimate on test dataset: {est:.4f}, confidence interval: [{
low:.4f}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(mpc_ hyp, xtest, ytest,
scoring func=matthews corrcoef)

print (f"MCC estimate on test dataset: {est:.4f}, confidence interval: [{low:.4
£}, {up:.4f}], " f"standard error: {stderr:.4f}")

""yxMultilayer Perceptron One Sided Samplingssx

nnn

from sklearn.neural network import MLPClassifier
mpc_bal=MLP Classifier (). fit (X _train,y train)
yhat=mpc_bal. predict (X _train)

print (classification report(y_train,yhat))

yhat=mpc bal.predict (X _test)
print (classification report(y_test,yhat))

from sklearn.model selection import RandomizedSearchCV
defining parameter range
param _grid = {
"hidden layer sizes’: [(10,30,10) ,(20,)],

“activation’: [’tanh’, ’relu’],

"solver’: [’sgd’, ’adam’],

"alpha’: [0.01,0.03, 0.05],

"learning rate’: [’constant’,’adaptive’]}

rs_mpc=RandomizedSearchCV ( MLP Classifier (), param grid,scoring=’'roc_ auc’,
verbose=True,cv=5,n_jobs=—1)
best mpc=rs_mpc. fit (X train,y train)

print (best _mpc.best params )
from sklearn.neural network import MLPClassifier

mpc_hyp=MLP Classifier (activation="relu" ,alpha=0.01,learning rate="constant",

hidden layer sizes=(20,),solver="adam")
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mpc_hyp. fit (X train,y train)
yhat=mpc_ hyp.predict proba (X test)

#There is an increase in precision and recall
y_pred train—mpc_hyp.predict (X _train)

print (classification report(y_train,y pred train))

y_pred=mpc_hyp.predict (X _test)
print (classification report(y test,y pred))

yhat=mpc_ hyp.predict proba (X test)

average precision = average precision_ score(y_ test, yhat[:,1])

mpchyp pr_curve = plot precision recall curve(mpc hyp, X test, y_ test)
)

mpchyp pr_curve.ax .set title( Precision—Recall curve:

"Avearge precision ={0:0.2f}’.format (average precision))

from sklearn.metrics import roc_curve, roc_auc_score

false positive rate, true positive rate, threshold = roc_curve(y_ test, yhat
1)

fig , ax = plt.subplots(figsize=(8,5))

plt.title ('ROC Curve for Multilayer perceptron’)

plt.plot(false positive rate, true positive rate)

plt.plot ([0, 1], ls="—")

plt.ylabel (’True Positive Rate’)

plt.xlabel (’False Positive Rate’)

plt .show ()

#Test dataset from the model

auc=roc_auc_score(y_ test, mpc hyp.predict (X test))

prec = precision score(y_ test, mpc hyp.predict (X test))

rec = recall score(y_test, mpc hyp.predict (X test))

f1 = f1_score(y_ test, mpc hyp.predict (X test))

gmean—geometric_mean _score(y test ,mpc_hyp.predict (X test))

mcc=matthews corrcoef(y test ,mpc hyp.predict (X test))

print ("\tprecision:%0.4f"%prec ,"\ trecall :%0.4f"%rec ,"\tFl—score:%0.4{"%f1 ,"\
tgeometric mean:%0.4 f"%gmean,"\ troc auc:%0.4 f"%auc , "\tMCC: %0.4 f "%mcc)

""yxMLP Bootstrap Point Estimate for One-Sided Sampllingsx"""

mpc_hyp=MLP Classifier (activation="relu"  jalpha=0.01,learning rate="constant",
hidden layer sizes=(20,),solver="adam")

est, low, up, stderr = bootstrap estimate and ci(mpc hyp, xtest, ytest,
scoring func=precision score)

print (f"precision estimate on test dataset: {est:.4f}, confidence interval: [{
low:.4f}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and_ ci(mpc_ hyp, xtest, ytest,

scoring func=recall score)

125



Appendix: Python Code

print (f"recall estimate on test dataset: {est:.4f}, confidence interval: [{low
241}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(mpc hyp, xtest, ytest,
scoring func=fl_ score)

print (f"fl estimate on test dataset: {est:.4f}, confidence interval: [{low:.4f
}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(mpc hyp, xtest, ytest,
scoring func=geometric_mean score)

print (f{"geometric mean estimate on test dataset: {est:.4f}, confidence
interval: [{low:.4f}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(mpc_ hyp, xtest, ytest,
scoring func=roc_auc_score)

print (f"roc auc estimate on test dataset: {est:.4f}, confidence interval: [{
low:.4f}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and_ci(mpc_ hyp, xtest, ytest,
scoring func=matthews corrcoef)

print (f"MCC estimate on test dataset: {est:.4f}, confidence interval: [{low:.4
£}, {up:.4f}], " f"standard error: {stderr:.4f}")

""MyxRandom undersamplingsx"""

X train, X test,y train,y test=train_ test split(X rus,y rus,test size=0.3,

stratify=y_ rus,random state—42)

mpc_rus=MLP Classifier (). fit (X _train,y_train)
yhat=mpc_rus.predict (X _train)
print (classification report(y _train,yhat))

y_hat=mpc_rus.predict (X _test)
print (classification report(y_test,y hat))

from sklearn.neural network import MLPClassifier
#K—Fold cross validation
kf = StratifiedKFold (n_splits=10,shuffle=True,random state—42)
auc_score =[]
recall scor =[]
precision _scor =[]
geo _score =[]
f1=|]
mce =]
i=1
for train_ index ,test index in kf.split (X _rus,y rus):
#print ('{} of KFold {}’.format(i,kf.n_ splits))
xtrain ,xtest = X _rus.iloc[train_ index],X rus.iloc[test index]
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ytrain ,ytest = y rus.iloc[train_ index],y rus.iloc[test index]

