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ABSTRACT 

This research describes a two-dimensional modelling effort of heat and mass transport in 

simplified intrusive models of sills and their feeder dykes. These simplified models 

resembled a complex intrusive system such as the Great Dyke of Zimbabwe. This study 

investigated the impact of variable geometry to transport processes in two ways. First the 

time evolution of heat and mass transport during cooling was investigated. Then emphasis 

was placed on the application of convective scavenging as a mechanism that leads to the 

fonnation of minerals of economic interest, in particular the Platinum Group Elements 

(PGEs). The Navier-Stokes equations employed generated regions of high shear within the 

magma where we expected enhanced collisions between the immiscible sulphide liquid 

particles and PGEs. These collisions scavenge PGEs from the primary melt, aggregate and 

concentrate it to form PGEs enrichment in zero shear zones. The PGEs scavenge; 

concentrate and 'glue' in zero shear zones in the early history of convection because of 

viscosity and dispersive pressure (Bagnold effect). The effect of increasing the geometry 

size enhances scavenging, creates bigger zero shear zones with dilute concentrate of PGEs 

but you get high shear near the roots of the dyke/sill where the concentration will not be 

dilute. The time evolution calculations show that increasing the size of the magma chamber 

results in stronger initial convection currents for large magma models than for small ones. 

However, convection takes, approximately the same time to cease for both models. The 

research concludes that the time evolution for convective heat transfer is dependent on the 

viscosity rather than on geometry size. However, conductive heat transfer to the e-folding 

temperature was ahnost six times as long for the large model (M4) than the small one (M2). 

Variable viscosity as a physical property was applied to models 2 and 4 only. Video 



animations that simulate the cooling process for these models are enclosed in a CD at the 

back of this thesis. These simulations provide information with regard to the emplacement 

history and distribution of PGEs ore bodies. This will assist the reserve estimation and the 

location of economic minerals. 
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CHAPTER! 

Introduction 

1.1 Thesis Description and Objectives 

Wilson et al., (1989) provided geological evidence, which revealed the presence of two 

distinct, mineralized zones in the Great Dyke of Zimbabwe. One is the narrow and well­

mineralized S 1 zone. The second comprises the highly attenuated and sparsely 

mineralized zones S2 and S3. These pointed to two different controls on the same 

mechanism, which were not yet described for other layered intrusions. For example, 

Campbell et al. (1983) explained the Merensky and J-M Reefs to have been formed when 

one pulse of bot magma rose as a turbulent fountain into cooler resident magma. The 

latter bas a density equivalent to or greater than the new primitive magma because of 

extensive crystallization of plagioclase (Wilson et al., 1989). These authors however, 

indicate this, the mechanism is not applicable to the Great Dyke, because at the level of 

the sulphide zones, plagioclase had not yet appeared on the liquidus and hence the 

residual liquid was less dense than the primitive magma. The above information indicates 

that there is at present no known knowledge to explain the processes involved in 

controlling the distribution and mineralization of PGE in the Great Dyke of Zimbabwe. 

Therefore, knowledge of associated magma transport and precipitation processes is 

desirable, since they may lead to more successful prediction of general distribution 

(Wilson et al., 1989). In spite of gravity studies done by Podmore and Wilson (1987) on 

the Great Dyke, much is still unknown about its actual shape. These are some of the 

reasons for this research effort. This study however should be viewed as a small 

component of a much larger project which aims at devising a computational model for 

the formation of ore deposits associated with igneous intrusions. The focus of this 

dissertation is to investigate the influence of variable geometry on convective scavenging 

(shear aggregation) and enrichment of Platinum Group Elements (PGEs) in the 

mineralized layers of the Great Dyke of Zimbabwe. This was accomplished by 

employing Computational Fluid Dynamics (CFD) with Finite Element Analysis (FEA) to 

examine the distribution of regions of high shear, and hence the location of economically 
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interesting PGEs deposits. This should assist reserve estimation and location of mineral 

deposits. 

1.2 Methodology 

The major hypothesis is this; the processes of interest are governed by the equations of 

fluid mechanics and other known physical laws. The laws are the continuity, Navier­

Stokes and energy equations governing fluid flow and are described in chapter 4. These 

equations are solved with a robust finite element computer code, ANSYS 5.6. This code 

has been used to model the following geological transport processes: 

• The convective temperature history of the magmatic fluid 

• Mechanical models of magma chambers, which have provided insight regarding crystal 

settling, double diffusive convection and compositional convection. 

• The cooling and solidification of magma chambers including the response of the 

surrounding country rock. 

Currently, this study employs the code to model the following features. 

1) First, a simplified magma model of the Great Dyke of Zimbabwe was built and the 

geometry varied surrounded by a fixed country rock. This was done to examine the 

impact of geometry on the time evolution of both the convective and conductive heat 

and mass transport during cooling ofthe magma chamber. 

2) Secondly, all the varied magma models geometries were used to examine the 

distribution of regions of high shear within the magma, and to identify the location of 

zones of zero shear, and hence the collection of PGEs. Computational turbulent 

analysis of this intrusive system was performed to generate regions of high shear. 

High shear results in enhanced collisions between the immiscible sulphide liquid 

particles and PGEs (Rice and von Gruenewaldt, 1994; 1995) 

3) It is expected that these collisions scavenge PGEs from the primary melt, aggregate 

and concentrate and 'glues' them in place to form PGEs rich zones. The boundary 

layers are the most convenient regions to secure a high aggregation of PGEs (Rice 

and von Gruenewaldt, 1994; 1995). However, for dykes and sills the big phenocrysts 

concentrate and deposit at the center (Komar, 1972). 
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1.3 PLATINUM GROUP ELEMENTS (PGEs) 

1.3.1 Historical Preview: 

The history of Platinum dates back to about 800 BC. The Egyptians used it, as evidenced 

by a casket, in the Louvre museum, bearing hieroglyphics made of an alloy containing 

several PGEs. There is also archeological evidence, which indicates that Indians of 

Ecuador and Colombians worked platmum many hundreds of years before the arrival of 

the Spanish explorers. The Spaniards discovered the source of platinum to be in the 

Chocco region of Colombia and the Incas recognized its rare quality because it never 

tarnished, thus making platinum a highly prized metal. They alloyed it with silver and 

gold. Platinum was intricately worked after the eighteen century, and then made into 

jewelry and other artful objects. This lead platinum to be greatly admired and used 

extensively by jewelers durln.g the Art Deco movement in the 1920's and 1930's. It was 

during this era that Louis Cartier's first platinum watches were made. The scientific 

experimentation and mvestigation of the metal was first fonnally described in 1750 in a 

letter presented to the Royal Society, by Dr Williams Browningg in which he provided an 

account of the preliminary experiments carried out by himself and Charles Wood. 

However, it was not until 1804 that Williams Hyde Wollaston recognized that the native 

platinum did not just consist of one element, but also of palladium (Pd), rhodium (Rh), 

Iridium (Ir) and Osmium (Os). McDonald reviewed the most recent scientific history of 

platinum in 1982. Sir Humphry Davy in 1817 informed the Royal Society that platinum 

was a major catalyst, because it was able to promote a chemical reaction without itself 

undergoing any physical or chemical change. In 1830, Michael Faraday found that the 

metal was good for making glass since it did not contaminate the final product. George 

Matthey from 1825 to 1913, after working for 88 years on this was very instrumental in 

the refining and fabrication history of platinum from a laboratory scale operation into an 

important branch of industry. 
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1.3.2 Chemistry of PGEs 

The PGEs are divided into the light triad, which is: ruthenium (Ru), rhodium (Rh) and 

palladium (Pd) and the heavy triad: osmium (Os), iridium (Ir) and platinum (Pt). The 

light elements density is approximately half the density of the platinum triad. However, 

all six elements are generally unreactive. Strong alkaline oxidizing agents dissolve 

osmium but it is generally un-reactive in aqua regia (nitric/sulphuric acid mix), whereas 

both platinum and palladium dissolve in aqua regia. Platinum and palladium are soft and 

ductile which allows them to bend into different fonns. Rhodium has excellent catalytic 

characteristics and when alloyed with platinum provides considerably superior properties 

at high temperatures. Ruthenium is hard and brittle and is difficult to work. Iridium 

retains its strength and corrosion resistance at very high temperatures and therefore 

makes very good crucibles. Osmium is oflimited industrial use (Buchanan, 1988). 

1.3.3 PGEs Geology: Layered Intrusions 

A large magmatic body, which is emplaced into the earth's crust and cools slowly, is 

called a complex. During this slow cooling process the silicate, oxide and sulphide 

minerals crystallize and are thought to sink to the bottom of the magma chamber or form 

suspended loads with texturally distinctive layers. The removal of the more refractory 

minerals in this way depletes or enriches the residual melt. The magma changes 

composition continuously until solidification is complete. As a consequence, platinum 

group metals, nickel and copper, particularly when in the presence of a sulphide phase, 

can become sufficiently enriched to form layered mineralized horizons at predictable 

levels within the intrusion. Prime examples of such magmatic bodies are the Bushveld 

Complex, the Great Dyke of Zimbabwe, the Jimberlana Complex and the Stillwater 

Complex. This study concentrates on the formation of PGEs in the Great Dyke of 

Zimbabwe, which is the second largest PGE reserve. 
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1.3.4 Technical and Industrial applications ofPGE 

1.3. 4.1 Electronics 

Before the emergence of solid-state devices, platinum-rhodium and palladium were 

widely used as an electro-mechanical switch for telephone exchanges in the 

telecommunication industry. Platinum, palladium and rhodium are also finding new uses 

in the electronic industry for thick-film integrated circuits printed onto ceramic 

substrates. These products are also used in the aviation industry where a high degree of 

reliability of materials is needed. Platinum group metal catalyst and current collectors are 

useful in fuel cells because of their high exchange current densities and their resistance to 

oxidation and dissolution under operating conditions (Buchanan, 1988). 

1.3.4.2 Vehicle Emission control (PGE) as a Catalyst 

Carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxide (NOx) are the principal 

polluting emissions from internal combustion engines. The effect of these pollutants can 

be reduced to a certain extent by the passing of hot gas through a catalytic converter, 

which consists of a porous honeycomb support coated with a thin layer of alloy of 

platinum, rhodium and palladium. The maximum performance of this catalyst is achieved 

by setting up a combination platinum-rhodium alloy with a ratio of 5:1. Such a three-way 

catalytic converter performs a dual function of reducing the nitrogen oxide (NOX) to 

nitrogen ( N 2 (gas)) and oxygen ( q (gas)), while the hydrocarbons are oxidized to 

carbon dioxide and oxygen. 

The removal of lead from petrol is an essential prerequisite because it reduces the 

hydrocarbons and nitrogen emission from exhaust fumes through the catalytic converters; 

For catalytic converters to operate at maximum efficiency lead free petrol is necessary 

(Buchanan, 1988). 
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1.3.4.3 Jewelry and Dentistry 

Platinum is used for jewelry for aesthetic reasons, as well for other qualities such as its 

potential to retain its lustre under extreme heat. When alloyed with iridium and 

ruthenium. it develops a high malleable strength, which allows the creation of the most 

desirable designs. The metal is ideal for the setting of precious stones because of its 

resistance to wear. In Japan two thirds of platinum goes into jewelry. However the 

demand for platinum in the west for jewelry has not been that satisfactory (Buchanan, 

1988). In dentistry, platinum is replacing gold as a cheaper material for the fabrication of 

dental crowns and bridges. It is as inert as gold and mostly favoured by many state and 

private insurance schemes. Palladium is also replacing base metal for this purpose 

(Buchanan, 1988). 

1.3.4.4 The Chemical industry 

The catalytic properties of PGEs have a particular application in the production of nitric 

acid. Nitric acid is one of the most important acids used in the production of nitrogen 

fertilizers and industrial explosives. Using the Ostwald process produces nitric acid; 

where ammonia is catalytically oxidized to nitrous oxide by finely woven platinum -

rhodium alloy gauze. 

1.3.4.5 Glass Fibre production 

Molten glass is drawn through platinum-rhodium alloy bushings which are uniquely able 

to maintain the fibre's size and shape under severe conditions. 
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1.3.5 Marketing and Investment role 

Most of South Africa's platinum and palladium is sold on contract at prices reflecting 

levels established on the free market, (see page 17, Buchanan, 1988; for tables). For The 

Rustenberg Platinum holdings (RPH) Johnson Matthey is the sole marketing agent for its 

products and Ayrton Metals Ltd acts as the selling agent for Impala's output of PGE. 

However, the Platinum ore reserves of the Great Dyke of Zimbabwe have not been fully 

exploited. 

1.4 Research Outline 

This work calculates the transient and thermal behaviour of magmatic fluid under the 

constraint of variable magma geometry surrounded by a fixed solid (non-porous media) 

country rock geometry. It also calculates shear driven aggregation from calculated shear 

conditions within the magma chamber. By shear conditions is meant spatial variations in 

velocities, since high shear promotes aggregation, in that it enhances particle collision 

probability, which leads to greater particle collision rates (Rice and von Gruenewaldt, 

1994,1995). This mechanism was applied in this research to model the collision between 

the immiscible sulphide liquid particles and PGEs in order to scavenge PGEs from the 

primary melt, to aggregate and concentrate them to form PGEs rich zones. 

Chapter 2: This chapter provides a general description of the Great Dyke of Zimbabwe, 

its geology, layering, shape and cyclic units and sulphide mineralization and the 

distribution of the PGEs, particularly Platinum (Pt) and Palladium (Pd). 

Chapter 3: A brief description is provided of the geological processes involved in 

modifying the composition of primary magmas and forming of igneous layering; namely, 

magmatic differentiation or fractional crystallization, gravitational settling, convection, 

double diffusive convection and igneous layering. This is followed by a brief outline of 

the physical properties of magmas. 
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Chapter 4: Provides a brief outline of the governing equations for Newtonian and 

incompressible fluid flow, buoyancy driven fluid flow, Boussinesq approximations, 

incompressible near- wall turbulence, shear driven aggregation, boundary layer theory, 

and thermal convection in magmas. 

Chapter 5: Provides a basic introduction to the finite element techniques used by Ansys 

5.6 to solve the Navier-Stokes equations. This section also discusses the theory solvers 

used for the transient incompressible flow. 

Chapter 6: This section contains the physical properties used for modelling the magma 

chamber and solid country rock. This is followed by a list of boundary conditions and 

initial conditions of all the calculations done. 

Chapter 7: All the simulation results are displayed in this section. 

Chapter 8: Contains the discussions, conclusion and provides suggestions for future 

research. 
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CHAPTER2 

THE GREAT DYKE OF ZIMBABWE 

2.1 Introduction 

Worst (1958,1960) presented the first comprehensive account of the Great Dyke and expanded on a 

mechanism for its emplacement, which was originally proposed by Hess (1950). Essentially magma 

was considered to have intruded through a primary fissure in each complex giving rise to successive 

horizontal layers. Worst (1958,1960) suggests that magmas ranged from mafic to ultramafic as the 

result of a primary differentiation process at depth and the sharp contacts between the layers were due 

to almost complete solidification of one pulse before the emplacement of the next surge of magma. A 

similar mechanism was suggested by Bichan (1969) and recognized that not all pulses crystallized 

completely before further injection of magma took place (Wilson, 1982). The major chromite and 

platinum-group element deposits of the Great Dyke evolve into large narrow elongate magma 

chambers, which are repeatedly replenished by these injections of primitive magma The stratigraphic 

distribution and nature ofthese deposits have been attributed to variations in the replenishment process 

and to the fluid dynamic behaviour of the resident replenished magmas. However, the narrow width of 

the magma chamber led to a strong transverse heat gradient that imposed an additional constraint on 

crystallization (Prendergast and Wilson, 1989). 

The Great Dyke of Zimbabwe is a major intrusion of mafic and ultramafic rocks and contains several 

economic minerals (Wilson and Tredoux, 1990). The Great Dyke lower ultramafic sequence is about 

2000m thick and the overlaying center consist of remnants of gabbroic rocks from the mafic sequence 

with an approximate thickness of 11 OOm (Wilson et al., 1989). It is the world's second largest reserve 

ofPlatinum-Group Elements (PGEs) after the Bushveld Complex (Naldrett and Wilson, 1990). The 

Cbrornite ore fields have been extensively mined for about 80 years, but the platinum-bearing horizons 

have not been fully exploited. The extent of the platinum-bearing zone of the Great Dyke and the 

revaluation of the precious metals market in recent years renewed interest in this deposit, and it is now 

recognized as a major PGE resource (Wilson and Tredoux, 1990). 
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The PGE enrichment has a close association with the sulphide mineralization. It is generally accepted 

that PGEs have a great sulphide affinity (Prendergast and Wilson, 1989; Wilson and Tredoux, 1990). 

All significant sulphide mineralization in the Great Dyke is hosted by the Pyroxenite No.1 (Pl) layer at 

the top ofthe ultramafic sequence (Prendergast and Keays, 1989). The PI section comprises one of 

the most complex packages of rock types in the Great Dyke and is also of major economic importance 

as it contains sulphide zones enriched in platinum (Prendergast and Wilson, 1989; Wilson and 

Tredoux, 1990). The sulphide-hosted PGE body requires: 

(1) Enrichment of the PGE in the magma, which is most commonly, achieved by fractionation (Irvine 

eta/., 1983; Lee, 1989; Wilson and Tredoux, 1990). 

(2) A mechanism for causing rapid crystallization of sulphide liquid together with efficient mixing of 

the segregated sulphide and the magma (Campbell and Barnes, 1984; Wilson and Tredoux, 1990) 

The above information provides a good rationale to study the distribution of the sulphide - bearing 

layers, which will be discussed in later sections and in particular those zones which host the PGE. 

2.2 The Geology of the Great Dyke 

The Great Dyke of Zimbabwe is 2575 Ma (Mukasa et al., 1998) old and 550 km in length cutting 

Archean granites and green stone belts of the Zimbabwe Craton. It is not a true Dyke in its present 

plane of erosion but a line of narrow layered mafic and ultramafic complexes (Prendergast, 1987). It 

is comprised of two major magma chambers (North and South chambers). The Mavuradona chamber, 

is is in the extreme north, see figure 2.1 (Prendergast, 1987; Wilson and Prendergast, 1989; Naldrett 

and Wilson, 1990). The width varies from 3 km to 11 km. The maximum thickness ofthe layered 

succession is 3.25 km (Wilson and Tredoux, 1990; Wilson and Chaumba, 1997). Stratigraphically the 

Great Dyke is divided into a lower Ultramafic sequence comprised of well developed cyclic units of 

Chrornitite, Dunite, and Pyroxenite which is overlain by a succession of gabbroic rocks of the lower 

mafic succession (L M S). The LM S succession is the lowermost unit of the Mafic Sequence. Figure 

2.2 shows the trumpet shaped transverse section of the Great Dyke, with the individual layers thinning 
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Figure 2.1: The General locality map of the Great Dyke and a study area. The Great Dyke is 

located at (A) and (B), is the subdivision ofthe Great Dyke into chambers and a description of 

the Mafic and Ultramafic sequences. Location (C) which is the area outlined in map (B) is the 

part of the Darwendale sub chamber studied by the author. The picture is extracted from 

(Wilson, 1991) 
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away from the axis and eventually becoming incorporated into the layered Border Group which is 

parallel to the walls (Wilson and Prendergast, 1989; Wilson and Chawnba , 1997). 
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Figure 2.2: The transverse section of the Darwendale subchamber showing the 
synclinal shape ofthe layering (Wilson and Prendergast, 1989}. This picture is 
extracted from (Naldrett and Wilson, 1990) 

In the transverse section the layering in the Ultramafic Sequence is considered to be sigmoidal, 

resulting from the dip of the layering decreasing near the extreme margin and close to the axis (WJlson 

and Prendergast, 1989; Wilson, 1991). 

This shape contrasts with the traditional vertical series of semi- circular cross- sections located at the 

axis and extending up to the margins of the border group (Worst, 1960; Wilson and Prendergast, 

1989). It has important implications for the relative cooling history of the marginal and axial facies 

(Wilson, 1991). Worst (1960) considered the layering in its original form to have been subhorizontal 

with deformation occurring at high temperature both laterally and longitudinally in a graben structure 

which now defines the margins of the Great Dyke (Wilson, 1991). 
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Paleomagnetic studies on the Bushveld complex showed that rocks of the Main Zone were deformed 

by subsidence to their present position after magnetization. Similar studies on the Great Dyke 

indicated that no definite answer could be given as to whether magnetization preceded or followed 

the synclinal formation ofthe layering (Wilson, 1991). The mafic sequence and the upper layers of 

the ultramafic sequence probably extended upward beyond the present margins ofthe Dyke by several 

kilometers, but these lateral extensions are now entirely eroded along the length of the Great Dyke 

(Podmore and Wilson, 1987; Naldrett and Wilson, 1990). The mafic sequence, which has been 

preserved as remnants in the center of each sub chambers, ~ ·now extensively eroded. The elongate 

form provides a large surface area at the inclined wall/floor of the chamber. The attitude of the 

layering within the chamber is such that at higher levels the layers of rock overlap progressively onto 

the floor and wall of the chamber. Therefore a rock in the marginal environment is in close contact 

with the floor, whereas at the axis this same layer overlies a great thickness of ultramafic cumulates. 

These two environments within the P 1 1 ayer are referred to as the axial and marginal facies and there 

is a progressive gradation from one to the other. In the Darwendale Subchamber of the North 

Chamber, 2000m of the ultramafic Sequence are overlain by I 120m ofthe Mafic Sequence (Wilson 

and Wilson, 1981; Naldrett and Wilson, 1990). The upper part of the Ultramafic Sequence is 

Websterite and this rock type is of importance because of its extensive development of Sulphide 

mineralization at its base (Wilson and Chaumba, 1997). The Sulphide mineralization is in some parts 

highly enriched in metals of the PEGs giving rise to economically viable ore bodies (Pendergast and 

Wilson, 1989; Prendergast and Keays, 1989; Wilson and Tredoux, 1990; Wilson and Chaumba, 

1997). 

2.3 Cyclic units 

The cyclic units in the Great Dyke are thought by some authors to have been produced by the 

repeated injections ofhigh magnesium (about 15% MgO) basaltic magma (Wilson, 1991), each of 

which underwent mixing with the resident magma and followed by fractionation and differentiation 

(Wilson and Tredoux, 1990). The nature of the cyclic units in the Bronzitite Succession differs 

between the two magma chambers. In the Darwendale subchamber cyclic layering is well developed in 
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the Ultramafic Sequence (Wilson, 1982,1992) and 14 cyclic units are recognized (Naldrett and 

Wilson, 1990). Six major cyclic units in the North Chamber are recognized in the Bronzitite 

Succession of the Darwendale subcomplex, each is approximately 200m thick. In the South Chamber, 

there are 16 cyclic units, with each unit having a thickness of about 80m (Wilson, 1991). Figure 

(2.3A) indicates the division of the ultramafic sequence into a lower Dunite Succession and upper 

Bronzitite Succession with a well developed cyclic units 100 -200m thickness and the location of 

PGEs in the uppermost cyclic unit 1. The cyclic units in the dunite succession are defined by narrow 

chromitite layers, whereas those in the bronzitite succession show a complete progression from basal 

chromitite, through dunite, harzburgite and olivine bronzitite to a well developed bronzitite layer at 

the top, and as such represent an ideal unit of the Great Dyke (Wilson, 1982; Naldrett and Wilson, 

1990; Wilson, 1991). The bronzitites are more resistant to weathering than the dunites (completely 

serpentized on surface) and they dominate the outcrop in many areas as a series of parallel ridges 

(Wilson, 1991). In the Darwendale and Sebakwe subchambers (fig 2.1), the layering plunges to the 

South and North respectively resulting in preservation of the remnant of the Mafic Sequence. 

