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Abstract 

 

The Bayesian approach to logistic regression modelling for credit scoring is useful when 

there are data quantity issues. Data quantity issues might occur when a bank is opening in a 

new location or there is change in the scoring procedure. Making use of prior information 

(available from the coefficients estimated on other data sets, or expert knowledge about the 

coefficients) a Bayesian approach is proposed to improve the credit scoring models. To 

achieve this, a data set is split into two sets, “old” data and “new” data. Priors are obtained 

from a model fitted on the “old” data. This model is assumed to be a scoring model used by a 

financial institution in the current location. The financial institution is then assumed to 

expand into a new economic location where there is limited data. The priors from the model 

on the “old” data are then combined in a Bayesian model with the “new” data to obtain a 

model which represents all the available information. The predictive performance of this 

Bayesian model is compared to a model which does not make use of any prior information. It 

is found that the use of relevant prior information improves the predictive performance when 

the size of the “new” data is small. As the size of the “new” data increases, the importance of 

including prior information decreases.  
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Chapter 1: Introduction 

 

1.1 Context of the Research 

 

Consumer credit is one of the main driving forces which allowed for the rise (and possible 

demise) of most of the leading industrialized countries. The growth in home ownership 

and consumer spending over the last 50 years would not have occurred without credit. 

When a financial institution grants credit to an applicant the financial institution trusts the 

applicant to pay back the credit. The applicant may, however, default on payments back to 

the institution. It is the task of the financial institution to make sure that the number of 

defaults is minimized so that risk is reduced. This is done by screening the applicants when 

they apply for credit. Scoring methods are used to estimate the credit worthiness of an 

applicant. These credit scoring methods estimate the probability that an applicant will 

default or become delinquent. Credit scoring methods use statistical methods based on 

historical credit data to build a model which predicts whether an applicant will default or 

not. The financial institution can then use the model to decide whether or not to grant 

credit to the applicant also considering how much risk the institution is willing to take on. 

As mentioned, building a credit scoring model requires the use of historical data. There 

may, however, be situations when there is limited historical data. This might occur when 

the financial institution is expanding into a new economic location (country) and no data is 

available at first. Data quantity issues might also occur when there is a change in the 

scoring procedure. In these situations it is difficult to build a good scoring model as there 

is initially not enough data available. Thus, expert information can be important. An 

existing reliable generic scoring model may be available at first which could be used for 

scoring. This generic scoring model could then be modified as new data becomes 

available. Institutions already using scorecards may be able to combine their expert 

knowledge with new sources of information to obtain improved scoring models. In order 

to do this, a Bayesian approach is proposed where the expert knowledge is combined with 

the limited amount of data. The aim is to see whether the combination of expert knowledge 

with data gives a better model than one that uses only the limited amount of data.  
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The scope of Bayesian inference has greatly improved since it was discovered that Markov 

Chain Monte Carlo (MCMC) Methods could be used to sample from the posterior 

distributions. The general MCMC algorithm is called the Metropolis-Hastings (MH) 

algorithm. 

 

1.2 Objectives of the Study 

 

The objectives of this study are as follows: 

- Investigate credit scoring and the associated problems - such as reject inference.  

- Introduce the concepts and methods of the Bayesian logistic regression models for credit 

scoring. This includes an in-depth explanation of the Markov Chain Monte Carlo (MCMC) 

methods. 

- Develop a standard logistic regression scorecard. 

- Develop a Bayesian approach to the scorecard for when the bank enters a new market or 

there is a change in procedure. 

- Compare the Bayesian approach to the standard logistic regression approach. This would 

involve comparing the models’ predictive powers on a test set.  

- Make recommendations on the Bayesian approach to credit scoring.  

 

1.3 Organization of the Study 

 

Chapter 2 gives the history of credit scoring, problems with credit scoring and examines 

previous research on models used for credit scoring. The chapter provides a literature 

review on the models used for credit scoring focusing on the Bayesian logistic regression 

models. Chapter 3 examines the methods used in detail; it provides derivations and proofs 

of key results in order to gain an understanding of the models used. In Chapter 4 the results 

of the data analyses are presented and discussed. Chapter 5 summarizes the study, gives 

limitations and discusses areas for further research.  
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Chapter 2: Literature Review 

 

2.1 History of Credit Scoring 

 

Credit scoring is essentially a classification problem where applicants are classified into 

different groups. According to Thomas (2009) statistical classification techniques started 

when Fisher (1936) developed one of the first successful classification models to classify 

three different types of the iris flower. He used different physical measurements of the 

flower to discriminate between the three types of Iris flowers. Durand (1941) was then the 

first to recognise that these statistical classification techniques could be used to classify 

good and bad loans. Before this, Thomas (2009) states that financial institutions based 

decisions on whether to grant credit subjectively. When credit cards were introduced in the 

1960s, the usefulness of credit scoring started to be realized. Because of the large number 

of people applying for credit cards, automation of the credit application procedure seemed 

to be the only solution. When the financial institution introduced the credit scoring model 

they found that the model performed a lot better than the previous (subjective) judgment 

scheme. The result was that, as Thomas (2009) states, default rates dropped by 50% or 

more. In the 1980s the success of credit scoring in credit cards meant that financial 

institutions started using scoring methods for other products too such as personal loans, 

home loans and business loans.  

The subprime mortgage crisis caused a global recession in 2007. This crisis proved that 

financial institutions did not fully understand the risks they were taking on. According to 

Rona-Tas and Hiß (2008) a credit score generally used by financial institutions in the 

U.S.A. is the Fair Isaac Co. (FICO®) score. They state that these FICO scores grew 

steadily from 2000 to 2005. This made subprime borrowers appear less risky. Possible 

reasons for these inflated FICO scores include the data used to construct the FICO scores 

are historical data, not necessarily only from subprime lenders, and banks putting pressure 

on credit rating agencies to inflate their credit rating scores. The reason why banks would 

put pressure on credit rating agencies is that they were able to sell their loans to investors. 

Thus, the banks would want to grant as many loans as possible and then sell them to 

investors.  
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2.2 Overview of Credit Scoring and Credit Scoring Methods 

 

Because credit scoring is fundamentally a classification problem, there are a number of 

methods available for credit scoring. Hand and Henley (1997) give a review in statistical 

classification methods in consumer credit scoring. They first give an overview of credit 

scoring and building a scoring model including some associated problems. They mention 

that scorecards are classifiers which “use predictor variables from application forms and 

other sources to yield estimates of the probabilities of defaulting” (Hand and Henley, 1997, 

p. 524). A threshold on this probability is then obtained, classification applied and a 

decision on whether a loan should be granted or not, can be given on a new applicant. 

They further explain that when building a credit scoring model, three approaches to 

selecting the variables are commonly used, as follows: 

- Using expert knowledge. Where an experienced industry expert decides what variables 

will fit the data well; 

- Using stepwise statistical methods such as forward/backward stepwise methods which 

sequentially add/delete variables; 

- Selecting individual variables by using a measure of difference between the distributions 

of the good and bad risks on that variable.  

A major problem in credit scoring is that of reject inference. Mok (2009) explains that 

complete data are only available for accepted applicants. This means that the observed 

behaviour of an applicant is only available for the accepted applicants. Because the 

accepted applicants were already accepted through an existing scoring model, we have 

biased data. It would be better to build a model where everyone is accepted and their 

behaviour is observed. However, this is unfeasible for banks. Therefore to solve this bias 

problem, reject inference is proposed. According to Mok (2009) this is “the process of 

estimating the risk of default for loan applicants that are rejected under the current 

acceptance policy” (Mok, 2009, p. 1). Crook and Banasik (2002) suggest finding a cut-off 

to classify the rejects whether good or bad then include these rejected applicants in the new 

model.  

Hand and Henley (1997) give an overview of different models used for credit scoring. 

These methods are discriminant analysis, regression analysis, logistic regression, probit 
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analysis, mathematical programming, recursive partitioning (decision trees), expert 

systems, neural networks, nonparametric smoothing methods and time varying models. 

They state that “there is no overall best model” (Hand and Henley, 1997, p. 535). This is 

because the best model depends on the data structure. It is also mentioned that neural 

networks might provide a good modelling approach when there is poor understanding of 

the data structure. However, these models provide a “black box” approach and usually no 

understanding can be gained from the model.  

There have been a number of studies which compare these methods in credit scoring. 

Altman et al. (1994) provided one of the first investigations of neural networks in credit 

scoring. Neural networks were compared to linear discriminant analysis (LDA) and it was 

found that LDA performed better. Desai et al. (1996) obtained different results. Using a 

credit union data set, a neural network performed better than LDA but did not perform 

significantly better than logistic regression. In a master’s degree study by Komorád (2002), 

logistic regression is compared to multilayer perceptron and radial basis function neural 

networks for credit scoring. These models were trained and their performance tested on 

confidential data from a French bank. It was found that the multilayer perceptron neural 

network and the radial basis function neural network gave very similar results but the 

logistic regression performed the best.  

Thomas (2009) claims that logistic regression is the most commonly used method for the 

construction of scorecards. Logistic regression is part of a wider class of generalized linear 

models (GLMs) as shown by Nelder and Wedderburn (1972). The reason for this is that 

the binomial distribution, which is the distribution of the response in logistic regression, is 

part of the exponential family of distributions. GLMs include a number of models such as 

normal linear regression, logistic regression, Poisson regression etc. One of the first 

applications of logistic regression to credit scoring is given by Steenackers and Goovaerts 

(1989). Based on data from a Belgian credit company they develop a logistic regression 

model. Nineteen predictor variables were utilized and then using stepwise logistic 

regression, 11 variables were chosen for a final model. Steenackers and Goovaerts (1989) 

also mentioned that the model relies on historical data. Therefore, a periodical review of 

the model is necessary to adjust for shifts in the underlying factors. To solve this problem 

in credit scoring, Whittacker et al. (2007) developed a Kalman filter for a credit scorecard. 

Here, the scorecard is updated by combining the new applicant data with the previous best 

estimate. A Bayesian approach can also be used to update a model - the posterior 
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distribution is updated as soon as new information becomes available. Greenberg (2008) 

stated that Bayesian updating is a very attractive feature of Bayesian inference. With 

Bayesian logistic regression, numerical methods are used to update the model. The reason 

for this is that conjugate priors (the posterior distribution comes from the same family of 

the prior distribution) do not exist. A popular method used to update the model is the 

Markov Chain Monte Carlo (MCMC) method.  

 

2.3 Markov Chain Monte Carlo Methods 

 

Conjugate priors for the logistic regression model do not exist which makes sampling from 

the posterior distribution difficult. Gelfand and Smith (1990) introduced the turning point 

for the use of MCMC methods in statistics. These MCMC methods are methods which are 

used to obtain samples from a posterior distribution when it is not analytically possible to 

obtain the posterior. MCMC methods were introduced by statistical physicists in the 

1950s. Metropolis et al. (1953) introduced an algorithm known as the Metropolis 

algorithm. The algorithm was then generalized by Hastings (1970) and became the 

Metropolis-Hastings (MH) algorithm. The algorithm works by constructing a Markov 

chain which has a stationary distribution equal to the target (posterior) distribution. This is 

achieved through a kind of accept-reject strategy. A value is proposed and this value is 

accepted or rejected according to a rule which ensures that the Markov chain generated has 

a stationary distribution equal to the target (posterior) distribution. It resulted in renewed 

interest in Bayesian statistics through the use of modern computers being able to perform 

algorithms - such as the Gibbs sampler and Metropolis-Hastings (MH) algorithm. 

Determining integrals is of vital importance in obtaining the posterior distribution. The 

Metropolis-Hastings algorithm is more general than the Gibbs sampler. The MH algorithm 

is the principle algorithm on which Bayesian logistic regression is based. The MH 

algorithm adopts a kind of accept-reject strategy to the simulation while the Gibbs sampler 

is a special case, which can be used when it is possible to sample from conditional 

distributions. Most studies which consider Bayesian logistic regression use the MH 

algorithm to sample from the posterior (Ziemba, 2005; Wilhelmsen et al., 2009).  This is 

because the Gibbs sampler cannot be used directly as one cannot sample easily from the 
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conditional distributions. Holmes and Held (2006), however, demonstrated how inference 

can be done efficiently in the Bayesian logistic regression model using a Gibbs sampler. 

They showed that the conditional likelihood of the regression coefficients is multivariate 

normal when certain auxiliary variables are introduced. This, then, allows for efficient 

simulation using a block Gibbs sampler. Simulation of the posterior distribution is thus 

either done using the Gibbs sampler or the MH algorithm. The MH algorithm is, however, 

far more popular with Bayesian logistic regression as the model is not complicated by 

additional auxiliary variables.  

 

2.4 Studies on Bayesian Logistic Regression for Credit Scoring 

 

There have been a number of papers which use a Bayesian approach to credit risk 

modelling. Mira and Tenconi (2004) developed a Bayesian hierarchical logistic regression 

model to predict credit risk of companies which fall in different sectors. They used fairly 

vague priors for the parameters of the model - priors centred at zero with large variances.  

They used MCMC methods to estimate the model. One method was the delayed rejection 

(DR) strategy with a single delaying step. This is similar to the MH algorithm but there is 

another chance to accept a move. Here, upon rejection of a move, a second stage candidate 

is proposed and accepted with a probability that preserves the so-called detailed balance 

condition. It is claimed that the DR estimates have a smaller variance than the estimates 

obtained via MH. The DR strategy has a shorter run time than the standard MH algorithm. 

This is the principle advantage of DR. Mira and Tenconi (2004) show how simulation 

using the delayed rejection strategy outperforms the standard MH algorithm in terms of 

efficiency of the estimates. They also show, using cross validation, that the Bayesian 

model outperforms the classical logistic regression model.  

In another study, Ziemba (2005) showed how a (existing) generic scoring model can be 

updated using Bayesian methods. He mentions that this is a preferred solution in the 

banking industry when an international bank is opening a branch in a new country, a 

financial institution starts offering new services or a bank is offering services to a new 

group of customers. Therefore, unlike Mira and Tenconi (2004) where a fairly vague prior 

was used, Ziemba (2005) uses an existing model as a source of prior information for the 
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model parameters. He assumes that these prior parameters are normally distributed. 

Ziemba (2005) considers a case where a new procedure is introduced to the credit scoring - 

customers were required to complete an extended application form resulting in an increase 

in the number of predictor variables. The parameters of the model used before the change 

in procedure were used as priors for the parameters in the new model. For the additional 

variables under the new procedure, vague priors were used. The model was then updated 

as new data became available. Like Mira and Tenconi (2004) the Metropolis-Hastings 

algorithm is used to obtain the posterior but the DR was not investigated. Results are given 

for different amounts of new data. It was found that, when the amount of new data is 

smaller, including prior information results in much better accuracy than when the amount 

of new data is larger. The rate of this accuracy decreases as the amount of new data 

increases and prior information becomes less relevant.  

In a similar study, Löffler et al. (2005) proposed a Bayesian method for banks to improve 

their credit scoring models by imposing prior information. This methodology enables 

banks with small data sets to improve their default probability estimates by making use of 

prior information. This might occur when a bank introduces a new rating system or 

expands into a new market as Ziemba (2005) mentions. Löffler et al. (2005) set up a 

simulation study in order to investigate the Bayesian approach. They bootstrapped from an 

initial small data set. A large data set was simulated and this was labelled “external” data. 

Prior information for regression coefficients were obtained from these data by running a 

logistic regression. A smaller data set was then simulated and named “internal” data. A 

logistic regression was run on this “internal” data, as well as a Bayesian logistic regression 

using the parameters from the “external” data as priors. This approach is very similar to 

Ziemba (2005) where a generic scorecard is updated. Here, the model from the “external” 

data can be seen as a generic scorecard. Löffler et al. (2005) found that when there is no 

structural difference between the “internal” and “external” data the Bayesian logistic 

regression model performs significantly better. In a more realistic case, there will be some 

structural differences between the “internal” and “external” data. They imposed structural 

differences by assuming that some variables are missing in the “external” or prior data set. 

It was found that the Bayesian logistic regression model still performs better than the 

logistic regression model when there are structural differences. Like Ziemba (2005) it was 

found that as the size of the “internal” data increases the relevance of prior information 

decreases.  
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In a different study, Wilhelmsen et al. (2009) compared the method of Integrated Nested 

Laplace Approximation (INLA) to MCMC methods for Bayesian modelling of credit risk. 

The MCMC method they used is the MH algorithm. Therefore, like Mira and Tenconi 

(2004) this is a comparative study between two methods to sample from the posterior. 

INLA can be used as an alternative to MCMC methods. They used the Bayesian 

formulation of logistic regression. Like Ziemba (2005) normal priors were used for the 

regression coefficients. INLA only allows the use of normal priors. They gave an outline 

of how priors for the regression coefficients can be obtained from prior information on the 

default probabilities. They suggested that a beta distribution for the default probability 

should be assumed. Greenberg (2008) stated that the beta distribution is a good choice for 

a prior since it is defined on the relevant range and it can produce a wide variety of shapes. 

Data from a Norwegian bank were used to compare INLA to MCMC when a vague and 

specific prior is used. They found that INLA and MCMC gave approximately the same 

posterior results for their particular data set, but mentioned that results may differ in other 

situations. They also indicated that there may be convergence issues with MCMC. 

In a recent study, Fernandes et al. (2011) compare some different models to calculate 

probability of default in a low default setting. A data set consisting of a portfolio of low 

defaulting companies in Brazil was considered. There were 1,327 companies in the data set 

of which 50 defaulted. Four techniques were used to analyse the data, classical logistic 

regression, Bayesian logistic regression, limited logistic regression and an artificial 

oversampling technique. For the Bayesian logistic regression model, a non-informative 

prior was used. The prior was assumed to be normally distributed with zero mean and very 

large variance. A Gibbs sampler was used to solve the MCMC algorithm, however, the 

details of how this was done was not given. The four modelling procedures were compared 

using the area under the Response Operating Characteristic (ROC) curve, Gini coefficient 

and Kolmogorov-Smirnov statistics. The results showed that the four models considered 

gave very similar parameter estimates. However, after a bootstrap simulation was run to 

minimise the problem of the low number of defaults in the sample, the results revealed that 

the Bayesian model presented a high level of performance with a lower bootstrap variance. 

The Bayesian logistic regression model was, therefore, considered as the best model in this 

situation.  
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Chapter 3: Methodology and Theoretical Considerations 

 

3.1 Methodology 

 

A credit scoring data set analysed by Wielenga, Lucas and Georges (1999) was obtained. 

This is a home equity data set and the aim is to predict whether an applicant will 

eventually default or be seriously delinquent on a loan that allows owners to borrow 

against the equity of their homes. The data set consists of loan performance for 5,960 

home equity loans. The dependent variable is a dummy variable indicating whether a 

default occurred during the duration of the loan. The proportion of applicants who 

defaulted in the data set is approximately 20%. There are twelve independent variables. 

