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Abstract

The ability to predict the future behavior of solar activity has become of extreme

importance due to its effect on the near-Earth environment. Predictions of both

the amplitude and timing of the next solar cycle will assist in estimating the various

consequences of Space Weather. Several prediction techniques have been applied

and have achieved varying degrees of success in the domain of solar activity pre-

diction. These techniques include, for example, neural networks and geomagnetic

precursor methods. In this thesis, various neural network based models were devel-

oped and the model considered to be optimum was used to estimate the shape and

timing of solar cycle 24. Given the recent success of the geomagnetic precusrsor

methods, geomagnetic activity as measured by the aa index is considered among

the main inputs to the neural network model. The neural network model devel-

oped is also provided with the time input parameters defining the year and the

month of a particular solar cycle, in order to characterise the temporal behaviour

of sunspot number as observed during the last 10 solar cycles. The structure of

input-output patterns to the neural network is constructed in such a way that the

network learns the relationship between the aa index values of a particular cycle,

and the sunspot number values of the following cycle. Assuming January 2008 as

the minimum preceding solar cycle 24, the shape and amplitude of solar cycle 24

is estimated in terms of monthly mean and smoothed monthly sunspot number.

This new prediction model estimates an average solar cycle 24, with the maximum

occurring around June 2012 [± 11 months], with a smoothed monthly maximum

sunspot number of 121 ± 9.
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Chapter 1

Introduction

This thesis describes a research project conducted with the aim of producing a

neural network based model for forecasting the shape and amplitude of solar cycle

24. This chapter gives a brief introduction to the sunspot cycle, solar activity

indicators, space weather as well as the Neural Network prediction technique, as

they pertain to the development of this model.

1.1 Sunspots and the solar activity cycle

Sunspots are dark spots observed on the solar surface. First European observa-

tions were made by Galileo in 1610 soon after the invention of the telescope. A

measure of the sunspots which show an 11-year cyclic variation represents a com-

mon indicator of solar activity. This cyclic variation of sunspots, known as the

Solar Cycle (SC), was first discovered by Samuel Heinrich Schwabe in 1843 through

extended observations of sunspots. The Sunspot Number (SSN) was introduced

by a Swiss astronomer Rudolf Wolf in 1848, who reconstructed back to 1700 the

evident presence of the 11-year cycle in the number of sunspots (Lang, 2001).

The relative sunspot number (R), is generally called the International Sunspot

Number and is defined according to Conway (1998) by the equation,

R = k(10g + f) (1.1)
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1.2 CHAPTER 1. INTRODUCTION

where f is the number of individual spots, g is the number of groups, and k is

a standardisation factor depending on observational conditions. The number of

spots varies with an 11-year period on average. From one cycle to another, varia-

tions in SSN amplitude are also observed.

Solar maximum and solar minimum refer to epochs of maximum and minimum

sunspot counts respectively. Figure 1.1 shows the visible disk of the sun near solar

maximum and solar minimum.

Figure 1.1: Illustration of solar maximum and minimum periods. Very few or
the absence of sunspots on the solar disc are observed near solar minimum. A
large number of sunspots correspond to the period of high solar activity. [Images
courtesy of SOHO; retrieved from: www.windows.ucar.edu/sun/solar variation]

The modern understanding of sunspots is that the sunspot cycle is closely related

to the magnetic structure of the Sun. In 1908, the American astronomer G. E.

Hale suggested a 22 year solar magnetic cycle where the sun’s dipolar magnetic

field reverses each 11 years. Therefore, for modelling purposes, at least 22 year’s

worth of data is required. In Chapter 2, a brief theoretical discussion about solar

magnetism will be given.

2



1.2 CHAPTER 1. INTRODUCTION

1.2 Solar activity indicators

Measurements of the number of sunspots visible on the solar disc gives the com-

mon index of solar activity and follows approximately an 11-year cycle. The In-

ternational Sunspot Number (SSN) also known as the Wolf Number, is currently

compiled and reported by the Sunspot Index Data Centre (SIDC) in Brussels,

Belgium and is considered as standard. The sunspot number is also compiled by

NOAA, the US National Oceanic and Atmospheric Administration.

Another indicator of the level of solar activity is the flux of radio emissions from

the sun at a wavelength of 10.7 cm (2.8 GHz). This flux has been measured daily

since 1947. The 10.7 cm solar flux (SF) is highly correlated with the sunspot

number and is considered as a superior measure of solar activity since it can be

measured objectively. However, the index is available since 1947 covering only 5

solar cycles, which limits its applicability to empirical models such as the one devel-

oped in this thesis. The 10.7 cm SF has been recorded routinely by the Algonquin

Radio Observatory, near Ottawa in Canada. In 1991 the program transfered to

the Dominion Radio Astrophysical Observatory near Penticton, British Columbia.

Fluxes are measured in units of 10−22Js−1m−2Hz−1 or solar flux units (sfu).

Geomagnetic indices also provide advance information on the amplitude of the

solar activity cycle (Hathaway and Wilson, 2006). The geomagnetic aa index has

proved very useful for the prediction of the maxima of smoothed sunspot numbers

(Kane, 1997). Details on the description and use of the geomagnetic activity aa

index for solar cycle prediction will be discussed in Chapter 3.

Another parameter characterising solar activity is the Total Solar Irradiance (TSI).

This is the amount of solar radiation received at the top of the Earth’s atmosphere.

A record of TSI compiled from the measurements made by five different space-

based radiometers (satellites) since 1978 shows a prominent 11-year cycle with

similar levels during the two recent SC minima1986 and 1996 (Frohlich, 1998).

In order to improve our understanding of solar cycles, long-term and consistent

measurements of the above important solar and geophysical parameters should be

3



1.4 CHAPTER 1. INTRODUCTION

continued and their quality maintained (Joselyn et al., 1996). For this study, the

parameters with the longest recorded history, SSN and geomagnetic aa index, have

been used.

1.3 Space weather

Solar activity is the dynamic energy source behind all solar phenomena driving

Space Weather (SW). During an active solar period, violent eruptions occur more

often on the Sun. Solar flares and vast explosions known as Coronal Mass Ejections

(CMEs) shoot energetic and highly charged particles towards Earth. The ensu-

ing ionospheric and geomagnetic disturbances greatly affect power grids, critical

military and airline communications, satellites, Global Positioning System (GPS)

signals and may even threaten astronauts with harmful radiation. The same storms

illuminate night skies with brilliant sheets of red and green known as aurorae or

northern and southern lights (http://www.noaa.gov; http://www.sec.noaa.gov).

All these phenomena are most frequent near the maximum of each 11-year cycle

of solar activity. More about the way solar storms affect modern-made man gound

and space based technological system can be found in various literature including

Koons and Gorney (1990) and Clilverd et al. (2005).

The Maunder minimum (1645-1715) refers to a period when very few sunspots

were observed. During this period, the Earth climate was cooler than normal

(Kivelson and Russell, 1995). This period mimics the solar cycle climate change

connections and is the subject of many studies. As indicated by Sello (2001), the

particles and electromagnetic radiations flowing from solar activity outbursts are

important for long term climate variations .

1.4 Predicting the solar activity cycle

In the previous section, various aspects of solar driven space weather have been

discussed. In order to project space weather effects into the future, it is important

to be able to project the sunspot cycle to future dates (Wilson et al., 1999). The

magnetic activity on the Sun varies dramatically over time, with an almost pe-

riodic 11-year cycle. This dramatic variability explains the difficulties with solar

4



1.4 CHAPTER 1. INTRODUCTION

cycle predictions, an issue which is complicated by the lack of a successful quan-

titative, theoretical model of the Sun’s magnetic cycle (Joselyn et al., 1996).

Many attempts to predict the future behaviour of solar activity are well docu-

mented in the literature. Hathaway et al. (1999) synthetises SC prediction tech-

niques in two categories: regression techniques and precursor techniques. Ac-

cording to this author, regression techniques use observed values of solar activity

from the recent past to extrapolate into the near future. These techniques include

standard regression and autoregression, curve-fitting and neural networks. The

precursor techniques provide an estimate of the amplitude for the next solar cycle

using mainly geomagnetic indicators.

Sello (2001) classifies solar activity prediction techniques in the following cate-

gories: Precursor, Curve fitting, Spectral, Climatology and Neural Networks. The

research presented in this thesis is based on Neural Network (NN) technique. A

review of NN literature is presented in the following section.

1.4.1 Predicting the solar cycle using Neural Networks

NNs have been employed in solar-terrestrial modelling and prediction. Macpherson

et al. (1995) and Fessant et al. (1996) described NNs as a suitable method for SC

prediction. Calvo et al. (2000) indicated that the NN computational architectures

can be used advantageously to replace the standard linear statistical techniques .