Remnants of the Mafic Sequence are also preserved in the Musengezi, Selukwe and Wedza 

subchambers fig.2.3B (Wilson, 1991). 

Cyclic unit 1 is the topmost cyclic unit in figure (2.3A) and fig. (2.3B) is a larger view of cyclic unit 1 

of the ultramafic sequence. Cyclic unit 1 marks the important transition from olivine and bronzite 

cumulates through websterites to gabbroic rocks ofthe mafic sequence (Wilson, 1991). 

This cyclic unit is also of major economic importance as it hosts both mineable chromitite layers and 

several zones of(PGE) mineralization (Prendergast, 1988; Prendergast and Wilson, 1989; Wilson, 

1991). In the axis of the Darwendale Subchamber, Cyclic unitl is 420m thick and is subdivided into 

six subunits on the basis of chromitite layers, chromite disseminations, and repeated lithologies 

(Prendergast and Wilson, 1989; Wilson and Prendergast, 1989; Wilson, 1991). 

14 



2.3.1 Cyclic unit 1: Stratigraphy and Lithologies 

Six subunits are recognized in figure (2.3B), the four lower ones (lc-lf) are identified by basal 

concentrations of chromite and capped by granular harzburgite and olivine bronzitite. The poikilitic 

harzburgite is characterised by reaction and replacement of olivine and poikilitic enclosure by post 
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Figure 2.3: Stratigraphy of the Darwendale subchamber. Section. (A) Shows the 
major subdivisions and lithologies of the ultramafic sequence and (B) gives the detail of 
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cumulus orthopyroxene. Granular harzburgite and olivine bronzitites [the distinction between these 

two rocks is the relative proportions of olivine and orthopyroxenes, see table 1 in Wilson and Tredoux 

(1990)], which in turn overlie the poikilitic harzburgite, do not show olivine reaction (Wilson, and 

Tredoux, 1990). Chromitites in subunits 1c and 1d figure (2.3B) are of economic importance 

(Prendergast and Wilson, 1989) whereas those in the lower subunits are highly disseminated and 

generally less than a few centimeters in thickness (Wilson and Prendergast, 1987; Wilson and Tredoux, 

1990). The sequence observed in each ofthe subunits is essentially similar to that ofthe major cyclic 

units in the ultramafic sequence, with olivine cumulates (mainly poikilitic harzburgite in cyclic unit 1) 

overlying the basal chromitite and the amount of orthopyroxene increasing upward (Wilson and 

Tredoux, 1990). Orthopyroxene becomes more abundant with increasing height and eventually attains 

cumulus status in the granular harzburgites and olivine bronzitites (Wilson and Tredoux, 1990). 

The two top subunits (1a and 1 b; in fig. 2.3B) are different from the lower ones in that pyroxene is the 

dominant mineral constituent and pyroxenites (bronzitite in subunit 1 band a 37m thick websterite in 

subunit 1a) mark the top of the subunit (Wilson and Tredoux, 1990). This is successively overlain by a 

3m thick olivine bronzitite, which marks the base of subunit 1 a (Wilson, 1991 ). This olivine bronzitite 

at the base of subunit 1a dies out away from the axis of the Darwendale subchamber where it is 

replaced by a 30m thick bronzitite (Wilson, 1991), figure 2 .3B, but the base ofthe subunitl is still 

identified by a marked change in the grain size of the cumulus bronzite, and by the presence of small 

enclosed grains ofchromite (Wilson and Tredoux, 1990). The main bronzitite layer of subunit 1b 

together with the olivine bronzitite, bronzitite, and websterite of subunit 1 a are collectively referred to 

as the P 1 pyroxenite layer figure 2.3C. In the P 1 pyroxenite layer the bronzitite of subunit 1 b once 

again overlies the olivine bronzitite and this is capped by websterite, which comprises cumulus augite 

and bronzite (Wilson and Tredoux, 1990). 

Sulphide mineralization occurs through most of the upper half of the Pl pyroxenite succession in the 

Darwendale subchamber (Wilson and Tredoux, 1990). However, the narrow olivine bronzitite and 

olivine bearing bronzitite layers are included with the P1 bronzitite. 
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2.3.2 Sulphide mineralization and the distribution of Platinum (Pt) and Palladium (Pd) 

Sulphides are present throughout the upper part of the subunits 1 band 1a of cyclic unit 1 and vary in 

modal abundance from the trace amounts(< 0.1 %) up to 8 percent (Wilson and Tredoux, 1990). The 

sulphide mineralization occurs as two zones within subunit 1a and one in subunit 1b in (fig.2.3B) 
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Figure 2.4: Diagrammatic representation of modeling results for progressive segregation of sulphide 
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(Wilson and Tredoux, 1990). The Sulphide Zone 1, also called the Main Sulphide Zone (MSZ) 

(Bichan, 1969; Prendergast, 1988), is present in all subchambers at the same stratigraphic level 

(Prendergast and Wilson, 1989; Wilson et al., 1989). The MSZ in the Darwendale consists of a 2-m 

thick interval with up to 10% disseminated sulphide and is located at, or just below, the bronzitite­

websterite contact (Wilson et al. , 1989). The MSZ is further subdivided into a lower PGE subzone 

and an upper base metal sub zone. The disseminated sulphide zone in subunit 1 b is referred to as the 

Lower Sulphide Zone (LSZ) (Wilson and Tredoux, 1990). Wilson eta!., (1989) introduced an 

informal terminology of S 1, S2, etc., to allow flexibility on the nomenclature, and for sulphide zones of 

enhanced sulphide content, they used downward numbering in the sequence (Wilson and Tredoux, 

1990). Zones with higher PGE contents related to these sulphide zones are identified by the informal 

terminology as M1 (i), M1 (ii), etc., (Wilson and Tredoux, 1990). 

The Sulphide zone S 1 is variable in thickness depending on the position in the subchamber relative to 

the geometric axis and extends from 1 to 5m below the websterite layer of subunit 1a. However, the 

pattern of distribution for sulphide is remarkably constant in all parts of the subchamber, although 

modal abundance is variable and also dependent on the position in the subchamber (Wilson and 

Tredoux, 1990). The general pattern of sulphide distribution in zone S 1 is one of rapid development 

from initially very low levels (0.3 vol% to a maximum of up to 8vol %) over less than 2m (Wilson 

and Tredoux, 1990). The modal abundance of sulphide then decreases upward in the succession 

through a series of diminishing peaks to less than 1 % over 2 to 5m, resulting in a vertical distribution 

which is overall highly asymmetric relative to the position of the maximum (Wilson and Tredoux, 

1990). 

The interval of maximum sulphide enrichment comprising the S 1 zone is well defined over about 2m 

at the west margin of the Darwendale subchamber but becomes steadily wider toward the axis to a 

maximum of about 1Om, where it is also much more disseminated, containing less than 3% sulphide 

(Wilson and Tredoux, 1990). The S2 zone in subunit 1 a occurs between 5 and 15m below the base of 

S 1. In the marginal facies the sulphide content does not exceed 1% and in the axis it is much lower that 
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0.3% (Wilson and Tredoux, 1990). The 83 zone is 15 to 20m wide and contains a maximum of about 

1% sulphide. The lower sulphide zones of subunit 1 b form a complex package of mineralized layers 

separated from the upper zones in subunit 1 (a) by an interval containing very small amounts ( < 0.1 %) 

of sulphide. 

There are a number of systematic variations in element concentrations and ratios that characterize each 

of the zones and subzones, which led them to conclude that each zone shares the same cyclicity 

(Naldrett, 1989). These aspects ofthe cyclicity are illustrated in figure 2.4. However, the model in 

figure 2.4 demonstrates the relative displacement ofthe peak values ofPt and Pd in the whole rock and 

the more rapid depletion of Pd in sulphide compared to Pt (Wilson et al., 1989). The following 

observation was made. 

(i) The concentrations ofPt and Pd increase with the amount of sulphide contained in the rocks. 

(ii) The Pt and Pd content of the sulphides drops sharply as the percentage ofthe sulphide within the 

rock increases upward into each sulphide zone. The drop is distinctly sharper for Pd than Pt in the 

sulphide liquid (Naldrett, 1989). Because Pd is more rapidly depleted that Pt, suggests that Pd has the 

higher partition coefficient from the silicate melt into sulphide liquid (Wilson eta/., 1989). 

(iii) Because of the more rapid drop ofPd than Pt, the Pd/(Pd +Pt) ratio also drops as the sulphide 

content increases at just above the base of a zone. 

(iv) The Cu content of the sulphides (not shown in :fig.2.4) remains constant and it shows no 

systematic trends; however, because of the drop in Pt the Cu/(Cu + 1000 x Pt) ratio rises sharply to a 

value of0.8 to 0.9 once the sulphide content of the rock increases at the base of a zone. See figure 

2.4 in (Wilson et al., 1989). 

(v) The Pt and Pd contents of the sulphides remain low, once this drop has occurred within any given 

zone, but as the sulphide content of the rock decreases at the top of the zone, Pt and Pd in the 

sulphides starts increasing. As this occurs, the Pdf (Pd + Pt) ratio raises rapidly to a value of about 0.6 

and the Cu/(Cu+ 1,000 X Pt) ratio starts declining gently to a level out at a value between 0.2 and 0.4 

(Naldrett, 1989). To produce the marked effect seen for Pt and Pd, the partition coefficients for these 

elements must be very high, about 105 (Wilson et al., 1989). These conclusions were consistent with 
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the predictions of(Campbell et al. , 1983; Campbell and Barnes, 1984; Wilson et al. , 1989). 

To test for the fractionation model, the behaviour of Pt., Pd and Cu have been modeled for Rayleigh 

fractionation (Wilson et al., 1989). There were no data available on the PGE content of the Great 

Dyke magma; so typical values for continental flood basalts of 10 ppb Pt and 5 ppb Pd were assumed 

for Pt (Barnes and Naldrett, 1985). These values were similar to those present at the early stages of 

the Bushveld and Stillwater complexes (Wilson et al., 1989). Rajamani and Naldrett ( 1978) from the 

results of their experiments used the slope [i.e. D= (Weight percent of metal in sulphide 

liquid)/(Weight percent of metal in silicate liquid)], which is in any case, a form of the Nernst 

distribution law. They computed partition coefficients for Pt, Pd and Cu to be 10 4·
5

, 105 and 250, 

respectively. Trends for Pt and Pd distributions in the whole rock and the sulphides are reasonably 

matched between observations and the model in figure 4, with ratios Cu/(Cu+ 1000 x Pt) and Pdi(Pt + 

Pd) (Wilson et al., .1989). 

This last section has attempted to provide an understanding of the geochemistry of the Pt and Pd 

distribution and formation in the Great Dyke, necessary for future computational efforts. 
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CHAPTER3 

MAGMA PROCESSES AND THE PHYSICAL PROPERTIES 

3.1 Introduction: Magma Processes 

Partial melting processes within the upper mantle generate the origin spectrum of primary basic and 

ultra basic magma. Once such magmas have segregated from their source region they undergo a 

variety of complex fractionation, mixing and contamination processes en route to the surface during 

transport and subsequent storage in high-level magma chambers (Freeman et al., 1986; Wilson, 

1989). These processes are important in the production of diverse igneous rocks presently exposed to 

the earth surface. The upward progression of primary magmas starts from depths greater than 1 OOkm 

to less than SOlan (Freeman et al., 1986; Wilson, 1989). The solidification of magma occurs over a 

temperature range; and the temperature during which crystallization starts occur is called the liquidus 

and that at which it completes crystallization solidus. The liquidus and the solidus are both pressure 

dependent and are sub parallel in the P-T space. Conveniently, figure 3.1 illustrates the solidification 

process in such magmas with assumed isobaric conditions to simplifY calculations. When they enter 

the lower-density rocks, the rising basaltic magmas may reach a state of zero or negative buoyancy 

and pond, forming a magma chamber. The magma within the chamber cools by losing heat to the wall 

rocks (country rock) the temperature is then subsequently lowered to fall below the liquidus where 

crystallization begins. If the chamber is replenished by the injection of a new batch of primitive 

magma this may trigger an eruption of the porphyritic chamber magma (path A). Alternatively the 

magma batch may solidify completely with the crust, forming a plutonic or hypabyssal igneous rock 

(path B) (Wilson, 1989). Magma, which exists between its liquidus and solidus, is a mixture of crystal 

and liquid. 
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Figure 3.1: Schematic representation of the ascent path ofbasaltic magma 
to the surface in relation to its crystallization interval. This figure is 
extracted from (Freeman et al., 1986; Wilson, 1989). 

22 



During cooling, one type of mineral crystallizes first and then upon further cooling it is joined by the 

crystallization of another type of mineral and so on. For basaltic systems the confining pressure exerts 

an important control on both the nature and the sequences of the minerals crystallizing (Wilson, 

1989). Magma ofbasaltic composition will crystallize to form a basalt, dolerite, gabbro or eclogite 

depending upon the depth. However if a process operates within the magma body, which effectively 

separates the crystal and the liquid fractions and prevents equilibration then magmatic differentiation 

occurs within the chamber. This process is called Fractional crystallization. 

3.1.1 Magma Differentiation/Fractional Crystallization 

There is a general consensus amongst petrologists that the bulk of magmas are affected by crystal 

fractionation during their evolution (Huppert and Sparks, 1984). Fractional crystallization is a process 

whereby solid and liquid phases are separated. During this process different patterns of crystallization 

and melting produce different compositions from a uniform starting material. A number of authors 

believe the major mechanism involved is crystal settling. However, it is thought there is evidence that 

suggests that crystal settling is an inadequate explanation. Theoretical arguments by Bartlett (1969), 

Rice (1981) and Sparks et al. (1984) showed that settling is opposed by convection in large magma 

chambers and that the fluid motions can keep crystals in suspension. Rice (1981) and Sparks et al. 

( 19 84) suggested a process different from crystal settling to fractionate magmas. They drew upon the 

ability of double diffusive convection to segregate melt composition, calling this process "Convective 

Fractionation". Rice ( 1981) argued that convective fractionation is a process capable of generating 

highly differentiated liquids at the early stage of the evolution of the magma chamber. This process 

embraces a variety of convective phenomena caused by crystallization, which are described in 

laboratory experiments on aqueous solutions. Chen and Turner ( 1980) and McBirney ( 1980) noted 

that freezing at the walls left behind a fluid of different density, which could rise or sink through the 

magma. Chen called this "Compositional Convection". 

A variety of mechanisms have been proposed to separate crystal and liquid fractions, this includes: 

• Crystal settling 

• Flow Separation 
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• Filter pressing 

• Incomplete reaction between crystals and the melt and the convective fraction to occur. This study 

will not discuss mechanisms such as flow separation, or filter pressing as the latter is beyond the scope 

of the present work. However, a brief discussion will be given about the other mechanisms. The 

successive fractional crystallization steps of the melt (i.e., crystallization) accounts for Albite-rich 

plagioclase as a final phase forming from the original Anorthite-rich melt. Plagioclase is a major 

mineral component of igneous rocks and its systematic change in composition is basic in classifYing the 

range of intrusive from granite to gabbro and a range of extrusives from rhyolite to basalts. The 

plagioclase feldspars system ranges from Albite to Anorthite. Albite is a sodium aluminosilicate 

(NaAlShOs) and Anorthite is calcium Aluminosilicate (CaA12ShOs). The major difference between 

basalts and granites is as follows: 

• Basalts are anorthite rich melts, whereas 

• Granites are albite-rich plagioclase. 

The magmatic differentiation process consists of the fractional crystallization, which moves the 

composition of the remaining melt to albite-rich plagioclas~ from anorthite- rich plagioclase. The 

basaltic magma is the starting material, which gradually differentiates to more silicic, melts by fractional 

crystallization (Freeman eta/., 1986; Wilson, 1989). To demonstrate this process Freeman eta/. (1986) 

used plagioclase feldspars. The phase diagram in figure 3.2 gives a summary of many experimental 

results for the crystallizing of melts with composition corresponding to those of various members of the 

plagioclase series. The horizontal axis displays the chemical composition of the melt as the percentage 

of the two components, albite and anorthite and the crystallization temperatures are plotted on the 

vertical axis. The process starts with a melt of composition X (about 30% anorthite) heated to about 

1500° C, and slowly allowed to cool. 

Steps of the crystallization process of plagioclase feldspar 

• Initially, the melt of composition X0 (about30% anorthite) is at a temperature of about 1500°C and 

cools slowly to a temperature of about 1370°C to composition X 1• with no change in the liquid. At this 

point the first crystal composition C1 of plagioclase starts to form, consisting of about 70% of anorthite, 
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which is much higher than the original melt. 

• As successive crystals are formed, the liquid becomes depleted in anorthite and then starts to move 

down the upper curve, to a composition at point X2, which is less rich in anorthite. At this time the first 

crystals that were formed at C 1, become unstable with the liquid and then the composition moves down 

the lower curve to crystals of composition C2. 

• This process continues, the liquid now moves down the upper curve and the solid down the lower 

curve to a temperature of about 1190° C. The last drop of liquid (to about 5% anorthite) then forms 

crystals with the composition of the original melt Xo. After that, the entire crystalline mass continues to 

cool without further change. Here the melt has crystallized into a plagioclase of the same original 

composition as the original melt. However, 

• If crystals of composition C2 are withdrawn at this point before reacting, the liquid will change in 

composition to X3 and then the final crystal will be of composition CJ. 

The reverse of this route occurs when a solid plagioclase is melted. The first liquid formed will be of the 

same composition as the last drop of liquid in the crystallization process. Magmas do not only 

crystallize to form plagioclase feldspars, they also produce mafic minerals such as, olivine, pyroxene, 

amphibole and biotite. During a slow cooling process all crystals react completely with the liquid. The 

olivine crystallizes first, the liquid then reaches a certain point where pyroxene starts to form and all 

olivine is then converted pyroxene. Melting and crystallization among these minerals is complex. 

Because they produce a discontinuous reaction series, these reactions occur between minerals of two 

definite compositions at a particular temperature rather than over a continuous range of compositions 

and temperatures, as compared with the plagioclase series. To demonstrate this process, the 

pseudoternary system of CaMgSh06 (diopside) -Mg2SiOs (Forsterite)-CaAhSh08 (is provided in 

appendix A). During the process to differentiate magma, some portion ofthe crystals must be removed 

from the melt as they form; convective fractionation is one means (Rice, 1981). However, the 

mechanism, or gravitational settling is still under debate until such time as more experimental data is 

available to constrain this process. 
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Figure 3.2: Fractional Crystallization Diagram of Plagioclase Feldspars. This diagram is 
an extraction from (Freeman et al.. 1986: Wilson. 1989). 
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3.1.2 Gravitational Settling 

In this process, crystals of greater densities than the liquid magma sink from the liquid as a result of 

gravity. However, if the density of the crystals is less than that of the liquid, the crystal float and the 

process is called flotation. The rates at which crystals settle depend on the following. 

• Crystal size 

• Viscosity of the liquid 

• Density difference between liquid and the crystal for Newtonian fluids, the settling velocity V for 

For Newtonian fluids, the settling velocity V for small enough V is governed by the Stokes law 

equation. 

Wilson (1989) indicates that the time scales inferred from equation 3.1 are within the range of 104 -106 

years for large magmatic bodies. Equation (3 .1) is only valid for Newtonian fluids and laminar flow and 

applicable to only basaltic magmas close to the liquidus. McBimey and Noyes (1979) found that 

partially crystallized basalts and those with Silicate (Si02)-rich compositions inhibit crystal settling; 

therefore equation (3 .1) is not valid. The theory of crystal settling in magmas is controversial. Some 

evidence cited in support of crystal settling theory is derived from field descriptions ofhigh temperature 

mafic and ultramafic lava flows and thin sills, in which the denser olivine crystals are concentrated 

towards the base. For example, Wright (1971) supports this theory, with geochemical evidence; Wager 

and Brown (1967) took igneous layering as evidence of crystal settling. 

However, Campbell (1977), Me Birney and Noyes (1979), Irvine (1980a), Rice (1981), Sparks et al. 

(1984) and Turner and Campbell (1986) argue against the importance of crystal settling. The central 

theme oftheir argument is as follows. 

• There is a low probability of static conditions in magma chambers. This is because the convection 

will generally be turbulent which tends to hold crystals in suspension instead, of allowing them to settle. 

• Rice ( 1981) also argued that yield strength would greatly impede settling. 
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• Sparks eta!. (1984) showed that, in general, the convective velocities are likely to be orders of 

magnitude greater than settling velocities. 

3.1.3 Convection in magma chambers 

3.1.3.1 Thermal Convection 

Convection is a process that occurs when hot fluid is exposed to a colder environment or is heated from 

below. Ifheated from below, the fluid expands, becomes buoyant, rises to cool at the surface and then 

circulates back and down through the fluid. The pattern of circulation and heat transfer across the fluid 

can be predicted if the physical properties and applied temperature field are known Convective motions 

in magmas can arise from compositional density differences as well (Shaw, 1965). The thermal aspects 

of convection are characterized by a dimension-less parameter known as the thermal Rayleigh number. 