These variables are: the reason for obtaining the credit, the type of job the applicant has, 

the amount of the loan request, the amount due on the existing mortgage, the value of the 

current property, the applicants debt-to-income ratio, the number of years the applicant has 

been working at a current job, the number of major derogatory reports, the number of trade 

lines (this is the number of other loans the applicant currently has), the number of 

delinquent trade lines, the age of the oldest trade line and the number of recent credit 

inquiries.  

It is assumed that the bank is expanding into a new economic location or there is a change 

in procedure. The goal is to produce a good scoring model in the new location or under the 

new procedure when there are limited data available. Expert knowledge from the current 

location or under the old procedure is to be incorporated into the model at the new location 

or under the new procedure. It is assumed that there is a change in the economic location. 

The scoring procedure in the current economic location is assumed to be exactly the same 

as in the new economic location. Therefore, exactly the same variables are used to model 

good and bad applicants. To replicate this situation, the home equity data set is split as 

follows:  

- 50% of the observations are randomly selected and labelled as the set of observations that 

are “old”. These observations are assumed to come from the current or home economic 

location.  



22 
 

- 10% of the observations are randomly selected and labelled as the set of observations that 

are “new”. These observations are assumed to come from the new or foreign economic 

location.  

- 10% of the observations are randomly selected and used as a validation set from which, an 

optimal cut-off probability will be obtained. These observations are assumed to come from 

the current or home economic location.  

- The remaining randomly selected 30% of the observations are used as test data. The “old” 

data set is used as prior information and the “new” data for the new procedure. These 

observations are assumed to come from the new economic location and are used to assess 

the performance of the models which are fitted on the limited amount of data in the new 

economic location.  

To ensure that each random selection has a proportion of approximately 20% bad 

applicants, a stratified random sampling procedure is used.  

The following steps are then undertaken: 

- The data set is first checked and cleaned. This means removing outliers and estimating 

missing values etc.  

- A logistic regression model is fitted to the “old” data set. The coefficients here are used as 

prior information when the “new” procedure is either introduced or the business expanded 

into a new market. 

- An optimal cut-off probability is obtained on the validation data using the model fitted on 

the “old” data.  

- A logistic regression model is fitted to the “new” data. 

- A Bayesian logistic regression model is fitted to the “new” data using the coefficients from 

the “old” data set as priors. 

- A Bayesian logistic regression model with non-informative prior is fitted to the “new” 

data. 

- The performances of the logistic regression model and the Bayesian logistic regression 

model fitted on the “new” data are compared on the test data. 

- The performances of the models are also considered using different sizes of the “new” 

data.  
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3.2 Bayesian Statistics 

 

3.2.1 Bayesian inference 

 

Bayesian inference provides a useful way to combine expert knowledge (prior belief) with 

data to arrive at some posterior belief. All Bayesian inference is conducted through the use 

of Bayes’ theorem (Press, 1989; Bernardo and Smith, 2000; Lee, 2004; Greenberg, 2008; 

Ntzoufras, 2009). 

Press (1989) explains that when one has a prior belief (called a prior distribution) before 

one observes the data, Bayes’ theorem gives a mathematical procedure for updating the 

prior belief to arrive at a posterior distribution. The derivation of Bayes’ theorem makes 

use of conditional probabilities, 

 ( | )   (   )  ( )  and   ( | )   (   )  ( ). 

Therefore,  (   )   ( | ) ( )   ( | ) ( )  

which leads to Bayes’ theorem:  ( | )    ( | ) ( )   ( ).         (3.1) 

 

3.2.2 Prior density, likelihood and posterior density functions 

 

Following Greenberg (2008) and setting     (a parameter or vector of parameters) and 

   , we have the following for continuous or general  .  

 ( | )   ( | ) ( )  ( )              (3.2) 

 where   ( )  ∫ ( | ) ( )  . Equation (3.2) is the basis of Bayesian statistics and 

econometrics. We now analyse Equation (3.2) in detail.  ( | ), the left-hand-side of 

Equation (3.2) is the posterior density function of θ | y.  ( | ) is the density function of 

the observed data   when the parameter value is  .  ( | ) is called the likelihood function 

and is a function of θ once the data are known.  ( ) is called the prior density and 
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represents beliefs about the distribution of   before seeing the data  . These beliefs can 

come from the researcher’s knowledge or from other external sources. The prior 

distribution usually depends on parameters called hyperparameters.  ( ) normalizes the 

posterior distribution so that integrating Equation (3.2) with respect to θ yields 1. Equation 

(3.2) can also be written as 

 ( | )   ( | ) ( )               (3.3) 

The right-hand-side of Equation (3.3) does not integrate to 1 but it has the same shape as 

 ( | )  

The posterior distribution contains all the information we have about  . 

 

Bayesian updating 

 

Equation (3.3) can be seen as a way of updating information. Our prior knowledge is 

updated with data. Then, as new data become available the posterior distribution is updated 

using Bayes’ theorem. Greenberg (2008) explains this process: let   be the parameter (or a 

vector of parameters) of interest and    be the first set of data available. We have, 

 ( |  )   (  | ) ( )               (3.4) 

Now, suppose a new data set    is obtained and we want the posterior distribution given 

all the available data. Thus, 

 ( |     )   (     | ) ( )    (  |    ) (  | ) ( )   using Equation (3.1) 

                                                              (  |    ) ( |  )   because  ( |  )    (  | ) ( ) 

from Equation (3.4). 

If the data sets    and    are independent  (  |    ) simplifies to  (  | ). We, therefore, 

obtain 

 ( |     )   (  | ) ( |  )              (3.5) 
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From Equation (3.5) we can see that the posterior distribution in Equation (3.4) is now the 

prior distribution in Equation (3.5). Ntzoufras (2009) shows how Equation (3.5) can be 

generalized for a number of different data sets 

 ( |       )   (  | )  (  | ) ( ) 

                           ∏  (  | ) ( ) 
   . 

Thus, as new information becomes available, the posterior distribution becomes the prior 

distribution for the next experiment.  

 

Large samples 

 

It is important to examine how the posterior distribution behaves in large samples. When 

there are independent trials, the likelihood function is  ( | )  ∏  (  | ) 
    

∏  ( |  )
 
   . The log-likelihood function is then 

 ( | )      ( | ) 

              ∑ ( |  )

 

   

 

                (̅ | )        

where  (̅ | )  (
 

 
)∑  ( |  ) is the mean log-likelihood contribution (Greenberg, 2008). 

The posterior distribution can now be written as 

 ( | )   ( ) ( | ) 

                 ( )    (   (̅ | ))              (3.6) 

Now, from Equation (3.6), we see that the posterior distribution is proportional to the 

product of the prior distribution and an exponential term raised to the power   times a 

number. Thus, for large  , the exponential term dominates  ( ) which does not depend on 

 . Therefore, the larger the sample size, the less role the prior distribution will play in the 

posterior distribution (Greenberg, 2008). 

  



26 
 

3.2.3 Prior distributions 

 

Specification of the prior distribution is important in Bayesian inference because it 

influences the posterior inference (Ntzoufras, 2009). In literature, often a prior with a 

normal distribution is used. The prior mean and variance is very important for 

specification of the prior. Ntzoufras (2009) explains that the prior mean provides a prior 

point estimate for the parameter of interest, while the variance gives an indication of the 

uncertainty on this estimate. A strong prior belief corresponds to a small prior variance and 

visa versa. When there is no prior information available, a prior is specified that will not 

influence the posterior distribution. Such a distribution is called a non-informative or 

vague prior distribution. Non-informative priors are often improper prior distributions in 

the sense that they are not integrable i.e. their integral is infinite. One can use improper 

priors as long as the resulting posterior is proper (Ntzoufras, 2009).  

 

Conjugate priors 

 

Ntzoufras (2009) states that the posterior distribution is often not analytically tractable. 

This can be solved by using conjugate prior distributions. This allows integrals involved in 

the problem to be solved analytically. A conjugate prior distribution has the property of 

resulting to a posterior of the same distributional family. Lee (2004) provides a definition. 

Let   be a likelihood function  ( | ). A class   of prior distributions is said to form a 

conjugate family if the posterior density  ( | )   ( ) ( | ) is in the class   for all   

whenever the prior density is in  . 

 

Training sample priors 

 

Greenberg (2008) notes that when you have very little information on which to base a prior 

distribution, it is possible to train priors, providing you have a large number of 

observations. The idea is to make use of Bayesian updating. Greenberg gives the following 
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method: “a portion of the sample is selected as the training sample. It is combined with a 

relatively non-informative prior (a prior with a large variance and a mean of zero) to yield 

a first-stage posterior distribution” (Greenberg, 2008, p 53). This is then used as the prior 

for the remainder of the sample.  

 

 

3.3 Generalized Linear Models 

 

3.3.1 Introduction 

 

Generalized linear models (GLMs) were introduced by Nelder and Wedderburn (1972). 

These models are an extension to the normal linear regression models and are based on the 

exponential family of distributions. A GLM has the basic structure  (  )      where 

    (  ),   is a smooth monotonic “link function”,    is the ith row of a model matrix, 

 , and   is a vector of unknown parameters. Also,    belongs to some exponential family 

distribution. The exponential family includes many distributions such as the Poisson, 

Binomial, Gamma, Normal and Inverse Gaussian distributions. A distribution belongs to 

the exponential family of distributions if its probability density function has the form 

  ( )       
    ( )

 ( )
  (   )              (3.7) 

where           are arbitrary functions,   is an arbitrary dispersion parameter which 

represents the scale, and   is known as the canonical parameter, which represents location.  

The expectation and variance of   are now derived. The log-likelihood of   given a 

particular   is  

     ( )   ( )  
    ( )

 ( )
  (   ). 

Differentiating with respect to   gives   

  
 

    ( )

 ( )
. Therefore,  (

  

  
)  

 ( )   ( )

 ( )
.  
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Using the result that  (
  

  
)   , the expectation of   is 

 ( )    ( ).                (3.8) 

Now, finding the second derivative with respect to   gives   
  

    
    ( )

 ( )
   

Using the general result   (
   

   )    (
  

  
)  , we have 

    ( )

 ( )
   (

    ( )

 ( )
)    

Hence   
  ( )

 ( )
 

 (    ( )) 

( ( )) 
, which leads to the variance for   

   ( )     ( ) ( ) .              (3.9) 

If   is known, there is no difficulty working with GLMs using any function of   ( )   If, 

however,   is unknown, it is common practice to assume  ( )      , where w is a 

known constant. Hence,    ( )     ( )              (3.10) 

Since the binomial distribution will be used in this study, it is important to show that the 

binomial distribution is a member of the exponential family. The probability mass function 

of a binomial distribution is  

 ( )  ( 
 
)   (   )     for            , where   is the probability of success.  

We have 

 ( )  (
 

 
)   (   )    

              (     ( 
 
)   (   )    ) 

             (  (
 

 
)     ( )  (   )   (   )) 

             (  (
 

 
)     ( )     (   )     (   )) 

             (  (
 

 
)      ( )    (   )      (   )) 
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             (   (
 

 
)     (

 

   
)     (   )) 

             [
   (

 

   
)    (   )

 
   ( 

 
)]               (3.11) 

Comparing Equation (3.7) to Equation (3.11), we see that 

     (
 

   
) ,  ( )     ( )      (   ) , and  (   )    ( 

 
) . Therefore, the 

binomial distribution is a member of the exponential family.      (
 

   
) is the canonical 

link function and is called the logit link. The canonical link is mathematically and 

computationally convenient. However, other choices may also be used. The parameters of 

a GLM can be estimated using maximum likelihood and an iterative procedure called 

Iteratively Re-weighted Least Squares (IRWLS).  

 

3.3.2 Maximum likelihood estimation 

 

A GLM has the basic structure  (  )      where     (  ) ,       
(  )  and 

   
(  ) indicates an exponential family distribution. Since the    are mutually independent, 

the likelihood of   is 

 ( )  ∏    
(  )  

 
    Thus the log-likelihood of β is given by 

 ( )  ∑    

 

   

   
(  )  

          ∑ 
       (  )

  ( )

 

   

   (    )   

where   is assumed to be the same for all i. For practical purposes, it is reasonable to 

assume that   ( )      , where wi  is a constant. Therefore, 

 ( )  ∑ 
  

 
 

 

   

       (  )    (    )   
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Differentiating with respect to βj gives 

  

   
 ∑

  

 
   

 

   

   

   
   

 (  )
   

   
   

Using the chain rule,  

   

   
 

   

   

   

   
 

and Equation (2.2), we have  (  )    
 (  )      

Hence,     

   
   

  (  )       

   
 

 

  
  (  )

 , which leads to 

  

   
 ∑

  

 

 

   

[
  

  
  (  )

   

   
 

  
 (  )

  
  (  )

   

   
] 

          ∑
  

 

 

   

[
     

  
  (  )

 ]
   

   
  

Now, from Equation (2.3) and using the assumption   ( )       , we obtain  

 (  )    
  (  )    . Hence 

  

   
 ∑

       

 (  )

 

   

   

   
 

which implies that the equations to solve for   are given by 

∑
       

 (  )

 

   

   

   
               

These are the equations that need to be solved for non-linear weighted least squares, if the 

weights  (  ) are known in advance and are independent of  . In this case the least 

squares objective is, therefore 

  ∑
(     )

 

 (  )

 

   

     

               (3.12) 
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where,    depends non-linearly on   but the weights,  (  ) are fixed (Wood, 2006).  

An iterative procedure is needed to solve the Equations (3.12). Let  ̂    denote the 

estimated parameter vector at the     iteration. Also let      be the vector with elements 

  
   

    ̂
    and      be the vector with elements   

   
    (  

   
), where    ( ) is the 

inverse function of the link function. Define a diagonal matrix      where         (  
   

), 

then Equation (3.12) becomes 

  ‖√    
      ( ) ‖

 

. 

Replacing   with its first order Taylor expansion around  ̂    gives 

  ‖√    
           (   ̂   ) ‖

 

 

where   is the Jacobian matrix with elements,     
   

   
| ̂   . Now  

 (  )        (  )
   

   
      

Thus, 

    
   

  (  
   

)
   

Therefore, defining a diagonal matrix   with elements       (  
   

)  we have 

         Hence, we obtain 

  ‖√    
              (   ̂   ) ‖

 

 

    ‖√    
       (      )       ̂    ‖

 

 

    ‖√      (      )          ‖
 

 

    ‖√             ‖
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where by definition of pseudo data,   
   

   (    ) (     
   

)    
   

  and the diagonal 

weight matrix,     , has elements    
   

 
 

 (  
   

)  (    )
   (Wood, 2006).  

The following procedure is then iterated until convergence:  

1. Using the current      and      obtain the pseudo data      and the iterative weights 

√    . 

2. Minimize the sum of squares ‖√             ‖
 

 with respect to   in order to obtain 

 ̂     , and hence          ̂      and       . 

3. Set   to     and repeat until  ̂  converges. 

It is common practice to use as initial values   
   

      and   
   

  (  
   

)  or a small 

adjustment to   
   

 if      . 

 

3.3.3 Diagnostics 

 

Model diagnostics can be divided into two types: checking (1) for outliers and influential 

observations and (2) the assumptions of the model.  

Residual plots are very useful plots to check the adequacy of the model. For Generalized 

Linear Models (GLMs) the Pearson and deviance residuals (Faraway, 2006) usually 

provide good plots to look at because they are comparable to the standardized residuals 

used for the linear models. In our case, however, the outcome variable is binary which 

means that the plots have limited use.  

However, one can consider influential observations and outliers. Multi-collinearity 

amongst the independent variables can also be considered.  

According to Faraway (2006), for the linear model,  ̂    , where   is the hat matrix that 

projects the observed data onto the fitted values, the diagonal elements of   are the 

leverages    and represent the potential of the point to influence the fit of the model. For 

GLMs (and thus logistic regression) leverages are different. The IRWLS algorithm used to 
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fit the GLM makes use of weights,  . These weights affect the leverage. With       and 

matrix       ( ), the hat matrix is  

       (    )        . 

The diagonals of   are the leverages   . A large leverage value    indicates that the fit 

may be sensitive to the response at case  . Leverage measures the potential to affect the fit 

of the model.  

Measures of influence assess the effect of each case on the fit of the model (Faraway, 

2006). Influential points can be examined by looking at the Cook’s distance statistic: 

   
( ̂( )   ̂)

 
(    )( ̂( )   ̂)

  ̂
  

where the dispersion parameter   is equal to 1 when the distribution is binomial (Equation 

3.11). The way these leverage and Cook’s distance statistics are checked is by considering 

their half-normal plots. Faraway (2006) explains that for a GLM, we do not expect the 

residuals to be normally distributed and, therefore, it is better to use half-normal plots to 

identify outliers. Here sorted values are compared to values of the quantiles of the half-

normal distribution: 

   (
   

    
)                   

We then look for outliers which may be identified as points off the trend.  

If some predictors are linear combinations of others, then     is singular. When this 

happens there are serious problems with the estimation of the parameters. Collinearity 

amongst the predictor variables can be detected in various ways: 

1. Looking at the correlation matrix of the predictors may reveal large pairwise correlations.  

2. Looking at the variance inflation factors.  

The variance inflation factors are calculated as follows: when an independent variable   , 

is regressed against all the other independent variables and the multiple coefficient of 

determination is   
 , the quantity   (    

 ) is called the variance inflation factor for the 

parameter    (Mendenhall and Sincich, 2003). These variance inflation factors are 
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calculated for each numerical independent variable. Mendenhall and Sincich (2003) state 

that any value greater than 10 would mean that there is a collinearity problem. 

 

3.3.4 Variable selection   

 

Variable selection in generalized linear models is often done using a stepwise procedure or 

by best subset selection. Here the stepwise method is introduced for generalized linear 

models (Hosmer and Lemeshow, 2000).  

 

Stepwise methods for generalized linear models 

 

The forward stepwise variable selection method starts with no variables in the model and 

adds the most important variables sequentially. The backward stepwise variable selection 

method goes the other way around by starting with a model with all the variables and then 

sequentially deleting variables that provide little value in explaining the response. A 

stepwise procedure is based on a statistical algorithm that checks for the importance of 

variables. The steps are as follows: 

Step 0 (select the best one variable model): Each possible variable is fitted individually 

and compared to the null model using a likelihood ratio test. The p-value for a significant 

variable must fall below a specific significance level. For example, with logistic 

regression, a significance level of between 0.15 and 0.20 is suggested. The variable with 

the smallest p-value below the significance level is chosen.  

Step 1 (select the best two variable model): A generalized linear model is fitted containing 

the variable selected in step 0. Models are then fitted using the variable selected in step 0 

and each of the other remaining models. These models are then compared to the model 

with the variable selected in step 0 using a likelihood ratio test. The variable with the 

smallest p-value is then chosen provided it is below the significance level.  
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Step 2: This procedure is continued until all variables are entered into the model or 

additional variables become insignificant.  

Alternatively, the backward elimination procedure works by starting with all variables in 

the model, then removing the one that is least significant, then the next, etc until all the 

variables are significant. 