According to Lundstedt et al. (2005), solar activity can be described as a non-linear

chaotic dynamic system and given its non-linear ability, NN should be convenient

method for solar activity prediction. A version of NN known as Feed Forward Neu-

ral Network (FFNN) has been used in the prediction of various solar-terrestrial

time series. Conway et al. (1998) applied this technique to predict the maximum

SSN for SC 23 (which occurred in 2000) with a value of 130 ± 30. Note that the

maximum SSN value of SC 23 as predicted by Conway et al. (1998) using NNs was

closer to the achieved (SSN maximum= 122) in 2000, than the prediction using

precursor methods which overestimated the maximum SSN value (Hathaway and

Wilson, 2006).

5



1.5 CHAPTER 1. INTRODUCTION

Details of the description, methodology and application of FFNN to time series

prediction are given in various articles including Macpherson et al. (1995), and an

introduction to the basics of NN will be given in Chapter 2

1.4.2 Solar cycle 24 prediction

Each solar cycle lasts about 11 years from one minimum to the following and is

given a number, with SC 1 beginning around 1755 (Stix, 1989). The SC 23 has

lasted longer than expected and currently, the minimum of SC 24 is still not well

defined. On the 4 January 2008, the Solar and Heliospheric Observatory (SOHO)

showed a high latitude and reversed polarity sunspot. For some experts, this solar

event marked the beginning of SC 24:

(http://science.nasa.gov/headlines/y2008/10jan−solar cycle24.htm ).

However, during the last week of March 2008, sunspots with the same magnetic

polarity as sunspots for SC 23 were observed. According to the NASA solar physi-

cist, David Hathaway at the Marshall Space Flight Center, SC 24 has begun, but

two solar cycles are simultaneously in progress until cycle 24 increases in activity.

These observations indicate that the SC 24 maximum may probably not occur

until 2012:

(http://science.nasa.gov/headlines/y2008/28mar−oldcycle.htm?list53494). Based

on the above information, January 2008 has been considered as the start of SC 24.

A number of predictions on the new cycle have been attempted. In his report of

May 2007, Pesnell (2007) reports 45 predictions of SC 24 by different experts using

different methods. Looking at those predictions, differences are clear both in the

magnitude and timing of SC 24. While some experts forecast a much higher solar

activity for SC 24 reaching a SSN maximum of 180±32, others predict a lower

activity cycle with a value of 42±35 for the SSN maximum. The report shows

that almost a half of the predictions agree that SC 24 will be an average cycle

within the limits of the achieved SSN maximum for SC 23. Despite the apparent

differences observed in the predictions, Pesnell (2007) emphasises the necessity to

have quantitative estimates of the uncertainty of the predictions, which will assist

in estimating the likelihood consequences of space weather in SC 24.

6



1.5 CHAPTER 1. INTRODUCTION

1.5 Objectives of the research project

The aim of this research was to develop a NN model for predicting the behaviour of

SC 24. The simplicity and recent success of FFNN in forecasting solar-terrestrial

phenomena explain why this method has been chosen for the SC 24 prediction.

The SC 24 prediction model was developed for use in the Hermanus Magnetic Ob-

servatory (HMO) Space Weather Center, the Regional Warning Center for Africa.

In addition, since ionospheric behaviour is solar activity dependent (Fessant et al.,

1996), any prediction of the future behaviour of the ionosphere should include an

estimate of solar activity. Recently, NNs have been used to produce a reliable

bottomside ionospheric model for South Africa (McKinnell, 2002), which consid-

ers solar activity in terms of SSN as the main input for NN model. Therefore,

the outcome of this research project will also contribute to the improvement and

forecasting of the South African ionosphere.

This thesis is structured as follows:

Chapter 1 gives a general introduction to the thesis. chapter 2 discusses the basics

(theories) of solar magnetism and NNs.

Chapter 3 describes the data used as input-output parameters for the NN model

developed. Chapter 4 describes the development and application of the NN model

for predicting the SC 24. The results and a discussion of the prediction are pre-

sented in Chapter 5, while the overall conclusions comprise Chapter 6.

7



Chapter 2

Theoretical background

Sunspots are fascinating structures observed on the solar photosphere, the vis-

ible part of the star which sustains life on our planet. In this chapter a short

description of the Sun and its physical properties are given. The physics behind

the sunspot equilibria is outlined using the main reduced magnetohydrodynamics

(MHD) equations. Also discussed in Chapter 2 is the solar dynamo theory which

is currently used to explain the solar magnetic cycle. In the second part of this

chapter, the basic principles of Neural Networks as used for time series predic-

tion are provided. In all cases, only the theoretical background pertaining to the

research described in this thesis is provided.

2.1 Elements of solar physics

2.1.1 Physical properties of the Sun

The Sun is an ordinary star, the nearest to us and is the source of heat which

sustains life on Earth and controls both terrestrial and space weather. The follow-

ing are the main physical characteristics of the Sun as adapted from Kivelson and

Russell (1995).

• Age = 4.5 × 109 years

• Mass = 1.99 × 1030kg (330.000 times Earth’s mass)

• Radius = 696.000 km (109 Earth radii)

8



2.1 CHAPTER 2. THEORETICAL BACKGROUND

• Mean distance from Earth (1AU = 1.5×108 km (it takes sunlight 8 minutes

to reach the Earth)

• Emitted Radiation (luminosity)= 3.86 × 1026 W (3.86 × 1033ergs−1)

• Equatorial rotational period = 26 days

• Effective temperature = 5785 K

The Sun is a giant mass of incandescent gas. From the interior, the Sun’s atmo-

sphere consists of three layers: the photosphere, the chromosphere and the corona.

The photosphere is the lowest and densest level of the solar atmosphere and it is

the only part of the Sun that our eyes can see. However the apparent surface of the

Sun is actually an illusion caused by the gas of extremely high opacity; in reality,

the Sun does not have a solid surface.

Detailed observations indicate that the photosphere is often pitted with dark spots

called sunspots, the largest being much bigger than the size of the Earth (see

Figure 2.1). In Europe, sunspots were discovered between 1610-1611 soon after

the discovery of the telescope, but ancient Chinese records indicate that large

sunspots were already seen at least 2000 years ago (Lang, 2001).

Sunspots appear dark against the brighter photosphere because they are cooler.

The photosphere has a temperature of around 5500 K, while sunspots can be 1000

to 2000 k cooler. Detailed features of sunspots as revealed by modern telescopes

show that a simple sunspot has a dark center, called the umbra, surrounded by a

lighter penumbra. In the central umbra, the temperature is about 4100 K and the

magnetic field strength can be as much as 0.3 T. The powerful magnetic fields in

sunspots restrict the flow of heat into sunspot areas, keeping them cooler than the

surrounding photosphere.

Sunspot structures are complicated and scientists do not fully understand the way

in which they form, remain cool and then disappear. Sunspots appear and disap-

pear, rising from inside the Sun and going back into it. The duration of sunspots

varies from a few hours to weeks and even months. A complete understanding of

sunspots requires an understanding of solar magnetism. In fact, it is well known

9



2.1 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.1: Large dark sunspot observed during the last solar maximum period, as
compared to the size of the Earth. [Image retrieved from: www.wisc.edu/ sparke/]

.

that all solar activity is a consequence of the existence of the magnetic field on the

Sun (Stix, 1989).

2.1.2 Sunspot equilibria

The Sun’s magnetic field is due to the movement of its plasma. As the solar

plasma moves, any magnetic field line is pulled along with it: the magnetic field

lines are frozen into the solar material. The Sun’s magnetic field can therefore

exert a force on the solar plasma and create structures such as sunspots. The out-

ward pressure of the strong magnetism from the Sun’s interior do not expand nor

disperse because the internal gas holds the magnetic fields together, concentrating

and holding them within sunspots.

The interaction of plasma and the magnetic field can be modelled using the princi-

ples of magnetohydrodynamics (MHD), as summarized from Kivelson and Russell

(1995):

10



2.1 CHAPTER 2. THEORETICAL BACKGROUND

MHD approximations provide us with two main reduced MHD equations, one for

the plasma velocity u, and another for the magnetic field B. The induction equa-

tion:

∂B

∂t
= ∇× (u × B) + η∇2B (2.1)

where η = 1/(µoσ) is the magnetic diffusivity. In the above equation, the ratio of

the first term to the second term on the right is the magnetic Reynolds number :

Rm = uL
η

= µoσuL

which is enormous for solar phenomena (106 − 1012) and L is a characteristic scale

length for changes of the field and flow. Thus, the magnetic field is frozen in to

the plasma.