(3.2) 

Physically, the Rayleigh number for thermal convection in equation (3.2) is a function ofthe ratio of 

heat transferred by convection to that by conduction. The thermal convection for basaltic magma is 

highly turbulent in the early evolutionary stages for vertical dimensions greater than 1 km 

(i.e. RaT > 106 
). Turbulence decreases as crystallization proceeds. This is due to an increase in viscosity 

with a decrease in temperature (Wilson, 1989). For large basaltic magmas thermal Rayleigh numbers 

range in excess of 106 up to 1023 (Shaw, 1965; Bartlett, 1969;Rice, 1981). However, for 1km deep 

Rhyolitic, magmas a representative Rayleigh number may be as high as 109 
.• Such large values indicate 

that convection in magmas is vigorous and turbulent; Shaw (1965) indicated that prior to the 1970's all 

these applications concerning the convective theories of fluid processes for magma chambers were 

assumed as a one-component system. There is currently a flourishing research in this area. 
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3.1.3.2 Compositional Convection 

This type of convection occurs when there is a difference in density due to compositional change across 

a fluid layer of mean density p0 and thickness d. This density difference may be expressed as PoP/1S, 

where Ps is the analogue ofthe coefficient of thermal expansion, but represents density change due to 

compositional change 11S . A dimension less parameter then expresses the convective motions in 

magmas arising because of compositional density difference. The compositional Rayleigh number, Ras . 

gps/1Sd3 
Ra = --'-=----

s 1( v 
s 

(3.3) 

Instead of using the compositional Rayleigh number, the ratio of the compositional to thermal Rayleigh 

number to yield the following relationship; 

Q= PI1S 
a/18 

(3.4) 

is used more frequently (Huppert and Sparks, 1984). The linear stability theory for convection applied 

to a single layer of fluid indicates that infinitesimal motions are initiated for Pr>> 1 when RaT-Ras 

exceeds the critical value of order 103
• However, for a non-linear convection, the Rayleigh number 

difference RaT - Ras is much lower than the critical value and non-linear convection is also possible 

when there is a limit of very small diffusivity ratios -c, and when the thermal Rayleigh number RaT 

alone exceeds a critical value of 103
• However, the minimum Rayleigh number needed to maintain a 

series oflayers still remains to be found but all laboratory experiments indicate that convecting layers 

easily form double-diffusive systems (Huppert and Sparks, 1984). 
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3.1.3.3 Double-Diffusive Convection 

This is a property of multi-component fluids, whose individual components (including heat) have 

different diffusivities. This process occurs when the fluid becomes vertically stratified with respect to 

chemical composition and temperature. Sometimes there are opposing gradients of two components 

with different diffusivities. During this process, the system separates into a series of independent 

horizontal layers bounded by sharp diffusive interfaces, across which heat and chemical components are 

transported. Rice (1982) and Sparks et al. (1984) consider that this happens in silicate. The mechanism 

that controls this process is under debate. There are current theories that claim the settling of denser 

crystals is the mechanism responsible for separating the various components from the melt, which then 

may initiate double diffi.lsive convection. However, laboratory experiments by Turner (1980) using 

crystallization from aqueous solutions to model the essential fluid dynamics process indicated another 

significant way by which chemical differentiation can be caused by relative motions between the crystal 

and the melt. This mechanism manifest that the growth of crystals of a denser component on a side wall 

boundary leaves behind the less dense, lighter fluid to rise to the top of the chamber in a boundary layer 

flow, which builds up a stable density gradient. The up flow in the boundary layer feeding up the lighter 

fluid to the top of the box results in the individual layers being pushed down with time. The crystals 

therefore do not remain in the same relation to the interfaces as they grow and any persistent layer 

structure, which is in the crystals, is then destroyed completely, but the interfaces remain the same. 

For cooling along the vertical wall, a number of experimental studies have shown that with 

crystallization along vertical walls, the heavier components are removed from the fluid, generating a 

boundary layer flow of depleted light solute (Turner and Gustafson, 1978; McBirney, 1980;Turner, 

1980). A number of laboratory experiments have been set up to demonstrate double-diffusive 

convection, for which see (Huppert and Sparks, 1980a,b; Turner, 1980; Huppert and Turner, 1981a,b; 

Huppert and Sparks, 1984). Rice (1982) argued that many of these experiments lacked dynamic 

similitude. That is, they did not scale to magma chambers. Some of these experiments were performed 

in hopes of investigating the fluid dynamic aspects of open-system magma chambers for which there is 

an influx of primitive magma into a chamber containing more differentiated magma. These experiments 

attempted to illustrate an important principle relevant to some geological situations, specifically" A hot 
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fluid can lie beneath a cold fluid if its composition is such that, it is denser" (Turner, 1980; Sparks et al., 

1980;Huppert and Sparks, 1980a,b; Huppert et al., 1983; Huppert and Sparks, 1984). Such situations 

could occur in nature if primitive dense magma is emplaced into a chamber containing more 

differentiated melt. This would be similar to heavy hot brines or sulphide-bearing hydrothermal 

solutions discharged into the sea floor. In the case of magmas and brines, the cooling ofsuchhotfluids 

leads to crystallization or precipitation, causing instabilities to develop which lead to the fluid layers 

mixing. With igneous processes, it is thought that the fluid layers of different compositions can coexist 

in the same chamber and evolve chemically as independent systems (Huppert et al., 1982; Turner et al., 

1983). However, it is important to note that much of the double diffusive work that has been done was 

related to oceans and the quantitative and qualitative results obtained were for salty and fresh waters. 

"Therefore considerable caution is required when applying these results in a quantitatively way to 

geological systems" (Huppert et al., 1983; Huppert and Sparks, 1984). 

3.1.3.4 Convective Scavenging 

Convective Scavenging (shear aggregation) is a process that causes particulate aggregation. This is 

brought about by creating shear conditions in fluids; that is, spatial variations in convective velocities in 

the flow in order to increase the frequency of particle collision amongst the particulate matter 

suspended therein. Shear aggregation is used as a common practice to concentrate and separate 

suspended particulate matter from fluids. The convective boundaries are of primary importance in 

securing such concentration, because the boundary layer is the region of greatest shear and where 

scavenging (of the most collision) takes place (Rice and von Gruenewaldt, 1994, 1995). In this study, 

the regions of high and zero shears are determined computationally. High shear regions lead to 

enhanced collisions between immiscible sulphide liquid particles and PGEs, and it is expected that these 

collision scavenge PGEs from the primary melt, aggregate, concentrate and 'locks' them place, to form 

PGEs enrichment in zero shear regions (Rice and von Gruenewaldt, 1994, 1995). Convective 

scavenging is applied to the igneous environment, because of the extremely high partitioning coefficient 

ofPGEs into immiscible sulphide liquid. 
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It is required that the R factor (Rfactor = mass silicate magma/mass sulphide liquid) be very large. The 

inability of pure diffusional transport of PGEs to secure effective scavenging is an inefficient 

concentration mechanism because it isolates the sulphide from additional PGEs in the reservoir and 

exhausts the local platinum content of the melt but its importance cannot be underestimated (Rice and 

von Gruenewaldt, 1994,1995). This led to suggestions that turbulent mixing is involved (Rice and von 

Gruenewaldt, 1994; 1995). Campbell et al., (1983) in their attempt to explain the reason for the high 

PGEs concentrations in the Bushveld sulphides, suggested that because of the residence ofthe primary 

PGEs in a highly concentrated silicate melt, the concentration of the silicate melt was far more 

excessive than that of the sulphides which eventually hosted the PGEs; this means that the R factor 

must have been very large. They proposed a magma replenishment process whereby pulses of magma 

entering the magma chamber mixed turbulently with the host magma. The turbulence assured that 

sulphides were sufficiently exposed to the PGEs, in order to secure an effective high R factor. They 

also attributed the layering of the cyclic units to the arrival of new magma pulses in the chamber and 

early settling of the PGEs-rich suphides linking the PGEs -enriched layers with the base of the cyclic 

units. Another approach, by Rice and von Gruenewaldt (1995), showed that convective scavenging 

could form a 1m thick exploitable PGEs reef and /or chromitite layer from a column on the order of 

300m thickness. When applying this concept to the Bushveld complex, Rice and von Gruenewaldt 

(1994) argued that it was more likely that the magma ponds rather than mixes. It is therefore more 

attractive to treat the magma chamber as a multi-layered double-diffusive convecting system as shown 

in fig.3.3 (a). This approach allowed drawing upon well-known processes in which disseminated 

material in a flow is scavenged and to which convection is fundamental. Furthermore, the division of 

each cyclic unit into layers of double-diffusive convection opens the possibility of placing chromitite 

layers in positions other than at the base of a cycle, as with the UG-2 chromitite and the UG-2 cycle 

(Rice and von Gruenewaldt, 1994). In this case, the boundary layer (separating layers of convection) 

would be the region where most of the PGEs partitions into sulphide liquid droplets (Rice and von 

Gruenewaldt, 1995). Viscosity of magmas is an important physical property that depends, amongst 

other things on strain rate, crystal content, volatile content and temperature. In figure 3.3(a) heat is 

transported upward through the fluid. As the fluid cools, its most refractory phases will crystallize out 

first and because of dispersive pressure, or the Bagnold effect, it will migrate into the boundary layer to 
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form two maxima in crystal content just inside the top and bottom of the boundary layer as shown in 

fig3.3 (b). Figure 3.3(b) shows, that the convective velocities are greatest on either side of the 

stagnation line (line of zero velocity) within the boundary layer that separates two layers of convection. 

When the boundary layer reaches approximately 65% crystal content, the flow experiences cohesive 

freezing, capturing into place the concentration profile of the more refractory components as shown in 

the upper left hand side offigure3.3 (b) (Rice and von Gruenewaldt, 1994, 1995). 

Rice and von Gruenewaldt (1995) conclude by emphasizing that shear aggregation is very efficient 

method to remove and concentrate compounds of interest from a melt. They calculated the time 

required to concentrate to ore-grade (e.g.; 6000-ppb ofPGEs) within boundary layer approximately 

1m thick from a body of magma 500m deep with PGEs content of20ppb: an order of 100000 years. 

They further argue that, since convection is most vigorous when magma is warmest, half of this 

concentration would take place in the first 1 0000 years. This study seeks those regions ofhigh shear in 

which convective scavenging would be most efficient for magma chamber of form similar to the Great 

Dyke of Zimbabwe and uses convective scavenging to model the PGE in the great Dyke ofZimbabwe. 

3.1.4 Layered Igneous Rocks 

Studies oflayered igneous intrusions provide important constraints on the crystallization and chemical 

evolution of crustal magma chambers. These cumulate rocks preserve a continuous record of 

differentiation of the chamber magma. They may give fluxes of new batches of primitive magma mixing 

processes and wall rock (country rock) contamination effects. Some of these layered intrusions are 

immense. For example, the Precambrian Bushveld Intrusion in South Africa is exposed to over to an 

area of 65000 km2 and has thickness of 7 km. The Tertiary Scorecard Intrusion in Greenland is 

relatively small, with an exposed area of 170km2 and an estimated volume of 500km3
• Table 3.1, shows 

some of the layered complexes that are of interest to this work (Campbell, 1977; Keays and Campbell, 

1981, Maal0e, 1985). 
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Table 3.1 

Geology Complex Area (krn2
) 

Great Dyke Of Zimbabwe 300 

Jimberlana Complex unclear 

Stillwater, lJrcited States 4400 

Dulut~ Urrlted States 4700 

Dufek, Antarctica unclear 

Muskox, Canada 3500 

Sudbury, Canada 1300 

Most of these intrusions appear to be funnel shaped, although the diameter of the funnel relative to its 

height varies greatly and the layering is in general not parallel with the walls of the funnel (Wilson, 

1989). Layering is usually defined by the variations in relative proportions of the constituent minerals. 

There may be gradational variations within a single layer, analogous to grading in sedimentary rocks. 

Tabular crystals such a plagioclase feldspar show marked preferred orientation within a layer, which has 

been considered suggestive of crystal settling. Naldrett et al., (1987) postulated evolution of crystal­

free liquid residua during the successive crystallization of olivine, orthopyroxene, plagioclase and 

clinopyroxene as cooling proceeds. However, in contrast to the crystal-free liquid model, Rice and 
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Eales ( 1995) calculated that the effect of suspended crystal load has considerable impact on magma 

density differences. This, has implications for the double-diffusive model of Irvine eta/. (1983) in 

which the stratification of liquids within a magma chamber and the subsequent mixing of liquids rests 

critically upon small density differences between the crystal free A-type liquid density (2.592 g/cm3
) and 

the crystal free U-type liquid density (2.577g/cm3
). The mode of intrusion of fresh batches of magma 

therefore depends on the assumed densities ofU-type and A-type liquids. The A- magma may be lighter 

or denser than the U-magma depending on its composition. Detailed studies of these cyclic layers has 

suggested to a number of workers that each unit cycle records the influx of new magma pulse and its 

subsequent mixing with the more differentiated chamber magma. During replenishment, hotter, denser, 

more primitive magma forms a layer at the base of the chamber, where it cools and crystallizes by 

exchanging heat across a double -diffusive interface with the more fractionated residual chamber 

magma ( Campbell1977, Irvine 1980a). There is a considerable debate as to whether the accumulation of 

crystals at the bottom of layered intrusions is due to crystal settling or in-situ growth. 

For the Skaergaard intrusion, Wager and Brown (1968), suppose that cyclic convection currents 

transported crystals growing near the roof zone down the walls and across the floor of the intrusion and 

because of their greater density, they settled out of the melt and are sorted hydraulically according to 

their size and density. Irvine (1980b) and McBirney and Noyes (1979) pointed out, there are 

significant deficiencies in these gravitational crystal-settling models and suggested that the settling of 

grains in magma may not be completely analogous process of clastic sedimentation. They, feel there is 

strong evidence favoring the in situ crystal growth. 

• Carmichael et a!. ( 197 4) also suggested that the order of nucleation and growth of different minerals 

in basaltic magmas should be Fe-Ti oxides>olivine> clinopyroxene> plagioclase, thereby accounting for 

the sequence of minerals commonly occurring in micro- rhythmic stratiform intrusions. This would be 

the same sequence as that which would be produced by gravity sorting of equal- sized crystals. Hence 

during such in situ crystallization, the fluid in contact with the growing crystals convects away, 

followed by the development of compositional gradients in the magma chamber. 

• Campbell (1977), McBirney and Noyes (1979), Irvine (1980a,b), Sparks et al., (1984), offered 

evidence that crystal settling is not a dominant process during crystallization in magma chambers 
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(Sparks et al., 1984). Instead, crystals are thought to nucleate and grow in situ on the floor and the 

walls ofthe chamber (Turner and Campbell, 1986; Wilson, 1989). The above- mentioned argument, 

therefore, substantiates that fractional crystallization of the chamber is only possible if the depleted 

liquid is removed from contact with the growing crystals by a combination of diffusive and convective 

processes (Sparks et al. , 1984). Other authors emphasize, however, that such convection processes do 

not rule out the possibility of crystal settling in the evolution of basaltic magmas (Wilson, 1989). 

3.2 The Intrusion-Country Rock System 

An intrusive -country rock system can be regarded as a chamber of molten magma which is injected in a 

single event over a very small time period into the earth's crust from the mantle, which upon slow 

cooling, solidifies into a crystalline or glassy igneous rock or a pluton. Heat from the cooling magma is 

then conducted into the country rock, which surrounds the chamber completely, thereby causing: 

• Thermal convective transport of the groundwater contained within or 

• Melting of the wall rock (country rock) due to heat of fusion released during the simultaneous 

crystallization of the magma itself (Wilson, 1989). This involves both mixing of the crustal and mantle 

partial melt and bulk assimilation. However, the bulk assimilation involves considerable input ofheat, 

which must be supplied by the latent heat released during the simultaneous crystallization (Wilson, 

1989). However, this study does not model either of the above, that is the groundwater or groundwater 

circulation and thermal fractures that result from the magmatic intrusions. The physical systems being 

modeled are: 

1) The effect of changing the magma chamber shape on the time evolution of the convective transport 

of heat and mass during cooling of the magma and the heat conducted into the solid country rock, 

which completely surrounds the magma chamber. 

2) The distributions of regions of high shear and shear aggregation within the magma should provide 

insight of the location ofPGEs mineralization. 
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3.3 The Physical Properties of Magmas 

Most of the present information about the physical behavior of magmas is explained in terms ofthe 

properties of Silicon and Oxygen ions, which are the abundant components of igneous rocks. For details 

see Williams and Me Birney ( 1979). Magma in its molten state is treated as fluid and certain physical 

properties of fluids are involved in any study of the fluid mechanics and the related process of 

momentum, mass and heat transfer in magma chambers. These properties include viscosity, density, 

thermal conductivity, heat capacity, di:ffusivity (Knudsen and Katz, 1958). 

3.3.1 Viscosity 

Viscosity is an important factor governing both intrusive and extrusive processes. McBirney and 

Murase (1984) indicate that viscosity has an important influence on the mechanism of magmatic 

differentiation and crystal growth. Viscosity is defined as the ratio of shear stress to strain rate with the 

following mathematical formulation being: 

(3.5) 

A more general definition of the viscosity 11 is 11 = d/dr where i is the time rate of change of the 

shear stress. For simplicity, the definition in equation (3.5) will be used. The magma in its fluid state 

will be treated as a Newtonian fluid. Newtonian fluids have the following properties: 

• They have no yield stress, i.e. ( r0 = 0) 

• Have a direct linear relationship between shear stress and strain rate, i.e. (n = 1 ), meaning that their 

shear stress tensor components are linear functions of the velocity gradient. 
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Thus equation (3.5) reduces to: 

(3.6) 

However, some non-Newtonian fluids but not all have the following properties: 

1) A non-linear relationship between shear stress and strain rate, i.e. n t. 1. 

2) Minimum stress may be required initiate permanent deformation, i.e. the yield strength r0 > 0. The 

shear stress tensor is a non-linear function of the velocity gradient 

(3.7) 

Murase andMc Birney(1973) andMcBirney and Murase (1984) point out that most magmas are non­

newtonian in their behaviour due to 

1) The shear stress and strain rate that is not directly proportional, (n<1) below the liquidus, 

particularly when containing phenocrysts. 

Below their liquidus, their shear stress and strain rate are not directly proportional, (n< l ), particularly 

when they contain phenocrysts. 

2) They are Bingham fluids or plastic fluids (i.e., they are silicate liquids with viscosities which have 

yield stresses and are time dependent). Bingham fluids have finite yield strength, such that below certain 

stresses the shear rate vanishes. This property was observed by, Shaw et al. (1968) in the basalts ofthe 

Hawaiian lava lake ofMakaopuhi. Murase and McBirney (1973) also observed similar behaviour in 

Colombia River Basalts (CRB). These authors found that the stress required to produce a measurable 

shear increases with time, at a rate that increases as the temperature of the liquid fulls below its liquidus. 

The change in viscosity with time is negligible above temperatures of 1245°C but increases 

tremendously at successive lower temperatures. The viscosities of magmatic fluids are also dependent 

on the following factors: crystal content; compositional dependence; temperature; pressure; water and 

time. 
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3.3.1.1 Crystal Content Dependence 

Because most magmas in nature are at or below their liquidus they contain crystals in suspension, which 

affects viscosity as noted by McBirney and Murase (1984 ). Rice ( 1997a,b) points out that the effect of 

cohesive freezing (flow choking at about approximately 65% of the crystal content) will set the magma 

into place, preserving flow structure. For dilute crystal content, the Einstein viscosity law governs 

magmas. 

( )
- 2.5 

Peff =Po 1- rC (3.8) 

3.3.1.2 Compositional Dependence 

The viscosity of silicic magma increases with increasing SiOz (silicate) content, because the silicate 

polymerizes the melt into long chains, which resist flow. For example, basalts with a silicate content of 

about 50% have a viscosity of about 104 Pas at a temperature of 1 000°C and rhyolite with 72% silicate 

has a viscosity of 1010 Pas at the same temperature, i.e. 1 000°C (Williams and McBirney, 1979). For 

silicate melts, there is linear dependence on logarithmic viscosity composition Jones and Doyle (1929) 

deduced a relationship for ionic solutions, expressed by. 

p = Po(l+ AFc + BC) (3.9) 

The AJC term accounts for increase in viscosity due to electrostatic attraction between oppositely 

charged nearest neighbour ions, always positive. The B coefficient is a characteristic for individual ions; 

it is either positive or negative. Bottinga and Weill (1972) modified equation (3.9) and proposed a 

model for compositional dependence of viscosity for silicate liquids, as follows: 
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(3.10) 

Where j indexes all the components other than Si02 as the solvent of the silicate melt. 

3.3.1.3 Temperature Dependence 

Laboratory experimental results done on igneous rock by Williams and McBirney (1979) showed that 

the viscosity of magma drops with increase in temperature. 

Above the liquidus 

The viscosity of most silicate melts above their liquidus has an inverse logarithmic variation with 

temperature according to the Arrhenius equation: 

8 p = p,e (3.11) 

Where B= EJRT is the exponential coefficient. Murase and McBirney (1973) explains that this 

activation energy is related to the proportion ofbridging silicon and aluminium atoms, expressed by the 

ratio (Si+Al)/0 for the melt. 

Below the liquidus 

The viscosity of silicates below the liquidus increases more abruptly with a decrease in temperature than 

can be attributed to the Arrhenius equation (3 .11 ). This viscosity increase with a drop in temperature is 

related to one of these two factors: 

1) Increase in the strength of temporary fluctuating ionic bonds. 

2) The crystallization of minerals, which is the more important factor. 

For Colombia River Basalts (CRB), the crystallization temperatures begin around 1275°C and for 

Mount Hood Andesites (MBA) it is 1240°C. Different authors have different opinions regarding 

increasing viscosity with a drop in temperature. Shaw (1965) found that suspended crystal load to have 

a different effect from that predicted by equation (3.13). For T<ro, Adam and Gibbs (1965) modified 
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the Arrhenius equation to make it approximately equivalent to the Vogel- Tammann-Fulcher empirical 

equation ofthe form. 

p = K exp(_5_) T- To 
(3.12) 

where K is the temperature dependent constant. This equation described successfully the temperature 

dependence of viscosity of many liquids. However, Bottinga and Weill (1972) found that neither of the 

above equations completely fitted measurements, possibly because their measurements were restricted 

to liquids. The Ansys FLOTRAN code can accomodate these viscosity formulations or can be 

employed to approximate the most accurate data available. FLOTRAN models the viscosity as a 

temperature dependent function as follows. 

(3.13) 

This relationship causes the viscosity to increase very rapidly as magma cools, hence replicating the 

solidification process, which occurs over a temperature range less than <<200°C. The quadratic term 

allows equation (3 .15) to take into account the crystal load during convection, and to approximate yield 

strength that is expected in the magma below the liquidus. The data was taken from experiments with 

magmas with different compositions, fitted to Equation (3 .15) and were then plotted using Microsoft 

Excel (the 1997 version)- see figure 3.4. 

3.3.1.4 Pressure Dependence 

Little experimental work was done on pressure dependence until Waff(1975) theoretically predicted 

that the viscosities ofBasaltic and Andesitic liquids decreased with increasing pressures at temperatures 

above the liquidus. However, recent findings show that with natural silicates the pressure load reduced 
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the viscosity of basaltic and andesitic melts at constant temperatures above the liquidus (Kushiro, 

1980). The viscosity ofbasalts dropped from 17.0 Pas at atmospheric pressure to 4.0 Pas, 2.5 Pas, and 

0.8 Pas at respective pressures of15Kbar, 20Kbar and 30Kbar at respective depths of 45 km, 60km and 

90 km (McBirney and Murase, 1984). 

3.3.1.5 Time Dependence 

For temperatures below the initiation of crystallization, viscosity increases with time; if the magma is 

undisturbed, this continues for hours before reaching a steady value (Williams and McBirney, 1973). 

This increase of viscosity with time is thought to be due to the effect of an increase in population of 

suspended crystals. 