This stepwise algorithm can also be conducted by comparing the AIC (Akaike information 

criterion) instead of using a likelihood ratio test.  

These variable selection methods, however, become questionable with binary data. So it is 

better to consider variable selection using expert knowledge about which variables to 

include or not. 

 

3.3.5 Logistic regression 

 

Ntzoufras (2009) explains that data encountered with a binary response are often modelled 

with logistic regression. Logistic regression is a special case of the Generalized Linear 

Models (GLMs). For credit scoring data, a response     represents a default or “bad” 

score and a response     represents no default or “good” score. Logistic regression 

makes use of the canonical link function,    (
 

   
). The logistic regression model is given 

below 

           (     )     (
  

    
)     ∑      

 
     ( )  for          .     is the 

element in the ith row and jth column of the model matrix  . 

From this, the probability of default is given by 

   
    (   ∑      

 
   )

      (   ∑      
 
   )

. 

Other link parameters are also possible to model binary response data, for example the 

probit and clog-log links.  

The likelihood for the logistic regression model is 
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 ( | )  ∏   
  (    )

     
              (3.13) 

                ∏ (
   (   ∑      

 
   )

      (   ∑      )
 
   

)  (  
   (   ∑      

 
   )

    (     ∑      )
 
   

)     
    . 

Estimation of the parameters for logistic regression can be done using the IRWLS 

procedure.  

 

Parameter interpretation 

 

The parameters in logistic regression have an interpretation in terms of odds and odds 

ratios. Odds is defined as the relative probability of success (   ) compared to the 

probability of failure (   ) when the data is binomial (Ntzoufras, 2009). Thus,  

     
 

   
 

and the logistic regression model can be rewritten as  

           (
     

       
   ),   (     )     ∑      

 
     ( ) . 

Odds provides a number to multiply the probability of failure by in order to calculate the 

probability of success.    can be interpreted as follows: a unit increase in     with all the 

other    ’s held fixed increases the log-odds of success by    or increases the odds of 

success by    . This interpretation is a major advantage of logistic regression as no such 

simple interpretation exists for other link functions such as the probit.  

In credit scoring, a success corresponds to a default or bad applicant. Thus, the log-odds of 

success is the log-odds of default in the context of credit scoring. Therefore,    can be 

interpreted as follows: a unit increase in     with all the other    ’s held fixed increases the 

log-odds of default by    or increases the odds of default by    . A positive value for    

thus increases the odds of default as     increases, while a negative value for    decreases 

the odds of default as     increases.  
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Assessment of fit 

 

Dobson and Barnett (2008) state that one way of assessing the fit of a model is to compare 

it with a model with the maximum number of parameters. The model with the maximum 

number of parameters is called the saturated model and has the same number of parameters 

as covariate patterns (i.e. observations with the same values of all the variables). The 

saturated model tells us no more than the actual data and is often non-informative 

(Faraway, 2006). However, we can use the saturated model to compare prospective 

models. The difference between the log-likelihood for the full model and model under 

consideration gives the likelihood ratio statistic, known as the deviance 

     ( ̂   )   ( ̂) . 

The deviance for the binomial model is now derived. This follows from Dobson and 

Barnett (2008). From Equation (3.13) the likelihood function is  

 ( )  ∏          (  )      (    )      (    )    (  
  
)  

   . 

This in term means the log-likelihood function is 

 ( )  ∑      (  )      (    )      (    )    (  
  
)  

   .       (3.14) 

From this we find the maximum likelihood estimate for   . Now, differentiating and 

equating to zero we have  

  

   
 

  

  
 

  

    
 

  

    
   

 
  

  
 

  

    
 

  

    
 

 
(    )       

  (    )
 

  

    
 

 
  

  
    

which leads to the maximum likelihood estimate 
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 ̂  
  

  
.  

Now, the maximum value of the log-likelihood function Equation (3.14) is   

 ( ̂   )  ∑    
 
     (

  

  
)      (

     

  
)      (

     

  
)    (  

  
) .  

For any other model with number of parameters less than the number of covariate patterns, 

let  ̂     ̂  denote the fitted values. Then, the log-likelihood evaluated at these values is 

 ( ̂)  ∑    
 
     (

 ̂ 

  
)      (

    ̂ 

  
)      (

    ̂ 

  
)    (  

  
) . 

Therefore, the deviance for the Binomial model is  

   [ ( ̂   )   ( ̂)] 
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)]                                                                   (    ) 

 

This deviance has a chi-squared distribution with degrees of freedom equal to the number 

of covariate patterns less the number of parameters. The deviance can, therefore, be used 

in a hypothesis test to assess the fit of a model. However, when the outcome is binary, i.e. 

when    takes on the values zero or one, this goodness-of-fit measure is no longer useful. 
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There is also a Hosmer-Lemeshow statistic which tries to overcome the problem of a 

goodness-of-fit statistic for binary data (Hosmer and Lemeshow, 2000). However, its use 

is still questionable. 

 

Classification 

 

Logistic regression models a binary outcome. The objective is often to classify.  

In order to perform classification, Hosmer and Lemeshow (2000) explain that a cut-off 

point,  , must be defined. The estimated probabilities from the logistic regression model 

are compared to this cut-off point. If the estimated probability exceeds  , we let the 

derived variable be equal to 1; if the estimated probability is less than  , we let the derived 

variable be equal to 0.  

Classification tables, according to Hosmer and Lemeshow (2000) are a good way to 

summarize the results of a fitted logistic regression model. The outcome variable   is cross 

classified with a dichotomous variable whose values are derived from the estimated 

logistic probabilities. 

The predictive performance of the logistic regression model is probably the best way to 

assess the fit of the model. The way to do this will be to split a data set into a training and a 

test set. The model will be estimated on the training set and its performance will be tested 

on a test set with a certain cut-off probability,  . A classification table will then be 

established and the error rate of the model can be used as a measure of how well the model 

fits (Table 3.1).  

  



40 
 

Table 3.1 Classification table of the predictive performance of the logistic regression 

model.  

 

 

Predicted 

Good Bad 

Actual 
Good     

Bad     

 

From Table 3.1, a number of facts can be established.  

-         represents the number of applicants in the test set. 

-     is the number of applicants classified as bad. This is the number of applicants who 

were rejected in their application for credit.  

-     is the number of applicants classified as good. This is the number of applicants who 

were accepted in their application for credit.  

-   is the number of applicants correctly classified as good and   is the number of 

applicants correctly classified as bad. 

-   is the number of applicants classified as bad but are in fact good. This number represents 

missed out profits for the financial institution. 

-   is the number of applicants classified as good but are in fact bad. This number represents 

bad debts and losses in income for the financial institution.  

- The total error probability of the classification is (   ) (       ). This value 

must be small. It also gives an indication of the goodness-of-fit of the model.  

- For the applicants that will be accepted by the financial institution, the error probability is 

  (   ). This is the error rate realized by the bank. Thus, it is very important that   is 

as small as possible.  

- A cut-off probability  , needs to be found which minimizes the classification error.  

The choice of the cut-off probability  , is often a subjective choice. For lower  , more 

applicants will be classified as bad. For higher  , the more applicants will be classified as 

good. A lower cut-off probability means that the financial institution is more risk averse as 

opposed to one with a higher cut-off probability. Because the error rate realized by the 

financial institution is greatly affected by how large   is, it is important that the error 

among the bad applicants is minimized as well as the total error.  
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The optimal cut-off probability can be found by using a validation set. The classification 

error can be determined for different cut-off probabilities. The cut-off probability which 

gives the lowest classification error on the validation set will be chosen and used in further 

analysis.  

 

3.3.6 Bayesian logistic regression 

 

Bayesian inference for the logistic regression model requires priors on the model 

parameters. Wilhelmsen et al. (2009) and Ziemba (2005) both use normally distributed 

priors for the model parameters and represented as follows 

 (  )   (      
 ).             (3.16) 

The posterior distribution is proportional to the product of the prior distribution and 

likelihood,  ( | )   ( | ) ( ). Therefore, from Equations (3.13) and (3.16), we have 

 ( | )  ∏   
  (    )

     
   ∏

 

√    
 

 
      ( 

(      )
 

   
 )       (3.17) 
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∏  
 

  (    )
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∫ ∏  
 

  (    )
     

   ∏
 

√    
 

 
       ( 

(      )
 

   
 )  

 
  

        (3.18) 

when the normalising constant is included.  

The form of this posterior distribution, Equation (3.17), suggests that the prior does not 

belong to a conjugate family. There is in fact no conjugate prior for the Bayesian logistic 

regression model. The normalising constant, the integral in the denominator (Equation 

(3.18)) cannot be calculated explicitly. In this situation simulation methods need to be used 

in order to obtain the posterior distributions of the parameters. Markov Chain Monte Carlo 

(MCMC) methods are used where a Markov chain is generated with a stationary 

distribution equal to the posterior distribution of the vector β. 
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3.4 Monte Carlo Methods 

 

Simulation has greatly improved on the scope of Bayesian inference. Markov Chain Monte 

Carlo (MCMC) methods allow for sampling from a non-standard distribution. Therefore, 

Bayesian inference can be done in a wide range of posterior distribution forms, for 

example Equation (3.18). The idea is to generate a Markov chain whose limiting 

(stationary) distribution is equal to the posterior distribution. This section will describe 

simulation techniques, provide an introduction to Markov chains and then explain the role 

and purpose of Markov Chain Monte Carlo.  

 

3.4.1 Monte Carlo simulation 

 

In Bayesian inference, simulation is needed to evaluate integrals. In order to do this, it is 

essential that random data can be generated. The generation of random variables and all 

other Monte Carlo methods are reliant on the generation of uniform random variables on 

the interval (   ). 

 

Uniform random number generation 

 

There are many methods to produce pseudo uniform random numbers as shown in Kroese 

et al. (2011). These generators include Linear congruential, Multiple-recursive, Matrix 

congruential, Modulo 2 linear etc. The function for the multiple-recursive generator is as 

follows: 

                  

     
    

 
 

where   and   are positive integers and           means that     is divided by   and 

the remainder is taken as the next value     . To use the generator, only a starting number 
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is thus needed. This starting number is called the seed. Once the desired number of random 

numbers have been generated, each number is divided by  . This results in uniform 

random numbers on the interval (   ).  

According to Kroese et al. (2011) two excellent generators that have very good 

performance are: 

- Combined multiple-recursive generators.  

- Twisted general feedback shift register generators.  

Luckily, these very good generators are what are used in computer programs and statistical 

software. For example the program MATLAB uses the twisted general feedback shift 

register generator.  

 

Random variable generation 

 

Two common methods for random variable generation are the inverse transform method 

and accept-reject algorithm.  

 

Inverse-transform method 

Kroese et al. (2011) introduces the inverse-transform method as follows: 

Let   be a random variable with cumulative distribution function (cdf)  ( )   (   ). 

Since   is a non-decreasing function, the inverse function can be defined as 

   ( )  {
   {   ( )   }         
                                     

   

Now if we have a random variable   from a uniform distribution on (   ) , i.e 

      (   )  then the cdf of the inverse transform    ( ) is given by 

 (   ( )   )   (   ( ))   ( )   
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Thus, in order to generate a random variable X with cumulative distribution function  ( ), 

we generate U from     (   ) and then make the transformation       ( ). Therefore, 

we have the following algorithm 

- 1. Generate   from     (   )  

- 2. Return      ( )  

This is used for sampling random variables from continuous distributions. Obviously, this 

method only works when we can determine and evaluate the inverse of the cdf  .  

 

Accept-reject method 

The inverse transform method is of no use when one cannot obtain the inverse of the 

cumulative distribution function. A more general method is the accept-reject method 

which can be used to sample from more general distributions.  

According to Greenberg (2008), the accept-reject method can be used to simulate random 

variables from a density function  ( ) when it is possible to simulate values from another 

density  ( ), and if a number     can be found such that  ( )    ( ) for all  . The 

density  ( ) is called the instrumental or candidate density. In order to simulate random 

variables   from  ( )  Robert and Casella (2010) state that first, we independently 

generate    ( ) and       (   ). Then, if  

  
 

 

 ( )

 ( )
  

we set    . If not we discard  . This leads to the accept-reject algorithm 

- 1. Generate   from  ( ); 

- 2. Generate   from     (   )  independently of   ; 

- 3. Accept      if   
 

 

 ( )

 ( )
, else reject  ; 

- 4. Return to 1. 

Following Robert and Casella (2010), the cdf of the accepted random variable 

 (   |  
 ( )

  ( )
) is exactly the cdf of  . That is, 
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The output is, therefore, exactly distributed from  ( ).  

Considering the efficiency of this method, we note that the probability of accepting a point 

is given by. 

 (      )   (  
 ( )

  ( )
)  ∫ (∫    )  ( )  

 ( )
  ( )

 

 

  

 

                     ∫
 ( )

  ( )
 ( )  

 

  

  

                     ∫
 

 
 ( )   

 

 

 

  

  

This implies that we should choose an   as small as possible in order to maximize the 

probability of acceptance. The algorithm is efficient when   is as close to   as possible. 

Maximizing the probability of acceptance is important because as Greenberg (2008, p 67) 

states, “rejected values use computer time without adding to the sample”, therefore, 

deceasing efficiency.  
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Monte Carlo integration 

  

Monte Carlo integration is a statistical technique for approximating integrals. It uses 

simulation to obtain an estimate of the integral which has a mean and a variance. One 

method of Monte Carlo Integration is the sample mean approach. This method is described 

below for the estimation of the integral,   ∫  ( )  
 

 
. The following approach is 

discussed in Suess and Trumbo (2010). 

Now, if       (   )  then   ( ( ))  ∫ (
 

   
)  ( )   

 

   
∫  ( )

 

 
  

 

 
. Therefore, 

∫  ( )   (   ) ( ( )) 
 

 

 

The integral ∫  ( )  
 

 
  can, therefore, be approximated by 

  
   

 
∑  (  

 
   )             (3.19) 

where            are random numbers from     (   ). The mean and variance of this 

estimator is derived as follows: 

 ( )   (
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  ( ( ))  

   

 
 

 

   
∫  ( )   

 

 

    

Therefore, the estimator in Equation (3.19) is an unbiased estimator for the integral, 

  ∫  ( )
 

 
  . Now, for the variance 
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         (3.20) 
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So, we have that    ( )  
 

 
.  

 

Importance sampling 

Importance sampling is used to reduce the variance of a Monte Carlo estimate of an 

integral. From Equation (3.20) the standard deviation of an estimator for the integral,   is 

   ( )  
 

√ 
. Thus, the standard deviation of the estimator decreases as   increases, but at 

a decreasing rate. This means that if we increase the number of random points from 

      to       points, the standard deviation is improved from the order of  

  
 to  

   
. 

Therefore, quite a large number of random points are needed to obtain a noticeable 

improvement in accuracy. Importance Sampling aims to improve the standard deviation of 

a Monte-Carlo estimate. The idea is as follows as seen in Robert and Casella (2004). 

Consider a density  ( ) on       with the property that  ( )    whenever  ( )   . 

Then  

∫  ( )   ∫
 ( )

 ( )
 ( )  

 

 

 

 
   (

 ( )

 ( )
)  if    ( ). 

Therefore, in order to obtain an estimate for ∫  ( )
 

 
   using importance sampling, we 

sample            from  ( )and estimate  

∫  ( )   
 

 
∑

 (  )

 (  )
  

   
 

 
            (3.21) 

The new estimator is given by    
 

 
∑

 (  )

 (  )
 
    and the variance of   is given by 
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To minimize the variance, we need to minimize the first term  (
 ( )

 ( )
)
 

. Using Jensen’s 

inequality 

 (
 ( )

 ( )
)
 

   (
| ( )|

 ( )
)   (∫

| ( )|

 ( )
 ( )  )

 

 

 

 (∫ | ( )|  )
 

 

 
       (3.22) 

which is a lower bound and does not depend on the choice of  ( ).  

 

Theorem 3.1 If    
 

 
∑

 (  )

 (  )
 
    where            are i.i.d. from a density  ( ) such 

that  ( )    whenever  ( )    and ∫  ( )    
 

 
 then 

1.  ( )  ∫  ( )   
 

 
 

2.    ( ) is minimized if  ( )  
| ( )|

∫ | ( )|  
 
 

. 

Proof: 

1.  ( )   (
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2. From Equation (3.22) (∫ | ( )|  )
 

 

 
 is the lower bound for  (

 ( )

 ( )
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 which is what we 

want to minimize. Now, if  ( )  
| ( )|
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                      (∫ | ( )|  
 

 

)   

Thus, for this choice of  ( ) we are at the lower bound and variance is minimized. Now, 

the practical use of Theorem 3.1 is very limited. This is because we need to know the 

integral ∫ | ( )|  
 

 
 which is for  ( )    the same as ∫  ( )  

 

 
. But ∫  ( )  

 

 
  is what 

we are looking to estimate in the first place. This theorem does, however, help us to choose 

a good  ( ). We should try to achieve  ( )

 ( )
           Therefore, we should sample more 
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points in regions where  ( ) is large. Thus, the “important” parts of the integral will be 

estimated better. This is why the method is called importance sampling.  

 

3.4.2 Markov chains 

 

An overview of Markov chains is given in this section. The simulation methods described 

previously cannot easily be applied in all cases. Monte Carlo integration and importance 

sampling can be applied when we are dealing with standard distributions. However, when 

we face a non-standard distribution (such as the case with Bayesian logistic regression) the 

previous simulation techniques cannot easily be used to obtain samples from any posterior 

distribution. If they are used, they are subject to major practical difficulties. Markov Chain 

Monte Carlo (MCMC) methods provide a way out.  

Markov Chain Monte Carlo methods have greatly improved the scope for Bayesian 

inference (Robert and Casella, 2004; Greenberg, 2008). Because MCMC relies on Markov 

chains, they are now introduced with both discrete and continuous state spaces.  

 

Discrete state space 

 

The definition of a Markov chain is as follows: 

Definition 3.1 Let (          ) be a stochastic process indexed by   (often time) that 

takes values in the finite set   {       } (finite state space) or   {     } (infinite 

state space). If the Markov property  

 (      |                            )   (      |    )      

holds true for all states j, k, kt-1, … , k1, k0    and all time steps           , then 

(          ) is called a Markov chain.  
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Therefore, the current state of a Markov chain only affects the next state. The     are 

transition probabilities. These transition probabilities do not depend on the time  . Since 

the     are probabilities, we have       and since the process remains in   

∑   

 

   

    

The transition probabilities are very important and it is useful to collect these transition 

probabilities in a matrix. The     transition probability matrix is given by 

  (

   

   

   

   
   

   

   

         
            

)  

The ith row of  , specifies the distribution of the process at    , given that it is in state   

at  . For example,     represents the probability of going to state 2 given that it is in state 

2.  