#model

mpc_rus=MLP Classifier (). fit (xtrain , ytrain)

score — roc_auc_score(ytest ,mpc_rus.predict (xtest))
scorel = recall score(ytest ,mpc_rus.predict (xtest))
score2 = precision score(ytest ,mpc_rus.predict (xtest))

score3=geometric_mean_score(ytest ,mpc_rus.predict (xtest))
scored=f1 score(ytest ,mpc_rus.predict (xtest))
scoreb=matthews corrcoef(ytest ,mpc_rus.predict(xtest))

auc_score.append(score)

recall scor.append(scorel)
precision scor.append(score2)
geo_score.append(score3)
f1.append(scored)

mcc. append (scored)

i+=1

print ("\tprecision:%0.4f"%mean(precision_scor),"\trecall:%0.4f"%mean (
recall scor) ,"\tFl—score:%0.4{"%mean(f1) ,"\tgeometric mean:%0.4 f"%mean (
geo_score) ,"\troc auc:%0.4f"%mean(auc_score) ,"\tMCC:%0.4 { "%mean (mcc) )

" xSMOTE and TomekLinkxx"""

from sklearn.neural network import MLPClassifier
mpc_smote=MLP Classifier (). fit (X _train,y train)
yvhat=mpc_ smote. predict (X train)

print (classification report(y _train,yhat))

y _hat=mpc_smote. predict (X _test)
print (classification report(y_test,y hat))

auc=roc_auc_score(y_ test, y hat)

prec — precision_score(y_test,y hat)

rec = recall score(y_ test, y hat)

f1 = f1 score(y_test,y hat)

gmean=geometric_mean _score(y test,y hat)

mcc=matthews corrcoef(y test,y hat)

print ("\tprecision:%0.4f"%prec,"\trecall :%0.4f"%rec ,"\tFl—score:%0.4{"%f1,"\
tgeometric mean:%0.4 f"%gmean,"\troc auc:%0.4f"%auc, " \tMCC: %0.4 f "%mcc)

mnn
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xx Principal Component Analysis (Feature Extraction)sxx

nnn

#Using elbow—plot variance/dimensions
from sklearn.decomposition import PCA
pca = PCA()

pca. fit (X _train)

cumsum = np.cumsum (pca.explained variance ratio )*100

d = [n for n in range(len (cumsum)) |
plt . figure(figsize=(6, 6))
plt.plot (d,cumsum, color = ’red’,label="cumulative explained variance’)

plt.title (’Cumulative Explained Variance as\n a Function of the Number of
Components. ”)

plt.ylabel (’Cumulative Explained variance’)

plt.xlabel (’Principal components’)

)

plt.axhline(y = 95, color="k’, linestyle="—-", label = ’95% Explained Variance
")

plt.legend (loc="best )

from sklearn.model selection import RandomizedSearchCV
defining parameter range

n_components=[x for x in range(1,31)]

param_grid = {’n_components’:n_components}

rs_pca = RandomizedSearchCV (PCA() ,param grid, scoring=’recall’, verbose = 2,
n_jobs=—1, cv=5)

rs_pca.fit (X _ train)

print (rs_pca.best params )

pca = PCA(n_components=17)

X train pca = pca.fit transform (X train)

X test _pca = pca.transform (X test)

y=pd.concat ([y_ train,y test])

print (’Variance explained is ratio {}%’.format (((pca.explained variance ratio
).sum()).round (4)))

X train_pca.shape

mnn nnn

xxSupport Vector Machinesxx

#lmport svm model

from sklearn import svm

#Create a svm Classifier

svim_clf = svm.SVC()

#Train the model using the training sets

svm_clf .fit (X train pca, y_train)
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y_pred=svm _clf.predict (X test pca)
print (classification report(y test,y pred))

y_pred tr=svm clf.predict (X train pca)

print (classification report(y_train,y pred tr))

from sklearn.model selection import RandomizedSearchCV
defining parameter range
param_grid = {’C’:[ 0.8,0.85,0.9,0.95], kernel’:[’linear’, ’rbf’, ’poly’,’
sigmoid ’]}
rs_svm — RandomizedSearchCV (svm.SVC(max iter=200, tol=2,probability=True),
param _grid, scoring=’roc_auc’, verbose = True, n_jobs=-1, cv=5)

rs_svm. fit (X _train_pca, y_train)
print (rs_svm.best params )

from sklearn import svm

svm_hyp=svmm.SVC(C=0.95,kernel="rbf’ ;max_iter=200, tol=2,probability=True). fit (
X train_pca,y_train)

#Predict the response for test dataset

y_pred = svimn_hyp.predict proba (X test pca)

y_hat=svmm_ hyp.predict (X _test pca)

print (classification report(y_test,y hat))

#Predict the response for train dataset
y_pred tr = svin_hyp.predict (X train_ pca)

print (classification report(y_train,y pred tr))

average precision = average precision score(y_ test, y pred[:,1])
svmm_pr_curve = plot precision recall curve(svin_hyp, X test pca, y_test)
svmm_pr_curve.ax_ .set title(’Precision—Recall curve: °’

"Avearge precision —={0:0.2f}’.format (average precision))

from sklearn.metrics import roc_curve, roc_auc_score
prob=svmm_hyp.predict proba (X test pca)[:,1]

false positive rate, true positive rate, threshold = roc_curve(y_ test, prob)
fig , ax = plt.subplots(figsize=(8,5))

plt.title ('ROC Curve for SVM’)

plt.plot(false positive rate, true positive rate)

plt.plot ([0, 1], ls="—")

plt.ylabel (’True Positive Rate’)

plt.xlabel (’False Positive Rate’)

plt .show ()

y_hat=svmm_ hyp.predict (X _test pca)
auc=roc_auc_score(y test,y hat)

prec = precision score(y_ test, y_ hat)
rec = recall score(y_ test, y hat)
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f1 = f1 score(y_test,y hat)

gmean=geometric_mean _score(y test,y hat)

mcc=matthews corrcoef(y test,y hat)

print ("\tprecision:%0.4f"%prec ,"\trecall :%0.4f"%rec ,"\tFl—-score:%0.4{"%f1 ,"\
tgeometric mean:%0.4f"%gmean,"\troc auc:%0.4f"%auc, " \tMCC:%0.4 f "%mcc)