3.3.1.6 Water Content Dependence 

The effect of adding water to silica-rich composition decreases the viscosity of the magma. Water 

depolymerizes the silicate content by disrupting the Si-Al framework. The addition of water is, 

however, not pronounced for olivine and other silica -poor compositions (McBirney and Murase, 

1979). The magmatic model used in this study is treated in the manner ofunhydrous fluids; that is, not 

containing water. 

3.3.2 Magma Densities 

Rice (1995) showed that a low crystal content, for example 1%, in a crystal would override the density 

changes solely because ofthermal expansion or free melt evolution. Rice and Eales (1995) stressed that 

in other disciplines theoretical analyses of multi phase flows (for example, water and steam; air and sand; 

air and water or other particles; slurries; turbidity currents; sewage etc) treated the density of the total 

flow as dependent on the densities ofboth transporting fluid and its load. This practice of including the 

particulate load in determining the density of multiphase flow carries over into the physics of geological 

sedimentation. From practical engineering evidence Rice and Eales (1995) concluded that the 
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stratification of magmas within a chamber or at the level of neutral buoyancy to which plumes rise may 

be controlled by the relative crystal loads of resident newly injected magmas rather than by small density 

changes arising out of temperature difference or compositional changes accompanying fractionation. In 

summary, the density p of magmatic fluid varies mainly with temperature, chemical composition and 

crystal load content. All of which have temperature dependence density of magmatic flow. It can 

therefore simply be expressed as a function of temperature and pressure. 

p = p(T,p) (3.14) 

For incompressible fluids, variations in pressure do not cause significant differences compared to the 

temperature variations. The general form of the temperature dependent density is of the second order; 

as used by Ansys, in the FLOTRAN code, it is expressed as: 

(3.15) 

The second order term: b2 ( T- ToY can be made to account for the rapid increase in density with 

increased crystal load during cooling. The densities of most common igneous rocks for instance mafic 

basalts are 2800 kg/m3 and for rhyolites 2200 kg/m3
• 

3.3.3 Magma Temperatures 

McBirney and Murase (1979) indicate that the temperatures for most erupting magmas fall between the 

ranges 800°C -1200°C. 

• Low temperature values are only observed between differentiated, carbonitive and felsic magmas. 

• High temperature eruptions are confined to basalts 
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The temperature range for a typical basalt, for example Colombia River Basalts (CRB) is between 

800°C - ll00°C; temperatures above 1200°C are r~rrely observed. This thesis models the density 

data by using the curve- fit formula, equation (3.15). 

3.3.4 Thermal Conductivity and Heat Capacity 

In the present study the temperature ranges are modelled where the temperature dependence is small 

enough to treat the thermal conductivity as a constant: k = 2.0J.m-1.s-1.K-1
• Basalticmagmaisthemelt 

used in this study with upper temperature limit of 1200°C. For this work, C = 1200J. K 1.s-1 is also 

treated as a constant. At this stage, single-phase fluid flows with no enthalpy changes are being 

modelled. 
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Viscosity versus Tef111erature Curve for 
Colormia River Basalts (CRB) 
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Figure 3.4: Log Viscosity in (Pas) versus Temperature in Kelvin (K) curve for Colombia River 
Basalts. The data was extracted from experiments performed by Bottinga and Weill (1972). 
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Density Versus Temperature Curve for Colombia 
River Basalts (CRB) 
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Figure 3.5: The Density (kg/m3
) versus Temperature in (K) curve for Colombia River Basalts 

(CRB). The data used was extracted from the experiments performed by Bottinga, Weill and 
Richett (1982). 

47 



CHAPTER4 

THE GOVERNING EQUATIONS FOR MAGMA AND SHEAR AGGREGATION 

4.1 Introduction: The Governing Equations 

This section provides some theoretical background on the conservation laws governing 

material transport. We apply these conservation laws to fluids in which case they are 

known as the Navier-Stokes equations (which includes heat transfer). The derivation of 

these equations may be found in (White, 1991). This study treats magma as a Newtonian 

fluid. These equations are: 

•The Continuity equation: conservation of mass 

• The Navier- Stokes equation: conservation of Momentum 

•The Conservation ofEnergy equation: the first law ofthermodynamics (White, 1991) 

The unknown variables that must be determined from these three basic equations are the 

velocity field V , thermodynamic pressure (P) and the temperature (T). White (1991) 

regards the thermodynamic pressure (p) and temperature (T) as the two required 

independent thermodynamic variables. However, the final form of the conservation 

equations also contains four other dependent thermodynamic variables: the density (p ), 

enthalpy (h), or the internal energy (e) and the two-transport properties viscosity (~-t) and 

thermal conductivity (k) . The latter properties may be pressure (p) and temperature (T) 

dependent. Their variations with independent thermodynamic variables, pressure (p) and 

absolute temperature (T), are related by the following equations of state: 

for density 

p = p(p, T) (4.1) 

heat, or energy 

e = e (p, T) (4.2) 
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viscosity 

(4.3) 

thermal conductivity 

k = k(p, T) (4.4) 

However in this work the state equation ( 4.4) is treated as constant. The enthalpy (h) or 

intenal energy (e) is proportional to the temperature (T) by the following relationship 

(White, 1991; Currie, 1993). 

e = C T p (4.5) 

CP, the specific heat, is assumed constant in the present FLOTRAN calculations of 

magmatic intrusions. The governing equations for fluid flow make possible the 

determination of the convective velocity field V , the pressure P, and the temperature T at 

every point in the flow regime. These considerations are applied to a fluid that is assumed 

to be of uniform homogeneous composition. That is, no account is taken of multi­

component reacting fluids such as: 

• Conservation of species 

• Laws of chemical reactions 

4.1.1 The Continuity Equation 

The mathematical equivalence of this statement of mass conservation is: 

_Q_ j,a~v = o 
Dt v 

(4.6) 
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The Reynolds transport theorem in tensor notation is expressed as (Currie, 1993). 

(4.7) 

Where a is the fluid property, equation ( 4. 7) transforms equation ( 4.6) which is a 

combination of the arbitrary control volume and the Lagragian into an equivalent 

expression involving integrals of Eularian derivatives, hence equation (4.6) now 

becomes. 

(4.8) 

Where the fluid property a is the mass density (p) and k = 1 ,2,3 designates the x, y and z 

components (see Currie, 1993). This implies the continuity equation: 

This is more commonly written as: 

op + v . (P v) = o ot 

(4.9) 

(4.10) 

I}A !}A I}A 
Where '\1 is the del operator, v = a i + q, j + a k and u, v and w are the x,y and z 

components of the velocity V respectively. This thesis assumes incompressible flow, in 

which case equation (4.9) reduces to 

(4.11) 
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4.1.2 The Momentum Equation 

The conservation of momentum equation applied to a system of fluid particle is 

conveniently treated as the Newton's second law of motion divided by the volume of the 

particle to deal with density rather than mass (White, 1991; Currie, 1993). The Cauchy 

equation e.g. Reddy (1998) is a more rigorous statement of the physical processes 

involved. This approach accounts for the external forces, which may act on the entire 

mass ofthe fluid, are body forces (i.e. gravitational or electromagnetic) or surface forces 

(pressure or viscous stresses). White (1991) expresses this relationship as follows. 

DV - - -
p-- = J = J body+ J surface 

Dt 
(4.12) 

Considering gravitation as the only body force on the unit volume basis, gives 

jbody = pg (4.13) 

The surface forces are applied by external stresses on the sides of the element (see White, 

1991) for the diagram. The stress describes the internal forces in the body; the product 

r · n gives the force per unit area acting on a surface in the body with the outward unit 

normal n. This is a vector with components r1 = r ij · fzj (Reddy, 1998). The stress tensor 

rif for the surface stresses can then be written as: 

(4.14) 

For Newtonian fluids, FLOTRAN relates the stress and the rate of defonnation of the 

fluid (in indicia! notation) as follows: 
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(4.15) 

The equation (4.15) is called the constitutive relation (Currie, 1993). Balance of the 

angular momentum leads to symmetry ofthe stresses, r;j forms a symmetric tensor, that 

is rij= rij . The symmetry satisfies equilibrium moments about the three axes of the 

element. The total surfaces forces in vector form is expressed as 

ar.. 
lJ f surface = v. r lj = IJx . 
1 

Newton's law now becomes, 

(4.16) 

( 4.17) 

"The divergence of riJ should be interpreted as a tensor, so that result is a vector" (White, 

1991). The stress tensor term -ciJ may be expressed in terms of the velocity V by relating 

the rij to the strain rate E ij of viscous deformation (see White, 1991) for details. This 

yields the Navier Stokes momentum equation 

nv a [ (aV; avj] -] p-=pg- VP+- p. -+- +o .. V·V 
Dt IJx . 1Jx. ox- 1J J j I 

(4.18) 
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For incompressible flow, equation (4.18) reduces to: 

p--= pg- VP+- f.l - 1 +-1 DV 8[ [8V. 8V.)] 
Dt 8x . 8x . 8x. 

1 1 l 

(4.19) 

in which the viscosity J.1. may vary with temperature, pressure and position. Equation 

( 4.19) is employed by FLOTRAN in this study. For constant viscosity, the momentum 

equation reduces to 

DV 2-
p-= pg- VP+J.l.V V 

Dt 

4.1.3 The Energy Equation 

(4.20) 

This study outlines the basic steps that lead to this equation, (see White, 1991 for detail). 

The First Law of Thermodynamics may be written 

dEt=dQ+dW (4.21) 

The quantity Et includes both the internal energy, kinetic and the potential energy of the 

fluid particle, therefore the energy per unit volume is 

(4.22) 

The time rate of change for equation ( 4.22) 

DE1 (De - DV _ -) -= p - + V - - g·V 
Dt Dt Dt 

(4.23) 
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The transfer of heat Q through the fluid element is given by Fourier's law as 

q=-kVT (4.24) 

The time rate of heat transfer neglecting internal heat generation is 

DQ 
-= -V ·q= +V · (kVT) 
Dt 

(4.25) 

The rate of work done to the element per unit area by the fluid entering the y-z plane or 

the left face (see page 70, White, 1991; for the diagram) is expressed as. 

(4.26) 

Hence, for the y-z, y-x and z-x planes, that is the left, back and bottom sides is (using 

indicia! notation) equation ( 4.26) is expressed as. 

(4.27) 

The net rate of work done on the element is 

DW - -
-= -V ·W = V ·(V · r .. ) 
Dt y 

(4.28) 

This may be more conveniently expressed as. 

(4.29) 
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The first term on the right hand-side is directly related to the momentum equation, which 

upon re-arrangement of terms yields the killetic, and potential energy. 

(4.30) 

The potential and killetic terms vanish jn equation ( 4.30) after Et. Q and W from 

equations (4.23), (4.25), (4.28) are substituted into (4.21) to obtain the time rate of 

change first law of thermodynamics equation. This results in the first thermodynamic law 

for fluid motion (White, 1991). 

De ov; 
P-= V ·(kVT) + r .. -

Dt u iJx . 
1 

(4.31) 

The above energy equation can be transformed into the complete enthalpy equation using 

the stress tensor, which is then split into pressure and viscous terms below. 

0~ I 0~ -
r ·· -= r -- pV ·V 
y oxj Oxj 

(4.32) 

If the above equation and the continuity equation (4.11) are substituted, equation (4.31) 

becomes. 

D ( p) Dp p- e+- = - + V ·(kVT)+ <I> 
Dt p Dt 

(4.33) 

where fluid enthalpy is 

(4.34) 
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The last term <I> involves heating due to viscous stresses and is called the dissipation 

function. 

8V 
<I>= r .. -' 

I} ox . 
J 

(4.35) 

However, in this study the fluid enthalpy will be shelved for later, more advanced work 

as will be the viscous dissipation. The coefficient of thermal expansion p is useful in 

estimating the dependence of enthalpy on pressure. 

Equation ( 4.32) can be written into the energy equation to yield. 

DT Dp 
pCp-= fJT- + V ·(kVT) + <I> 

Dt Dt 

The above equation can be alternatively expressed as. 

8T - 8p - 2 
pCP -+ pCp(V · V)T = -8t + (V · V)p+ kV T+ <l> 

IJt 

(4.36) 

(4.37) 

(4.38) 

Equation (4.37) is the energy equation for compressible flow. For incompressible flow 

the energy equation becomes. 

(4.39) 

If there is a rationale for neglecting the viscous dissipation, then the energy equation for 

incompressible flow may be written as. 

56 



(4.40) 

4.2 Buoyancy Driven Flows 

Buoyancy forces drive magmatic fluids. Currie ( 1993) defines the buoyancy as the force 

experienced in a fluid because of variations of density in the presence of a gravitational 

field. Density variations are only important in the body force term of the Navier-Stokes 

equation, hence 

•Compressibility lS not of prime importance; only viscous effects are of primary 

importance. 

•Buoyancy driven flow employs the Boussinesq approximation, which enables the use of 

the incompressible conservation equation to account for the buoyancy forces (Currie, 

1993, Turcotte and Schubert, 1982). 

For Pressure 

• 
p = Po+ P (4.41) 

Density 

(4.42) 

And Velocity 

(4.43) 

Equations (4.41), (4.42) and (4.43) are then substituted into the continuity and the 

momentum equations (4.11) and (4.20) respectively, to obtain equations, which are 

applied to exact incompressible fluids, which have density variations or stratifications 

throughout (see page 312; Currie, 1993; Turcotte and Schubert, 1982). The Boussinesq 

approximation involves neglecting any other variation in density except those related to 

the gravitational term. Thus considering the density p constant, the Boussinesq 

approximation governing equations are: 
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The continuity equation: 

'V·V =0 (4.44) 

The momentum equation: 

(4.45) 

11pgez is the buoyancy term and ez is the unit vector acting in the positive z direction. 

Gravity is assumed to act in the negative z direction. 

4.2.1 Thermal Convection in magmas 

Thennal convection is a natural heat transfer process, which occurs when the motion of 

the fluid is driven solely by density differences associated with temperature gradients. 

Convection results from the emplacement of a body of fluid in an environment of higher 

or a lower temperature than that ofthe body. The temperature difference arising because 

of heat flow between the fluids causes a change in the density of the fluid in the vicinity 

of its surroundings or boundaries. This leads to a gravitational unstable situation because 

such density differences lead to a downward flow of the heavier fluid and the upward 

flow of the lighter fluid (Kreith and Bohn, 1993; Turcotte and Schubert, 1982; Currie, 

1993). The relationship for the density variations with temperature is expressed as 

follows: 

11 P = - Pofl(T- Y'o) (4.46) 

Equation (4.46) is valid only for moderate variations of temperature T from the reference 

value. However, a general representation for the equation of state (4.1) is expressed as 

follows after invoking the condition of incompressibility that. 
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(4.47) 

This implies retaining only the linear terms of the pressure and temperature difference in 

a Taylor series expansion. Assuming negligible compressible effects, the second term on 

the right vanishes and density is expressed as a function of temperature only (Currie, 

1993). Generally the property p is determined experimentally, except for ideal gases 

1 
where p = - . After substituting equation ( 4.43) into the equation of motion, the Navier-

Y: 
Stokes equations for thermal convection may be written. 

(4.48) 

p ~ + p(V · V)V = -Vp+ 1.lv
2V t pgp(T- I:)~ (4.49) 

(4.50) 

The buoyancy term couples the momentwn equation (4.49) with the energy equation 

(4.50). Hence both must be employed together to obtain a closed mathematical system 

(Currie, 1993). Both equation (4.49) and (4.50) must be employed simultaneously, since 

both involve the parameters V and T, since the velocity distribution is governed by the 

temperature distribution, but the temperature distribution depends upon the 

advection/convection of the heat and hence velocity distribution. Therefore, there is no 

possibility of determining one independent of the other (Tritton, 1977). The above 

information provides some of the reasons why free convection is hard to treat 

theoretically. Most of the information comes from experimental investigations. 
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4.2.1.1 Dynamic Similarity 

With such experimental investigations one needs to know when dynamic similarity 

prevails. Since there is no velocity scale, which is provided on the specification of forced 

convection, one cannot define the Reynolds number using the parameters involved in 

setting up a problem. Also a temperature differences scale B, will only govern how 

vigorous the motion is. After treating equations ( 4.49) and ( 4.50) by using dynamic 

similarity, Tritton (1977) demonstrates that dynamic similarity depends on two non­

dimensional parameters: 

Gr= gpfHJ;; (4.51) 

Pr = % (4.52) 

Equation (4.51) and (4.52) represent the Grashof and the Prandtl numbers respectively. 

The Prandtl number is the property of the fluid that restricts the transfer of information 

from one fluid, to the other; whereas the Grashof number, for any given fluid indicates 

the type of flow to be expected, that is, it indicates which dynamic processes are 

dominant, turbulent or laminar flow (Tritton, 1977). Physically, the Prandtl number is the 

ratio of momentwn change due to viscosity to diffusion of heat due to conduction. The 

Grashofnumber is the ratio of the inertia forces to that of the viscous forces. 

• Orders of magnitude of inertia versus the buoyancy force 

The inertia and buoyancy terms from equation ( 4.49), the momentum equation can be 

shown to yield the following approximation: 

IV 0 v vI ~ jg,b{ T- To )I (4.53) 
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which leads to: 

(4.54) 

Equation (4.53) yields the velocity scale to determine the rate at which the fluid flows as 

result of the temperature distributions, hence the approximate velocity magnitude. 

(4.55) 

.Orders of magnitude of inertia and viscous forces 

Comparing the inertia term with viscous terms, equation (4.49) now yields: 

(4.56) 

This relationship shows that, for large Grashof numbers, the viscous force is negligible 

compared with the buoyancy and the inertia forces. To deal with small Grashof numbers, 

Tritton (1977) compared the viscous force with the buoyancy force (see page 117 Tritton, 

1977 for details). However, in solving free convection problems, one must know not only 

the important dynamic processes involved in determining the velocity distribution and its 

associated parameters, but also which other processes are relevant in determining the 

temperature distributions and related parameters. The relationship below was established 

when the advection and the conduction terms of equation ( 4.50), that is the energy, 

equation, were used: 

Advection lv · V 11 pV d 
Conduction ~ IT& 2 Ji ~ ---;;-
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Then for large Grashof numbers, the equation above becomes: 

(4.58) 

Equation (4.58) is valid only for small Prandtl numbers (as in liquid metals). However, 

for Large Prandtl numbers i.e., for viscous fluids, it is valid for oils and magmas. 

The relationship in ( 4.58) is represented by the quantity below: 

g[Jd3B 
Ra = GrPr= -=---

UK 
(4.59) 

In equation (4.59), the Rayleigh number plays a crucial role in studies of horizontal 

layers. The Rayleigh number in equation (4.59) can be expressed in a form which 

expresses clearly the physical parameters involved, 

(4.60) 

The Rayleigh number is a function of the ratio of heat transfer by convection to that by 

conduction. During the cooling of the magma chamber, the Rayleigh number of the 

chamber decreases. This means that the heat transfer by conduction will eventually 

override that by convection (Rice, 1981 ). This decrease is due to the following. 

• During cooling of magma, the country rock heats up as the magma cools. Therefore the 

temperature difference B decreases, causing Ra to decrease. 

• Upon cooling the viscosity increases and therefore lowers the Rayleigh number. 

• Magma solidification first starts to occur along the limbs (the cooler sides) decreasing 

the depth of the chamber. Convection thereafter decreases because the Rayleigh number 

is directly proportional to d3
• The Rayleigh number, (for a parallel plate of infinite 

horizontal extent and heated from below) has the following flow regimes (Khrishnamurti, 

1970): 

62 



• lfRa.$; 1700, no convection occurs 

• If 1700.$; Ra.$; 3x 106 the flow is laminar 

• IfRa~ 3x106 the flow is turbulent 

The Rayleigh number is a useful parameter in characterizing the type flow profiles of 

magma chambers 

4. 3 Boundary layer thickness 

The wall boundary layer is defined as the region near the wall where the convective 

velocities decrease to zero from mainstream values. This decrease in velocity is caused 

by viscous shear stresses at the wall. The distance from the wall at which the velocity 

reaches at least 99% of free stream velocity is called the boundary layer thickness (Kreith 

and Bohn, 1993). Flow adjacent the wall is completely laminar. However, at a critical 

distance from the wall, the inertial stresses come to a point where they override the 

viscous stresses and small perturbations start to develop. A transition from laminar to 

turbulent flow occurs when these perturbations are amplified (Kreith and Bohn, 1993). 

Clearly from the definition of viscosity in equation (3.9) shear stresses are the largest 

within the boundary layer of the magma. Therefore the importance of the boundary 

thickness cannot be dismissed. Rice and von Gruenewaldt ( 1995) emphasized that 

scavenging occurs in the boundary layer and hence the boundary layer may collect PGEs. 

The boundary layer thickness o of magma can be estimated using the following method; 

Newton's law of cooling may be employed to estimate convective energy flow. 

q =hAT (4.61) 

Here q is the heat transferred through the system per unit time per unit area, fl. T is the 

temperature difference between the wall and the bulk temperature of the fluid and h is the 

film coefficient given by. 
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kNu 
h=­

d 
(4.62) 

The Nusselt number (Nu) which can expressed as a function of the Rayleigh number. 

Nu = AR" (4.63) 

where A and n are experimentally determined constants. For turbulent flow, A = 0.13 and 

n = 113 (see Kreith and Bohn, 1993; Tritton, 1977; Turcotte and Schubert, 1982). Hence, 

Nu = 0.13Ra113 (4.64) 

Tritton (1977) expressed the Nusselt number in terms of the boundary layer thickness 

d 
Nu = ­o (4.65) 

Equation (4.65) can be used to approximate the boundary layer thickness which is found 

to be. 

o ~ 1.7dRa- 113 (4.66) 

This relationship provides a useful check when performing finite element analyses of 

fluid flow. 

4.4 Incompressible Turbulence: 

The Rayleigh number calculations for magma chamber models used in this study are 

shown in table 4.1. These calculations give Rayleigh numbers above 106 for all the 

magma models used in this study. Using the turbulence criterion for flow between 

parallel plates (Krishnamurti, 1970; also see section 4.2.1.1), the Rayleigh number 

calculations in table 4.1 provide good rationale for invoking turbulence calculations. 
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Table 4.1: Rayleigh number and boundary layer approximations calculations for the 

magma models used in this study. 