We now consider multi-step transition probabilities    
( ), which are defined as follows  

   
( )

  (    |    )   (      |    )  

The calculation of multi-step transition probabilities is made easy from the following 

Chapman-Kolmogorov lemma: 

 

Lemma 3.1 Let (          ) be a Markov chain with state space   {       }. Then, 

we have for the multi-step transition probabilities 

   
(   )

 ∑   
( )

   
( )

 

   

 

Proof: 

   
(   )

  (      |    ) 

               ∑ (           |    )
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               ∑
 (                )

 (    )
   

 
 (         )

 (         )
  

               ∑ (      |         ) (    |    )

   

       

Now, using the Markov property we obtain 

   
(   )

 ∑ (      |    ) (    |    ) 

   

 

This implies, 

   
(   )

 ∑   
( )

   
( )

   

  

 

The Chapman-Kolmogorov lemma can also be written in matrix form 

           

We now turn to a discussion of the classification of states. 

Some states will be visited over and over again, while others will only be visited a finite 

number of times and never visited again. Let, for a state     

      {        }  

Thus,    is the time of first visit to state  . Also let 

    (    |    ) 

which is the probability that the Markov chain will return to state   once it started there. 

There are two possible cases for the   ’s: 

1.     . This means that we are certain we will continuously return to state   (over and over 

again). Such a state is called recurrent and will be visited infinitely many times.  

2.     . This means that there is a positive probability of never returning to state  . Such a 

state is called transient which will only be visited a finite amount of times.  

We say that a state   is accessible from state   if there is     such that    
( )

   and 

write    . State   is accessible from state   if with a finite number of steps we can come 
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from state   to  . Also, if     and     we then say that the states   and   communicate 

and expressed as    . It can be shown that the communication relation is an equivalence 

relation between the states of  . This means, we have for all states         

-     (reflexivity); 

- If     then also     (symmetry); 

- If     and    , then also     (transitivity). 

A Markov chain is known as irreducible if there is only one communication class. This 

means that all states communicate (the process can reach any other state with positive 

probability). This would imply that for an irreducible Markov chain with finite state space, 

that all the states are recurrent.   

The distribution   (       ) is called a stationary (or invariant or limiting) distribution 

if     . This limiting distribution,            exists if the Markov chain is 

irreducible and all states are aperiodic (the greatest common divisor of the sets    

{       
( )   } is one).  

We now introduce Markov chains for a continuous state space.  

 

Continuous state space 

 

It is now assumed we have a stochastic process (          ) with discrete time but a 

continuous state space      and that all distributions have densities.  

For Markov chains with continuous state space the transition probabilities    

 (         |     )  are always zero. Therefore, looking at specific points      

when defining transition probabilities, is not helpful. Thus, subsets     are considered. 

This leads to the following definition: 

 

Definition 3.2 Let (          )  be a stochastic process with continuous state space 

    . If for all     and all states              we have  
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 (      |                             )   (      |     )  

then we call the stochastic process a Markov chain with continuous state space (Robert and 

Casella, 2004).  

 

We will always assume that we can determine the transition probabilities 

  (      |     ) using a transition kernel           by 

 (      |     )  ∫  (       )     
      

  

A transition kernel has the following properties 

-  (       )    for all          ; 

- ∫  (       )       
      

  

It can be shown that the two-step transition probability is given by 

 (    |     )   (         |     ) 

                                      ∫ ∫  (     ) (     )       
        

 

Therefore, the two-step transition kernel is  

 ( )(     )  ∫  (     ) (     )       
. 

We can generalize this to T-step transitions (multi-step transitions). 

 (    |     )  

∫ ∫  ∫  (     ) (     )  (       )
    

                      
. 

Hence, we have the T-step transition kernel 

 ( )(     )  ∫  ∫  (     ) (     )  (       )
    

               
. 

Therefore, we have  
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 (    |     )  ∫  ( )(     )
    

   . 

The Chapman-Kolmogorov lemma is then also true with a countable state space  

 (   )(       )  ∫  ( )(     ) ( )(       )   
    

  

The concept of an irreducible Markov chain (as discussed under discrete state spaces) is 

the same for the continuous state space. Thus, the definitions of recurrent and transient 

Markov chains, communication and aperiodic also apply to the continuous case.  

The concept of a stationary distribution for a Markov chain with continuous state space is 

now discussed.  

We assume that for a Markov chain (          )  with transition kernel   , the 

distribution of    has the density   . Now, if     (    ) is the density of      then 

    (    )   (    |  )  (  )    (  ) (       ). 

Therefore, for the distribution of      for any     

 (      )  ∫     (    )      ∫ ∫   (  ) (       )        
                

. 

A density for      is therefore given by 

    (    )  ∫   (  ) (       )       
. 

We then have the following definition: 

 

Definition 3.3 A probability distribution   with density   is called a stationary distribution 

for a Markov chain (          ) with transition kernel   if  

 ( )  ∫  ( ) (   )  
   

 

for all     except on a set     with  ( )   . 
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Such a distribution is called an invariant distribution. We now move onto the so-called 

detailed balance condition. 

 

Lemma 3.3 Let (          )  be a Markov chain with transition kernel    If, for a 

density function p, we have the detailed balance condition 

 ( ) (   )   ( ) (   ) for all         

then   is the density of a stationary distribution of the Markov chain. 

Proof: 

We have 

∫  ( ) (   )   ∫  ( ) (   )
   

    ( )∫  (   )    ( )
      

  

 

Definition 3.4 Let (          ) be a Markov chain with continuous state space  . Let   

be a probability distribution on  . The Markov chain is called  -irreducible if for all 

     and all     with  ( )    there is     such that 

 (    |     )  ∫  ( )(    )    
   

. 

 

If     then the Markov chain is called strongly  -irreducible. This property of a Markov 

chain implies that any set with a positive probability  ( )    can be visited from any 

     in finite time. Thus, if this property holds, all states communicate.  

Now, let    ∑   (  )
 
    denote the number of visits of the Markov chain in the set  .  

 

Definition 3.5 Let (          ) be a Markov chain and let    . We then call 

- the set   recurrent if for all      we have  (  |     )   . 
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- the Markov chain recurrent if it is  -irreducible for some probability distribution   and 

whenever  ( )   , then   is recurrent.  

A stronger definition of recurrence is now given. 

 

Definition 3.6 Let (          ) be a Markov chain and let    . We then call 

- the set   Harris-recurrent if for all      we have  (    |     )   . 

- the Markov chain Harris-recurrent if it is  –irreducible for some probability distribution   

and whenever  ( )   , then   is Harris-recurrent.  

 

Lemma 3.4 Let (          ) be a Markov chain with stationary distribution   (with 

density  ). If     and if the Markov chain is  -irreducible and recurrent, then for any 

integrable function       we have (with probability 1) 

   
   

 

 
∑ (  )

 

   

 ∫  ( ) ( )     ( ( ))
 

 

for almost all starting values      . If the Markov chain is Harris-recurrent, then the 

equation holds for all       

 

 

3.4.3 Markov chain Monte Carlo 

 

Markov chain Monte Carlo constructs a Markov chain that has as its stationary 

distribution, the target distribution. It does this by constructing an irreducible Markov 

chain, which ensures that most of the Markov chains resulting from an MCMC algorithm 

are recurrent or even Harris-recurrent. As explained, Harris recurrence ensures that the 

Markov chain converges to its stationary distribution for every starting value instead of 

almost every starting value. Thus, we need Harris recurrence to ensure that the MCMC 

algorithm converges. MCMC algorithms construct a transition kernel which results in a 
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Markov chain which is recurrent and converges to the target distribution. A general 

principle to do this is the Metropolis-Hastings (MH) algorithm. The Gibbs sampler is a 

special case of the MH algorithm.  

 

Metropolis-Hastings algorithm 

 

We wish to construct a Markov chain which has its stationary distribution equal to the 

target distribution.  

The results from the previous section are now used to construct a transition kernel, 

 (   ), that has an invariant density equal to the target density. We consider this in the 

continuous case. The Metropolis-Hastings algorithm is a general algorithm for sampling 

from any form of posterior distribution.  

The Metropolis-Hastings (MH) algorithm has two ingredients: Lemmas 3.3 and 3.4. 

Lemma 3.4 essentially means that we can sample dependent samples from a Markov chain 

and we can use   
 
∑  (  )

 
    to estimate   ( ( )). 

We now use Lemma 3.3 (detailed balance condition). A transition kernel that holds true 

for this lemma is known as a reversible kernel and results in a stationary distribution. This 

lemma can help in finding a kernel that has the desired target distribution. Following Chib 

and Greenberg (1995), we make an irreversible kernel reversible. If a kernel is not 

reversible for some pair (   ) we may have 

 ( ) (   )   ( ) (   ).            (3.23) 

We wish to make this inequality an equality. In this case there are more moves from   to   

than   to  . In order to achieve an equality, before we make a move from   to   we 

impose a probability  (   )    with which such a move will be accepted. This 

probability  (   ) must be such that   (   ) ( ) (   )   ( ) (   ). This means that  

 (   )     (
 ( ) (   )

 ( ) (   )
  )   

This ensures that the detailed balance condition holds. If, on the other hand, we have 
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 ( ) (   )   ( ) (   ) 

then we multiply the right-hand-side by  (   )    and obtain 

 (   )     (
 ( ) (   )

 ( ) (   )
  )   

This then leads to the Metropolis-Hastings algorithm: 

- 1. Choose a transition kernel   with  (   )    for all states      ; 

- 2. Start at     with some arbitrary state          ; 

- 3. If       , generate a random variable    (    ) and       (   ); 

- 4. If     (and       ) set 

           {
        (    )
                          

  

- 5.       and return to 3. 

Here  (   )      (
 ( ) (   )

 ( ) (   )
  ). 

This Metropolis-Hastings algorithm is the principle algorithm which is used with Bayesian 

logistic regression.  

The transition kernel,   is the proposal kernel. There is considerable freedom in choosing 

the proposal kernel. However, care still needs to be taken in order to choose particularly 

useful ones. For example, when the proposal kernel does not “explore” the whole state 

space of  ( ) then certain values will not be sampled. There are two common choices for 

the proposal kernel which lead to the independence sampler and the random walk sampler.  

The choice of the proposal kernel affects the acceptance rates of the algorithm. According 

to Ntzoufras (2009), the variance of the proposal controls the convergence speed of the 

algorithm. Small variances of the proposal kernel will result in high acceptance rates, but 

low convergence since the algorithm will need a large number of iterations to explore the 

entire parameter space. Conversely, a high variance will result in low acceptance rates and 

a highly correlated sample. The optimal acceptance rate is between 20% and 40% 

(Ntzoufras, 2009). For models with a large number of parameters the acceptance rate 

should be towards the lower bound, for a univariate model the acceptance rate should be 

towards the upper bound. The way to obtain the acceptance rate in this range is by tuning 
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the variance of the proposal kernel. Metropolis-Hastings algorithms include a tuning 

parameter. This parameter is “tuned” so that the acceptance rate is between 20-40%.  

 

Independence sampler 

 

If the proposal  (   ) does not depend on  , that is  (   )   ( ) for all   then the 

acceptance probability is 

 (   )      (
 ( ) ( )

 ( ) ( )
  ). 

The independence sampler is very similar to the accept-reject method in Section 3.4.1. 

Like the accept-reject method, it is important that the proposal kernel,    is close to the 

target   to allow for efficient simulation. However, the independence sampler produces 

dependent samples. Also, if there is a constant   such that  ( )    ( ) , then the 

expected acceptance rate is at least     when the Markov chain is stationary. The proof is 

as follows: 

 ( (    ))   (   (
 ( ) (  )

 (  ) ( )
  ))  ∫∫   (

 ( ) ( )

 ( ) ( )
  )  ( ) ( )     

                  ∫∫  ( ) ( )    
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 ( ) ( )

  

 ∫∫
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If   ( )  
 ( )

 ( )
  the last integral is  ( ( )   ( )) for U, V independent with distribution 

p(x). Therefore, it is as likely that  ( )   ( )  as that  ( )   ( )  if U, V are 

independent and identically distributed. Thus, 

 ( (   ))  
 

 

 

 
 

 

 
  

 

Random walk sampler 

 

The other common choice is to use the current simulated value to generate the next value. 

In that way, the neighbourhood of the current value of the Markov chain is explored. A 

proposal kernel which allows this is the symmetrical kernel  (   )   (   ). This leads 

to acceptance probability 

  (   )     (
 ( )

 ( )
  )  

A proposed value     is then accepted with probability one if  ( )   ( ) . Thus, 

points   that are more likely (according to  ) than the previous    will always be accepted. 

However, we also accept points which are less likely with a certain probability. Thus, 

making use of the previous    explores   in a more local way.  

 

Markov chain Monte Carlo diagnostics 

 

The Markov chain, from which we take samples, needs to have converged to the target 

distribution. If the Markov chain has not converged, samples will be taken which are not 

from the desired target distribution. In order to make sure that samples are taken only from 

the stationary distribution, a burn-in period is used (Ntzoufras, 2009). The burn-in period 

is the number of samples which are eliminated to ensure we only sample from the 

stationary distribution.  
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Dobson and Barnett (2008) state that a way to assess the convergence of a Markov chain is 

by looking at time series (trace) plots. These graphs plot the history of the Markov chain. 

A chain that has converged should be stable and show a reasonable degree of randomness 

between iterations.  

Another way to assess convergence is by looking at the autocorrelation function (ACF) of 

the chain. Ideally we would want samples to be independent, but with MCMC algorithms 

this cannot happen. We therefore accept some autocorrelation. If the ACF values are low it 

indicates that the Markov chain has converged successfully. 

Geweke (1992) proposed a diagnostic test for assessing the convergence of the mean of 

each parameter. He considers the simulated Markov chain (obtained from the MCMC 

output) as a time series and applies a z-test to check whether the means from two different 

subsamples are equal. These subsamples come from the beginning and end of the 

generated chain. Typically, the first 10% of the chain is used as the beginning sample and 

the last 50% is used as the end sample. Using this z-test, parameters with | |    indicate 

evidence of significant differences between the means of the first and last set of iterations 

and means non-convergence of the chain.  
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Chapter 4: Results 

 

4.1 Initial Data Analysis 

Analysis is now illustrated on a real life home equity data set. This data set was first 

analysed by Wielenga et al. (1999). Here, the methodology described in Section 3.1 is 

performed.  

The data set contains the loan performance of 5,960 home equity loans. The target 

(dependent) variable is a dummy variable indicating whether or not a default occurred 

during the duration of the loan. If a default occurred the value is one; if no default occurred 

the value is zero. The data set consists of 12 input (independent) variables. The variables 

are summarized in Table 4.1. 

 

Table 4.1 Variable type and description for each variable in the data set. 

Variable  Model Role Variables Type Description 

BAD Target Categorical - Nominal 1 = defaulted on loan 

0 = paid back loan 

REASON Input Categorical - Nominal HomeImp = home improvement  

DebtCon = debt consolidation 

JOB Input Categorical - Nominal Six occupational categories 

LOAN Input Numerical - Continuous Amount of loan request 

MORTDUE Input Numerical - Continuous Amount due on existing mortgage 

VALUE Input Numerical - Continuous Value of current property 

DEBTINC Input Numerical - Continuous Debt-to-income ratio 

YOJ Input Numerical - Continuous Years at present job 

DEROG Input Numerical - Discrete Number of major derogatory reports 

CLNO Input Numerical - Discrete Number of trade lines 

DELINQ Input Numerical - Discrete Number of delinquent trade lines 

CLAGE Input Numerical - Continuous Age of oldest trade line in months 

NINQ Input Numerical - Discrete Number of recent credit inquiries 
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The target variable is a binary variable consisting of ones and zeros. There are 1,189 ones 

and 4,771 zeros in the target variable. This means that close to 20% of the applicants 

defaulted during the duration of the loan or became seriously delinquent.  

For the input variables, there are two categorical variables. The other ten input variables 

are all numerical of which four are discrete and six are continuous. Summary statistics for 

the input numerical variables are given in Table 4.2.  

 

Table 4.2 Summary statistics for the numerical input variables.  

Variable Minimum Median Mean Maximum SD NAs 

LOAN 1100.00 16300.00 18608.00 89900.00 11207.48 0 

MORTDUE 2063.00 65019.00 73761.00 399550.00 45095.37 518 

VALUE 8000.00 89236.00 101776.00 855909.00 54728.24 112 

DEBTINC 0.5245 34.8183 33.7799 203.3121 7.9514 1267 

YOJ 0.000 7.000 8.922 41.000 7.596 515 

DEROG 0.0000 0.0000 0.2546 10.0000 0.5795 708 

CLNO 0.00 20.00 21.30 71.00 9.39 222 

DELINQ 0.0000 0.0000 0.4494 15.0000 0.8096 580 

CLAGE 0.0 173.5 179.8 1168.2 82.8 308 

NINQ 0.000 1.000 1.186 17.000 1.549777 510 

 

NAs represent the number of missing values for each variable. There are many missing 

values in all of the variables except for LOAN. In particular, most of the missing values 

occur in the DEBTINC variable with 1,267 missing values. If all the missing values in the 

data are ignored, the proportion of applicants who defaulted goes down to 8.9%.  Because 

there is such a large number of missing values and the proportion of bad applicants 

decreases when they are ignored, an estimation technique was used to estimate the missing 

values.  

Bar plots for the categorical variables are given in Figure 4.1.  
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Fig. 4.1 Bar plots of REASON and JOB.  

 

Histograms and box plots for the numerical variables are given in Figures 4.2 to 4.11 

(Histogram on the left-hand-side and box plot on the right-hand-side).  

 

 

    
Fig. 4.2 Histogram and Box plot of LOAN.  
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Fig. 4.3 Histogram and Box plot of MORTDUE. 

  
Fig. 4.4 Histogram and Box plot of VALUE. 

  
Fig. 4.5 Histogram and Box plot of DEBTINC.  
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Fig. 4.6 Histogram and Box plot of YOJ.  

  
Fig. 4.7 Histogram and Box plot of DEROG.  

  
Fig. 4.8 Histogram and Box plot of CLNO.  
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Fig. 4.9 Histogram and Box plot of DELINQ.  

  
Fig. 4.10 Histogram and Box plot of CLAGE.  

  
Fig. 4.11 Histogram and Box plot of NINQ.  
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From Figures 4.2 to 4.11, in the majority of cases there appears to be a number of outliers 

towards the right-tails. This might result in the variables being more positively skewed 

than they should be. For example, the variable MORTDUE appears to have a number of 

outliers in the right-tail. For the variables DELINQ and DEROG, the majority of the 

values are zero. The question now arises whether these are legitimate outliers or whether 

they are outliers caused by errors in recording. This is addressed when the models are 

fitted. 

The data set was randomly split into four sets: 

- The “old” data set contains 2,759 observations of which 565 are bad.  

- The “validation” data set contains 549 observations of which 109 are bad.  

- The “new” data set contains 566 observations of which 114 are bad.  

- The “test” data set contains 1,662 observations of which 340 are bad.  

The missing values in the data set were replaced by the mean for each variable when the 

target variable (BAD) was equal to 1 and when it was equal to 0. The missing values were 

thus replaced by two means for each variable.  

