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Abstract  
 
The major bottleneck during the domestication of the white-margined sole 

Dagetichthys marginatus in South Africa has been low larval survival. The cause 

of this is not clear but considering current literature on flatfish culture and more 

specifically soleid culture, nutritional deficiencies are hypothesized to be the 

main possible cause. Following the importance of nutrition, the first aim of the 

research was to use an ontogenetic developmental approach to develop a  

species specific larval feeding strategy. Ontogenetic development of D. 

marginatus showed that weaning will take place at much later ages than other 

soleids currently being farmed. This makes the partial replacement of Artemia 

with a suitable inert diet in co-feeding strategies very important to cut the cost 

associated of live food production. This leads on to the second aim, in which an 

‘in vitro’ approach was used to model the digestibility of Artemia, which could 

ultimately contribute towards designing inert feeds with similar digestibility 

characteristics to Artemia in the future. 

 
Obtaining nutrients from food is closely linked to the functional status of the 

digestive tract, the support organs and the external morphological 

characteristics required for the ingestion of live or inert feeds. Considering both 

morphological and physiological ontogenetic development, it is clear that D. 

marginatus follow a similar pattern to other soleids. Larvae can successfully feed 

on Artemia as early as 3 days after hatching but exhibit a slow metamorphosis 

into the juvenile stage when compared to other soleids. The absence of any 

detectable acidic protease activity during the first 45 days of development and 

the importance of exogenous enzymes from Artemia all points to limited capacity 

to digest artificial diets. 

 

Prior to modelling the ‘in vitro’ digestion of Artemia, digestive enzyme activity at 

different pH’s were modelled using functional forms from the normal distributive 

category of functions.  As there is no substantiated information for the general 

effects of pH on enzyme activity in the literature for finfish larvae, three species 



 
 

occurring in the same bio-geographical region of Dagetichthys marginatus, 

namely Sarpa salpa, Diplodus sargus capensis and Argyrosomus japonicus 

were used to investigate this effect. The fitted parameters, namely the optimal 

pH and sigma (the slope around the optimal pH) showed two interesting results. 

When using a negative log likelihood ratio test to test for differences between 

species for a particular enzyme, the optimal pH for alkaline proteases (7.67), 

lipase (8.03), amylase (7.69) and phosphatase (9.84) activity was the same for 

all three species. Furthermore, the study illustrated the potential to detect 

dietary shifts during ontogenetic development based on changes in enzyme 

activity around the optimal pH using the sigma parameter. Sarpa salpa showed 

increased amylase activity and a decrease in protease activity around the 

optimal pH with increased size, corresponding to a change in diet from 

zooplankton to algae. 

 

The ‘in vitro’ modelling approach taken in this study was based on known enzyme 

interactions and dynamics which makes the results very interpretable. 

Reasonable predictability of the degree of protein and carbohydrate digestion 

from Artemia is achieved based on gut evacuation time and enzyme levels. This 

‘in vitro’ study furthermore clearly indicates the importance of exogenous 

enzymes from Artemia, contributing as much as 54 % to protein digestion and 

64 – 72 % to carbohydrate digestion. This was however, only an initial 

investigation, and further expansion of the model is required to achieve a 

complete understanding of Artemia digestion and ultimately partial 

replacement with artificial diets. 

 
A feeding strategy for D. marginatus should therefore follow those of other 

farmed soleids, although there will be a general delay in implementation due to 

slower development. Problems can thus be solved and improvements made by 

transferring technology from other soleids to D. marginatus. 
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Chapter 1: General Introduction  

 

The worldwide development of marine finfish aquaculture has been immense over 

the last two decades, especially the selection and domestication of new species. 

While South Africa has not followed this worldwide increase in finfish aquaculture 

production, various indigenous species have been selected for aquaculture and 

domestication is underway. The abalone farming sector is the main driving force 

behind this diversification in South Africa, and is looking at farming various finfish 

species. 

 

The total aquaculture output (including seaweeds) in South Africa for 2011 was 7700 

MT and contributed less than 0.01 % to the total global aquaculture production. 

Mariculture contributed 4800 MT to the production, of which only 8 MT came from 

finfish. Abalone farming made up over a 1000 MT of the mariculture production, 

making it the biggest contributor to volume produced (excluding seaweeds) and 

economic benefit (Anon 2012). The 8 MT finfish produced consists exclusively of 

dusky kob (Argyrosomus japonicas), while a pilot scale production facility for the 

Yellowtail (Seriola lalandi) is in operation (Schoonbee & Bok 2006). Other finfish 

species for which domestication research is underway includes the White Stumpnose 

(Rhabdosargus globiceps), Spotted Grunter (Pomadasys commersonnii) and the 

Yellowbelly Rockcod (Epinephelus marginatus) (Anon 2012). Further screening for 

high value finfish species is ongoing.  

 

Flatfish (Pleuronectiformes) have consistently attracted high prices on the European 

market (Howell 1997, Brown 2002, Imsland et al. 2010) and are generally considered 

to be well adapted for intensive culture conditions (Slaski 1999a, b, Le François et 

al. 2010). This makes it a favourable group for aquaculture, as is evident in the 

strong representation of flatfish species on the list of “new species for aquaculture” 

(Brown 2002), as well as the host of species being investigated for domestication. 

 

Various flatfish species are being investigated worldwide as potential aquaculture 
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candidates (Imsland et al. 2010). Many of these species have been successfully 

reared through their larval stages, and include the winter flounder, Pleuronectes 

americanus (Litvak 1994, 1996) in Canada, the southern flounder, Paralichthys 

lethostigma (Luckenbach et al. 2003, Daniels et al. 2010) in North America, the 

Caribbean flounder, Paralichthys tropicus (Rosas et al. 1999), the Pacific halibut, 

Hippoglossus stenolepis (Stickney & Liu 1999) in British Columbia, the New Zealand 

turbot, Colistium nudipinnis and brill, C. guntheri (Tait & Hickman 2001) and the 

greenback flounder, Rhombosolea tapirina (Barnett & Pankhurst 1998) in Tasmania. 

Recent spawning and rearing success of the white margined sole, Dagetichthys 

marginatus has propelled this species to be one of the most important candidates for 

aquaculture in South Africa (Thompson et al. 2008). 

 

The current demand for flatfish in South Africa is estimated, by industry, to be in 

excess of 2 500 MT. This cannot be met by local trawlers, which land around 570 MT / 

year (Anon. 2011). The shortfall is currently imported from Namibia (A. microlepis), 

Pakistan and India (Cynoglossid spp.). Very little is known about the state of the stocks 

in Namibia and Pakistan, while there has been some evidence of over-exploitation from 

India (Nair 2011). This is mainly because these species form part of the by-catch, and 

is not directly targeted. Industry is of the opinion that the current supply of flatfish for 

the South African market will not be sustained. This makes the culture of flatfish in 

South Africa an attractive alternative. 

 

Thompson (2004) screened all the flatfish species in southern Africa for suitability, 

using various biological and economical selection criteria and species 

comparisons from Le François et al. (2002) and Quéméner et al. (2002). The 

soleid, Dagetichthys marginatus was selected as the most likely candidate for 

mariculture in South Africa (SA) from a list of three suitable species due to its wide 

distribution around the SA coast and the accessibility of broodstock. D. marginatus 

(Boulenger 1900), formerly Synaptura marginata (Vachon et al. 2008) is endemic to 

the east and south coasts of Southern Africa (Smith & Heemstra 1986, Vachon et al. 

2008). It is mainly targeted by recreational fishermen on intertidal and subtidal 
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sandbanks, where densities are not high enough to sustain the commercial harvest of 

this sought after species. Research on D. marginatus is still in its infancy, but includes 

work on the cryopreservation of sperm  (Markovina 2008, Markovina & Kaiser 2009) 

and cranial ontogeny with consideration of the feeding ability of larvae and early 

juveniles (Ende 2008, Ende & Hecht 2010). The demography and natural biology for D. 

marginatus is summarised below (Thompson 2004). 

 

A Von Bertalanffy growth model, based on age estimates from sectioned otoliths, with 

an absolute error structure best describes the growth for this species. The model 

parameters were: L∞ = 429.5 mm TL, K = 0.24 and t0 = -1.79 years. Analysis of gut 

contents showed that D. marginatus feed exclusively on polychaete worms, 

predominantly of the genus Morphysa. It shows a protracted summer spawning 

season of six months, from October to April. Size at 50% and 100% sexual maturity for 

females was calculated to be 235 mm TL and 300 mm TL (ca. 1.5 – 2.5 years of age) 

respectively, while all males > 154 mm TL were mature. D. marginatus is a batch 

spawner, releasing a minimum of 3 batches of eggs per year. Relative fecundity is 

reasonably high (34000 eggs per year / kg) in comparisons to other flatfish species 

(Thompson 2004). 

 

Currently, flatfish aquaculture is dominated by the production of around 40925 MT / 

year and 3977 MT / year of Bastard halibut (Paralichthys olivaceus) in Korea and 

Japan respectively, and 68890 MT / year of turbot (Scophthalmus maximus), mainly in 

China, Spain, Portugal and France (Fishstat+, Aquaculture Production, FAO 2010). 

Other farmed flatfish species of commercial importance include Atlantic halibut 

(Hippoglossus hippoglossus) in Iceland, Norway and UK (1821 MT / year), sole (Solea, 

S. senegalensis) in Spain and Portugal (244 MT / year), and various flounder species, 

e.g. Paralichthys dentatus in North America (Brown 2002, FAO 2010). It is clear from 

these FAO statistics that there is still limited production of soleids, despite experimental 

rearing success as early as the 1980’s (Dinis 1986, 1992, Drake et al. 1984) and 

being considered promising candidates since the nineties (Howell 1997, Dinis et al. 

1999). 
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Disease, weaning, abnormalities, diet and long and variable grow-out periods are the 

main factors currently constraining the production of noteworthy quantities of soleid 

species worldwide (Aragão et al. 2008, Howell et al. 2009). Qualitative and quantitative 

dietary imbalances are one of the biggest factors contributing to the problems with 

flatfish culture (Liao et al. 2001, Conceição et al. 2007) and has been linked to 

compromised immune systems leading to disease (Howell et al. 2009). There is an 

increasing volume of research on this topic, often exposing what is known as 

insufficient for the purpose of larval rearing (Hoehne-Reitan & Kjorsvik 2004). 

 

The major bottleneck in most aquaculture ventures, especially those of finfish, is the 

limitation of a poor or unsteady supply of fry (Bromage 1995, Dhert et al. 1998, Lee 

& Ostrowski 2001, Liao et al. 2001, Yúfera & Darias 2007b). This is mainly due to low 

larval survival during periods of stress, such as the switch from endogenous to 

exogenous feeding (Gulbrandsen 1993, Jähnichen & Kohlmann 1999, Yúfera & 

Darias 2007b) and weaning. Research has shown that the switch from endogenous to 

exogenous feeding does not in general present a problem in soleid culture, although 

this might not be the case for other flatfish families (Shields et al. 1999). Weaning is 

the biggest bottleneck in soleid larviculture (Howell 1997, Dinis et al. 1999, Conceição 

et al. 2007, Bonaldo et al. 2011) and also appears to be the case in rearing trials of D. 

marginatus (pers. obs.).  

 

Traditionally, live food such as rotifers, Brachionus sp. and brine shrimp, Artemia sp. 

are supplied as a food source during first feeding of marine fish larvae (Das et al. 

2012). Supplying a large commercial finfish farm with sufficient live food is expensive 

(Kolkovski 2001) and can contribute 50 % of production costs in the first three months 

although it only contributes 1.6 % to the required total dry food weight (Person-Le 

Ruyet et al. 1993). Variable supply and nutritional inconsistencies of live organisms 

present further problems (Kolkovski 2001). Fish larvae are thus weaned onto inert diets 

as soon as they are physiologically capable of digesting and obtaining the required 

nutrients from the artificial food. 
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Recent advances in larval nutrition, especially technological improvements in artificial 

diets, have significantly reduced the pre-weaning period in various species (Cahu & 

Zambonino Infante 2001). The most important of these advances is the technology to 

produce microdiets. The development of microagglomerated diets containing protein 

hydrolysates (Day et al. 1997, 1999, Tonheim et al. 2005, de Vareilles et al. 2012) has 

reduced weaning problems in Dover sole, Solea (Howell 1997, Day et al. 1999a, b) 

and Senegal sole, Solea senegalensis (Engrola et al. 2007). Producing consistently 

good weaning results in S. senagalensis remains a problem (Engrola et al. 2007). This 

is attributed to the early metamorphosis and occurrence of a ‘peculiar non-proactive 

bottom-feeding behaviour’ (Conceição et al. 2007). 

 

Various attempts have been made to design and rear finfish larvae exclusively on 

artificial diets (Fernandez-Diaz & Yufera 1997, Rosenlund et al. 1997, Cahu et al. 

1998, Southgate & Partridge 1998), but a general trend of poor larval growth and 

development has been observed (Cañavate & Fernández-Díaz 1999, Robin & Vincent 

2003, Curnow et al. 2006a). While some studies have linked specific nutrient 

deficiencies to certain problems, like Ascorbic acid to skeletal deformities (Cahu et al. 

2003), these larval problem are generally attributed to a combination of various factors 

including nutritional deficiencies in the diet and an underdeveloped digestive system 

that is not able to digest artificial diets (Cahu & Zambonino Infante 2001).” There is 

thus a need for co feeding strategies with a gradual transition from live to artificial 

food (Das et al. 2012). Cahu & Zambonino Infante (1994) amongst others, suggests 

that the live food, when supplied in such co-feeding strategies, contributes to the 

enzyme activity levels in the larvae, making artificial food more digestible. Acceptable 

survival and growth rates have been achieved in some instances, but there is still a 

vast difference in growth when live food is introduced even with economic 

considerations (Cahu & Zambonino Infante 2001, Sorgeloos et al. 2001). This is 

also the case for soleids (Bonaldo et al. 2011). Co feeding with Artemia gives results 

close to that of feeding Artemia alone (Howell 1998, Day et al. 1999b), but extended 

periods of feeding Artemia show increased difficulty to wean off Artemia completely. 
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During co-feeding strategies the gut shows improved digestive maturity, but this does 

not necessary translate to improved growth (Engrola et al. 2009, Mai et al. 2009). All 

this highlights the importance of live food in finfish larval rearing and it is generally 

accepted as an integral part of larval rearing until metamorphosis (Kolkovski 2001, 

Aragão et al. 2004, Conceição et al. 2010, Herrera et al. 2010). 

 

In soleids, like all other flatfish, larval rearing problems are also associated with the 

dramatic metamorphic transformation from bilateral larvae to asymmetric juveniles 

(Inui & Miwa 2012). This transformation is accompanied by a complex habitat shift and 

behavioural change from a planktonic to a benthic form (Keefe & Able 1994, Ribeiro et 

al. 1999a, Fernández-Díaz et al. 2001). The complex shift in soleids during 

metamorphosis will change the acceptability of different live and inert food particles at 

different stages of transformation (Keefe & Able 1994). Prior to and during 

metamorphosis, sole larvae are less efficient in catching prey items due to their very 

radical transformation. There is therefore a need to hydrolyze stored lipids during this 

period to supply the larvae with its metabolic energy requirements while other 

potential energy rich nutrients, like protein, are redeployed to other part of the body 

and used for metamorphic changes within the larvae rather than energy (Yufera et 

al. 1999; Martinez et al. 1999). Hence, supplying sole larvae with an acceptable 

exogenous food source with the right nutritional value (Næss & Lie 1998, Estevez et 

al. 1999, Sargent et al. 1999, Shields et al. 1999, Hamre et al. 2007) is of utmost 

importance to ensure increased survival during this transition. This is especially the 

case for dietary lipids (Howell et al. 2009, Dâmaso-Rodrigues et al. 2010). 

 

Malpigmentation, skeletal deformities and incomplete eye migration are often related 

to diet or nutritional problems during early larval development, although it appears that 

these can be mitigated by proper diet formulation (Solbakken et al. 1999, Bolker & Hill 

2000, Sæle et al. 2002, Fernández et al. 2009, Howell et al. 2009, Piccinetti et al. 

2011). Furthermore, these problems usually only manifest themselves during and after 

metamorphosis (Pittman et al. 1998, Gavaia et al. 2002). Similar problems have been 

experienced with Atlantic halibut, Hippoglossus hippoglossus (Pittman et al. 1998, 
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Sæle et al. 2002), olive flounder, Paralichthys olivaceus (Seikai 1985), turbot, 

Scophthalmus maximus (Shields 2001) and the senegal sole, Solea senegalensis 

(Gavaia et al. 2002, Soares et al. 2001, Engrola et al. 2005, Villalta et al. 2005a, 

Fernández et al. 2009). Gavaia et al. (2002) summarise other possible causes of the 

above problems, the principal one of which appears to be unfavourable abiotic 

conditions (Faustino & Power 1999). Extensive research has shown that these 

problems can be reduced to a point where they no longer restrict the production of 

some flatfish species (Seikai 1985, Pittman et al. 1998, Shields 2001, Gavaia et al. 

2002, Sæle et al. 2002, Makridis et al. 2009). Several other teleosts show 

abnormalities during larval rearing that can be linked to nutritional problems (Deplano 

et al. 1991b, Boulhic & Gabaudan 1992, Rueda & Martinez 2001, Fernández & Gisbert 

2010, 2011). 

 

  The importance of amino acids (AA) in larval rearing has largely been ignored in the 

early literature, but subsequent research has established their importance (Aragão et 

al. 2008, Rønnestad & Conceição 2012). Amino acids are the principle building blocks 

for protein synthesis, are important energy substrates and are involved in specific 

physiological functions. Free amino acids (FAA) are an important source of energy in 

early larval stages (Rønnestad & Fyhn 1993, Finn et al. 2002). Increased levels of 

FAA are beneficial for first feeding larvae (Fyhn & Serigstad 1987, Fyhn 1989) and 

stimulate gut maturation (Cahu and Zambonino-Infante 2001). It is also clear that 

changes in the AA profile during development effects the dietary requirements for 

these AA (Conceição et al. 1997, 1998a, Tulli & Tibaldi 1997, Aragão et al. 2004). 

There is a more marked change in AA profile in soleids like Solea senegalensis due to 

the metamorphic switch (Aragão et al. 2004). This research has indicated that Artemia 

does not have a balanced AA profile, and is limited in histidine, sulphur AA, 

arginine, lysine and valine (Aragão et al. 2004).  

 

Essential fatty acids (EFA) are important in larval quality and rearing in both marine 

and fresh water species (Sargent et al. 2002). Unlike freshwater species that can 

satisfy their EFA requirements with highly unsaturated fatty acids (HUFA’s), marine 
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species require longer chained HUFA’s  (20+ carbon groups) also referred to as long-

chain polyunsaturated fatty acids (LC-PUFA’s) to fulfil their needs (Tocher & Ghioni 

1999). The three LC-PUFA’s that are critically important for all marine species are 

22:6n-3; docosahexaenoic acid (DHA), 20:4n-6; arachidonic acid (ARA) and 20:5n-3; 

eicosapentanoic acid (EPA). Various pleuronectid species can however be reared on 

DHA deficient diets, without affecting growth and survival, provided a high enough 

level of EPA is supplied. This is in contrast with other marine species and includes 

Solea senegalensis (Conceicao et al. 2007), Solea (Howell & Tzoumas 1991) 

Paralichthys olivaceus (Izquierdo et al. 1992) and Pleuronectes platessa (Dickey-

Collas & Geffen 1992). Villalta et al. (2005b) hypothesize that this phenomena is due 

to the predominance of EPA rather than DHA in the benthic fauna. Flatfish species 

with short pelagic stages and fast settlement might therefore explain the need for the 

low exogenous DHA demand. At the same time it is clear that increased levels in ARA 

or high ARA: EPA also affect the incidence of malpigmentation (McEvoy et al. 1998, 

Næss & Lie 1998, Estevez et al. 1999, Sargent et al. 1999, Shields et al. 1999, Hamre 

et al. 2007, Lund et al. 2007).  

The physiological and biochemical importance of these EFA and AA fall outside the 

scope of this particular dissertation, and will not be discussed any further, other than 

specific references. 

 

Sorgeloos et al. (2001) describes the reasons for favouring Artemia as a live food 

organism in finfish larval rearing, despite the necessity of rotifers in fish species with 

very small larvae like the Cod, Gadus morhua (Olsen et al. 2004). Artemia can be 

grown to larger sizes, which ensures a better energy balance in food intake and 

assimilation. Furthermore, its palatability induces a good and fast feeding response. 