The second reduced MHD equation is the momentum equation:

ρ
du

dt
= −∇p + j × B + ρg (2.2)

where j is the current density; p is the plasma pressure; ρ the plasma density and

g is a constant representing the effect of gravity.

On the right hand side of the above equation, the first two terms represent the

effects of the thermal pressure and of the magnetic pressure and curvature. The

magnetic force can be decomposed by writing:

j × B = −∇
(

B2

2µo

)

+

(

B · ∇
µo

)

(2.3)

in which the first term on the right represents the effect of a magnetic pressure

force acting from regions of high to low magnetic pressure [pB = B2

(2µo)
]. The ratio

of the plasma pressure to the magnetic pressure is conventionally represented by

the symbol β where:

β =
p

pB

(2.4)

In solar active regions, the magnetic forces are more dominant than the thermal

pressure force.

11
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Equilibria of sunspots can be described by the force balance.

j × B −∇p + ρg = 0 (2.5)

Along the magnetic field, there is no contribution from the magnetic force and

there exists a hydrostatic equilibrium between pressure gradients and gravity. In

places like active regions, the magnetic field dominates, and the above equation

reduces to:

j × B = 0 (2.6)

and the fields are said to be force-free.

As explained again in Kivelson and Russell (1995), a magnetic-flux tube below the

surface tends to rise by the process of magnetic buoyancy. Lateral total pressure

(plasma and magnetic) balance between the flux tube and its surrounding field-free

region (p0) implies that:

p +
B2

2µ
= p0 (2.7)

and so

p < po. (2.8)

For smaller temperature differences

ρ < ρ0. (2.9)

Hence, the flux tube is less dense than its surroundings and experiences an up-

ward bouoyancy force. When the tube rises and breaks through the solar surface,

it creates a pair of sunspots of opposite polarity as often observed (see Figure 2.2).

12



2.1 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.2: Magnetic ropes breaking through the solar photosphere to form
sunspots, appearing in pairs of opposite polarity. This illustration which com-
pare a bipolar sunspot with a polar U-shaped polar magnet was done by Randy
Russell using an image from NASA’s TRACE sattelite.[Image retrieved from:
http://www.windows.ucar.edu/]

.

2.1.3 The solar magnetic activity cycle and the solar dy-

namo theory

Magnetic fields in sunspots were first measured in 1908 by the American as-

tronomer George Ellery Hale, who suggested a sunspot cyclic period of 22 years,

covering two polar reversals of the solar magnetic dipole. The magnetic field

strength in sunspots is about 0.3 T, thousands times stronger than the Earth’s

magnetic field (3 × 10−5 T) at the equator. According to Hathaway et al. (1999)

the cyclic magnetic behaviour observed through sunspots can be explained by the

Sun’s differential rotation, meridional circulation, and large-scale convective mo-

tions.

A qualitative model to explain the dynamics of solar magnetism and related

sunspots was first proposed by Babcok (1961):
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• The 22-year cycle begins with a well-established dipole field component

aligned along the solar rotational axis.

• Due to the solar differential rotation (the solar rotation at the equator is 20

percent faster than at the poles), the magnetic field lines are wrapped.

• After many rotations, the field lines are highly twisted and bundled resulting

in the increase of the magnetic field intensity. The resulting buoyancy lifts

the bundle to the solar surface and forms a bipolar field that appears as two

spots.

The above generally agreed theory does not however explain some aspects of the

solar cycle such as the disappearance of sunspots for a long period. Figure 2.3 is

an illustration of the Babcock model explaining the dynamics of sunspots.

Figure 2.3: Illustration of the solar magnetic activity cycle: At the start of a
SC, magnetic field lines are aligned along the solar rotational axis. Due to so-
lar differential rotation, field lines are wrapped and bundled in flux tubes near
the Sun’s equator. The magnetic buoyancy lifts the flux tubes above the so-
lar surface creating bipolar sunspots. [Illustration retrieved from the webpage:
http://physics.uoregon.edu]

.
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Figure 2.4: The magnetic polarity of sunspts during an 11-year solar cycle. In
each hemisphere, the leading spots (in a bipolar) have the same polarity as the
corresponding solar dipole magnetic field. After an almost 11-year cycle, this
polarity reverses such that the complete magnetic cycle lasts 22 years. [Image
retrieved from the webpage: http://physics.uoregon.edu]

During one 11-year cycle, the magnetic polarity of all the leading (westernmost)

spots of the bipolar in the northen hemisphere is the same, and is opposite to that

of leading spots in the southern hemisphere as shown by Figure 2.4.

The magnetic polarity of the leading spots reverses in each hemisphere at the be-

ginning of the next 11-year cycle as it does the dipolar magnetic field at the solar

poles. For the next 11 years in the new cycle, all polarities will be exchanged.

Therefore, a full magnetic cycle on the Sun takes an average of 22 years (Lang,

2001).

The positions of sunspots and their associated active regions vary during an 11-

year cycle. The first spots of each cycle appear at a latitude of about 30o − 35o in

both hemispheres. As the cycle advances, the zone of sunspot occurrence migrates

towards lower latitudes, and the last spots of a cycle are normally within ±10o

of the equator. The latitude migration of sunspots is generally better represented

by the famous butterfly diagram (Stix, 1989) as illustrated in Figure 2.5. More

details on the basics of solar cyclic magnetism and related sunspot dynamics can

be found in Kivelson and Russell (1995), Stix (1989) and Lang (2001).
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Figure 2.5: The latitude migration of sunspots is commonly illustrated by the
Butterfly diagram. The upper panel illustrates the latitude migration of sunspots.
They form at about 30 degrees latitude at the beginning of a new cycle and migrate
to the Sun’s equator as the cycle progress. The bottom panel gives the total area of
the sunspots given as percentage of the visible hemisphere; [Illustration retrieved
from the webpage:http://science.msfc.nasa.gov/ssl/pad/solar/images/bfly.gif].

2.2 The basics of Neural Networks

An Artificial Neural Network (ANN) is an information-processing system consist-

ing of a large number of simple processing elements called neurons or units. ANNs

simulate to some extent the structure and functioning of biological neural networks

(NNs) and are characterised by (1) the pattern of connection between the neurons,

(2) the method of determining the weights on the connections (training or learning

algorithm) and (3) the activation function (Fausett, 1994).

In the NN models used for predictions, three types of units (neurons) are

defined:

1. input units which are set to represent values within the time series
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2. output units which store the output values corresponding to a given set of

input values and give the results of the neural network’s processing

3. hidden units which keep the internal representation of the problem

Units in layers are connected by weights which keep the knowlege of the network

and govern the influence each input has on each output. Weights are adjusted

by a learning process which involves the comparison of network calculations with

input-output data for known cases. The process of adjusting weights is known as

network training. During the training, weights are determined for the network to

properly relate inputs to desired outputs. Hence, the network learns to predict

outcomes from experience rather than from using causal laws (Macpherson et al.,

1995).

2.2.1 Feed-Forward Neural Networks

Feed Forward Neural Network (FFNN) represents the simplest and most popular

type of NN, and this technique has been widely used with success in the pre-

diction of various solar-terrestrial time series (Conway et al., 1998). In a FFNN

arrangement, neurons (units) between layers are connected in a forward direction.

Neurons in a given layer do not connect to each other and do not take inputs from

subsequent layers. The input units which are set to the previous values of the

time series send the signals to the hidden units. These hidden units process the

received information and pass the results to the output units which produce the

final response to the input signals.
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Figure 2.6 is a simplified schematic of a 3-5-2 FFNN with 3 input nodes, 1 hidden

layer containing 5 hidden nodes, and 2 output nodes.

Outputs

Hidden

Inputs

W

W

nodes

nodes

nodes

I(1) I(2) I(3)

O(1) O(2)

Figure 2.6: A simplified schematic of one hidden layer FFNN. Units between layers
are connected in a forward direction. Weight (W) connections between layers are
adjusted during the training process.

In general, to solve a nonlinear problem with the NN technique requires (1) choos-

ing a convenient network architecture, (2) selecting a large database of input-

output pairs (patterns) that contains sufficient historical information about the

time series, and (3) training the network to relate the inputs to the corresponding

outputs, a process by which weights are adjusted according to the back propaga-

tion algorithm.