 

 

4.2 Logistic Regression Model on “old” Data 

 

A logistic regression model was fitted on the “old” data. This model is the model fitted on 

the available data in the home country. Six Fisher scoring iterations were needed for the 

algorithm, used to fit the model, to converge. The estimated parameters of the model are 

given in Table 4.3. 
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Table 4.3 Logistic regression model fitted on the “old” data. 

 

 

There are a number of significant variables at the 5% level of significance. This indicates 

that many of the variables included in the model are significant in explaining whether an 

applicant will be good or bad. The residual deviance of the model is 1,866.7 with 2,742 

degrees of freedom.  

Interpretation is now given for the parameters of LOAN, DEROG and DEBTINC.  

- The parameter of LOAN is -2.37E-05 and is significant at the 5% significance level. 

LOAN represents the amount of loan request. A unit increase in LOAN with all other 

variables held fixed, means that there will be a 2.37E-05 decrease in the log-odds of 

default.  

- The parameter of DEROG is 7.34E-01 and is significant at the 5% significance level. 

DEROG represents the number of major derogatory reports. A unit increase in DEROG 

 Variable Estimate Std. Error z value Pr(>|z|) Significance 

(Intercept) -7.19E+00 5.64E-01 -12.765 < 2e-16 Significant 

LOAN -2.37E-05 6.50E-06 -3.642 0.000271 Significant 

MORTDUE -3.71E-06 2.28E-06 -1.625 0.104238 Insignificant 

VALUE 3.03E-06 1.60E-06 1.902 0.057212 Insignificant 

REASONHomeImp 2.03E-01 1.35E-01 1.504 0.132632 Insignificant 

JOBOffice -6.82E-01 2.25E-01 -3.038 0.002382 Significant 

JOBOther 1.72E-02 1.79E-01 0.096 0.923139 Insignificant 

JOBProfExe 4.76E-02 2.10E-01 0.227 0.820586 Insignificant 

JOBSales 4.02E-01 4.25E-01 0.948 0.343111 Insignificant 

JOBSelf 4.02E-01 3.80E-01 1.057 0.290496 Insignificant 

YOJ -1.62E-02 9.14E-03 -1.768 0.077093 Insignificant 

DEROG 7.34E-01 8.06E-02 9.098 < 2e-16 Significant 

DELINQ 8.04E-01 6.42E-02 12.53 < 2e-16 Significant 

CLAGE -5.22E-03 8.65E-04 -6.038 1.56E-09 Significant 

NINQ 1.37E-01 3.20E-02 4.272 1.94E-05 Significant 

CLNO -2.82E-02 6.79E-03 -4.148 3.36E-05 Significant 

DEBTINC 1.91E-01 1.38E-02 13.868 < 2e-16 Significant 
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with all other variables held fixed, means that there will be a 7.34E-01 increase in the log-

odds of default.  

- The parameter of DEBTINC is 1.91E-01 and is significant at the 5% significance level. 

DEBTINC represents the debt to income ratio of the applicant. A unit increase in 

DEBTINC with all other variables held fixed, means that there will be a 1.91E-01 increase 

in the log-odds of default.  

In order to check the adequacy of the model, collinearity of the independent variables, 

outliers and influential observations are considered. The correlation matrix of the 

numerical independent variables is given in Table 4.4. 

From this correlation matrix, we see that there are no large pair-wise correlations. The 

largest correlation is 0.78 between VALUE and MORTDUE. Worrying correlations will 

occur with the correlation between two variables is greater than 0.9. The variance inflation 

factors for each numerical variable are given in Table 4.5. 
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Table 4.4 Correlation matrix of numerical independent variables on the “old” data.  

  LOAN MORTDUE VALUE YOJ DEROG DELINQ CLAGE NINQ CLNO DEBTINC 

LOAN 1.00 0.22 0.33 0.08 0.00 -0.06 0.09 0.04 0.05 0.02 

MORTDUE 0.22 1.00 0.78 -0.09 -0.04 -0.01 0.14 0.00 0.31 0.09 

VALUE 0.33 0.78 1.00 -0.01 -0.02 -0.01 0.16 -0.02 0.27 0.08 

YOJ 0.08 -0.09 -0.01 1.00 -0.05 0.04 0.22 -0.06 0.03 -0.05 

DEROG 0.00 -0.04 -0.02 -0.05 1.00 0.16 -0.09 0.18 0.04 0.06 

DELINQ -0.06 -0.01 -0.01 0.04 0.16 1.00 0.03 0.06 0.14 0.12 

CLAGE 0.09 0.14 0.16 0.22 -0.09 0.03 1.00 -0.11 0.27 -0.05 

NINQ 0.04 0.00 -0.02 -0.06 0.18 0.06 -0.11 1.00 0.07 0.14 

CLNO 0.05 0.31 0.27 0.03 0.04 0.14 0.27 0.07 1.00 0.13 

DEBTINC 0.02 0.09 0.08 -0.05 0.06 0.12 -0.05 0.14 0.13 1.00 
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Table 4.5 Variance inflation factors (VIF) of numerical independent variables on the “old” 
data. 

Variable VIF 
LOAN 1.151227 
MORTDUE 2.720736 
VALUE 2.817692 
YOJ 1.089154 
DEROG 1.0712 
DELINQ 1.066063 
CLAGE 1.174603 
NINQ 1.071983 
CLNO 1.226312 
DEBTINC 1.059467 

 

From Table 4.5, we see there are no large variance inflation factors, which indicates that 

there is no serious problem with collinearity in the “old” data. 

Outliers and influential observations in the model are now considered. The following plots 

are considered for the presence of outliers and influential observations: half-normal plots of 

the residuals, leverages and Cook’s distance statistics. The half-normal plot of the residuals is 

given in Figure 4.12. 

 

Fig. 4.12 Half-normal plot of residuals for the “old” data. 
 

From Figure 4.12, there does not appear to be any sign of outliers. The half-normal plot of 

the leverages is given in Figure 4.13. 
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Fig. 4.13 Half-normal plot of leverages for the “old” data.  

 

Figure 4.13 indicates that observations numbered 1877 and 2508 may have the potential to 

affect the fit of the model.  

 
Figure 4.14 Half-normal plot of the Cook’s distance statistics for the “old” data. 

 

The half-normal plot of the Cook’s distance statistics is given in Figure 4.14. This plot 

indicates that observations numbered 556 and 1403 may be influential. A logistic regression 
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model was then fitted on the “old” data excluding observations numbered 556, 1403, 1877 

and 2508. The estimated parameters of this model were then compared to the model with no 

removed observations.  

 

Table 4.6 Comparison of model coefficients when possible leverage and influential 
observations are either included or excluded from the “old” data.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.6 shows the difference in the parameters when possible leverage and influential 

observations are removed. The first column gives the model parameters with all observations 

in the “old” data and the second column gives the model parameters when the possible 

leverage and influential observations are removed. Looking at Table 4.6, the differences in 

the estimated parameters between the models are minimal. Therefore, the possible leverage 

and influential points will not be removed from the “old” data.  

 

 Variable 
Coefficients 

including 
Coefficients 

excluding  
(Intercept) -7.19E+00 -7.09E+00 
LOAN -2.37E-05 -2.21E-05 
MORTDUE -3.71E-06 -2.94E-06 
VALUE 3.03E-06 1.49E-06 
REASONHomeImp 2.03E-01 2.07E-01 
JOBOffice -6.82E-01 -6.61E-01 
JOBOther 1.72E-02 6.31E-03 
JOBProfExe 4.76E-02 9.34E-02 
JOBSales 4.02E-01 4.42E-01 
JOBSelf 4.02E-01 4.68E-01 
YOJ -1.62E-02 -1.42E-02 
DEROG 7.33E-01 7.33E-01 
DELINQ 8.04E-01 8.09E-01 
CLAGE -5.22E-03 -5.95E-03 
NINQ 1.37E-01 1.36E-01 
CLNO -2.81E-02 -2.56E-02 
DEBTINC 1.91E-01 1.91E-01 
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4.3 Determining an Optimal Cut-off Probability 
 

We wish to minimize the error rate of the classification performance of the model. Because 

the data is skewed towards the good loans, we need to make sure that the model classifies the 

bad loans sufficiently. In order to do this, the minimization of the following function is 

proposed 

 

function error = α (error total) + (1 – α)(error bad). 

 

This means that we consider a weighted function of the total error and the error on the bad 

loans. It is very important that the model classifies bad loans correctly. This is because 

people who are incorrectly classified as good cost the financial institution by not receiving 

payment. A person who is incorrectly classified as bad also costs the financial institution 

because the financial institution now loses out on payments and thus reduces the institution’s 

profit. The choice of α is subjective depending on how much weight you wish to put on the 

total error and the error on the bad loans. When α = 1 only the total error is minimized and 

when α = 0 only the error on the bad loans is considered. A value between 1 and 0 is 

suggested so that the total error and the error on the bad loans are both taken into account. 

The use of this error function results in a more risk averse approach because it results in a 

lower cut-off probability choice. The error function was calculated on the validation data set 

when α = 1 and α = 0.8. Figure 4.15 is obtained when the total error probability is minimized 

using α = 1. 
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Fig. 4.15 Optimal cut-off probability when total error is minimized.  

 

Whilst if, for example, we use a value of α = 0.8, Figure 4.16 is obtained. This value of alpha 

puts a high weight on the total error while still considering the error on the bad loans. In 

Figure 4.15, the cut-off probability with the lowest error is 0.48. 

 

 
Fig. 4.16 Optimal cut-off probability when error function is minimized with α = 0.8. 
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In Figure 4.16 a cut-off probability of 0.3 gives the lowest value of the error function. This 

cut-off probability is lower than the cut-off probability when only the total error is 

minimized. Because we are risk averse, a cut-off probability of 0.3 will be used. This means 

that anyone with a probability of being bad less than 0.3 will be classified as good, and any 

with a probability of being bad greater than 0.3 will be classified as bad. Both cut-off 

probabilities 0.48 and 0.3 were used and the results compared.  

 

 

4.4 Logistic Regression Model on “new” Data 
 

Six Fisher scoring iterations were needed for the parameters to converge. The estimated 

parameters are given in Table 4.7. 

 

Table 4.7 Logistic regression model fitted on the “new” data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Variable Estimate Std. Error z value Pr(>|z|) Significance 

(Intercept) -8.62E+00 1.36E+00 -6.317 2.67E-10 Significant 

LOAN 5.85E-06  1.38E-05 0.423 0.67203 Insignificant 

MORTDUE -6.50E-06 6.97E-06 -0.933 0.350944 Insignificant 

VALUE 1.62E-06 5.85E-06 0.277 0.781878 Insignificant 

REASONHomeImp 1.09E-01 3.22E-01 0.337 0.736028 Insignificant 

JOBOffice -9.80E-01 5.82E-01 -1.684 0.09211 Insignificant 

JOBOther 1.62E-01 4.55E-01 0.357 0.721458 Insignificant 

JOBProfExe 1.06E-01 5.29E-01 0.2 0.841722 Insignificant 

JOBSales 3.33E+00 9.42E-01 3.535 0.000408 Significant 

JOBSelf -1.44E-01 9.04E-01 -0.159 0.873381 Insignificant 

YOJ -2.68E-02 2.15E-02 -1.244 0.213402 Insignificant 

DEROG 6.56E-01 2.10E-01 3.125 0.001779 Significant 

DELINQ 1.16E+00 1.68E-01 6.904 5.05E-12 Significant 

CLAGE -6.65E-03 2.08E-03 -3.196 0.001394 Significant 

NINQ 2.06E-01 6.59E-02 3.122 0.001798 Significant 

CLNO -4.08E-02 1.63E-02 -2.501 0.012374 Significant 

DEBTINC 2.33E-01 3.33E-02 6.985 2.86E-12 Significant 
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What is interesting now is that the variable LOAN has gone from being significant on the 

“old” data to insignificant on the “new” data, and the JOB variable has a different significant 

dummy variable. Other than this, the models on the “new” and “old” data are similar. The 

residual deviance of the model is 341.18 with 549 degrees of freedom.  

Interpretation is now given for the parameters of LOAN, DEROG and DEBTINC. 

- The parameter of LOAN is 5.85E-06 and is insignificant at the 5% significance level. A unit 

increase in LOAN with all other variables held fixed, means that there will be a 5.85E-06 

increase in the log-odds of default.     

- The parameter of DEROG is 6.56E-01 and is significant at the 5% significance level. A unit 

increase in DEROG with all other variables held fixed, means that there will be a 6.56E-01 

increase in the log-odds of default.  

- The parameter of DEBTINC is 2.33E-01 and is significant at the 5% significance level. A 

unit increase in DEBTINC with all other variables held fixed, means that there will be a 

2.33E-01 increase in the log-odds of default.  

 

In order to check the adequacy of the model, collinearity of the independent variables, 

outliers and influential observations are now considered. The correlation matrix of the 

numerical independent variables is given in Table 4.8. 
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Table 4.8 Correlation matrix of the numerical independent variables on the “new” data.  

 Variable LOAN MORTDUE VALUE YOJ DEROG DELINQ CLAGE NINQ CLNO DEBTINC 

LOAN 1.00 0.23 0.33 0.08 -0.02 -0.04 0.10 0.08 0.08 0.07 

MORTDUE 0.23 1.00 0.85 0.01 -0.01 -0.02 0.11 0.05 0.31 0.14 

VALUE 0.33 0.85 1.00 0.06 -0.04 0.04 0.13 0.04 0.33 0.12 

YOJ 0.08 0.01 0.06 1.00 -0.05 0.01 0.16 -0.06 -0.01 -0.09 

DEROG -0.02 -0.01 -0.04 -0.05 1.00 0.14 -0.02 0.07 0.00 0.07 

DELINQ -0.04 -0.02 0.04 0.01 0.14 1.00 0.06 0.02 0.07 0.06 

CLAGE 0.10 0.11 0.13 0.16 -0.02 0.06 1.00 -0.1 0.21 -0.07 

NINQ 0.08 0.05 0.04 -0.06 0.07 0.02 -0.1 1.00 0.07 0.20 

CLNO 0.08 0.31 0.33 -0.01 0.00 0.07 0.21 0.07 1.00 0.17 

DEBTINC 0.07 0.14 0.12 -0.09 0.07 0.06 -0.07 0.20 0.17 1.00 
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From this correlation matrix, we see that there are no large pair-wise correlations. The 

largest correlation is 0.85 between VALUE and MORTDUE. The other pair-wise 

correlations are all very small and insignificant. Worrying correlations will occur when the 

correlation between two variables is greater than 0.9. The variance inflation factors for 

each numerical variable are given in Table 4.9. 

 

Table 4.9 Variance inflation factors (VIF) of numerical independent variables on the 
“new” data. 

Variable VIF 
LOAN 1.156804 
MORTDUE 3.84004 
VALUE 4.112173 
YOJ 1.047812 
DEROG 1.03521 
DELINQ 1.046096 
CLAGE 1.108899 
NINQ 1.063397 
CLNO 1.202153 
DEBTINC 1.100282 

 

From Table 4.9, there are no large variance inflation factors. Therefore, there is no serious 

problem with collinearity in the “new” data.  

Outliers and influential observations in the model are now considered. A half-normal plot 

of the residuals is given in Figure 4.17.  
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Fig. 4.17 Half-normal plot of residuals for the “new” data.  

 

Figure 4.17 shows no indication of outliers. Secondly, a half-normal plot of the leverages 

is given in Figure 4.18. 

 
Fig. 4.18 Half-normal plot of leverages for the “new” data.  
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Figure 4.18 shows that there may be some indication of leverage from observations 

numbered 49 and 86. Finally a half-normal plot of the Cook’s distance statistics is given in 

Figure 4.19. 

 
Fig. 4.19 Half-normal plot of the Cook’s distance statistics for the “new” data.  

 

From Figure 4.19, there may be some leverage from observations numbered 220 and 245. 

Thus, observations numbered 49, 86, 220 and 245 may be influential observations. In order 

to see whether these observations are influential we delete them from the “new” data and 

re-fit the model. The estimated parameters of this model are then compared to the 

parameters of the model with no observations deleted. Table 4.10 shows the estimated 

coefficients.  
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Table 4.10 Comparison of model coefficients when possible influential observations are 
either included or excluded from the “new” data.  

 Variable 
Coefficients 

Including 
Coefficents 
Excluding 

(Intercept) -8.62E+00 -9.97E+00 
LOAN 5.85E-06 6.06E-06 
MORTDUE -6.50E-06 -2.02E-06 
VALUE 1.62E-06 -1.26E-06 
REASONHomeImp 1.09E-01 8.32E-02 
JOBOffice -9.80E-01 -9.88E-01 
JOBOther 1.62E-01 2.70E-01 
JOBProfExe 1.06E-01 1.54E-02 
JOBSales 3.33E+00 4.16E+00 
JOBSelf -1.44E-01 4.59E-02 
YOJ -2.68E-02 -2.70E-02 
DEROG 6.56E-01 1.07E+00 
DELINQ 1.16E+00 1.21E+00 
CLAGE -6.65E-03 -7.78E-03 
NINQ 2.06E-01 1.90E-01 
CLNO -4.08E-02 -4.14E-02 
DEBTINC 2.33E-01 2.69E-01 

 

Table 4.10 shows the difference in the parameters when possible influential observations 

are removed. The first column gives the model parameters with all observations in the 

“new” data and the second column gives the model parameters when the possible 

influential observations are removed. Looking at Table 4.10, we see sign changes for the 

variables VALUE and JOBSelf. Therefore, these observations will be deleted from the 

“new” data set.  

A summary of the model fitted on the data with the influential observations omitted is 

given in Table 4.11.  
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Table 4.11 Logistic regression model on “new” data with influential observations 
removed.  

 Variable Estimate Std. Error z value Pr(>|z|) Significance 

(Intercept) -9.97E+00 1.51E+00 -6.594 4.28E-11 Significant 

LOAN 6.06E-06 1.50E-05 0.404 0.685952 Insignificant 

MORTDUE -2.02E-06 8.22E-06 -0.245 0.806292 Insignificant 

VALUE -1.26E-06 6.93E-06 -0.182 0.855411 Insignificant 

REASONHomeImp 8.33E-02 3.38E-01 0.247 0.805237 Insignificant 

JOBOffice -9.88E-01 6.09E-01 -1.623 0.104515 Insignificant 

JOBOther 2.70E-01 4.76E-01 0.566 0.571069 Insignificant 

JOBProfExe 1.54E-02 5.59E-01 0.027 0.978067 Insignificant 

JOBSales 4.16E+00 1.01E+00 4.111 3.94E-05 Significant 

JOBSelf 4.60E-02 9.35E-01 0.049 0.960803 Insignificant 

YOJ -2.70E-02 2.24E-02 -1.205 0.228258 Insignificant 

DEROG 1.08E+00 3.21E-01 3.348 0.000815 Significant 

DELINQ 1.21E+00 1.79E-01 6.786 1.16E-11 Significant 

CLAGE -7.78E-03 2.19E-03 -3.547 0.00039 Significant 

NINQ 1.90E-01 6.88E-02 2.762 0.005739 Significant 

CLNO -4.14E-02 1.74E-02 -2.379 0.017338 Significant 

DEBTINC 2.69E-01 3.72E-02 7.249 4.20E-13 Significant 

 

The model given in Table 4.11 will be used for prediction. Eight of the 17 variables are 

significant. The residual deviance of the model is 314.87 with 545 degrees of freedom.  