"""««xSVM bootstrap estimatesxx"""

xtest=X test pca
ytest—y test.values /Make it an array
ytest

Calculate a bootstrap estimate for recall and a 95% confidence interval
estimator=svin.SVC(C=0.9,kernel="rbf’ max iter=200, tol=2,probability=True)
est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,

scoring func=precision score)
print (f"precision estimate on test dataset: {est:.4f}, confidence interval: [{
low:.4f}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=recall score)

print (f"recall estimate on test dataset: {est:.4f}, confidence interval: [{low
:.41ft}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=fl_ score)

print (f"fl estimate on test dataset: {est:.4f}, confidence interval: [{low:.4f
}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=geometric_mean score)

print (f"geometric mean estimate on test dataset: {est:.4f}, confidence
interval: [{low:.4f}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=roc_auc_score)

print (f"AUC estimate on test dataset: {est:.4f}, confidence interval: [{low:.4
£}, {up:.4f}], " f"standard error: {stderr:.4f}")

est , low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=matthews corrcoef)

print (f"MCC estimate on test dataset: {est:.4f}, confidence interval: [{low:.4
f}, {up:.4£f}], " f"standard error: {stderr:.4f}")

nmnn nnn

¥xRandom Undersampling with SVMsx

from imblearn.under sampling import RandomUnderSampler
X=creditdata normalized .drop(’ Class’,axis=1)
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y=creditdata_normalized [’ Class ]
rus = RandomUnderSampler (random state=42)

X rus, y_rus= rus.fit resample(X, y)

from sklearn import svm
X train, X test, y train, y test=train_ test split(X rus,y rus,test size=0.3,
stratify=y rus, random state=42)

svm_bal=svm.SVC(kernel="linear’ ,probability=True). fit (X train,y train)

yvhat=svin_bal.predict (X train)

print (classification report(y_train,yhat))

yhat=svm bal.predict (X test)
print (classification report(y_ test,yhat))

nnn

xxK-—nearest neighbor (KNN) xx

nnmn

from sklearn.neighbors import KNeighborsClassifier
knn=KNeighborsClassifier (). fit (X _train_pca,y train)
y_pred=knn.predict (X test pca)

print (classification report(y_ test,y pred))
y_tr=knn.predict (X train pca)

print (classification report(y_ train,y tr))
"y« KNN Random Searchss"""

Knn rs search
from sklearn.model selection import RandomizedSearchCV
n_neighbors=[i for i in range(2,9)]
p=[1,2]
param _grid={’n_neighbors’:n_neighbors, 'p’:p}
rs_knn=RandomizedSearchCV (KNeighborsClassifier () ,param _grid,cv=>5,n_jobs=—1,
verbose=True, scoring=’'roc_auc’)

best knn=rs knn.fit (X _ train pca,y train)
print (best knn.best params )
from sklearn.neighbors import KNeighborsClassifier

knn _hyp = KNeighborsClassifier (n_neighbors=6,p=1).fit (X train_ pca,y train)
predict=knn hyp.predict (X _ test pca)
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#yhat=knn hyp.predict proba(X test)

print (classification report(y test,predict))
predict train=knn hyp.predict (X _ train_ pca)

print (classification report(y_ train,predict train))
Knn_ hat=knn hyp.predict proba(X test pca)[:,1]

average precision = average precision score(y_ test, Knn hat)
knn pr_ curve = plot_ precision recall curve(knn hyp, X test pca, y_ test)

knn pr_ curve.ax .set title(’Precision—Recall curve:

"Avearge precision={0:0.2f}’.format (average precision))

from sklearn.metrics import roc_ curve, roc_auc_score

false positive rate, true positive rate, threshold = roc_curve(y_ test, Knn hat
)

fig , ax = plt.subplots(figsize=(8,5))

plt.title ('ROC Curve for KNN’)

plt.plot (false positive rate, true positive rate)

plt.plot ([0, 1], ls="—")

plt.ylabel ('True Positive Rate’)

plt.xlabel (’False Positive Rate’)

plt .show ()

#Test dataset

auc=roc_auc_score(y_test,predict)

prec = precision_score(y_ test, predict)

rec = recall score(y_test, predict)

f1 = f1_score(y_test, predict)

gmean=geometric_mean _score(y test,predict)

mcc=matthews corrcoef(y test,predict)

print ("\tprecision:%0.4{"%prec ,"\ trecall :%0.4f"%rec ,"\tFl—score:%0.4 {"%f1 ,"\
tgeometric mean:%0.4f"%gmean,"\troc auc:%0.4f"%auc,"\tMCC: %0.4 f "%mcc)

"""y«xKNN Bootstrap Estimatesxx"""

xtest=X _test pca

ytest=y test.values

Calculate a bootstrap estimate for recall and a 95% confidence interval

estimator=KNeighborsClassifier (n_neighbors = 5,p=2)

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=precision score)

print (f"precision estimate on test dataset: {est:.4f}, confidence interval: [{
low:.4f}, {up:.4f}], " f"standard error: {stderr:.4f}")
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est , low, up, stderr = bootstrap estimate and _ ci(estimator, xtest, ytest,
scoring func=recall score)

print (f"recall estimate on test dataset: {est:.4f}, confidence interval: [{low
241}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=fl_ score)

print (f"fl estimate on test dataset: {est:.4f}, confidence interval: [{low:.4f
}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and _ ci(estimator, xtest, ytest,
scoring func=geometric_mean score)

print (f"geometric mean estimate on test dataset: {est:.4f}, confidence
interval: [{low:.4f}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and _ ci(estimator, xtest, ytest,
scoring func=roc_auc_score)

print (f"roc_auc estimate on test dataset: {est:.4f}, confidence interval: [{
low:.4f}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=matthews corrcoef)

print (f"MCC estimate on test dataset: {est:.4f}, confidence interval: [{low:.4
f}, {up:.4f}], " f"standard error: {stderr:.4f}")