If the input neurons are external values Ai, then the values of the hidden neurons,

Bj are set according to the equation

Bj = g

(

I
∑

i=1

wjiAi − φj

)

, J = 1, ..., H (2.10)

where wji are parameters called the input weight connections, φj are the input
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thresholds (also known as biases) and g(x) is the input activation function. The

output neurons have their values Ck defined by:

Ck = G

(

H
∑

j=1

wkjBj − θk

)

, k = 1, ...., O (2.11)

where G(x) is the output activation function, θk are the outputs (biases) and wkj

are the output weight connections.

One of the most typical input activation functions is the binary sigmoid function,

which has a range of (0,1) and is expected to saturate ( approach the maximum

and minimum values asymptotically).It is defined as (Fausett, 1994):

g(x) =
1

1 + exp(−x)
(2.12)

The output activation functions can be a sigmoidal activation function as well, but

sometimes it is convenient to use a linear activation function G(x) = x.

Generally, the time series is split into two data sets: a training set and a test set.

The training set is used to adjust the weights during training, while the test set

is used to verify the prediction performance of the network (Fessant et al., 1996).

The network is trained using past examples with the aim that the NN should have

a minimal generalisation error in order to perform better on future examples. Be-

fore training, both the training and testing data sets are split randomly in order

to avoid the training results becoming biased towards a particular section of the

database. To determine how the NN has learned the behaviour in the input-output

patterns, a data set known as the validation set is used and this set consists of the

data not involved in the network training process.

The training is repeated over a number of iterations until the network has at-

tained the generalisation ability. The rate of the training process is controlled by

a parameter known as the learning rate (a small learning rate is generally used,

between 0 and 1). Overtraining can lead to NN overfitting where the NN learns

the noise in the training set rather than learning to represent the system dynamics

in general. This occurs when the error on the testing set starts to increase while
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the training set error starts decreasing. Just before this point is reached, training

is stopped because the network’s generalisation ability has reached its optimum

level (Macpherson et al., 1995).

2.2.2 Back propagation of errors algorithm

There exists a number of methods available by which weights are adjusted during

the training process. The most popular is the Back propagation of errors which

some authors call the generalized delta rule. For a FFNN having I inputs, H hid-

den units and O outputs (I-H-O), each training pattern consists of I inputs and

O desired outputs.

Let us denote ξµ, as the input vector and ζµ as the desired output vector where µ

is a label for a particular training pattern. Next, an error measure must be con-

structed that quantifies the accuracies of the NN’s inputs. The simplest measures

the square error summed over all the outputs on training pattern µ,

Eµ =
1

2
(ζµ − C (w, ξµ))2 (2.13)

where C (w, ξµ) is the vector composed of the NN’s outputs when presented with

input vectors ξµ. The object of training is to try to minimise Eµ for all µ. This

is done by calculating the gradient of Eµ with respect to each weight parameter.

The gradient of E is a vector consisting of the partial derivatives of E with respect

to each of the weights. This vector gives the direction of the most rapid increase

in E and the opposite direction gives the direction of most rapid decrease in error.

By differentiating the above equation with respect to an output weight connection

(from equations 2.11 and 2.13), we have:

∂E

∂Wkl

= ∆kBl, (2.14)

where

∆k = (Ck − ζk) G′

(

H
∑

j=1

WkjBj

)

. (2.15)
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Similarly for the input weight connections (from Eqs 2.10 and 2.13):

∂E

∂Wmn

= δmξn, (2.16)

where

δm = g′

(

I
∑

i=1

Wmiξi

)

O
∑

k=1

∆kWkm. (2.17)

If ∆W µ
kl and ∆W µ

mn represent the alterations to the corresponding weights after

pattern µ has been presented, then they are given by the learning rules

∆wµ
kl = −ǫ∆µ

kBµ
l (2.18)

and

∆wµ
mn = −ǫδµ

mξµ
n (2.19)

where ǫ is called the learning rate and determines the step-size of each alteration.

From the preceding analysis, it can be seen that the back propagation algorithm

basically consists of calculating the delta’s rule using equations 2.14 and 2.16 fol-

lowed by the application of the learning rules in equations 2.18 and 2.19. FFNNs

have the property of universal approximation. When given enough hidden neu-

rons, they are capable of fitting any continuous function (Conway, 1998).

The above short description on the basics about FFNN and the back-propagation

of errors algorithm has been compiled mainly from Conway (1998). More details

can be obtained from that article and also from Fausett (1994) and Haykin (1994).

The following chapter provides a detailed description of the input-output param-

eters considered in order to construct the NN model for predicting solar cycle

24.
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Chapter 3

The data: input-output

parameters

One of the fundamental requirements for predicting using NNs is the determination

of suitable input-output parameters for the learning process. A detailed description

of the parameters considered for the prediction of SC 24 is provided in this chapter.

3.1 International Sunspot Number

The relative sunspot number R introduced by R. Wolf in 1848 is the common mea-

sure of solar activity. Also known as Wolf’s number or the International Sunspot

Number (SSN), it is a standard daily index constructed from many measurements

and the daily values are averaged monthly to remove the variations associated with

the Sun’s 27-day synodic rotation period (Hathaway et al., 1999).

Generally the index follows an 11-year cycle, but as can be seen from Figure 3.1,

the raw data exhibits complex variability in amplitude, shape and duration from

cycle to cycle. These high fluctuations in sunspot number are mostly observed

near solar maximum as shown by Figure 3.2. It is this extreme variability which

makes the SSN one of the most difficult time series to predict (Macpherson, 1993).
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Figure 3.1: Plot of the monthly average SSN against time. An 11-year cyclic
period is clearly seen, but the shape and amplitude of the SCs change from one
cycle to another
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Figure 3.2: The complex fluctuations in daily sunspot number during solar maxi-
mum. Plot of daily SSN during the year (2000) of solar maximum.
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The International SSN is currently produced by the Solar Influences Data Cen-

ter (SIDC) in Brussels, Belgium and also by the U.S National Geophysical Data

Center (NGDC) in Boulder, Colorado. In this study, daily, monthly average, and

yearly mean SSN values were used, and all the data were obtained electronically

from the SIDC website: http://sidc.oma.be

The smoothed monthly SSN is commonly used to characterise the solar cycle

maximum. Both the SIDC and NGDC provide smoothed monthly SSN data.

This smoothing is done in order to minimise the short-term complex variations

(even on a monthly scale) observed in the raw data. The often used smoothing

function is the 13-month running mean defined by Conway (1998) as,

Rsmooth
i =

1

13

6
∑

j=−6

Ri−j (3.1)

or

Rsmooth
i =

1

12

(

5
∑

j=−5

Ri−j +
1

2
(Ri−6 + Ri+6)

)

(3.2)

where i is the actual month to be smoothed, and j is the number of monthly

average SSNs over which Ri is calculated before and after the month of interest.

3.2 Geomagnetic aa index

The geomagnetic aa index measures the global geomagnetic activity and provides

one of the longest data sets which can be used in the analysis of solar terrestrial

phenomena. It is therefore very useful for understanding the long-term behaviour

of the Sun (Clilverd et al., 2005).

The aa index is a three-hourly global geomagnetic activity index determined from

the K-indices scaled at two antipodal sub-auroral observatories, currently Hart-

land in UK, and Canberra in Australia. The three-hourly aa index is the mean of

the northern and southern values, weighted to account for small differences in the

latitudes of the two stations. In units of nT (nano teslas), daily values of the aa

index are computed from an average of 8 three-hourly values. The index strongly

correlates with the Ap index which is derived using data from more extensive ob-
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servatory networks.

The advantage of using aa indices for research purposes is the fact that the time

series spans back to 1868, further than any other planetary index. The aa data

appear (in units of nT) in the Solar Geophysical Data (SGD) reports of NOAA.

For this thesis, daily, monthly average as well as yearly mean aa index values were

used and obtained electronically from the NGDC website:

ftp://ftp.ngdc.noaa.gov/STP/SOLAR− DATA/RELATED−INDICES

3.3 The aa index and solar cycle relationship

Geomagnetic indices are useful datasets which indicate solar activity levels. Solar

phenomena such as solar flares and coronal mass ejections (CMEs) produce varia-

tions in the solar wind that in turn cause fluctuations in the Earth’s magnetic field

(Hathaway et al., 1999). Figures 3.3 and 3.4 show a rough correlation between the

11-year solar cycle and the geomagnetic aa index.
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Figure 3.3: This is the plot of monthly averaged geomagnetic aa index from 1868.
Monthly aa index variation is complex but the minima and peaks show a roughly
11-year cyclic trend.
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Figure 3.4: Illustration of the modulation existing between solar activity cycle
and geomagnetic aa index. Annual means of SSN and aa index values are plotted
against time. In order to show clearly the 11-year modulation existing between
the two indices, aa index (dotted line) values were multiplied by ten.