Magma Models Depth (d) in (m) Rayleigh Numbers Ra-~ Boundary Layer 

(M) (Ra) Approx (8) 

M1 220 2.3X10u 7.6Xl0"5 0.129m 

M2 450 2.0Xl013 3.7X10-5 0.128rn 

M3 650 5.9X10u 2.6X1o-s 0.130rn 

M4 950 1.84X1014 1.8Xl0-5 0.132rn 

Turbulence is initiated when the inertial terms in the momentum equations greatly 

dominate the viscous terms in equation ( 4.49). Hence the instantaneous velocity of the 

fluid fluctuates at every point in the flow field. It is therefore convenient to express in 

terms of the mean value and a fluctuating component: 

(4.67) 

Most of the research on turbulent flow analysis in the past century used the concept of 

time averaging (White, 1991). Applying the time averaging to the basic equations of 

motion yields the Reynolds equations, which involve both mean and fluctuating 

quantities (White, 1991). The time average for the fluctuating component is zero, that is 

1 ~ 1 ~ 
-I~ • dt = 0; and for the instantaneous value is the average value: 8 I ~dt = (vx) . 
01 0 I 0 

Equation (4.67) is then substituted into the momentum equations, the time averaging 

leading to additional terms (see Ansys Flotran Theory Reference Manual (1977) for 

details). These additional terms when substituted into equation (4.20) and then after time 

averaging yields. 

(4.68) 
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Equation ( 4.68) is the mean momentum equation it contains a new term involving the 

turbulent inertia tensor V;VJ , this term is never negligible in any turbulent flow and it is 

the source of analytic difficulties, because not much is known about its prior analytic 

form (White, 1991 ). The components of V;•V1 • are related not only to fluid physical 

properties but also to the local flow conditions (velocity, geometry, surface roughness 

and upstream history), but there are no further physical laws available to solve this 

dilemma (White, 1991). However, some of the successful empirical approaches with 

narrow formulation from non-rigorous postulates shed some light on equation ( 4.68), if it 

is rearranged to display the turbulent inertia terms as if they were stresses, which they are 

not. Hence ( 4.68) is. 

(4.69) 

where 
[

8V 8~~ f • •) r ij = p ~ + - - \P V; V1 , mathematically, the turbulent inertia terms act as 
vx1 /Jx1 ~ 
'--v----' turbulent 

Laminar 

if the total stress on the system were composed of the Newtonian viscous stresses plus the 

additional stress tensor - (P V;•v1 •) • Much about the turbulent stresses is still unknown 

and the information that has been gained thus far is conceptual (White, 1991). The 

turbulent stress tensor above, also known as the Reynolds stress term, is generally 

expressed in the form (Ansys Flotran Theory Reference Manual, 1977). 

(4.70) 

The Reynolds stress anses from the correlation of two components of the velocity 

fluctuations at the same point. A non-zero value of this correlation implies that the two 

components are not independent of one another, for example, if Y.rVY is negative, then 
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moments at which Vx is positive, VY are more likely to be negative than positive, and 

visa - versa when V".t is negative. When transferred to co-ordinates at 45° to the x and y 

direction, this now correspond to anisotropy of the turbulence. Which means, different 

intensities in different directions (Tritton, 1977). Using 

(4.71) 

And 

(4.72) 

Yields 

(4.73) 

These equations demonstrate how such correlation arises in mean shear (see Page 246 

Tritton (1977) for details). The equation for energy ofthe mean flow contains a term with 

opposite sign; such a term represents transfer of energy from the mean flow to turbulence 

(see page 247 Tritton, 1977). The Reynolds stress is such a term, in that it removes 

energy from the mean flow by providing that energy for turbulence (Tritton, 1977). This 

removed energy finally dissipates as heat because of the effect of viscosity on the 

turbulent fluctuations. This loss of mean flow energy to turbulence is large compared 

with the direct viscous dissipation (Tritton, 1977). Attempts have been made to relate the 

Reynolds stress to the mean flow in such a way that will allow the mean flow 

development to be calculated without the detailed study of turbulence. An example of 

such a procedure is the concept of eddy viscosity (Tritton, 1977). If we use the eddy 

viscosity approach to turbulence modeling, these terms are then put into the form of 

viscous stress term with the turbulent viscosity as the unknown coefficient, for example 

(4.74) 
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This strategy is advantageous because the Reynolds stress terms are exactly the same as 

diffusion terms in the original Navier- Stokes equations. These two terms are then 

combined when the effective viscosity is defined as the sum of the laminar and turbulent 

viscosity, as shown in the following expression (White, 1991; Ansys Theory Reference 

manual, 1977). 

Pelf = /11 + Pt (4.75) 

The solution of the turbulence model is based upon the solution of the eddy viscosity. 

The eddy viscosity has the same dimensions as p1 , the laminar viscosity but it is not a 

fluid property. It depends on the flow conditions and the geometry (White, 1991). The 

eddy viscosity is modelled with the following expression (White, 1991 and Ansys 

Theory Reference Manual, 1977). 

E 2 

p=Cp-K-
t JJ E 

(4.76) 

where C)J is an empirical constant with the following experimental determined 

recommended values for attached boundary layer calculations, C)J = 0.09 (White, 1991; 

Flotran Ansys Theory Reference Manual, 1977). This value is modified for other 

problems such as jets, wakes and recirculation (White, 1991). The solution to the Navier­

Stokes turbulence equations is used to calculate the effective viscosity and effective 

thermal conductivity, using the following expressions. 

(4.77) 

k = k + fltCp 
eff CY 

I 

(4.78) 
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where keff is the effective thermal conductivity and CY1 is the turbulent Prandtl number. 

The turbulent Prandtl number relates the eddy diffusion of the kinetic energy E k and the 

kinetic energy dissipation rate ( e ) to the moment eddy viscosity. For wall element 

conditions the Reynolds number expressed as R7 = p E K 

2 

• The k - 8 turbulence model 
JJ.E 

is invalid near a no-slip boundary wall if RT value is very large (Ansys Theory Reference 

Manual, 1977; White, 1991). For such situations, the "Law of the Wall" and the "Log­

Law of the Wall" models are used to approximate the turbulent boundary layer velocity 

profile. These models also provide a way of determining approximate values for the wall 

shear stress if a value for the velocity parallel to the wall ( V tan) at a particular distance 

from the wall is given (White, 1991; Ansys Theory Reference Manual, 1977). The " 

Log-Law of the Wall" for the turbulent sub layer is expressed as follows 

(4.79) 

The Compflo, inc Flotran Theory Reference manual (1992) derives equation (4.78). 

These calculations lead to the following expression the near -wall shear stress equation 

(4.80) 

For the derivation of equation (4.64) see The Compflo, inc. Flotran Theory Reference 

Manual (1992). The near-wall viscosity equation is then calculated from the wall shear 

stress above as. 

(4.81) 

The wall element viscosity value calculated from equation (4.81) is larger than the 

laminar viscosity (Ansys Theory Reference Manual, 1977). However, the k- 8 model is 
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used to determine the turbulent kinetic energy near-wall values, where these values are 

calculated when the turbulent near- wall energy dissipation rate near a solid boundary is 

given by: 

(4.82) 

Equation (4.82) is the near-wall energy dissipation rate (Comp:tlo, inc. Flotran Theory 

Reference Manual, 1992). Alternatively, it is possible to use a wall formulation based on 

the equality of turbulence production and dissipation. The wall treatment can then be 

invoked by creating such conditions, a condition which yields an expression for a wall 

parameter y+ (White, 1991) such that 

11 r.pE xo 
y+ = ro Knw 

PeJJ 
(4.83) 

The wall element effective viscosity and thermal conductivity are based directly on the 

value of y+. For the laminar sub-layer it extends to ~+ hence 

For Y'" < ~+: 

fl.eJJ = fl. (4.84) 

(4.85) 

For y+ ~~+ (see Ansys FLOTRAN Theory reference Manual, 1977) for other details 

about the expressions (4.77) and (4.78) of the effective viscosity and the effective thermal 

conductivity (Ansys Flotran Theory Reference Manual, 1977; White, 1991). 
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4.5 Shear Driven Aggregation 

The shear driven aggregation process is a tendency to develop a concentration of 

suspended particles in the boundary layers. This results from the Bagnold effect or 

dispersive pressure Pv (Komar, 1972). 

1. (dV) P=aA 3p-
v dy 

(4.86) 

It is related to the volume concentration of solids in the flow by. 

1 
A= l 

(~r - 1 

(4.87) 

The relationship for viscosity that is employed in the above is. 

( )
- 2.5 

Peff = Po 1- rC (4.88) 

(see chapter 3 for details). The tenns for P, indicate it to be a powerful self -reinforcing 

process which, through A and J..l , grows as it concentrates, by effectively locking 

material into the regions where duj dy - 0 at the velocity peaks in the boundary layers. 

This yielded PGEs concentration profiles like those seen in the Bushveld complex 

(Rice and von Gruenewaldt, 1994,1995). Rice and von Gruenewaldt (1994,1995) gave a 

brief theoretical description of this collision process. The collision frequency b if between 

particles with radius ~ and r1 at concentrations of n; and n1 (that is, the number of 

particles per unit volume) is given as. 

(4.89) 
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This relationship implies that scavenging (particulate collision) will occur where shear is 

greatest. Shear also occurs within eddies in turbulent flow but they are maximum in the 

boundary layers confining the flow. In fig. (3.3b) of chapter3, material is transported 

from the center of the convection cell to the boundary layers where most of shear and 

thus scavenging occurs. This boundary layer is the region where most of the PGEs 

partitioned into sulphide liquid droplets. This may be cast in terms of continuous 

distribution function N(V, t) where N(V, t )dV is the particle concentration in the 

volume range V to V + dV . The collision frequency bif between particles of radius r; 

and r1 at concentrations N1 and N2 then becomes. 

(4.90) 

Which yields an equation for the rate of shear aggregation (see Rice and von 

Gruenewaldt, 1994, 1995 for details and references). That is 

oN:) = ( 4~) ~ 2~ j N(V2 )N(~ - J!;)[V/~- (y; - vJ~}t~ 
0 

- (:
7
J ~ 4~ N(Y; )j N(Y;)(Jt; y, + V2y,}t~ 

0 

(4.91) 

for the total particle concentration 

"' 
N = f n(V)dV (4.92) 

0 

For particles of uniform size, hence equation (4.90) reduces to: 

72 



(4.93) 

The solution ofthe above is then: 

(4.94) 

where ¢ is the volume fraction and a is the probability that collision will yield an 

aggregation. The parameter t, the 'retention time', is the time taken to sweep the fluid 

clear of certain particulate material of a given concentration N (Rice and von 

Gruenewaldt, 1994,1995). To estimate the volume fraction ofPGEs in the melt, Rice and 

von Gruenewaldt (1995) assumed a density of 17 gmj cm3 for PGEs with a concentration 

of 20ppb. They found the volume fraction to be about 1 0"9
. Rice and von Gruenewaldt 

(1994,1995) showed that the removal ofparticles to the boundary layers a of melt about 

0.5km thick to ore-grade material (SOOOppb) in a layer of the order of a 1m thick at 

convective boundaries can be accomplished in about 1 00000 years. These values are of 

the same order of magnitude as predicted by the solidification times of magma chambers. 

However, calculations showed that on initial emplacement, the heat outflow is greatest 

hence; the shear would be highest, during these first stages when the convective heat 

transfer was most vigorous. Therefore, half the concentration could have been secured in 

the order of 1 0000 years. These authors finally emphasized that, theoretically it is 

immaterial whether the PGE are present as particles or dissolved in magma. PGEs are in 

essence part of the melt volume and therefore within the shear environment of the 

boundary layer the sulphide droplets will be exposed to a high R factor. The work of this 

dissertation is to secure a feel for the effect of geometry on the location of regions of high 

shear, hence to location of economically interesting PGEs deposits. Computational fluid 

dynamics employing Finite Elements have been applied to accomplish this. 
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CHAPTERS 

NUMERICAL METHODS 

FINITE ELEMENT GOVERNING EQUATIONS FOR MAGMA FLUID FLOW 

5.1 Introduction 

The finite element method is a valuable tool in the solution of many engineering 

problems. In problems with complex geometry it is often difficult, if not impossible to set 

up a mathematical model without major simplifYing assumptions to obtain an analytic 

solution, which might, in any case, not be realistic. One must then resort to numerical 

methods to solve mathematical models. The numerical technique used in this work is the 

finite element method. Finite element methods possess flexibility for handling problems 

in which the boundaries are irregular or in which the medium is heterogeneous or 

anisotropic. Finite difference methods are much more difficult to apply to problems of 

great complexities (Wang and Anderson, 1982). These approximate methods provide a 

rationale for operating on the differential equations that make up the model to transform 

them into a set of algebraic equations (Wang and Anderson, 1982). For magma chambers 

of arbitrary shape no analytical solutions exist for conductive and convective heat transfer 

in the fluid, nor for surrounding country rock that may be of porous or non-porous media. 

5.2 The Physical problem 

A general physical problem often involves an actual structure or structural component 

subjected to certain loads. The idealization of the physical problem requires certain 

assumptions that lead to differential equations governing the mathematical model. The 

mathematical models addressed here are complex enough to require the use of finite 

element methods. Since the finite element methods are numerical procedures, it is always 

necessary to assess the accuracy of the solution obtained through them. If the accuracy 

criteria are not met, the finite element solution needs to be repeated with more refined 

solution parameters (finer meshes) until the desired accuracy is attained. A suitable 

mathematical model requires that it be constructed to secure maximum accuracy of the 
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solution. Interpreting the accuracy of the solution of a mathematical model can also give 

an increased understanding of the actual physical problem that needs to be modeled. 

Also, more refined mathematical models can be chosen to increase insight into the 

physics and to assist in deciding which changes in the physical problem are necessary to 

provide more meaningful results (Bathe, 1996). A flow chart of the processes involved is 

provided in fig ( 5.1 ). 

5.3 The Boundary Value Problem (BVP) 

The boundary value problems (BVP's) are suitable prerequisites to the study of time­

dependent problems, and are ideal to introduce and motivate the finite element methods 

(Reddy, 1998). The general approach in solving boundary value problems (BVP) is to 

specify the problem domain Q of interest first. Then formulate the problem by 

specifying the unknown functions and some of its derivatives (if any) on the boundary r 
and the initial time t = 0 (Reddy, 1998). There are several approaches in finite elements 

to solve the boundary value problem. That of "weighted residuals" will be employed in 

discussions here. 

5.4 The Weighted Residuals Method 

The governing differential equations and the boundary conditions of an arbitrary physical 

problem are expressed as (Cook, Malkus and Plesha, 1989; Reddy, 1998). 

D¢- f = 0 in domain Q (5.1a) 

B¢- g = 0 on boundary r (5.lb) 

Generally, equation ( 5.1) is difficult to solve for the exact solution ¢ = ¢(x, y), hence the 

approximate solution ¢> is found. The approximate solution may be assumed to be a 

polynomial ¢ = ¢(a,x,y) that satisfies the essential boundary conditions and contains 
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undetermined coefficients apa2 , .. . ,an. The approximate solution is obtained when the 

values of the coefficients a; are determined. The difference between the exact rjJ and the 

approximate ¢ solution should be reasonably small (Cook, Malleus and Plesha, 1989). 

The difference between the exact solutions and the assumed solution can be expressed as 

residuals Rn and Rr which are functions of x , y and a; . That is, 

~ = ~(a,x,y) = D¢- f (interior residual) (5.2a) 

Rr = Rr (a,x ,y) = B¢- g (boundary residual) (5.2b) 

The residuals may vanish for some values of x and y but not all unless ¢ is the exact 

solution ¢ = rjJ. Presumably, ¢ is a good approximation if the residual is small. Small 

residuals can be achieved by various schemes, each of which is designed to produce 

algebraic equations that can be solved for then coefficients a; . Some popular schemes 

are: Collocation, Least squares and the Galerkin approximation (see Cook, Malkus and 

Plesha, 1989; for details). 

These approaches are analogous to variational principles used in physics to minimize 

some physical quantity over the problem domain; perhaps energy. Galerkin's method is 

described below. 

5.5 Galerkin's Method 

The Galerkin method employs 'weight functions' w; = w;(x,y) to set the "weighted" 

averages of residual ~ to zero (Cook, Malkus and Plesha, 1989). The mathematical 

expressiOn IS. 

f w;(x,y)~dV = 0 for i = 1,2, ... ,n (5.3) 
v 
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J "W;Rrdf = 0 (5.4) 
r 

This implies the residuals are taken to be orthogonal to the weight functions. The use 

Laplace's equation on ¢ (equation 5.5 below) is a convenient example to demonstrate 

the application of Galerkin method to physical problems. That is, 

(5.5) 

where the unknown function ¢ is defined throughout the problem domain ( Q ) in a 

piecewise fashion. The function ¢ will be defined in terms of its approximate value l 
below. · 

5.6 The Approximate Solution 

The approximate solution is represented as a series summation where each term is a 

product of the nodal value ¢L at the node associated with the nodal basis function 

N L { x,y), which is also called the interpolation function because it defines the trial 

solution throughout the problem domain. The basis functions NL(x,y) will act as the 

weighting functions. The definition of node will follow. 

By definition, the approximate solution l is expressed as follows. 

M 

l = L lLNL(x,y) (5.6) 
L=l 

The trial solution l is now applied to a region of the domain of the problem, this region 

defined as an "element". The element is taken small enough so that this approximation to 

the actual solution is considered sufficiently accurate. The term ''finite element" arises 

from this context. The collection of elements, which contain a specific node L common to 
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all elements in the collection, forms a patch around L (the shaded area in fig 5.2). The 

nodal basis function NL is zero along the boundaries ofthe patch and at all points exterior 

to it. It is equal to unity at the nodal point L. Similar patches are constructed over the 

entirety of the problem domain. 

On substitution of the approximate solution, equation 5.6 into equation 5.1, the 

application ofGalerkin' s method then requires that. 

( 
IJ2t/ IJ2i) Jj 1Jx2 + IJl NL(x,y)dxdy= 0 (5.7) 

( 

2 ~ 2 A) 
The residual ~ + ~ is a measure of the extent to which the trial solution i (x,y) 

will not satisfy Laplace's equation. The residual must be zero throughout the problem 

domain to satisfy Laplace's equation (Wang and Anderson, 1982). Galerkin's method 

secures the condition that the weighted average of the residuals is zero throughout the 

problem domain. Equation (5. 7) leads to a system of M nodes algebraic equations to 

solve Laplace's equation approximately. The use:funess, hence the frequent use of 

Galerkin's method and the weighted residual method is evident in problems where 

variational principles do not exist for generating all governing equations. In such 

Fig 5.2 The shape of linear interpolation function NL(x,y) 
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situations Galerlcin's method or other weighted residual methods can be applied. The 

system of equations represented by equation (5. 7), i.e., those generated by Galerlcin's 

method, is the same as that of a system generated from a minimum dissipation principle 

(Wang and Anderson, 1982). 

To reduce the order of the derivatives in the intergrand of equation (5.7) integration by 

parts is applied to equation (5.7) resulting into the generalized expression of the form. 

II (a¢ 8NL a¢ 8NL] f (a¢ a¢ J ---+---dxd,,+ -n +-n Nda=O 
v &-a 0'0' ..,. ra.;x 0' Y L (5.8) 

The second term on the right handside of equation (5.8) is proportional to the normal flux 

through the boundary weighted by NL on the boundary. It is important to note that if the 

influx on the boundary is zero, the boundary intergral term 1 ( '1 n, + : n, l N L de;= 0 

becomes zero. Then the intergrand on the left side of equation (5.8) only contains first 

derivatives, which then simplifies the problem significantly into the form. 

If (oi IJNL + oliJNL]dxdy = O (5.9) 
n IJx IJx IJy IJy 

The differential equations in equation 5.5 are defined as the 'strong' form of problem 

whereas the integral expressions above (e.g., equation 5.9) are defined as the "weak" 

form of the problem. 

5. 7 Implementation of the Finite Element Technique 

The finite element technique is implemented with a variety of element types. However, 

because of simplicity and convenience only the triangular and rectangular elements are 

defined and discussed in the next sections. Thereafter, the finite element technique is 

finally implemented by the "element conductance method" which will be discussed later. 
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The latter method is more efficient in building up a system of equations sequentially from 

the algebraic equations presented in equation (5.7). 

5.7.1 Triangular elements 

Each triangle element is defined by three nodes at its comers. The nodes are the points 

within the problem domain at which unknowns are computed. These unknown ¢n are the 

values of the function ¢ at the points (indicated by the subscript n) constituting the 

nodes. The nodal function¢ is defined within each element in terms of the nodal values 

by basis or interpolation functions over the problem domain. Consider the example of the 

finite element mesh shown in figure 5.4. The problem domain is divided into eighteen 

triangles and each triangle is given an element number and three node numbers with one 

node for each comer. The nodes are numbered consecutively and systematically and 

column by colunm. This systematic numbering of nodes is not a requirement but offers 

great help for memory storage needs. The archetypal triangular element (see figure 5.3) 

has node numbers i,j and m in a counterclockwise fashion where the coordinates are 

designated as (x,,y;) , (x1,y1) and (xm,Ym) and the unknowns at the nodes: ¢, = ¢(xi'y 1) , 

¢1 = ¢(x1,y) and ¢m = ¢(xm,Ym). The trial solution ¢L (x,y) defined in equation (5.6) is 

now applied throughout the triangular element by linearly interpolating the nodal values 

¢,,¢1 and ¢m· 

This linear interpolation implies that with each triangular element e , the expression for 

the trial solution is: 

¢e(x,y) = a0 + a1x+ ~y (5.10) 

The values of the undetermined coefficients in equation (5.10) can be determined by 

setting up these equations. 

¢, = a0 + a1x1 + a2y1 

¢1 = a0 + a1x1 + a2y1 
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(5.13) 

Equations (5.11), (5.12) and (5.13) can be solved for a0,a1and ~ and substituted back 

into equation (5.10) with the resulting equation: 

where 

and 

N/(x,y) = 2~e [Cx1ym - xmy1)+ (y1 - Ym)x+ (xm- x)y] 

N/ (x,y) = 2~e [Cxmy,- x,ym)+ (Ym- y,)x+ (x, - xm)Y] 

y 

A 

m 

~----------------------------------• X 

(5.14) 

(5.15) 

(5.16) 

Figure 5.3: The Archetypal triangular element e. The nodes are labeled 
i,j and min counter -clockwise order. This diagram is taken from Wang 

and Anderson (1982) 
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(5.17) 

The area ofthe triangle Ae (ijm) in terms of its coordinates at the corners is expressed as 

follows: 

(5.18) 

The functions N/(x,y),N/ (x, y) and Nme(x,y) are the element interpolation or basis 

functions. These basis functions are functions of spatial coordinates x and y; and they 

define (l(x,y) in the element e in terms ofthe nodal values tA,¢i and tPm · 

5.7.2 The Rectangular Element 

The use of a four node rectangular is very restrictive in accomodating irregular 

boundaries. To accommodate irregular boundaries the quadrilateral element is 

transformed to the more useful isoparametric quadrilateral element (see appendix C, 

Wang and Anderson, 1982). The application of the Galerkin Method to rectangular 

elements requires that a basis function be defined over each rectangle. The four corner 

nodes are points at which the functions ¢L (t) are unknowns. The archetypal rectangle is 

orientated parallel to the coordinate axes with its center at the local origin and the corners 

of the rectangular element e are labelled in a counterclockwise order i,j,m and n 

beginning with the lower left comer. 