The use of bio-encapsulation techniques also enhances the quality of on-grown 

Artemia. The relatively large size of soleid larvae makes the need of smaller live food 

organisms like rotifers unnecessary, since they can ingest Artemia at first feeding 

(Conceicao et al. 2007, Ende 2008).   Rotifers remain an important diet organism, and 

are still used as part of the rearing technology for many other species including 

soleids. This is done to ensure higher levels of highly unsaturated fatty acids and 
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amino acids in the diet (Cañavate & Fernández-Díaz 1999, Aragão et al. 2004, 

Conceicao et al. 2007). 

 

  The general low nutritional value of live foods at older ages, like larger Artemia, 

makes the need for enrichment very important (Conceição et al. 2010). Artemia can 

be enriched with various micro-algae or commercially produced enrichment media like 

INVE Selco and AlgaMac-2000. Coutteau & Sorgeloos (1997) reviewed the literature 

on the effectiveness of different enrichment methods to modulate essential fatty acids 

in live prey, while Aragão et al. (2004) studied the modulation of amino acids. 

Enrichment of live foods has dramatically improved larval rearing success over the last 

two decades and forms an integral part of larviculture.  

 

Despite this success and the development of species specific enrichments, very little 

is known about the absolute nutritional requirements for different fish species, and the 

acquisition rate of these nutrients from the prey from different enrichments (Boglino et 

al. 2012, Rønnestad et al. 2012).  

 

The absorption factor, also known as the digestibility coefficient, is essential in 

evaluating fish diets in terms of growth and survival (Lovell 1998, Martinez- Montano & 

Lazo 2012) and by extension live food. Getting a direct measure of digestibility of food 

in larvae is extremely difficult, so digestive enzyme activity and digestive tract ontogeny 

is used as a surrogate for its estimation. The effectiveness of live food and the 

enrichment thereof for any particular fish species is very different and is dependent on 

ontogenetic development of larval morphological, physiological and functional 

complexity as well as bioavailability of nutrients in Artemia (Favé et al. 2004, Martinez-

Montano & Lazo 2012).  

 

The determination of digestive enzymes activity in larvae can also be helpful in the 

selection of feed ingredients (Lan & Pan 1993), allowing the onset of in vitro assays for 

the evaluation of commercial feeds (Alarcόn et al. 1999). As protein is the major 

ingredient in inert larval diets, most of the biochemical studies have been oriented to 
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the characterization of protease activity in finfish species (Haard 1992, Moyano et al. 

1998, Noori et al. 2012). Other enzymes, like carbohydrases and lipases, have been 

much less studied, although several authors have reported the presence of a 

noticeable carbohydrase activity in the gut of freshwater and marine fish species 

(Chiu & Benitez 1981, Ugwumba 1993, Munilla-Moran & Saborido-Rey 1996, 

Hidalgo et al. 1999). There is also some evidence for this in S. senegalensis which 

seems to utilise plant proteins well, offering a good prospect for a high level of fish 

meal replacement (Howell et al. 2009).  

 

This study aims to investigate the digestive capacity of Dagetichthys marginatus 

larvae and how this ultimately affects the digestibility of and availability of nutrients 

from Artemia as a live food organism. This was achieved by using a systematic 

approach to integrate all the factors that may influence digestion, including the 

morphological, physiological and functional complexity of the larvae throughout its 

development.  

 

The general materials and methods used in this study are described in Chapter 2, 

while specific methods are described in the relevant chapter. Chapter 3 describes the 

external morphological development of D. marginatus and Chapter 4 the physiological 

development using a histo-chemical approach. The larval stage is a critical period in 

aquaculture, in which ontogeny causes important structural and functional changes in 

the body tissues, organs and systems. The success and progress of larviculture 

therefore depends on a thorough understanding of the development of such elements, 

in order to adjust culture conditions and feeding protocols to the ontogenetic status of 

the larvae. Chapter 3 and 4 represent an initial step towards the determination of the 

functional capabilities, and thus the physiological requirements needed for optimal 

larval growth and development. 

 

Digestion in fish larvae is a function of several physiological factors which in turn can 

be affected by environmental factors. These physiological factors include the enzyme 

system, a tangible measure of the developmental status of the digestive tract, and gut 
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evacuation time. Chapter 5 characterises the effect environmental factors have on the 

activity of the major digestive enzymes. Chapter 6 presents an ‘in-vitro’ protocol that 

can be used to estimate the digestibility of proteins, lipids and carbohydrates from 

Artemia franciscanis in marine fish larvae, using a holistic view of ‘in vivo’ digestion. All 

the findings and the implications of the results are summarised in Chapter 7. 
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Chapter 2: General Materials and Methods  

 

This chapter provides an outline of materials and the general methods used in this 

study. The specific methods used in each of the ensuing suite of experiments are 

described in detail in each of the relevant chapters. 

 

SAMPLING AREA AND BROODSTOCK CAPTURE 

 

Fish were collected between Port Elizabeth (33º57’S; 25º38’E) and Great Fish River 

Point (33º31’S; 27º06’E) on the south east coast of South Africa (Figure 2.1). The 

topography of this coastline is highly variable. The shores of Algoa Bay are generally 

sandy with rocky ledges at Woody Cape and Cape Padrone. The area  from  Cape  

Padrone  to  Great  Fish  Point  consists  of  rocky  outcrops alternating with sandy 

beaches (Hydrographer S.A. Navy 1985). The intertidal and subtidal rocky outcrops 

are temporal and are often buried under sand and then washed open again by 

currents. These currents are mainly determined by the prevailing winds (Lutjeharms 

1998). The main collection sites along this stretch of coast included Cape Recife, 

Cannon Rocks, Port Alfred, Kleinemonde and Great Fish River Point (Figure 2.1). 

 

Thompson (2004) tested various techniques used for flatfish capture, including the 

use of seine nets, feike nets, baited traps, diving and spearing. Spearing (with 

barbless prongs) was the only successful method and hence had to be employed. This 

was achieved by wading on shallow sandbanks and spearing (blindly) with a four-

pronged fork. This technique is also used by all recreational sole fishermen in the 

area. These forks come in a wide range of shapes and sizes, but all forks have 

three basic parts to them; the head, prongs and handle (Figure 2.2). The prongs are 

barbed and are made of steel or steel alloy, and are attached to the head. The head is 

attached to the handle, usually a wooden broom stick. The barbs of the soling forks 

used in this study were filed away such that the fork could be easily removed from the 

fish. 
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Figure 2.1: Map of the South East Cape coastal area showing the main sampling sites. 

 

D. marginatus are generally more abundant on newly formed sandbanks (0 to 1.5 

meters deep) with dispersed rocks covered by the green seaweed, Caulerpa filiformis. 

Sampling took place during the extended spawning season (October to March) 

(Thompson 2004), two days before and after spring tide (five days in total) for a 

period of about two hours before and after low tide during the day, when sandbanks 

were easily accessible. 
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Figure 2.2: Typical 4-barbed fork used to capture D. marginatus on the south east 

coast of South Africa. 

 

BROODSTOCK TRANSPORT AND HUSBANDRY 

 

All the captured fish were inspected for severity of the wounds and maturity, based on 

size (Thompson 2004). The fish that were too small or speared through any vital organ 

were discarded. Adult fish were transported to the marine hatchery at Rhodes 

University, Grahamstown in 200 litre dark, plastic bins containing 40 litres of well 

aerated sea water and a layer of sand. Prior to placing fish in broodstock systems, all 

the wounds were treated with an antiseptic tincture (Speelmanskop Biobalsam – 10 % 

propolis tincture) to prevent primary and secondary infections. The survival rate of the 

fish after capture, transport and treatment in such a manner was 89 %. 

 

The fish were placed in one of two completely independent but identical recirculating 

broodstock systems in the marine hatchery at Rhodes University. The two systems 
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2

allowed for flexibility in conditioning and quarantining of certain fish. Each system 

consisted of rectangular (3 m x 1.8 m x 1.2 m) holding tank made from plastic 

canvas, a 1 m3  sump, a mechanical sand filter filled with diatomaceous earth and 

a trickle filter.  A plastic container (1.2 m x 0.95 m x 0.8 m) half filled with oyster shells 

and shredded plastic was used as the biological trickle filter. The total system volume 

was 8 m3 and had a flow rate to ensure a complete water exchange every 2 to 3 hours 

in the holding tank. Once a week a total of 800 litres (10% of total volume) was 

replaced with fresh seawater that was mechanically filtered to 10 µm. The water in 

the system was continuously aerated. 

 

Environmental conditions, under which fish were kept, were closely monitored. 

Temperature and salinity were maintained at 19 ± 1 ºC and 35 ± 1 ppt respectively, 

while the diurnal light cycle was adapted, varying between 12 and 16 hours of 

daylight, according to the natural light cycle. Water quality was monitored bi-weekly. 

Oxygen saturation was maintained above 7.4 ppm, ammonia (NH3) below 0.014 mg/l 

and nitrite (NO -) below 0.026 mg/l within each system. 

 

Stocking densities of mature fish never exceeded more than 50 % bottom coverage, 

which is considered a medium stocking density for other soleids like Solea (Schram et 

al. 2006). Fish were fed shelled sand mussel (Donax serra) and squid (Loligo vulgaris 

reynaudi) three times a week ad libitum, following a similar regime proposed by Dinis 

(1986). Excess food was removed prior to next feeding. 

 

SPAWNING AND EGG INCUBATION 

 

Females in the final stages of oocyte maturation, identified on the basis of 

external morphological evidence of swelling, were induced to undergo final stages of 

vitellogenisis and ovulation using Aquaspawn ®, a GnRH analogue (Millar’s Clinical 

Laboratories, Touws River, South Africa) at a dosage of 0.5 ml per kg of body weight. 

Eggs were obtained by strip spawning the females between 24 and 48 hrs after a 
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-

single injection. Males were sacrificed and the testes surgically removed. Testes were 

then homogenized in a small volume (1ml) of saline solution (0.9 ppt) and added to 

the eggs to allow fertilization while stirring with a primary bird feather. This process 

was completed with sterilised equipment and in the absence of any water. 

 

After 20 minutes, one litre of fresh seawater, filtered to 10 micron at a temperature of 

19 ºC was slowly added to the fertilised eggs while stirring continuously with the 

feather. An additional 20 minutes was allowed for hydration and hardening off eggs 

before the eggs were washed and placed into 60 L black, cylindro-conical fibre 

glass incubators at a density of approximately 20 eggs/ L. Eggs were incubated in the 

dark for the first 72 hours, to avoid egg mortality and reduced hatching rates (pers. 

obs.). These tanks also served as the larval rearing tanks. 

 

LARVAL REARING AND SYSTEM DESIGN 

 

The 12 identical cylindro-conical tanks were linked to a recirculating system, which 

consisted of a biological trickle filter (500 L), mechanical sand filter filled with 

diatomaceous earth, sump (1 m3). Water inflow was from the bottom such that an 

upwelling system was created with the outflow at the top (Figure 2.3). A500 µm 

screen was placed halfway in the tank to serve as a circular false bottom, due to bottom 

associated feeding behaviour of larvae undergoing flexion. Flow rates were maintained 

at 5 L/h during incubation and 30 L/h during larval rearing. Each tank was supplied with 

gentle aeration to ensure a high level of oxygen saturation. 10 % of the total system 

volume was replaced with filtered sea water (10 µm) every week. Water quality 

parameters were monitored bi-weekly. Temperature and salinity were kept constant at 

19 ± 1ºC and 35 ± 1ppt respectively, oxygen saturation above 7.4 ppm, ammonia 

(NH3) below 0.011 mg/l and nitrite (NO2) below 0.023 mg/l. 
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Figure 2.3: Schematic illustration of egg incubation and larval rearing tank with and 

inserted false bottom. 

 

Larvae and early juveniles were fed twice each day at 09:00 and 17:00 according to the 

protocol illustrated in Figure 2.4. Larvae were fed on newly hatched Artemia 

franciscanis nauplii from 4 days after hatching (dah) until 16 dah at a density of >5 ind. / 

ml. From 16 dah until 35 dah the larvae and early juveniles were fed enriched Artemia 

metanauplii and enriched, frozen Artemia metanauplii. A new batch of enriched nauplii 

was provided every 24 hrs at a density of approximately five individuals / ml. The onset 

of weaning to an inert diet began at 25 dah. Larvae were co-fed on live Artemia 

metanauplii, frozen Artemia nauplii and the manufactured diet until 35 dah when live 

Artemia metanauplii and frozen Artemia nauplii were withdrawn. The pelleted diet was 

30 cm 

Air to diffuser 

Water outflow 
Screen 500 µm 

False bottom 
Mess size 500 µm 

Water inflow 
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supplied at a concentration of 6 mg / ml of water (Imsland et al. 2003). Uneaten pellets, 

dead larvae and Artemia where siphoned out twice each day, prior to next feeding. 

 

 
 

Figure 2.4: Diagram illustrating the feeding protocol used for the rearing of D. 

marginatus larvae. 

 

ARTEMIA PRODUCTION 

 

One batch of Artemia franciscanis cysts (Batch number 9540), EG: HE > 240 000 npl/g 

(INVE, Belgium) was used throughout the experiments. Cysts were prepared and 

incubated according to the method described by Hoff & Snell (1987). They were 

hydrated for one hour in conical plastic flasks (1 L) containing fresh water under strong 

aeration at 25°C. The hydrated Artemia cysts were then decapsulated with unflavoured 

liquid bleach (approximately 10 ml of liquid bleach per gram of cysts) until cysts 

reached a bright orange colour, after which they were thoroughly rinsed with fresh 

water. Decapsulated cysts were transferred into conical plastic flasks (1 L) containing 

filtered seawater (10 µm) kept at a constant temperature and salinity (25°C and 35 ppt) 

under strong aeration. Constant illumination at light intensities of 2000 lux was applied 

by using light tubes (Osram either fed to sole larvae DHA Selco® accordingL18/W72). 

Cysts hatched after 24 h and were then or reared to the metanauplii stage and 

enriched with the method described by the producer (Artemia Systems, INVE). 

Approximately 0.6 g of dry DHA Selco® (Batch number 09 27 B) was homogenised in 

25 mL of seawater and added continuously, drop by drop, to the Artemia metanauplii 

culture over a period of 24 h. The enriched metanauplii were thoroughly rinsed with 
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fresh water and either fed to sole larvaeor frozen for later use. Care was taken to 

separate un-hatched cysts and egg shells from the nauplii. 

 

INERT DIET COMPOSITION 

 

The inert diet was an extruded pellet that was prepared in the laboratory. The 

composition of the diet is shown in Table 2.1. Squid and sand mussel meal used in the 

diet were made by freeze-drying fresh material to prevent protein denaturation and 

milled down to an average particle size of 50 µm. Larger particles was removed using a 

100 µm sieve. All dry ingredients were stored at –20°C, until extrusion. The ingredients 

were weighed and mixed thoroughly with water. The mixture was put into a pasta 

extruder (ICME Bologna) and extruded to form 2mm diameter strands. These strands 

were oven dried at 38°C for 12 h. The dried strands were milled and sieved to provide 

particles ranging in size from 100 to 400 µm (average = 250 µm). The proximate 

composition of the diet was determined using methods set out by Thompson (2004). 
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Table 2.1: Ingredients and proximate analysis (g / 100 g or %) of the formulated inert 

diet used for weaning of the sole larvae. 

 

Ingredients  % 

Fishmeal (AAA Danish low temperature) 53 (dry matter) 

Sand Mussel meal (Donax serra)  8 (dry matter) 

uid meal (Loligo vulgaris reynaudi)  8 (dry matter) 

d liver oil  5 

tamin / Mineral mix  1 

Starch binder 25 

Proximate Analysis  

Protein 49.6 

Crude fat 17.3 

Ash 14.8 

Moisture 4 
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Chapter 3: Larval development of Dagetichthys marginatus (Family: 

Soleidae), obtained from hormone-induced spawning u nder artificial 

rearing conditions*.  

* Thompson, E.F., N.A. Strydom, and T. Hecht. – 2007. Larval development of Dagetichthys 

marginatus (Family: Soleidae), obtained from hormone-induced spawning under artificial 

rearing conditions. Scientia Marina 71(3): 421-428. 

 

INTRODUCTION 

 

Dagetichthys marginatus was identified as a suitable candidate species for aquaculture 

in South Africa, based on life history strategy, good natural growth rates and an 

established, lucrative market for flatfish (Thompson 2004). Wild broodstock were 

successfully induced to spawn and the larvae were reared through to metamorphosis 

under controlled laboratory conditions. These larvae were used to describe the early 

ontogeny of the species. 

 

The white-margined sole, Dagetichthys marginatus (Boulenger 1900), formerly 

Synaptura marginata (Vachon et al. 2008), is one of 56 flatfish species that occur in 

southern African waters, 16 of which are soleids (Smith & Heemstra 1986). The 

new soleid genus Dagetichthys consists of five species, three occurring in the 

Western Indian Ocean (Vachon et al.  2008), namely D.  marginatus, D. 

albomaculatus (Kaup 1858) and D. commersonnii (Lacepède 1802). The distribution of 

Dagetichthys marginatus is listed by Heemstra and Gon (1986) as extending from the 

Mozambique Channel southwards to Durban on the east coast of South Africa. 

However, Thompson (2004) recorded the distribution of D. marginatus to extend into 

temperate waters as far south as Gansbaai (34°35 ‛S, 

19°20 ‛E), where it is the most abundant shallow water sole species on intertidal and 

sub-tidal sandbanks. 

 

Nothing is known about the early life history of this species prior to the genus change. 

An isolated report on egg size (2.08 mm) (Ochiai 1966) was shown to be inaccurate 
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due to the misidentification of adult fish (Vachon et al. 2008), while a record of three 

D. marginatus larvae (2.8 – 3.2 mm) (Beckley 1986) in temperate South Africa remains 

unconfirmed. The only information for larvae of the 14 species in the genus 

Synaptura (Eschmeyer 1998) was an isolated description for Synaptura kleinii 

(Brownell 1979), which was subsequently moved to the genus Synapturichthys 

(Heemstra & Gon 1986). Hence there are no published larval descriptions for the new 

genus Dagetichthys. 

 

Laboratory rearing of D. marginatus for aquaculture provided an ideal opportunity to 

study and describe larval development. Understanding the critical changes in 

morphology and behaviour of this species, as well as the timing and duration of each 

of these events, will facilitate larval rearing protocols. 

 

Larval descriptions for coastal fish are generally lacking in South Africa (Strydom & 

Neira 2006). Descriptions are however, available for eight of the 16 soleid species 

occurring on the South African coast (Table 3.1). This paper presents the first 

description of the early larval development of the white- margined sole, D. marginatus 

(Boulenger 1900). This information will assist in the identification of this species in 

ichthyoplankton samples and in so doing, provide much needed information on 

spawning as well as larval and juvenile distribution for this species in coastal waters off 

South Africa. 

 

MATERIALS AND METHODS 

 

All broodstock fish were identified as Dagetichthys marginatus based on meristic 

counts given in Heemstra & Gon (1986) and Vachon et al. (2008). Male and female 

fish were collected with a hand-held, multipronged spear between Port Elizabeth 

(33º57’S; 25º38’E) and Great Fish River Point (33º31’S; 27º06’E) during the 

spawning season (October to March) (Thompson 2004) and transported to the marine 

hatchery at Rhodes University, Grahamstown. Females were induced to ovulate using 

Aquaspawn ®, a GnRH analogue (Millar’s Clinical Laboratories, Touws River, South 
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Africa) at a dosage of 0.5 ml per kg of body weight. Eggs were obtained by strip 

spawning the females approximately 38 hrs after the single hormone injection. Males 

were sacrificed and the testes were homogenized in a small volume (1 ml) of saline 

solution (0.9 ppt). Eggs were fertilized with the testicular homogenate. After fertilization 

and hardening, eggs were thoroughly washed with seawater and divided among six 60 

L black upwelling incubators at a density of 20 eggs / L for egg incubation and larval 

rearing. Hatching occurred between 42 and 49 hrs after fertilization and exogenous 

feeding began three days after hatching (dah). Larvae were fed twice daily on newly 

hatched brine shrimp, Artemia franciscanis nauplii from first feeding to 16 dah. After 

this, larvae were fed two-day old, Super Selco (INVE) enriched A. franciscanis. A new 

batch of enriched nauplii was provided every 24 hrs at a density of five individuals / 

ml. Temperature and salinity were kept constant at 19 ± 0.8°C and 35 ppt respectively, 

for the duration of egg incubation and larval rearing. 

 

Ten larvae were collected at specific intervals representing developmental endpoints 

after hatching. All samples were fixed in 5 % buffered formaldehyde for 24 hrs and then 

transferred into 70 % ethanol. Representatives of the larvae examined and described 

in this paper were lodged in the national fish collection at the South African Institute of 

Aquatic Biodiversity (SAIAB 77531). 