The geomagnetic aa index is largely used for solar cycle prediction in the so called

precursor methods, which are currently the most successful and are believed to

be correlated with the solar dynamo mechanism (Sello, 2001). Thompson (1993)

indicated that the imminent solar cycle starts in the declining phase of the pre-

vious cycle. According to Thompson (1993), in the declining phase and at solar

minimum, the coming cycle is manifested by the occurrence of structures such as

coronal holes and strength of the solar polar magnetic field. High speed solar wind

streams from low-latitude coronal holes give rise to recurrent geomagnetic distur-

bances that are used to predict the strength of the next cycle. Thompson (1993)

found that the maximum amplitude of a cycle is proportional to the number of

geomagnetically disturbed days (with Ap ≥ 25) in the cycle preceding it, and this

relationship is shown by equation 3.4.

On the other hand, Feynman (1982) suggested that geomagnetic activity as mea-

sured by the aa index can be separated into two components:
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• one in phase and proportional to the solar activity cycle and

• a second (residual), associated with interplanetary disturbances, which is out

of phase with the solar activity cycle

The component of the aa in phase with solar activity is linked with the occurence

of CMEs, while the interplanetary component of the aa index is associated with

recurrent high speed solar wind streams. This component peaks mostly before

solar activity minimum and is shown to be the most reliable indicator for the am-

plitude of the following solar cycle maximum (Hathaway and Wilson, 2006).

As it is found in the article by Hathaway et al. (1999), the solar cycle prediction

methods by Feynman (1982) are indicated by the following equation:

Rmax(n) = 7.8 + 9.26aaImax(n) ± 13.2 (3.3)

where aaImax represents the maxima in the interplanetary component of the aa

index.

and Thompson (1993) prediction methods are represented by the equation:

Rmax(n) = 19.8 + 0.452DD(n − 1) − Rmax(n − 1) ± 16.8, (3.4)

where DD(n) is the number of geomagnetically disturbed days in cycle n, while

Rmax represents SSN maximum. Correlations in equations (3.3) and (3.4) are

r = 0.950 and r = 0.971 respectively.

Further details about Thompson’s and Feynman’s methods for solar activity pre-

diction using the aa index can be found in Hathaway et al. (1999) and Hathaway

and Wilson (2006). In chapter 4, a NN model developed for predicting SC 24 will

be discussed. By considering the geomagnetic aa index among other input param-

eters, one can investigate the non-linear ability of NNs and proven superiority of

the precursor techniques (Conway, 1998).

28



3.4 CHAPTER 3. THE DATA: INPUT-OUTPUT PARAMETERS

3.4 The time input parameters

The SSN temporal behavior is characterized by the parameters such as cycle min-

imum date, cycle maximum date, cycle maximum amplitude, cycle rise time to

maximum as well as cycle fall time to minimum. The SC properties from cycle 11-

23 are shown in Table 3.1, adapted from Kivelson and Russell (1995). (Properties

for SC 23 were added on the Table 3.1).

Table 3.1: Properties of SC 11-23, by (Kivelson and Russell, 1995)
Cycle Start date Solar max. End date Max.SSN Length(yr) Rise(yr) Fall(yr)

11 1867.3 1870.8 1878.11 140.5 11.75 3.42 8.33
12 1878.12 1883.12 1890.2 74.6 11.25 5.00 6.25
13 1890.3 1894.1 1901.12 87.9 11.83 3.83 8.00
14 1902.1 1906.2 1913.7 64.2 11.58 4.08 7.50
15 1913.8 1917.8 1923.7 105.4 10.0 4.00 6.00
16 1923.8 1928.4 1933.8 78.1 10.08 4.67 5.42
18 1944.2 1947.5 1954.3 151.8 10.17 3.58 6.83
20 1964.10 1968.11 1976.5 110.6 11.67 4.08 7.58
21 1976.6 1979.12 1986.8 164.5 10.25 3.50 6.75
22 1986.9 1989.7 1996.8 157.6 10.00 2.85 7.20
23 1996.9 2000.4 2007.12 119.6 11.25 3.70 7.80

Assuming an approximate 11-year cycle, and considering the daily and monthly

sunspot number data bases, time inputs characterising the year of a particular

cycle (year index), the month number and day number in a particular year of

the cycle, were defined. In order to accommodate the known periodicities and

avoid discontinuities in the numerical values used to represent these time inputs,

the cyclic components of month number, day number and year index were defined

according to the work by Williscroft and Poole (1996) and McKinnell and Friedrich

(2007), as follows:

Y IS = sin

(

2π × Y I

11

)

, Y IC = cos

(

2π × Y I

11

)

(3.5)

MNS = sin

(

2π × MN

12

)

, MNC = cos

(

2π × MN

12

)

(3.6)

DNS = sin

(

2π × DN

365.25

)

, DNC = cos

(

2π × DN

365.25

)

(3.7)

where
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• YIS: the sine component of year index

• YIC : the cosine component of year index

• MNS : the sine component of the month number

• MNC : the cosine component of the month number

• DNS : the cosine component of the day number

• DNC : the cosine component of the day number

Hence, in addition to the geomagnetic aa index and SSN, the above defined pa-

rameters were considered as time inputs for the developed NN model which is

described in the following chapter.
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Chapter 4

The neural network model

For the NN to be used as a tool for prediction, input-output patterns should be

constructed such that the NN training reflects the relationship existing between

input and output parameters. Input parameters that are known to infuence the

required output were described in the previous chapter and will be used here in

developing the model. This chapter presents the development of a NN model for

predicting SC 24. Three alternative methods for constructing the model and their

respective NN architectures are defined and their application procedures described.

For all the three alternative NN models developed, the procedure followed during

the process of training is the same:

As pointed out in section 2.2.1, the data set was (before being presented to the NN)

split into two independent data sets: training set and testing set. The training set

contained 70% while the testing set contained 30% of the data. Data relating to

SC 23 was used for the validation set.

Next, an optimal NN architecture with a good generalization ability had to be

determined. As there is no generally accepted rule which guarantees the correct

number of hidden nodes for a particular problem (Macpherson et al., 1995), the

optimal NN had to be found experimentally by testing networks of different sizes.

However, it should be noted that a certain minimum number of hidden nodes are

needed to train the NN, while too many hidden nodes can lead to an overfitting

of the data.

The most suitable NN architecture (for each NN model) was determined by eval-
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uating the prediction accuracy over the validation data set using the root mean

square error (RMSE) defined as :

RMSE =

√

√

√

√

1

N

N
∑

i=1

(SSNobs − SSNpred)
2, (4.1)

where N is the number of validation data set patterns, and SSNobs and SSNpred

are the observed and predicted SSN values. In the following sections, each NN

model is described with its particular characteristics.

4.1 NN model 1

This model was developed based on the SSN and aa trends as observed in the

historical records of the last 10 SCs. Considering Feynman’s and Thompson’s pre-

diction properties using the aa index as described in Hathaway et al. (1999) and

Hathaway and Wilson (2006) and outlined in the preceding chapter, a NN model

was developed which operates by recognising the correlations between the geomag-

netic activity aa index values of the previous cycle and the SSN of the following SC.

Therefore in the NN model developed, the geomagnetic aa index monthly val-

ues were arranged with a delay of one 11-year cycle with respect to the (output)

monthly SSN values. The time inputs defined in the previous chapter were ar-

ranged to correspond to the monthly SSN (outputs) in the same SC. In this way,

the NN makes use of them to characterize the temporal behaviour observed in the

SSN historical records. The block diagram of the NN architecture illustrating the

input and output to this NN model is shown in Figure 4.1.

A three layer, fully connected (see Figure 4.2) NN architecture was trained using

a set of input-output pairs taken from the past history of monthly mean SSN and

aa index values. This data set covers the last 10 SCs, from SC 13-22 (SC12-21

for aa). The SSN characteristics of SC 11-23 are shown in Table 3.1 of Chapter

3. The reason for only considering 10 cycles is that SSN data for the period after

1850 are more reliable, and also correspond to data sets for which the aa index

values are available.
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Figure 4.1: NN architecture model 1, showing the input-output patterns. The four
cyclic components of the time input in a particular SC are set corresponding to
the output SSN for the same SC. Monthly values of the aa index input are those
of the previous SC with respect to the output SSN.
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Figure 4.2: NN architecture showing the connections between the three layers in
NN model 1. Units between the 3 layers are connected in a forward direction.
Signals sent to the hidden units are assigned with weights (W) during the training
process.