""yxRandom Undersampling with kNNxx"""

knn=KNeighborsClassifier (). fit (X _train,y_train)
y_pred=knn. predict (X train)
print (classification report(y train,y pred))

y_pred=knn.predict (X test)
print (classification report(y_ test,y pred))

mnn

Logistic Regression

mnn

from sklearn.linear model import LogisticRegression
#Basic Logistic regression on raw dataset

lr = LogisticRegression (). fit (X train pca, y_train)
y_pred=lr .predict (X test pca)

yvhat=Ir .predict proba (X test pca)

print (classification report(y test,y pred))
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y_pred train=Ir.predict (X _ train_ pca)
print (classification report(y_train,y_ pred train))

#Logistic regression random search

from sklearn.model selection import RandomizedSearchCV

param _grid={'C’:[0.1,0.3,0.5,0.7,0.9], solver’:[’lbfgs’, newton—cg’, ’sag’,’
saga’], ’penalty’:[’127,’117, elasticnet’, ’none’], class weight’
:[{0:1,1:3},{0:1,1:5},{0:1,1:8},{0:1,1:10}]}

rs _lr=RandomizedSearchCV (LogisticRegression (max iter=1000) ,param _grid,cv=5,
n_jobs=—1,verbose=True, scoring=’roc_auc’)

rs_lr.fit (X _train pca,y train)
print (rs_lr.best params )

from sklearn.linear model import LogisticRegression

Ir_hyp = LogisticRegression (C=0.1,solver="newton—cg’,penalty="12"’ jmax_iter
=1000,class_weight ={0:1,1:5}) . fit (X_train_pca, y_train)

y_pred=lr _hyp.predict (X _test pca)

print (classification report(y_ test,y pred))

y_pred tr=lr hyp.predict (X _train pca)

print (classification report(y_train,y pred_ tr))

vhat=Ir hyp.predict proba (X _ test pca)
average precision = average precision score(y_test, yhat[:,1])
Ir _pr curve = plot_ precision recall curve(lr _hyp, X test pca, y_ test)

Ir _pr curve.ax .set title(’Precision—Recall curve:

"Avearge precision={0:0.2f}’.format (average_precision))

from sklearn.metrics import roc_curve, roc_auc_score

vhat=Ir hyp.predict proba (X test pca)

false positive rate, true positive rate, threshold = roc_curve(y test, yhat
[ ,1])

fig , ax = plt.subplots(figsize=(8,5))

plt.title ('ROC Curve for LR’)

plt.plot(false positive rate, true positive rate)

plt.plot ([0, 1], ls="—")

plt.ylabel ('True Positive Rate’)

plt.xlabel (’False Positive Rate’)

plt .show ()

y_pred=Ilr _hyp.predict (X _test pca)
auc=roc_auc_score(y test,y pred)

prec = precision score(y_ test, y_ pred)
rec = recall score(y_test, y pred)

f1 = f1_score(y_ test, y_ pred)
gmean=geometric_mean _score(y test,y pred)
mcc=matthews corrcoef(y test,y pred)
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print ("\tprecision:%0.4f"%prec ,"\ trecall :%0.4f"%rec ,"\tFl—score:%0.4{"%f1 ,"\
tgeometric mean:%0.4f"%gmean,"\troc auc:%0.4f"%auc,"\tMCC:%0.4 f "%mcc)

nnn nnn

*xLogistic regression Bootstrap Estimatexx

estimator=LogisticRegression (C=0.1,solver="newton—cg’,penalty="12" max_iter
=1000,class_weight ={0:1,1:5})

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=precision score)

print (f"precision estimate on test dataset: {est:.2f}, confidence interval: [{
low:.2f}, {up:.2f}], " f"standard error: {stderr:.2f}")

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=recall score)

print (f"recall estimate on test dataset: {est:.4f}, confidence interval: [{low
:.41f}, {up:.41f}], " f"standard error: {stderr:.4f}")

est , low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=f1_score)

print (f"fl estimate on test dataset: {est:.4f}, confidence interval: [{low:.4f
t, {up:.4f}], " f"standard error: {stderr:.4f}")

est , low, up, stderr = bootstrap estimate and _ ci(estimator, xtest, ytest,
scoring func=geometric_mean score)
print (f"Geomtric mean estimate on test dataset: {est:.4f}, confidence interval
[{low:.4f}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func=roc_auc_score)

print (f"AUC estimate on test dataset: {est:.4f}, confidence interval: [{low:.4
f}, {up:.4f}], " f"standard error: {stderr:.4f}")

est , low, up, stderr = bootstrap estimate and _ ci(estimator, xtest, ytest,
scoring func=matthews corrcoef)

print (f"MCC estimate on test dataset: {est:.4f}, confidence interval: [{low:.4
f}, {up:.4f}], " f"standard error: {stderr:.4f}")

nnn nnn

xxRandom Undersamplingx

from sklearn.linear model import LogisticRegression
Ir _bal = LogisticRegression (). fit (X _train, y_train)
y_pred=Ilr bal.predict (X train)

print (classification report(y train,y pred))

y_pred=Ir bal.predict (X test)
print (classification report(y_ test,y pred))
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mnn

xx Decision Treex*x

nnn

from sklearn.tree import DecisionTreeClassifier
dt=DecisionTreeClassifier ()

dt.fit (X _train pca,y train)

y_pred=dt.predict (X test pca)
yhat=dt.predict proba (X test pca)

print (classification report(y test,y pred))

#Decision tree is overfitting
y_pred t=dt.predict (X _train pca)

print (classification report(y_ train,y pred t))

nnn mnn

xx Decision Tree Random Search xx

from sklearn.model selection import RandomizedSearchCV

) )

param _grid={’criterion ’:[ *gini’, entropy’], 'max depth’:[7,9,11,13],’
min_ samples split’:[2,4,6], ’min_ samples leaf’:[1,3,5]}

grid _dt= RandomizedSearchCV (dt,param grid,scoring='roc_auc’,verbose=True,cv=5,
n_jobs=—1)

best dt=grid dt.fit (X _train pca,y train)

print (best dt.best params )

dt _hyp=DecisionTreeClassifier (criterion="gini’