 

All terminology pertaining to larval fish follows that of Neira et al. (1998).  The term 

"larva" was used to designate all stages in the early life history from hatching to the 

attainment of a full fin ray complement, squamation and the subsequent loss of all 

larval characters, at which stage the "larva" becomes a "juvenile". Transforming 

stages, still in possession of isolated larval characters and in a planktonic state were 

considered as larvae. Newly transformed individuals were called “early juveniles” and 

were included in the study. The term "larva" was further subdivided into yolk-sac, 

preflexion, flexion and postflexion stages. The following body measurements were 

made for all developmental stages; body depth (BD), body length (BL), eye diameter 

(ED), head length (HL) and pre-anal length (PAL). All measurements were made to 

the nearest 0.1 mm using a dissecting microscope fitted with an eyepiece micrometer 
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for larvae < 10 mm and Vernier calipers for larger specimens. Body length (BL) 

represents notochord length in preflexion and flexion stage larvae, and standard 

length in postflexion larvae and early juveniles. 

 

RESULTS 

 

Age and size range of developmental stages 

 

A total of 104 laboratory-reared larvae (2.09 – 14.75 mm BL) were examined to 

describe morphometrics, meristics and pigmentation. Newly hatched larvae (0h) 

ranged in size between 2.09 and 2.19 mm BL. The yolk-sac was completely absorbed 

after 4 days, while the oil globules persisted for approximately 12 hours. Yolk-sac 

larvae ranged from 2.09 to 3.41 mm BL (Table 3.2). The preflexion stage lasted for 6 

days after yolk-sac absorption. During the preflexion stage the larvae ranged from 3.44 

to 5.15 mm BL. Flexion of the notochord tip started 11 dah and was completed 

between 20 to 30 dah. Flexion stage larvae ranged from 5.00 mm (11 dah) to 7.06 mm 

BL (15 dah). The smallest postflexion larva measured 9.50 mm BL at 30 dah. 

 

General morphology 

 

Larvae are elongate (Figure 3.1A) in body shape during the yolk sac stage (mean BD = 

13.61 %) becoming more moderate (Figure 3.1B) at the preflexion stage (mean BD = 

26.59 %). Body depth increases at the onset of flexion as the gut enlarges and 

contorts to prepare for the settlement stage. Larvae remain moderately bodied until 

metamorphosis into juveniles (BD 28.44 – 50.00 %). The head is compressed and 

small during the yolk-sac stage (HL 14.63 %) becoming moderate in size during later 

developmental stages (HL 21.17 – 28.99 %). The snout is relatively short, giving the 

head a rounded, convex dorsal profile during preflexion and flexion (Figure 3.1). A 

dorsal hump is formed during the postflexion stage. This very distinct fleshy extension 

protrudes over the anterior, dorsal surface of the head and joins with the dorsal fin 

(Figure 3.1D). This hump fuses with the head after eye migration is complete. Both 
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body depth and head length, relative to body length, increase proportionally during 

development. Pre- anal length gradually decreases throughout development, from long 

to moderate (PAL 62.69 – 32.76 %) during early stages to short (mean PAL 24.53 %) 

at the settlement stage. 

 

Newly hatched larvae have a moderate to large, unsegmented yolk-sac (0.50-0.59 

mm diameter). In excess of 50 oil globules are distributed in the yolk-sac and are 

clustered together in groups of eight or less situated at the posterior end of the yolk-

sac. An additional dense cluster of about 30 oil globules is also situated at the 

posterior end of the yolk-sac. Prior to first feeding, the oil globules fuse to form one 

large globule situated in a posterior-dorsal position in the reduced yolk-sac. The 

eyes are indistinguishable and unpigmented in yolk-sac larvae and become fully 

pigmented and functional in early preflexion larvae. The mouth  becomes  functional  at  

the  same  time  as  the  gut  is  fully  formed  in preflexion larvae 3 dah (3.44 mm BL) 

and larvae started feeding on Artemia franciscanis 4 dah. Two to five small villiform 

teeth were first observed at 16 dah (6.60 ± 0.27 mm BL) on the blind and ocular side 

of the dentary. Villiform teeth are present on the premaxilla at 31 dah, while the 

number of teeth on the blind side dentary increases. At this stage, the teeth on the 

ocular side dentary disappear. No further teeth develop on the ocular side premaxilla at 

any stage during development (Ende & Hecht 2010). Preflexion larvae have a 

myomere count of 40, while the vertebral count is 42 after ossification. Myomeres could 

not be counted during any other larval stage due to heavy pigmentation. The air 

bladder was visible in isolated larvae 7 dah and not in older larvae due to heavy 

pigmentation. Larvae were however positively buoyant until flexion, after which they 

become substratum associated. This indicates the presence and use of an air bladder 

during the early stages of larval development. The gill membrane is also free from the 

isthmus at this stage. No head spination is present at any stage of development. 
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Figure 3.1: Larvae of Dagetichthys marginatus reared in laboratory. (A) newly hatched, 

yolk-sac. (B) preflexion. (C) flexion. (D) postflexion. 
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Development of fins 

 

Pectoral fin buds appear in late yolk-sac or early preflexion larvae from 3.03 mm BL (2 

dah). These increase in size throughout development up to settlement (9.50 mm 

BL, ± 30 dah), when the fins reduce in size and seven pectoral fin rays develop. Paired 

pelvic fin buds start developing during the late flexion stage from 6.50 mm BL (15 dah) 

and are fully developed in early postflexion larvae from 9.5 mm BL (30 dah), with 3 

rays present. The dorsal, caudal and anal fin anlagen appear simultaneously in late 

preflexion larvae (± 4.72 mm BL). Incipient rays form during early flexion and a full 

adult ray complement (D 70, A 55, C18) is present by late flexion stages from 6.13 mm 

BL (15 dah). The dorsal, caudal and anal fin membranes remain fused throughout 

development and is characteristic in adults. No fin spines or extraordinary rays are 

present in Dagetichthys marginatus larvae during any stage of development. 
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Table 3.1: Meristic, morphological and pigmentation information on soleid species occurring in South African 

waters for which larval descriptions are available. 

 

 

 

Species 

 

Myomeres – range for 

preflexion and flexion 

 

Vertebrae 

 

Size at flexion 

 

Pigment 

 

Reference 

Austroglossus  microlepis 56 – 58 55 – 57 5.2 – 5.5 Dorsal and ventral midline; gut; lower jaw; behind O’Toole 1977, Brownell 
    eyes; pectoral fins 1979 
Austroglossus pectoralis 50 – 58 (8-10 + 40-49) 58 3.5 – 3.8 Dorsal and ventral midline; fore- and hind-brain; Wood 2000 
    snout; lower jaw; ventral and lateral gut; small spots  
    on finfold  
Dicologossa cuneata 44 – 47 (9 + 35-38) 43 – 45 6.3 – 6.5 Dorsal and ventral midline; midbrain; hindbrain; Lagardère & 
    finfold; swim bladder, gut; head Aboussouan 1981 
Heteromycteris  capensis 39 – 41 (10 + 29-31) 40 – 43 6.2* Midline body contour; finfold; ventral gut wall; lower Brownell 1979 
    jaw, behind eyes; lower pectoral fin margin  
Monochirus lutens 36 – 38 36 – 40 5 Dorsal and ventral midline; midbrain; posterior tail Nichols 1976 in Olivar 
    (early); finfold; ventral abdominal wall & Fortuño 1991 
Monochirus ocellatus 34 – 37 (8-9 + 26-28) 37 – 38 4 Three dorsal and two ventral concentrations of small Palomera & Rubies 
    spots on finfold; caudal tip; dorsal and ventral body 1971 in Olivar & 
    contour; head, lower jaw; gut wall; swim bladder; Fortuño 1991 
    pectoral fins  
Pegusa lascaris 47 (9 + 38) 42 – 47 5.3 Many small melanophores scattered over head, body  
    and fins. Heaviest concentrations over lateral and Clarke 1914 in 
    ventral gut surface and laterally on tail. Ahlstrom et al. 1984, 
Synapturichthys  kleini 42 – 45 (9-10 + 33-35) 46 – 47 6.5* Densely packed stellate melanophores scattered Russell 1976 
    over all body surfaces and finfold.  
Dagetichthys marginatus 40 (preflexion) 42 5 – 7.6 Three distinct clusters on the dorsal and one on the Brownell 1979 
    ventral finfold and later fins when the last dorsal and  
    ventral cluster fuses to form a band over the body. This Study 
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Table 3.2: Body length and body proportions of the larval and juvenile stages of Dagetichthys marginatus reared 

under laboratory conditions (n, number of larvae; BL, body length; HL, head length; BD, body depth; PAL, preanal length). 

 

 Yolk-sac Preflexion Flexion Postf lexion Juvenile 
n  40 30 20 10 4 
BL  Range  2.09 – 3.41 3.44 – 5.15 5.00 – 7.06 9.50 – 11.60 13.50 – 14.75 
 Average 2.79 4.04 5.96 10.59 14.03 
 Stdev  0.50 0.48 0.70 0.57 0.58 
HL (%BL) Range  12.35 – 17.14 17.86 – 25.23 22.02 – 28.04 25.47 – 30.77 26.32 – 31.19 
 Average 14.63 21.17 24.50 27.95 28.99 
 Stdev  1.12 2.04 1.45 1.80 2.04 
ED (%BL) Range  5.56 – 10.45 6.84 – 9.00 5.75 – 6.94 4.72 – 5.96 4.24 – 4.63 
 Average 7.65 7.55 6.33 5.38 4.46 
 Stdev  1.25 0.55 0.34 0.37 0.18 
BD (%BL) Range  10.09 – 19.12 22.22 – 34.23 28.44 – 36.28 39.62 – 50.00 30.70 – 33.05 
 Average 13.61 26.59 31.65 44.99 32.30 
 Stdev  3.02 3.28 1.96 3.73 1.10 
PAL (%BL) Range 42.20 – 62.69 40.00 – 48.65 42.59 – 49.56 32.76 – 46.32 22.88 – 25.93 
 Average 51.54 43.52 46.60 39.65 24.53 
 Stdev  6.84 2.55 1.89 4.03 1.26 



30 
 

Chapter 3: Larval development of D. marginatus 
 

 

Pigmentation 

 

General pattern of development  

 

Pigmentation increases from sparsely pigmented yolk-sac larvae to heavily pigmented 

postflexion larvae just prior to squamation. The general pattern of occurrence of 

melanophores on the head and trunk remains similar from first feeding (3 dah) to postflexion 

larvae, although intensity and melanophore type (e.g. punctate and/or stellate) increased with 

development. Xanthophores dominate the pigmentation of live yolk-sac larvae mirroring the 

melanophore pattern observed in four day old larvae. Xanthophores however decrease in 

number and intensity until they disappear completely around 4 dah and are replaced by 

branched, stellate melanophores. 

 

Head pigmentation  

 

Head  pigmentation   is  characterised   by  melanophores   on  the  lower  lip (extending 

along the lower jaw line in later stages), preopercle, behind the eye and the isthmus  in 

preflexion  larvae, increasing  in number and intensity in flexion  larvae.  In some flexion 

specimens, a melanophore ring appears around the eye. Postflexion larvae lose this 

general pattern of pigmentation, as the whole head region becomes covered with many 

random melanophores. An isolated group of internal melanophores is visible at the join of 

the lower and upper jaw, as well as on the dorsal hump of the head in preflexion larvae. 

 

Trunk pigmentation  

 

Trunk pigmentation in early preflexion larvae consists of three large clusters of melanophores 

or “blotches” on the dorsal finfold and one on the ventral finfold (Figure 3.1B). The first of the 

dorsal blotches is situated anterior to the nape, the second occurs opposite the anal 

opening (midway down the trunk) and the third, occurs two thirds along the length of the 

trunk. The ventral blotch is in line with the third dorsal blotch. This third dorsal and the 

ventral blotch expand laterally over the trunk, across the myomeres, until the two fuse and 

become an “hour shaped” band across the larva during late preflexion. This band widens 

during flexion to form one solid band and continues to be visible as a “dusky bar” on 

postflexion larvae. The first two dorsal blotches remain visible during and after fin ray 
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development. In live larvae, iridiophores overlay the melanophore pattern of the three dorsal 

blotches at the start of flexion and continue to exist until the end of flexion. The notochord, 

during preflexion, is sparsely   pigmented   with punctuate   melanophores that become 

heavily stellate during flexion, covering almost the entire thickening of the myomeres. With 

this thickening during flexion, internal pigmentation appears on the ventral side along the 

notochord and above the gut, which become increasingly difficult to see as the external 

pigmentation develops. The gut is even, but lightly pigmented in preflexion larvae. This 

pigmentation pattern remains the same although individual melanophores expand and the 

pigmentation becomes heavy, concealing any internal pigmentation that might be present in 

and around the gut during flexion and later stages of the development.  Pelvic fins become 

pigmented with melanophores during the postflexion stage and remain so through to the 

juvenile stage. The base of the pectoral fin becomes pigmented during preflexion stages. 

 

Tail pigmentation  

 

A cluster of melanophores appear on and around the notochord, anterior to the tip, during 

the preflexion stage and disappears at the end of flexion. Other than this cluster, the caudal 

peduncle and caudal fin remains free of melanophores. 

 

DISCUSSION 

 

The development of Dagetichthys marginatus larvae follows typical soleid development (Leis 

& Carson-Ewart 2000). Fin development as well as the lack of extraordinary rays and 

spines is characteristic. The anterior dorsal fin supports (pterygiophores and the proximal 

portion of rays) form a deep notch with the top of the snout and head of postflexion 

larvae. The eye migrates through this notch and the notch closes with increasing growth. 

This anterior extension of the dorsal hump on the head is however not common amongst 

soleids. The only other soleid species with a similar morphological feature is Heteromycteris 

japonicus (Ahlstrom et al. 1984). 

 

All the larvae used for this description were laboratory reared from eggs, which according to 

Watson (1982) may result in heavier pigmentation. Laboratory reared larvae may also show 

slightly different meristic characteristics in comparison to those of wild caught individuals. 

Variable laboratory rearing conditions can manifest in those characteristics that are partially 
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controlled by environmental conditions, such as vertebral and fin ray counts (Hunter 1984). In 

this study however, fin ray and vertebral counts observed in laboratory reared larvae fell 

within the range for wild caught adult Dagetichthys marginatus; D 70 – 81, A 55 – 64, P 7, C 

18, V 42 - 45 (Vachon et al. 2008). 

 

Dagetichthys marginatus larvae are easily distinguished from other pleuronectiform larvae 

commonly found in temperate nearshore waters of South Africa. The larvae of the 

cynoglossid, Cynoglossus capensis (Brownell, 1979) are easily distinguishable from D. 

marginatus by four elongated anterior dorsal rays that only start disappearing in late 

postflexion stages. At this stage C. capensis is a left-eyed (sinistral) flatfish, while D. 

marginatus is right-eyed (dextral). The larvae of Cynoglossus zanzibarensis, another 

common cynoglossid found in coastal waters of South Africa, have not yet been described. 

Specimens lodged in the SAIAB collection were examined and are briefly described here. 

Larvae were lightly pigmented throughout development with two characteristic rows of evenly 

spaced melanophores along the dorsal and ventral body margin. The smallest preflexion 

larva measured (4.2 mm BL) had two elongated rays, unlike C. capensis with four, which start 

disappearing during the postflexion stages (7.8 mm BL) and are completely lost at the onset 

of eye migration (10.5 mm BL). Other characteristics that could be used to make a 

distinction between Cynoglossidae and D. marginatus are the higher meristic counts, a coiled 

gut and a single pelvic fin (Leis & Carson-Ewart 2000). 

 

Except for Arnoglossus  capensis and Pseudorhombus  arsius, bothid larvae are  not  

commonly  found  in  ichthyoplankton  samples  in  temperate  coastal waters of South Africa 

(Strydom pers. comm.). The larvae of A. capensis have been partially described by Brownell 

(1979). Despite the paucity of descriptive information, D. marginatus can be distinguished 

from bothids by the presence of a continuous dorsal, caudal and anal fin membrane that 

remains fused until the fin rays ossify. Other notable bothid characteristics are the elongated 

dorsal fin rays during early larval stages and the fact that they are sinistral flatfish. 

 

Soleids commonly encountered in temperate inshore waters in South Africa are 

Heteromycteris capensis, Solea turbynei (formerly S. bleekeri) and Austroglossus pectoralis.  

The larvae of A. pectoralis and S. turbynei are notably smaller than those of D. marginatus, 

reaching flexion at a size of 3.5 – 3.8 mm (Wood 2000) and ~ 3.5 – 3.9 mm (Strydom pers. 

comm.) respectively, in comparison to D. marginatus which range from 5 to 7.06 mm BL at 
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flexion. A. pectoralis and H. capensis larvae are light to moderately pigmented, S. turbynei 

larvae are moderate to heavily pigmented and D. marginatus larvae are heavily 

pigmented. Postflexion larvae of all these species can also be separated by fin ray counts. 

Dagetichthys marginatus can also be separated from H. capensis by the presence of the 

fused anal, caudal and dorsal fins. Synapturichthys kleini (Brownell 1979) has a very different 

melanophore arrangement to D. marginatus, although fin ray counts and sizes at different 

developmental stages are similar. Synapturichthys kleini have densely packed stellate 

melanophores scattered randomly over the body and finfold, while D. marginatus has a 

distinctive melanophore pattern with four characteristic melanophore blotches on the finfold. 

 

The actual spawning habitat of D. marginatus has not been identified, mainly due to the 

lack of eggs, larvae and juveniles in shallow surf or nearshore plankton catches (Lasiak 

1983, 1984, Strydom 2003, Watt-Pringle & Strydom 2003) and the lack of larval fish 

research in offshore waters of South Africa. Although there is no evidence to suggest a 

spawning migration given the prevalence of mature females intertidally, it is not unlikely 

among flatfish as Dagang et al. (1992) and Shuozeng (1995) showed this to be the case 

for most flatfish species in the Yellow Sea, China. Further research is required on soleid 

spawning strategies off temperate South Africa. 
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Chapter 4: Description of the histo-morphology deve lopment of the 

alimentary tract and specific activity of digestive  enzymes for 

Dagetichthys marginatus (Soleidae) larvae.  

 

INTRODUCTION 

 

The absorption of nutrients from food by fish larvae is dependent on the specific activity 

of digestive enzymes present in the gut and is closely linked to the functional status of 

the digestive tract and the support organs (Martinez et al. 1999, Cahu & Zambonino 

Infante 2001, Kolkovski 2001, Gisbert et al. 2009). A comprehensive knowledge of the 

morpho-functional characteristics of the larval digestive tract at each developmental 

stage is therefore essential to predict the digestive capacity of larvae (Segner et al. 

1994, Yúfera et al. 2000, Kolkovski 2001, Zambonino-Infante & Cahu 2001). This 

knowledge is crucial to determine appropriate weaning strategies (Jones et al. 1993, 

Person-Le Ruyet et al. 1993, Kolkovski et al. 1997a, b), as well as designing suitable 

weaning diets for different species (Kolkovski 2001). 

 

The ontogeny of the digestive tract and associated organs during larval development 

has  been  described  for  a  diverse  group  of  commercially important  marine  finfish 

species, including turbot, Psetta maxima (Segner et al. 1994, Padrós & Crespo 1996); 

Senegal sole, Solea senegalensis (Sarasquete et al. 1996 & 2001, Ribeiro et al. 1999a); 

Atlantic cod, Gadus morhua (Kjørsvik et al. 1991, Morrison 1993); yellowtail kingfish, 

Seriola lalandi (Chen et al. 2006a); Japanese eel, Anguilla japonica (Kurokawa et al. 

2004); gilthead seabream, Sparus aurata (Sarasquete et al. 1993a & 1995, Elbal et al. 

2004); European seabass, Dicentrarthus labrax (García-Hernández et al. 2001); white 

seabream, Diplodus sargus (Ortiz-Delgado et al. 2003); common dentex, Dentex 

(Santamaría et al. 2004); brill, Scophthalmus rhombus (Hachero-Cruzado et al. 2009) 

and common pandora, Pagellus erythrinus (Micale et al. 2006). Moreover, Dabrowski 

(1984), Person-Le Ruyet (1989) and Zambonino-Infante & Cahu (2001) have described 

the important ontogenetic changes in the digestive tract of fish larvae. Sánchez-Amaya et 
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al. (2007) concluded that the basic mechanisms of organogenesis are similar in all 

teleosts, and differences are mainly in the relative timing of occurrence in ontogeny. 