During the training process, the NN was presented with 1278 data points, each

consisting of a pattern of 5 inputs (YIS, YIC, MNS, MNC, aa index) producing
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one monthly SSN output. Several network sizes were tested in the search of an

optimum NN architecture. As defined by equation 4.1, the FFNN architecture

which had the least RMSE was taken as the optimal NN. It was obtained using 5

hidden nodes, after 1800 iterations, and a learning parameter of 0.005. The RMSE

obtained from the validation data set (monthly SSN of SC 23) was found to vary

between 18 and 20 with the least RMSE corresponding to 5 hidden nodes as shown

in Figure 4.3. By considering this NN architecture with 5 inputs, 5 hidden nodes

and 1 output (5:5:1 architecture), monthly SSN values for SC 24 were predicted

taking the geomagnetic aa index values for SC 23 as inputs. The results of the

prediction using this model are presented in the following chapter.
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Figure 4.3: Optimum NN determination using the least RMSE. The RMSE scale
is plotted against the changing number of hidden nodes.

4.2 NN model 2

An alternative method is to investigate the predictability of the SSN of a cycle by

using the SSN of the previous SC as an input. A new NN architecture was there-

fore constructed which, in contrast to the one presented in section 4.1, includes an

additional input parameter which is the SSN delayed by one SC with respect to

the output SSN. In fact, Thompson’s methods through equation 3.4 demonstrate

the relationship between the maxima of the SSN values of a cycle and the maxima

in both the aa index and the SSN values of the preceding cycle.
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4.3 CHAPTER 4. THE NEURAL NETWORK MODEL

As in NN model 1 (section 4.1), monthly SSN values for SC 13-22 and aa index

values SC 12-21 were used in the training process. Each training pattern consisted

of 6 inputs (YIS, YIC, MNS, MNC, aa index, SSN) producing one monthly average

SSN (output). The block diagram of this NN configuration is shown in Figure 4.4

and the connections between units in layers are the same as in Figure 4.2, but in

this case, there are 6 units in both the input and hidden layers.

Y IS (SC n)

Y IC (SC n)

MNS (SC n)

MNC (SC n)

SSN (SC n-1)

aa index (SC n-1)

SSN (SC n)

Neural Network

Model

Figure 4.4: NN architecture showing the input-output patterns for NN model 2.
The monthly SSN delayed by one SC is also part of the input with respect to the
monthly SSN (output) of the following SC

The optimum NN architecture was determined in the same way as described in

Section 4.1 for NN model 1. An optimum NN architecture (with the least RMSE

calculated from the validation data set) was reached using 6 hidden nodes [6:6:1

architecture], 1800 iterations and 0.005 as the learning rate. The results of the

prediction using this model will also be discussed in the next chapter.

4.3 NN model 3

Based on the idea that SC 24 may present similar properties to the most recent

SCs, a NN model in which the training process involves SC 21, 22 and 23 was
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4.3 CHAPTER 4. THE NEURAL NETWORK MODEL

developed. The NN model was trained to predict the daily SSN of the upcoming

SC using the daily values of both the aa index and the SSN of the previous cycle.

Since the period involved covers only 3 SCs, the daily database (instead of the

monthly database as in NN model 1 and 2) was used in order to provide the NN

with sufficient information about the time series.

Hence, daily values of SSN and aa index for SC 21 were trained to predict the

daily SSN for SC 22. The validation data set used was SC 23, where the daily SSN

values for this SC are predicted taking the daily values of the aa index and SSN

of SC 22 as inputs. The time input parameters describing the year index and the

day number of the cycle (defined in Chapter 3) are also included as inputs. Hence

the NN architecture consists of six inputs and one output as shown in Figure 4.5.

Y IS (SC n)

Y IC (SC n)

DNS (SC n)

DNC (SC n)

SSN (SC n-1)

aa index (SC n-1)

SSN (SC n)

Neural Network

Model

Figure 4.5: NN architecture showing input-output patterns for NN model 3. In
addition to the cyclic components of year index and day number (4 inputs), values
for both the daily aa index and SSN of the previous cycle are taken as inputs for
predicting the daily SSN of the following SC.
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For this NN model, input-output patterns consisting of 3682 datapoints were

trained. As in the previous two cases, an optimum NN architecture was deter-

mined using the least RMSE calculated from the validation data set (SC 23),

which was obtained expermentally by varying the number of hidden nodes. The

optimum NN architecture was obtained using 6 hidden nodes [6:6:1 architecture],

after 2600 iterations with a learning rate of 0.01. This optimum NN architecture

was used to predict the daily SSN for SC 24, where, both daily SSN and aa index

values for SC 23 were used as inputs.

A summary of the 3 NN models described in this chapter is presented in Table 4.1,

and the corresponding prediction results will be discussed in the following chapter.

Table 4.1: A summary of the three NN models
Model NN architecture Inputs Iterations L.parameter Output

NN model 1 5:5:1 time inputs, 1800 0.005 Monthly SSN
aa index

NN model 2 6:6:1 time inputs, SSN 1800 0.005 Monthly SSN
+ aa index

NN model 3 6:6:1 time inputs,SSN 2600 0.01 Daily SSN
+aa index(daily)
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Chapter 5

Results and discussion

In this chapter, prediction results obtained from the 3 alternative NN models are

presented. In the discussion, the results are compared to the previously published

SC 24 predictions. On the other hand, the predicted SC 23 (whose data was used

as validation data set) was compared to the observed behaviour of SC 23.

5.1 The Results

5.1.1 Results of NN model 1

The NN model 1 was described in section 4.1. Its optimum NN structure was

tested using the observed data of SC 23 ( validation data set). This model pre-

dicts the monthly averaged SSN for SC 23 with a RMSE of 18, and a RMSE of 9

when the predicted monthly SSN are smoothed with the 13-month running mean

as defined in equation 3.2. The value of the predicted smoothed monthly SSN

maximum for SC 23 using NN model 1 was found to be 127 ± 9.

Predictions for SC 24 show that the maxima in monthly sunspot number are ex-

pected from late 2011 until the middle of 2013. Predictions indicate that July

2012 will be the month with the highest monthly SSN with a value of 138±18. A

smoothed monthly SSN maximum for SC 24 with a value of 121 ± 9 is predicted

for June 2012. However, the smoothed monthly SSN maxima are observed from

late 2011 until 2013, hence the SSN maximum could occur from at least 11 months

before to 11 months after June 2012. Note that the uncertainty about the SSN
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5.1 CHAPTER 5. RESULTS AND DISCUSSION

maximum for SC 24 corresponds to the RMSE calculated over SC 23 for which

the NN was optimized.

The following are the main SC 24 characteristics predicted using NN model 1:

• Date of SC 24 minimum (end SC 23): January 2008 ± 6 months

• Peak monthly average SSN: July 2012, with a value of 138±18

• Peak smoothed monthly SSN: June 2012, with a value of 121±9

• Date of the SC 24 maximum: June 2012 ± 11 months

• Date of the end of SC 24: September 2018 ± 6 months

The reason for considering January 2008 as the start of SC 24 was explained in

section 1.4.2 of Chapter 1. A latitude of 6 months was reasonable, considering

that at the time of writing (May 2008), two SCs (23 and 24) are in progress, with

SC 24 expected to increase in activity. Thus the end of SC 23 and the beginning

of SC 24 are yet to be defined.
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5.1 CHAPTER 5. RESULTS AND DISCUSSION

Figures 5.1 and 5.2 show the predicted behavior of SC 23 and SC 24 in terms of

monthly and smoothed monthly sunspot numbers respectively.
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Figure 5.1: The observed monthly averaged SSN values for SC 22 and 23, together
with the predicted (using NN model 1) monthly averaged SSN values for SC 23
and 24.
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Figure 5.2: The observed smoothed monthly averaged SSN values for SC 22 and
23, together with the predicted (using NN model 1) smoothed monthly averaged
SSN values for SC 23 and 24.

5.1.2 Results of NN model 2

The second NN model used to predict SC 24 was described in section 4.2 of Chap-

ter 4. The optimized version of this NN model predicts the monthly SSN for SC

23 with a RMSE of 23. The predicted smoothed monthly SSN maximum for SC

23 was found to be 141± 17. For SC 24, the NN model 2 predicts that the peak

monthly SSN with a value of 137± 23 will occur in June 2012, while the smoothed

SSN maximum is expected in February 2012 with a value of 128± 17.

Figures 5.3 and 5.4 indicate the shape and amplitude of SC 23 and SC 24 in terms

of monthly average and smoothed monthly SSN obtained with NN model 2.
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Figure 5.3: The observed monthly averaged SSN for SC 22 and 23, together with
the predicted (using NN model 2) monthly averaged SSN for SC 23 and 24.