 

4.5 Bayesian Logistic Regression Model on “new” Data 

 

Now, using the MCMClogit function from the MCMCpack in R, we are able to fit two 

Bayesian logistic regression models - one with an informative prior and one with a non-

informative prior. The MCMC algorithm used is a random walk Metropolis-Hastings 

algorithm (Section 3.4.3). The Bayesian logistic regression with informative priors will use 

parameters from the logistic regression on the “old” data as priors. The Bayesian logistic 

regression model using a non-informative prior will use a uniform prior. The influential 

observations identified from the logistic regression model on the “new” data were 

removed. In order to obtain posterior estimates, a Markov chain with 510,000 samples was 
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generated for both models. The first 500,000 samples were excluded (to allow enough time 

for the Markov chain to converge to its stationary distribution) which left a Markov chain 

of 10,000 samples. Therefore, the burn-in period was 500,000.  

 

Bayesian logistic regression model with an informative prior  

 

Prior information came from the model fitted on the “old” data. The model fitted on the 

“old” data serves as expert information obtained in the home country. This expert 

knowledge on the logistic regression parameters was then used as prior information for the 

model on the limited amount of “new” data in the new economic location. A multivariate 

normal prior is assumed for the parameters. The prior parameters are also assumed to be 

independent. The prior coefficients are the coefficients from the logistic regression on the 

“old” data. Each coefficient has corresponding information represented in a 17 x 17 

diagonal matrix. The prior coefficients and corresponding element in the diagonal matrix 

are given in Table 4.12. 

 

Table 4.12 Prior parameters for an informative Bayesian logistic regression model. 

 Variable Coefficient Information 

(Intercept) -7.194241 2.88E+02 
LOAN -2.3673E-05 1.19E+11 
MORTDUE -3.70998E-06 1.94E+12 
VALUE 3.03441E-06 3.80E+12 
REASONHomeImp 0.2027903 9.37E+01 
JOBOffice -0.681924 3.90E+01 
JOBOther 0.01722975 1.36E+02 
JOBProfExe 0.04760004 5.46E+01 
JOBSales 0.4024014 6.64E+00 
JOBSelf 0.4016077 8.87E+00 
YOJ -0.01615048 3.20E+04 
DEROG 0.7334939 1.90E+02 
DELINQ 0.8039918 3.56E+02 
CLAGE -0.005222989 8.85E+06 
NINQ 0.1366665 1.70E+03 
CLNO -0.02814893 1.54E+05 
DEBTINC 0.1911389 4.13E+05 
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In order to get the acceptance rate between 20-40%, a tuning parameter of 0.6 was used. 

Because a high dimension model is being fitted, the acceptance rate needs to be towards 

the lower bound of the desired range. The tuning parameter of 0.6 gave an accepted rate of 

23%. The model is summarized in Table 4.13. 

 

Table 4.13 Bayesian logistic regression model on the “new” data with an informative 
prior. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The mean provides the estimate for the parameter. From Table 4.13, looking at the 

quantiles for each variable we can determine which variables are significant at the 5% 

significance level. The values from the 2.5% to the 97.5% quantiles provide a 95% 

credibility interval for each variable. Only dummy variables for the JOB variable and 

REASON variable are insignificant. This shows that the majority of variables included in 

the model are significant in predicting good and bad applicants. The parameter estimates 

 Variable Mean SD 2.50% 97.50% 

(Intercept) -7.20E+00 5.52E-02 -7.31E+00 -7.09E+00 

LOAN -2.23E-05 2.90E-06 -2.81E-05 -1.68E-05 

MORTDUE -3.86E-06 6.77E-07 -5.27E-06 -2.57E-06 

VALUE 3.03E-06 4.89E-07 2.10E-06 4.03E-06 

REASONHomeImp 1.71E-01 1.01E-01 -2.59E-02 3.67E-01 

JOBOffice -7.14E-01 1.48E-01 -1.00E+00 -4.22E-01 

JOBOther 3.36E-02 8.64E-02 -1.38E-01 1.98E-01 

JOBProfExe 1.51E-02 1.27E-01 -2.19E-01 2.77E-01 

JOBSales 8.21E-01 3.48E-01 1.12E-01 1.48E+00 

JOBSelf 3.11E-01 3.00E-01 -3.24E-01 8.70E-01 

YOJ -1.58E-02 5.21E-03 -2.56E-02 -4.65E-03 

DEROG 7.36E-01 7.20E-02 5.93E-01 8.82E-01 

DELINQ 8.35E-01 5.01E-02 7.36E-01 9.38E-01 

CLAGE -5.22E-03 3.21E-04 -5.86E-03 -4.62E-03 

NINQ 1.46E-01 2.35E-02 1.00E-01 1.91E-01 

CLNO -2.80E-02 2.57E-03 -3.32E-02 -2.31E-02 

DEBTINC 1.92E-01 1.38E-03 1.89E-01 1.94E-01 
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still have the same interpretation and interpretations for the parameters of LOAN, DEROG 

and DEBTINC are: 

-  The parameter of LOAN is -2.23E-05 and is significant at the 5% significance level. The 

reason for this is that the 95% credibility interval does not contain zero. A unit increase in 

LOAN with all other variables held fixed, means that there will be 2.23E-05 decrease in 

the log-odds of default.  

- The parameter of DEROG is 7.36E-01 and is significant at the 5% significance level since 

its credibility interval does not contain zero. A unit increase in DEROG with all other 

variables held fixed, means that there will be a 7.36E-01 increase in the log-odds of 

default.  

- The parameter of DEBTINC is 1.92E-01 and is significant at the 5% significance level 

because its credibility interval does not contain zero. A unit increase in DEBTINC with all 

other variables held fixed, means that there will be a 1.92E-01 increase in the log-odds of 

default.  

Trace plots of the Markov chain and density plots of the posterior distributions are given in 

Figure 4.20. Trace and density plots are only given for the first four parameters. The 

remaining trace and density plots can be found in the Appendix D1.  
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Fig. 4.20 Trace and density plots of the posteriors for the first four variables using an 
informative prior.  

 

From Figure 4.20, looking at the trace plot of the Markov chain, the Markov chain is 

relatively stationary. This implies that the Markov chain has reached or is close to its 

stationary distribution. A concern is that the Markov chain still appears to be quite strongly 

correlated. The density plots of the first four variables show an irregular bell shaped 

distribution. The remaining trace and density plots are similar (Appendix D1). 

The Geweke diagnostic statistics are now calculated for each variable and are given in 

Table 4.14.  
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Table 4.14 Geweke diagnostic statistics for each variable of the Bayesian logistic 
regression model with informative prior. 
 
 Variable z 
(Intercept) 1.3294 
LOAN 0.8905 
MORTDUE -0.7683 
VALUE -0.5705 
REASONHomeImp -0.4904 
JOBOffice 1.9190 
JOBOther 0.8031 
JOBProfExe -0.5658 
JOBSales 0.4618 
JOBSelf -2.1442 
YOJ -2.5343 
DEROG 0.6239 
DELINQ 1.8627 
CLAGE 0.4984 
NINQ 0.9205 
CLNO -1.6003 
DEBTINC -0.6575 

 

 

Table 4.14 shows that the variables YOJ and JOBSelf have | |   . Therefore, these two 

variables have not converged. All the other variables have converged according to the 

Geweke diagnostic.  

 

 

Bayesian logistic regression model with non-informative prior 

 

An improper uniform prior is now used as a prior. This is a non-informative prior and 

provides no prior information for the parameters. Again a tuning parameter of 0.6 was 

used in order to get the acceptance rate in the lower end of the 20-40% range. The 

acceptance rate was 24.5%. The model is summarized in Table 4.15.  
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Table 4.15 Bayesian logistic regression model with non-informative prior on the “new” 
data. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The parameter estimates still have the same interpretation and interpretations for the 

parameters of LOAN, DEROG and DEBTINC are: 

-  The parameter of LOAN is 5.25E-06 and is insignificant at the 5% significance level. The 

reason for this is that the 95% credibility interval does contain zero. A unit increase in 

LOAN with all other variables held fixed, means that there will be a 5.25E-06 increase in 

the log-odds of default.  

- The parameter of DEROG is 7.69E-01 and is significant at the 5% significance level since 

its credibility interval does not contain zero. A unit increase in DEROG with all other 

variables held fixed, means that there will be a 7.69E-01 increase in the log-odds of 

default.  

- The parameter of DEBTINC is 2.52E-01 and is significant at the 5% significance level 

because its credibility interval does not contain zero. A unit increase in DEBTINC with all 

 Variable Mean SD 2.50% 97.50% 

(Intercept) -9.21E+00 1.54E+00 -1.24E+01 -6.47E+00 

LOAN 5.25E-06 1.40E-05 -2.32E-05 3.12E-05 

MORTDUE -7.72E-06 6.98E-06 -2.20E-05 5.29E-06 

VALUE 2.17E-06 5.73E-06 -9.06E-06 1.40E-05 

REASONHomeImp 9.08E-02 3.56E-01 -5.87E-01 7.70E-01 

JOBOffice -9.89E-01 5.95E-01 -2.10E+00 1.34E-01 

JOBOther 1.65E-01 4.72E-01 -7.11E-01 1.12E+00 

JOBProfExe 1.18E-01 5.56E-01 -9.44E-01 1.28E+00 

JOBSales 3.57E+00 9.67E-01 1.64E+00 5.49E+00 

JOBSelf -2.27E-01 9.68E-01 -2.18E+00 1.62E+00 

YOJ -2.85E-02 2.23E-02 -7.15E-02 1.42E-02 

DEROG 7.69E-01 2.21E-01 3.74E-01 1.27E+00 

DELINQ 1.24E+00 1.74E-01 8.96E-01 1.58E+00 

CLAGE -7.20E-03 2.08E-03 -1.11E-02 -3.07E-03 

NINQ 2.12E-01 7.22E-02 6.88E-02 3.51E-01 

CLNO -4.49E-02 1.74E-02 -7.77E-02 -1.06E-02 

DEBTINC 2.52E-01 3.64E-02 1.89E-01 3.30E-01 
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other variables held fixed, means that there will be a 2.52E-01 increase in the log-odds of 

default.  

Trace plots of the Markov chain and density plots of the posterior distributions are given in 

Figure 4.21. Trace and density plots are only given for the first four parameters. The 

remaining trace and density plots can be found in Appendix D2. 

 

 
Fig. 4.21 Trace and density plots of the posteriors for the first four variables using a non-
informative prior. 

 

From Figure 4.21, looking at the trace plot of the Markov chain, the Markov chain is 

relatively stationary. This implies that the Markov chain has reached or is close to its 

stationary distribution. The density plots appear to be bell shaped. The remaining trace and 

density plots are similar (Appendix D2).  

 

The Geweke diagnostic statistics for each variable are given in Table 4.16. 
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Table 4.16 Geweke test statistics for each variable for the Bayesian logistic regression 
model with non-informative prior.  
 
 Variable z 
(Intercept) 2.075362 
LOAN 0.43113 
MORTDUE 0.260332 
VALUE R -0.002344 
EASONHomeImp -1.250048 
JOBOffice -0.715934 
JOBOther -1.383707 
JOBProfExe -1.587358 
JOBSales -2.926755 
JOBSelf -0.688299 
YOJ -0.351282 
DEROG 0.056095 
DELINQ 2.13558 
CLAGE -0.887012 
NINQ -0.095634 
CLNO -1.234432 
DEBTINC -1.444675 

 

 

Table 4.16 shows that the intercept, JOBSales and DELINQ have | |    and, therefore, 

have not converged. All the other variables have converged according to the Geweke 

diagnostic.  

 

 

4.6 Performance of Models on Test Data 

 

A test set is now used to assess the performance of the three models on the “new” data: the 

logistic regression model (Model 1), the Bayesian logistic regression model with 

informative prior (Model 2) and the Bayesian logistic regression model with non-

informative prior (Model 3). The test set contains 1,662 observations and is assumed to 

come from the new economic location. The performance of the models on the test set was 

compared for two cut-off probabilities, 0.3 and 0.48.  
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4.6.1 Cut-off probability of 0.3 

 

Logistic regression model 

 

Table 4.17 Classification table for the logistic regression model with cut-off probability of 
0.3.  

 
 

Predicted 

Good Bad 

Actual 
Good 1126 196 

Bad 100 240 

 

Of the 1,662 applicants in the test set, the logistic regression model (Model 1) rejected 436 

and accepted 1,226 applicants. Of the rejected applicants, 196 (45.0%) are in fact good 

(Table 4.17). Therefore, 196 applicants are missed profits for the financial institution. Of 

the accepted applicants, 100 (8.2%) were bad - losses for the financial institution. Because 

the financial institution is only exposed to the applicants it accepted, the classification 

error is 8.2%. The overall classification error rate is 17.8%. The overall classification error 

rate gives a better indication since it includes applicants which represent missed out profits 

for the financial institution.  

 

Bayesian logistic regression model with an informative prior 

 

Table 4.18 Classification table for the Bayesian logistic regression model with informative 
prior and cut-off probability of 0.3.  

 
 

Predicted 

Good Bad 

Actual 
Good 1155 167 

Bad 106 234 

 

Of the 1,662 applicants in the test set, the Bayesian logistic regression model with 

informative prior (Model 2) rejected 401 and accepted 1,261 applicants (Table 4.18). Of 

the rejected applicants, 167 (41.6%) are in fact good - this is missed out profits for the 
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financial institution. Of the accepted applicants, 106 (8.4%) were bad. This represents 

losses for the financial institution. The classification error rate realized by the financial 

institution is thus 8.4%. The overall classification error rate is 16.4%.  

 

 

Bayesian logistic regression model with a non-informative prior 

 

Table 4.19 Classification table of the Bayesian logistic regression model with non-
informative prior and cut-off probability of 0.3.  

 
 

Predicted 

Good Bad 

Actual 
Good 1141 181 

Bad 101 239 

 

Of the 1,662 applicants on the test set, the Bayesian logistic regression model with non-

informative prior (Model 3) rejected 420 and accepted 1,242 applicants (Table 4.19). Of 

the rejected applicants, 181 (43.1%) are in fact good - missed out profits for the financial 

institution. Of the accepted applicants, 101 (8.1%) were bad - losses for the financial 

institution. 8.1% is thus the classification error rate realized by the financial institution. 

The overall classification error rate is 17.0%. 

 

Comparison of the 3 models 

 

Table 4.20 compares Models 1, 2 and 3.  

 

Table 4.20 Comparison of Models 1, 2 and 3 when the cut-off probability is 0.3. 

 Model 1 Model 2 Model 3 

Accepted 1226 1261 1242 

Rejected 436 401 420 

Error rate among accepted 8.2% 8.4% 8.1% 

Error rate among rejected 45.0% 41.6% 43.1% 

Total error rate 17.8% 16.4% 17.0% 
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From Table 4.20, the following can be deduced: 

- Model 2 accepts the most applicants. 

- Model 1 rejects the most applicants. 

- Model 3 has the lowest error rate among the accepted applicants.  

- Model 2 has the lowest error rate among the rejected applicants. 

- Model 2 has the lowest total error rate. 

In terms of total error rate, the best model is Model 2 and the second best model is Model 

3. Therefore, both the Bayesian models perform better than the logistic regression model. 

For the error rates among the accepted applicants (the error realized by the financial 

institution), the error rates are fairly close to each other. Model 2 is thus the best model to 

use as it would result in the most profit for the financial institution.  

 

4.6.2 Cut-off probability of 0.48 

 

For a comparison, if a cut-off probability was chosen to minimize the total error rate on the 

validation set, the cut-off probability is 0.48. Using this cut-off probability would mean 

more risk for the financial institution. When 0.48 is used as a cut-off the following results 

are obtained.  

 

Logistic regression model 

 

Table 4.21 Classification table of logistic regression model with cut-off probability of 
0.48. 

 
 

Predicted 

Good Bad 

Actual 
Good 1215 107 

Bad 137 203 
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Of the 1,662 applicants in the test set, the logistic regression model (Model 1) now rejects 

310 and accepts 1,352 applicants (Table 4.21). 107 (34.5%) or the rejected applicants are 

in fact good. 137 (10.1%) of the accepted applicants are bad. The overall classification 

error rate is 14.7%.  

 

Bayesian logistic regression model with informative prior 

 

Table 4.22 Classification table of Bayesian logistic regression model with informative 
prior and cut-off probability of 0.48.  

 
 

Predicted 

Good Bad 

Actual 
Good 1267 55 

Bad 152 188 

 

Of the 1,662 applicants in the test set, the Bayesian logistic regression model with 

informative prior (Model 2) now rejects 243 and accepts 1,419 applicants (Table 4.22). 55 

(22.6%) of the rejected applicants are in fact good. 152 (10.7%) of the accepted applicants 

are bad. The overall classification error rate is 12.5%.  

 

Bayesian logistic regression model with a non-informative prior 

 

Table 4.23 Classification table of the Bayesian logistic regression model with non-
informative prior and cut-off probability of 0.48.  

 
 

Predicted 

Good Bad 

Actual 
Good 1237 85 

Bad 143 197 
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Of the 1,662 applicants in the test set, the Bayesian logistic regression model with non-

informative prior (Model 3) now rejects 282 and accepts 1,380 applicants (Table 4.23). 85 

(30.1%) of the rejected applicants are in fact good. 143 (10.4%) of the accepted applicants 

are bad. The overall classification error rate is 13.7%. 

  

Comparison of the 3 models 

 

Table 4.24 compares Models 1, 2 and 3.  

Table 4.24 Comparison of Models 1, 2 and 3 when the cut-off probability is 0.48. 

 Model 1 Model 2 Model 3 

Accepted 1352 1419 1380 

Rejected 310 243 282 

Error rate among accepted 10.1% 10.7% 10.4% 

Error rate among rejected 34.5% 22.6% 30.1% 

Total error rate 14.7% 12.5% 13.7% 

 

The following can be deduced from Table 4.24: 

- Model 2 accepts the most applicants. 

- Model 1 rejects the most applicants. 

- Model 1 has the lowest error rate among the accepted applicants.  

- Model 2 has the lowest error rate among the rejected applicants. 

- Model 2 has the lowest total error rate. 

 

The error rates amongst the accepted applicants are all fairly close for all the models. The 

Bayesian logistic regression model with informative prior again has the lowest total error 

rate, showing that the use of relevant prior information is beneficial.  
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4.6.3 Comparison of the two cut-off probabilities 

 

The results are now compared when the two different cut-off probabilities are used, 0.3 

and 0.48. The following conclusions are reached: 

- In all models, more applicants are accepted when the cut-off probability is 0.48 as opposed 

to 0.3. 