This timing difference in organ development is generally related to the life history of a 

species, as well as abiotic and biotic factors such as water temperature or food 

availability (reviewed by Falk-Petersen 2005). 

 

Enzymes are o f t en  used  to g i v e  s o m e  indication to the digestive capacity of 

finfish larvae, and are often examined in support of a histological description of the 

digestive tract and the associated organs (Zambonino Infante & Cahu 2001). Enzyme 

activity studies in marine   teleosts   have   been   undertaken   for   various   species,   

including   Solea senegalensis (Ribeiro et al. 1999b), Paralichthys olivaceus (Bolasina 

et al.  2006), Hippoglossus (Gawlicka et al. 2000), Scophthalmus maximus (Tong et al. 

2012), Ompok bimaculatus (Pradhan et al. 2012), Limanda ferruginea and 

Pseudopleuronectes americanus (Baglole et al. 1998); Dicentrarchus labrax (Zambonino-

Infante & Cahu 1994), Sparus aurata (Moyano et al. 1996), Seriola lalandi (Chen et al. 

2006b), Thunnus albacores (Alejandro Buentello et al. 2011), Lutjanus guttatus (Galaviz 

et al. 2012) and Pagellus bogaraveo (Ribeiro et al. 2005). These studies have detected 

activities for numerous digestive enzymes in fish larvae, but the activities of only a few 

are generally regarded as physiologically very important (see Chapter 5). These include 

the activities of alkaline and acid proteases, lipase, amylase and alkaline and acid 

phosphatase, and are therefore most often determined. The presence of these enzymes 

as well as their specific activity (referred to as an enzyme system) varies with ontogenetic 

development, within an individual and under different feeding regimes (Kolkovski 2001). 

Furthermore, digestive enzymes can be of endogenous nature; i.e. produced by the larval 

digestive system (Gisbert et al. 2004) or of an exogenous nature; i.e. introduced via live 

food (see Chapter 6) and enzymes produced by the intestinal microfauna or probiotics 

(Ringo & Birkbeck 1999, Ganguly & Prasad 2012, Ray et al. 2012). 

 

There is currently no literature available on the functional development of the digestive 

system for the white margined sole, Dagetichthys marginatus. The chapter investigates 

and describes the major histological and enzymatic ontogenetic changes throughout 
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larval development of D. marginatus, especially those structures and enzymes related to 

the acquisition of nutrients. 

 

MATERIALS AND METHODS 

 

Larvae for this study were reared and collected in the marine hatchery at Rhodes 

University (Grahamstown, South Africa), and were not starved prior to collection of 

samples. Rearing protocols are described in Chapter 2. All the larvae were examined 

under a dissecting microscope to eliminate abnormally formed larvae from the sample 

and then euthanized with an overdose of 200 ppm Tricaine Methane Sulphonate or MS 

222 (Alpharma, Animal Health Ltd, Fordingbridge, Hampshire). Larvae were randomly 

selected from all 12 rearing tanks at specific time intervals (days) representing 

developmental endpoints after hatching and include 3, 5, 8, 12, 15, 20, 25 and 30 days 

after hatching (dah). These developmental endpoints were established during the larval 

description (Chapter 3). Ten larvae were collected for histological sectioning (including a 

sample of 10 larvae immediately after hatching – 0 dah), and three pooled samples of 

between 10 to 50 larvae each were collected for the determination of enzyme activity 

(n=3) at each interval (Table 4.1). The difference in the number of larvae in each sample 

was due to size differences in larvae during development. An adequate number of 

larvae were collected at each time interval to ensure a large enough sample for crude 

enzyme extract to determine the specific activities of the digestive enzyme. All samples 

were stored in cross referenced 1.5 ml reaction vessels (Eppendorf tube). 

 

Histology 

 

Methods for histological preparation of larvae were adapted from Elbal et al. (2004) and 

Gisbert et al. (2004) and follow those described by Sumner & Sumner (1969), Bernard & 

Hodgson (1988), and Hinton (1990), and are briefly described here. Larvae were fixed in 

10 % buffered formalin (pH 7.2) for 24 hours and then preserved in 70 % ethanol under 

zero light conditions. Prior to embedding the larvae in paraffin wax, they were dehydrated 

by passage through a series of ethanol solutions of increasing concentrations (80 %, 90 



37
37 

Chapter 4: Description of the histo morphological development 
 

 

% and 2 x absolute ethanol) each for 10 minutes. Dehydration is essential prior to 

embedding the tissue in paraffin wax, as the wax will not penetrate tissue in the presence 

of water (Hinton 1990). To reduce and prevent cell shrinkage, the ethanol was then 

removed from the tissue by immersion in three solutions of 100% xylene at 40°C, each for 

20 minutes. Impregnation of tissue with paraffin wax took place for an hour under a 

vacuum of 460 mm / Hg at 57 °C (Townsen & Mercer Vacuum Oven). The samples were 

then imbedded in paraffin wax in small moulds with pre-cast wax beds and left overnight 

to harden. These blocked samples were trimmed and mounted. Sections of 3 - 5 microns 

were cut with steel blades using a sliding microtome. The resulting ribbons were floated 

onto slides in a warm water bath (40 °C) and attached using Haupt’s adhesive. The slides 

were dried over night at 37 °C. Serial transverse and sagittal sections were stained with 

Haematoxylin-eosin (H-E) for topographic observations, Periodic Acid Schiff reagent 

(PAS) to detect neutral mucosubstances, and Alcian blue (AB) at pH 2.5 to detect acid 

mucosubstances. The final sections were covered with DPX slide mountant and a 

coverslip. The slides were then examined and photographed under 40 - 400 x 

magnification in a random order to prevent possible interpretational bias associated with 

prior knowledge of collection time. 

 

Enzyme activity determination 

 

Pooled samples of 10 - 50 larvae were placed in a 1.5 ml Eppendorf tube and snap 

frozen in liquid nitrogen immediately after collection, and remained frozen at -80 ºC until 

crude enzyme extraction. All the larvae were blotted on drying towel to remove excess 

water prior to being frozen. Enzyme extraction was achieved by homogenising partially 

thawed larvae (4 ºC) in the 1.5 ml reaction vessel (approximately 35 mg. ml-1) with 

tevlon pestles in cold 50 mM Tris-HCL buffer, pH 7.5. This was followed by centrifugation 

(13500g for 15 min at 4 ºC). The supernatant was removed, placed in a new, 

appropriately referenced reaction vessel and put on ice. Assays for each enzyme (as 

described below) were done on the same day as extraction. Fresh chemicals were mixed 

daily and standard curves were also constructed every day. A substrate and extract blank 

was included for standardisation purposes.  
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Absorbances for all the assays were determined using the KC junior software and the 

96 well spectrophotometer SPECTRAmax 190, Powerwave X, Biotek Instruments, USA. 

All reactions took place at a room temperature of 20 ºC and at the pH for optimal activity 

for each enzyme (see Chapter 5). 

 

Table 4.1: Number of larvae collected at each time interval for determination of specific 

enzyme activity (n total = 690 larvae) 

Time (dah) # Larvae 
per sample 

Total # 
Larvae (n=3) 

3 50 150 
5 50 150 
8 40 120 

12 30 90 
15 20 60 
20 20 60 
25 10 30 
30 10 30 

 

Alkaline proteases 

 

The activity of alkaline proteases (mainly trypsin and chymotrypsin) was determined using 

the method of Anson (1938) and Walter (1984). The substrate was prepared by dissolving 

0.2 g haemoglobin in 10 ml of 50 mM Tris-HCL buffer (pH 7.7). 400 µl of substrate and 100 

µl of enzyme extract were pipetted into a reaction vessel, and incubated at room 

temperature for 30 minutes. Digestion of the substrate was stopped by the addition of 800 

µl of Trichloro acetic acid (5g / 100 ml Milli-Q water), and left for 20 minutes to allow any 

precipitate to settle. Samples were centrifuged for 5 minutes at 13000g. Duplicate readings 

were pipetted into quartz microtitre plates, and the liberated product of l-tyrosine being 

read at 280 nm. Graded concentrations of l-tyrosine were used to make a standard 

curve. Specific enzyme activity was determined using the equation; 
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Activity (A) was expressed as U / mg protein or umol of l-tyrosine liberated / minute / mg 

protein in sample. 

 

α - Amylase (E.C. 3.2.1.1) 

 

Amylase activity was determined using the Somogy-Nelson procedure described by 

Robyt & Whelman (1968). The substrate was made by dissolving 1 % soluble starch in a 

50 mM Tris-HCL buffer (pH 7.7) by heating up the solution over a Bunsen burner. 

Milli-Q water was added to this substrate solution to account for evaporation during the 

heating process. Digestion started by combining 150 uL of the enzyme extract with 150 

uL of the substrate and allowing the mixture to incubate for 5 min. 600 uL DNS 

(Dinitrosalicylic reagent – see Appendix A) reagent was added to stop the reaction and 

then incubated at 100 ºC in a heating block for 5 min. Duplicate samples was pipette 

into microtitre plates (Falcon flat bottom 96-well microplate) and absorbance measured at 

540 nm. Maltose was used as a standard. 

 

Specific enzyme activity was determined using the equation; 

 

 

 

Activity was expressed as umol maltose liberated / minute / mg protein in sample or U / 

mg protein. 

 

 

Lipase (E.C. 3.1.1.-) 

 

Lipase activity was measured according to Iijima et al. (1998). Lipases was activated by 
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incubating 40 ul of the enzyme extract with 600 ul of sodium cholate (5.2 mM) in 50 mM 

Tris-HCL buffer (pH 8.0) and 20 ul of 10 mM 2-methoxyethanol at room temperature for 

15 minutes.  40  ul  of  the  substrate,  p-nitrophenyl  myristate  (10  mM  p-nitrophenyl 

myristate dissolved in 100% ethanol) was added to the reaction vessel and allowed to 

digest for 2 hours at room temperature. The reaction was stopped by the addition of 800 ul 

acetone heptane mixture (5:2) and was then centrifuged at 13500g for 2 min at 4 ºC. 

Duplicate absorbance readings were then recorded at 405 nm for each sample. 

Specific enzyme activity was determined using the equation; 

 

 

 

The standard curve was made from a stock solution of 5 mM P-nitrophenol in sodium 

cholate Tris-HCL buffer and 2-methoxyethanol in same ratios as per the assay. 

Activity was expressed as umol p-nitrophenol liberated / minute / mg protein in sample or 

U / mg protein. 

 

Phosphatase (E.C. 3.1.3.1) 

 

Phosphatase activity was determined by combining 150 ul of the enzyme extract, 150 ul of 

12 mM p-nitrophenyl phosphate (substrate) and 600 ul of 50 mM Tris-HCl buffer (pH 9.8) 

in an reaction vessel and allowing to incubate for 20 minutes. This procedure was 

adapted from Walter & Schuett (1974). The change in absorbance was recorded after 

20 minutes at 405 nm. 

 

Specific enzyme activity was determined using the equation; 

 

 

 

The standard curve was made from a stock solution of 5 mM P-nitrophenol in Tris-HCl 
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buffer. Activity was expressed as umol p-nitrophenol liberated / minute / mg protein in 

sample or U / mg protein. 

 

Other enzymes 

 

Pepsin or acid protease activity was determined using exactly the same assay method 

as for alkaline proteases, except that the Tris-HCl buffer was buffered to a pH of 2. 

Similarly, acid phosphatase was determined with the method for alkaline phosphatase 

described above, where the Tris-HCl buffer was buffered to a pH of 2. 

 

Protein 

 

The soluble protein content of the homogenates was analysed using Bradford’s assay 

technique (Bradford 1976) with bovine serum albumin as a standard. In a microtitre 

plate, 250 µl of Bradford reagent (Coomassie Blue) was added to 5 µl of enzyme extract 

and allowed to incubate at room temperature for 5 minutes after which absorbance was 

read at 595 nm. Each sample was done in triplicate and the average taken as being the 

representative value for the sample. 

 

RESULTS 

 

Morphologically the digestive tract appeared as a straight undifferentiated tube laying 

dorsally to the yolk sac at hatching (0 dah), closed at the mouth and anus. The digestive 

tract Anlage increased in length throughout development over the next couple of days, 

showing a slight bend in the posterior region.  The mouth and anus opened 3 dah at 

which point an intestinal loop was clearly visible in the mid and posterior intestine. 

Pigmentation around the gut region increased in intensity from this point onwards to a 

stage where any morphological description of the larvae gut under a microscope was 

impossible. During this period of increased pigmentation, there were no visible changes in 

the morphological arrangement of the digestive tract (Chapter 3). 
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The digestive tract was histologically undifferentiated along its entire length at hatching (0 

dah), but developed rapidly up to the opening of the mouth and anus at 3 dah. Three 

constrictions separated the digestive tract into four different sections at mouth opening: 

the oesophagus, the posterior part of the foregut or stomach anlage, anterior intestine, 

and the posterior intestine (Figure 4.1). The first Artemia was also visible in the gut 3 dah. 

The oesophagus consisted of cubic epithelium surrounded by a muscular layer. The 

stomach anlage appears as a pouched shape extension immediately posterior to the 

oesophagus with a slight indent of the smooth muscle layer pointing to a constriction and a 

reduction of the lumen. Very little difference was detected in the cubic epithelium cells 

forming the stomach to that found in the oesophagus, other than the presence of large,  

centrally located,  ellipsoid  nuclei  in  the  epithelium  of  the  stomach  in  some 

histological sections. The anterior and posterior intestine also showed some separation 

with the initiation of a valve. Both these sections of the intestine were lined with 

columnar epithelium with basophilic nuclei and prominent nucleolus. The anterior intestine 

showed more development than the posterior with the presence of folds in the lumen, a 

brush border, dense granules and more basophilic cytoplasm with apical vesicles. 

 

From 3 dah onwards, there was very little change regarding the arrangement of the 

digestive tract and the support organs other than an increase in length / size until 15 

dah. This supports morphological observations made of the gut. This period 

corresponded to an increase in the number of vesicles, dense granules and also 

thickening of the brush border in the anterior intestine. Large numbers of supra-nuclear 

vacuoles was present in the enterocytes along the anterior portion of the gut (Figure 

4.2). These persisted until 15 dah, corresponding to the onset of flexion and the start of 

metamorphosis. Small groups of vacuoles were also visible in the posterior part of the 

gut during this period and persisted until 30 dah. The increase in mucosal folding of the 

gut continued throughout development to increase the absorption surface and the brush 

border appeared PAS positive. 

 

The  appearance of  the  first  mucous  cells/goblet  cells  (Figure  4.2),  which  stained 

positive with the PAS for neutral mucosubstances, in the oesophagus occurred 5 dah 
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together with longitudinal folds. The number of mucous cells increased throughout 

development, while the longitudinal folds increased in size and there was a thickening of 

the muscle layer around the oesophagus. At 5 dah the first mucous cells was also 

visible in the buccal cavity and the anterior part of intestine. The number of mucous 

cells increased throughout development. The presence of acid mucosubstances could 

not be detected with the Alcian blue stain. 

 

Metamorphosis started at 16 dah and the digestive tract contorted to reach the final 

adult like positioning of the organs. This is a gradual process until the larvae settle at 

about 30 dah and eye migration is complete. At 16 dah the visceral cavity had a similar 

shape and arrangement as at 3 dah, with the stomach still poorly developed but 

increasing in size and showing deep mucosa rugae. During contortion, the anterior 

intestine folds over itself to move from an anterior to posterior position in the abdominal 

cavity and the posterior intestine from a posterior to an anterior position. This process is 

completed around 30 dah at which point the larvae had acquired a benthic way of life. 

The  visceral  cavity  showed  a  triangular  shape  which  was  wider  near  the  head, 

becoming thinner towards the posterior part. The stomach appeared as a large sac like 

structure occupying the wider part of the cavity. At this age the epithelial cells of the 

stomach mucosa had a wider apical portion than basal. 
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Figure 4.1: Histo-morphological sections (4 µm) of Dagetichthys marginatus larvae at 5 

dah. Bar = 200 µm. a – anus; ai – anterior intestine; oe – oesophagus; ie – intestinal 

epithelium; iv – intestinal valve; m – mouth; ml – muscular layer; nt – notochord; pi – 

posterior intestine; sa – stomach. 
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Figure 4.2: Histo-morphological sections (4 µm) of Dagetichthys marginatus larvae at 

20 dah. Bar = 200 µm. a – anus; ai – anterior intestine; bb – brush border; bc – buccal 

cavity; gc – goblet cells; h – hepatocytes; l – liver; oe – oesophagus; p – pancreas; pi – 

posterior intestine; sa – stomach Anlage; snv – supranuclear vacuoles. 
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Table 4.2 : Specific digestive activities (±SD) for alkaline proteases, lipase, alkaline phosphatase 

(expressed as mU/mg protein) and amylase (U/mg protein) in Dagetichthys marginatus throughout 

larval development. (n=3) 

 

Larval Age (dah) 
 

 3 5 8 12 15 20 25 30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Lipase 13.2±0.3 4.7±0.1 7.1±0.3 9.4±0.1 12.9±0.3 17.1±0.5 22.4±0.3 32.6±0.4 
Amylase 5.0±0.7 12.6±0.8 7.8±0.5 4.7±0.4 3.8±0.1 2.9±0.2 2.1±0.1 1.8±0.2  

Alkaline Phosphatase 28.0±6.0 48.3±3.5 26.3±4.5 63.7±3.8 43.3±1.5 102.7±5.0 605.3±5.7 1114.3±13.9 
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The specific enzyme activity at different ontogenetic stages are summarised in Table 

4.2.  It is clear from these results that there is a general pattern of an increase in activity 

with development up to 30 dah, except for amylase that showed a steady decline in 

activity up to completion of metamorphosis. Alkaline proteases had a specific activity 

ranging between 66.3 ± 2.1 at 5 dah and 145.7 ± 5.0 mU / mg protein at 30 dah (Figure 

4.3). Similarly, lipase showed a minimum activity of 4.7±0.1 at 5 dah and maximum 

activity of 32.6 ± 0.4 mU / mg protein at 30 dah (Figure 4.4). Alkaline phosphatase 

showed the lowest activity at 8 dah of 26.3±4.5 mU / mg protein, while a sudden order of 

magnitude increase took place at 20 dah and which peaked at 30 dah with an activity of 

1114.3 ± 13.9 mU / mg protein (Figure 4.6). Amylase, however, had a maximum activity 

of 12.6 ± 0.8 U / mg protein at 5 dah and minimum activity of 1.8±0.2 U / mg protein at 

30 dah (Figure 4.5). No acidic proteases or phosphatase were detected throughout 

the 30 days of ontogenetic development. 

 

 

Figure 4.3: Specific activity of alkaline proteases during the first 30 dah for Dagetichthys 

marginatus larvae. Error bars represent standard deviation of the mean (n=3)



48
48 

Chapter 4: Description of the histo morphological development 
 

 

                        

Figure 4.4: Specific activity of lipase during the first 30 dah for Dagetichthys marginatus 

larvae. Error bars represent standard deviation of the mean (n=3). 

 

Figure 4.5: Specific activity of amylase during the first 30 dah for Dagetichthys 

marginatus larvae. Error bars represent standard deviation of the mean (n=3). 
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Figure 4.6: Specific activity of phosphatase during the first 30 dah for Dagetichthys 

marginatus larvae. Error bars represent standard deviation of the mean (n=3). 

 

DISCUSSION 

 

This  study  provides  the  first  description  of  the  ontogeny of  the  digestive  tract  of 

Dagetichthys marginatus. The general observed pattern of ontogenetic development in 

Dagetichthys marginatus was however similar to what is has been found for other 

teleosts (Dabrowski 1984, Person-Le Ruyet 1989, Zambonino Infante & Cahu 2001).  

At 3 dah Dagetichthys marginatus larvae were sufficiently developed for successful first 

feeding, and Artemia was detected in the gut. Intense organogenesis occurred during 

the first three days (yolk-sac stage) in preparation for exogenous feeding. All the major 

organs of the digestive system were developed at this point. From first feeding (3 dah) 

the digestive tract and associated organs only increase in size and complexity, 

although major positional shifts of the digestive system takes place during settlement. 

This is a common characteristic shared by all pleuronectids (Cousin & Baudin-Laurencin 

1985, Boulhic & Gabaudan 1992, Bisbal & Bengston 1995, Sarasquete et al. 1996, 
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Baglole et al. 1997, Ribeiro et al. 1999a). 