,min_samples split=4,
min_samples leaf=5,max_depth=11)

dt _hyp.fit (X train pca,y train)

y_pred=dt_ hyp.predict (X _test pca)

yhat=dt_ hyp.predict proba (X test pca)

#There is an increase in precision and recall

print (classification report(y_ test,y pred))

y_pred tr=dt_ hyp.predict (X train pca)

print (classification report(y_train,y pred tr))

vhat=dt_ hyp.predict proba (X _ test pca)

average precision = average precision score(y_test, yhat[:,1])
dthyp pr curve = plot precision recall curve(dt _hyp, X test pca, y_ test)
dthyp pr_ curve.ax .set title(’Precision—Recall curve:

"Avearge precision={0:0.2f}’.format (average_precision))

from sklearn.metrics import roc_curve, roc_auc_score
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false positive rate, true positive rate, threshold = roc_curve(y_ test, yhat

1)

fig , ax = plt.subplots(figsize =(8,5))

plt.title ('ROC Curve for Decision tree’)
plt.plot (false positive rate, true positive rate)
plt.plot ([0, 1], ls="—")

plt.ylabel ('True Positive Rate’)

plt.xlabel (’False Positive Rate’)

plt .show ()

#Test dataset

yhat=dt_ hyp.predict (X test pca)
auc=roc_auc_score(y test, yhat)

prec = precision score(y_ test, y_ pred)
rec = recall score(y_test, y pred)

f1 = f1_score(y_ test, y_ pred)
gmean—geometric_mean _score(y _test,y pred)

mcc=matthews corrcoef(y test,y pred)

print ("\tprecision:%0.4f"%prec ,"\ trecall :%0.4f"%rec ,"\tFl—score:%0.4{"%f1 ,"\

tgeometric mean:%0.4f"%gmean,"\troc auc:%0.4f"%auc, " \tMCC:%0.4 f "%mcc)

"""y«xDecision Tree Bootstrap Estimatesxx"""

estimator=DecisionTreeClassifier (criterion="entropy’,min_samples split=4,

min_samples leaf=>5 max_depth=5)

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,

scoring func=precision score)

print (f"Precision estimate on test dataset: {est:.4f}, confidence interval: [{

low:.4f}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,

scoring func=recall score)
print (f"recall estimate on test dataset: {est:.4f}, confidence interval:
:.41ft}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,

scoring func=f1_ score)
print (f"F1 estimate on training dataset: {est:.4f}, confidence interval:
:.41ft}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,

scoring func=geometric_mean score)
print (f"Geometric mean estimate on test dataset: {est:.4f}, confidence
interval: [{low:.4f}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,

scoring func=roc_auc_score)
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print (f"AUC measure estimate on test dataset: {est:.4f}, confidence interval:
[{low:.4f}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(estimator, xtest, ytest,
scoring func—matthews corrcoef)

print (f"MCC measure estimate on test dataset: {est:.4f}, confidence interval:
[{low:.4f}, {up:.4f}], " f"standard error: {stderr:.4f}")

"""yxRandom Undersampling with Decision Treexx"""

from sklearn.tree import DecisionTreeClassifier
dt_bal=DecisionTreeClassifier (). fit (X _train,y_train)
y_pred=dt_bal.predict (X train)

print (classification report(y train,y pred))

y_pred=dt_bal.predict (X _test)
print (classification report(y_ test,y pred))

mnn

xx Multilayer Perceptron Classifier xx

mnn

from sklearn.neural network import MLPClassifier
mpc=MLPClassifier (). fit (X_train_pca,y_train)
y_hat=mpc. predict (X train pca)

print (classification report(y_ train,y hat))

y_mpc=mpc. predict (X test pca)
print (classification report(y _test,y mpc))

from sklearn.model selection import RandomizedSearchCV
defining parameter range
param_grid = {
"hidden layer sizes’: [(10,20,30),(15,30,40)],

“activation’: [’tanh’, ’relu’],

"solver’: [’sgd’, ’adam’],

“alpha’: [0.001,0.003, 0.004,0.005],
"learning rate’: [’constant’,’adaptive’]}

rs_mpc=RandomizedSearchCV ( MLP Classifier (tol =0.001), param grid,scoring="’
roc_auc’,verbose=True,cv=5,n_jobs=—1)
best mpc=rs mpc. fit (X _ train pca,y train)

print (best _mpc.best params )

from sklearn.neural network import MLPClassifier
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mpc_hyp=MLP Classifier (activation="tanh" jalpha=0.004,learning rate="constant",
hidden layer sizes=(15,30,40),solver="adam",t0l=0.001)

mpc_hyp. fit (X _train_pca,y train)

yvhat=mpc_ hyp.predict proba (X test pca)

#There is an increase in precision and recall

y_pred train=mpc_ hyp.predict (X train pca)
print (classification report(y_train,y_ pred train))

y_pred=mpc_hyp.predict (X test pca)
print (classification report(y_ test,y pred))

yhat=mpc_ hyp.predict proba (X test pca)
average precision = average precision score(y_test, yhat[:,1])
mpchyp pr_curve = plot precision recall curve(mpc _hyp, X test pca, y_test)

mpchyp pr_curve.ax .set title( Precision—Recall curve:

"Avearge precision={0:0.2f}’.format (average_precision))

from sklearn.metrics import roc_curve, roc_auc_score

false positive rate, true positive rate, threshold = roc_curve(y test, yhat
[, 1])

fig , ax = plt.subplots(figsize=(8,5))

plt.title ('ROC Curve for Multilayer perceptron’)

plt.plot(false positive rate, true positive rate)

plt.plot ([0, 1], ls="—")

plt.ylabel (’True Positive Rate’)

plt.xlabel (’False Positive Rate’)

plt .show ()