- In all models, fewer applicants are rejected when the cut-off probability is 0.48 as opposed 

to 0.3. 

- For all models, the error rate among the accepted applicants is higher when the cut-off 

probability is 0.48 as opposed to 0.3. This shows that the error rate realized by the bank is 

lower when a lower cut-off probability is used.  

- For all models, the error rate among the rejected applicants is lower with the cut-off 

probability is 0.48 as opposed to 0.3.  

- For all models, the total error rate is lower when the cut-off probability is 0.48 as opposed 

to 0.3. 

It appears that 0.48 is a better cut-off probability to use because it exposes the financial 

institution to more people who will be good. This means that the financial institution will 

be more profitable than one which uses a cut-off probability of 0.3. The difference in the 

error rates among the accepted applicants for the two cut-off probabilities is around 2% for 

each model. This is not big enough to opt for the conservative approach of a cut-off 

probability of 0.3. The financial institution may want to employ the more risk averse cut-

off probability if it expects the financial markets to become turbulent.  

 

 

4.7 Performance of the Models with Varying Amounts of “new” Data 

 

The performance of Models 1, 2 and 3 were then compared when the amount of “new” 

data varied. Again two different cut-off probabilities were used, namely 0.3 and 0.48. 
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4.7.1 Cut-off probability of 0.3 

 

The error rates of Models 1, 2 and 3 when the models are trained using differerent sampler 

sizes and the cut-off probability is 0.3 are given in Figure 4.22. 

  
Fig. 4.22 Error rates of Models 1, 2 and 3 when the models are trained using differerent 
sampler sizes and the cut-off probability is 0.3.  

 

From Figure 4.22, Models 1 and 3 appear to follow a similar pattern. The error rate of 

Model 3 is always below that of Model 1. The error rates of Models 1 and 3 appear to 

decrease as the sample size of the “new” data increases. The Bayesian model with non-

informative prior thus appears to perform better than the logistic regression model. The 
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error rate of Model 2 is relatively stable. The error rate of this model is always below the 

other two models (except when the sample size is 150, Model 3 has a lower error). This 

shows that making use of prior information is very useful when the sample size is small. It 

is expected that the error rates of these three models would converge as the sample size 

increases.  

When a financial institution is expanding into a new economic location, combining expert 

information obtained from experience in the home country can be very useful.  

 

4.7.2 Cut-off probability of 0.48 

 

For a comparison, if a cut-off probability was chosen to minimize the total error rate on the 

validation set, the cut-off probability would have been 0.48. Using this cut-off probability 

would mean more risk for the financial institution. When 0.48 is used as a cut-off 

probability Figure 4.23 is obtained.  
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Fig. 4.23 Error rates of Models 1, 2 and 3 when the models are trained using differerent 
sampler sizes and the cut-off probability is 0.48.  

 

Figure 4.23 again shows Models 1 and 3 following a similar pattern. The trend of the error 

rate decreasing as the sample size of the “new” data increases is also clear. The error rates 

of Models 1 and 3 decrease as the sample size increases but then appear to level-off. The 

error rate of Model 2 is again relatively constant. This graph confirms again that the use of 

relevant prior information is very useful.  

The total error rates when the cut-off probability is 0.48 are lower than when the cut-off 

probability is 0.3 (Figures 4.22 and 4.23). Model 2 performs better when a cut-off 

probability of 0.48 is used.  
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Although the models perform better on the total error rate with a cut-off probability of 

0.48, the error rate amongst the accepted applicants is still higher than when a cut-off 

probability of 0.3 is used. This confirms that opting for a higher cut-off probability results 

in accepting more applicants and thus results in more profits. It appears that it is better to 

take on more risk and opt for a cut-off probability of 0.48.  

 

 

4.8 Conclusions 

 

This chapter discussed the results obtained by fitting the relevant models on the data. The 

initial data analysis showed that there are a large number of missing values and that these 

missing values needed to be estimated in order to keep the proportion of “bads” in the data 

from dropping. The initial data analysis also showed that there may be a problem with 

outliers and influential observations.  

The logistic regression model fitted on the “old” data was then used to determine cut-off 

probabilities. Two potential cut-off probabilities were obtained: one where the total error 

rate was minimized and one where a weighted error function was minimized taking into 

account the error rate on the “bads”. The cut-off probability obtained when the total error 

rate was minimized was 0.48. The minimization of the weighted error function resulted in 

a more conservative cut-off probability of 0.3.  

A logistic regression model (Model 1), a Bayesian logistic regression with priors from the 

logistic regression on the “old” data (Model 2), and a Bayesian logistic regression model 

with non-informative priors (Model 3) were then fitted on the “new” data. All the fitted 

models had predictor variables with a number of significant parameters.  

The performance of these models was then compared on a test set. With cut-off 

probabilities of 0.3 and 0.48, Model 2 performs the best in terms of total error rate. It was 

found that with a higher cut-off probability, more people were accepted which results is a 

slightly higher error rate among the accepted applicants. The error rates realized by the 

financial institution (error rate on accepted applicants) were higher for all 3 models when a 
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higher cut-off probability was used. The total error rates for all three models were lower 

when the higher cut-off probability was used. This shows that it is worth taking on more 

risk to realize more profit.  

When the sample size of the “new” data set was varied for the training of the models, it 

was found that Model 2 performed the best. Model 3 was also found to perform better than 

Model 1. Models 1 and 3 showed a similar pattern with the error rate decreasing as the 

sample size of the “new” data set increased. The error rates for Models 1 and 3 appear to 

level-off at a certain point, whilst Model 2 appears to have a relatively constant error rate 

for the varying sample sizes.  

Making use of relevant prior information can, therefore, be very important in improving 

the accuracy of credit scoring models. This prior information is most useful when the size 

of the data set available is small. The importance of the prior information decreases 

quickly as the amount of available data increases. When there is a lot of data available 

there is no need to conduct a Bayesian logistic regression- a standard logistic regression 

will give very similar results.  

The following recommendation is, therefore, made to a financial institution expanding into 

a new economic location: making use of relevant prior information obtained from 

experiences gained in the home country or other countries can be very useful initially. As 

the amount of data increases in the new country the usefulness of this prior information 

decreases and becomes less important. 
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Chapter 5: Conclusions and Implications 

 

5.1 Summary 

 

This study provided an investigation into the use of Bayesian logistic regression models 

for credit scoring. The main aim was to determine whether the use of relevant prior 

information was useful for a financial institution when it was having data quantity issues.  

The first step of the study was to review existing literature. It was found that there are a 

number of models which can be used to build a credit scoring model - there is, however, 

no “best” model. Bayesian logistic regression models with relevant prior information were 

shown to provide an improvement over other models when the amount of data available to 

train the model is small. The literature review was then followed by a theory section. This 

section provided the theory which was used in the study.  

In the results chapter, models were fitted to the data. The data set was randomly split into 

four sets, viz. the “old”, “new”, validation and test data sets. For a financial institution 

expanding into a new economic location, the “old” data were assumed to come from the 

home location, the “new” data from the new location, the validation data from the old 

location and the test data from the new location. The financial institution was looking to 

build a scoring model in the new economic location with a limited amount of data. A 

logistic regression model was fitted on the “old” data and the parameters from this model 

were used as prior information for a Bayesian logistic regression model with informative 

prior in the “new” data. A logistic regression and Bayesian logistic regression with non-

informative prior was also fitted on the “new” data. Using two different cut-off 

probabilities for classification, it was found that on the test set, the Bayesian logistic 

regression model with informative prior provided a lower total error rate.  

The error rates of the models were also compared when there are different amounts of 

“new” data available to build the model. It was found that the Bayesian logistic regression 

with informative prior provided relatively constant error rates. The logistic regression 

model and Bayesian logistic regression with non-informative prior had error rates which 
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started high when the amount of “new” data was small, and subsequently as the size of the 

“new” data increased, these error rates decreased and levelled off. The Bayesian logistic 

regression with non-informative prior gave lower error rates than the logistic regression 

model. The pattern of the error rates as the amount of data increased for these two models 

was, however, similar.  

The use of prior information is very useful when a financial institution is expanding into a 

new economic location and at first has limited data available. The usefulness of using 

relevant prior information decreases as the amount of data available increases.  

 

 

5.2 Limitations, Recommendations and Further Research 

 

A limitation of this study was that the same data set was used to obtain prior information. 

The prior information used, therefore, reflects a situation when there is “perfect prior 

information”. Although this is a limitation, in practice there will be experts with much 

experience in credit scoring who would be able to provide very good prior information. A 

way to perhaps solve this problem would be to change the structure of the “old” and “new” 

data. This could be done by removing variables from the “old” data. There would then be 

only prior information for the variables in the “old” data. The usefulness of this reduced 

prior information could be explored.  

It is very difficult to obtain credit scoring data from financial institutions. However, if one 

could get hold of two data sets from a financial institution, one from its home economic 

location and one from a new economic location, a more realistic analysis could be done. If 

these data could be obtained, a better insight would be gained into the use of Bayesian 

logistic regression models in practice.  

Only one method to estimate the missing values in the data set was used. There are a 

number of methods which are available for the estimation of missing values. Simply 

replacing the missing values by the overall mean for each variable and the EM 

(Expectation-Maximization) algorithm are other possible methods which could be 
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investigated. This latter method works by substituting values iteratively in conjunction 

with a model. A comparison of these different estimation methods in credit scoring is 

another area for further research.  

This study considered normally distributed priors for the Bayesian models with 

informative priors. Priors with other distributions can also be considered, for example, the 

beta distribution. The Laplace prior is another area for future research. For Bayesian 

models with non-informative priors, an improper uniform prior was used in this study. 

There are other possible choices, namely the Jeffreys’ non-informative priors.  

There appeared to be a minor issue with the convergence of the MCMC algorithms. From 

the trace plots, there was possibly some significant autocorrelation in the Markov chain. 

Methods to remove this correlation could also be considered - such as thinning. Thinning 

reduces the sample size of the generated Markov chain by only taking every 2nd or 3rd 

observation. The Geweke diagnostic also showed that the generated Markov chain for 

some of the variables had not converged. The analysis could be done again this time using 

a larger burn-in period for the generated Markov chains (to allow for more time for the 

chain to converge). This could result in better parameter estimates for the Bayesian 

models.  

This study used a random-walk Metropolis-Hastings algorithm to sample from the 

posterior distributions. There are a number of algorithms available. The independence 

sampler is another method which could be considered. The use of a Gibbs sampler when 

auxiliary variables are used is another interesting model which could be investigated.  

There are many different models which can be used to build a credit scoring model. One 

method which has shown some success in a Bayesian framework is Bayesian networks as 

shown by Biçer et al. (2010). An investigation into these networks for credit scoring would 

also provide interesting further topics of research.  
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Appendix 

 

Appendix A: Code 

 

library(faraway) 

old_data=na.omit(old_data)  #removing missing values in categorical 

variables 

new_data=na.omit(new_data) 

val_data=na.omit(val_data) 

test_data=na.omit(test_data) 

#################################################################################

## 

mod_old=glm(BAD~.,family=binomial,old_data) #logit model on old data 

mod_new=glm(BAD~.,family=binomial,new_data) #logit model on new data 

#################################################################################

## 

x0=val_data[,2:13] #selecting independent variables 

ps=c(0.01,0.05,0.1,0.12,0.16,0.18,0.19,0.195,0.2,0.25,0.3,0.35,0.37,0.4,0.42,0.45

,0.48,0.5,0.6,0.7,0.8,0.9,0.95,0.99) #cut-off probabilities 

error_function=0   #initialize error function 

for(i in 1:length(ps)){ 

y=ilogit(predict(mod_old,x0)) 

y[y>ps[i]]<-1 

y[y<=ps[i]]<-0 

table=table(val_data$BAD,y) 

error_function[i]=0.8*((table[2]+table[3])/sum(table))+0.2*(table[2]/(table[2]+ta

ble[4])) 

}   #determining which cut-off gives lowest error 

 

plot(ps,error_function,type="b",xlab="cut-off probability",ylab="error function") 

################################################################################# 

#checking assumptions on old data 

#collinearity 
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x1=model.matrix(mod_old)[,-1] 

x1=x1[,c(-4:-9)]  #remove categorical variables 

cor(x1)  #give correlation matrix of numerical independent variables 

vif(x1)  #give variance inflation factors of numerical independent                        

#variabels 

 

#outliers and influential observations 

halfnorm(rstudent(mod_old))   #half-normal plot of residuals 

ga=influence(mod_old) 

halfnorm(ga$hat)  #half normal plot of influence  

halfnorm(cooks.distance(mod_old))  #half normal plot of Cooks statistics 

 

#logit model excluding possible influential observations: 

mod_old1=glm(BAD~.,family=binomial,old_data,subset=c(-556,-1403,-1877,-2508)) 

 

cbind(coef(mod_old),coef(mod_old1)) #comparing parameters  

 

#assumptions on new data 

x2=model.matrix(mod_new)[,-1] 

x2=x2[,c(-4:-9)] 

cor(x2) 

vif(x2) 

 

halfnorm(rstudent(mod_new))   #residuals 

ga=influence(mod_new) 

halfnorm(ga$hat) 

halfnorm(cooks.distance(mod_new)) 

 

mod_new1=glm(BAD~.,family=binomial,new_data,subset=c(-49,-86,-220,-245)) 

 

cbind(coef(mod_new),coef(mod_new1)) #comparing parameters 
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#################################################################################

## 

 

library(MCMCpack) 

 

information=solve(vcov(mod_old)) #information matrix for logit model on old data 

information2=diag(diag(information),17,17) #diagonal information matrix 

#bayesian logistic model on new data with informative prior: 

bayes_mod=MCMClogit(BAD~.,data=new_data,burnin=500000,mcmc=10000,tune=0.6,b0=coef

(mod_old),B0=information2,subset=c(-49,-86,-220,-245))  

 

sumb=summary(bayes_mod) 

sb=sumb$statistics 

sb_coefs=sb[,1] #coefficients of Bayesian logit model 

geweke.diag(bayes_mod) # check geweke diagnostics 

#bayesian logistic model on new data with non-informative prior: 

bayes_mod1=MCMClogit(BAD~.,data=new_data,burnin=500000,mcmc=10000,tune=0.6,subset

=c(-49,-86,-220,-245)) 

 

sumb1=summary(bayes_mod1) 

sb1=sumb1$statistics 

sb_coefs1=sb1[,1]  

geweke.diag(bayes_mod1)  #check geweke diagnostics 

#################################################################################

## 

# classification tables for models on test data: 

#logistic regression: 

y_new=ilogit(predict(mod_new1,test_data))   

y_new[y_new>0.48]=1 

y_new[y_new<=0.48]=0 

new_table=table(test_data$BAD,y_new) 
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mod_test=glm(BAD~.,family=binomial,test_data) 

x=model.matrix(mod_test) 

 

 

# Bayesian model with informative prior: 

y_bayesian=ilogit(colSums(sb_coefs*t(x)))   

y_bayesian[y_bayesian>0.48]=1 

y_bayesian[y_bayesian<=0.48]=0 

bayesian_table=table(test_data$BAD,y_bayesian) 

 

# Bayesian model with non-informative prior: 

y_bayesian1=ilogit(colSums(sb_coefs1*t(x)))   

y_bayesian1[y_bayesian1>0.48]=1 

y_bayesian1[y_bayesian1<=0.48]=0 

bayesian_table1=table(test_data$BAD,y_bayesian1) 

 

 

#################################################################################

## 

#performance on test set with varying sample size for new data: 

#Bayesian model with informative prior and logistic regression model:  

sample_size=c(50,100,150,200,250,300,350,400,450,500,566) 

error_bayes=0 

error_new=0 

for(i in 1:length(sample_size)){ 

bayes_mod=MCMClogit(BAD~.,data=new_data[1:sample_size[i],],burnin=500000,mcmc=100

00,tune=0.6,b0=coef(mod_old),B0=information2,subset=c(-49,-86,-220,-245)) 

sumb=summary(bayes_mod) 

sb=sumb$statistics 

sb_coefs=sb[,1] 

mod_test=glm(BAD~.,family=binomial,test_data) 
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x=model.matrix(mod_test) 

y_bayesian=ilogit(colSums(sb_coefs*t(x)))   

y_bayesian[y_bayesian>0.48]=1 

y_bayesian[y_bayesian<=0.48]=0 

bayesian_table=table(test_data$BAD,y_bayesian) 

error_bayes[i]=(bayesian_table[2]+bayesian_table[3])/sum(bayesian_table) 

 

mod_new=glm(BAD~.,family=binomial,new_data[1:sample_size[i],],subset=c(-49,-86,-

220,-245)) 

y_new=ilogit(predict(mod_new,test_data))   

y_new[y_new>0.48]=1 

y_new[y_new<=0.48]=0 

new_table=table(test_data$BAD,y_new) 

error_new[i]=(new_table[2]+new_table[3])/sum(new_table) 

} 

#bayesian model with non-informative prior: 

sample_size=c(50,100,150,200,250,300,350,400,450,500,566) 

error_bayes1=0 

for(i in 1:length(sample_size)){ 

bayes_mod=MCMClogit(BAD~.,data=new_data[1:sample_size[i],],burnin=500000,mcmc=100

00,tune=0.6,subset=c(-49,-86,-220,-245)) 

sumb=summary(bayes_mod) 

sb=sumb$statistics 

sb_coefs=sb[,1] 

mod_test=glm(BAD~.,family=binomial,test_data) 

x=model.matrix(mod_test) 

y_bayesian=ilogit(colSums(sb_coefs*t(x)))   

y_bayesian[y_bayesian>0.48]=1 

y_bayesian[y_bayesian<=0.48]=0 

bayesian_table=table(test_data$BAD,y_bayesian) 

error_bayes1[i]=(bayesian_table[2]+bayesian_table[3])/sum(bayesian_table) 

} 
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#plotting the errors of the 3 models with varying sample sizes: 

plot(sample_size,error_bayes,type="b",ylim=c(0.12,0.22),xlab="Sample 

size",ylab="Error") 

lines(sample_size,error_new,type="b",ylim=c(0.12,0.22),pch=3) 

lines(sample_size,error_bayes1,type="b",ylim=c(0.12,0.22),pch=4) 

 

 

Appendix B: R output for logistic regression on “old” data 

 

Call: 

glm(formula = BAD ~ ., family = binomial, data = old_data) 

 

Deviance Residuals:  

    Min       1Q   Median       3Q      Max   

-2.4270  -0.5444  -0.3238  -0.1186   4.0551   

 

Coefficients: 

                Estimate Std. Error z value Pr(>|z|)     

(Intercept)   -7.194e+00  5.636e-01 -12.765  < 2e-16 *** 

LOAN          -2.367e-05  6.501e-06  -3.642 0.000271 *** 

MORTDUE       -3.710e-06  2.284e-06  -1.625 0.104238     

VALUE          3.034e-06  1.596e-06   1.902 0.057212 .   