 

Vacuoles were present in the enterocytes of the anterior intestine after two days of 

exogenous feeding in D. marginatus. This has also been found in various other species 

(Stroband et al. 1979, Cousin & Baudin-Laurencin 1985, Boulhic & Gabaudan 1992). It 

has  been  suggested  that  the  presence  of  vacuoles  signify  lipid  absorption  and 

temporary storage within the enterocytes (Stroband & Dabrowski 1979, Watanabe & 

Sawada 1985, Deplano et al. 1991b, Sarasquete et al. 1995, Diaz et al. 2002, Chen et 

al. 2006a). This is most likely caused by an inability to mobilize lipids during these early 

developmental stages (Kjørsvik et al. 1991, Loewe & Eckmann 1988). A peak in the 

presence of lipid vacuoles was observed between day 6 and 15. With the onset of 

flexion there was a noticeable reduction in lipid vacuoles. This is largely due to the rapid 

development of the enterocytes with an increased ability for lipoprotein synthesis 

(Deplano et al. 1991b). 

 

Supra-nuclear inclusions were also observed in the posterior intestine of D. marginatus 

larvae once feeding began. These inclusions persist until the end of the 30 day 

description period, although they decrease in number from 12 dah onwards. This 

decrease corresponds to a sudden increase in alkaline protease activity. These 

supranuclear inclusions are the result of pinocytosis of proteins as was demonstrated 

with the use of peroxidase (Stroband et al. 1979, Stroband & Kroon 1981, Watanabe 

1984, Georgoupoulou et al. 1986, Govoni et al. 1986) and have been described in 

larvae and adults of various other teleosts (Govoni et al. 1986, Deplano et al. 1991a, 

Boulhic & Gabaudan 1992, Segner et al. 1994, Sarasquete et al. 1995, Elbal et al. 

2004, Gisbert et al. 2004, Chen et al. 2006a). O’Connell (1981) also showed that these 

inclusions can contain lipids, but no evidence for this was found with the staining 

method used in this study. 

 

Mucous secreting goblet cells were either absent or scarce at mouth opening in the 

oesophagus and buccopharynx in D. marginatus, and only appeared at 5 dah. A similar 

pattern has also been found in species such as gilthead seabream, Sparus aurata 
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(Sarasquete et al. 1995, Calzada et al. 1997); haddock, Melanogrammus aeglefinus 

(Hamlin et al. 2000); yellowtail kingfish, Seriola lalandi (Chen et al. 2006a) and California 

halibut, Paralichthys californicus (Gisbert et al. 2004), in which wall abrasion or the 

desquamation of the oesophageal epithelium and the absence of mucous secretion 

may be observed (Yúfera & Darias 2007b). Wall abrasion may also promote bacterial 

infections under stressful conditions (Gisbert et al. 2004). On the other hand, mucos cells 

have been detected at first feeding in Senegal sole, Solea senegalensis (Ribeiro et al. 

1999a); Dover sole, Solea solea (Boulhic & Gabaudan 1992); summer flounder, 

Paralichthys dentatus (Bisbal & Bengtson 1995); yellowtail flounder, Limanda ferruginea 

(Baglole et al. 1997) and clownfish, Amphiprion percula (Gordon & Hecht 

2002). 

 

Throughout the ontogenetic development of D. marginatus larvae in this study, digestion 

occurred in an alkaline environment. Specific activity of enzymes in D. marginatus 

generally increased with the development of the digestive tract and its associated 

organs.   Amylase,   however   shows   a   general   decreasing   pattern   throughout 

development. The  initial  high  levels  could  be  as  a  result  of  exogenous enzymes 

originating from Artemia (Chapter 6). The presence of alkaline protease, lipase and 

amylase activity imply that larvae can digest an exogenous food source like Artemia, 

while strong alkaline phosphatase from 20 dah onwards suggests an increased capacity 

of the larvae to absorb nutrients (Gawlicka et al.  1995). The  activity of pancreatic 

enzymes (trypsin, lipases and amylase) has been biochemically detected at first feeding 

and even before the mouth opening in many marine fish (Zambonino- Infante & Cahu 

1994, Oozeki & Bailey 1995, Moyano et al. 1996, Martínez et al. 1999, Ribeiro et al. 

1999b, Hoenhe-Reitan et al. 2001, Ma et al. 2001, Zambonino-Infante & Cahu 2001, 

Cara et al. 2003, Ma et al. 2005, Alvarez-Gonzalez et al. 2006, Bolasina et al. 2006, 

Chen et al. 2006b). 

 

The last phase of digestive development, prior to metamorphosis, is the proliferation of 

gastric glands in the stomach. This is accompanied with acid digestion by pepsin 

(Tanaka et al. 1972, Stroband & Dabrowski 1979, Govoni et al. 1986, and Baragi & 
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Lovell 1986, Sarasquete et al. 1993b) and is normally the stage at which weaning onto 

inert diets can occur successfully. Dagetichthys marginatus show no pepsin activity 

throughout the first 30 dah. This corresponds to the absence of gastric glands or acidic 

mucosubstances in histo-chemical sections of the stomach, which is fully delineated at 

12 dah. Clark et al. (1986) also found an absence of pepsin activity in Solea solea until 

200 dah, although gastric glands were observed by 27 dah (Ribeiro et al. 1999a). It is 

noteworthy that gastric digestion develops early in most cultured sparids (Ortiz-Delgado 

et al. 2003, Roo et al. 1999), with exceptions like S. aurata (Sarasquete et al. 2001). 

 

Physiological parameters like gut pH and relative enzyme activities are strongly 

correlated to the developments in the gut. With respect to gut pH levels Solea 

senegalensis shows a different pattern to most other farmed species. In general, there is 

a drop in pH values from around 7 to 4 throughout development and this is correlated to 

the appearance of gastric glands, specifically in the stomach. This pattern has been 

observed in Sparus aurata (Elbal & Agulleiro 1986), Pagrus pagrus (Darias et al. 2005), 

Paralichthys olivaceus (Rønnestad et al. 2000), Lates calcarifer (Walford & Lam 1993) 

and Psetta maxima (Hoehne-Reitan et al. 2001). Yúfera & Darias (2007a) found that the 

gastric pH of S. senegalensis never drops below 6, even in adult fish, despite the 

appearance of gastric glands. 

 

This baseline data on the functional status of the alimentary tract throughout 

development is crucial for the successful larviculture of Dagetichthys marginatus. It can 

further  be  useful  to  detect  morphological  and  physiological  adaptations  in  future 

research when varied feeding protocols and feed ingredients are considered (Kolkovski 

2001, Bonaldo et al. 2006, Escaffrea et al. 2007, Papadakis et al. 2009). This study has 

shown that D. marginatus can successfully feed on exogenous food sources like 

Artemia 3 dah. Furthermore, the lack of a completely developed stomach and an 

assumed inability for acid digestion points to a lack in capacity to digest complex 

artificial food prior to 30 dah. Artificial diets containing protein hydrolysates (Day et al. 

1997 & 1999) has shown to work for other soleids (Chapter 1) and should also be the 

case as early as 20 dah with D. marginatus, where pinocytosis and high levels of 
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alkaline phosphatase should enable the absorption of nutrient from diets containing 

protein hydrolysates. 
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Chapter 5: Characterisation of alkaline digestive e nzyme activity at 

different pH levels for larvae of three warm temper ate marine teleosts.  
 
 
INTRODUCTION 
 
Nutrition is an important aspect for consideration in larval rearing (Conceição et al. 

2010). This is apparent for a host of economic and biological reasons, all of which are 

well documented (Chapter 1).  Understanding the digestion of larval feeds, or the 

mechanism by which nutrients are acquired for growth and metabolic processes, is 

therefore essential to solve problems commonly associated with current rearing 

techniques (Chapter 1). As digestive enzymes are primarily responsible for the 

hydrolysis of feed into available nutrients, it is clear that studying digestive enzymes has 

a wide range of potential interest in aquaculture (Fernandez et al. 2001). Studies 

measuring enzyme activity, either qualitatively and quantitatively are often used as a tool 

to understand basic digestive processes, predicting for example, the correct time of 

weaning and feed formulation (Chapter 4 & 6). 

 

In fish larvae, the potential capacity of the intestinal digestive enzymes to hydrolyse a 

substrate is set in DNA coding (Cahu & Zambonino Infante 2001, Kolkovski 2001). 

Measuring enzyme activity in digestion studies is however by itself not a fair 

representative of actual enzyme activity in the gut, as the effect of environmental 

parameters on enzyme activity is ignored or not clearly validated. This presents a clear 

problem when comparisons between species are made, limiting the results for 

comparative purposes. As this problem form the fundamental reason for completing this 

chapter, the example below is crucial to understand the problem, the modelling 

methods used and the interpretation of results from this study. 

 

Considering only two of a multitude of studies, the pH’s used to determine the enzyme 

activities for Solea senegalensis by Martinez et al. (1999) and Hippoglossus 

hippoglossus by Gawlicka et al. (2000) are clearly different. Martinez et al. (1999) 

calculate enzyme activities for all the digestive enzymes at a pH7.5, while Gawlicka et 

al. (2000) determine enzyme activity at a pH ranging from 7 for amylase to 7.8 for lipase. 
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Any comparison of enzyme activity between these two species will therefore be 

questionable, and consequently also the use of digestibility coefficients that might, for 

example be used for feed formulation. No attempts have been made to quantify the 

extent of this problem in aquaculture. 

 

Historical research on the effect of environmental conditions on enzyme activity comes 

from enzyme kinetic - and enzyme characterisation studies. Although both contribute to 

our understanding of the effect of environmental parameters on enzyme activity, their 

intended outcome and application tend to be vastly different. Enzyme kinetic studies 

most often deal with biotechnological applications or the industrial use of fish enzymes, 

in for example the food industry (Shahidi & Kamil 2001). Studies on industrial 

applications deal with optimising the environmental conditions under which the enzyme 

will achieve maximum activity. Enzyme kinetic studies are not often done in aquaculture 

studies, and although the reasons for this is not well defined, one could argue that  it  

is  as  a  result of  the  complexity of  enzyme kinetics models and  the subsequent 

loss of applicability to a biological system or the organism (Hofmeyer & Comish-

Bowden 1997). In most aquaculture studies, as is the case with the majority of the 

literature referenced below, enzyme characterisation is more commonly used to 

establish the effect of environmental parameters on enzyme activity relative to the 

maximum enzyme activity obtained under optimal environmental conditions for the fish 

or fish larvae. 

 

The majority of the enzyme kinetic and characterization studies on digestive fish 

enzymes focus on proteases. This is mainly due to the importance of protein and amino 

acids as the primary energy source in fish larvae (Fyhn 1989, Haard 1992, Dias et al. 

1998, Moyano et al. 1998, Rønnestad et al. 1999), in synthesizing body protein to 

ensure normal growth and development (Tacon & Cowey 1985, Tacon 1992, Martinez-

Montano & Lazo 2012) and the role of proteases, more specifically trypsin, in activating 

other pancreatic digestive enzyme from their inactive zymogen forms (Corring 1980, 

Hjelmeland et al. 1984). Shahidi & Kamil (2001) reviewed the literature on the 

characterisation and kinetics of proteases in fish. More recent studies on proteases in 
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finfish include investigations on walleye pollock, Theragra chalcogramma (Kishimura et 

al. 2008); red drum, Sciaenops ocellatus (Lazo et al. 2007); jacopever, Sebastes 

schlegelii and elkhorn sculpin, Alcichthys alcicornis (Kishimura et al. 2007); skipjack 

tuna, Katsuwonus pelamis (Klomklao et al. 2007); Orange-spotted grouper, 

Epinephelus coioides (Liu et al. 2012) and the Asian bony tongue, Scleropages 

formosus (Natalia et al. 2004). While all the aforementioned literature calculate the 

optimal pH for highest enzyme activity in a particular species, none make any 

comparison between the different species to give any indication on the inter species 

similarity in enzyme characterisation. 

 

Investigations into the characterisation of other digestive enzymes have been restricted 

to the characterisation of lipases in species such as anchovy (Engraulis mordax), 

s t r i p ed  b a s s  ( Morone s a x a t i l i s ) a nd  p i n k  s a l m o n  ( Oncorhynhcus gorbuscha) 

(Patton et al. 1975, Leger 1985); cod, Gadus morhua (Gjellesvik et al.  1989); red sea 

bream, Pagrus major (Iijima et al.  1998) and red drum, Sciaenops ocellatus (Lazo et 

al. 2007), and studies on α-amylase in Pagrus pagrus, Pagellus erythrinus, P. 

bogaraveo, Boops boops and Diplodus annularis (Fernández et al. 2001). This literature 

is further limited mainly to larger fish. Very little work has been undertaken on enzyme 

characterisation and kinetics in larval fish. The most important studies are those by 

Applebaum et al. 2001, Lazo et al. 2007). 

 

The major environmental parameters that affect enzyme activity in the digestive system 

of fish are either physiologically (pH and osmolality or ionic strength) or 

environmentally (temperature) controlled (Garrett & Grisham 1995). The temperature at 

which maximum enzyme activity is most often achieved is in excess of 50 ºC.  This is 

much higher than the normal environmental temperatures experienced by fish 

(Fernández et al. 2001, Lazo et al. 2007, Kishimura et al. 2008). Conducting digestion 

trials at the temperature for optimal enzyme activity therefore has very little biological 

applicability. For the purpose of this study, it was decided to standardise the 

temperature to 20 ºC. This temperature approximates the average temperature 

experienced by warm temperate marine fish species in South Africa, and is also a 
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practical temperature to maintain when conducting enzyme assays in a laboratory 

environment. 

 

The objective of this investigation was to establish baseline knowledge, which was 

required to address those experiments discussed in Chapters 4 and 6. To this end, 

this paper has two aims. Firstly, to establish a standard set of condition under which to 

determine alkaline enzyme activity for the sole, Dagetichthys marginatus (Chapter 4), 

as there is no universally proposed and/or accepted standard   set   of   environmental   

parameters   under   which   qualitative   and quantitative enzyme activity in fish must be 

determined (Tipton 2002). Secondly, characterisation of digestive enzymes is crucial 

for the development of a robust in vitro digestion model (Alarcόn et al. 1999) against 

which D. marginatus could be tested (Chapter 6). 

 

To achieve these aims, the larvae of three warm temperate species, from the same 

biogeographical region as D. marginatus, namely the strepie (Sarpa salpa, Sparidae), 

blacktail (Diplodus sargus capensis, Sparidae) and dusky kob (Argyrosomus japonicus, 

Sciaenidae) were used for alkaline enzyme characterisation. The use of these three 

species was necessitated due to the large amount of larval material required to run 

characterisation studies and the limited number of sole larvae available. 

 

MATERIALS AND METHODS 

 

Larvae of S. salpa, D. sargus capensis and A. japonicus ranging in length between 

2.8 and 17.6 mm were used in this study. S. salpa and D. sargus capensis larvae were 

collected from the wild along the coast at Port Alfred, South Africa (33º36‛42.35”S; 

26º53‛23.02”E) throughout the year. This was achieved by seining the surf zone with a 

modified larval beach-seine net. The larvae were carefully washed out from the cod-end 

of the net with 5 µm filtered sea water into a 20 l bucket, which was supplied with an air 

stone and returned to the Department of Ichthyology’s Marine Laboratory, Port Alfred. In 

the laboratory only live larvae were transferred to Petri dishes using a transparent glass 

beaker, identified, rinsed in fresh water, dried on blotting paper, bottled and snap-
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frozen in liquid nitrogen. Bottles were carefully labelled for later reference. Larvae of A. 

japonicus were obtained from Espadon Marine (Pty) Ltd., a commercial enterprise 

currently farming this species. These were collected from rearing tanks at pre- and 

post-flexion stages and snap frozen as described above in liquid nitrogen. The frozen 

larvae were then stored in a cryo-flask filled with liquid nitrogen at -80oC until enzyme 

extraction. 

 

In the lab, larvae were pooled to obtain sufficient biological material per sample to 

complete each assays (Table 5.1) and ensure an extraction at a dilution of 35 mg larval 

material to 1 ml buffer. Nine samples were assayed, three for each species. The three 

samples for each species were made up of distinct size classes, making them 

independent replicates (Table 5.1). This was based on the assumption that quantitative 

and qualitative enzyme activities change throughout ontogenetic development (see 

Chapter 4). 

 
Table 5.1: The size range and larval stage for each sample assayed. 
 

mple name  val stage  ze range (mm)  

argus 1 -flexion – 4.8 

sargus 2 t-flexion – 9.8 

sargus 3 t-flexion 9 – 13.6 

alpa 1 -flexion – 4.5 

alpa 2 t-flexion – 8.9 

alpa 3 t-flexion 1 – 17.6 

aponicus 1 -flexion – 3.0 

aponicus 2 -flexion – 5.7 

aponicus 3 t-flexion – 11.3 

 

Enzyme extractions and assays for alkaline proteases, lipase, amylase and alkaline 

phosphatase on each sample were done as outlined in Chapter 4, unless otherwise 

stated. Enzyme activity was expressed as a relative measure (%) and not as an 

absolute value of product liberated/min/mg protein. Relative enzyme activity at different 
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pH values was tested by replacing the Tris - buffer used in Chapter 4 in each assay 

with a universal buffer, buffering in the pH range of 2 to 12. The pH range used for 

alkaline proteases, lipase, amylase and phosphatase was 6-11, 6-10, 2-12 and 2-12 

respectively. The protracted pH range tested for alkaline proteases and lipase was due 

to substrate instability at extreme pH’s (Gjellesvik et al. 1989). The interval between 

pH values tested was smaller around the hypothesised optimal pH for maximum 

enzyme activity to ensure better amplification and more predictive power. 

 

Each sample was assayed in triplicate for each enzyme and the average taken as 

being representative of the sample. Further to this, a substrate blank and an enzyme 

blank (samples where either the substrate or enzyme extract was not added to  the  

assays) was done for each sample, to  elucidate between the contribution of the 

substrate-buffer solution and enzyme extract on the absorbance readings from  the  

contribution resulting in the  hydrolysis of  the substrate by the enzyme. The true 

change in absorbance due to enzyme activity was then calculated by subtracting the 

blanks from the absorbance reading for each sample assay. 

 

Data analysis and modelling 

 

The absorbance readings for each sample were plotted against the natural logged pH 

value as the independent variable. The normal, skewed normal and Gamma distribution 

plots were fit to the observed data as the best supported models due to the normal 

distributive pattern of this data. 

 

Normal distribution plot 
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Skew normal distribution plot 

 

 

Gamma distribution plot 

 

 

Where 

 

 

The dependant variable Abs is the absorbance at a specific pH. Absorbance is directly 

linked the enzyme activity, so higher absorbance readings indicate higher enzyme 

activities. Furthermore, pH max is the pH at which enzyme activity is predicted to be 

the highest, while σ describes the shape or slope of the bell shaped curve. 

 

The two parameters used in the models are very relevant in answering the specific 

question posed by this chapter. The pH max represents the best pH to use when 

enzyme activity is determined as a surrogate for the digestibility coefficient, as is most 

often done. The σ will indicate how quickly enzyme activity drops at pH’s around the 

optimal pH, or pH max. This value is important as it can be used to determine how 

comparable enzyme activity results between species are, especially considering the 

example used in the introduction where the enzyme activity was determined at different 

pH’s. 

 

The three models were fitted to the data and the sum of squares minimized. The Akaike 

Information Criterion (AIC) statistic, considering  both  the  fit  and complexity of the 

model, was then calculated according to Johnson and Omland (2004)  and  the  model  
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with  the  lowest  AIC  statistic  was  chosen  as  being representative for that enzyme. 

 

 

 

; where L is the maximized value of the likelihood function for the estimated model, and 

p is the number of model parameters. 

 

The full model was then solved for each of the nine samples using the selected model 

from the AIC statistic for each enzyme. This was achieved by minimizing the sum of 

squares in errors. A likelihood ratio test was then used to determine if there was a 

significant difference in the model parameters for each enzyme or different size classes 

for each species, combining all the samples into a reduced model. The log-likelihood of 

the full and reduced model was then compared. 

 

; where Lfull and Lreduced are the maximized value of the likelihood function for the full 

and reduced estimated model respectively, and   p is change in the number of 

parameters from the full and the reduced estimated models. 

 
If there was no significance difference in the model parameters between the full and 

reduced model, the solution of the reduced model was accepted for that enzyme. 

 
RESULTS 
 
A summary of model selection for each enzyme is presented in Table 5.2. The Normal 

plot, Skewed Normal plot, Normal Plot and Gamma plot were selected for alkaline 

proteases, lipase, amylase and phosphatase respectively. This selection was based on 

the lower average AIC statistic for each enzyme. 