1986 1990 1994 1998 2002 2006 2010 2014 2017
0

20

40

60

80

100

120

140

160

Year

S
m

oo
th

ed
 m

on
th

ly
 S

S
N

Observed SSN
Predicted SSN

Figure 5.4: The observed smoothed monthly averaged SSN for SC 22 and 23
together with the predicted (using NN model 2) smoothed monthly averaged SSN
for SC 23 and 24.
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5.1.3 Results of NN model 3

NN model 3 was developed to predict SC 24 using data from SCs 21, 22 and 23

and was described in section 4.3 of Chapter 4. This NN model predicts that the

smoothed monthly SSN maximum for SC 24 with a value of 115± 5, will occur in

February 2012. Figures 5.5 and 5.6 show the predicted shape and amplitude of SC

23 and 24 in terms of monthly average and smoothed monthly SSN respectively.
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Figure 5.5: Plot of the observed monthly average SSN for SC 22 and 23. The
predicted (using NN model 3) monthly average SSN for SC 23 and SC 24 are
shown by the dashed line.

43



5.1 CHAPTER 5. RESULTS AND DISCUSSION

1986 1990 1994 1998 2002 2006 2010 2014 2017
0

20

40

60

80

100

120

140

160

Year

S
m

oo
th

ed
 m

on
th

ly
 S

S
N

Observed SSN
Predicted SSN

Figure 5.6: The figure shows the observed smoothed monthly average SSN for SC
22 and 23. The predicted (using NN model 3) smoothed monthly average SSN for
SC 23 and SC 24 are shown by the dashed line.

Figure 5.7 shows a comparison of the predictions by the three NN models and Table

5.1 summarises the predictions. In the table, predicted SC 23 and 24 maxima are

given in terms of smoothed monthly SSN.

Table 5.1: A summary of the predictions from the 3 NN models
Model SSN max. for SC 23 SSN maximum for SC 24 SC 24 Max. date

NN model 1 127± 9 121± 9 June 2012
NN model 2 141± 17 128± 17 February 2012
NN model 3 114± 5 115± 5 February 2012
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Figure 5.7: A comparison of SC 23 and 24 predictions using the 3 methods in
terms of yearly mean SSN. The dashed line (curve 1) is the shape of SCs 23 and
24 using NN model 1. The marked solid line (curve 2) represents the prediction by
NN model 2. The dotted line (curve 3) indicates the prediction by NN model 3.
The thick solid line is the observed shape of SC 23 in terms of yearly mean SSN.

5.2 Discussion

To evaluate the predictions obtained using any of the 3 methods, they were com-

pared to the previous predictions made for SC 23 (the observed SSN values of

which were used to optimise the developed NN models). On the other hand, the

predictions obtained for SC 24 were compared to those obtained and published by

various groups who predicted the behavior of SC 24 using different techniques.

With NN model 1 the predicted smoothed monthly SSN for SC 23 was 127 ± 9,

a value which is closer to the observed value (i.e 120 in 2000) than a consensus

prediction of a much higher SC 23 maximum of 160±30 reported by Joselyn et al.

(1996). Note that the 1996 panel of experts consensus (Joselyn et al., 1996) con-

sidered the precursor methods to be more accurate in SC 23 maximum prediction.

However, using the NN technique, Conway et al. (1998) predicted a SSN maximum

for SC 23 with a value of 130± 30. This prediction shows an improvement with

45



5.2 CHAPTER 5. RESULTS AND DISCUSSION

regard to the observed SSN maximum for SC 23, and is very close to the results

obtained using NN model 1.

The predicted smoothed SSN maximum for SC 23 obtained using the NN model

2 is 141± 17. This method overpredicts the observed maximum SSN in 2000, as

did most of the predictions using precursor methods reported by Conway et al.

(1998) and Hathaway and Wilson (2006). However, this prediction is close to the

observed maximum if compared to the consensus prediction mentioned in the pre-

vious paragraph.

When tested over SC 23, NN model 3 predicts a smoothed SSN maximum value

of 114± 5. Note that only the SSN maximum predicted by NN model 1 (and its

uncertainty limits) is within the limits of the observed SSN maximum for SC 23. It

is also important to consider that NN model 3 used the data set for only two SCs

(SC 21 and 22), and therefore, despite providing the smallest RMSE (i.e 5) over

the validation set, the data set used does not have sufficient information about the

historical SSN and aa index behaviour.

Therefore, based on its performance on the validation data set (SC 23) and the

sufficiency of database (data for 10 SCs), NN model 1 was considered as more

reliable, which does not mean however that the predictions by NN models 2 and

3 have to be ruled out. In fact, the prediction results obtained from the three

models predict an average SC 24 ( not very large with SSN ≥ 140 or very small

with SSN ≤ 100).

Note again that the smoothed SSN maximum predicted by NN model 1 within

the limits of uncertainties for SC 24 includes the maxima predicted by the other

two models (see Table 5.1), confirming that it should be considered as the most

reliable prediction. With regard to the timing of the SSN maximum for SC 24,

both models 2 and 3 (which use the SSN as input to the NN) predict the date

of the SC 24 maximum for February 2012, while the NN model 1 estimates June

2012 as the date of SSN maximum. These observations indicate that the next solar

maximum will most probably occur during the first half of year 2012.
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The predictions obtained from NN model 1 can be placed in context by comparing

them with other predictions published about SC 24.

For example, using a flux transport dynamo model and historical records of sunspot

area and positions, Dikpati and Gilman (2006) predicted a much higher than av-

erage cycle with a peak SSN of 150-180± 25. A large amplitude SC 24 was also

predicted by Hathaway and Wilson (2006) using precursor methods by an anal-

ysis of the aa index. A small SC 24 with a peak SSN of 75±8 was predicted by

Svalgaard et al. (2005) using the solar dynamo polar fields observed in SC 23.

In contrast to these predictions and many others predicting very high or low values

for the SSN maximum of SC 24 (summarised in Pesnell (2007)), the predictions

by NN model 1 indicate an average SC 24 in agreement with a number of other

predictions within the range of an average cycle shown in Table 5.2. The 10 predic-

tions listed in Table 5.2 fall within the limits of the SC 24 upper and lower maxima

predicted by NN model 1 as shown in Figure 5.8. The upper and lower limiting

curves in Figure 5.8 are determined by the error of uncertainty which corresponds

to the RMSE value calculated in the prediction of the smoothed monthly SSN for

SC 23. In Table 5.3, a summary of the main cycle parameters of the predicted SC

24 is given.

47



5.2 CHAPTER 5. RESULTS AND DISCUSSION

2008 2010 2012 2014 2016 2018
0

20

40

60

80

100

120

140

Year

S
un

sp
ot

 n
um

be
r

lower pred.

prediction

monthly SSN.

upper pred.

Figure 5.8: The upper and lower predictions of SC 24 in terms of smoothed monthly
SSN are indicated by the upper and lower thin solid lines on the figure. The thick
line represents the shape of SC 24 as predicted by NN model 1. The dashed line
indicates the shape of SC 24 in terms of monthly SSN values.

Table 5.2 shows that the prediction of the SSN maximum for SC 24 by the NN

model 1 is very close to the results obtained by the statistical analysis by Kim

et al. in 2004 as reported by Pesnell (2007). The prediction of an early SC 24

maximum in 2010 by the Kim et al. is probably due to the fact that most experts

were expecting the end of SC 23 to occur around 2006.

The amplitude and timing of SC 24 as predicted by the 3 NN models (see Table

5.1) are within the range of the prediction by Echer at al. in 2004 [refer to Table

5.2 adapted from Pesnell (2007)], who predicted the next solar maximum with a

value of 116± 13.2 to occur between 2012 and 2013. In the concluding chapter the

key aspects of this thesis are summarized, and recommendations for the focus of

future work are made.
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Table 5.2: Predictions of an average solar cycle 24, adapted from Pesnell (2007)
Author Prediction technique Smoothed max. SSN Date

Tlatov;2006 Complexity of Hα synoptic charts 130±15 -
Nevanlinna, 2007 Value of aa at solar minimum 124±30 -
Kim,et al.2004 Statistical analysis 122± 6 11/2010
Pesnell, 2006 Cycle n+1=Cycle n 120±45 2010.0

Echer,et al.2004 Spectral analysis of Rz 116±13.2 2012-2013
Pesnell, 2006 Cycle n+1=Cycle n(mean) 115±40 2011.3
Sello,2006 Precursor+non linear dynamics 115±28 2010.5

Tlatov, 2006 Area of high latitude unipolar region 115±15 -
Prochastra, 2006 Mean of cycles (1-23) 114±43 -
Wang, et al.2002 Statistical characteristics of solar cycles 83.2-119.4 2012.3

Table 5.3: Predicted main solar cycle 24 characteristics
SC parameter value

Start time January 2008 ± 6 months
Peak time June 2012 ± 11 months
Peak value 121 ±9
End time November 2018 ± 6 months
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Chapter 6

Conclusions

Forecasting the future behaviour of solar activity is of importance due to the effect

of solar phenomena on the near Earth environment. Many models predicting vari-

ous aspects of space weather need future estimated values of SSN as input to their

models. In this thesis, a new model was developed and used to predict the shape

and amplitude of the upcoming Solar Cycle 24 (SC 24). Together with predictions

from various space weather groups (see Table in Appendix A), these predictions

will help in estimating the likelihood and intensity of space weather during SC 24.