REASONHomeImp  2.028e-01  1.349e-01   1.504 0.132632     

JOBOffice     -6.819e-01  2.245e-01  -3.038 0.002382 **  

JOBOther       1.723e-02  1.786e-01   0.096 0.923139     

JOBProfExe     4.760e-02  2.099e-01   0.227 0.820586     

JOBSales       4.024e-01  4.245e-01   0.948 0.343111     

JOBSelf        4.016e-01  3.799e-01   1.057 0.290496     

YOJ           -1.615e-02  9.136e-03  -1.768 0.077093 .   

DEROG          7.335e-01  8.062e-02   9.098  < 2e-16 *** 
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DELINQ         8.040e-01  6.416e-02  12.530  < 2e-16 *** 

CLAGE         -5.223e-03  8.650e-04  -6.038 1.56e-09 *** 

NINQ           1.367e-01  3.199e-02   4.272 1.94e-05 *** 

CLNO          -2.815e-02  6.787e-03  -4.148 3.36e-05 *** 

DEBTINC        1.911e-01  1.378e-02  13.868  < 2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

(Dispersion parameter for binomial family taken to be 1) 

 

    Null deviance: 2797.4  on 2758  degrees of freedom 

Residual deviance: 1866.7  on 2742  degrees of freedom 

AIC: 1900.7 

 

Number of Fisher Scoring iterations: 6 

 

Appendix C: R output for logistic regressions on “new” data 

C1: Model with all “new” data 

 

Call: 

glm(formula = BAD ~ ., family = binomial, data = new_data) 

 

Deviance Residuals:  

     Min        1Q    Median        3Q       Max   

-2.63880  -0.48115  -0.27481  -0.07361   3.76582   

 

Coefficients: 

                Estimate Std. Error z value Pr(>|z|)     

(Intercept)   -8.615e+00  1.364e+00  -6.317 2.67e-10 *** 

LOAN           5.850e-06  1.382e-05   0.423 0.672030     

MORTDUE       -6.497e-06  6.965e-06  -0.933 0.350944     
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VALUE          1.618e-06  5.845e-06   0.277 0.781878     

REASONHomeImp  1.087e-01  3.223e-01   0.337 0.736028     

JOBOffice     -9.802e-01  5.819e-01  -1.684 0.092110 .   

JOBOther       1.622e-01  4.551e-01   0.357 0.721458     

JOBProfExe     1.056e-01  5.287e-01   0.200 0.841722     

JOBSales       3.329e+00  9.417e-01   3.535 0.000408 *** 

JOBSelf       -1.441e-01  9.040e-01  -0.159 0.873381     

YOJ           -2.675e-02  2.150e-02  -1.244 0.213402     

DEROG          6.563e-01  2.100e-01   3.125 0.001779 **  

DELINQ         1.157e+00  1.675e-01   6.904 5.05e-12 *** 

CLAGE         -6.654e-03  2.082e-03  -3.196 0.001394 **  

NINQ           2.056e-01  6.585e-02   3.122 0.001798 **  

CLNO          -4.076e-02  1.629e-02  -2.501 0.012374 *   

DEBTINC        2.327e-01  3.331e-02   6.985 2.86e-12 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

(Dispersion parameter for binomial family taken to be 1) 

 

    Null deviance: 568.67  on 565  degrees of freedom 

Residual deviance: 341.18  on 549  degrees of freedom 

AIC: 375.18 

 

Number of Fisher Scoring iterations: 6 

 

C2: Model with influential observations removed 

 

Call: 

glm(formula = BAD ~ ., family = binomial, data = new_data, subset = c(-49,  

    -86, -220, -245)) 
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Deviance Residuals:  

     Min        1Q    Median        3Q       Max   

-2.70684  -0.45126  -0.24970  -0.05463   2.83375   

 

Coefficients: 

                Estimate Std. Error z value Pr(>|z|)     

(Intercept)   -9.973e+00  1.513e+00  -6.594 4.28e-11 *** 

LOAN           6.060e-06  1.499e-05   0.404 0.685952     

MORTDUE       -2.016e-06  8.223e-06  -0.245 0.806292     

VALUE         -1.263e-06  6.933e-06  -0.182 0.855411     

REASONHomeImp  8.325e-02  3.376e-01   0.247 0.805237     

JOBOffice     -9.882e-01  6.088e-01  -1.623 0.104515     

JOBOther       2.696e-01  4.759e-01   0.566 0.571069     

JOBProfExe     1.538e-02  5.593e-01   0.027 0.978067     

JOBSales       4.162e+00  1.012e+00   4.111 3.94e-05 *** 

JOBSelf        4.595e-02  9.349e-01   0.049 0.960803     

YOJ           -2.699e-02  2.240e-02  -1.205 0.228258     

DEROG          1.075e+00  3.210e-01   3.348 0.000815 *** 

DELINQ         1.214e+00  1.789e-01   6.786 1.16e-11 *** 

CLAGE         -7.775e-03  2.192e-03  -3.547 0.000390 *** 

NINQ           1.900e-01  6.876e-02   2.762 0.005739 **  

CLNO          -4.136e-02  1.738e-02  -2.379 0.017338 *   

DEBTINC        2.694e-01  3.716e-02   7.249 4.20e-13 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

(Dispersion parameter for binomial family taken to be 1) 

 

    Null deviance: 564.11  on 561  degrees of freedom 

Residual deviance: 314.87  on 545  degrees of freedom 

AIC: 348.87 
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Number of Fisher Scoring iterations: 6 

 

Appendix D: Bayesian logistic regression models on “new” data 

D1: R output for Bayesian logistic regression model on “new” data with informative 
prior 

 

Iterations = 500001:510000 

Thinning interval = 1  

Number of chains = 1  

Sample size per chain = 10000  

 

1. Empirical mean and standard deviation for each variable, 

   plus standard error of the mean: 

 

                    Mean        SD  Naive SE Time-series SE 

(Intercept)   -7.196e+00 5.515e-02 5.515e-04      4.191e-03 

LOAN          -2.234e-05 2.897e-06 2.897e-08      2.562e-07 

MORTDUE       -3.858e-06 6.771e-07 6.771e-09      5.126e-08 

VALUE          3.033e-06 4.891e-07 4.891e-09      3.637e-08 

REASONHomeImp  1.706e-01 1.008e-01 1.008e-03      6.946e-03 

JOBOffice     -7.141e-01 1.481e-01 1.481e-03      1.125e-02 

JOBOther       3.359e-02 8.635e-02 8.635e-04      6.542e-03 

JOBProfExe     1.505e-02 1.267e-01 1.267e-03      1.008e-02 

JOBSales       8.206e-01 3.475e-01 3.475e-03      2.600e-02 

JOBSelf        3.111e-01 3.002e-01 3.002e-03      2.493e-02 

YOJ           -1.583e-02 5.211e-03 5.211e-05      3.773e-04 

DEROG          7.360e-01 7.200e-02 7.200e-04      5.737e-03 

DELINQ         8.348e-01 5.013e-02 5.013e-04      3.216e-03 

CLAGE         -5.216e-03 3.206e-04 3.206e-06      2.264e-05 

NINQ           1.456e-01 2.350e-02 2.350e-04      1.915e-03 

CLNO          -2.799e-02 2.573e-03 2.573e-05      2.014e-04 
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DEBTINC        1.915e-01 1.381e-03 1.381e-05      9.573e-05 

 

 

 

2. Quantiles for each variable: 

 

                    2.5%        25%        50%        75%      97.5% 

(Intercept)   -7.305e+00 -7.231e+00 -7.193e+00 -7.158e+00 -7.091e+00 

LOAN          -2.808e-05 -2.439e-05 -2.233e-05 -2.028e-05 -1.680e-05 

MORTDUE       -5.270e-06 -4.298e-06 -3.842e-06 -3.417e-06 -2.566e-06 

VALUE          2.095e-06  2.723e-06  3.021e-06  3.338e-06  4.027e-06 

REASONHomeImp -2.591e-02  1.015e-01  1.749e-01  2.394e-01  3.671e-01 

JOBOffice     -1.003e+00 -8.096e-01 -7.220e-01 -6.085e-01 -4.216e-01 

JOBOther      -1.383e-01 -2.490e-02  3.577e-02  9.502e-02  1.980e-01 

JOBProfExe    -2.194e-01 -6.997e-02  1.381e-02  9.808e-02  2.766e-01 

JOBSales       1.123e-01  5.975e-01  8.296e-01  1.052e+00  1.482e+00 

JOBSelf       -3.238e-01  1.214e-01  3.123e-01  5.160e-01  8.704e-01 

YOJ           -2.560e-02 -1.941e-02 -1.589e-02 -1.243e-02 -4.653e-03 

DEROG          5.930e-01  6.886e-01  7.375e-01  7.833e-01  8.820e-01 

DELINQ         7.357e-01  8.012e-01  8.348e-01  8.653e-01  9.377e-01 

CLAGE         -5.859e-03 -5.423e-03 -5.212e-03 -4.998e-03 -4.623e-03 

NINQ           1.004e-01  1.285e-01  1.449e-01  1.629e-01  1.906e-01 

CLNO          -3.320e-02 -2.965e-02 -2.800e-02 -2.619e-02 -2.310e-02 

DEBTINC        1.889e-01  1.906e-01  1.915e-01  1.924e-01  1.944e-0 
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Trace of (Intercept) Density of (Intercept) 

_7.2 

N _ 1 OCOJ !l<wlo:Mrth _ 0.009245 

Trace of LOAN Density of LOAN 

_2.50_05 _2.0e_05 

N _10C0J !l<wlo:Mrth _ 4.0070_07 

Trace of MORTDUE Density of MORTDUE 

Trace of VALUE Density of VALUE 

soo:oJ 50200J 50400J 50600J 50800J 510C0J 10_00 30_00 

N _l0C0J !l<wlo:Mrth _7.706e_OO 

Trace of REASONHomelmp Density of REASONHomelmp 

soo:oJ 50200J 50400J 50600J 50800J 510C0J 0.2 

N _l0C0J !l<wlo:Mrth _0.o15!l4 

Trace of JOBOffice Density of JOBOffice 

Trace of JOB Other Density of JOBOther 

Trace of JOBProfExe Density of JOBProfExe 

CO 

N _l0C0J !l<wlo:Mrth _O.02107 
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Trace of JOBS ales Density of JOBSales 

:1 ~\~!~~~~~~II ;1-- - --- - -- -I 
~ ~= ~~ ~ ~ ,,= _0.5 0; '" '0 

N_10C0J !l<wlo:Mrth_O.05698 

Trace of JOBS elf Density of JOBSelf 

;1 ~~~~~~~~/~ 1 ;1-- - - -------

~ ~= ~~ ~ ~ ,,= _1.0 00 0; 

N_10C0J !l<wlo:Mrth_O.CI4948 

Trace ofYOJ Density ofYOJ 

:1 ~~'~~,~v~I~~1~~~\'~11 ~l-- - ---- --------- - -

~ ~= ~~ ~ ~ ,,= "().02 _om 

N_10C0J !l<wlo:Mrth_0.OOJ87S1 

Trace ofDEROG Density of DEROG 

:1 ~~I~~~~~~ 1 ~ 1 
~ ~= ~~ ~ ~ ,,= "' 0; 

N_10C0J !l<wlo:Mrth_O.01100 

Trace of DELI NO Density of DELINO 

; 1 ~r~~~~~~~~~~~~I\!I~~~ 1 ~j-- .. -----

~ ~= ~~ ~ ~ ,,= 0; 

N_10C0J !l<wlo:Mrth_O.OO3039 

Trace ofCLAGE Density of CLAGE 

:1 ~M!¥~f~~~r~~~~t:r~~ 1 ~ 1 --I 
~ ~= ~~ ~ ~ ,,= _0.0005 _0.0060 ..().0055 ~= _0.0045 _0.0040 

N _ 1 OCOJ !l<wlo:Mrth _ 5.331 o_OS 

Trace of NINO Density of NINO 

11 ~II))(~~W~~~ 1 ~ 1 ... . -1 
~ ~= ~~ ~ ~ ,,= 0.15 O~ 

N_10C0J !l<wlo:Mrth_O.oo3947 

Trace ofCLNO Density of CLNO 

~1 ~~#!~~~~I~~~~~~ 1 ~ 1 
~ ~= ~~ ~ ~ ,,= _0.030 _0.025 

N _ 1 OCOJ !l<wlo:Mrth _ 0.(0)4323 
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D2: R output for Bayesian logistic regression model on “new” data with non-
informative prior 

 

Iterations = 500001:510000 

Thinning interval = 1  

Number of chains = 1  

Sample size per chain = 10000  

 

1. Empirical mean and standard deviation for each variable, 

   plus standard error of the mean: 

 

                    Mean        SD  Naive SE Time-series SE 

(Intercept)   -9.212e+00 1.538e+00 1.538e-02      1.258e-01 

LOAN           5.248e-06 1.398e-05 1.398e-07      1.135e-06 

MORTDUE       -7.716e-06 6.984e-06 6.984e-08      5.136e-07 

VALUE          2.173e-06 5.727e-06 5.727e-08      4.358e-07 

REASONHomeImp  9.077e-02 3.562e-01 3.562e-03      2.747e-02 

JOBOffice     -9.888e-01 5.947e-01 5.947e-03      4.724e-02 

JOBOther       1.646e-01 4.717e-01 4.717e-03      3.383e-02 

JOBProfExe     1.176e-01 5.555e-01 5.555e-03      3.766e-02 

JOBSales       3.568e+00 9.672e-01 9.672e-03      7.448e-02 

JOBSelf       -2.271e-01 9.678e-01 9.678e-03      8.455e-02 

YOJ           -2.852e-02 2.233e-02 2.233e-04      1.652e-03 

DEROG          7.688e-01 2.209e-01 2.209e-03      1.639e-02 

DELINQ         1.236e+00 1.742e-01 1.742e-03      1.204e-02 
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CLAGE         -7.204e-03 2.083e-03 2.083e-05      1.461e-04 

NINQ           2.123e-01 7.219e-02 7.219e-04      5.723e-03 

CLNO          -4.485e-02 1.744e-02 1.744e-04      1.458e-03 

DEBTINC        2.515e-01 3.642e-02 3.642e-04      3.043e-03 

 

 

 

 

2. Quantiles for each variable: 

 

                    2.5%        25%        50%        75%      97.5% 

(Intercept)   -1.241e+01 -1.022e+01 -9.093e+00 -8.134e+00 -6.470e+00 

LOAN          -2.320e-05 -4.472e-06  5.762e-06  1.545e-05  3.118e-05 

MORTDUE       -2.196e-05 -1.203e-05 -7.241e-06 -2.907e-06  5.288e-06 

VALUE         -9.056e-06 -1.559e-06  2.280e-06  5.789e-06  1.395e-05 

REASONHomeImp -5.866e-01 -1.532e-01  9.478e-02  3.365e-01  7.699e-01 

JOBOffice     -2.101e+00 -1.392e+00 -9.925e-01 -5.842e-01  1.343e-01 

JOBOther      -7.109e-01 -1.476e-01  1.516e-01  4.850e-01  1.116e+00 

JOBProfExe    -9.444e-01 -2.559e-01  1.032e-01  4.617e-01  1.279e+00 

JOBSales       1.643e+00  2.937e+00  3.529e+00  4.213e+00  5.488e+00 

JOBSelf       -2.182e+00 -8.519e-01 -1.890e-01  4.236e-01  1.624e+00 

YOJ           -7.150e-02 -4.308e-02 -2.810e-02 -1.333e-02  1.415e-02 

DEROG          3.742e-01  6.119e-01  7.583e-01  9.061e-01  1.271e+00 

DELINQ         8.960e-01  1.116e+00  1.239e+00  1.349e+00  1.581e+00 

CLAGE         -1.112e-02 -8.553e-03 -7.233e-03 -5.860e-03 -3.071e-03 

NINQ           6.882e-02  1.633e-01  2.130e-01  2.609e-01  3.505e-01 

CLNO          -7.773e-02 -5.703e-02 -4.547e-02 -3.242e-02 -1.056e-02 

DEBTINC        1.894e-01  2.248e-01  2.482e-01  2.748e-01  3.295e-01 
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Trace of (Intercept) Density of (Intercept) 

Trace of LOAN Density of LOAN 

Trace of MORTDUE Density of MORTDUE 

Trace of VALUE Density of VALUE 

:1 ~,~~~~~I~l~,~f~ 1 ;l~--F=- =~~~~~ 
soo:oJ 50200J 50400J 50600J 50800J 510C0J _20_OS _10_OS Oe*OO 10_OS 

N _ 1 OCOJ !l<wlo:Mrth _ 9.2130_07 

Trace of REASONHomelmp Density of REASONHomelmp 

:1 ~~~~~~~'~':~~Hf~~I~I~ 1 :l __ u •.. _ n _I 
soo:oJ 50200J 50400J 50600J 50800J 510C0J _1.0 _0.5 0.0 0.5 1.0 1.5 

Trace of JOB Office Density of JOBOffice 

~j ~1~,~~~~~J~,Mt~ 1 ~l ~~~ 1 
soo:oJ 50200J 50400J 50600J 50800J 510C0J _3 _2 _1 0 1 

N _10C0J !l<wlo:Mrth _0.09991 

Trace of JOB Other Density of JOBOther 

:1 ~~~'~I~~~V~~.,Wff/ 1 ijl,-~~~~--~ ..... cr= .. . ~I 
1.0 1.5 2.0 

Trace ofJOBProfExe Density of JOBProfExe 

C 

N _10C0J !l<wlo:Mrth _O.oS997 
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Trace of JOBS ales Density of JOBSales 

J-
~ ~= ~~ ~ ~ ,,= , 0 . 

N_l0C0J !l<wlo:Mrth_0.15 

Trace of JOBS elf Density of JOBSelf 

~l ~~II~I~II~'~I &~~j'll ~ '~jl~~~~II ~~1 I ;. ~-lrf1~!I~-tfr't:="'mrtl,lr-l rllq I . l j 
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N_l0C0J !l<wlo:Mrth_0.1S99 

Trace ofYOJ Density ofYOJ 

:1 ~~~J~I~~~\~~~'~ 1 : 1 - - -_ .. .. - .. _--- ----_.- -I 
~ ~= ~~ ~ ~ ,,= _0.05 

N_l0C0J !l<wlo:Mrth_O.oo373 

Trace ofDEROG Density of DEROG 

:1 ~111~~~~·'~~I~V~ 1 ; 1 - ------ -I 
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N_l0C0J !l<wlo:Mrth_O.03589 

Trace of DELI NO Density of DELINO 

Trace ofCLAGE Density of CLAGE 
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N _ 1 OCOJ !l<wlo:Mrth _ 0.00J3375 

Trace of NINO Density of NINO 
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Trace ofCLNO Density of CLNO 
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Trace of DEBT INC Density of DEBT INC 