The trial solution ¢e (x,y, t) over the rectangular element is: 

The four basis functions, called the bilinear interpolations functions, are represented as 

follows: 
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N/(x,y) =! ( 1- :)( 1- ;) 

N / (x,y)= !(1+ :)(1 - ;) 

N me (X, y) = ! ( 1 + :) ( 1 + ; ) 

N/(x,y)= !(1- :)(1+ ;) 

where 

2b = Yn- Y; = Ym - Y1 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

(5.24) 

(5.25) 

Each basis function varies linearly with distance along any side and has the property that 

N/(x,y) is 1 at node Land 0 at the other three nodes. 

The element basis function now defined in terms of the time derivatives o;L at the nodes 

and the spatial variation of a;e over the element is as follows: 

Ae 8~ . 
8¢ N e ) Of/J; N e ( ) 'I'J N e ( ) b't/Jm N e ( ) b't/Jn --a-= i (x, y a+ j x ,y -a+ m x,y a-+ n x,y a (5.26) 

The same interpolation is used for the time derivative of the trial solution (Wang and 

Anderson,1982). The same definition can be applied for rectangle not centered at the 
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2 14 

3 15 

Figure 5.4 The Finite Element Mesh. Element numbers are circled and the node 
numbers are not circled. Diagram is taken from Wang and Anderson (1982) 

X 

origin but whose sides are still parallel to the coordinate axes. If the limits of integration 

are between -a and +a , and between - b and +b, a translation to the origin of the 

coordinate axes does not affect the value of the integration over the rectangle. 

5. 7.3 The Conductance Matrix 

A sequential system of equations from equation (5. 7) is built up by proceeding through 

the problem domain sequentially element by element and incorporating the contributions 

of element ijmto the three rows of any node L = i, L = j, and L = m until the 
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contributions of the last element have been summed. The first of the derivatives of 

equation (5.8) contains derivatives of the element-by-element definition ofthe NL. 

It is convenient to return now to the use of results obtained by integration by parts 

equation (5.8) which makes it possible to write equation (5.7) as a summation of integrals 

over individual elements equal to a boundary integral. 

(5.27) 

The function ¢ has been replaced by ¢ewhich is the funtion on the element e. The 

" o¢e o¢e 
equation which defines ¢/(x,y) shows that t3x and 0' can be written in terms of 

the nodal functions tA , ¢j and ¢m and derivatives of the element basis function (See page 

122, Wang and Anderson, 1982, for these expressions). When the derivatives of 1-e and 

!' are substituted back into equation (5.27), the result is: 

GL,!¢!+ ... +GL,i¢i + ... +GL,j¢j+ ... +GL,IIIt/Jm+ •.. +GL,MtPM = JL (5.28) 

Equation (5.28) represents a system of M node equations which can be represented in 

matrix form as. 

( Gl{¢} = {/} (5.29) 

The element conductance matrix is set up by subdividing the problem domain into 

elements evaluating the le:ft-handside of the integral equation (5.29) one element at a 

time. NL is defined in the element e about the patch L to be the basis function 

NLcwhere the element e made up of nodes i,j and m contributes only to three 

equations in which L = i,j and m and e contributes to only to terms in t/Jt , t/Jj and ¢m · 
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To put it succinctly, element e contributes to three rows and three columns of the 

coefficient matrix [G], which produes a 3 x 3 matrix 

(5.30) 

The individual terms in the element conductance matrix are found by evaluating the 

double integral over element e in equation (5.29) for the entries along row L. For their 

derivation see page 124, Wang and Anderson (1982). In summary, the expression for the 

Global conductance matrix is as follows: 

GL,i = LGL,Ie 
e 

(5.31) 

The Global conductance matrix is not assembled by using one row at a time. Instead the 

element contributions to the global coefficient matrix are sorted out by subscript pairs; 

L,i;L,j and L,m since the elements are sorted one at a time. Further details on the 

description of the sorting process, are found on page 125 Wang and Anderson (1982). 

The assembly of the global matrix is done strictly in terms of the geometry node and 

element labelling of the finite element mesh. The components of column vector {/} in 

equation (5.29) are given by the boundary integral in equation (5.27) one for each nodal 

basis NL. If L is the interior node and no side of an element in the patch about L is part of 

the boundary, then N L = 0 over the whole boundary. Since N L is the weighting function 

of the boundary integral then the entire integral is zero for all interior nodes L, hence 

fL = 0 if the subscript L represents an interior node, regardless of the boundary 

conditions. For details on the treatment of handling of boundary conditions when L 

represents the a boundary node see pages 126, 127 and 128, Wang and Anderson (1982). 

The next section discusses a commercial code which employs similar procedures to do 

calculations on convective and conductive processes in Newtonian and non-Newtonian 

fluids. 
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5.8 ANSYS 5.6 

Ansys is a commercial code used extensively in a variety of engineering and multiphysics 

disciplines. Ansys can do analysis ranging from structural, thermal, Computational Fluid 

Dynamics (CFD) to electromagnetics. However, for this study, use is made of the CFD 

code known as FLOTRAN. FLOTRAN in Ansys uses the Galerkin Finite Element 

Method and the Streamline Upwind Method to solve the Navier- Stokes, the continuity 

and the energy equations. Upwind methods utilize upstream data to estimate downstream 

conditions which conforms to the natural sequence of events, as opposed to the methods 

which violate physical laws by propagating information upstream (e.g Roache, 1972 ). 

The next sections give a brief description of how FLOTRAN applies the concepts 

discussed in the previous sections to perform calculations of :fluid dynamical problems. 

5.8.1 Discretization of the Governing Equations 

The fluid governing equations already discussed in section 4.1 all have the form of the 

generic scalar transport equation, equation (5.32). For the sake of describing the 

discretizing methods, the variable ¢ is used. This variable can represent either the 

temperature or a velocity component. The general scalar transport equation is: 

(5.32) 

The transient term is solved using the finite difference technique, whereas the advection 

term is solved using the Monotone Streamline Upwind method (see Rice and Schnipke, 

1985 for detail) and the diffusion and source terms on the right hand side are solved using 

the Galerkin Method. The Galerkin method can lead to small magnitude non-physical 

oscillations. These non-physical oscullations are eliminated by the Monotone Streamline 

Upwind Method (brief details about latter methods follow in section 5.8.3 ). 
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Table 5.1 Shows the generic scalar transport equations for incompressible Newtonian 

fluids 

Equation ¢ c, f; s, 
N avier-Stokes v 1 p, - Vp+ pg 

Energy T cp km iP -
a+ V.Vp+ <I> 

Continuity 1 1 0 

The meaning of the symbols bas already been explained in Chapter 4. 

The discretisation essentially consist of deriving the element matrices assembled into the 

form: 

[~transient]+ [ Ae advection]+ [ Ae diffusion D{ rPe} = { se;} (5.33) 

The Galerkin method will be used to form element integrals, (see equation (5.27)). The 

weighting function for the element will be denoted by We . This is also called the shape 

function (Ansys Theory Reference Manual, Spencer et al, 1997). 

5.8.2 The Transient Term 

In solving parts of the differential equations, steady-state (time-independent) problems 

are only addressed when the time-dependent (transient) solutions are very small, 

however, the transient (time-dependent) solutions are more convenient. The use of finite 

difference or the finite element techniques depend on the complexity of the problem 

domain and which method best describes the problem in the most simple, efficient and 

cost effective manner with regard to computational resources, for instance computer 

memory and time. Ansys uses both of these techniques. 
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The transient analysis is preferred over a steady-state approach to solve flow problems 

since it gives an insight into the behaviour of the fluid flow at its initial stages before 

reaching a fully developed flow. The finite element technique used by Ansys for the 

transient term is shown in equation (5.34) below. 

(5.34) 

Total mass is employed such that. 

(5.35) 

The transient term is then treated with a backward difference constructed by a 

discretization process which uses a Taylor Series expansion that is a function of 

internodal spacing. For example for an arbitrary time-step nand its immediate backward 

time-step n-1, the Taylor expansion for ® at time n is, 

(5.36) 

where ® = p¢ and 11 t is the time interval between times n-1 and n and HOT are the 

Higher Order Terms. After neglecting higher order terms, equation (5.36) is represented 

as. 

~I ® -® - = n n- ! + 0(11t2) 
a n 11t 

(5.37) 

The order of error is denoted by 0 ( 11 t2 
) . Flotran uses three backward differences with 

time steps n-2, n-1 and nand the three time intervals associated with them leads to. 
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(5.38) 

The nth time step produces a contribution to the diagonal of the element matrix which 

assists convergence, while the derivatives from the previous time steps form 

contributions to the source term. 

5.8.3 The Advection Term 

The Galerkin finite element method gives rise to central-difference type approximations 

of differential equations. This method when applied to most ·structure or heat conduction 

problem leads to symmetric stiffuess matrices such that the solution ends up possessing 

the best approximation property; this minimizes the difference between the finite element 

and exact solution to a certain norm. However, a serious drawback of this method is 

encountered when it is applied to problems involving fluid flow or convective heat 

transfer. The matrix associated with the convective term is nonsymmetric and as such the 

best approximation is lost. There are some terms for which the Galerkin method produces 

spurious results in parts of the problem domains used (Rice and Schnipke, 1985). In 

practice these solutions are often corrupted with spurious node- to-node oscillations or 

'wiggles'. The reason is that for high Reynolds or high Peclet numbers the downstream 

boundary condition forces a rapid change in the solution. The only way to eliminate 

these the oscillations is to do a severe mesh refinement such that the convection no longer 

dominates on an element level. Mesh refinement is needed in regions where accurate 

representation of the solution is required but if a global solution feature is desired mesh 

refinement is needed only to prevent oscillation. This provided motivation for the 

development of an alternative to the Galerkin formulation which overrides the spurious 

oscillations regardless of the mesh refinements. The Upwind differencing method for the 

convective term was developed to yield 'wiggle' -free solutions (Brooks and Hughes, 

1982).The use ofupwind approximations for the advection terms, to stabilize advection­

dominated transport and flow problems has received much critical attention in recent 

literature (Brookes and Hughes, 1982). It essentially amounts to approximating the 
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convective derivatives with solution values at the upstream central nodes of a three­

node-stencil; its drawback is that the upwind differences are only first order accurate 

whereas the central -difference is second order accurate. The loss of accuracy is shown 

in diffuse solutions. The problem of the diffuse solutions were addressed when the 

upwinded method was reconstructed by adding the artificial diffusion (or viscosity) to the 

central - difference treatment. The inclusion of the artificial diffusion in the upwind 

method generated severe criticism of the upwind method. For further details on artificial 

diffusion, see Brooks and Hughes (1982). Because of the impetus provided by the fact 

that upwind methods are the only means to secure stable solutions for intense flow, these 

criticisms have been addressed and the treatment of the upwinded convective terms have 

been developed in a variety of ways. For example: 

• By modifying the weighted function to achieve the upwind effect: since the modified 

weigh function is applied to all terms in the equations, the upstream node is weighted 

more heavily than the downstream of a node. This method is consistent with Petrov­

Galerkin method of weighted residuals. 

• By the Optimal 'smart' Upwind method: this was developed by Hughes from the 

Variational principle, which demonstrated the upwind method may be derived from a 

firm theoretical basis. This method leads to a system of matrix equations that give exact 

solutions for ·1-D problems, but when generalized to more complicated, multi­

dimensional problems, it leads to excessive diffusion perpendicular to the flow direction. 

However, overly diffuse results also appear in transient problems, or when source terms 

are present. Recent developments have shown that when the upwind method is 

constructed with the Petrov-Galerkin weighted residual formulation none of the above 

problems are encountered (Brooks and Hughes, 1982). All of the above problems are 

eliminated when the Streamline Upwind /Petrov-Galerkin formulation is used which has 

the robustness of a classical upwind method. Furthermore it is not constrained by any of 

the artificial di:ffusion problems described above, since the upwind method adds diffusion 

or viscosity that acts only in the flow direction. If extended to the Petrov-Galerkin 

formulation, the standard Galerkin weighting function is modified by adding a streamline 

of upwind perturbation which acts only in the flow direction and the modified weighted 

function is then applied to all terms in the equation resulting in a consistent residual 
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formulation. For more details see Brooks and Hughes (1982). The Monotone Streamline 

Upwind method is used by FLOTRAN to solve the Navier-Stokes advection term. This 

method, a detailed description of which appears in Rice and Schnipke (1985), is 

summarized as follows. It basically approximates first order derivatives by advection 

transport where it is assumed that there is no transfer across characteristic streamlines: all 

the transfer occurs along the streamlines with no physical diffusion (pure advection). The 

Monotone Streamline Upwind approach represents a direct streamline upwind 

approximation rather than modifying the weighting functions as is the case with the 

previously outlined methods, with the result that it treats test cases without the 

generation of non-physical spatial oscillations. 

For a 3-D steady state flow dominated by advection, this approach can be described as 

follows: when the equation below 

8(p~¢) 8(p~¢) 8(p~¢) - 0 
a.: + 0J + & - (5.39) 

IS written in terms of the streamline distance s, the streamline coodinated system 

becomes one dimensional and hence is expressed as follows: 

d(p~¢) = 0 
ds 

(5.40) 

The above equation (5.40) was the basis for the streamline approximation used in the 

work of Rice and Schnipke (1985). The above equation indicates that, in the absence of 

other effects such as diffusion or source terms, the value ¢ is constant along the 

streamline. The streamline equation (5.40) is assumed constant on an element 

d(p~¢) 
ds = constant (5.41) 

Hence, with this assumption, Rice and Schnipke (1985) were able to evaluate the 

contribution of the advection term to the element matrix directly. The element advection 

term was then expressed as follows: 
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(5.42) 

This formulation is made for every element, each of which will have only one node 

which receives contributions from the element. The gradient can be calculated using a 

simple difference formula: 

d(p~¢) (p~¢)u - (p~¢)D 

ds !u 
(5.43) 

where D is the subscript for value at the downstream node, U is subscript value taken at 

the location at which the streamline through the downwind node enters the element and 

!J. s is the distance from the upstream point to the downstream node. The value at the 

upstream location is unknown but can be expressed in terms of the unknown nodal 

values that it lies between. The figure 5.5 demonstrates the Streamline Upwind Approach 

along the streamline. This process consists of cycling through all the elements and 

identifYing the downwind nodes. A calculation is made based on the velocities to 

determine the direction the streamline exited upwind node. Weighting factors are also 

calculated based on the proximity of the upwind location to the neighbouring nodes. 

5.8.4 The Diffusion term 

The expression for the diffusion terms comes from integration over the problem domain 

with the weighting function. The diffusion contribution is then 

(5.44) 

The :x, y and z terms all treated in the same manner. After integrating the x-direction 

terms by parts , the outcome is. 
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(5.45) 

Then the derivative of¢ is replaced by the nodal values and the derivatives of the weight 

function¢ . 

Upstream Value 

Downstream Value 

Figure 5.5: Streamline Upwind Approach. This Diagram is taken 
from the Ansys Flotran Theory Reference Manual 

The term 'downwind' defines a node for which the negative velocity vector at the node 

points back into the element. See Rice and Schnipke for more details (1985) 

(5.46) 

(5.47) 

The diffusion matrix may then be expressed as follows: 

3 

[ A/ ttfUsion] = J I ~ er ;~ e dV (5.48) 
k=l 
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5.8.5 The Source terms 

The evaluation of the source terms is accomplished by multiplying the source terms by 

the weighting function and as shown by figure 5.5, then integrating over the volume. 

(5.49) 

5.9 Segregated Solution Algorithm 

This solution algorithm is a process used by FLOTRAN to solve each degree of freedom 

such as temperature, pressure and the velocity components. The energy and the continuity 

equations are solved sequentially (see, Ansys Flotran Theory Manual, 1977; for details 

on the procedures leading to formation of the coupling equations ). These equations are 

coupled such that each degree of freedom is solved with the intermediate of the other 

degree of freedom. The process of solving all these equations and then updating the fluid 

properties is called a global iteration. See the Flow Chart in Figure 5.6, which shows a 

detailed summary of the steps involved. 

5.10 Solution Methods 

In most field applications, a flexible model which allows consideration of an anisotropic 

and an heterogeneous medium is desired. There are adequate iterative techniques for 

solving simple problems but more complex models are best solved through the use of a 

combination of direct methods and iteration. Direct methods solve a system of linear 

algebraic equations by using only a sequence of operations whereas the iterative methods 

write and solve a generalized expression repetitively for every node in the problem 

domain. A combination of both is necessary (Wang and Anderson, 1982). These 

algorithms require repeated solutions to the matrix equations during global iterations, 

because in some cases an exact solution must be obtained, while in others approximate 

solutions are adequate and in certain cases the equations need not be solved at all. It has 
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also been found that for the momentum equations, the time saved by calculating 

approximate solutions offi;ets the slightly slower convergence rates one obtains with an 

exact solution whereas for the pressure equation, exact solutions are required to ensure 

that the principle of mass conservation is maintained. For thermal problems with 

constant properties, there is no need to solve the energy equation at all until the flow 

problem has converged. Therefore, to accommodate these diverse requirements, 

FLOTRAN use two types of solvers, and both of them are iterative. The first is the 

sweeping method known as the Tri-Diagonal Matrix Algorithm (TDMA) and the second 

one is the Semi-Direct solver known as the Conjugate Direction Method. The user has 

control over which method to use for a degree of freedom. 

5.10.1 Tri-Diagonal Matrix Algorithm (TDMA) 

This method consists of breaking down the problem domain into a series of tri-diagonal 

elements where the entries outside the tri-diagonal are treated as source terms using the 

previous values. The latter technique is named the Thomas Algorithm and is explained 

briefly in page 96 of Wang and Anderson (1982). 

A detailed explanation of the TDMA is given by Patankar (1980). However for a 

completely unstructured mesh or an arbitrarily numbered system, the method reduces to 

the Gauss-Seidel iterative method. Since it is an approximate method, the TDMA is 

repeatedly executed until it satisfies a user defined convergence criterion. For the 

calculations done in this research use has been made of the TDMA method. 

5.10.2 The Conjugate Direction Method 

This method is a combination of Conjugate Gradient and Conjugate Residual systems, 

where the first is for symmetric systems and the latter for non-symmetric systems. 

Iterative methods are used to attempt a solution to the equation of interest, where an 

incompressible flow is used for the pressure equation. The method develops a solution as 

a linear combination of orthogonal vectors. These vectors are generated one at a time 

during an iteration. In the Conjugate Gradient Method, the symmetry of the coefficient 
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matrix and the process of generating vectors ensures that each one is automatically 

orthogonal to all the previous vectors (Ansys Flotran Theory Reference Manual, 1977). 

In this method unlike with the TD~ a convergence criterion and a maximum number 

iteration are specified by the user. The conjugate methods was not used in this work's 

calculations. 
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Figure 5.6. Flow chart showing a summary of the steps in FLOTRAN's solution 
orocedure.as outlined Flotran Theorv reference manual (1977). 
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CHAPTER6 

MAGMA AND COUNTRY-ROCK MODELS OF THE GREAT DYKE, 

ZIMBABWE 

Introduction: 

This thesis models a magma chamber and country rock intrusive system with a particular 

attention to the Great Dyke configurations. The work discussed in the previous sections 

provided and developed a clear and finn insight into the understanding of the theoretical 

and experimental foundation needed by the author to engage in this kind of research. This 

knowledge accumulated from understanding the background theory of fluids, their 

behaviour and the various processes involved in magmas, made it possible to construct 

and model both transient laminar and turbulent flows in magma chambers. The physical 

properties of magmas used in section 3 to plot curves in figures 3.4 and 3.5, were taken 

from experimental data derived from already cited literature. However, at this stage a 

closer look will be made at the values of the coefficients calculated using the curve-fit 

forinula, the boundary conditions, initial conditions and the actual structure of the models 

used in this study. 

6.1 Magma and Country Rock physical properties 

This section in table 6.1 lists only the values used for modeling Colombia River Basalts 

( CRB) because the magma fluid properties were already discussed in the previous 

sections. The country rock model is treated as a solid and non-porous medium with 

constant physical properties. These physical properties were derived from those of 

continental crusts with depth thickness varying from 0-30 km (see Bott, 1982). The 

models used simulate a magma chamber without a country rock and a magma-country 

rock intrusive system with the magma chamber completely surrounded by the country 

rock. The values for the physical properties of the country rock are listed in table 6.2 
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Table 6.1: The physical properties for modelling Colombia River Basalts (CRB) magmas 

Fluid Property Coefficient Value 

1. Viscosity Nominal Viscosity ( Jio) 15848.932 (Pas) 

Nominal Temperature (To) 1473 (K) 

Linear Coefficient ( a 1) 
35354.589 (K.-1

) 

Quadratic Coefficient ( a2 ) 
32863277.255 (K.-1 

)
2 

2. Density Nominal Density (p0 ) 2600 (kg/mj) 

Nominal Temperature (To) 1473 (K) 

Linear Coefficient ( fJ) 7.61 Xl0-5 (K-1) 

Quadratic Coefficient ( r ) 0.01X10-5 (K1i 

3. Thermal Conductivity Constant ( k) 2 J.m-1.s-1.K-1 

4. Heat Capacity Constant ( C P ) 1200 J.kg-1.K-1 

Table 6.2: The Physical properties used for the country rock model 

Continental Crust physical properties Values 

Density 2850 ( kg.m-3
) 

Thermal Conductivity 2.5 (J.m-1.s-1.K-1
) 

Heat Capacity 1170 (J.kg-1K-1
) 

6.2 The Boundary and initial conditions 

It is important to mesh the model first before applying boundary and initial loads to 

obtain a solution. Both the magma chambers and country rock were meshed. Zero 

velocity wall boundary conditions (includes no- slip boundary conditions) were applied to 

the exterior nodes of all the magma chambers (for example, see figure 6.1). Further, this 

stipulates that no fluid leaves or enters the magma chamber. The initial condition 
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Country 
Rock Model 

temperatures used for all the magma, that is, for the intrusive melts and the magma 

chambers without the country rock, were applied to all nodes in the beginning of the first 

time step and allowed to change upon cooling. 

J\ ANSYS Graphics EPLOT 1!1~ 119 

ELEIID"l'S 

!!AT BUll 

JAil 29 2002 

300K 

Initial condition 
temperature: 
1473K 

No slip boundary 
velocities: (Yx=Yy=O) 

Fieure 6.1: Model4 (M4) with the applied boundary and initial conditions. 