 

Alkaline Proteases 

 

The likelihood test showed a significant difference between the full and reduced model 
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for alkaline proteases when all nine samples are included in the reduced model (A = 

28.1, p < 0.005 – Table 5.3). This was due to significant difference in the reduced 

model for the three S. salpa samples (A = 8.5, p = 0.01), as well as the reduced model 

for all the D. sargus capensis samples when tested against the A. japonicas samples 

(A = 19.1, p < 0.005). The reduced model for the D. sargus capensis samples (A = 2.4, 

p = 0.30) and the A. japonicus samples (A = 1.1, p = 0.59) showed no difference. 
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Table 5.2: Summary of the AIC results that were used for model selection. The average 

AIC stat and the number of samples showing a best fit to a particular model is given for 

each of the enzymes.  

Proteases Lipase Amylase Phosphatase 

Average # Average # Average # Average # 

Normal plot 60,4 4 33,8 0 121,3 1 80,6 9 
Skewed normal 

 plot 67,2 1 32 9 120,5 0 86,6 0 

Gamma plot 60,9 4 33,7 0 117,2 8 82,6 0 

Numbers in bold indicate best model for each enzyme 

 

 
Table 5.3: Results of the likelihood test for alkaline proteases. The A - statistic and p - 

value of the reduced models for the different samples and model parameters (σ and pH 

max) are given. 
 
 

l             All parameters equal 
 

A p A p A p 
 

All species 
 

20.9 
 

<0.005* 
 

0.4 
 

0.55 
 

28.1 
 

<0.005* 

D. sargus 1.3 0.26 0.4 0.53 2.4 0.30 

S. salpa 7.1 <0.05* 0.3 0.58 8.5 0.01* 

A. japonicus 0.8 0.37 0.1 0.75 1.1 0.59 

D. sargus vs A. japonicus 13.3 <0.005* 0.2 0.75 19.1 <0.005* 

(* denotes significant differences) 
 
 
Based on the results from the likelihood tests (Table 5.3), it was accepted that the 

samples of D. sargus capensis and A. japonicas can be presented by a single reduced 

model each, while the full models for each S. Salpa sample were maintained. The 

parameters and the Sum of Squares for the errors (SSe) for each of the above 

models are summarized in Table 5.4. Figure 5.1 shows the observed relative enzyme 

activity values at different pH values as well as the values predicted from the normal 

plot models for D. sargus capensis, A. japonicas and the three S. salpa samples. 



64
64 

Chapter 5: Characterisation of alkaline digestive enzymes 
 

 

Considering Table 5.3, it was clear that the differences detected in the full and 

reduced models for the nine samples was as a result of differences in the slope (σ) of 

the curve, as there was no difference in the predicted pH max (A = 0.4, p = 0.55) 

between any of the samples in the reduced model (pH max equal). The optimal pH for 

maximum alkaline proteases activity was thus accepted to be the same for all nine 

samples at  a  predicted  pH  max  value  of  7.67  (Table  5.7).The  differences  

detected between the S. salpa samples (A = 7.1, p < 0.05) correspond to a drop in σ 

values, or a reduction in the effective pH range for enzyme activity, and match up to an 

increase in larval size from S. salpa 1 to 3 (Table 5.1). 

 

Table 5.4: Model parameters predicted by the normal distribution plot for alkaline 

proteases activity at different pH values for the three species and/or samples. The 

SSe for each model is also presented. 
 

 
  

σ 
 

pH max 
 

SSe 
 

D. sargus 
 

0.77 
 

7.64 
 

0.24 
 

S. salpa 1 
 

0.51 
 

7.50 
 

0.23 
 

S. salpa 2 
 

0.27 
 

7.69 
 

0.29 
 

S. salpa 3 
 

0.18 
 

7.69 
 

0.11 
 

A. japonicus 
 

0.25 
 

7.67 
 

0.86 
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Figure 5.1: Observed (blue circles) and predicted (red squares) values of relative 

activity at different pH’s for alkaline proteases. A) D. sargus capensis; B) S. salpa 1; 

C) S. salpa 2; D) S. salpa 3 and E) A. japonicus. 

 



66
66 

Chapter 5: Characterisation of alkaline digestive enzymes 
 

 

R
el

at
iv

e 
ac

tiv
ity

 

 

Lipase  
 

The full and reduced models (σ and pH max equal) describing lipase activity at 

different pH values for the different samples showed no significant difference when 

compared with the likelihood test (A = 2.1, p = 0.55). The optimal pH for the highest 

lipase activity was accepted to be the pH max for the reduced model, and was 

predicted to be at a pH value of 8.03. Figure 5.2 shows the observed relative enzyme 

activity at different pH values for all the samples, as well as the relative enzyme 

activity values predicted by the skewed normal plot. The parameters for the reduced 

model are; σ = 0.39, α = -0.39 and pH max = 8.03 (SSe = 3.23). 
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Figure 5.2: Observed (blue circles) and predicted (red squares) values of relative 
lipase activity at different pH values for the reduced model of all the samples. 
 
Amylase  
 

The reduced model (pH max and σ equal) for amylase showed a significant 
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difference from the full model between the samples (A = 7.4, p = 0.01 – see 

Table 5.5). This was due to the significant difference between the S. salpa samples 

(A = 12.9, p < 0.001). No further differences were detected between any other 

samples, once S. salpa was removed from the reduced model (A = 1.3, p = 0.51). 

There was, however, no difference in the predicted pH max values (A = 0.5, p = 

0.46) between any of the samples in the reduced model (pH max equal) even if the 

S. salpa samples were included (Table 5.5). The optimal pH for maximum amylase 

activity was accepted as 7.69, the pH max value predicted by the reduced gamma 

distribution model (Table 5.7). 

 

Based on the results from the likelihood tests (Table 5.5), it was accepted that the 

samples of D. sargus capensis and A. japonicas can be presented by a single 

reduced model each, while the full models for each S. salpa sample were 

maintained. The parameters and the SSe for each of the above models are 

summarized in Table 5.6. Figure 5.3 shows the observed relative activity values at 

different pH values as well as the values predicted from the gamma distribution plot 

models for D. sargus capensis, A. japonicus and the three S. salpa samples. 

Similarly to alkaline proteases, the differences detected in the S. salpa samples 

were as a result of changes in the shape (σ) of the curve which can be explained by 

a change in relative activity of amylase around pH max for optimal enzyme activity (σ 

equal; A = 6.4, p = 0.01). Unlike alkaline proteases activity, differences in σ for 

amylase activity for the three S. salpa samples correspond to an increase in σ (Table 

5.6) with an increase in the size of larvae between samples. 
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Table 5.5: Results of the likelihood test for amylase. The A - statistic and p - 
value of the reduced models for the different samples and model parameters (σ and 
pH max) are given. 
 

  

σ equal 
 

pH max equal 
 

parameters equal 

 

A 
 

p 
 

A 
 

p 
 

A 
 

p 
 

All species 
 

6.4 
 

0.01* 
 

0.5 
 

0.46 
 

7.4 
 

0.03* 
 

D. sargus 
 

1.3 
 

0.25 
 

0.2 
 

0.63 
 

1.7 
 

0.43 
 

S. salpa 
 

12.4 
 

<0.005* 
 

0.1 
 

0.75 
 

12.9 
 

<0.001* 
 

A. japonicus 
 

0.7 
 

0.39 
 

0.2 
 

0.65 
 

0.9 
 

0.65 
 

D. sargus vs A. japonicus 
 

1.1 
 

0.30 
 

0.3 
 

0.61 
 

1.3 
 

0.51 
(* denotes significant differences) 
 
 
Table  5.6:  Model parameters predicted by the gamma distribution plot for amylase 
activity at different pH values for the three species and/or samples. The SSe for 
each model is also presented. 
 
  

σ 
 

pH max 
 

SSe 
 

D. sargus 
 

1.08 
 

7.66 
 

0.27 
 

S. salpa 1 
 

0.70 
 

7.74 
 

0.32 
 

S. salpa 2 
 

1.11 
 

7.81 
 

0.02 
 

S. salpa 3 
 

1.10 
 

7.73 
 

0.02 
 

A. japonicus 
 

1.04 
 

7.63 
 

0.01 
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Figure 5.3: Observed (blue circles) and predicted (red squares) values in relative activity at 
different pH’s for alkaline proteases. A) D. sargus capensis; B) S. salpa 1; C) S. salpa 2; 
D) S. salpa 3 and E) A. japonicus. 
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Phosphatase 
 
The full model describing phosphatase activity at different pH values for the different  

samples  showed  no  significant  difference  when  compared  to  the reduced model 

(σ and pH max equal) for all nine samples (A = 0.86, p = 0.65). The reduced model 

was therefore accepted as a suitable model to describe phosphatase activity at 

different pH levels for all nine samples. The parameters predicted by the normal 

distribution plot for the reduced model were; σ = 0.74 and pH max = 9.84 (SSe = 

1.86). The optimal pH for maximum phosphatase activity was therefore accepted to 

be 9.84.  Figure 5.4 shows the observed relative activity values at different pH values 

for all the samples as well as the values predicted from the normal plot. 

 

 
 

Figure 5.4:  Observed (blue circles) and predicted (red squares) predicted values of 
relative activity at different pH’s for the reduced model of all the samples for 
phosphatase. 
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Table 5.7: Model selection and the predicted optimal pH for each enzyme. 
  

Enzyme  
 

Model  
 

Optimal pH  
 

Alkaline proteases 
 

Normal plot 
 

7.67 
 

Lipase 
 

Skewed normal plot 
 

8.03 
 

Amylase 
 

Gamma plot 
 

7.69 
 

Phosphatase 
 

Normal plot 
 

9.84 

 

DISCUSSION 

 

Studies that quantitatively and qualitatively determine enzyme activity in fish larvae 

have played an important role in understanding larval digestion and nutrition. Most of 

these studies however, take a simple one dimensional outlook towards enzyme 

activity, without elucidating the effect of environmental parameters on enzyme activity. 

The result is that a host of similar studies on quantitative and qualitative enzyme 

activity are being undertaken (Chapter 4) for various species that are being considered 

for their aquaculture potential, without an adequate capacity for comparisons between 

different species.  An incomplete physiological understanding of enzyme activity or 

characterisation under different environmental conditions has limited our ability to 

predict and extrapolate more general trends in enzyme activity amongst fish species, 

and also dictates the boundaries for experimental work by researchers, like that 

attempted in Chapter 6. 

 

The degree to which comparisons can be made in enzyme activity between species is 

principally dictated by genetics (Cahu & Zambonino Infante 2001, Kolkovski 2001), as 

DNA transcribes the activity level of digestive enzymes under different environmental 

conditions. The evolutionary rate of functionally important regions of DNA, like those 

that produce enzymes is much slower than in less important regions. Important 

enzymes are thus mostly conserved throughout evolution (Ridley 1996). To what 

degree this is the case for finfish species (globally, phylogentically, geographically, 

dietary etc.) remains to be determined. This chapter takes some basic, initial steps 
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towards understanding the effect of pH on enzyme activity for different fish species 

and alkaline digestive enzymes. 

 

The pH at which alkaline digestive enzyme activity was optimal at 20 ºC was 

determined for S. salpa, D. sargus capensis and A. japonicas. These three warm 

temperate species were also used as a substitute for D. marginatus. As mentioned 

earlier this was necessitated due to the lack of larval material for D. marginatus. 

Although the models were not identical in enzyme activity over the whole pH range 

tested, these three species showed the same pH level for optimal enzyme activity for 

each of the four digestive enzymes tested. This suggests that the use of the pH max 

values predicted by the models will be suitable for calculating enzyme activities for the 

purpose of comparing digestibility coefficients between different species. 

 

Alkaline proteases accounts for all the proteolytic activity in larval fish (Smith 1989, 

Zambonino Infante & Cahu 2001). The major contributing enzymes to this proteolytic 

activity are serine type, endoproteases like trypsin, chymotrypsin and also 

aminopeptidases (LAP). The optimal pH for maximum trypsin activity in fish is generally 

found to be in the pH range of 8 to 9 (Overnell 1973, Hjelmeland & Raa 1982, Shahidi & 

Kamil 2001) and for maximum chymotrypsin activity at a pH of around 7.8 (Shahidi & 

Kamil 2001). LAP has a maximum enzyme activity between a pH of 7.4 and 8.3 

(Overnell 1973, Khablyuk & Proskuryakov 1983, Lazo et al. 2007). Considering that 

chymotrypsin remains the highest contributor to proteolytic activity during the early 

stages with an increase in trypsin and LAP activity during the latter stages in 

physiological development (Applebaum et al. 2001, Zambonino Infante & Cahu 2001), 

the optimal pH of 7.7 found in this study for maximum alkaline protease activity is close 

to that expected for chymotrypsin.  

 

Maximum lipase activity was reached at a pH of 8.03 and this is close to the pH of 8 

normally recorded for fish (Gjellesvik et al. 1989, Iijima et al. 1998, Lazo et al. 2007). 

The pH of 7.7 for maximum amylase activity found in this study varies from the neutral 

value of 7 that is normally recorded for freshwater and marine fish (Ugwumba 1993, 
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Munilla-Morán & Saborido-Rey 1996). Research on the characterisation of amylase 

activity at different pH values is however limited. Recently, Fernández et al. (2001) 

showed varied results, illustrating multiple peaks (some as high as at pH 9) for 

optimal amylase activity in three sparids. This indicates the possible existence of iso-

enzymes, or enzymes that differ in amino acid sequence but catalyse the same 

chemical reaction. The existence of iso-enzymes was further supported in Fernández 

et al. (2001) by zymograms made from the extracts. Interestingly all three species 

tested in this study showed only one optimal peak for maximum amylase activity. 

 

Although the pH levels for optimal enzyme activities as reported here compares well to 

that of other studies, a further two points need to be considered. Firstly, all the literature 

quoted above is based on work undertaken on late juvenile and adult fish rather 

than larval fish. Larvae have simple, undifferentiated intestinal tracts and have not yet 

developed the full suite of digestive enzymes associated with complex digestion 

(Chapter 3). Secondly, some questions can be raised about   possible weaknesses in 

the methods employed in other studies determining the pH for optimal enzyme activity. 

For example, in the studies by Alarcόn et al. (1995), Shahidi & Kamil (2001), Lazo et 

al. (2007) predictions of optimal pH were made by visual observations of scatter plots, 

with very little amplification around the optimal pH, hence reducing their predictive 

power. Modeling the relative activity of enzymes at different pH values and reducing 

the pH interval around the optimal pH, as in this study, is a clear improvement. Multiple 

peaks in activity, as previously discussed, will however not be detected and be 

incorporated into the model as variance. A visual assessment of the scatter plot is 

therefore still required. 

 

Sigma (σ) signifies the rate at which relative activity drops around the pH for optimal 

enzyme activity. Based on the sigma values obtained from the models, it is clear that 

enzyme activity does not drop off very quickly around pH max and is maintained at 

activity levels close to the maximum enzyme activity.  This suggests a small impact on 

enzyme activity measured at differences in pH values for different studies, with the 

exception of alkaline phosphatase. A cautious approach should be taken when 
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comparisons between species are made for alkaline phosphatase. 

 

It is furthermore clear from this study that there is more to glean from modeling the 

relative activity of the digestive enzymes than just determining the pH at which the 

digestive enzyme will show maximum activity. There was a significant decrease in the 

slope, σ for S. salpa around the pH value for maximum alkaline proteases activity 

and an increase around the pH for maximum amylase activity with ontogenetic 

development. This indicates a change in enzyme “behaviour” with larval development 

in S. salpa. This may be associated with the dietary shift of S. salpa above 10mm TL 

from copepods and amphipods to an algal dominated diet (Christensen 1978). 

Protease activity is associated with high protein diets like copepods and amphipods, 

and with the relative importance of these organisms being reduced, one might also 

expect a change in protease “behaviour”. A similar argument can be constructed for 

amylase with the increase of algae in the diet. It is not clear if the change in σ is as a 

result of this dietary shift or if this quantitative aspect of enzyme activity is genetically 

controlled and further research is required to test this hypothesis. The possible use of σ 

as an indicator of dietary shift, especially where the diet of a species during the larval 

stages is unknown, also needs to be investigated. 
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Chapter 6: Modelling the digestibility of Artemia franciscanis ‘in vitro’  

during the early larval stages of marine finfish – A novel approach.  

 

INTRODUCTION 

 

Various attempts have been made to design and rear finfish larvae exclusively on 

artificial diets (Fernandez-Diaz & Yufera 1997, Rosenlund et al. 1997, Southgate & 

Partridge 1998, Kolkovski 2001), but a general trend of poor larval growth and 

development has been observed (Cañavate & Fernández-Díaz 1999, Robin & Vincent 

2003, Curnow et al. 2006a). These difficulties are attributed to nutritional deficiencies in 

designed diets (Verreth 1994), a lack of visual stimuli as from live feed (Kolkovski et al. 

1995), an underdeveloped larval digestive system (Cahu & Zambonino Infante 2001) 

and suggestions that live food contribute to the digestion and assimilation process 

through a direct or indirect contribution (Dabrowski 1984, Lauff & Hofer 1984, Kolkovski et 

al. 1993, Cahu & Zambonino Infante 1994). Artemia and other live food organisms are 

generally accepted as an integral part of larval rearing, playing an important part in co-

feeding strategies (Person-Le Ruyet 1989, Person-Le Ruyet et al. 1993, Kolkovski 

2001, Aragão et al. 2004, Stottrup & McEvoy 2008, Das et al. 2012). There is an 

increasing volume of research on this topic, often exposing what is known as insufficient 

for the purpose of larval rearing (Hoehne-Reitan & Kjorsvik 2004, Roennestad et al. 

2012). Understanding the digestion of live food organisms by larvae is important for 

successful larviculture and could ultimately contribute towards to our knowledge to 

designing improved replacement diets. This is further highlighted for soleids that can 

currently only be weaned at very late stages of ontogenetic development (Chapter 1). 

 

Only a few studies deal with larval digestion, despite the importance. Cook et al. (2008) 

and Johnson et al. (2009) investigated the digestion of an artificial diet and Artemia in 

Atlantic cod, Gadus morhua using rare earth oxides as an inert digestibility marker. 

Indicator methods, like earth oxides are rarely used due to the error associated with 

faecal collection in the aquatic environment and larval size (Johnson et al. 2009). More 
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complicated in vivo techniques have been developed in recent years to overcome the 

limitations of faecal collection. Conceição et al. (2007b) reviewed the literature using 

these techniques and include the incorporation of radioactivemarkers (Rønnestad et al. 

2001, Morais et al. 2004 a & b, Tonheim et al. 2004, Hovde et al. 2005, Kvåle et al. 

2006), auto-fluorescence (Kelly et al. 2000), differences in stable isotope ratios 

(Schlechtriem et al. 2004, 2005), and visible dyes (Werner & Blaxter 1980, Önal & 

Langdon 2004).  

 

In vitro studies have also been used for diet formulation of larval feeds and contrasting 

nutrient availabilities (Alarcón  et  al.  1999, García-Ortega et al.  2001, Moyano & Savoie 

2001, Chong et al. 2002, Lazo et al. 2002, Tonheim et al. 2007, Hamdan et al. 2009, 

Martinez-Montano & Lazo 2012), in which most of the limitations of in vivo studies are 

overcome. There is however an inherent complexity of enzyme systems and digestion 

in vivo that cannot be accounted for during in vitro studies, leading to certain assumptions 

and as a result a source of error (see framework). Despite this simplification of digestion in 

vitro research, various studies have found that in vitro studies correlate well with the 

digestibility measured in vivo (Hsu et al. 1977, Saterlee et al. 1979, Eid & Matty 1989, 

Lan & Pan 1993, Tonheim et al. 2007, Lazo et al. 1998). 

 

There is currently no standard method for conducting in vitro trails or modelling larval 

digestion studies, as the experimental framework will vary to suit the specific objectives of 

a particular study. This study aims to set up and test a model, based on simple 

achievable biochemical assays, for the digestibility of newly hatched and enriched 

Artemia in first feeding marine finfish larvae using in vitro approach. A framework was 

set up to achieve this goal and is discussed below. 

 

Framework and assumptions for “in vitro” digestibility trials 

 

The procedure to determine and model Artemia digestion was as follows; whole bodied 

larval enzyme extracts of various species were allowed to digest Artemia for different 

times (analogous to gut evacuation time) in a buffered environment to produce the 

digesta in a reaction vessel. The use of larval extracts of the species of interest is more 
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suitable, because the enzyme complex obtained from the extract catalyzes digestion 

and different to single enzyme reactions and will be more accurately reflect digestion in 

the larval intestine (Alarcón et al. 2002). Several authors have observed important 

differences in molecular structures, digestive physiology, catalytic efficiency, and 

specificity  to  substrates  between  digestive  enzymes  of  different  phyla  (Moyano  & 

Savoie 2001, Alarcón et al. 2002, Chong et al. 2002, Chapter 5). Quantitative estimates 

were made for the degree of lipid, protein and carbohydrate digestion in the digesta using 

colorimetric methods, comparable to the degree of hydrolysis used by Martinez- Montano 

& Lazo (2012). Digestion was modelled (see Model Construction) using specific enzyme 

activity of the extracts, the preparation method of Artemia and incubation time as 

independent variables, and the degree of digestion as dependant variable. This model 

takes a novel approach by considering multiple enzymes and products in one 

experimental digestion. This approach further ensures that the procedural framework 

closely approximates the natural system or in vivo digestion, contrary to simple single 

enzyme; single product approaches. 