#Test dataset from the model

auc=roc_auc_score(y_ test, mpc hyp.predict (X test pca))

prec = precision score(y_ test, mpc hyp.predict (X test pca))

rec = recall score(y_test, mpc hyp.predict (X test pca))

f1 = f1 score(y_test, mpc_hyp.predict (X _ test pca))

gmean=geometric_mean _score(y test ,mpc_hyp.predict (X _ test pca))

mcc=matthews corrcoef(y test ,mpc hyp.predict (X test pca))

print ("\tprecision:%0.4f"%prec ,"\trecall :%0.4{"%rec ,"\tFl-score:%0.4{"%f1 ,"\
tgeometric mean:%0.4f"%gmean,"\troc auc:%0.4f"%auc, " \tMCC:%0.4 f "%mcc)

xtest=X _test pca
ytest=y test.values

mpc_hyp=MLP Classifier (activation="tanh" Jalpha=0.004,learning rate="constant",
hidden layer sizes=(15,30,40),solver="adam",t0l=0.001)

est, low, up, stderr = bootstrap estimate and ci(mpc_ hyp, xtest, ytest,
scoring func=precision score)

print (f"precision estimate on test dataset: {est:.4f}, confidence interval: [{
low:.4f}, {up:.4f}], " f"standard error: {stderr:.4f}")
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est, low, up, stderr = bootstrap estimate and_ci(mpc_hyp, xtest, ytest,
scoring func=recall score)

print (f"recall estimate on test dataset: {est:.4f}, confidence interval: [{low
:.41ft}, {up:.41f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(mpc_ hyp, xtest, ytest,
scoring func=fl_score)

print (f"fl estimate on test dataset: {est:.4f}, confidence interval: [{low:.4f
t, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(mpc_ hyp, xtest, ytest,
scoring func=geometric_mean score)

print (f"geometric mean estimate on test dataset: {est:.4f}, confidence
interval: [{low:.4f}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and ci(mpc_ hyp, xtest, ytest,
scoring _func=roc_auc_score)

print (f"roc auc estimate on test dataset: {est:.4f}, confidence interval: [{
low:.4f}, {up:.4f}], " f"standard error: {stderr:.4f}")

est, low, up, stderr = bootstrap estimate and_ci(mpc_ hyp, xtest, ytest,
scoring func=matthews corrcoef)

print (f"MCC estimate on test dataset: {est:.4f}, confidence interval: [{low:.4
f}, {up:.4f}], " f"standard error: {stderr:.4f}")

nnn

xxRamdom undersamplingsx

nnn

from sklearn.neural network import MLPClassifier
mpc_bal=MLP Classifier (). fit (X _train,y train)
yhat=mpc_bal. predict (X _train)

print (classification report(y _train,yhat))

yhat=mpc_ bal.predict (X _test)
print (classification report(y_test,yhat))

mnn

nnn

D[’ Class’].value counts()

""yxFuture Work $\cdots$ xx
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xxSupport Vector Machinexx

nnn

from sklearn.utils

from statistics

from sklearn import svm

tCreate a svm
pr_score =[]
re_score =[]
f1=]]

G_mean=]]

AUC=]]
mce =]
index =448

Classifier

import shuffle

import mean

for i,j in zip(range(0,627) ,range(1,628)):

non_fraud cases indexed=non fraud cases.iloc[i*index:j*index]

balanced dataset=pd.concat ([non_ fraud cases indexed ,fraud cases])
shuffle (balanced dataset)
X = balanced dataset.drop(’Class’, axis=1)

y = balanced dataset[’Class’]

X train, X test, y train, y test = train_ test split(X,y,

random _state=42) /# 70% training and 30% test

svm_clf = svm.SVC() . fit (X _train, y_train)

pr=precision score(y_ test,svmm_clf.predict (X test))

r=recall score(y test,svm_clf.predict (X test))
f=f1 score(y_test,svm_clf.predict (X test))

g=geometric_mean score(y_ test,svm_clf.predict (X test))
auc=roc_auc_score(y_ test,svm_clf.predict (X test))

m=matthews corrcoef(y test,svmm_clf.predict (X test))

pr_score.append (pr)

re_score.append(r)

f1.append(f)

G_mean. append (g)
AUC. append (auc)

mcc . append (m

)

print ("Mean precision score" ,mean(pr_score))

!

print
print

'"Mean recall score" ,mean(re_ score))

"Mean f1 score" ,mean(fl))

print

print ("Mean AUC score" mean(AUC))
print ("Mean MCC score" ;mean(mcc) )

#Create a svm Classifier
pr_score =[]

re_score =[]

f1 -]

(
(
(
("Mean G-mean score" ,mean(G_mean) )
(
(
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G_mean=/]

AUC=]]
mce =]
index =448

for i,j in zip(range(0,627) ,range(1,628)):
non_fraud cases indexed=non fraud cases.iloc[i*index:j*index]
balanced dataset=pd.concat ([non_ fraud cases indexed ,fraud cases])
shuffle (balanced dataset)
X = balanced dataset.drop(’Class’, axis=1)
y = balanced dataset[’Class’]
X train, X test, y train, y test = train_ test_ split(X,y, test size=0.3,
random _state=42) /# 70% training and 30% test
svm_clf = svm.SVC() . fit (X _train, y_train)
pr=precision score(y_ test,svmn_clf.predict (X test))
r=recall score(y test,svm_clf.predict (X test))
f=f1 score(y_test,svm_clf.predict (X test))
g=geometric_mean score(y test,svm_clf.predict (X test))
auc=roc_auc_score(y_ test,svim_clf.predict (X test))
m=matthews corrcoef(y test,svmm_clf.predict (X test))
pr_score.append (pr)
re_score.append(r)
f1.append(f)
G_mean. append (g)
AUC. append (auc)
mcc . append (m)

print ("Mean precision score" ,mean(pr_score))
print ("Mean recall score" ,mean(re_ score))
print ("Mean fl1 score" ,mean(fl))

print ("Mean G-mean score" ,mean(G_mean) )
print ("Mean AUC score" mean(AUC))

print ("Mean MCC score" ,mean(mcc) )

nmnn nnn

xxk—Nearst Neighbour=xx

from sklearn.neighbors import KNeighborsClassifier
pr_score =[]

re_score =[]

f1=J]
G_mean=|]
AUC=(]
mce =]
index—448

for i,j in zip(range(0,627) ,range(1,628)):
non_fraud cases indexed=non fraud cases.iloc[i*index:j*index]
balanced dataset=pd.concat ([non_fraud cases indexed,fraud cases])
shuffle (balanced dataset)
X = balanced dataset.drop(’Class’, axis=1)
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y = balanced _dataset |’ Class ]