Heat 
flux = 0 

400K 

The country rock used in this thesis is extended from the surface of earth to a depth of 

3km down from the surface. The upper and bottom surface boundary temperatures used 

for the country rock simulated a geothermal gradient with temperatures rising with an 

increase in depth at a rate of 30° C.km-1
• Zero heat flux was assumed along the side­

walls of the country-rock to simulate adiabatic walls with no heat leaving the country 

rock system (see figure 6.1 and table 6.3 for details on the initial and boundary conditions 

used). Only 2-D calculations were performed. Along the surface of the country rock an 

ambient temperature (20°C, i.e. ~300K) at normal atmospheric pressure of 101.325KPa 

was applied to simulate atmospheric conditions. These surface boundary temperatures are 
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temperatures are similar to those used by Hayba and Ingebritsen ( 1997) since they were 

applied to simulate heat conducted into the country rock from the deeper parts of the 

wanner crust. The top surfaces of all the magma models are emplaced downwards to a 

depth of 1km below the surface of the earth. The depth thickness for the magma models 

from their roof varies with 1. 76 km for model1, 1.69 km for model 2, 1.63 km for model 

3 and finally a depth 1.69km for model4. 

Table 6.3: The initial and Boundary conditions for 2-D magma and country rock models 

Boundary and Initial Magma Chamber Country Rock 

Conditions 

Boundary Conditions Velocity: Vx = 0, VY = 0 Temperature: Top surface= 
0 

Fbced temperature: 800 oc 20 C (~ 300K) and a 

(1073 K) Geothermal Gradient of 

30°C.km- 1 

Initial Conditions Temperature: 1200°C Temperature: Geothermal 

(1473 K) Gradient of30 °C.km-l 

The reasons for such extensions are outlined in chapter 1.1 of this thesis. The magma 

models used were completely surrounded by the country rock. This was done to gain a 

better insight of the magma processes during crystallization. The next section contains 

figures of all the magma and country models used in the analysis that is, mesh sizes, 

mesh types and element types. 

6.3 The Models · 

6.3.1 Mesh control 

Most of the finite element analysis models are built using a solid model or geometric 

model. The Computer Aided Design (CAD)-type representation of the structure defines 

the geometry to be filled with nodes and elements, which are used to facilitate applying 

loads or other analysis data. It is only possible to obtain a solution when all the analysis 

information is transferred to the finite element analysis (FEA) model. Meshing is 
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therefore defined as a process of creating a finite element model (nodes and elements) 

from a solid model (see the introduction to Ansys 5.3, 1996). The Ansys mesh controls 

are the most important step in the analysis because the decisions made at this stage in 

model development will profoundly affect the accuracy and the economy of the analysis. 

It allows one to establish factors such as the element shape, mid-side node placement and 

the element size to be used in meshing the solid model (see documentation on Ansys 5.6, 

2000). 

6.3.1.1 Ansys Mesh Tool 

The Ansys mesh tool provides a convenient path for common mesh controls, as well as 

most frequently performed operations. The mesh tool is an interactive 'tool box'. There 

are many different functions available on the mesh tool to control size; a few of these are 

listed below. The reader is urged to see Ansys 5.6 (2000) online document for details. 

• Controlling 'Smart -sizing' levels 

• Setting element size controls 

• SpecifYing meshing type (free or mapped) 

• Refining meshes 

• "Global" element sizing 

There are several reasons why differing or mixed mesh sizes have to be chosen to control 

an analysis (see, Ansys 5.6 (2000) online documentation and the introduction to Ansys 

5.3, 1996). The 'smart-sizing' element is the newest and most effective ofthese controls. 

The smart element sizing meshing feature creates initial element sizes for free meshing 

operations providing a range of setting from coarse to fine mesh. The setting range is 

between 1 for extremely fine mesh and 10 for a very coarse mesh. However, it is 

recommended to stay within the range of 4 to 8 (Ansys 5.3, 1996; Ansys 5.6, 2000). To 

illustrate this operation for instance, if smart sizing is used on a model that contains only 

an area, Ansys will use the area to calculate the guiding element size that it should use to 

mesh the model Alternatively, if ' smart-sizing' is used on a model that contains both an 

area and a volume, Ansys uses the volume to calculate the guiding element size for the 

model, even if the area in the first model (area only) and the area in the second model 
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(area and volume) are exactly the same and the 'smart sizmg' setting is the same. 

Therefore, the elements Ansys uses to mesh the first model (area only) will not be as 

coarse as the elements it uses to mesh the second model (area and volume) because 

Ansys attempts to prevent volumes being meshed with too many elements (Ansys 5.6, 

2000). The global element size operation was used in this thesis to prevent the latter 

problem, because the use of global element size ensures that the size of the elements 

remains the same for both the country rock and magma models. In this study 40-mesh 

element size for all the models were used for both the magma chambers and the country 

rock. The mesh element sizes used for this thesis were based on the calculations done by 

Harrison (1998). The mesh refinement experiments performed by the latter author tested 

the effects of mesh refinement on solution accuracy (see Harrison 1998, for details). 

In finite element calculations the solution accuracy is based on mesh sizes; the finer the 

mesh, the higher the solution accuracy. 

6.3.1.2 Free or Mapped Meshing 

Ansys emphasizes the importance of choosing the type of meshing (free or mapped) to be 

used for a model. 'Smart-sizmg' can be activated for both free and mapped meshing for 

quadrilaterals and triangles. However, the "Smart-sizmg' should be deactivated when 

meshing hexahedral and tetrahedral elements. Ansys can only map mesh hexahedral 

elements and only free mesh tetrahedral elements, it cannot perform the reverse to both 

elements. The magma models used for this research had irregular or complex geometries. 

Ansys could not perform a global element size control on the models using the 

quadrilateral element type of shape to produce a mapped mesh so it was required to 

perform a free mesh in these models. 
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6.3.1.3 Mesh Refinement 

In a local region, a mesh refinement can in general be done in either of these two 

situations listed below: 

• In specific regions of the model where you would like to have a finer mesh, or 

• After you have completed the results of the analysis and would like more detailed 

solution in the regions of interest 

Ansys allows mesh refinement for all areas; volume meshes composed of tetrahedra and 

also around local specified nodes, elements, keypoints and lines. However, Ansys does 

not allow local mesh refinement for volume elements other than tetrahedra. The level of 

the mesh refinement can be specified from 1 to 5. The value of 1 provides a minimal and 

a value of 5 a maximum refinement. These refinement values have different element 

edges for the refined region. For example, level 1 has an element edge of approximately 

half the original edge lengths and level 9 has an element edge length of one-ninth the 

original edge lengths (see Ansys 5.6, 2000, for details). An element mesh refinement of 

level 2 and edge element of one third was applied to magma model 1 for the present 

calculations. See figure 6.2. Figure 6.2 is the model of the magma chamber with a free 

mesh of a global element size with 40 edge elements prior to the mesh refinement 

operation. Whereas in figure 6.3, the magma chamber is meshed refined with line 

elements along the walls, sides, top and bottom surface. The importance of the mesh 

refining operation cannot be over emphasized. Ansys clearly states that during the mesh 

refinement operation it is standard practice to put more elements in a region with higher 

solution gradients. Sufficient mesh densities are required to enable the program to capture 

the finer details of the nature of the phenomena investigated. The higher the mesh density 

over those regions; the better the results. There is a distinct difference with meshes in 

both models of figure 6.2 and 6.3, since in figure 6.3 one can clearly observe the impact 

of the mesh refinement operation. The mesh refinement was only performed on the first 

model of the magma chamber in figure 6.3. This was only for illustration purposes. 

However, mesh refinement has the disadvantage of consuming computational time, 

hardware resources and computer memory, hence the mesh size of 40 global edge 

element size used for rest of the calculations. 
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Tbis choice arises from the mesh refinement experiments done by Harrison (1998), which 

provide a good rationale for not using the mesh refining operations in the present 

calculations. 

Figure 6.2: A free quadrilateral element mesh of 
Magma Chamber model 1. This model contains no 
mesh refinement. The model has been meshed using 
the latest Ansys5.6 version 

Figure 6.3: Mesh refined magma model I. The 
line element mesh refined operation was 
·performed along the walls, the sides and the top 
surface of the magma. 

6.3.1.4 Interior mesh: Mesh expansion control and transition 

The mesh expansion option of Ansys can be used to control an interior area of the model 

if there are no lines to guide the size of the mesh. This command is used to guide the 

mesh from a fine mesh on the boundary of an area to a coarse mesh in the interior. The 

transition option operation is used to control the rate of transition from fine to coarse 

element. The expansion option is used to size the internal element in an area based on the 
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size of the element on the area boundaries. The value, which is the expansion or 

contraction factor, ranges from 1 to 4. If the value is less than 1, a mesh with smaller 

AN 

Figure 6.4: Magma model 2 with a quadrilateral free mesh. The 
right left limbs and bottom thickness is 450m. The depth from 
the top surface to the bottom is 1.69km 

elements in the interior will allowed. Values for this option, should be greater than 0.5 

but less than 4. However, the mesh transition option controls how rapidly the elements 

are allowed to change in size from the boundary to the interior. For the best results, the 

value must be greater than 1 and be less than 4 (Ansys 5.6, 2000). The mesh size, mesh 

refinement and mesh distribution was controlled rigorously in this study. 
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6.4 Model Structure 

Only the first magma model without surrounding country rock was mesh refined. The 

calculations were performed as an illustration to show the impact of mesh refinement on 

physical processes such as the convection of fluid, wall shear, temperature distribution 

and fluid velocity of the magma chamber upon cooling. However, most of the 

calculations performed on the other rest ofthe models with and without the country rock 

were without mesh refinement. The figures 6.4 to figure 6.6 are meshed models of 

magma chambers used with different geometries. The magma chamber models are 

emplaced lkm deep from the top surface of the earth crust. The top surfaces of the 

magma models are 2.6 km in length extending from the center of the country rock to the 

sides. The figures 6. 7 to 6.10 show two-dimensional rectangular meshed models of 

J\N 

Figure 6.5: Magma model3. With thickness of 
650m along the right and left limbs and the bottom 
surface. The depth thickness from the top of the 
surface to the bottom is 1.63 km 
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Figure 6.6: Magma model 4. The thickness along 
the left and right side walls and bottom surface now 
extended to 950m. With a depth thickness of 1.54 
km from the top surface to the bottom. 



country rock with a breadth of 6 km for the top and bottom surfaces and a depth of 3km 

down from the surface of the earth crust, with a total area of 18km2
. The magma models 

had 40 elements along each edge and consequently the inner edges of the country rock 

also had 40 elements each. The procedure was that contact surface nodes on the magma 

chamber and the country rock coincide. The magma chamber models in figures 6.2 to 6.6 

fit exactly into the central cavities of country rock models in figures 6. 7 to 6.1 0. 

For simplicity, linear equations were employed in the exposition of the finite element 

methods chapter 5. The equations of fluid mechanics are non-linear and their treatment 

by finite elements can be found in many texts such as Wang and Anderson (1982). The 

results obtained in sections 7.2 and 7.3 include variable viscosity and density. The latter 

results were obtained by employing the Ansys Sutherland liquid law to calculate the 

variations in viscosity with temperature or vise-versa. The second order polynomial was 

employed to compute the density variations with temperature. The thermal conductivity 

was assumed constant (Ansys 5. 7 online document 2000). The non-Newtonian Power 

Law viscosity model was used to obtain the results shown in sections 7.4 and 7.5 because 

the Sutherland liquid law is restricted to Newtonian fluids. Hence, by using Ansys 5.6 

Sutherland liquid law could not be utilized to calculate the shear distribution within the 

magma. The UserVisLaw (User programmable subroutine) facilitated the usage of the 

Power law to calculate the shear distribution within the magma chamber (Ansys 5.7 

online document 2000). 
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Figure 6.7: Country rock model 1. An intrusive 
system, the void region showing the emplacement 
of magma model 1 in figure 6.2 

Figure 6.9: Country rock model 3 with the empty region 
emplaced with magma model 3 in figure 6.5. 

~ig~re 6.8: Country rock model 2 with the empty region 
mdtcates the emplacement of magma model2 in figure 6.4. 

Figure 6.10: Country rock model4, the empty region 
emplaced with magma model 4, in figure 6.6 
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7.1 Geothermal Gradients 

Chapter 7 
Results 

The earth's surface wall boundary temperature used was 20°C (-300K) simulating 

ambient air or standard atmospheric conditions. A geothermal gradient of 30°C/km from 

the surface to 3km downwards to the bottom of the country rock was applied. The 

geothermal gradients simulate the temperature distribution within the country rock before 

magma emplacement. Steady-state computations were performed using the Ansys 5.6 

Flotran code to generate the geothermal gradients. The geothermal gradients of the 

models M1 to M2 are displayed in figures 7.1, .7.2, 7.3 and 7.4 below. 
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7.2: Velocity and temperature distribution profiles for model2 (M2) 
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Figure 7.5: Velocity profile, 1 year . 
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Figure 7.21: Temperature profile, 100 years. 
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Figure 7.23: Temperature profile, 1060 years. 
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Figure 7.24: Temperature profile, 2557 years. 
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7.3 Temperature and velocity distribution profiles for model4 (M4) 
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Figure 7.29: Temperature profile in 10 years 
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7-28: Velocity distribution profile in 1 year 
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Figure 7.31: Temperature profile in 20 years 
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Figure 7.33: Temperature profile in 30 years 
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Figure 7.32: Velocity profile in 20 years 

:~ANSYS Graphoc: PlVECT.V .... VECTHEM.ON.O 1!!11!1. 

USYS 5.6 

JOL 25 2001 
1-------------- --='---""---1 Z2:53:50 

YtCTOR 
S1IP•2 
SUB =17 
TIJl!::,947!:+09 

' IODE=l790 

111X•.002023 

GJ .211I-03 
0 .452E-Ol 
0 .693E-03 
D .934E-03 
0 .001175 
0 .001416 
0 .001857 
0 .002098 

Figure 7.34: Velocity profile in 30 years 
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Figure 7.37: Temperature profile, 50 years. 
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Figure 7.38: Velocity profile, 50 years. 
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Figure 7.39: Temperature profile, 60years. 
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Figure 7.41: Temperature profile, 64 years. 
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Figure 7.40: Velocity profile, 60 years. 
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Figure 7.43: Temperature profile, 100 years. 
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Figure 7.45: Temperature profile, 1060 years. 
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Figure 7.44: Temperature profile, 560 years. 
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Figure 7.46: Temperature profile, 2560 years. 
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Figure 7.47: Temperature profile, 5060 years 
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Figure 7.49: Temperature profile, 15000 years. 

124 

J\'ANx; Lr•plm l'lH~OL I[ Mr 0. fti!J. 

UlTS 5.6 
lOG 4 2001 
16:17:13 
IOOlL SOWTIOI 
S1IP•9 
Sill • I 
TIIII:• . 316t+l2 
1lJ!P (lVCI 
IUT3•0 
JottrGuphic• 
IrlClT•I 
AVR!S .. ot 

Sill •300 
:5liX •1225 

• : .625 

~ 5n2s 
D 739. B7S 

D ~~/ 
o
0 

u8o 
,..., 1326 

""" 1413 

Figure 7.48: Temperature profile, 10000 years. 
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7.4 Shear distribution for a fixed geometry: Model2 (M2) 
Note: the meaning of the circled numbers 1,2,3,4,5,6,7 and 8 are explained m the 
discussions and conclusions text of sections 8.2 to 8.3 .1. 
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Figure 7.55: Velocity distribution profile for 1 year. 
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Figure 7.56: Shear distribution profile for 1 year. 
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Figure 7.57: Velocity distribution profile for 10 year. 
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Figure 7.58: Shear distribution profile for 10 years. 
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Figure 7.59: Velocity distribution profile for 20 years. 
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Figure 7.60: Shear distribution profile for 20 years. 
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Figure 7.61: Velocity distribution profile for 50years . 
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Figure 7. 62: Shear distribution profile for 50 years. 
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7.5 Velocity and shear distribution profiles for variable geometry 
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Figure 7.63: Velocity distribution profile for 50 years; Model 1 (Ml). 

·/')' ANSYS 61aphor.s Pl NSOL .VISC •• O. 1!!1!~ ~ 

Figure 7.64: Shear distribution profile for 50 years; Model I (M I). 

130 

Pove~:G~:aphics 

ETACET•1 
AVRES• Hat 
SMX =.002225 

0 
.247!:-03 
.495!:-03 
• 742E-03 
.989!:-03 
.001236 
.001484 
. 001731 
.001978 
.002225 



·~ ANSVS Graphics PLVECT.V .... VECT .ElEM.ON.O 1!1~-

Figure7.65: Velocity profile for 50 years; Model2 (M2). 

ANSYS 5.6 
JUL 25 200l. 
20:50:06 
VECTOR 
STEP=3 
SUB •1 
TIME=.158E+10 
v 
NODE•697 
MIN~O 

MAX•.099898 
0 

CJ 
• Olll. 
.022199 

1£1 .033299 
CJ .044399 
CJ .055499 
CJ .066598 
c:::J .077698 
c:::J .088798 
CJ . 099898 

'~AtiSYS Grdphics PlNSOl.VISC..O. 1!1~!3 

PovezGz:aphics 
Ef.&CET•l 

.274':-03 

.549E-03 

.823E-03 

.001098 

.001372 

.001647 

.001921 

.002196 
• 00247 

Figure 7.66: Shear distribution profile for 50 years; Model 2 (M2). 

131 



~ANSYS Gtdph,.;s PLVlCf .V .•.. VECT.UlM.ON.O f!ll~· 

~-~mlm~r -~==- .-;r~:~w~~~-~~ • _ .. . ~,,.'-. ·,.__. .... '- ·~.,,·,,. -• ~~ ,1 .. , ',\\'' , --._ I 

\"'"1~<-.•c"' ,)·) /''~Oj =<~"' f h•~ '""'"' r·· '\1'1" " ' '' . t• ~j" . "1 ' , ~·· -'1 .../P- '{-/ ... ~;:"'·~ .~;..:, ".-Jl ;_. } .. F ~ ... - ' .... : ... ~ \?""~ ~ 
..... ~ .;~ ....... \~ \~~ · · ,&t:,. 1 :'\ ,,_, ..... _-... -.. .e.._ ~ \.:- --~.i ~'i' , I;. · ~, , , -~~ r· ... ~~.{~-- .. .. 

AJISYS 5 . 6 
JUL 25 2001 
21:07:15 
VECTOR 
STI:P• 2 
SUB • 1 
TDI!·-158!:+10 
v 
NOD£• 723 
KDI•O 
HAX=.068704 

[4;;] 
0 
.007634 

D .015266 
C3 .022901 
CJ .030535 
CJ .0381.69 
D .045803 
D .053436 
D .06107 
CJ .068704 

Figure 7.67: Velocity distribution profile for 50 years; Model3 (M3) 

·~ ANSYS lirdph•cs PLHSULVISC .. O. 1!!!1~ f3 

JrODAL SOL\JT lOll 

TIME=.l.SSJ:+l.O 
(AVt;) 

0 
.l.B?J:-03 
- :1?3%-03 
. $60%-03 

- 'l'i'lJ:-03 
. 9341:-03 
. 00ll2 
- 00J.301 
• OOJ.'ill'i 

.OOJ.UJ. 

Figure 7.68: Shear distribution profile for 50 years; model 3 (M3). 

132 



·1'\'ANSVS Grdphic• PLVECT.V ••.• VECT.ELEM.ON.O 1!!1~£1 

- v 

.lNSYS 5.6 
JUL 25 2001 
21:11:33 
VP:CTOR 

SUB •1 
Til!!:=. 15BE+10 
v 
NODE=75B 
l!IIN•O 
l!IAX•.0816-49 

0 

D 
.009072 
. 0181-4-4 

~ .027216 
[I] .036288 
D .0-45361 
CJ . 054-433 
CJ .063505 
CJ . 072577 
D . 0816-49 

Figure 7.69: Velocity distribution profile, 50 years: Model4(M4) 

-1\' ANSYS Graphics PLNSUL.VISC .. O. 1!111~ 13 

Pove:cG:caphic!l 
EFACET•1 

0 
.218E- 03 
. 435!:-03 
.653t- 03 
.871t- 03 
.001089 
.001306 
.001524 
.001742 
.001959 

Figure 7.70: Shear distribution profile for 50 years; Model4 (M4) 

133 



CHAPTERS 

DISCUSSIONS AND CONCLUSIONS 

8.1 Discussion 1: Velocity and Temperature distribution for Models 2 and 4 

The velocity distribution simulation results for these very small magma chambers 

indicate that they stop convecting at an early period during cooling. The total period 

taken by the magma in model 2 to transfer heat and mass through convection is 

approximately 62 years, after this time no further convection is observed. The heat was 

transferred to the surrounding country rock by conduction only. The same behaviour was 

observed for model 4 with an extended geometry at the side limbs and bottom. The size 

for the latter model is almost doubles that of model 2. The results showed convection for 

model 4 lasted only for about 64 years. This is intriguing because, for such a larger 

geometry, convection is intense initially, but it takes almost the same time as model 2 to 

cease. However, the results are feasible because the heat transfer is dependent on the 

Rayleigh number. The depth (d3
) is the determining parameter because of its third order 

influence in the Rayleigh number (see section 4.2.1.1, equation 4.57) and the larger size 

implies higher heat transfer. However, the magma viscosity overrides the effect of size. 

Ansys 5.6 computed the variable viscosity of magma from an exponential temperature 

dependent relationship that includes the effect of suspended crystal content (see equation 

3.15 section 3.3.1.3). The viscosity 'gums' up the magma during the first years ofthe 

cooling, hence overriding the effect of the inertial terms in the Navier-Stokes equations. 

However, upon cooling, the time taken for heat transfer by conduction is approximately 

six times for magma model 4 than for model 2. The present results reveal the cooling 

time for Model2 is about nine thousand years and fifty thousand years for model4. The 

results shows that the ratio of the calculated cooling times for model4 to model2 are 

approximately the same as the e-folding times. The vector velocity profiles for the flUid 

flow in magma model2 from the first year to 62 years are displayed in figures, 7.5, 7.6, 

7.7, 7.8, 7.9, 7.10, 7.11 and 7. 12. For the first year, the upper left and right limb contain 

blue regions indicating zero velocities. The fluid cools fast in the upper limbs. The central 

zones cool slower and have a high velocity, hence the stronger convection. Figure 7.5 and 
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7.6 displays a turbulent velocity vector profile for the first 10 years, with a maximum 

velocity with magnitude of about 0. 00142 rn/s. However, for the next 20 to 62 years, 

figures 7.7 to 7.12 display a weaker turbulence the flow that gradually becomes more 

laminar. The maximum velocity has decreased to a low value of 0.00064 rnls at the 

center, with zero velocity vectors almost in the entire magma domain. For magma model 

4 (M4), figures 7.28, 7.30, 7.32, 7.34, 7.36, 7.38, 7.40, 7.42 indicate the vector velocity 

profiles in the magma chamber, for the duration of one year to 64 years. Initially, that is 

from the first to the tenth year, maximum vector velocities of value 0.0019 m/s are 

displayed in figures 7.28 and 7.30, indicating regions of the strongest convection. The 

velocity magnitude is higher than those found in model 2 (M2) for the same time. 