 

Enzyme extracts were obtained from whole larvae homogenates for which the specific 

enzyme activity of alkaline proteases, lipase and amylase was predetermined. These 

three enzymes and enzyme group were chosen as they represent the physiological 

most important alkaline enzymes in crude digestion of substrates (Chapter 1). These 

enzymes are by no means the only enzymes that will contribute to the digestion 

measured in this in vitro study, and are only specific indicator enzymes. Larval enzyme 

extracts were obtained from three warm temperate finfish species showing variable 

feeding strategies or natural prey selection during the early juvenile and adult stages. 

These species includes the blacktail; Diplodus sargus capensis (Sparidae), the strepie; 

Sarpa salpa (Sparidae), and the dusky kob; Argyrosomus japonicus (Sciaenidae). An 

enzyme extract from the white margined sole, Dagetichthys marginatus (Pleuronectidae) 

was used to test the ability of the model to predict in vitro digestion for other species. 

Importantly, characterisation of relative enzyme activity was done in Chapter 5 at 

different pH to ensure that species differences can be incorporated and accounted for in 

the model if necessary. This further served as a basis for the selection of an optimal pH 

for the determination of specific enzyme activities and in vitro trails in this study (Chapter 
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5). 

 

Both the two common forms of Artemia, newly hatched and enriched, used in larviculture 

were included as a categorical predictor in the experimental framework. The number of 

Artemia nauplii used in a single digestion was chosen to ensure that the substrate was 

not a limiting factor during digestion and that the amount of product measured using the 

colorimetric method was amplified and high enough to detect small differences between 

treatments in digestibility, thereby reducing the associated error. Appropriate blanks 

(where the substrate, Artemia or the larval enzymes extract was left out of the digestion, 

to account for their contribution to final result) and treatments were prepared to account 

for the contribution of exogenous enzymes from Artemia to the digestion, as the specific 

enzyme activity was not determined for Artemia. 

 

It is also important to maintain a homogenous environment for digestion in the reaction 

vessel as it will effect that rate of digestion. This can be solved by constantly mixing the 

digestive tube. This however increased the mechanical breakdown of the Artemia, 

increasing the digestion. Very little mechanical digestion takes place in fish larvae, 

which is evident from histological sections from the gut (Chapter 4). Both the above 

concerns were detected in the lab, and increased variability between replicates (pers. 

obs.). We found by simply allowing the reaction to take place in a reactor vessel laid on 

its side with an even distribution of a single layer Artemia in the extract showed the least 

variability. A single layer of Artemia nauplii should logically reduce the potential surface 

area loss for enzyme reactions that would be associated with multiple nauplii layers. As 

the loss of surface area is highly variable depending on the orientation of Artemia nauplii 

and the number of layers in the reaction vessel (which is impossible to control), the results 

will be more variable as observed in this study.  

 

MATERIALS, METHODS AND MODEL CONSTRUCTION 

 

Source of enzymes 

 

The larvae of Diplodus sargus capensis, Sarpa salpa, Argyrosomus japonicus were 
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used to make up 8 independent enzyme extract samples used to construct a model for 

protein and carbohydrate digestion. Dagetichthys marginatus larvae were used to test the 

model. All the larvae used as an enzyme source for in vitro trails ranged in length 

between 4 and 13 mm. Specific collection details are not important in this study, as the 

larval extracts were only used as a source of enzymes. 

 

All  the  larvae  were  rinsed  and  blotted  dry  before  being  stored  in  liquid  nitrogen. 

Samples remained frozen at -80 ºC until extraction. Enzyme extraction was achieved by 

homogenising partially thawed larvae (4 ºC) in cold 50 mM Tris-HCL buffer, pH 7.7 (35 

mg larval tissue . ml-1). This was followed by centrifugation (13500g for 15 min at 4 ºC). 

The supernatant was removed and used to determine specific enzyme activity and 

conduct in vitro trials. Enough larvae were combined to give an enzyme extract sample of 

at least 15 ml, which was required to complete all the necessary assays. 

 
Enzyme assays 
 
All the assays (Chapter 4 and 5) were carried out in triplicate and the absorbencies 

were measured using the KC junior software and the 96 well spectrophotometer 

SPECTRAmax 190, Powerwave X, Biotek Instruments, USA. All reactions took place at a 

room temperature of 20 ºC (Chapter 5). 

 

Alkaline proteases activity was determined using a modified method from Anson (1938). 

The enzyme extract was incubated for 30 min with a heamoglobin substrate (0.2 g 

heamoglobin in 10 ml of 50 mM Tris-HCL buffer, pH 7.7). Activity was determined by 

measuring the change in l-tyrosine concentration at an absorbance of 280 nm. Amylase 

(E.C.  3.2.1.1) was determined using the Somogy-Nelson procedure described by Nelson 

(1944) and Robyt & Whelan (1968). The substrate was prepared by dissolving % soluble 

starch in a 50 mM Tris-HCL buffer (pH 7.7) by heating the solution. The reaction started 

by combining the enzyme extract with the starch substrate and allowing it to incubate for 

5 min. The DNS reagent (Dinitrosalicylic reagent) was added to stop the reaction and 

then incubated at 100 ºC in a heating block for 5 min. Reducing sugars were determined 

by measuring the change in absorbance at 540 nm. Lipase (E.C. 3.1.1.-) activity was 

measured according to Iijima et al. (1998). The enzyme extract was allowed to incubate 
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with 5.2 mM sodium cholate in 50 mM Tris-HCL buffer (pH 8.0) and 10 mM 2-

methoxyethanol at room temperature for 15 min prior to addition of substrate. 10mM p-

nitrophenyl myristate dissolved in 100% ethanol was added as a substrate and allowed to 

incubate for another 2 h. The reaction was stopped by the addition of an acetone:heptane 

mixture (5:2). The change in absorbance was recorded at 405 nm for p-nitrophenyl to 

determine the degree of substrate hydrolysis. 

 

The soluble protein fraction content of the homogenates was determined using the 

Bradford’s assay technique (Bradford 1976) with bovine serum albumin as a standard. 

 

Specific enzyme activity was expressed as U/mg protein where U represented the 

amount of product liberated during 1 min of hydrolysis. 

 

Artemia preparation 

 

Artemia franciscanis cysts, EG:HE > 240 000 npl/g (INVE, Belgium) were prepared and 

incubated according to the method described by Hoff & Snell (1987). Cysts hatched 

after 24 h and were either used as newly hatched nauplii, or reared to the metanauplii 

stage  and  enriched  with  DHA  Selco®  according to  the  method  described  by  the 

producer (Artemia Systems, INVE). Both the newly hatched nauplii and enriched 

metanauplii were thoroughly rinsed with fresh water, concentrated and separated into 

reaction vessels for the in vitro trails. The same volumetric volume of 200 uL 

concentrated Artemia was pipette into each reaction vessel to factor in size differences 

between newly hatched and enriched Artemia. Five subsamples of 10 ul each was 

counted under a dissecting microscope and used to determine the number of nauplii in 

each reaction vessel to further validate and standardise between reaction vessels and 

Artemia sizes. Each reaction tube was centrifuged for 3 minutes at 4000 g or until pellet 

formation to remove excess water prior to the addition of the enzyme extract. 

 

In vitro digestion 

 

The Artemia nauplii were re-suspended by the addition of 500 uL of the enzyme extract, 
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which signified the start of in vitro digestion. The extracts were obtained from whole 

tissue homogenates as described above. The enzymes were allowed to hydrolyse the 

substrate / Artemia for 15, 30, 45, 90, 120, 150, 210 and 270 min.  500 uL of cold (4 ºC) 

MilliQ water was then added to minimise and stop subsequent enzyme activity until 

centrifuging. This was followed by centrifuging the reaction vessels for 10 min at 12 000 

rpm to separate undigested Artemia from the digesta. An extract blank for each of the 

abovementioned incubation times served as a negative control and a substrate blank 

helped to account for the degree of hydrolysis in the enzyme extract. 

 

The digesta (supernatant) was tested for the degree of protein, fat and carbohydrate 

digestion. The degree of protein digestion was measured using a modified Ninhydrin 

colourimetric method. Ninhydrin binds to the amine group of amino acids and peptides, 

and give an accurate measure of the degree of protein hydrolysis. Ninhydrin reagent 

(0.35 g Ninhydrin dissolved in 100 ml ethanol) was added to a sample of the digesta 

and covered to prevent the loss of the solvent. This solution was allowed to react for 7 

min at 90 ºC with gentle stirring after which it was cooled and the change in absorbance 

was measured at 570 nm. Glycine was used as a standard amino acid to determine the 

degree of protein digestion. The digestion of carbohydrates was determined using a 

modified Somogyi – Nelson method for reduced sugars as previously explained.  Lipid 

digestion was determined using the Korn method (Whiteley et al. 2003) for glycerol. 

 
Glycerol  is  a  product  liberated  when  lipase  cut  the  fatty  acids  from  the  glycerol 

backbone of triglycerides. Glycerol is thus used as an indirect measure of fatty acids 

hydrolysed. Using this method is problematic as not all fats in Artemia are in a triglyceride 

form (other forms like steroids, phospholipids are also present), but to maintain the 

simplicity of the in vitro protocol for future studies, the Korn method was favoured and it 

was assumed that it will give an indirect measure of total fat digestion. 

 

The Korn method was achieved as follows; 10 uL H2SO4 (5M) and 25 uL of sodium 

periodate (NaIO4 – 0.1M) were added to the digesta, vortexed and allowed to react for 5 

min. This was followed by the addition of 25 uL of NaHSO3 and 250 uL of Chromotropic 

acid reagent. Once again the chemical mixture (digesta) was vortex and incubated at 90 
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ºC for 1h. The samples where cooled and the absorbance read at 570 nm. 

 

Each reading was done in triplicate, while a standard curve of absorbance vs. product 

concentration was used to determine the concentration of product in the assays. 

 
Model construction 
 

In biochemistry, there has been significant interest in the appropriate mathematical 

models for describing and predicting the rate (v) of enzyme-catalysed reactions. The 

general reaction scheme for enzyme-catalysed conversion in digestion from the substrate 

(S) to the product (P) by enzyme (E) can be described as follows; 

 

 

 

The rate of an enzyme catalysed reaction (v) can be described by the Michaelis-Menten 

kinetic model and describes the kinetics of enzyme-catalysed reactions as follows; 

 

 
 

V = reaction rate. Vmax = maximum reaction rate, Km = Michaelis constant and s= 
concentration of substrate. 
 

It is clear from the reaction scheme of the enzyme-catalysed conversion above, that 

many reactions occur with the formation of reactive intermediates (E·S and E·P), even in 

a single enzyme – single substrate/product approach. The in vitro protocol followed for 

digestion in this study was not of a simple nature, with a number of different 

enzymes digesting a complex substrate like Artemia. The decision on which model to use 

depends completely on the type and complexity of reaction being modelled, the 

environment it  takes place  in  and  the  type  of  data  being collected based  on  the 

experimental design of  the  study. Despite the obvious complexities of the general 

reaction scheme applicable to this in vitro study (see theoretical models below), it can 

be represented as a series of elementary reactions.  The rate equation for each individual 

step can be combined so that the overall rate equation can be derived from the 
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individual steps. These steps point to the use of a dynamic metabolic network of single 

models using a system modelling approach. To achieve this system modelling approach 

for digestion, a metabolic network was built that consists of various linked functions, 

combining to form a kinetic model or a coupled reaction network based on the mechanism 

or theoretical model described below. Similar constructed models were used by 

Rønnestad & Conceição (2010). 

 
Theoretically the degree of protein and carbohydrate digestion can simply be described 

by the following schematic illustration and include various allosteric interactions that are 

numbered and described below. 

 

 

 

The alkaline proteases hydrolyse proteins in Artemia into peptide fragments (1). The 

degree of protein digestion was determined by the number of peptide fragments, using 

the Ninhydrin method explained in materials and methods. The proteases can also 

auto-digest itself and hydrolyse other enzymes like amylase and lipase, as enzymes 

consist of proteins (3). Furthermore, lipase and amylase can also digest Artemia that 
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can indirectly make proteins in the Artemia more or less available for proteases to 

digest (2). 

 
Amylase hydrolyses glycogen and other carbohydrate chains in Artemia into simple 

reduced sugars (4). Furthermore, lipase and alkaline proteases can also digest Artemia 

that  can  indirectly  make  carbohydrates in  the  Artemia  more  or  less  available  for 

amylase to digest (5). This theoretical model for carbohydrate digestion was however 

not implemented as amylase had no effect on the hydrolysis of carbohydrates (see 

Results and Discussion). 

 

The Korn method for triglyceride digestion yielded no positive results for glycerol in the 

digesta, despite attempts to modify the digestive liquid to contain an emulsifier and was 

subsequently ignored (see Discussion). 

 

Based on the theoretical model described above for protein digestion, the metabolic 

processes (metabolic control and regulation) governing digestion was modelled using 

the following four equations and is based on the Michaelis-Menten model for enzyme 

kinetics. 

 

a) 

 

 

b) 
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c) 

 

 

 

 

 

; where kprotease, kprotein, kamylase, klipase are binding constants and kact 1 – 4 are 

the catalytic constants, while Protein’(t) refers to the degree of protein digestion over 

time, and can also be described as the slope or first order derivative describing the 

protein signal in the digesta. Multiplying equations a, b and c with two before the 

addition to the degree of protein digestion (eqn. d), signifies the doubling of the peptide 

fragments with every hydrolysis of an enzyme or peptide chain. 

 

A further variable was built in to account for differences between newly hatched and 

enriched Artemia (prot 1 and 2 respectively). This was achieved by splitting the time 

course into two sections, the second of which will incorporate a higher value for starting 

protein when Artemia was enriched. This event was placed between the 90  and 120 

min sampling times for digestion, and was decided upon after visual inspection of the 

observed data and consideration that the maximum level of free amino acids is reached in 

dead Artemia around 120 min (Gulbrandsen et al. 2009). 

 

The model constants were then solved by minimizing the sum of squares in errors 

between the observed and expected data for the eight samples. The predictive power of 

this model was then tested by calculating the fit of the observed data from the sole, 

Dagetichthys marginatus to the model. 
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Data analyses 

 

Other than specifically mentioned, the degree of protein and carbohydrate digestion is 

based on total digestion and not only the contribution of the larval extracts to digestion. 

Descriptive statistics were done using Statistica v9, StatSoft; while model building, 

simulation and solving was achieved using Mathematica 7.0, Wolfram. 

 

RESULTS 

 

The number of Artemia used for each in vitro digestion was 2215±390 nauplii for un- 

enriched and 1543±243 meta-nauplii for enriched. This number of Artemia was 

standardised for model construction so that the degree of digestion was always for 1000 

newly hatched and 700 enriched nauplii. This maintained the volumetric ratio (weight to 

volume ratio) of 70 % of newly hatched to enriched Artemia found in this study to ensure 

that a relative constant weight of substrate was maintained. Enzyme activities used 

during the model construction (samples #1 - #8) ranged between 52 – 76 mU/mg 

protein, 2.7 – 4.1 mU/mg protein and 5.9 – 10.8 U/mg protein for alkaline proteases, 

lipase and amylase respectively (Table 6.1). Sample #9 & #10 were taken from D. 

marginatus larvae 8 and 25 dah respectively, and were used to test the predictive power of 

the model. One should note that specific enzyme activity of sample #10 for alkaline 

proteases and lipase fell outside of the range for which the model was constructed (Table 

6.1). 
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Table 6.1: Specific enzyme activity and method of Artemia preparation used for each 
sample used in model construction (#1 - #8) and model testing (#9 & #10). The fit of the 

model to each sample for the degree of protein digestion is represented by R2. 
 

Sample Artemia 
Preparat ion  

Method  

Protease 
Activity 
mU/mg 
protein  

Amylase 
Act ivity 
U/mg 

prote in 

Lipase 
Activity 
mU/mg 
protein  

R2
 

Prote in 
signal 

#1 Newly hatched 75.6 10.1 3.9 0.90 
#2 Newly hatched 54.5 9.6 3.2 0.37 
#3 Newly hatched 64.2 5.9 3.8 0.84 
#4 Newly hatched 63.9 7.1 3.9 0.67 
#5 Enriched 73.5 10.6 3.9 0.76 
#6 Enriched 52.2 10.8 2.7 0.60 
#7 Enriched 58.3 5.9 2.8 0.75 
#8 Enriched 65.2 7.8 4.0 0.92 

      
#9 Newly hatched 68.7 7.8 7.1 0.76 
#10 Enriched 126.0 2.1 22.4 0.58 

 

Exogenous enzymes from Artemia contributed 54.5 ± 2.4 % and 53.6 ± 2.1 % to total 

protein digestion, and 64.0 ± 5.6 % and 72.2 ± 5.1 % to total carbohydrate digestion for 

un-enriched and enriched Artemia, respectively and were based on the degree of 

digestion within the digesta without the presence of the larval extract. This contribution 

was  significantly  higher  for  enriched  than  un-enriched  Artemia  for  carbohydrate 

digestion (t = - 6.14, df = 62, p < 0.0001) but not protein digestion (t = 1.52, df = 62, p = 

0.134). 

 
None of the endogenous larval enzymes included in the study as predictors for the 

model, including amylase, had any effect on the rate of carbohydrate digestion from 

Artemia, due to the strong linear trend that is presented below. For this reason the 

system model approach was dropped for carbohydrates, and only a simple linear model 

was used to predict the degree of carbohydrate digestion, DCD (see Discussion). 
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Figure 6.1: Graph presenting the degree of carbohydrate digestion for newly hatched 

(diamonds) and enriched Artemia nauplii (circles) at different digestion times for sample #1 

- #8, showing a linear regression of y=0.0008x+0.0682 (R2=0.90) and y=0.0008x+0.1132 

(R2=0.94) respectively. 

 
A repeated measures ANOVA for carbohydrate digestion showed that although the 

pattern of digestion over time stays the same (F = 1.718, p = 0.13), that by enriching the 

Artemia a significantly higher amount of carbohydrates were available for digestion (F = 

36.47, p = 0.0009) throughout the digestion period. 

 
The solution for the constants in the model for protein digestion or the protein signal is 

0.22 mN.min-1, 0.01 mN.min-1, 0.07mN.min-1, 0.001 mN.min-1, 5.55 N-1, 4.1 N-1, 3.3 N-1, 2 

N-1, 0.01 and 0.11 for kact1, kact2, kact3, kact4, Kprotease, Kprotein, Klipase, Kamylase, 

prot1 and prot2 respectively. From these results it is clear that the binding constants 

(Kprotease, Kprotein, Klipase and Kamylase) or the capacity of protease to the different 

protein sources in the digestion is relatively constant, being in the same order of 

magnitude. The degree of protein digestion also increases by an order of magnitude 

between newly hatched and enriched Artemia after 90 min of digestion in the in vitro 

system (prot1 = 0.01 and prot2 = 0.11). Furthermore, the catalytic constant (kcat1) for the 

hydrolysis of protein by proteases to peptides contribute much more than any of the 

allosteric interaction of the hydrolysis of protease, lipase and amylase by protease. One 
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should note however, that despite the fact that the model was optimised there are still 

some visual pattern differences when comparing between the observed and model 

predicted values (Figure 6.2). These differences are especially obvious when one consider 

the pattern of protein digestion over the first 90 min of digestion of enriched Artemia. There 

appears to be a very sudden increase in the degree of protein digestion, which is not 

predicted by the digestive model. This highlights the potential shortcomings of the current 

model. 