X train, X test, y train, y test = train_ test split(X,y, test size=0.3,
random _state=42) # 70% training and 30% test

knn clf = KNeighborsClassifier().fit (X train, y_ train)

pr=precision score(y_ test,knn clf .predict (X test))

r=recall score(y test,knn clf .predict (X test))

f=f1 score(y_test knn clf .predict (X test))

g=geometric_mean score(y_ test,knn clf .predict(X test))

auc=roc_auc_score(y_ test knn clf .predict (X test))

m=matthews corrcoef(y test,knn clf .predict (X test))

pr_score.append (pr)

re_score.append(r)

f1.append(f)

G _mean. append (g)

AUC. append (auc)

mcc . append (m)

print ("Mean precision score" ,mean(pr_score))
print ("Mean recall score" ,mean(re_ score))
print ("Mean f1 score" mean(fl))

print ("Mean G-mean score" ,mean(G_mean))
print ("Mean AUC score" ;mean(AUC))

print ("Mean MCC score" ,mean(mcc) )

"""yxLogistic regressionsx"""
from sklearn.linear model import LogisticRegression
pr_score =[]

re_score =[]

£1-)
G_mean=]
AUC=[]
mce =]
index=448

for i,j in zip(range(0,627) ,range(1,628)):

non fraud cases indexed=non fraud cases.iloc[ixindex:j*index]

balanced dataset=pd.concat ([non_ fraud cases indexed, fraud cases])

shuffle (balanced dataset)

X = balanced _dataset.drop(’Class’, axis=1)

y = balanced _dataset |’ Class ]|

X train, X test, y train, y test = train_ test split(X,y, test size=0.3,
random _state=42) # 70% training and 30% test

Ir _clf = LogisticRegression (). fit (X _ train, y_train)

pr=precision score(y_ test,lr clf.predict (X test))

r=recall score(y_ test,lr clf.predict (X test))

f=f1_ score(y_test,lr clf.predict (X test))

g=geometric_mean score(y test,lr clf.predict (X test))

auc=roc_auc_score(y_ test lr clf.predict (X test))

143



Appendix: Python Code

n=matthews corrcoef(y test,lr clf.predict (X test))

pr_score.append (pr)

re_score.append (1)
f1.append(f)
G_mean. append (g)
AUC. append (auc)

mcc . append (m)

print ("Mean
print ("Mean
print ("Mean
print ("Mean
print ("Mean
print ("Mean

nnn

*x Decision

precision score" mean(pr_score))
recall score" ,mean(re score))
f1 score" ,mean(fl))

G-mean score" ,mean(G_mean))

AUC score" ,mean (AUC))

MCC score" ,mean(mcc))

Treexx"""

from sklearn.tree import DecisionTreeClassifier

pr_score =[]

re_score =[]

f1-)
G_mean=]]
AUC=[]
mce =]
index=448

for i,j in zip(range(0,627) ,range(1,628)):

non_fraud cases indexed—non fraud cases.iloc[i*index:j*index]

balanced dataset=pd.concat ([non_ fraud cases indexed ,fraud cases])
shuffle (balanced dataset)
X = balanced dataset.drop(’Class’, axis=1)

y = balanced dataset[’Class’]

X train, X _test,

random _state=42)

y _train, y test = train_ test split(X,y, test size=0.3,

£ 70% training and 30% test

dt _clf = DecisionTreeClassifier (). fit (X _train, y_train)
pr=precision score(y_ test,dt clf.predict (X test))

r=recall score(y test,dt clf.predict (X test))
f=f1 score(y_test,dt clf.predict (X test))
g—geometric_mean score(y_test,dt clf.predict (X test))

auc=roc_auc_score(y_test,dt clf.predict (X test))

n=matthews corrcoef(y test,dt clf.predict (X test))

pr_score.append (pr)

re_score.append (1)
f1.append(f)
G_mean. append (g)
AUC. append (auc)
mcc . append (m)

print ("Mean precision score' ,mean(pr_score))
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print ("Mean

print ("Mean

"Mean

(
(

print ("Mean
print (
(

print ("Mean

""MyxMultilayer Perceptronsx

recall score" ,mean(re_ score))

)
G-mean score" mean(G_mean))
AUC score" ;mean (AUC))

MCC score" ,mean(mcc))

f1 score" ,mean(f1)

nnn

from sklearn.neural network import MLPClassifier

pr_score =[]

re_score =[]

f1=]]
G_mean=]]
AUC=]]
mec =]
index=448

for i,j in zip(range(0,627) ,range(1,628)):

non_fraud cases indexed=non fraud cases.iloc [i*index:j*index]

balanced dataset=pd.concat ([non_fraud cases indexed,fraud cases])

shuffle (balanced dataset)

X = balanced dataset.drop(’Class’, axis=1)

y = balanced _dataset |’ Class ]

X train, X test, y train, y test = train test_ split(X,y, test size=0.3,
random _state=42, stratify=y) # 70% training and 30% test

mlp clf =
pr=precisi

MLPClassifier (). fit (X _train, y_train)
on_score(y test,mlp clf.predict (X test))

r=recall score(y_ test,mlp clf.predict (X test))
f=f1 score(y_test,mlp clf.predict (X test))
g=geometric_mean score(y test,mlp clf.predict (X test))

auc=roc_auc_score(y_ test ,mlp clf.predict (X test))

m=matthews corrcoef(y test,mlp clf.predict (X test))

pr_score.append (pr)

re_score.append(r)
f1.append(f)