However, for the next 20 to 30 years (figures 7.32 and 7.34) high velocities are still 

observed in model 4 still indicating stronger central convection. For the next 40 to 64 

years the decreasing values in velocity (figures 7.36 to 7.42) show convection is dying 

out with the maximum velocity dropping to 0.00064 m/s in 64 years after which the fluid 

no longer convects. Intriguing convecting behaviour is observed in model 4. During 

cooling the fluid velocity plots reveal convection cells that sways from left to right in the 

upper limbs of the magma. However, at 62 years the convection resumes the same 

symmetry observed in the first year. Model 2 maintains the initial symmetry throughout 

the 62-year period of convection. However, all the calculations show the magma 

velocities for both models to display a similar fluid flow pattern. The temperature 

distribution profiles for model2 are displayed in figures 7.13, 7.14, 7.15, 7.16, 7.17, 7.18, 

7.19, 7.20, 7.21, 7.22, 7.23, 7.24, 7.25 and 7.26. Those for model4 (M4) are displayed in 

figures 7.27, 7.29, 7.31, 7.33, 7.35, 7.37, 7.39, 7.41, 7.43, 7.44, 7.45, 7.46, 7.47, 7.48, 

7.49, and 7.50. These results were all calculated from the first year to the time required 

for the magma to reach the maximum e-folding cooling temperature. The maximum e­

folding cooling temperatures is calculated using the following relationship (Kreith and 

Bohn, 1993) 

Tmax:cooling = ~ Cz;nitial - :Z:a/1) + Twa/1 ( 8.1) 

The value calculated for all the models is about 763 K. 
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8.1.1 Conclusion 1 

During the initial stage of cooling, convection is vigorous for both magma models but it 

is much stronger for magma model 4 than model 2. The time taken for both magma 

models to stop convecting is approximately the same. This work concludes that the time 

taken for both of the magma chambers to convect is not dependent on the size ( d3
) 

because the viscosity overrides the effect of size. However, magma models of bigger 

geometries take a longer time to lose heat through conduction than those with small 

geometry. For instance, magma model 4 took about six times longer than model 2 to cool 

to thee-folding temperatures. 

8.2: Discussion 2: Shear and velocity distribution for fixed geometry 

Velocity and shear distributions for model 2 (M2) are shown in section 7.4 7 of chapter 7 

by figures 7.55 to 7.62. These velocity and shear distribution profiles were calculated 

from the first year to 50 years at the different time steps. The first ten years are chaotic. 

The high velocity (arrow 3) and high shear (arrow 6) profiles in figures 7.55 and 7.56; 

simulate a random distribution within the center of the magma chamber during the first 

year. After ten years the high velocities and shears (shown by arrows 6 and 4 in the 

previous figures, i.e. 7.55 and 7.56) migrate to the bottom limb sidewalls (see arrows 3 

and 8 in figures 7.55 and 7.56). The distribution oflow velocities and shears are shown 

by (arrows 2 and 5) in figures 7.55 and 7.56, respectively. For the first year, convection is 

intense because of the high temperatures at the initial stages. After 10 years, the arrows 2 

and 3 in figure 7.57 show high velocities distribution profiles at the upper and the bottom 

sidewalls, whilst the high shear zones in figures 7.58 are indicated by (arrows 5 and 8 

respectively). During this time the turbulence sinks down the upper to the bottom 

sidewalls. The approximate zero velocity profiles (arrow 8) in figures 7.55 and 7.57 

correspond to zero shear zones (see, arrow 6, all the dark blue regions) and the light blue, 

or pink regions (arrow 7) are low shear distribution zones. The light blue/pink regions 

indicated by (arrow 7) are results of hot lighter magma rising from the floor of the bottom 
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limb through the center to the rooftop of the upper limb where it cools (dark blue 

colours), becomes heavier, sinks down the sidewalls. 

The next 20 to 50 years, velocity profiles are higher at the bottom limb walls (arrow 3) 

than those in the upper limb walls (arrow 2) in figures 7.59 to 7.61. Here, the high 

velocity profiles (arrow 3) decrease respectively with an increase in time, and so does the 

high shear zones (arrow 8) when compared to the shear zones at the walls in the upper 

limbs (arrow 5) [see figures 7.60 to 7.62]. Consequently, the increase in time also results 

to a steady disappearance of low shear zones (arrow 7) in the center of the magma during 

cooling. 

8.2.1 Conclusion 2: 

1) During the first year the fluid motion is highly turbulent and chaotic, high velocities 

and shears are only prominent in the center and no high velocities and shear are seen at 

the walls ofthe magma chamber. 

2) The large dark blue regions (arrow 1) represents approximately zero velocities, hence 

the zero shears (arrow 4). Simultaneously, the sidewall velocities decrease resulting in 

low wall shear. The decreases in wall shear result in the concentrate building up and an 

increase in size of particulate matter toward the center of the upper limb. The center of 

upper limbs contains sulphide melts with dilute concentrate of the PGEs because the free 

PGEs have already precipitated. 

3) The free PGEs are the first to freeze out because of their high melting temperatures. 

The zones of zeros shear as shown by arrows 6 in figures 7.58, 7.60 and 7.62 would 

theoretically host the PGEs during the first 10 years. The high shear observed at the roots 

of the dykes/sills scavenges the free PGEs to the zero shear zones. The dispersive 

pressure (Bagnold effect) drives particulate aggregation from both sides of the walls into 

zones designated by arrow 6. During the next 50 years the PGEs concentrate, the 

increasing viscosity of the magma 'locking' them into place. 
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8.3 Discussion 3: Velocity and shear distribution profiles for variable geometry 

The figures 7.63 to 7.70 in section 7.5 of chapter 7 show the velocity and corresponding 

shear distribution profiles of magma flow in variable geometry. The arrows in figures 

7.63, 7.65, 7.67 and 7.69 indicate different regions of the convecting velocities of the 

magma. Arrow 3 indicates the regions of high velocity. Arrow 1 indicates zero or 

negligible velocities hence, little fluid motion. Finally, the low velocities are shown by 

(arrow 2). However, for the shear distributions it is important to note that the small sized 

geometry of figure 7.64 led to the absence of high shear zones on both walls of the 

bottom limbs, therefore, no zero shear zones are eminent /seen in the middle of the walls 

hence, arrow 6 is not shown. Arrow 8 in figures 7.64 to 7.70 indicates the transition in 

regions of high shear distnbution on the walls, that is, from one wall (see figure 7.64) to 

both walls (Figures 7.66, 7.68 and 7.70). A respective decrease in the high shear profile 

is shown by (arrow 8) from figure 7.64 to 7.70. However, the opposite behaviour is seen 

for the high shear distribution shown by arrow 5. Here, the shear distribution increases 

from 7.64 to 7.70, respectively. This is because of the increase in geometry size of the 

magma chamber, which results in stronger convection, hence the higher shear. The 

regions shown by arrow 4 (dark blue coloured) are zones of zero shears. The zones of 

zero shears shown in figures 7.64 to 7.70 become more pronounced in the upper limb of 

the magma chamber when the geometry is varied. This is because of the cooled upper 

regions of the magma, hence zero fluid velocity. The regions shown by arrow 7 are low 

shear zones. They result from hot magmatic fluid flowing from the bottom, upward cool 

and then sink down at the sidewalls. The strongest circulation is through the center to the 

rooftop. This results in mild shear migration (arrow 7) into the upper limb from the floor 

of the magma chamber. 

All these calculations are carried to 50 years cooling history only. The free PGEs freeze 

out of the meh during the first 10 years because oftheir high melting temperatures (see 

the zero shear regions shown by arrow 6 in figures, 7.66, 7.68 and 7.70). After 

approximately 50 years of cooling, many of the POE's would have scavenged into 

sulphides and/or, concentrated and 'glued' in the zero shear zones as shown by arrow 6 
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because of the increasing viscosity. The dispersive pressure of magma, and the flow 

pushes the PGE's to the zero shear location from both sides ofhigh shear zones. 

8.3.1 Conclusion 3 

After about the first 50 years; the PGEs are locked into zero shear zones shown by arrow 

4 in figures 7.66, 7.68 and 7.70 due to increasing viscosity that 'glues' them into place. 

The low or zero shear zone shown by arrow 6 at the bottom is much smaller, the PGEs 

are therefore less dilute, hence more likely economical. The effect of increasing the 

magma chamber size enhances convection, hence increasing the collision rates between 

the immiscible sulphides and the PGEs resulting in increased shear aggregation, 

hastening particulate matter concentration during cooling. The increased sizes leads to 

maximum scavenging and large low to zero shear zones in the upper limbs of the magma 

chamber. PGEs hosted in these large zero shear zones are the most dilute PGEs, hence 

least economical. 

8. 4: Animations 

The animations provided with the thesis are on CD; they simulate the time evolution 

during cooling process of the magma chambers, surrounded by the country rock. Two 

models with both variable viscosity and density (see equations 3.15; 3.17 and the graphic 

display of the data in figures 3.4 and 3.5 respectively) were used to demonstrate the 

impact of varying the geometry of the magma chambers on the time evolution of heat 

mass transfer of magma. The animations results are the velocity and temperature 

distnbution profiles are shown in sections 7.2 and 7.3. The animations are: 

l.Model2 (M2): 

(i) Temperature contour animation in a T-shaped magma chamber and the 

surrounding rock (Filename: Rock 2. avi). 

(ii) Velocity vector animation in T- shaped magma chamber and the surrounding 

country rock (Filename: Vel 2. avi). 
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2. Model 4 (M4): 

(ill) Temperature contour animations in T - shaped magma chamber and the 

surrounding country rock (Filename: Rock 4.avi) 

These temperature animations results; reveals small and steady drop in the magma 

temperature for the first 100 years. Followed by large drops in magma temperature 

contours on further cooling. This is because, initially, the drop in magma temperature 

was calculated at successive and constant one-year time interval steps for 100 years. 

The purpose was to capture the velocity profiles before convection stops. Thereafter, 
I 

the magma was allowed to cool for large and unsteady time intervals that is 560, 1060 

years etc., (see, the results in section 7.3). 

(iv) Velocity vector animation in aT-shaped magma chamber and the surrounding 

country rock (Filename: Vel4. avi). 

8. 5: Future Research Initiatives. 

The magma model geometries used for these calculations, although simplified, represents 

a step-by-step approach towards more realistic models of complex intrusions such as the 

Great Dyke of Zimbabwe. These results are helpful in laying a good foundation for 

broader and more realistic inferences could be drawn. This effort would aid in throwing 

light on estimating reserves and locating minerals of economic importance. The 

following further the research is indicated. 

1. Finite Element computations to determine the areas of zero shear, hence the location of 

economic minerals for realistic 3-D magma models of the Great Dyke of Zimbabwe with 

the inclusion of variable temperature dependent viscosity. 

2. Application of discrete element methods for granular flow, to visualize the shear 

aggregation on high shear zones, concentrates and 'gumming up ' of PGEs particulate 

matter in zero shear zones. In discrete element method the full physics of the collision of 
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many particle will be modelled. It models the interacting forces at local level and deals 

with rolling and sliding in a way that cannot be described by continuum methods. 

3. Location of mineral deposit by chemical transport in the mafic and ultramafic sequence 

by hydrothermal circulation through porous country rock media by employing finite 

element calculations for realistic model of the Great Dyke of Zimbabwe. 

4. Performing, realistic computational simulations for the cyclic layering of the sequence 

rocks in the Great Dyke of Zimbabwe, as such will develop more insight into the location 

and distribution of minerals of economic importance, since most of the minerals are in 

these cyclic layers. 

5. All future work will include phase change, variable specific heats, non-Newton 

behaviour to account for the yield strength and the formation of crystal load content 

below the liquidus. Most magmas are non-Newtonian. 

Computational fluid dynamics is a fast developing field worldwide, hence a research 

effort of this nature is highly recommended. It is fast, efficient, cost effective and 

rewarding. It has a variety of industrial applications for a range of engineering, chemical 

and multi-physics disciplines. For example, some of the disciplines where CFD is applied 

are; Electrodynamics, Computational Exploration Geodynamics, Aerodynamics and 

Structural mechanics. The research builds on the computer technical skills required to 

develop the human resource of South Africa. South Africa is rich in mineral resources, 

but because ofthe lack of technology, much ofthese resources are still unexplored, hence 

the future of South Africa lies in manpower with such technical skills 
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Glossary of Terms 

Alkali basalt: A fine-grained, dark coloured, volcanic rock characterized by phenocryst 

of olivine titanium-rich augite, plagioclase and iron oxides. For similar Siq 

concentrations, alkali basalts have a higher content of Na20 and K20 than other basalt 

types such as tholeiites. 

Archean: One of the three subdivisions of the Precambrian, lasting from about 4000 to 

about 2500 Ma. 

Basalts: Refers to a dark coloured, fine-grained, extrusive igneous rock composed of 

plagioclase feldspar, pyroxene and magnetite, with or without olivine. Most basalts 

contain phenocryst of olivine, plagioclase feldspar and pyroxene. Basalts are divided into 

two main types alkali basalts and tholeiites. 

Biotite: a widespread rock-forming mineral, K(Mg,Fe)3AlSi3010(0,H~F). 

Boundary layer: is defined as the region near the wall where the convective velocities 

decrease to zero from mainstream. 

Bronzite: An orthopyroxene with the formula (Mg, Fe) Si03, with about 70-90% of 

magnesium content and also belongs to the pyroxene group of silicate minerals. It is 

found in basic and ultra basic igneous and metamorphic rocks. 

Chromite: The primary source of chromium, which occurs in basic and ultra basic 

rocks, it's a member of spinel group of minerals, FeCr204 

Convective Scavenging: The mechanism for concentrating suspended crystal loads 

(phenocrysts) in zero shear zones. 

Country rock: The environs surrounding a magma chamber (see magma chamber). 

Crust: approximately the uppermost 30 kilometers of the Earth. 

Cumulate: Applied to igneous intrusive rocks formed by the accumulation of crystals as 

a result of gravity settling. The early-formed minerals are called cumulus minerals and 

show a regular variation in composition with their height of intrusion. It is typical of 

layered intrusions and common in some differentiated meteorites. 

Dunite: Coarse grained, igneous rock, consisting mainly of olivine. 
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Dyke (Dike): Refers to a cross cutting or tabular intrusion. Most dykes are vertical or 

near vertical intrusion through the overlying country rock. 

Eutectic point: Refers to the temperature at which this simultaneous crystallization 

occurs. 

Eutectic systems: a mixture of two or more minerals in definite proportions with each 

mineral crystallizing simultaneously from the melt. 

Gabbro: A coarse graine~ basic igneous rock, consisting of essential calcium-rich 

plagioclase feldspar (approximately 60 %), clinopyroxene (augite or titanaugite), and 

orthopyroxene (hypersthene or bronzite) plus or minus olivine with accessory magnetite 

or ilmenite. The gabbros result from the slow crystallization of magmas of basaltic 

composition and can be divided into the tholeiitic and alkali types. 

Greenstone belt: Refers to a large geologic formation up to 250km across, which is 

largely of Archean age. 

Hypabyssal: A medium- grained, intrusive igneous rocks, which have crystallized at 

shallow depth (no defined/agreed depth limit to the term shallow) below the Earth's 

surface. 

Igneous: Refers to rocks that have crystallized (solidified) from magma. 

Intrusive, intrusion: is a body of rock, usually igneous that is emplaced within pre­

existing rocks. 

Layering: Refers to different layers of igneous intrusion, which are different m 

mineralogical compositions, sometimes called rhythmic layering. 

Liquidus: is the temperature range at which crystallization starts to occur. 

Lithology: The description of the macroscopic features of a rock, e.g. its texture or 

petrology. 

Mafic: Any igneous rock that has a high proportion of pyroxene and olivine. 

Magma: A hot, silicate, carbonate, or sulphide melt containing dissolved volatiles and 

suspended crystals, which are generated by partial melting of the Earth's crust or mantle 

and is the raw material for all igneous processes. 

Magma Chamber: A region postulated to exist below the Earth's surface, which hosts' 

magma injected from the deeper crust or upper mantle. The magma is either, stored, or 

moves to the Earth' s surface at the side of the volcano. 
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Magmatic differentiation (magmatic fractionation): Formation of a variety of rock 

types from an initial single parental magma. 

Mantle: That portion of the Earth lying between its crust and its core, approximately 

23 00 kilometers thick. 

Mineral deposit: Refers to any natural and a local restricted concentration of minerals in 

the Earth's crust. 

Ore deposit: It IS a mineral deposit in which the mineral concentration contains 

substance that is of economic interest to concentrations that rich enough to warrant 

mnung. 

Orthopyroxene: Refers to a series of pyroxenes, which crystallize in the orthorhombic 

system. They consist of enstatite (MgSiOJ) and ferrosilite (FeSi03) end members. 

Paleomagnetism: Refers to the Geophysics of measurement and interpretation of 

remnant magnetism or the record of the earth' s past magnetic field (for example, polar 

wandering and continental drift). 

Plagioclase feldspar: Refers to one ofthe most important rock-forming silicate minerals 

with the general formula (Na, Ca)(Al)I-2(Si)z-J0s. The solid solution series is between the 

two end-members albite (NaAlShOs and the anorthite (CaA12Sh08). 

Plagioclase series: Refers to an isomorphous series of feldspars ranging in 

Plutonic: A general term applied to a body of intrusive igneous rock which has us 

crystallized at great depth. 

Poikilitic: Terminology applied to the texture produced when several orientated or 

unorientated crystals are enclosed within larger crystals in an igneous rock. The larger 

crystals have more widely separated nuclei than the closed crystals and may grow faster, 

hence enclosing the grains. 

Primary migration: First stage in the upward migration of hydrocarbons within and then 

out of the source rock .. 

Pyroxenite: Refers to an ultra basic, igneous rock, which essentially consists of 

clinopyroxene, orthopyroxene and olivine. 

Reserve base: It is an identified resource base that meets the required physical and 

chemical criteria related to current mining and production practices, of grade, quality, 

thickness a and depth. 
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Rhyolite: Refers to a fine- grained, extrusive, igneous, with a sugar-like texture, 

containing quartz, alkali feldspar and one or more ferromagnesian minerals. 

Silicic: Results from silica (Si02 ) or quartz. Igneous rocks with high free quartz (Si02) 

content are usually referred to as silicic. 

Sills: A tabular igneous intrusion having concordant (parallel) surface of contact. 

Solidus: is the temperature range at which crystallization ends. 

Sl, 82, S3: An informal terminology used by (Wilson et al., 1989) to refer to sulphide 

zones of enhanced sulphide content in the Great Dyke of Zimbabwe. 

Tholeiite basalt: An abundant, fine-grained, igneous rock consisting of essential 

calcium-plagioclase, subcalcic augite, and pigeonite, with interstitial glass or fine quartz­

feldspar intergrowths. This type of basalt, oversaturated with silica; it occurs as plateau 

lavas on the continental crust and as the main extrusive component of the ocean floor. 

Ultra basic: Refers to an igneous rock that consists entirely of ferro magnesian minerals 

and possesses no free quartz, which is less than 45% silica (Si02) ' Ultramafic is a partial 

synonym'. 

Ultramafic: (See Ultrabasic) 

154 



APPENDIX A 

Discontinuous Series 

Pseudo ternary systems: 

Key 
R reaction point 

E eutectic 

The fractional crystallization process below demonstrates the production of mafic minerals such as 

olivine, pyroxene, amphibole and biotite. A must crystallize to a mixture of diopside (clinopyroxene), 

fosterite (olivine) and anorthite (plagioclase), in the proportions fixed by the bulk composition A, for 

equilibrium crystallization. However, for fractional crystallization the bulk composition of the system 

can change, depending upon the proportion of solid phases removed from equilibrium with the liquid. 

For both equilibrium and fractional crystallization the first mineral to crystallize from liquid A is 

olivine and the residual liquid is driven away from A along the line A-A' until the fosterite-diopside 

cotectic curve is intersected. Olivine and pyroxene then crystallize together as the temperature falls 

until the eutectic E is reached, when plagioclase joins the assemblage. In the case of perfect fractional 

crystallization (Rayleigh fractionation), where magma and crystals are continuously separated, the 

residual liquid will ultimately attain composition E . This is also the composition of the last dregs of 

liquid in the case of the equilibrium crystallization. Thus by fi:actional crystallization processes one 
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could clearly generate a continuous spectrum of liquid compositions lying along the lines A-A' and 

A'-E, each of which could crystallize as an igneous rock. If the bulk composition ofthe liquid were B, 

the array of possible differentiated liquid compositions would now be B-B'-E, as the sequence of 

fractionation phases has changed. Path B may schematically represent the differentiation of the 

tholeiitic basalt and path A of alkali basalt. Such ternary phase diagrams do not quite predict the 

quantitatively fractionation trends for actual magma composition, as these are multi- component 

system in which phase relations of the minerals may differ significantly from those of simple systems. 

However, they are most useful in understanding the chemical consequences of the fractionation 

processes. The fractionation trends of the magmas cannot be constrained without taking into 

consideration the changing composition of fractionation phases Wilson (1989). In closed -system 

fractionation of magma, much of the crystallization will occur along the margins of the chamber, 

where the steepest temperature gradients and the largest under cooling occur and the nuclei already 

exist Campbell (1978), McBirney and Noyes (1979). The crystal, which grows on the margins or in 

thin viscous boundary, layers change composition and the local density of the magma and the melt is 

convected away from the point of origin. The convection effects consequently depend strongly on the 

physical properties of the magma, the fractionation density of the crystallizing phases and the chamber 

McBirney (1980), Sparks and Huppert (1984) and Spark et al., (1984). The model for a closed­

system evolution for magma has some of the following consequences and implications: 

• Compositional and thermal gradients can be set up in magma chambers containing initially 

homogeneous magma, gradients can be such that double diffusive layers can develop, each layer 

evolve as a chemically independent system. However, when parts ofthe chamber erupt, there can also 

be a production of zoned and contained compositional discontinuities. 

• After compositional gradients have been established in the chamber, crystallization will occur along 

the margins and will lead to cmnulate varying in composition with position. In mafic intmsions, these 

layerings which are parallel to the margins will be out of phase to phase layering which is parallel to 

gravitational stratification in the fluid; hence crystal layers in mafic intrusions could also be 

influenced by double-diffilsive layering (Huppert and Spark, 1984). 

• Sidewall crystallization influences immediately only a small proportions of the total magma body; 

because of selective removal of the compositional boundary layer, this can result in highly fractionated 
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magmas accumulating at the top, or bottom, of a chamber without requiring large amounts of 

crystallization. However, crystal settling requires large fi·actions of the magma chamber to crystallize 

in order to form highly differentiated melts, these highly differentiated melts form at the top of a 

chamber at an early stage of a sidewall crystallization (Sparks eta!, 1984). 

• Phenocryst can form internally in a magma chamber at double- diffusive interfaces, where tmder 

cooling and super- saturations are the greatest. They can form during the mixing of magma, by 

erosion of cmnulates, and as residual crystals from the source region (restite ), once crystals of diverse 

origins are suspended in the magma, further growth can occur (Sparks eta!. 1984). 
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