A variety of solar activity prediction methods has been applied with a certain de-

gree of success. Ideally, forecasts of solar activity sould be based on the physics

models of solar magnetism (Macpherson et al., 1995).However, a theory that incor-

porates these mechanisms in a model that has predictive power has not yet been

produced (Hathaway et al., 1999). The ability of NNs to predict solar activity has

been proven by various authors including Fessant et al. (1996), while geomagnetic

precursor methods are currently the most reliable techniques in that regard. In

fact, geomagnetic precursor methods are believed to be correlated with the solar

dynamo theory (Sello, 2001), currently accepted to explain sunspot dynamics.
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The recent success of these geomagnetic precursor techniques in solar activity pre-

diction, led us to the introduction of geomagnetic indices in the NN-based model

used in this thesis to predict SC 24. In constructing the input-output patterns of

the NN model, data representing past trends both in SSN and the geomagnetic aa

index were used. The new NN model (NN model 1) developed here relies upon the

NN system establishing the relationship between the geomagnetic aa index values

of a cycle and the SSN values of the following cycle. Alternative models were

tried where, in addition to the aa index as input, the SSN values of the previous

cycle were also used as input to the NN. The cyclic components of the time input

parameters were also used as input to characterise the temporal behavior observed

in the historical records of both SSN and aa index in the past 10 solar cycles. By

introducing the geomagnetic aa index as NN input, the idea was to investigate

the non-linear ability of NNs and the proven superiority of precursor methods as

suggested by Conway et al. (1998).

The predictions obtained by NN model 1 as tested on the validation data set (SC

23) show an improvement with respect to those by other techniques which pre-

dicted a larger than the achieved SC 23 maximum in 2000. For SC 24, the NN

model 1 predicts an average SC 24 with a maximum smoothed monthly sunspot

number of 121±9 to occur during June 2012 (±11 months). An investigation of all

the methods used (as discussed in Chapter 5), points to the next solar maximum

occuring during the first half of 2012.

The predictions obtained fit well within the limits of an average cycle predicted

for SC 24 as found in Pesnell (2007), where an average SC was predicted using

other methods including statistical, spectral and precursor techniques. Given the

extremely complex variability of the sunspot time series, it is difficult to accurately

predict SC 24 behaviour and thus predictions need to be improved as the cycle

progresses. Unpredictable behavior can be expected for SC 24, similarly to the

SC 23 which peaked suprisingly lower than was predicted by most experts. How-

ever, it can be expected that the shape, amplitude and timing of SC 24 will lie

within the limits predicted by the three alternative models developed in this thesis.
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The present work was done at the request of the Hermanus Magnetic Observatory

(HMO) in South Africa, which is currently the Regional Warning Center for Space

Weather in Africa. The predictions obtained using the NN developed in this thesis

will help the HMO to contribute, like other space weather groups worldwide, in

estimating various aspects of space weather during SC 24. In addition, the HMO

space physics group is running various research projects including ionospheric and

HF radio propagation modelling which are solar activity dependent. Therefore,

the current SC 24 predictions will be helpful in forecasting and improving these

models.

6.1 Recommendations for future work

Currently, the exact commencement date for SC 24 is still not well defined. As

the cycle progresses towards its maximum, the model developed here should be

updated by introducing the most recent data of the new SC , which will improve

the predictions.

Further work related to the present thesis should focus on investigating the so-

lar variability and the Earth climate connections. The Maunder minimum of the

seventeenth century with its associated low global temperatures indicates that the

known climatic variations correlate with solar activity cycles (Wilson et al., 1999).

Although nowadays the greenhouse effect is considered the main driver of global

warming and related climate changes, solar activity is suspected to be partly re-

sponsible for the increasing global temperatures over the last decades (Lang, 2001).

It is believed that the particles and electromagnetic radiation flowing from solar

activity outbursts may have an impact on the long-term climate variations.

An extension of the work done for this thesis would be investigate and quantify

the contribution of solar activity to Earth’s climate changes. Suitable solar indices

and Earth climate parameters should be defined and a NN model developed for

this purpose.
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Appendix A

Predictions of SC 24

The table below is a summary of various predictions of SC 24 prepared in May

2007, by W.Dean Pesnell of the NASA-Goddard Space Flight Center. In the

table, adapted from Pesnell (2007), Rz indicates the maximum of SC 24 in terms

of smoothed monthly SSN followed by the date of SSN maximum. Also indicated

in the table are the author and date, as well as a summary of the prediction

techniques used.

Table A.1: Various predictions of solar cycle 24
Author and Date Prediction technique: summary Rz max. Date
Horstman, 2005 Projection of last 5 cycles 185 2010-2011
Thompson, 2006 Precursor methods 180 ± 32 -

Tsirulnik, et al. 1997 Statistical analysis 180 2014
Podladchikova, et al. 2006 Precursor methods 152-197 -

Dikpati, et al. 2006 Flux-transport dynamo model 155-180 -
Hathaway and Wilson, 2006 Analysis of aa index 160± 25-

Pesnell, 2006 Cyclen + 1 = Cycle n − 1 160± 54 2010.6
Maris and Oncica, 2006 Neural network forecast 145 12/2009
Hathaway, et al. 2004 Precursor methods 145± 30 2010
Gholipour, et al. 2005 Spectral analysis 145 2011-2012

Chopra and Dabas, 2006 Disturbed days analysis 140 2012.5
Feynman (modified), 2006 Precursor methods 135± 20 -

Kennewell and Patterson, 2006 Average of the last 8 SCs 134± 50 2011.7
Tritakis et al. 2006 Statistics of

√
Rz 133 2009.5

Tlatov;2006 Complexity of Hα synoptic charts 130±15 -
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Table A.2: Various predictions of solar cycle 24, (continued from previous page).
Author and Date Prediction technique: summary Rz max. Date
Nevanlinna, 2007 Value of aa at solar minimum 124±30 -
Kim,et al.2004 Statistical analysis of SCs parameters 122± 6 11/2010
Pesnell, 2006 Cycle n + 1= Cycle n 120±45 2010.0

Echer,et al. 2004 Spectral analysis of Rz 116±13.2 2012-2013
Sello, 2006 Precursor+nonlinear dynamics 115±28 2010.5

Pesnell, 2006 Cycle n+1=Cycle n(mean) 115±40 2011.3
Tlatov, 2006 Area of high-latitude unipolar regions 115±15 -
Tlatov, 2006 Large-scale magnetic field 115±13 -

Prochastra, 2006 Mean of cycles (1-23) 114±43 -
de Meyer, 2003 Transfer function model 110±15 -
Hiremath, 2007 Autoregressive model 110±11 2012
Tlatov, 2006 Dipole-actupole magnetic moments 110±10 -
Lantos, 2006 even/odd cycles analysis 108±38 2011
Kane, 1999 Spectral method 105±9 2010-2011
Pesnell,2006 Linear prediction 101±20 2012.5

Wang, et al. 2002 Statistical characteristics of SCs 83.2-119.4 2012.3
Roth, 2006 Statistical analysis 91± 27.9 1/2011

Duhau, 2003 Wavelet analysis 87.5± 23.5 -
Baranoviski, 2006 Nonlinear dynamics theory 80±21 2012

Shatten, 2005 Solar polar field precursor 80± 30 2012
Choudhuri, et al. 2007 Flux-transport dynamo model 80 -

Javariah, 2007 Statistics of sunspots groups 74± 10 -
Svalgaard, et al. 2005 Precursor method 70±2-

Kontor, 2006 Statistical analysis 70± 17.5 12/2012
Cliverd, et al. 2006 Climatology methods 42±35 -
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