 

The model constructed with samples #1 - #8 showed good predictive power for the DPD 

and DCD in D. marginatus larvae (samples #9 and #10). Sample #9 showed a R2 = 

0.985 for the digestion of carbohydrates of unenriched Artemia when compared to the 

constructed model, while sample # 10 showed a R2 = 0.870 for enriched Artemia (Figure 

6.3). The model also showed good predictive power for the degree of protein digestion in 

D. marginatus (Table 6.1 and Figure 6.4)
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#1                                                                                       #2 
 
 
 
 
 
 
 
 
 
 
 
 
#3                                                                                       #4 
 
 
 
 
 
 
 
 
 
 
 
 
#5                                                                                       #6 
 
 
 
 
 
 
 
 
 
 
 
 
#7                                                                                       #8 
 
 
 
 
 
 
 
 
 

 
 
Figure 6.2: The observed and expected protein signals or DPD for samples #1 - #8 
used for model construction. The R2 of the model to the observed data are given in 
Table 6.1. 
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Figure 6.3: Graph presenting the degree of carbohydrate digestion for newly hatched 

(diamonds) and enriched Artemia  nauplii  (squares) at  different  digestion  times  for 

sample #9 and #10 respectively. This shows a good fit to the linear regression models 

constructed for  unenriched samples #1  -  #4  of  y=0.0008x+0.0682 (R2=0.985) and 

enriched samples #5 - #8 of y=0.0008x+0.1132 (R2=0.870) respectively. 

 

 

#9                                                                                         #10 

 

 

 

 

 

 

 

Figure 6.4: The observed and expected protein signals or DPD based on constructed 

model for Dagetichthys marginatus samples #9 and #10. The R2 of the observed data to 

the model are given in Table 6.1. 
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DISCUSSION 
 

 
Live food organisms like Artemia remain an integral part of larval rearing at great costs to 

finfish farmers (Kolkovski 2001, Stottrup & McEvoy 2003, Aragão et al. 2004), despite 

attempts to eliminate them from first feeding larval strategies (Fernandez-Diaz & Yufera 

1997,  Rosenlund  et  al.  1997, Cahu  et  al.  1998, Southgate  &  Partridge  1998). 

Understanding the mechanism by which larval enzymes and gut evacuation times affect 

the digestion of Artemia will result in improved species specific enrichment formulations 

and rearing protocols for Artemia. It will further give valuable insight into the potential 

capacity of finfish larvae to digest artificial food sources and ultimately feed design.  

 

This paper attempts to elucidate some of the general factors and mechanisms 

contributing to Artemia digestion in vivo by describing Artemia digestion using a novel in 

vitro approach. This is however, only an initial attempt at understanding the processes 

governing the digestion of Artemia using a biological meaningful integrated in vitro and 

modelling approach. No comparisons can thus be drawn with regards to predicted 

model constants, and those found by other authors. Nonetheless, some crucial 

information can be taken from this study. 

 

Various authors have shown that Artemia contribute a large portion of enzyme activity (40 

– 80 %) during digestion through exogenous enzymes (Jancarik 1964, Dabrowski & 

Glogowski 1977a,b, Dabrowski 1984, Lauff & Hofer 1984, Kolkovski et al. 1993, Cahu & 

Zambonino Infante 1994, Oozeki & Bailey 1995, Gawlicka et al. 2000; Lazo et al. 2000). 

Research has also shown that exogenous enzymes can induce an increase in 

endogenous enzyme activity from fish larvae (Pedersen & Hjelmeland 1988) and that 

the autolysis of live food can stimulate endogenous enzyme secretions through 

neurohormonal factors (Chan & Hale 1992, Hjelmeland et al. 1993, Person-Le Ruyet et 

al. 1993). 

 

On the contrary, other studies show a very small contribution by exogenous enzymes and 

suggest that it may be negligible (Oozeki & Bailey 1995, Moyano et al. 1996, Zambonino-

Infante et al. 1996, Cahu & Zambonino-Infante 1997, Kurokawa et al. 1998, 
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Lazo et al. 2000). Research on the Japanese sardine, Sardinops melanoticus larvae 

(Kurokawa et al. 1998) and herring larvae, Clupea harengus (Pedersen et al. 1987, 

Pedersen & Hjelmeland 1988) showed similar results. They concluded that exogenous 

enzymes from rotifers and copepods contributed less than 1% and 0.5% to protease 

activity respectively and suggests that live feed contribute to the digestion and 

assimilation process other than a direct contribution to enzyme activity. Support for this 

came from Kolkovski et al. (1997a) and Koven et al. (1998) that showed that lipid 

fractions extracted from Artemia lipids, enhance assimilation of microparticulate diets in 

gilthead seabream larvae, Sparus aurata. 

 

Data from this study suggest that exogenous enzymes from Artemia contribute to about 

54% of protein digestion and 64 – 72% of carbohydrate digestion. These results were 

based on the contribution of Artemia to digestion when it was allowed to auto-digest itself, 

and not the contribution of activity levels of the digestive enzymes as is most often the 

case in the above referenced literature. The results from this study do not preclude any of 

the hypotheses described above, but present indirect evidence that supports the 

hypothesis that the low contribution of larval enzymes was due to the hypothetical 

contribution of exogenous enzymes from Artemia. Since the exogenous enzyme activity 

for Artemia was not measured in this study, there is no direct measure to support this 

hypothesis. Using the actual enzymes activities as a direct measure for the contribution of 

exogenous enzymes to larval digestion presents its own possible problems. Amylase, 

used as an indicator enzyme for carbohydrate digestion in this study, played no role in 

determining carbohydrate digestion from Artemia. This, together with the strong linear 

trend observed in the results for carbohydrate digestion, suggests that another possible 

enzyme from an exogenous source had a bigger overriding effect. These can include 

carbohydrases like maltase, chitinase and chitobiase (Clark et al. 1984). The latter two 

has  been shown to  occur at  very low  levels in  larvae, and  originate mostly from 

exogenous enzymes from Artemia (Clark et al. 1984). Care should therefore be taken in 

the selection of the indicator enzymes when one considers the digestibility of Artemia. 

 

This presents contradictory results, as this study also suggested that only between 64 
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and 72 % of carbohydrate digestion can be accounted for by exogenous enzymes from 

Artemia. This discrepancy can only be explained by various possible allosteric 

interactions of endogenous and exogenous enzymes put forward in the hypothetical 

models or other unknown hypothetical contributions hinted towards by various other 

studies (Oozeki & Bailey 1995, Moyano et al. 1996, Zambonino-Infante et al. 1996, 

Cahu & Zambonino-Infante 1997, Kurokawa et al. 1998, Lazo et al. 2000). 

 

The constructed models for carbohydrate and protein digestion showed reasonable 

predictive power for the sole, Dagetichthys marginatus. This suggests that D. marginatus 

digest Artemia in a very similar manner to other teleosts. This is contradictory to what 

was found for the Dover sole, Solea solea (Morais et al. 2004). The methods followed by 

Morais et al. (2004) that resulted in this conclusion have been criticised by subsequent 

research, showing that  the  digestibility of  Artemia may increase with  a  decreased 

evacuation rate caused by a single meal followed by starvation (Conceição et al. 2007). 

 

The degree of fat digestion could not be determined, despite the importance of fats in 

larval development (Chapter 1). The Korn method used to determine fat digestion was 

selected due to the high prevalence of triglycerides (50 – 72 mg/g dry weight) in Artemia 

(Garcίa-Ortega et al. 1998). No glycerol was however assayed in the digesta, illustrating 

that the Korn method was unsuitable to determine the degree of fat digestion. This is 

contrary to what is suggested by Koven et al. (1997), and can only be explained by the 

incomplete hydrolysis of triglycerides to di- and monoglycerides. A more appropriate 

assay needs to be used to include fat digestion of Artemia in future studies of this 

nature. 

 

Care should however be taken when using a system modelling approach, as it does 

make the assumption that the theoretical model used to predict digestion in vitro is 

fundamentally true. This is not always the case, as is clearly illustrated by the fact that 

amylase did not have any impact on carbohydrate digestion. Careful consideration of 

model predictors and inspection of data is therefore required to ensure that any 

assumption is based on a true effect and not a theoretical effect. This does not imply 

that the theoretical model is wrong, but rather the predictors selected to model the 
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system is not of any significant importance. 

 

Conventional modelling, using techniques like general linear models (Hardin et al. 2003, 

Giménez et al. 2007, Hua & Bureau 2009) might have given better fits to the observed 

values, but these would have had little biological meaning in an enzyme catalysed 

system. For this reason the model was based on enzyme kinetic principles, as it 

represent biological significant values that can be used to describe the mechanism by 

which larvae digest Artemia in various studies. This modelling approach also only model 

known enzyme-substrate interactions in the digestive system, and does not look for 

interactions based on a search for significant interactions like the other modelling 

techniques. It is also likely that further experimentation, while building more complexity 

into the in vitro model, will show very good fits with a high degree of predictability. It can 

also be adapted to include specific outputs like the release of specific amino and fatty 

acids. 

 

The validity of an in vitro approach to describe a very complicated process remains to be 

determined, although a good fit of the data to the hypothetical model, based on in vivo 

process shows a strong potential. This ’in vitro’ study can thus be used as a base case, 

while increasing the complexity of the hypothetical model to make more accurate 

predictions. 
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Chapter 7: General Discussion  
 
 
The white-margined sole, Dagetichthys marginatus is considered a promising new 

candidate species for aquaculture in South Africa (Thompson 2005, Thompson et al. 

2008). The aims of this research were twofold. Firstly, to understand the early larval 

ontogeny of D. marginatus with specific focus on aspects of larval development directly 

linked to nutritional physiology (Chapter 1). Secondly, to model the physiological 

environment under which the digestion of feed in the larval gut of D. marginatus takes 

place. In the context of this thesis, the in vitro approach to model Artemia digestion in 

the gut of D. marginatus was of particular interest. The methods followed and developed 

give a mechanistic view of digestion that could shed light on a number of problems 

currently prevalent in larviculture. 

 

The discussion attempts to advance the current understanding of nutritional physiology in 

finfish larvae by critically examining the pertinent findings of Chapters 3 to 6. 

Furthermore, the methods developed and the results from chapter 5 & 6 are evaluated 

and the possible implications for the wider field of nutritional physiology in mariculture are 

assessed. The chapter concludes with suggestions for future research in larval nutrition. 

 

Low  survival  of  finfish  larvae  throughout  development  is  a  common  feature  in 

larviculture when all the nutritional and environmental requirements of the animals are 

not properly met and this is especially dramatic in research on new species or diets 

(Kaji et al. 1996, Fernández-Díaz & Yúfera 1997, Cahu et al. 1998, Hamlin & Kling 

2000, Robin & Vincent 2003, Papandroulakis et al. 2005, Yúfera et al. 2005, Howell et 

al. 2009, Das et al. 2012). A study of this nature is presented with a conundrum, as it 

depends on rearing several batches of larvae successfully in the complete absence of 

proven, species specific, rearing technologies. A strategy was adopted to use rearing 

technologies from closely related species throughout the larval rearing of D. marginatus. 

This  strategy  showed  “reasonable”  larval  survival  and  growth,  which  allowed  the 

examination of the morphological and physiological aspects set out in the aims. The 
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most suitable species from which rearing technologies could be adopted for D. 

marginatus, were Solea solea and S. senegalensis (Chapter 1, Thompson 2005). 

 

The digestive capacity, as well as nutritional requirements of larvae must be considered 

when designing feeding strategies to ensure the ingestion, digestion and assimilation of 

nutrients (Lan & Pan 1993, Lovell 1998, Cahu & Zambonino Infante 2001, Martinez-

Montano & Lazo 2012, Meyer 2012). While no evidence was presented in this thesis to 

dismiss the possible impact of ingestion and assimilation on rearing success of D. 

marginatus, the lack of a completely developed stomach, the absence of any detectable 

acidic protease activity during the first 45 days of ontogenetic development (Chapter 4) 

and the importance of exogenous enzymes (Chapter 6) all points to limited digestive 

capacity. Engrola et al. (2007) and Day et al. (1999) also hypothesize that  a  reduced  

digestive  capacity is  the  most  likely  cause  of  rearing problems in soleids, especially 

during weaning (Chapter 1). Further support for the lack of acid digestion in soleids, 

which limits the capacity to digest artificial diets was found by Yúfera & Darias (2007), 

who showed that the gastric pH of S. senegalensis never drops below 6 despite the 

appearance of gastric glands. 

 

Determining the digestive capacity of fish larvae remains one of the ultimate goals of 

larval nutrition studies (Lan & Pan 1993, Kolkovski 2001). It is clear that an accurate 

estimate of digestive capacity will lead to better designed diets and feeding strategies 

(Lovell 1998, Cahu & Zambonino Infante 2001, Kolkovski 2001, Gisbert et al. 2009, 

Martinez- Montano & Lazo 2012). Digestion capacity is however a very complicated 

physiological process and is technically difficult to predict (Favé et al. 2004, Martinez-

Montano & Lazo 2012).  The scientific solution to this problem is to use a ‘surrogate’ 

method that will approximate digestive capacity. These ‘surrogate’ methods are widely 

used, and generally involve the determination of one the factors generally considered to 

be important in digestion. 

 

The digestive capacity of finfish larvae is umongst others, dependent on the specific 

activity of digestive enzymes in the gut. This is, of course, closely linked to the functional 
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status of the digestive tract and the support organs at any point in time (Martinez et al. 

1999, Cahu & Zambonino Infante 2001, Kolkovski 2001, Gisbert et al. 2009) and can 

further be linked to external morphological characteristics required for ingestion of prey 

(Ende & Hecht 2010). The chronological age of the larvae does however, not necessarily 

indicate its physiological age (Blaxter 1988). Therefore the physiological and histological 

description of the digestive tract was done on the basis of discernible external 

morphological characteristics, clearly defined in Chapter 3. This allows one to adapt a 

feeding strategy at appropriate times corresponding to the physiological readiness, and 

not at a chronological age. 

 

This study has shown that D. marginatus can successfully feed on live food such as 

Artemia and rotifers as early as 3 days after hatching (dah). The first feeding stage, which 

is associated with mouth opening and eye pigmentation, is not generally regarded as a 

critical stage in soleid ontogeny (Shields et al. 1999), as it is with other teleosts 

(Gulbrandsen 1993, Jähnichen & Kohlmann 1999, Yúfera & Darias 2007). In soleids the 

weaning stage is the most critical (Howell 1997, Dinis et al. 1999, Conceição et al. 

2007, Bonaldo et al. 2011). This is also the case with D. marginatus, as no post 

metamorphosed larvae could be weaned on to an artificial diet (Chapter 2). 

 

A diverse range of weaning strategies has been tested for soleids. Gatesoupe & Luquet 

(1982) started weaning Solea solea on to artificial feed at 10 dah, Person Le-Ruyet et 

al. (1980) at 30–40 dah and Overton et al. (2010) at 20 – 22 dah. Dinis (1992) started 

weaning S. senegalensis larvae 30 dah using re-hydratable pellets, while Yufera & Darias 

(2007) started at 50 dah. Flos et al. (1995) started weaning S. senegalensis at 6 months. 

None of the above weaning strategies show an advantage over another, but rather show 

a general compromise in slower growth but lower mortality with delayed weaning 

(Bonaldo et al. 2011). The use of innovative feed ingredients to improve the digestibility 

of the diet does seem to improve weaning success. For example, diets containing protein 

hydrolysates have been shown to work for weaning soleids prior to metamorphosis (Day 

et al. 1997, 1999) due to the reduced digestive requirements for the absorption of 

hydrolysed proteins. Theoretically, this should also be the case for post flexion D. 
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marginatus larvae as early as 20 dah (10.6 ± 0.6 mm), where pinocytosis associated with 

high levels of alkaline phosphatase (Chapter 4) should enable the absorption of nutrients 

from diets containing protein hydrolysates. However, regardless of dietary improvements, 

the  slow development of  D. marginatus (Chapter 3 &  4) suggests a later age of 

weaning for this species. This becomes clear considering that D. marginatus starts 

metamorphosis at a size of 9 mm between 16 – 30 dah (Chapter 3). In comparison S. 

senegalensis starts metamorphosis at about 8 mm and an age of between 11 – 19 dah 

(Dinis et al. 1999). 

 

A simple qualitative and quantitative determination of enzyme activity in the gut is a 

useful starting point for improving larval and early juvenile rearing techniques. Various 

studies suggest that the activity of certain digestive enzymes is a key indicator for fish 

larvae to survive on formulated feed (Yufera et al. 2000, Kolkovski 2001).   Although 

enzyme activity studies are often employed for this purpose, Chapters 4, 5 and 6 

present a clear case why this could be misleading. The underlying reasons seem to be 

related to; 1) the experimental conditions under which the digestive enzyme activity was 

determined in the lab, and 2) the inadequacies for an accurate measure of digestion 

when complex food items and enzyme systems are considered.  

 

Digestibility is better understood when a holistic view of digestion is taken, either through 

in vitro or in vivo studies (Montano & Lazo 2012)(see Chapter 6) and may be a more 

accurate method with which to define feeding strategies and feed formulations (Chapter 1). 

 

An  in  vitro  protocol  was  designed    to  establish  a  mechanistic  view  of  digestion 

physiology and  this  was used to  model the  digestion of  enriched and  unenriched 

Artemia by various fish larvae given their enzyme activity levels and gut evacuation rates. 

The experimental protocol and the system modeling approach allowed for a rapid and 

reasonable approximation of  Artemia digestion and showed good predictability when 

larval extracts from D. marginatus were used to test the model. This, together with the  

results  from  the  enzyme  characterization work  (Chapter  5),  also  showed  that 

regardless of taxonomic relatedness or dietary niche, warm temperate species show 
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strong similarities in their digestive capacity. 

 

Artemia remains an important part of co-feeding weaning strategies for soleids over 

extended periods of time (Chapter 1). It has been hypothesised that the digestibility of 

artificial diets is enhanced through the exogenous enzymes provided by Artemia 

(Appelbaum 1985). While there is ongoing debate on this issue (Jancarik 1964, 

Dabrowski  &  Glogowski  1977a,b,  Dabrowski  1984,  Lauff  &  Hofer  1984,Cahu  & 

Kolkovski et al. 1993, Zambonino Infante 1994, Oozeki & Bailey 1995, Zambonino- 

Infante et al. 1996, Moyano et al. 1996, Cahu & Zambonino-Infante 1997, Kurokawa et 

al. 1998, Gawlicka et al. 2000; Lazo et al. 2000), strong evidence is presented in 

Chapter 6 to supports this hypothesis, at least in part. ‘In vitro’ digestion of Artemia 

clearly shows that carbohydrate digestion is almost entirely the results of amylase (or 

possibly another form of carbohydrate digesting enzyme) from an exogenous origin. 

Amylase from endogenous origin contributes very little to the Artemia digestion during the 

early stages of larval development, despite the fact that it is often measured as an 

indicator for digestion. 

 

Accepting the hypothesis that exogenous enzymes contributes significantly to digestive 

capacity, understanding the actual mechanism by which Artemia digestion takes place 

and  the  impact  of  different  enzyme  sources,  substrate  complexity  and  enzyme 

interactions become crucially important to get a holistic and realistic view on digestion. The 

in vitro approach taken in Chapter 6 is an attempt at this, and may prove useful in the 

design and the implementation of improved enrichment protocols for Artemia and 

ultimately weaning diets for Artemia replacement with further refinement of the model. 

 

Chapter 5 also presents some evidence for the possible use of enzyme characterisation 

as a tool to predict dietary shifts under natural conditions. Sarpa salpa exhibited a 

significant decline in alkaline protease activity around the optimal pH with ontogenetic 

development, while amylase showed the opposite trend. This change in enzyme activity 

around the optimal pH corresponds to a change in the natural diet of S. salpa larvae at 

this stage (Christensen 1978, Chapter 5). It was therefore hypothesised that digestive 
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enzyme ‘behaviour’ is related to the natural feeding habits of the larvae. The digestive 

physiology  of  different  species  exhibited  closer  correlations  with  diet  than  their 

taxonomic relatedness. If this hypothesis gains further support then enzyme 

characterization could perhaps be used as an indicator of dietary shifts and hence the 

critical stages during larviculture. Furthermore, it could also serve as an indicator for the 

type and level of the nutrients that should be included in a formulated diet (Alarcόn et al. 

1997). 
 
Conclusion 
 
In conclusion, the degree to which technology is transferable between species remains a 

fundamental question in aquaculture research. This is especially true in larviculture where 

increasing complex studies and methods are employed to solve very species specific 

questions. This study presents evidence that the three warm temperate species studied 

show a predictable digestive capacity for Artemia, and that any variation is due to 

species specific enzyme activity levels and gut evacuation rates. While a complex in- vitro 

protocol was used to predict digestion of Artemia, the study further confirms that basic 

enzyme activity assessments are a good measure of digestion.  This is despite the 

simplistic view of a very complicated digestive system used in modelling digestion. A 

feeding strategy for D. marginatus should therefore follow those of other farmed soleids, 

although there will be a general delay in implementation due to slower larval 

development. Problems can thus be solved and improvements made by transferring 

technology from other soleids to D. marginatus. 
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