G _mean. append (g)
AUC. append (auc)
mcc . append (m)

print ("Mean
print ("Mean
print ("Mean
print ("Mean
print ("Mean
print ("Mean

"yx Artifical Neural Networksxx

precision score" ,mean(pr_score))
recall score" ,mean(re_ score))
f1 score" ;mean(f1))

G-mean score" mean(G_mean))

AUC score" ;mean (AUC))

MCC score" ;mean(mcc))

nmnn

X=creditdata normalized .drop(’ Class’,axis=1)
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y=creditdata_normalized [’ Class ]
X train, X test, y train, y test = train_ test split(X, y, test size=0.3,
stratify=y, random state=42)

from keras.wrappers.scikit learn import KerasClassifier
from keras.models import Sequential

import tensorflow as tf

from tensorflow import keras

from keras.layers import Dense, Dropout, Activation

def make model(layers, activation):
model= Sequential ()
for i,nodes in enumerate(layers):
if i==0:
model.add (Dense(nodes, input dim = X train.shape[1l]))
model.add(Activation (activation))
else:
model.add (Dense(nodes))
model.add( Activation (activation))
model.add(Dense (1, activation="sigmoid’))
model. compile (optimizer="nadam’, loss=’binary crossentropy’, metrics=[’
accuracy ' |)

return model
model=KerasClassifier (build fn=make model, verbose=0)

loss =]

optimizer =[]

layers =[[20],[40,20],[45, 30, 25]]
activations=[’sigmoid’, 'relu’]

param _grid={’layers’:layers,’activation’
epochs’:[15]}

ann_grid=GridSearchCV (estimator=model, param grid=param grid)

zactivations , 'batch size’:[30,60],"

ann_grid. fit (X_train,y train)
print (ann_grid.best params )

model = Sequential (]
Dense(units=20, input dim = X train.shape[l], activation=’"relu’),
Dense(units=45,activation="relu’),
Dropout (0.2) ,
Dense(units=30,activation="relu’),
Dense(units=25,activation="relu’),

Dense (1, activation=’sigmoid’)
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model. compile (optimizer="adam’, loss=’binary crossentropy’, metrics=[tf.keras.

metrics. Recall () ])
model. fit (X train, y_train,batch size=30, epochs=15)

y_pred = model.predict (X _test)
print (classification report(y_ test,y pred.round()))

y_train pred = model.predict (X _train)

print (classification report(y train,y train pred.round()))

#K—Fold cross validation

kf = StratifiedKFold (n_splits=10,shuffle=True,random state=42)

auc_score =[]

recall scor =[]

precision _scor =[]

geo _score =[]

f1=|]

mce =]

i=1

for train_ index ,test index in kf.split(X,y):
#print ('{} of KFold {}’.format(i,kf.n splits))

xtrain ,xtest = X.iloc [train_ index],X.iloc[test index]
ytrain ,ytest = y.iloc[train_ index],y.iloc[test index]
#model

model . fit (xtrain , ytrain ,batch size=30, epochs=15)

score — roc_auc_score(ytest ,model. predict (xtest).round())
scorel = recall score(ytest ,model.predict(xtest).round())
score2 = precision score(ytest ,model. predict (xtest).round())

score3=geometric_mean score(ytest ,model.predict (xtest).round())
score4d=f1_ score(ytest ,model.predict(xtest).round())
scoreb=matthews corrcoef(ytest ,model.predict (xtest).round())

auc_score.append(score)

recall scor.append(scorel)
precision scor.append(score2)
geo_score.append(score3)
f1.append(scored)

mcc. append (scored)

i+=1

7

print (’ANN auc mean score:’ ,mean(auc_score))

print (’ANN recall mean score:’ mean(recall scor))

(
(AD
print(’ANN precision mean score:’ mean(precision scor))
print (’ANN geometric mean score:’ ,mean(geo_score))
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print (’ANN f1 measure score:’ ,mean(fl))
print (’ANN MCC mean score:’ ,mean(mcc))

#Test dataset from the model

auc=roc_auc_score(y_ test, y pred)

prec = precision_score(y_ test, y pred.round())

rec = recall score(y_test, y pred.round())

f1 = f1_score(y_test, y_pred.round())

gmean=geometric_mean _score(y test,y pred.round())

mcc=matthews corrcoef(y test,y pred.round())

print ("\tprecision:%0.4{"%prec ,"\ trecall :%0.4f"%rec ,"\tFl—score:%0.4{"%f1 ,"\
tgeometric mean:%0.4f"%gmean,"\troc auc:%0.4f"%auc, " \tMCC:%0.4 f "%mcc)

mnn mnn

sk Feature Selection xx

from sklearn.decomposition import PCA

)

X = creditdata_normalized .drop(’Class’, axis=1)

y = creditdata_normalized [’ Class |

X train, X test, y train, y test = train_ test split(X,y, test size=0.3,
stratify=y, random state=42) #70% training and 30% test

print (X _train.shape)

print (X test.shape)

mnn mnn

xx Feature Selection Using Decision Treexx

from sklearn.pipeline import Pipeline
from sklearn.model selection import RepeatedStratifiedKFold
from sklearn.model selection import cross_val score

from sklearn.feature selection import RFE

model=DecisionTreeClassifier (criterion="entropy ’,max_ depth=3 ,min_ samples leaf
=1,min_samples split=2)

rfe = RFE(estimator=DecisionTreeClassifier (criterion="entropy’ ,max depth=3,
min_ samples leaf=1,min_ samples split=2))

pipe = Pipeline ([( 'Feature Selection’, rfe), (’Model’, model)])

cv = RepeatedStratifiedKFold(n splits=10, n_repeats=5, random state=146)

n_scores = cross_val score(pipe, X train, y train, scoring=’recall’, cv=cv,
n_jobs=-1)

np.mean(n_scores)

pipe.fit (X train, y_train)

print ("Num Features: %d" % rfe.n_ features )
print ("Selected Features: %s" % rfe.support )
print ("Feature Ranking: %s" % rfe.ranking )

credit card dataset analysis.py
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